
A Dataset of the Activity of the git
Super-repository of Linux in 2012

Daniel M. German
University of Victoria
Email: dmg@uvic.ca

Bram Adams
École Polytechnique de Montréal

Email: bram@cs.queensu.ca

Ahmed E. Hassan
Queen’s University

Email: ahmed@cs.queensu.ca

Abstract—This dataset documents the activity in the public
portion of the git Super-repository of the Linux kernel during
2012. In a distributed version control system, such as git, the
Super-repository is the collection of all the repositories (repos)
used for development. In such a Super-repository, some repos
will be accessible only by their owners (they are private, and
are located in places that are unreachable to other users) while
others are available to other members of the team. The latter
public repositories are used as avenues through which commits
flow from one developer to another. During the last six weeks of
2011, we proceeded to automatically discover the public portion
of the Super-repository of Linux. Then, in 2012, every 3 hrs,
each of these public repositories was queried to see what new
commits it had and what commits had disappeared from it
using a process we call continuous mining. This resulted in the
identification of 533,513 different commits across 451 different
public repositories and how they propagated through the Linux
Super-repository, including the repository of Linus Torvalds (i.e.,
the main repository of the Linux kernel). This information could
help us understand how kernel contributors use git, how they
collaborate and how commits are integrated into the Linux kernel
and into the repositories of organizations that distribute the
kernel.

This dataset is at http://turingmachine.org/2015/linuxGit

I. INTRODUCTION

A team that uses a distributed version control system (D-
VCS) must have at least one public repo (in this context, public
means a repo that is readable to at least one more member
of the team) and every developer must have at least one local
repo (usually private, i.e., not readable by any other developer).
We refer to the set of all repositories of a team as the Super-
repository of the project. When the Super-repository includes
only one public repo, a Super-repository acts like a centralized
version control system. All the commits flow from the local
repos to the public one and vice-versa, at the request of the
owner of the local repository.

In practice, a team that uses a D-VCS will have one or
more public repos and each developer will have one or more
private repos. One of the public repos is designated as the
blessed repo of the project, which one would find the most
up-to-date branch of development. Other public repos are
used to exchange commits between each other, side-passing,
if necessary the blessed repo of a project. In general, the
entire Super-repository will never be fully visible to anybody.
Many repos will be private and live in locations that are
only accessible to their owners. Other repos might be only
accessible to a subset of the team (e.g. in an intranet).

Linux is a large, successful software development project.
Just in 2012, we identified 4,575 developers improving it.
Linus Torvalds, its leader developer also developed git.
While git is becoming a popular D-VCS, it was originally
built to satisfy the requirements that Linux had. Hence, one
would expect Linux to be one of the projects (if not the project)
that exploits the most the features of git. This implies that
it is worthwhile to understand how the Linux kernel uses
git and what impact git has in the development process
of the kernel. To fully understand how git is used by Linux,
one would need to know how repos interact with each other
and how commits are moved by developers from one repo to
another. Such a study faces a plethora of challenges:

• The private repos in the Super-repository are unavailable
to others.

• git has no centralized logging mechanism that docu-
ments who is creating a new repo and its location.

• At any given time, there is no information that docu-
ments what repos form the public portion of the Super-
repository of Linux. While several servers host Linux
kernel repos (such as kernel.org and GitHub), many
others are spread around the world on servers of different
organizations.

• The Super-repository continuously evolves. Over time,
repos are created, destroyed, and moved.

• Neither repos nor commits record information about
where commits were created or which repos they have
passed through. Given two different branches in two
different repos, once these two repos merge the changes
from the other, the two branches are indistinguishable
from each other. Merge commits (if they are created)
might hint to the origin of the commits they have merged,
but this information is not always recorded or it might be
overridden.

To overcome these challenges, we have developed a method
to mine the Super-repository of Linux, which we call con-
tinuousMining. Using continuousMining, we mined during
2012 the public portion of this Super-repository. This paper
documents the resulting data, including:

• The URI of 451 public repos that contributed commits
to the Super-repository. Every 3 hours, we scanned each
repo looking for changes (new commits or deleted com-
mits). We performed 31,336 repo-scans where the repo

http://turingmachine.org/2015/linuxGit

had changed (an average of 70 scans per repo in 2012)
and retrieved the corresponding changes.

• We identified 533,513 commits that were created in 2012
(485,027 non-merges and 48,486 merges). To put them
into context, if one were to mine, at the end of 2012,
the blessed repo of Linux (blessed for short), one would
have found only 64,029 (8.3%) of them. The remaining
91.7% of commits did not reached blessed.

• The 533k commits were authored by 4,575 different
individuals (using 5,541 different email addresses) and
committed by 1,058 different individuals (using 1,172
different email addresses).

• The 533k commits contained 135,532 different patches.
• We identified 56 million commit propagations. A commit

propagation is an event in which a commit is seen for the
first time in a repo or disappears from it.

II. DESCRIPTION OF THE DATA

In Linux, the repo of Linus Torvalds is the blessed repo
of the kernel development. His repo serves as the destination
where commits are expected to flow. However, his repo only
tracks the successful code. Features that are being currently
developed, or that do not make it to the kernel will never
be seen in blessed. The main reason is that the repos around
blessed serve the same purposes as branches in a centralized
version control system: developers do their work in their local
repos (their own personal branches) and only when it is ready,
it starts to move towards blessed.

Blessed is only writable by Linus Torvalds. In Linux,
commits move from the personal repos of their creators to
blessed using a combination of email patches, pushes and
pulls. A typical commit will be created in a personal repo,
then emailed as a patch to a person responsible for integration
(git keeps track of the metadata of the commit). Another
alternative is for the creator to push her changes to her public
repo (e.g., in github) from where the integrator can pull the
changes into her private repo. This integrator will repeat the
process: she will push the commit (along many others) to her
public repo, and issue a pull-request to the next integrator (in
the path to blessed). If the commit is deemed worth it, it will
eventually reach blessed (Linus will pull the changes from the
integrator public repo into this own private repo, and then push
these changes to blessed).

Unfortunately, blessed contains no information about these
interactions between repos. The only trace of these interactions
are merge-commits (i.e., commits that combines the work of
one or more branches into another branch), but not every
merge results in a merge commit (e.g., fast-forward commits)
and sometimes the log of the merge commits does not docu-
ment that the commit performed a merge. Even if there is a
merge commit, this merge commit only documents an actual
merge operation, and does not record every single repo in the
path from its creation to blessed (this path usually consists of
fast-forward commits).

To fully understand how Linux uses git, we need to mine
the entire ecosystem of repos. However, we will never have

access to the private repos of developers. Fortunately, because
the kernel uses pull-requests to move commits between inte-
grators, almost every developer has have a publicly accessible
repo where she can share commits with other developers. If
we were to mine all these public repos of the team, we can
get a better picture of how integration is done in the kernel.
Furthermore, as mentioned before, once a commit moves from
one repo to another, we cannot tell in which repo it appeared
first, hence the propagation of commits between repos needs
to be dealt with afterwards.

To address these issues, we have developed a method
of mining D-VCS repos called continuousMining. continu-
ousMining queries repos ar a certain frequency to identify
commits that have appeared or disappeared since the last
query. The details of the method, including its implementation,
can be found in [2]. In that paper, we demonstrated that
continuousMining is superior to querying the blessed repo
at one time, since it is capable of observing code as it
moves across repos, documenting when commits are rebased
(a common operation in the kernel) and recording code that
is not yet in the blessed repo (see Peril 4 in [1]).

To our knowledge, research on Linux has always used a
single snapshot of the blessed repo of Linux. GhTorrent [3]
continuously mines Github looking for new changes, but it
does not record propagation of commits (when a commit
appears in a repo, whether the commit was seen before in a
different repo, and when). Hence, we are the first to document
how commits propagate in a D-VCS.

III. METHODOLOGY: HOW THE DATA WAS GATHERED

We started continuousMining on the Linux kernel in Nov
2011. By January 1st, 2012 we were mining 262 repos. This
number grew to 530 by the end of the year. Every 3 hrs, for
each of these repos: 1) we would synchronize our copy of the
repo; 2) create a log of all commits (in all branches of the
repo) and compare it to the previous iteration’s log; 3) label
any commit that was not in the previous iteration as “New”,
and every commit in the previous log no longer in the current
one as “Deleted”. [2] documents this process in detail. This
dataset concentrates on commits created during 2012 (but also
contains older commits).

For each repo, we needed to determine who its committers
were. This was mostly a manual process. When we observed a
new commit in a repo R, if the commit was not from a known
committer to R, then there were two possibilities: R had a new
committer (we searched the Web and mailing lists for evidence
of this), or the commit originated in another repo S. If it
originated in S, then either we were already mining S or not.
To determine if S was a known repo, we looked at the every
known repo T that the committer was allowed to write to. If
the commit was found also in T during the same time window,
then S = T and we assumed that the commit originated in
S and had propagated from S to R in the last three hours.
Otherwise we tried to find S (which was not currently known)
using any merge information in the repo, searching the mailing
list and using the Web. We feel confident that for every commit

that reached blessed in 2012, we have properly documented
its origin repo. This process is documented in [2].

IV. DATA SCHEMA

Name Description
Commits Metadata of commits.
Logs Log message of commits
FilesMod Metadata of files modified in commits.
CommitsBlessed Commits found in blessed at the end of 2012.
Commits2012 Commits committed in 2012.
Merges Commits that merged one or more branches.
Repos Repositories mined.
Owner Committers of a given repo.
Aliases Unified names of developers and the email addresses

they use (active in 2012).
PathToBlessed The path in the DAG of blessed that describes how

a commit reached blessed.
RepoProp Propagation of commits: when a commit appears or

disappears from a given repo.
TABLE I

TABLES IN THE SCHEMA AND THEIR DESCRIPTION.

The main entities of this dataset and their relationships can
be described as follows: there are developers who have created
commits in their public repos. A given developer (identified
by his or her uniname) has one or more email addresses to
identify oneself as the committer or author of a given commit.
Commits propagate through repos from their repo of origin.
Finally, commits flow from their repo of origin to other repos
and ultimately into blessed via merges. A subset of commits
have found their way to blessed (by the end of 2012–we call
them commitsBlessed). Any repo has zero or more documented
committers (we call them owners) who are the only developers
who can commit to it. The schema of the database, depicted in
Figure 1 documents these entities and relationships and Table I
describes the purpose of each table.

A. Propagations

The table repoprop is composed of attributes cid, repo, seen,
op (either ’N’ or ’D’) and origin. If origin is false a commit
cid is either added (op ’N’) or deleted (op ’D’) from a given
repo at date/time seen. If origin is true then this was the very
first scan of a repo (op is ’N’ for all the commits in this scan).
Repos were scanned every 3 hrs. We choose a period of 3 hrs
because it was long enough to complete a scan (most scans
took between one and two hours, depending on network traffic)
and most repos didn’t change during this period. Because we
could not stop activity in the repos during the scan, but a scan
was not an atomic operation. In few instances new commits
had propagated to more than one repo between scans, and we
resolved this manually (see [2] for details).

B. Path to Blessed

The information collected in repoprop is similar to the
propagation of a disease. We know where a commit originated,
and, at every snapshot (at 3hrs intervals) we know other
repos that also had the commit (or that deleted it). However,
when a new repos receives it, we do not know for certain
which repo it received it from. Given a set R consisting of

two or more repos that had the commit c at snapshop ti
and a new repo S /∈ R that has c as ti+1, S could have
received c for any repo in R. For this reason, we combined
information from repoprop and the directed acyclic graph
(DAG) of the commits found in blessed. Because we know
when commits arrive to a repo, we can convert the DAG into
a tree, where each node (commit) has only one successor and
only one merge into blessed. This tree is documented in table
PathToBlessed: for any commit cid, its successor is mnext;
its next successor merge is mnextmerge and it is eventually
merged into blessed at commit mcidlinus on date mwhen
(mnextmerge and mcidlinus can be the same). If the commit
was committed directly into blessed (by Linus), mcidlinus is
null. Figure 2 illustrates the use of this information. It shows
the tree of commits that were merged into blessed at merge
commit 5ede3ceb7b2c2843e153a1803edbdc8c56655950.

Fig. 2. Tree formed by the 28 commits merged into blessed at merge-
commit 5ede3ceb7b2c2843e153a1803edbdc8c56655950. Each horizontal line
represents a repo, Points marked with X are merges.

C. Patches in Commits
We found that as commits move throughout the Super-

repository, they change commit-id [2]. This is because re-
basing and changing the metadata of a commit are frequent
operations used by Linux developers. For this reason we
extracted the patch of every commit (git log -patch) and
removed line-number context information; then we computed
its hash, which we call the codecontents of the commit. While
we observed 485k different non-merge commits in 2012, there
were only 135k different patches. On average, the same patch
appears in 2.3 different non-merge commits.

V. THREATS TO VALIDITY

This dataset documents events that happened in 2012. While
it contains events before 2012, these are incomplete. We used
the period before 2012 to debug and calibrate our algorithms.
For example, it contains repos that were inactive during 2012,
and some propagations between repos before 2012.

Unfortunately some parts of this dataset are not repro-
ducible. Once commits have propagated between two repos,
it can be impossible to know where the commit originated. If
a commit is rebased, it is very likely that the original commit
is lost forever (unless the predecessor commit propagated to
another repo; yet, it would be hard to know if this commit
was the source of the rebased commit).

commits

cid

seen

repo

author

committer

ismerge

contents

codecontents

autdate

comdate

< 3 1,660,205 rows 8 >

repos

repo

uri

 578 rows 3 >

aliases

alias

uniname

 18,087 rows 3 >

commits2012

cid

< 1 533,513 rows 1 >

commitsblessed

cid

< 1 348,095 rows 1 >

filesmod

cid

index

file

added

removed

< 1 4,459,690 rows

logs

cid

log

< 1 1,645,942 rows

merges

cid

< 1 109,607 rows 2 >

owner

repo

alias

< 2 620 rows

pathtoblessed

cid

mnext

mdist

mnextmerge

mcidlinus

mwhen

< 6 68,477 rows

repoprop

cid

repo

op

seen

origin

< 2 52,610,586 rows

Fig. 1. Schema of the database. Shaded fields are the primary key of the table. To facilitate understanding, we have added foreign key constraints. The
numbers under a table schema correspond to the number of tuples in it. The database contains 578 repositories, but only 451 contributed at least one new
commit to the Linux Super-repository during 2012.

With regards to the data collection, we have done our best to
manually verify it. We do not claim that we uncovered all the
public repos that were active in 2012. We manually verified the
source of all commits that reached blessed and were created
in 2012. The unification of developers who committed or
authored a commit in 2012 was done manually. We did not
unify committers before (in that case, their uniname is null).

The window of 3hrs between the scan of a repo could
have been too long. It is possible that, in between two scans,
a public repo could have been updated—e.g., a commit is
added— and in the next update such a commit has been
deleted. In such a situation, the commit will not be recorded by
us. We believe that although possible, such cases are unlikely,
especially because the average time between updates of a repo
was 5 days. When a commit propagated from its repo of
origin to another repo between scans (i.e., the new commit
is found in two new repos) we manually looked at the commit
to determine its true origin.

Our dataset records all repos that we knew about and had

access too. In some cases, we knew of the existence of repos
but were not able to reach them (e.g., they were behind a
firewall). Because we concentrated on repos that produced
commits to blessed (as described above, we were diligent to
find the source of commits that reached blessed) it is possible
that we missed some repos that are never contributed back to
the kernel (such as those of organizations that distribute linux
versions) or those who had work in progress.

REFERENCES

[1] Christian Bird, Peter C Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Prem Devanbu. The promises and perils of mining git.
In MSR ’09: Proc. of the 6th Int. Working Conf. on Mining Software
Repositories, pages 1–10, 2009.

[2] Daniel M. German, Bram Adams, and Ahmed E Hassan. Continuously
mining the use of distributed version control systems: an empirical study
of how Linux uses git. Journal of Empirical Software Engineering, To
appear.

[3] Georgios Gousios. The GHTorent dataset and tool suite. In Proceedings
of the 10th Working Conference on Mining Software Repositories, MSR,
pages 233–236, 2013.

