
A Framework for

Measurement Based Performance Modeling

Dharmesh Thakkar
University of Victoria
Victoria, BC Canada
dharmesh@uvic.ca

Ahmed E. Hassan
Queen’s University

Kingston, ON Canada
ahmed@cs.queensu.ca

Gilbert Hamann, Parminder Flora
Research In Motion

Waterloo, ON Canada

ABSTRACT

Techniques for performance modeling are broadly classified into

measurement, analytical and simulation based techniques.

Measurement based performance modeling is commonly adopted

in practice. Measurement based modeling requires the execution

of a large number of performance tests to build accurate

performance models. These performance tests must be repeated

for every release or build of an application. This is a time

consuming and error-prone manual process.

In this paper, we present a framework for the systematic and

automated building of measurement based performance models.

The framework is based on our experience in performance

modeling of two large applications: the DVD Store application by

Dell and another larger enterprise application. We use the Dell

DVD Store application as a running example to demonstrate the

various steps in our framework. We present the benefits and

shortcomings of our framework. We discuss the expected

reduction in effort due to adopting our framework.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques,

Modeling techniques.

General Terms

Measurement, Performance

Keywords

Framework, Measurement, Modeling, Performance

1. INTRODUCTION
Performance modeling of software applications is of prime

importance. Problems after the deployment of software

applications are rarely due to functionality errors. Rather, most

problems are concerned with the application not responding fast

enough, crashing or hanging under heavy load, and other

performance or capacity related problems [7].

Performance modeling, a part of software performance

engineering, is concerned with building performance models to

better understand the performance characteristics of an application

under different workloads and deployment (hardware and

platform) settings. Performance modeling techniques are broadly

classified into measurement, analytical and simulation based

techniques. Measurement based techniques rely on conducting

extensive performance tests on the application being studied.

Measurement based techniques can only be conducted once the

application is fully developed and available. To overcome this

limitation, analytical and simulation techniques build models to

study and predict ahead of time the performance characteristics of

an application. Analytical techniques use theoretical models.

Simulation techniques emulate the functionally of the application

using a computer simulation whose performance can be probed.

There has been an in-depth research on the use all three

techniques for performance modeling of software applications [4].

Both simulation and analytical based techniques require a good

understanding of the application and require the presence of

accurate documentation of its behavior. However, up-to-date and

complete documentation and understanding of an application

rarely exists in practice. The source code in many cases represents

the only source of accurate information about the application [18].

Therefore practitioners commonly use measurement based

techniques. Instead of building mathematical models or computer

simulations, practitioners use the best model for a software

application, the application itself! Measurement based techniques

are often the only type of performance analysis used in practice,

as noted by Sankarasetty et al. [1].

Measurement based techniques require the execution of a large

number of performance tests for every release or build of a

software application. A performance test measures the

performance characteristics (e.g., response time) of the application

for a specific workload under a particular hardware and software

configuration. Performance tests are typically conducted after

functional and load testing of an application is complete.

Functional testing checks whether an application meets its

functional requirements. Load testing checks whether the

application works well under heavy workloads. Both functional

and load testing result in a pass or failure classifications for each

test. In contrast the results of a performance test are summarized

quantitatively in metrics like response time, throughput and

hardware resource utilizations. Using the results of a large number

of performance tests, a performance model can be built.

Deployers of enterprise applications use this performance model

to determine the most suitable capacity configurations when

deploying a new application [6, 11, 19]. This process is

commonly refereed to as capacity planning.

To ensure that a performance model is complete and accurate a

large number of performance tests must be conducted. The large

number of tests leads to many challenges when performing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSP’08, June 24–26, 2008, Princeton, New Jersey, USA.

Copyright 2008 ACM 978-1-59593-873-2/08/06...$5.00.

measurement based modeling in practice. Setting up the

environment for executing each test is usually a manual process,

which is lengthy and error prone. Setup mis-configurations are

common, costly, and are usually hard to detect. The test setup

process is repeated a large number of times since tests are

repeated many times. Tests are repeated to ensure the statistical

validity of results and to study the performance of an application

in different hardware and platform settings. With each build or

version of a software application, the measurement based models

must be updated by re-running most of the performance tests.

Building and maintaining measurement based models is a time

consuming and resource intensive process. For instance, if a bug

is discovered in an application during performance modeling then

the full performance modeling is usually repeated once the bug is

fixed.

Much of the practice has focused on automating performance

testing instead of modeling. Industry is primarily focused on

building sophisticated load testing tools, such as WebLOAD [13]

and HP LoadRunner [14]. Such tools although very valuable for

performance testing, do not help address the full life cycle of

measurement based performance modeling. Since measurement

based performance modeling is one of the final steps in an already

late release schedule, techniques are needed to speed up the

modeling process. Practitioners require tools to assist them in

building and updating measurement based models by automating

the various steps in performance modeling.

In this paper, we propose a framework that encompasses the full

life cycle of measurement based performance modeling. The

framework automates the process of picking the appropriate load

tests to execute in order to build an accurate and representative

model. The framework then automates the setup of the load tests

using off-the-shelf load testing tools such as HP LoadRunner. The

framework also assists performance analysts in analyzing the

results. The main contribution of our work is the proposal of a

framework that brings together various venues of research to

support analysts in their day-to-day activities. Using our

framework researchers can explore contributing and fitting their

own research work into the proposed framework. Moreover,

analysts can compare various tools and techniques using the

structure of our framework.

Paper Organization

The paper is organized as follows. In section 2, we discuss the

application of performance modeling in practice. Section 3

discusses the challenges associated with measurement based

performance modeling. In section 4 we discuss how our

framework addresses those challenges and present the various

steps in our framework. Section 5 discusses the efforts needed to

customize our framework. Section 6 covers the limitations of our

framework. Section 7 presents related work and section 8

concludes the paper.

2. APPLICATION OF PERFORMANCE

MODELING IN PRACTICE
Measurement based modeling of a software application is

commonly used in practice to produce capacity calculators and

performance white papers. Such calculators and white papers are

commonly developed for hardware platforms (e.g. [6]) and large

enterprise applications (e.g., [11, 19]). These calculators help

customers in capacity planning activities. Capacity planning

involves selecting the most appropriate configurations for

deploying an application while satisfying performance

requirements and financial constraints. When deploying enterprise

applications, customers must determine whether their current

deployment infrastructure, is over-engineered (then they can

reduce deployment costs) or under-engineered (then they can

invest more to improve the user's experience). For example, a

capacity analysis for a web application may indicate that a desired

response time of 8 milli-seconds cannot be achieved, if the

application is servicing 200 requests per second (i.e., usage

workload) while running on a dual P4-1.2Ghz machine with 2 GB

of memory (i.e., hardware configuration). Other hardware

configurations should be explored to achieve the desired response

time. Customers and support staff would like to address issues

such as:

1. What hardware is sufficient to deploy product X and offer a

good user experience?

2. If I upgrade to version 3.x, will my current quality of service

be affected? Will I need new hardware?

3. How much quality of service improvements should I expect if

I upgrade my I/O subsystem?

4. If I enable another 100 users on my current hardware, what

will be my CPU and disk utilizations?

5. When should I upgrade my current hardware given my

expected workload growth?

Figure 1 shows an example of a capacity calculator for the online

DVD Store application by Dell. The predictions produced by the

calculator are based on the inputs given in the UI and a

performance model for that application. For example, given a

particular hardware configuration of a 3.2 two-way P-IV CPU,

and the various workload parameters, as shown in Figure 1, the

calculator produces the predications by the model. The model

predicts an average CPU utilization of 40%, a memory usage of

790MB and a response time of 16ms. A customer could modify

the hardware or workload configurations to determine a suitable

configuration that would meet future demands and their budget.

Figure 1: An example of capacity calculator

Test

Enumeration

Test

Reduction

Environment

Setup

Test

Analysis

Test

Execution

Test

Transition

Control Flow Data Flow

Performance

Data

Performance

Model

Model

Building

Figure 2: The conceptual framework for measurement based performance modeling

3. CHALLENGES OF MEASUREMENT

BASED PERFORMANCE MODELING IN

PRACTICE
Building a measurement based performance model is a

challenging task in practice due to many of the following reasons:

1) The large number of tests that must be executed. A large

number of tests must be executed in order to ensure that the

model captures the various possible workload and

configuration options for an application. For example, tests

should be conducted for various configuration settings of an

application. Tests may be repeated several times to gain

statistical confidence in the captured performance metrics.

Tests must be conducted on multiple platforms to model and

benchmark the effects of changing underlying hardware

platforms.

2) The limited time that is available for performance

modeling. Performance modeling is usually done as the last

step in an already tight and usually delayed release schedule.

Hence managers are always hoping to reduce the time

allocated for performance modeling.

3) The risk of error due to the manual process that is

followed to setup, execute and analyze the tests. There

exist many tools to help in automating the generation of

loads for performance testing. However, there exist no tools

for configuring the application under tests, setting up the

tests, and analyzing the results in an automated fashion. In

practice, all these tasks are done manually and are especially

error prone.

4) The risk of having to repeat the full modeling process. All

too often the modeling process reveals problems or mis-

configurations are discovered. Once the identified problems

are addressed, the modeling process must be restarted from

scratch while having minimal impact on the time allocated

for performance modeling.

Such challenges have been noted by other researchers and

practitioners as well. For instance, Gunther cites lengthy

measurement and modeling phases as the main reasons for

management’s skepticism towards performance modeling and

capacity planning [8].

4. OUR PERFORMANCE MODELING

FRAMEWORK
In this paper we propose a performance modeling framework

which addresses the aforementioned challenges as follows:

1) The large number of tests that must be executed. Our

proposed framework supports the use of advanced test

selection and prioritization techniques such as ANOVA

selection [9] and screening designs [10], to reduce the

number of tests. The framework also supports the re-use of

data from previous releases or builds of an application.

2) The limited time that is available for performance

modeling. The framework automates many of the time

consuming tasks needed for building performance models.

The framework also reduces the time needed for tests.

3) The risk of error due to the manual process that is

followed to setup, execute and analyze the tests. The

framework automates the processes for setting up the

environment, executing the tests and analyzing the tests. This

automation ensures that errors are minimal. Moreover the

framework contains a validation step which uses prior

performance tests and heuristics to flag possible bad tests and

to rerun them or remove them from the model building step.

4) The risk of having to repeat the full modeling process.
The framework detects and flags possibly problematic or

mis-configured performance tests. The modeling process can

be automatically executed incrementally after the problems

are addressed.

Figure 2 shows the various steps in our framework. The

framework constitutes of the following steps:

1) Test enumeration determines the set of performance tests

that should be executed. The aim of the test enumeration step

is to define the search space of all the tests which should be

executed to build an accurate performance model.

2) Test reduction uses domain knowledge and historical

information from prior runs to reduce the number of

performance tests. Moreover test reduction uses statistical

and experimental design techniques to reduce the number of

tests that should be run.

3) Environment setup automates setting up the environment

for performance testing. This includes installing the

application and load testing tools. The application and the

tools may be required to run on different operating system

platforms. To support multi platform applications,

practitioners can customize this step and reuse the other steps

across platforms.

4) Test execution automates the task of running the test suite. It

has three major activities of: Test Setup, Test Run, and Test

Shutdown. This step is customizable to allow the use of

performance/load testing tool that can be invoked

automatically (e.g., from the command line).

5) Test transition prepares the environment to execute the next

performance test from the tests specified in the first step in

our framework. The practitioner can configure the

framework between one extreme of full restore and restart of

the system under test and the other extreme of directly

starting the load for the following test. Once configured, the

framework automatically executes the transition steps after

finishing each performance test.

6) Test analysis step first compares the test results against other

test results and against heuristics to detect any issues with the

performance test itself. Next, the metrics from the

performance counters are analyzed to draw the relation

between performance counters and load injected.

7) Model Building In this final step, a regression model is built

using statistical analysis tools, which models the application

performance as a function of its load parameters.

A performance database stores the performance test and analysis

data. The database is used in the test reduction, test analysis and

model building steps. The database could be implemented using

sophisticated database systems, or using files.

The framework permits performance analyst to encode the various

heuristics that are used in their model building process on a daily

basis. By encoding the heuristics they ensure that their model

building process is repeatable. The documentation of the

heuristics permits analysts to closely examine these heuristics and

update them as their understanding of the application matures.

Analysts could also replace their heuristics with more

sophisticated techniques as they evolve their modeling process. In

the following subsections we describe in detail each step of our

framework. We use the Dell DVD Store application as a running

example to demonstrate the various steps of our framework.

We now briefly introduce the Dell DVD Store application. The

DVD Store (DVD Store 2 or DS2) application is an open source

enterprise software application. The DS2 application is developed

by Dell as a benchmarking workload for white papers and

demonstrations of Dell’s hardware solutions [2]. DS2 seeks to

emulate today’s online stores, architecturally and functionally.

DS2 has a three-tier architecture. DS2 includes application server

components, database server components and a load generator

engine (client emulator). The source code for the load generator is

available and runs on various platforms. The load generator can

generate load on different application servers, or directly generate

load on the database server, skipping the application server

altogether.

The load generator emulates website users by sending HTTP

requests to the application front-end. The application front-end

encodes the various business rules, e.g. ordering new titles,

declining an order in case of insufficient inventory. All customers,

titles and transactional data are stored in the database server tier.

We chose DS2 over other applications for many reasons. First, it

is an open-source application, allowing us to debug and fix many

problems with the application. Second, it is simple and straight

forward to use, through a command line interface. Third, it does

not require any commercial software to get it running; we could

use Apache Tomcat as its application server and MySQL as its

database server. We now explain each step of our framework for

performance modeling using DS2 as a running example.

4.1 Test Enumeration
The first step towards performance modeling of a software

application is to enumerate the list of performance tests which

should be performed to build a performance model that would

fulfill the requirements of customers. This step is the only manual

step in our framework. Our framework automates the execution of

the remaining steps. The test enumeration step consists of four

phases. We discuss below each phase using the DS2 application.

Phase 1: Enumeration of functional transactions

The performance analyst begins with enumerating the functional

transactions available in the application. For our case study, the

functional transactions in the DS2 application are:

i. Creation of a new customer profile

ii. Customer login

iii. Searching for titles by category, actors, genre, etc.

iv. Purchasing a title

Phase 2: Mapping functional transactions to workload classes

The performance analyst needs to map the functional transaction

to workload classes. Multiple transactions can be grouped and

modeled as a single workload, or each transaction can be modeled

as a separate workload. The analyst should decide based on the

granularity and level of details required in the model. For example

for the DS2 application, if we are not interested in modeling the

performance demands of each individual transaction, we can

consider a sequence of login-search-purchase transactions as a

single workload, as done by researchers at Dell [6]. Rather, we

decide to consider each transaction as a workload class. We

consider that the sequence of login-search-purchase as a single

workload may not be a valid assumption since a user might do

several search operations before making a purchase.

Phase 3: Prioritizing workload classes for test execution

The workload classes should be prioritized since the framework

will execute tests to ensure that each workload is represented in

the final performance model. For instance, if the performance

model is being built for a new release in which the purchase

functionality has been modified to accept a new method of

payment, the analyst may decide to only execute the tests

corresponding to the purchase workload and to reuse the data for

other tests from the older model of the application.

Phase 4: Picking the ranges for each workload class and the

step size within a range

The range for each workload class and the step size within the

range are picked based on the experience of the analyst, the

requirements imposed on the final performance model, and

historical knowledge about the application. For instance, if a

particular setting would peg a hardware resource at full utilization,

the workload might be too high for the system to handle so the

range should be adjusted. In the absence of historical data, some

trial and error might be required to decide the ranges and stepping

size, so that the measurement points are evenly distributed. Now

we enlist the settings available for the DS2 workload classes, so

that we can enumerate the tests with different values of those:

1. Frequency of a transaction: Number of transactions per hour.

2. Concurrency: Number of processes or threads concurrently

generating the load on the application.

3. Search categories: Search by name, category, actors or genre.

4. Purchase quantity: Number of DVDs purchased in one

transaction.

The frequency and concurrency settings are applicable to all four

workload classes. The search category settings are applicable only

to search workload. The purchase quantity settings are applicable

only to purchase workload. Table 1 shows the relation between

the various settings and the workload classes. All four settings

(frequency, concurrency, search, and purchase) have four levels.

Performance tests should be conducted at various combinations of

the available settings for each workload. For instance, the Login

workload class has 4 levels for the frequency and concurrency

settings resulting in 16 possible combinations, for which a

performance test needs to be conducted. Based on studying the

documentation of the DS2 application, we decided not to consider

the interaction between the workload classes, since each workload

class has a service demand that is independent of the demands of

any other workload class. Based on our assumption and the

number of settings, we have enumerated a total of 144

performance tests, as detailed in Table 1. If a performance analyst

were to consider the interaction between the workload classes,

then the number of tests would be quite larger using a factorial

experiment design technique [4], as the total number of tests

would be the multiplication of the number of possible tests for

each workload class.

Table 1: Performance test enumeration

Workload

Class

Frequency

Levels

Concurrency

Levels

Other Performance

Tests

Create

Profile

4 4 - 16

Login 4 4 - 16

Search 4 4 4

(search

parameters)

64

Purchase 4 4 4

(purchase

quantity)

64

Total Performance Tests 144

4.2 Test Reduction
Test reduction is the second step in our framework, shown in

Figure 2. As discussed in Section 2, the large number of

performance tests and long test durations are some of the key

challenges in measurement based performance modeling. Hence,

it is necessary to introduce this step in the framework to reduce

the number performance tests. However, there has been little

research interest in performance test reduction methods. In this

section, we propose a few performance test reduction methods,

borrowing ideas from other research areas. We classify these

methods as one of two types: static and dynamic. The static test

reduction is a manual process, requiring good knowledge of the

requirements of the performance model and the implementation of

the application. The dynamic test reduction methods are based on

mathematical tools and techniques, which are built into the

framework and are carried out automatically.

4.2.1 Static Test Reduction
There usually are several functional transactions in a large

software application. However, all of the functional transactions

may not be important for performance modeling. For instance,

customers who want to deploy a DVD Store application would not

be much interested in the performance of the admin

functionalities. Rather, they would like to know how the store

front performs in regards to customer operations. Hence,

uninteresting functional transactions can be filtered out. Such a

reduction method draws from the knowledge of the requirements.

Another set of reduction methods draws from the knowledge

about the implementation. For instance, if two features are similar

to each other, it might be sufficient to conduct performance tests

on only one of them. For example, purchasing a DVD and

purchasing a DVD Collection features might differ by only a few

code modules, so the performance analyst can decide to build a

model that captures only one of the features to reduce the number

of needed tests, at least in the first iteration of model building.

4.2.2 Dynamic Test Reduction
The idea of test reduction has been researched thoroughly in the

functional testing area [22, 23]. However, this idea has not been

explored much for performance testing and modeling. We present

a few approaches, which although used for other purposes, can be

practically used here.

The Pareto principle [25] suggests that a small number of the

application features account for majority of the issues. This

principle is applicable to functional as well as performance issues.

The dynamic test reduction techniques seek to identify those few

features which contribute significantly to application performance

and only execute the tests that correspond to these features.

In large applications, a few important workload classes with large

service demands have great impact on the overall application

performance, while other workload classes might have minimal or

negligible performance impact. Once those workload classes with

large service demands are uncovered using a few performance

tests, further testing for such less important workload classes can

be avoided with a little or no loss in accuracy. In [10] Porter et al.

propose a method called Main Screen Analysis to find out the

important configuration parameters that affect the application

performance. Menascé and Sopitkamol used two-way ANOVA to

rank the configuration parameters that significantly impact overall

application performance in [9]. Both these works can be used to

rank the workload classes according to their significance on

overall performance. Once the performance parameters are ranked

by their significance on performance, tests corresponding to the

least affecting parameters can be dropped from analysis with

minimal loss of accuracy. Techniques used by Porter et al., and

Menascé and Sopitkomal are based on experimental design

theory. A detailed discussion of experimental design techniques is

presented in [4].

The framework supports using the aforementioned methods or

other research work in a plug-and-play fashion. In our case study,

we used a simplistic method for test reduction. We ran the two

extreme performance tests for each workload class: one with the

lowest value and another with the highest value from the entire

array of workload sizes, as derived after the test enumeration step.

For instance, we ran the test for Purchase workload with

quantities: one, and one thousand. If the framework does not

discover significant differences in performance between these two

tests, the framework skips the tests corresponding to the

intermediate values. However, if the framework discovers

significant differences in performance due to the parameter

settings (such as concurrency, frequency and search type), it

conducts the remaining tests for those settings. Using this

simplistic method we could reduce the number of tests from 144

tests to 64 tests. The reduced list of performance tests is shown in

Table 2.

Table 2: Reduced list of performance tests for DS2

 Frequency (transactions per hour)

 20 40 60 80

C
o
n
cu

rr
en

cy
 2

5
0

 Creating Customer Profile T111 T112 T113 T114

Customer Login T121 T122 T123 T124

Search Title T131 T132 T133 T134

Purchase Title T141 T142 T143 T144

C
o
n
cu

rr
en

cy
 5

0
0

 Creating Customer Profile T211 T212 T213 T214

Customer Login T221 T222 T223 T224

Search Title T231 T232 T233 T234

Purchase Title T241 T242 T243 T244

C
o
n
cu

rr
en

cy
 1

0
0
0

 Creating Customer Profile T311 T312 T313 T314

Customer Login T321 T322 T323 T324

Search Title T331 T332 T333 T334

Purchase Title T341 T342 T343 T344

C
o
n
cu

rr
en

cy
 1

5
0
0

 Creating Customer Profile T411 T412 T413 T414

Customer Login T421 T422 T423 T424

Search Title T431 T432 T433 T434

Purchase Title T441 T442 T443 T444

4.3 Environment Setup
The environment setup is the third step in our framework, as

shown in Figure 2. This step is designed to install the application

and the performance/load testing tools. Currently environment

setup in the industry is a manual, ad-hoc and error-prone process.

There has not been much research work on automating this step.

In our framework, we automated and implemented this step using

a set of scripts in a stand-alone module, which is invoked by the

framework engine. The scripts set up multiple computer systems –

the application servers, database servers, load generators and

performance tracking machines. The scripts then verify the

correctness of environment setup by making sure that the relevant

processes and services are running. However, each application and

load testing tool has its own installation steps. Hence, we anticipate

a significant amount of rework is required in this step when

customizing the framework to another application or platform. We

discuss the efforts needed for customizing our framework in Section

5. Despite the large customization efforts needed for this step, our

experience using the framework shows that it is worthwhile to

automate this step, considering that the customization effort is a

one-time effort.

4.4 Test Execution
Conducting performance tests is a lengthy and tedious step. This

major step is further divided into three sub tasks: test setup, test run

and test shutdown.

4.4.1 Test Setup
Each component of the application may need a set of test data for a

particular test. For instance, the DVD Store application in our case

study needs to be loaded with test data of DVD titles, registered

customers, and their purchase history. Another important task in test

setup is the configurations of the application server, the database

server and the load generator. Different setting of the configuration

parameters values can lead to drastically different performance

results. It is important to associate a performance test result with its

configuration for the test analysis step. Our framework archives the

configuration files of the application with each performance test.

Being confident that the tests are not affected by any one-off

anomalies includes making sure that the application is in a correct

state before triggering the test. Problems with test setup are not

usually captured until the test analysis step, when the counters

contradict themselves or do not match expectations. For this reason,

it is of prime importance to validate the test setup.

Our framework allows the writing of custom routines for test data

setup, configuration, and setup validation. These routines are

invoked by the framework before triggering the test, thus allowing

complete automation of test setup tasks. Our experience at using the

framework shows that once these custom routines are implemented,

they provide significant time savings.

4.4.2 Test Run
There has been considerable work in recent years in automating the

running of load and performance tests. Sophisticated

performance/load testing programs like LoadRunner and

WebLOAD are available. These programs include 1) tools to record

a script which represents the workload class that is being tested, and

2) tools to generate workload by playing multiple instances of the

recorded scripts that emulate real-life concurrent users. To conduct

the tests, multiple instances of the recorded scripts are played from

the load generating machines, simultaneously probing the

performance of the application. Once the scripts representing the

workload classes are recorded, running of each test is a three step

process:

1. Start the performance counters.

2. Turn on the application.

3. Start the load generating tools.

Starting of the performance counters can be the last or the first step

in the process. However, starting the counters first allows capturing

the transient response of the application while it is being turned on

and the load is building up. Each of these three main components of

the test setup might have multiple subcomponents that need to be

turned on in appropriate sequence. Appropriate time gaps might be

needed between the successive steps.

Similar to test setup, the framework achieves automation in running

tests by allowing scripting and error checking of this important step

in a modular way.

Each performance test goes through three phases:

1. Warm-up: Also known as ramp-up phase, during which the

application is being subjected to the workload. However the

workload is not at its full strength but it is building towards the

designated workload level.

2. Steady-state: The warm-up phase gives way to the steady state

phase if the environment is well configured and the application

can sustain the workload. During this phase, the performance

metrics are normally distributed with respect to the average.

3. Cool-down: Also known as ramp-down phase, during which

the load generator gradually stops injecting the workload and

the resource utilizations gradually drop as the workload is

winding down.

4.4.3 Test Shutdown
The load generating tools should be shutdown. Often, the load

generating tools are timed and can be setup to shutdown once a test

is completed. The application under test may need to be triggered

for shutdown or may continue running for the following tests. The

decision to shutdown or to continue running the application is taken

by the Test transition step. To remove the need for manual

intervention, the framework manages this process with scripting and

error checking.

4.5 Test Transition
Test transition is the process of switching from one performance test

to the next. There are various approaches for test transition. The

fastest way to transition is to conduct the tests back to back,

meaning to start loading the application with the new workload, as

soon as testing with the previous one is completed. This approach

results in very fast test transition. However, it may not be

recommended in all instances, since the residual load from the

previous test may interfere with the next test. A slightly better

transition approach is to add a delay, ranging from a few seconds to

few minutes, between performance tests, so that the residual load

would flow out of the system. The length of the delay can be

determined experimentally. In practice, it is preferable to use a

heuristic based transition approach. The approach uses heuristics

which monitor a few metrics to determine if the residual load has

flowed out and the system has reached idle state. For example, a

check can be made on application resources to ensure that the next

test is not triggered until the processor utilization of the application

machine is below a particular threshold (e.g., 5%).

For some application domains, previous test data if continually

accumulated can affect the results of the following tests. For

example, mail server applications continuously accumulate emails

so if the mail store is not cleaned up after every test, then the size of

mail store will keep on increasing. With an ever increasing mail

store size, the disk resource might show sluggish performance in the

following performance tests. A regular archival process should be

setup. After archival, fresh test data for a particular test should be

loaded. The best approach for such application is to clean-up and

restart the application after every test. The clean-up and restart

approach would ensure that there is no interference between

performance tests.

Similar to the previous steps, the framework manages to automate

these tasks with modularity of invoking custom routines that carry

out these transition tasks.

4.6 Test Analysis
Data derived from each executed test should be analyzed for

absence of errors. Manually analyzing the performance counters and

application logs for these purposes could be time consuming,

tedious and repetitive task due to the large amount of produced data.

Our framework goes a step beyond by not only automating the

analysis for errors, but also using the analysis for test reduction and

model building.

The framework triggers the analysis of the results automatically

after a test is completed. The major tasks of validating the test and

analyzing the metrics are discussed in the subsections below.

4.6.1 Validate the Test
Several problems can arise during a performance test. For example:

 A functionality bug, e.g. a memory leak or inefficient

implementation which results in a drift of the hardware

resources towards instability during the test.

 An interference from other processes or applications such as

automatic download and install of critical OS patches, or disk

backup, These processes would cause abrupt changes in

resource availability and would lead to invalid values for the

performance counters.

 A physical aspect, such as the rise in the operating temperature

of the data center housing the application under test. This

temperature rise may lead to invalid performance counters.

Such problems leave the performance test data unusable for analysis

and model building. To detect such problems, the framework

invokes validation routines, which check if the application reached

and maintained stability during the performance test and all

counters are within their expected bounds. Moreover the logs

produced by the application are mined to detect any execution

anomalies which may indicate bugs in the application. There exists

various log mining techniques to detect bugs from logs [5]. A

performance analyst can choose a technique based on their needs.

Figure 3: Instability in Resource Utilization

A simple way to detect instability is the method of central moving

average, which filters short term fluctuations and highlights long-

term trends. The instability in Figure 3 could be easily detected

algorithmically using this method. The method would show that the

hardware resource usage keeps on growing throughout the test and

never stabilizes.

Our implementation of the validation module for the DS2 does four

types of validations:

1. If the application reaches and maintains steady state during the

test, but the utilization of a resource is above 90% then we flag

that test as unusable for modeling purposes. The reason being,

that measurement data at high utilizations are hardly reliable

and repeatable [20]. Furthermore, all scheduled tests at higher

settings than the current test are skipped (as part of the test

reduction step). This technique helps avoid wasting time in

conducting performance test which would produce invalid data

due to overloading of the application.

2. If the application does not reach steady state (exhibit ever

increasing or ever decreasing trend in resource utilization),

then we flag the test as unusable for modeling purposes.

However, the framework continues executing the tests at

higher workload settings, unlike the previous case, because

instability in the current test may not necessary result into

instability in tests at the higher workload settings.

3. If a performance test with the same workload was executed

previously (for a previous or same build/version), and the

measured metrics (utilization, response time, throughput) differ

by a configurable boundary value, the framework flags the

current test as a possibly bad run. The performance analyst can

then do further analysis of such bad runs. After solving any

issues, the framework can run incremental modeling tests, only

executing the performance tests that were flagged out

previously.

4. If the logs of the application show errors during a performance

test show, then we flag the test as unusable for modeling

purposes. However, the framework continues executing the

tests at higher workload. The performance analyst can override

this decision and incorporate the results of this test in the

modeling if they deem that the reported errors are not

performance critical.

After all the tests are automatically executed by the framework and

results are presented to the performance analysts. If there are any

failures, manual debugging may be required to find the root cause

of test failure. Once problems are fixed, the flagged test can be re-

run. The modularity and automation in the framework allows the re-

running of all or only a subset of the performance tests.

Using our framework’s validation step, we identified a dead-lock

bug in the DS2 application. The application server tier would first

open a connection to the database in order to allow customer to

login and query its purchase history. Then the application would

open a second connection to browse the titles related to the titles in

the customer history. Within a few minutes of running a test, all the

threads in the application server would end-up waiting for the

second connection after capturing the first connection. As it was not

possible with the current MySQL driver to reuse connection, we

modified the code to do not query the purchase history and related

titles. We had to fix the bug to allow us to conduct performance

tests at concurrency levels that are significantly higher than

previously modeled for DS2. Once we fixed the bug, we could

perform modeling at higher concurrency levels

4.6.2 Metric Analysis
For each performance test, the counters collected during the warm-

up and cool-down periods should be pruned from the analysis, while

the counters from the steady state time period are carried forward

for analysis. Then, counters are imported in a statistical analysis

package, such as R [24], and statistical functions are applied to

derive the average performance metric values.

Traditionally metric analysis has been a tedious manual task in

performance modeling studies. We automated this task by creating a

script module that is invoked by the framework. The scripts chop

off the performance counter data captured during the warm-up and

cool-down periods of each test. We keep the length of the warm-up

and cool-down period configurable in the framework, to allow it to

be easily customized for different applications. Finally, the

framework obtains the average metric values and stores the values

in the performance database (see Figure 2) for the modeling effort.

We observed that for the DS2 application, a warm-up period of ten

minutes was enough to reach steady state. The cool-down period for

DS2 was negligible because of the way the load generating tool

operates – it does not ramp-down the load during the trailing period

of a test, it rather drops the load from its determined levels to zero

when the test time is up. However, many performance analysts

choose to keep the warm-up and cool-down period quite longer, to

show the longevity and sustainability that are desired in

commercial application.

4.7 Model Building
In the previous step, the framework produced the performance

metrics at different workload sizes. In this step, the framework

invokes the R [24] statistical tool which builds a linear or

nonlinear regression model for the performance of the application.

Figure 4 shows an example of fourth order regression model

between response time and processor utilization. Once a

regression model is built, performance predictions at arbitrary

load levels are done using the fitted model. For a comprehensive

discussion of regression models and prediction techniques, refer

to [4], particularly chapters 14 and 15. The developed regression

model could be used as a backend for a capacity calculator.

Figure 4: Processor Utilization vs Response Time

5. CUSTOMIZATION EFFORT
A major benefit of adopting our framework is the ability to reuse

modeling efforts when building performance models for other

applications; or other platforms, versions and builds of the same

application. In addition to using the framework for building a

performance model for the DS2 application, we are using the

framework for performance modeling of a large multi-platform

enterprise application.

When reusing the framework, several steps in the framework need

to be customized to achieve automation. Table 3 indicates the

amount of effort needed to customize the steps in our framework.

We classify the customization efforts as Minimal, Reasonable or

Extensive. Minimal efforts are characterized by a quick review of

the step; most of the implementation would be applicable as it is,

with little changes needed. Reasonable efforts imply the need for

changing or rewriting of some parts of the implementation of that

step. Extensive efforts are characterized by a major rewrite of the

implementation for that step.

We anticipate that the efforts to customize the framework for

another build to be minimal, because all the steps would be

applicable, as they are. For another version of the same

application, reasonable efforts may be required in test

enumeration and reduction, considering that new features

introduced in the version would result in additional workloads

which should to be tested and modeled. The rest of the framework

would still be applicable as is. To customize the framework for

the same application running on a different platform, the setup

and transition steps would need a rewrite of most of the

implementation, resulting in extensive effort requirement.

However, spending the extensive efforts to customize the

framework would show returns many times, which would easily

justify the cost. To customize the framework for a different

application deployed on the same platform, reasonable efforts are

required in the setup, execution and analysis steps because

changes to the automation scripts are needed.

Table 3: Estimated efforts for customizing our framework

Framework Step
Another

Build

Another

Version

Another

Platform

Another

Application

Test Enumeration Minimal Reasonable Minimal Extensive

Test Reduction Minimal Reasonable Minimal Reasonable

Environment Setup Minimal Minimal Extensive Extensive

Test Execution Minimal Minimal Reasonable Extensive

Test Transition Minimal Minimal Reasonable Reasonable

Test Analysis Minimal Minimal Minimal Reasonable

Model Creation Minimal Minimal Minimal Minimal

6. LIMITATIONS
The proposed framework is based on our research and experience

in measurement based modeling of two applications: the Dell DS2

application and another large enterprise application. These

applications are complex enterprise applications but they may not

represent the entire class of enterprise applications. Additional

steps and limitations may be discovered while applying the

framework to other applications.

We integrated research from other researchers to automate various

steps in our framework. However, limited research was available

in a few of the steps, so we employed heuristics in those steps.

However our framework directs researchers to focus on these

areas. Moreover the encoding of those heuristics in the framework

ensures that the repetitive tasks corresponding to those heuristics

are not missed and could be later revisited by practitioners.

Some of the dynamic analysis activities are currently not

automated in the framework and a performance analyst must

conduct these activities manually. This is our first attempt at

building this framework, which can be extended further with

research work focusing on each of the following points.

 Adjusting the performance tests to precisely determine

various key operational points or objects, e.g. knee capacity

and bottleneck resources. Unless the tests are carefully

designed, the built model can be inaccurate near such

operational points.

 Adjusting the performance testing period and lengths of

ramp-up and cool-down periods. This mainly involves

determining how long the application takes to reach steady

state condition and how many data points we need in each

test, to be confident enough about the input data and analysis

results.

7. RELATED WORK
Goldsmith et al. present a measurement based technique for

modeling computational complexity, to avoid relying only on

theoretical asymptotic analysis [3]. Similar to their work, our

framework aids in measurement based modeling, rather than

analytical or simulation modeling. Their modeling effort is for

algorithmic performance of non-Markovian applications [4]. In

contrast, our modeling effort is for enterprise applications which

are Markovian in nature, i.e., service demands for each new

request in a workload is independent of previous requests and the

current state of the application. Moreover, the presented

framework would prove to be extremely useful to Goldsmith et al.

in performing and managing the numerous performance tests

required to empirically measure computational complexity.

A tool called JUnitPerf built by Clarkware Consulting helps

automate performance testing during the development cycle [15].

JUnitPerf helps reuse the unit tests written in JUnit [16] for

performance testing of code units, as the developers finish coding

and refactoring. JUnitPerf is valuable for performance testing

during the development cycle. However, our framework is used to

model the overall performance of the whole application before

shipping instead of modeling a particular unit of code.

Mania and Murphy present a framework for automated LQN

based performance modeling [12], which is derived from the

trace-based modeling technique proposed by Woodside et al. [17].

Mania and Murphy’s work is limited to analytical performance

modeling, in particular LQN based modeling. In contrast, our

work derives its models using measurement based modeling

techniques.

Smith et al. propose a process for building software and system

performance models from UML models [21]. Their work provides

a framework for analytical performance modeling. In comparison,

our framework is for measurement based performance modeling.

8. CONCLUSION
We presented a framework for performance modeling of software

applications. The need for such a framework is felt from the

current challenges in performance modeling practices in industry.

Performance analysts are continuously building and updating

performance models for enterprise applications. These models are

produced through a labor intensive and error prone process which

always occurs at the end of already late release schedules.

Our proposed framework automates the building of measurement

based performance models. The framework is based on our

experience in performance modeling of two large applications: the

DVD store application by Dell Corporation and another larger

enterprise application. We presented the limitations of our

framework and highlighted our experience in using it. Moreover

we discussed the effort involved in customizing our framework

for other applications and other platforms. We conclude that more

work is required to unify and automate the processes for

performance modeling across the industry. More attention is

required from academia on the use of measurement based

techniques, which have wider acceptance in the industry,

compared to other analytical and simulation based techniques.

Acknowledgement
We are grateful to Research In Motion (RIM) for providing access

to large enterprise systems. The findings and opinions expressed

in this paper are those of the authors and do not necessarily

represent or reflect those of RIM, its subsidiaries or affiliates. Our

results do not in any way reflect the quality of products of RIM,

its subsidiaries or affiliates.

9. REFERENCES
[1] Sankarasetty, J., Mobley, K., Foster, L., Hammer, T., and

Calderone, T. 2007. Software performance in the real world:

personal lessons from the performance trauma team. In

Proceedings of the 6th international Workshop on Software

and Performance (Buenes Aires, Argentina, February 05 -

08, 2007). WOSP '07. ACM, New York, NY, 201-208.

[2] Jaffe, D., Muirhead T. 2005. The Open Source DVD Store

Application.

http://www.dell.com/downloads/global/power/ps3q05-

20050217-Jaffe-OE.pdf

[3] Goldsmith, S. F., Aiken, A. S., and Wilkerson, D. S. 2007.

Measuring empirical computational complexity. In

Proceedings of the the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering

(Dubrovnik, Croatia, September 03 - 07, 2007). ESEC-FSE

'07. ACM, New York, NY, 395-404.

[4] Jain R. 1992. The art of computer systems performance

analysis. John Wiley.

[5] Yang, J., Evans, D., Bhardwaj, D., Bhat, T., and Das, M.

2006. Perracotta: mining temporal API rules from imperfect

traces. In Proceeding of the 28th international Conference on

Software Engineering (Shanghai, China, May 20 - 28, 2006).

ICSE '06. ACM, New York, NY, 282-291.

[6] Muirhead T., Jaffe, D. 2005. Migrating enterprise databases

from Sun servers to the Dell PowerEdge 2850 running

Microsoft Windows Server 2003.

http://www.dell.com/downloads/global/power/ps1q05-

20040270-Jaffe.pdf

[7] Woodside, M., Franks, G., and Petriu, D. C. 2007. The

Future of Software Performance Engineering. In 2007 Future

of Software Engineering (May 23 - 25, 2007). International

Conference on Software Engineering. IEEE Computer

Society, Washington, DC, 171-187.

[8] Gunther, N. J. 2006 Guerrilla Capacity Planning: a Tactical

Approach to Planning for Highly Scalable Applications and

Services. Springer-Verlag New York, Inc.

[9] Sopitkamol, M. and Menascé, D. A. 2005. A method for

evaluating the impact of software configuration parameters

on e-commerce sites. In Proceedings of the 5th international

Workshop on Software and Performance (Palma, Illes

Balears, Spain, July 12 - 14, 2005). WOSP '05. ACM, New

York, NY, 53-64.

[10] Yilmaz, C., Krishna, A. S., Memon, A., Porter, A., Schmidt,

D. C., Gokhale, A., and Natarajan, B. 2005. Main effects

screening: a distributed continuous quality assurance process

for monitoring performance degradation in evolving software

systems. In Proceedings of the 27th international Conference

on Software Engineering (St. Louis, MO, USA, May 15 - 21,

2005). ICSE '05. ACM, New York, NY, 293-302.

[11] Research In Motion. Capacity calculator for BlackBerry

Enterprise Server 4.1 for Microsoft Exchange.

http://www.blackberry.com/select/toolkit/dls/BlackBerry_En

terprise_Server_Version_4.1.0_for_Microsoft_Exchange_Ca

pacity_Calculator.xls

[12] Mania D. and Murphy J. 2002. Framework for predicting the

performance of component-based systems. In Proceedings of

IEEE 10th International Conference on Software,

Telecommunications and Computer Networks (Italy, October

2002). SoftCOM 2002. pp. 46-50, ISBN 953 6114 52 6.

[13] WebLOAD load testing stress testing tool.

http://www.webload.org/

[14] HP LoadRunner Software.

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_

content.jsp?zn=bto&cp=1-11-126-17%5E8_4000_100__

[15] http://www.clarkware.com/software/JUnitPerf.html

[16] http://www.junit.org

[17] Israr, T. A., Lau, D. H., Franks, G., and Woodside, M. 2005.

Automatic generation of layered queuing software

performance models from commonly available traces. In

Proceedings of the 5th international Workshop on Software

and Performance (Palma, Illes Balears, Spain, July 12 - 14,

2005). WOSP '05. ACM, New York, NY, 147-158.

[18] S. E. Sim. 1998. Supporting multiple program

comprehension strategies during software maintenance.

Masters thesis, University of Toronto, 1998.

[19] Research In Motion. BlackBerry Enterprise Server for

Microsoft Exchange version 4.1 performance benchmarking.

http://www.blackberry.com/knowledgecenterpublic/livelink.

exe/fetch/2000/8067/645045/7963/7965/1180408/Performan

ce_Benchmarking_Guide.pdf?nodeid=1367404&vernum=0

[20] Pentakalos, O. and Friedman, M. 2002. Windows 2000

Performance Guide: Help for Windows 2000 Administrators.

UMI Order Number: 4665., O'Reilly & Associates, Inc.

[21] Smith, C. U., Lladó, C. M., Cortellessa, V., Marco, A. D.,

and Williams, L. G. 2005. From UML models to software

performance results: an SPE process based on XML

interchange formats. In Proceedings of the 5th international

Workshop on Software and Performance (Palma, Illes

Balears, Spain, July 12 - 14, 2005). WOSP '05. ACM, New

York, NY, 87-98.

[22] Xie, T., Marinov, D., and Notkin, D. 2004. Rostra: A

Framework for Detecting Redundant Object-Oriented Unit

Tests. In Proceedings of the 19th IEEE international

Conference on Automated Software Engineering (September

20 - 24, 2004). Automated Software Engineering. IEEE

Computer Society, Washington, DC, 196-205.

[23] Rothermel, G. and Harrold, M. J. 1997. A safe, efficient

regression test selection technique. ACM Trans. Softw. Eng.

Methodol. 6, 2 (Apr. 1997), 173-210.

[24] The R project for statistical computing.

 http://www.r-project.org/

[25] Juran, J. M., Godfrey A. B. 1988. Juran’s Quality Handbook.

McGraw-Hill Professional.

