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Abstract—Requirements traceability (RT) links requirements
to the corresponding source code entities, which implement them.
Information Retrieval (IR) based RT links recovery approaches
are often used to automatically recover RT links. However, such
approaches exhibit low accuracy, in terms of precision, recall,
and ranking. This paper presents an approach (CoChaIR), com-
plementary to existing IR-based RT links recovery approaches.
CoChaIR leverages historical co-change information of files to
improve the accuracy of IR-based RT links recovery approaches.
We evaluated the effectiveness of CoChaIR on three datasets, i.e.,
iTrust, Pooka, and SIP Communicator. We compared CoChaIR
with two different IR-based RT links recovery approaches, i.e.,
vector space model and Jensen–Shannon divergence model. Our
study results show that CoChaIR significantly improves precision
and recall by up to 12.38% and 5.67% respectively; while
decreasing the rank of true positive links by up to 48% and
reducing false positive links by up to 44%.

Index Terms—Traceability, requirements, source code, co-
change, information retrieval

I. INTRODUCTION

Requirements traceability (RT) links requirements and

source code entities to ensure that all the requirements have

been implemented by the developers and that source code is

consistent with the documentation. During software mainte-

nance and evolution tasks, developers add, remove, and modify

software systems to meet ever-changing users’ requirements.

Consequently, RT links between requirements and source code

become obsolete. Manually creating RT links is an effort inten-

sive task. Information Retrieval (IR) techniques are often used

to automatically recover RT links with various accuracy [1].

IR-based RT approaches heavily depend on textual information

to create RT links. Due to poor textual similarity and noise in

textual information [2], IR-based RT approaches often create

many false positive links.

In this paper, we conjecture that adding extra non-textual

based information, i.e., co-change information of files [3],

[4], could improve the accuracy of IR-based RT approaches.

Our conjecture stems from the previous work by Kagdi et al.
[5], [6] that if two or more files were frequently co-changed

together (in source code repository) for a longer period of time;

they may have a conceptual link between them and may belong

to the same requirement/concept. We extend their work by

linking requirements (evolving outside the source code repos-

itory) to source code files instead of only linking source code

file with the source code repository. To test our conjecture, we

propose an approach that combines CO-CHAnge information

of source code files with IR techniques (CoChaIR) to improve

the accuracy of IR-based RT approaches.

To evaluate the effectiveness of CoChaIR, we perform

an empirical study using CoChaIR, Jensen-Shannon model

(JSM), and Vector Space Model (VSM) on three datasets, i.e.,
iTrust, Pooka, and SIP. We use precision, recall, and ranking

metrics to measure the improvement brought by our CoChaIR

approach over JSM and VSM. We address the following two

research questions in our empirical study:

RQ1: Does CoChaIR lead to better accuracy?
CoChaIR improves the precision and recall of JSM and

VSM by up to 12.38% and 5.67% respectively. CoChaIR

removes up to 44% of the false positive links. In all the cases

(i.e., when comparing our approach to baseline approaches

like JSM and VSM across the three studied datasets), we

observed an improvements over the baseline IR techniques.

When examining the effect size [7] of such improvements, we

noted a large effect size in 92% of the cases. This is a very

promising improvement over our prior work [8]. Our prior

work made use only of textual information. It did not result

in improvement in all cases, when run on the same studied

datasets. For the cases, that it did show improvement, only

66% of these cases had a large effect size.

RQ2: Does CoChaIR provide better ranking?
CoChaIR decreases the rank of true positive links by up to

48%. CoChaIR uses the number of co-changes for each class

to rank true positive links higher in the ranked list.

A careful analysis of our datasets and results show that the

use of non-textual information ( as done by CoChaIR) lead to

higher effect on improvement than our previous work [8] due

to the fact that almost 30% of the change messages were empty

message or had less than three words. Moreover in a few cases,

many of the change log messages were not informative, e.g.,
“fixed some bugs in this revision”. In short, the low quality of

the textual content, e.g., change log messages, directly impacts

the accuracy, i.e., lower recall than baseline, of any textual

based approach (e.g., our prior work [8]).

The remainder of the paper is organized as follows: Sec-

tion II provides a brief description of the state-of-the-art IR

techniques and co-change approaches. Section III describes the

proposed approach in details and sketches our implementation.

Section IV provides details on its empirical study and the

results. Sections VI and VII provide discussion on the results,



and threats to the validity of our findings. Finally, Section VIII

concludes while highlighting avenues for future work.

II. RELATED WORK

RT links recovery and feature location as well as historical

co-change information topics are related to our research work.

A. Traceability and Feature Location Approaches

Several researchers (e.g., [1], [9], [10], [11]) have used

IR techniques to perform traceability recovery and feature

location. Often, IR-based traceability [9] and feature location

[11] approaches, use VSMs, probabilistic rankings, or a VSM

transformed using latent semantic indexing (LSI) to create

traceability links. Comparisons have been made among dif-

ferent IR techniques, e.g., [1], [12], with inconclusive results.

On several datasets, the VSM and JSM perform favourably in

comparison to more complex techniques, such as LSI [1] or

latent dirichlet allocation (LDA) [12]. Yet, algebraic models,

e.g., the VSM [9] and probabilistic model, e.g., the JSM model

[1], have become a reference baseline for both feature location

[11], [13] and traceability recovery [9], [14].

IR techniques use textual information of high-level doc-

uments, e.g., requirements, and low-level documents, e.g.,
source code, to create traceability links between them[9]. Un-

fortunately, there is a problem of conceptual distance between

requirements and source code. For example, a developer may

not use the same terms as used in requirements. Consequently,

this conceptual distance will lead to low textual similarity and

poor accuracy of IR techniques.

Different improvements have been proposed for IR tech-

niques. Some of these improvements focus on the different

weighting schemes of terms [1], and some pre-processing

techniques of documents, such as splitting source code iden-

tifiers [15]. Structural information of source code has shown

to supplement IR techniques [16], [17], [18]. The structural

information of source code generally refers to the function

calls, inheritance, aggregation, or association. However, due to

some anti-patterns [19] and–or source code quality [20] issues,

structure information could be misleading. For example, a

controller class design smell controls various functionality

and–or calls of various classes [19]. In the presence of

controller class design smell, the structure information may

not be accurate. Whenever available dynamic data [11] proved

to be complementary and useful for traceability recovery by

reducing the search space. However, such as dynamic data is

resource consuming and does not always possible to collect

execution traces of a system [2]. Software repositories also

have been mined to uncover traceability links [6], [8].

IR techniques face textual similarity problems due to noisy

textual information [2]. Ali et al. [8] linked requirements

to bug reports and SVN/CVS logs to improve the accuracy

of IR techniques. However, their proposed improvement also

depends on textual information, which faces the same problem

as IR techniques, i.e., noise in textual information. In some

cases, due to textual noise, their approach performed worst

than baseline IR techniques. In addition, the authors mentioned

most of the SVN/CVS logs messages did not have any textual

information. Therefore, their approach could not work in such

cases. In this paper, we do not use textual information to

improve the accuracy of IR-based RT approaches.

To the best of our knowledge, none of the previous work

studied the impact of historical co-change information on

RT link recovery using IR techniques. The work presented

in this paper is complementary to existing IR-based RT

approaches and propose improvement to IR based RT ap-

proaches. CoCHaIR uses current state-of-the-art IR techniques

to create baseline links, then uses historical co-change infor-

mation to recalculate the textual similarity, and tries to discard

false positive links. Our proposed approach can be used as a

filtering layer on all the previously mentioned IR-based RT

approaches.

B. Co-change Analysis Approaches

Researchers [3], [21], [22] have proposed approaches to

analyse co-changing files. They conjectured that two files are

in a co-change relationship if they frequently changed together

in past. This co-change information of files could help in

software maintenance tasks [3], [4]. Co-change information

of source code files help developers to examine potential files

linked to maintenance task at hand. Ying et al. [22] and

Zimmermann et al. [3] applied association rules to identify

co-changing files. Their hypothesis is that past co-changed

files can be used to recommend source code files potentially

relevant to a change request. Fehmi et al. [4] proposed an

approach Macocha to detect co-changes. Their approach uses

KNN algorithm to group change and bit vectors to analyse co-

changing files. Their results showed improved precision and

recall of the co-change analysis over an approach based on

association rules.

Kagdi et al. [5], [6] presented a heuristic-based approach

to link files evolving only inside the source code repository.

However, the authors did not link files, e.g., requirements,

evolving outside the source code repository.

All the previous promising work in co-change analysis

helped in various software maintenance activities, e.g., change

impact analysis [23], [24]. To the best of our knowledge, none

of the previous work has been used to support RT.

III. COCHAIR: COMBINING HISTORICAL CO-CHANGE

INFORMATION AND IR TECHNIQUES

We now present the details of CoChaIR that uses textual

information of requirements, source code, and historical co-

changing information as input. Figure 1 shows the high-level

view of CoChaIR. It has three main modules, i.e., an IR

engine, co-change analyser, and a similarity calculator. We

explain below the abstract model of CoChaIR and explain each

module.

A. CoChaIR Abstract Model

In CoChaIR, we represent a traceability link as a triple

{requirements, classes, and similarity} and we use the follow-

ing notations. Let R = {r1, . . . , rN} be a set of requirements



Fig. 1: High-level View of CoChaIR

and C = {c1, . . . , cN} be a set of classes supposed to

implement these requirements.

Let L = {L1, . . . , LN} be a set where each Li is a set of

classes {c1, . . . , cj} linked to a requirement ri; whose cosine

similarity is greater than 0. Let Q = {Q1, . . . , QN} be a set

in which each Qi is a subset of Li, in which all classes have

co-changed together. The function α(Li) returns the set Qi of

classes co-changing together.

Finally, let us define two functions β, and γ: the first

function, β(ri, cj), returns the similarity score σi,j between

a class cj ∈ Qi and a requirement ri computed by the IR

engine and the function γ(cj , ck) returns how many times a

class cj co-changed with other classes ck ∈ Qi. CoChaIR

normalises the co-change values for each class cj as:

δj =

p∑
k=1

(γ(cj , ck))

max
g∈Qi

{
p∑

k=1

(γ(cg, ck))}
(1)

where p is the total number of co-changes, cj �= ck, max is

the maximum number of co-changes for a class cg in a set

Qi.

We also define ψi,j , a function that computes the final

similarity between a class cj ∈ Qi and a requirement ri by

combining the σi,j and δj as:

ψi,j = λ δj + (1− λ) β(ri, cj) (2)

where λ ∈ [0, 1], represents the weight of the IR technique

and normalised total number of co-changes for a class cj . The

higher the evidence, i.e., number of co-changes
∑

(γ(cj , ck)),
the higher the new similarity ψi,j . In the contrary, little

evidence decreases ψi,j relatively to the similarities of other

cj ∈ Qi.

B. IR Engine

CoChaIR can make use of any IR technique as an engine to

create baseline RT links L between requirements R and classes

C. CoChaIR is not dependent on a particular IR technique. IR

techniques consider both requirements and classes as textual

documents to create links among them. IR techniques take

some processed documents, as explained in the following, as

input to build a m× n term-by-document matrix, where m is

the number of all unique terms that occur in the documents

and n is the number of documents in the corpus. Then, each

cell of the matrix contains a value wi,j , which represents the

weight of the ith term in jth document. A weight represents

the importance of a term in the corpus of all terms. Various

term weighting schemes are available to compute the weight

of a term [1], [9].

IR techniques compute the similarity between two doc-

uments based on the similarity of their terms and–or the

distributions thereof. The similarity values are in [−1, 1] but

negative values are discarded and a link has thus a value

in ]0, 1]; because similarity cannot be negative between two

documents and 0 similarity means that two documents do not

share any textual information. A high similarity value between

two documents suggests a potential link between them. Various

IR techniques [1], [9], [10] can be used to compute the textual

similarity between requirements and classes. Thus, the IR

engine of CoChaIR generates a set L.

C. Co-change Analyser

Co-change analyser takes RT links L as input. For each

set Li, the co-change analyser examines how many classes,

cj ∈ Li, co-changed together in past. A class cj is stored in

a set Qi if it co-changes together with other classes in Li.

Co-change analyser uses function α(Li) to generate set Qi.

More precisely, the co-change analyser mines CVS/SVN

logs to examine co-changing classes. A CVS/SVN change

log contains several attributes: changed class names, dates of

changes, and committers’ names that committed the changes.

We are only interested in the changed classes and time

information. Co-change analysis techniques [3], [4], [21],

[22] use the class names and time information to examine

the number of times they were committed together in the

CVS/SVN. Co-change analysis techniques show two classes

were co-changing if they were multiple times, in a defined time

window, committed in CVS/SVN. CoChaIR does not depend

on any particular co-change analysis technique.

D. Similarity Calculator

The similarity calculator takes the textual similarity σi,j

generated by the IR engine and the set Q generated by function

α(Li). It uses the function δj to get the total number of co-

changes for each cj . For example, if a requirement R1 is

linked to a class c1 and the co-change analyser indicates that

c1 ∈ Q1 co-changed two times with c2 and four times with c3
then the total number of relationships found for c1 is 6, i.e.,∑

(γ(cj , ck)) = 6. If maxg∈Qi
{∑p

k=1(γ(cg, ck)) is 10 then

δj will be 6/10 = 0.6. Based on Equation 2, the similarity



calculator recalculates the similarity ψi,j for each RT link for

a class in set Q.

Similarity calculator uses DynWing [8] to compute the λ
weight in the Equation 2. DynWing is a dynamic weighting

scheme to automatically calculate λ weights. It treats σi,j and

δj as two different experts giving their opinion for a single

RT link. DynWing uses different combination of λ weights

till it finds an optimal combination that maximizes the ψi,j .

Similarity calculator generates an updated set Q mapped to R
with new similarity values for each RT link.

IV. EMPIRICAL STUDY

We perform an empirical study on three datasets to evaluate

the effectiveness of our approach to create RT links. We use

precision, recall, and ranking to assess the improvement over

“traditional” JSM and VSM techniques and, consequently, the

reduction of the experts’ effort brought to the maintainer when

tracing requirements and validating traceability links to source

code. We choose JSM and VSM to compare CoChaIR because

these two IR techniques provide better results for traceability

than other IR techniques [1].

A. Goal, Variables, and Research Questions

The goal of our empirical study is to evaluate the effec-

tiveness of our novel approach in creating RT links against

two IR techniques, i.e., VSM and JSM, using requirements,

source code, and CVS/SVN logs as an additional sources

of information. The quality focus is the ability of CoChaIR

to recover RT links between requirements and source code

with better accuracy in terms of precision, recall, and ranking

[11]. The perspective is that of practitioners and researchers,

interested in recovering RT links with greater precision, recall

values, and decreased ranking of true positive links than that

of currently-available IR-based RT approaches. The objects of

our case studies are three open-source systems, i.e., iTrust,

Pooka, and SIP Communicator.

We use precision, recall, and ranking as dependent variables.

Precision and recall measures have values in the range [0, 1]
and ranking values depend on the size of the ranked list. We

use the approaches, either single IR technique, i.e., JSM and

VSM, or CoChaIRJSM , and CoChaIRV SM , as independent

variables. We address following the two research questions in

our empirical study:

RQ1 Does CoChaIR lead to better accuracy?
RQ2 Does CoChaIR provide better ranking?

B. Statistical Evaluation

We assess whether or not the differences in precision, recall

values and ranking are statistically significant between the

CoChaIRJSM , CoChaIRV SM , JSM, and VSM RT approaches.

To select an appropriate statistical test, we use the Shapiro-

Wilk test to analyse the distributions of our data points.

We observe that these distributions do not follow a normal

distribution. Thus, we use a non-parametric test, i.e., Mann-

Whitney test, to test our null hypotheses.

An improvement in accuracy might be statistically signifi-

cant but it is also important to estimate the magnitude of the

difference between the accuracy levels achieved with a single

IR technique and CoChaIR. We use a non-parametric effect

size measure for ordinal data, i.e., Cliff’s d [7], to compute

the magnitude of the effect of CoChaIR on precision, recall,

and ranking as follows:

d =

∣∣∣∣#(x1 > x2)−#(x1 < x2)

n1n2

∣∣∣∣
where x1 and x2 are precision, recall, or ranking values

achieved with CoChaIRJSM , CoChaIRV SM , JSM, and VSM,

and n1 and n2 are the sizes of the sample groups. The effect

size is considered small for 0.15 ≤ d < 0.33, medium for

0.33 ≤ d < 0.47 and large for d ≥ 0.47.

C. Studied Datasets

We use several criteria to select three datasets, i.e., iTrust,

Pooka, and SIP Communicator. First, we select open-source

systems, so that other researchers can replicate our experiment.

Second, we avoid small systems that do not represent systems

handled by most developers. Yet, all three systems were small

enough so that we were able to manually recover and validate

their RT links. Third, we selected datasets with change log

history. For example, some publicly available datasets1, e.g.,
eTour and SMOS , do not contain historical information.

Finally, their source code and requirements are freely available

online.

iTrust2 is a medical application that provides patients with

a means to keep up with their medical history and records

as well as communicate with their doctors. iTrust (version

10) dataset contains 35 and 218 requirements and classes

respectively. We used 3 years history of SVN logs for co-

change information.

Pooka3 is an e-mail client written in Java using the JavaMail

API. Pooka (version 2.0) dataset contains 90 and 298 require-

ments and classes respectively. We used 10 years history of

SVN logs for co-change information.

SIP Communicator4 is an audio/video Internet phone and

instant messenger. SIP (version 1.0) dataset contains 82 and

1,771 requirements and classes respectively. We used 7 years

history of SVN logs for co-change information.

We use three oracles, i.e., OracleiTrust, OraclePooka, and

OracleSIP, to compute the precision, recall values, and rank-

ing of CoChaIRJSM , CoChaIRV SM , JSM, and VSM when

applied on the three studied datasets. For iTrust, we use a

manually built oracle by its own developers. We did not create

or participate in creating the RT links for iTrust. It is a totally

independent dataset. For Pooka and SIP, the first author and

another Ph.D. student created traceability links between the

requirements of the two systems and their source code classes.

They read the requirements and manually looked for classes in

1http://www.coest.org/
2http://agile.csc.ncsu.edu/iTrust/
3http://www.suberic.net/pooka/
4http://www.jitsi.org



the source code that implement the requirements. They used

Eclipse5 to search for the source code and stored all manually-

built RT links in a FacTrace6 database. Two professors used

the FacTrace voting system to accept or reject all the manually-

built RT links. We did not use, at no point of the process, any

automated technique to build the oracles. All the requirements

and source code are available online6.

D. Baseline RT Links Recovery

We use the JSM and VSM techniques to create the baseline

RT links. Abadi et al. [1] performed empirical study on several

IR techniques to recover traceability links. Their empirical

study results show that JSM and VSM outperform other IR

techniques. Thus, we use both JSM and VSM to recover

RT links and compare their results in isolation with those

of CoChaIRJSM and CoChaIRV SM . We performed standard

documents pre-processing steps [9], [10], [8] to recover RT

links. Below we explain the steps followed by each RT

approach to create the RT links.

1) Linking Requirements and Classes using VSM: In VSM,

requirements and source code classes are represented as a

vector in the space of all the terms. Different term weighting

schemes could be used to construct these vectors. In this paper,

we use the standard TF/IDF weighting scheme [9]. Term

frequency (TF ) is often referred as local term weight. TF is

described by a t×d matrix, where t is the number of terms and

d is the number of documents in the corpus. TF is often called

local weight. TF will assign more weight to the most frequent

terms in a document, but this by itself does not mean that they

are important terms. The inverse document frequency, IDF ,

of a term is calculated to measure the global weight of a term

and is computed as IDF = log2

(
|D|

|d:ti∈d|
)

. Then, TF/IDF

is defined as:

(TF/IDF )i,j =
ni,j∑
k nk,j

× log2

( |D|
|d : ti ∈ d|

)

where ni,j are the occurrences of a term ti in document,

i.e., a requirement or a class, dj ,
∑

k nk,j is the sum of the

occurrences of all the terms in document dj , |D| is the total

number of documents d in the corpus, and |d : ti ∈ d| is the

number of documents in which the term ti appears.

Once documents are represented as vectors of terms in a

VSM, the RT links are created between the requirements and

classes with their own similarity value depending on their

textual similarity. The similarity is measured by the positive

cosine of the angle between requirements and classes vectors

(because the similarity between two documents cannot be

negative).

2) Linking Requirements and Classes using JSM: JSM is

an IR technique proposed by Abadi et al. [1] to recover

traceability links. It is driven by a probabilistic approach and

a hypothesis testing technique. JSM represents each document

through a probability distribution, i.e., a normalised t × d

5http://www.eclipse.org/
6http://www.factrace.net/tool

matrix. The probability distribution of a requirement and a

class is:

p =
n(w, d)

Td

where n(w, d) is the number of times a term appears in a

document, i.e., a requirement or a class, d and Td is the total

number of terms appearing in a document d. The empirical

term distribution can be modified to take into account the

global weight of a term, e.g., IDF . After considering the

global weight, each document distribution must be normalised.

Once all requirements and classes are represented as a prob-

ability distribution, JSM computes the distance between their

probability distribution and returns a ranked list of RT links.

JSM ranks classes via the “distance” of their probability

distributions to that of the requirements:

JSM(q, d) = H

(
pq + pd

2

)
− H(pq) +H(pd)

2

H(p) =
∑

h(p(w))

h(x) = −x log x

where H(p) is the entropy of the probability distribution p,

and pq and pd are the probability distributions of the two

documents (a “requirement” and a “class”), respectively. By

definition, h(0) ≡ 0. We compute the similarity between a

requirement and a class using 1− JSM(q, d). The similarity

values are in ]0, 1].

E. Linking Requirements and Classes using CoChaIR

In CoChaIR, we take the processed corpora and co-change

information of classes as input to reorder and filter baseline

links. Any IR technique and co-change analysis technique

could be integrated into CoChaIR. In this paper, we use the

JSM and VSM IR techniques to build the baseline links and

Macocha as co-change analyser. Macocha provides promising

results for co-change analysis [4].

For each requirement, JSM and VSM generate a ranked list

of classes. Each ranked list contains potential true positive RT

links in descending order. We use Macocha to examine the

co-change relationships between a class to other classes in the

same ranked list. We discard a class from the ranked list if

it does not have any co-change history with other classes in

the same ranked list, i.e., Li. Thus, for each requirement, we

have only the classes that have some co-change history with

other classes in the ranked list, i.e., Qi, and the number of

times a class co-changed with other classes. We combine the

total co-changes information and textual similarity computed

using JSM or VSM (see Equation 2) to compute a new

similarity value for each RT link. To select λ values, we use

DynWing [8] to compute an optimal weight for λ in Equation

2. Thus, CoChaIR produce two sets, i.e., CoChaIRJSM and

CoChaIRV SM , of RT links.

V. EMPIRICAL STUDY RESULTS

This section presents the results of our two research ques-

tions. For each research question, we present its motivation,



approach, evaluation metric(s), and a discussion of our find-

ings.

RQ1: Does CoChaIR lead to better accuracy?

Motivation: Linking all the requirements to all the classes

could help to create RT links. However, it will create many

false positive links. Consequently, it will require more de-

veloper’s effort to manually discard false positive link. IR-

based RT approaches automatically create RT links but with

low accuracy. Thus, it does not free a developer from manual

verification of false positive links. We use CoChaIR to improve

the accuracy of existing IR techniques by integrating historical

co-change information with IR techniques. In this question,

we want to measure the amount of improvement our proposed

approach brings over state of the art IR-based RT approaches,

i.e., JSM and VSM.

Approach: To answer RQ1, we perform an experiment using

CoChaIRJSM , CoChaIRV SM , JSM, and VSM RT approaches

on three datasets, i.e., iTrust, Pooka, and SIP Communicator.

We use precision and recall to measure the improvement

brought by CoChaIR over JSM and VSM. For RQ1, we

formalise following null hypotheses:

H01: There is no statistical difference in the precision of
the recovered RT links when using CoChaIRJSM or a
JSM-based approach.

H02: There is no statistical difference in the recall of the
recovered RT links when using CoChaIRJSM or a JSM-
based approach.

We have similar null hypotheses, i.e., H03 and H04, per-

taining to CoChaIRV SM and VSM.

We perform several experiments with various threshold

points on the recovered RT links to perform statistical tests on

precision and recall values. We used multiple threshold points

to analyse whether or not CoChaIR improves the precision

and recall on all the points. We use a threshold t to prune the

set of RT links, keeping only links whose textual similarity

values are greater than or equal to t ∈ [0, 1]. We use different

values of t from 0 to 1 per steps of 0.01 to obtain different

sets of RT links with varying precision and recall values, for

all approaches. We then perform paired-wise Mann-Whitney

test to measure the improvements brought by CoChaIR. In

the paired-statistical tests, two chosen approaches must have

the same number of data points. Therefore, we keep the same

threshold t values for both approaches. For example, if JSM

discards all RT links whose textual similarity values are below

the 0.75 threshold, then we also use the same 0.75 threshold

for CoChaIRJSM .

Evaluation Metrics: We use the RT links’ set of

CoChaIRJSM , CoChaIRV SM , JSM, and VSM, as described in

previous paragraph, to compute the accuracy of each approach

on iTrust, Pooka, and SIP. Two state-of-the-art IR metrics,

i.e., precision and recall, are used to evaluate the accuracy of

ranked lists generated by IR techniques and CoChaIR.

TABLE I: Average values of precision and recall for iTrust,

Pooka, and SIP datasets and Cliffs d results

Precision Recall
VSM CoChaIRV SM Effect Size VSM CoChaIRV SM Effect Size

iTrust 48.99 60.98 0.72 23.77 27.09 0.86

Pooka 34.32 38.15 0.55 12.76 14.66 0.12

SIP 14.12 19.69 0.90 14.25 15.74 0.92

JSM CoChaIRJSM Effect Size JSM CoChaIRJSM Effect Size

iTrust 32.72 45.10 1.0 39.26 44.93 0.93

Pooka 29.87 31.98 0.55 15.67 19.55 0.47

SIP 18.16 19.29 0.74 18.65 20.58 0.87

Precision =
|{relevant links} ∩ {retrieved links}|

|{retrieved links}|

Precision is defined as the number of relevant RT links

retrieved divided by the total number of retrieved documents

by an approach. If precision is 1 (or 100%) then all the

recovered RT links are true positive.

Recall =
|{relevant links} ∩ {retrieved links}|

|{relevant links}|

Recall is defined as the relevant RT links retrieved divided

by the total number of relevant RT links. It is a ratio between

the number of RT links that are successfully retrieved and the

number of RT links that are relevant. If recall is 1 (or 100%),

then all relevant RT links have been retrieved by an approach.

We use OracleiTrust, OraclePooka, and OracleSIP to compute

the precision and recall values of the RT links recovered using

CoChaIRJSM , CoChaIRV SM , JSM, and VSM.

Results: CoChaIR improves the accuracy, on average, by up

to 12.38% precision and 5.67% recall. Figure 2 shows the

precision and recall graphs of CoChaIRJSM , CoChaIRV SM ,

JSM, and VSM. CoChaIR provides better precision and recall

values at all threshold points than the two IR techniques. Table

I provides on average precision and recall values calculated

by comparing the differences between the CoChaIRJSM ,

CoChaIRV SM , JSM, and VSM RT approaches. CoChaIR

provides better accuracy on iTrust dataset than Pooka and SIP.

We found Macocha produced less false positive co-changes

for iTrust than Pooka and SIP. In future, if we have better co-

change analysis techniques then CoChaIR could provide much

better results than observed in this empirical study. DynWing

automatically calculates optimal weight for λ in Equation 2.

However, it is quite possible that using different weighting

schemes with CoChaIR would provide different results.

We performed the statistical tests described in Section IV-B

to verify whether or not the average improvements in precision

and recall are statistically significant. We have statistically-

significant evidence to reject H01, H02, H03, and H04 null

hypotheses. In all the cases (i.e., when comparing our approach

to baseline approaches like JSM and VSM across the three

studied datasets), p-values are below the standard significant

value, i.e., α < 0.05. Results show that in 92% of the cases

CoChaIR improves the accuracy of IR techniques with large



0 20 40 60 80 100

0
20

40
60

80
10
0

JSM
CoChaIRJSM

(a) iTrust

0 20 40 60 80 100

0
20

40
60

80
10
0

VSM
CoChaIRVSM

(b) iTrust

0 20 40 60 80 100

0
10

20
30

40
50

60 JSM
CoChaIRJSM

(c) Pooka

0 20 40 60 80 100

0
10

20
30

40
50

60 VSM
CoChaIRVSM

(d) Pooka

0 20 40 60 80 100

0
10

20
30

40
50

60 JSM
CoChaIRJSM

(e) SIP

0 20 40 60 80 100

0
10

20
30

40
50

60 VSM
CoChaIRVSM

(f) SIP

Fig. 2: Precision and recall values of CoChaIRJSM , CoChaIRV SM , JSM, and VSM, with the threshold t varying from 0.01

to 1 by step of 0.01. The X axis shows recall and Y axis shows precision.
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Fig. 3: Ranking of CoChaIRJSM , CoChaIRV SM , JSM, and VSM. Y axis shows the rank of classes and X axis shows the
RT approach name.

effect size. Only in the case of Pooka (VSM), we did not

observe any significant effect on improvement. However, on

average, CoChaIR produced better results for Pooka (VSM).

We note that CoCHaIR has a 37.5% better large effect on

precision and 8% better large effect on recall, than our previous

work [8].

Combining historical co-change information with IR tech-

niques improves the accuracy of IR techniques. CoChaIR

provides better precision and recall by up to 12.38% and

5.67% respectively

RQ2: Does CoChaIR provide better ranking?

Motivation: An approach might provide better accuracy, in

terms of precision and recall, but all the true positive links

could be down in the ranked list. Hence, precision and recall

alone are not enough since developers have limited time so

they need true positive links higher in the ranked list. Thus,

it becomes important to compare the rank of two different RT

approaches to measure the improvement brought by proposed

approach.

Approach: To answer RQ2, we use the ranking of true positive

RT links recovered using CoChaIRJSM , CoChaIRV SM , JSM,

and VSM of iTrust, Pooka, and SIP datasets. Lower the rank

of a true positive link higher the link would be in ranked list.

For RQ2, we formulate following null hypotheses:

H05: There is no statistical difference in terms of ranking
between CoChaIRJSM and JSM.

H06: There is no statistical difference in terms of ranking
between CoChaIRV SM and VSM.

We analyse the rank of all true positive links in the ranked

list generated by CoChaIRJSM , CoChaIRV SM , JSM, and

TABLE II: Average Rankings of True Positive Links Using

CoChaIRJSM , CoChaIRV SM , JSM, and VSM

VSM vs. CoChaIRV SM JSM vs. CoChaIRJSM

Ranking Ranking

VSM CoChaIR Effect Size JSM CoChaIR Effect Size

iTrust 30.37 18.15 0.77 30.23 18.99 0.67

Pooka 23.57 13.17 0.68 29.15 15.22 0.72

SIP 125.49 76.30 0.88 138.50 82.03 0.89

VSM. For each dataset, we generated four ranked list for each

RT approach. We compare CoChaIRJSM and CoChaIRV SM

generated ranked lists with JSM and VSM generated ranked

lists of each requirement.

Evaluation Metrics: In this paper, we use the ranking metric

[11] to evaluate the proposed approach. Precision and recall

are important measures to analyse the accuracy of an approach.

However, both IR metrics do not provide in depth analysis for

the location of true positive links in the ranked list generated

by an IR-based RT approach. It is quite possible, for example,

recall of an approach is high but all the true positive links are

at the end of the ranked lists. In this case, a developer must

manually verify all the false positive links before he could

find the actual true positive RT link. Thus, the higher is a true

positive RT link in a ranked list (decreased rank), the less is

the developers’ effort and the more accurate is an approach.

IR techniques produce a ranked list Li of classes C po-

tentially linked to a requirement ri. The ranked list is in a

descending order DescOrd (Li) based on the textual similarity

β(ri, cj) of the RT links. The size of a ranked list n depends on

the number of classes in it. Let us define a function ϕ(ri, cj)
that returns the rank of the true positive link in DescOrd (Li).
For example, if a requirement r1 is linked to 10 classes

c1...10 then the ranked list size DescOrd (L1...10) would be

n = 10. ϕ(ri, cj) will get the true positive link Lr1,c7 from



an oracle and look into DescOrd (L1...10) ranked list. Thus, if

the location of Lr1,c7 is 5th in the ranked list then ϕ(r1, c7)
will return rank = 5 for the link Lr1,c7 . If a true positive link

does not exist in a ranked list then ϕ(ri, cj) will return 0. A 0

rank link means a RT approach could not find the true positive

link or in other words low recall. A rank value is from 1 to

n. Function ϕ(ri, cj) uses an oracle to verify whether or not

a RT link is true positive. We eliminate 0 rank links for both

proposed and baseline RT approaches.

CoChaIR returns a similar ranked list in descending or-

der of the similarities computed using Equation 2. We use

OracleiTrust, OraclePooka, and OracleSIP to compute the rank-

ing of true positive RT links recovered using CoChaIRJSM ,

CoChaIRV SM , JSM, and VSM.

Results: CoChaIR lowers the rank of true positive links by

up to 48%. Table II reports the results of the ranking of true

positive links. Figure 3 shows that CoChaIRJSM provides

slightly better results for JSM than CoChaIRV SM . Lower rank

of a true positive link means higher position in the ranked list.

For example, in the case of Pooka (JSM), on average across

requirements, CoChaIRJSM decreases the rank of true positive

RT links from 29.15 to 15.22.

We have statistically significant evidence to reject the H05

and H06 null hypotheses. The p-values, for all the comparison

of CoChaIRJSM vs. JSM and CoChaIRV SM vs. VSM, are

below the standard significant value, i.e., α < 0.05. Table II

shows that ranks were decreased with large effect size, i.e.,
d > 0.47, in all the cases.

CoChaIR helps to decrease the rank, by up to 48%, of

true positive RT links and puts true positive RT links

higher in the ranked lists when compared to “traditional”

IR techniques alone.

VI. DISCUSSION

We now discuss lesson learned from applying CoChaIR on

the three datasets.

A. Analysis of Discarding a Non-Co-Changing Class Con-
straint of CoChaIR

We defined a constraint in CoChaIR to remove a class ci
from a ranked list if the class ci does not co-change with other

classes ck in set Li. This constraint may discard some true

positive links too. For example, if some classes are recently

introduced in the system and they do not have any co-change

history. To analyse such cases, we performed an experiment

with and without discarding non-co-changing class constraint

of CoChaIR.

For each ranked list set Li, first, we build two sets Qi and

NCi. Qi contains all the classes that were in co-change with

other classes in set Li. NCi contains all the classes that were

never co-changed with other classes in set Li. Second, for

each set Qi and NCi, we compute a new similarity value.

For set Qi, we follow the same steps as explained in Section

III-A to compute a new similarity value. Equation 2 assigns

more similarity value to a class if the class co-changes more

than the other classes in set Qi. For set NCi, we simply

divide the textual similarity of every non-co-changing class by

two. In this way, we reward a link with higher similarity and

penalize a non-co-changing class by decreasing its similarity

value. Third, we merge both sets Qi, NCi, and their update

similarity values to create a new set Q∗
i . Lastly, we compute

precision, recall, and ranking of each set Q∗
i and compare it

with Qi.

We found no dramatic difference between the results of Q∗
i

and Qi. Table III shows the results of CoChaIR with and with-

out discarding non-co-changing class constraint. CoChaIRQ

shows the results of with constraint and CoChaIR∗
Q shows

the results of without. Table III shows there is no difference

between CoChaIRQ and CoChaIR∗
Q for recall and minor de-

crease in precision values for CoChaIR∗
Q. In terms of ranking,

results slightly went down compared to CoChaIRQ. However,

both CoChaIRQ and CoChaIR∗
Q results are still significantly

better than baseline links. Thus, we conclude that discard-

ing non-co-changing class constraint provides slightly better

results than without constraint. However, a project manager

can make the final decision whether or not he wants to use a

constraint.

We analysed that discarding non-co-changing classes re-

duced false positive links of iTrust, Pooka, and SIP by up to

43%, 34%, and 44% respectively. Whereas, penalizing non-

co-changing classes did not remove any false positive link but

yet it provides better results than baseline IR techniques. We

observed, only in the case of Pooka and SIP, at t = 0, a

couple of true positive links were discarded due to the lack

of co-change information for the classes. These two to three

links were discarded at the cost of 34% to 44% reduced false

positive links and 46% lower rank of true positive links.

We observed all the true positive links of iTrust, Pooka,

and SIP co-changed together in past. Consequently, removing

non-co-changing classes did not negatively impact recall of

proposed approach. Thus, we conclude that if a software

system does not have long or complete co-change history

then penalizing non-co-changing classes could be used to

improve the accuracy of IR techniques without missing any

true positive links. However, if a system has long change

history for all the files then discarding link constraint could

be used. A developer can make a choice whether or not to put

constraint on CoChaIR before starting the RT links recovery

process.

B. Qualitative Analysis

Table I shows better improvement in iTrust dataset than

Pooka and SIP. We manually examined all three datasets

to find out the reason. There were two main reasons that

caused different improvements; first, the requirements for

Pooka and SIP were pre-requirement with limited textual

information. On average, a pre-requirement contains 15 words.

These pre-requirements caused low conceptual similarity be-

tween requirements and source code [2]. If there is a low

similarity between requirements and source code, then no

matter how good an IR-based RT approach is, it may not



TABLE III: Average values of precision and recall for CoChaIRQ and CoChaIR∗
Q

VSM Results
Precision Recall Ranking

CoChaIRQ CoChaIR∗
Q CoChaIRQ CoChaIR∗

Q CoChaIRQ CoChaIR∗
Q

iTrust 60.98 60.08 27.09 27.09 18.15 21.74
Pooka 38.15 37.91 14.66 14.66 13.17 15.68
SIP 19.69 19.28 15.74 15.74 76.30 98.52

JSM Results
CoChaIRQ CoChaIR∗

Q CoChaIRQ CoChaIR∗
Q CoChaIRQ CoChaIR∗

Q

iTrust 45.10 44.71 44.93 44.93 18.99 20.93
Pooka 31.98 31.77 19.55 19.55 15.22 17.67
SIP 19.29 19.10 20.58 20.58 82.03 100.19

produce results with high precision and recall values [8].

CoChaIR improves the similarity of true positive links by

adding co-change information of classes. For example, JSM

computed 12% textual similarity between R46, i.e., “change

the way your folders are displayed and manipulated”, and

class FolderInfo.java and placed it at 12th rank in the

ranked list of R46. Whereas, CoChaIRJSM combined textual

similarity and historical co-change information using Equation

2. CoChaIRJSM assigned a new similarity, i.e., 26%, between

R46 and FolderInfo.java and placed it at the top in the

ranked list of R46. CoChaIR tries to overcome the limitation

of textual similarity issue and improves IR techniques results.

Using CoChaIR as filtering approach with other IR-based RT

approaches could provide much better results.
Second, we observed that Macocha produced some false

positive co-change results. Macocha and other co-change

analysis techniques are not precise yet [4]. However, CoChaIR

is not depended on a particular co-change analysis technique;

more advance and accurate co-change analysis techniques

could be integrated with CoChaIR. We analysed there were

some true positive co-changing classes from the co-change

analysis point of view [3], [4]. However, when we looked at

true positive RT links of these classes, we found that these

co-changing classes were linked to different requirements. All

these cases led to poor co-change evidence for Pooka and SIP.

Consequently, they lead to lower improvement in precision and

recall.
In the case of iTrust, all the requirements were well docu-

mented post requirements. There was better textual similarity

between requirements and source code terms. In addition, there

were less false positive co-changing classes. All this led to

better improvement for iTrust than Pooka and SIP.

C. Parameter Sensitivity Analysis of ChaIR
We also manually tuned the parameters in Equation 2 to

analyse the impact of manual parameter tuning. We found

that assigning more weight to co-change information provides

higher recall and less precision. DynWing provides better

combination between precision and recall values without much

human intervention [8]. In our empirical study, for DynWing,

we put co-change information higher than textual similarity.

We did not change this setting for all the experiments to avoid

any bias. We changed global constraint of DynWing to see its

impact on the results. We put textual similarity higher than

co-change information in a global constraint. This change

in global constraint did not dramatically change the results.

In both settings results were almost similar and statistically

significant.

VII. THREATS TO VALIDITY

Several threats potentially limit the validity of our experi-

ments. We now discuss potential threats and how we control

or mitigate them.

Construct validity: To mitigate construct validity threat, we

used widely adopted metrics, precision, recall, and ranking,

to assess the IR techniques and CoChaIR as well as their

improvement. The oracle (traceability matrix) used to evaluate

the tracing accuracy could also impact our results. To mitigate

this threat, two Ph.Ds. (one is the first author) manually created

RT links oracles then two professors (neither are co-authors)

verified their content to avoid imprecision. Moreover, we used

iTrust traceability oracle developed by the iTrust developers

who did not know the goal of our empirical study.

Internal Validity: The internal validity of our empirical study

could only be threatened by our choice of the λ value: other

values could lead to different results. To mitigate this threat,

we use the same DynWing approach to compute λ for all

the datasets and RT approaches. However, it is possible that

other λ values might provide different results. In Section

VI-A, we analysed the impact of CoChaIR constraint. We used

2 as denominator to penalize non-co-changing classes. It is

quite possible using different denominator provides different

results. In future, we will analyse the impact of denominator.

Using Macocha as co-change analyser could impact the result

of our empirical study. A developer may commit multiple

classes all together over a longer period of time. This may

impact the results of Macocha. Macocha is not yet precise co-

change analysis approach. To mitigate this threat, we studied

different co-change analysis approaches in the literature. We

found Macocha provides better results than previous co-change

analysis techniques [4]. It is quite possible using other co-

change analysis techniques provide different results. However,

CoChaIR is not dependent on any specific co-change analysis

techniques. Thus, in future, more advanced and precise co-

change analysis techniques could be used with CoChaIR.

External Validity: Our empirical study is limited to three

datasets iTrust, Pooka, and SIP. Yet, our approach is appli-

cable to any other software systems. However, we cannot



claim that the same results would be achieved with other

systems. Different systems with different CVS/SVN change

logs, requirements, reverse engineering tools, and source code

may lead to different results. However, the three selected

datasets have different SVN change logs, requirements, and

source code quality. Our datasets selection reduces the threat

to the external validity. However, more studies, preferably on

industrial datasets, are required to generalise the results of our

empirical study.

Conclusion validity: We mitigate this threat by paying at-

tention to the distribution of our empirical study results. We

verified the data distribution of our results using Shapiro-

Wilk test. We used non-parametric statistical test, i.e., Mann-

Whitney, and effect size, i.e., Cliff’s delta, because our data is

not normally distributed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, our conjecture was that the use of co-change

information combined with IR techniques helps to improve the

accuracy of IR-based RT approaches. To verify our conjecture,

we proposed a new RT approach, i.e., CoChaIR. CoChaIR

works as a filtering approach of RT links generated by IR

techniques and computes new similarity values based on co-

change information for each class.

The results reported in our empirical study demonstrate that,

in general, CoChaIR improves the accuracy of IR techniques.

Results show that CoChaIR could produce different results on

different datasets. However, in all the three studied datasets,

CoChaIR statistically improved the accuracy of IR-based RT

approaches. We thus conclude that our conjecture is supported:

the accuracy of the IR techniques is improved by integrating

co-change information. It provides better accuracy and lower

the effort required to manually discard false positive links.

There are several ways in which we are planning to extend

this work. First, we will analyse other co-change types and

change propagation types, e.g., diphase co-change. We will

evaluate different co-change analysis techniques and their

impact on IR-based RT approaches. We will deploy CoChaIR

in a development environment and perform experiments with

developers to analyse how effectively CoChaIR can help

developers in recovering traceability links.
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