A Study of the Time Dependence of Code Changes

Omar Alam, Bram Adams and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
{omar, bram, ahmed} @cs.queensu.ca

Abstract—Much of modern software development consists of
building on older changes. Older periods provide the structure
(e.g., functions and data types) on which changes in future
periods will build. Given a particular period in the lifetime of
a project, one can determine prior periods on which it builds,
and future periods which build on it. Using this knowledge,
managers can identify foundational periods in the lifetime of
a project, which provide the structural foundation for a large
number of future periods. A good understanding and detailed
documentation of events and decisions in such foundational
periods is essential for the smooth evolution of a project.
This paper examines how changes build on older changes by
measuring the time dependence between code changes. Using
our approach, we can create time dependence relations between
periods and study the characteristics of such dependence
relations. We apply our approach on two large open source
projects, PostgreSQL and FreeBSD. We find that foundational
periods are periods with huge restructurings, important new
features or large imports of external source code. We also find
that a project, as it ages, either progressively depends on older
periods or cycles between depending on old and new periods.

Keywords-D.2 Software Engineering: Maintenance manage-
ment, Maintenance measurement, Maintenance planning, Re-
structuring, reverse engineering, and reengineering, Review
and evaluation, Software Architectures, Project control and
modeling. K.6 Management of Computing and Information
Systems: Software Management Software maintenance.

I. INTRODUCTION

New code changes typically build on prior changes. For
example, a new function would depend on (i.e., call or use)
other code entities that are added in the same change, or
have previously been defined. The previously defined entities
are either system libraries or were added in prior changes.
A temporal dependence exists between a new code change
and prior changes. This temporal dependence flows as well
between periods in a lifetime of a project. For example,
changes (e.g., refactorings and new APIs) done during a
particular year might pave the way for changes in future
periods (years).

Such temporal dependence between periods has not been
studied before, although this dependence has a strong impact
on the smooth and successful evolution of a project. For
example, it allows to identify foundational periods, i.e.,
periods of development on which a significant number
of changes in later development build. Managers should
schedule extra testing and validation effort when source code
from a foundational period is changed. They may also decide

to re-document the development activities of foundational
periods to ensure that resources like documentation and
mailing lists are archived and up-to-date. Since the foun-
dational periods have crucial impact on later developments,
staff during those periods should be consulted, if needed,
for better understanding and smooth development of future
periods.

A good understanding of temporal dependence would help
software evolution researchers in understanding the state of a
project. As a project stabilizes, we would expect the number
of foundational periods to drop. Indeed, most changes for
such projects would be small and incremental changes which
build on previously established structure provided by past
foundational periods. While actively evolving, we would
expect the appearance of new foundational periods which
provide the structure for future changes.

This paper presents an approach to measure the time de-
pendence between code changes and between development
periods. Using our approach, we study the time dependence
between code changes and periods, for two large open source
systems (PostgreSQL and FreeBSD). We find that:

¢ On average, up to 48% of the changes in a period build
on changes made in the current development period.

o As a project ages, it tends to build less on changes from
the current period, and more on foundational, older
periods.

« Foundational development periods (on which a large
number of future periods build) are periods with huge
restructurings, important new features or large imports
of external source code.

Organization of the Paper. The paper is organized as

follows. presents our methodology to measure the
time dependence between changes and periods.
presents three research questions we want to study using
our approach. In we explain the setup of the
two case studies we performed, and we discuss the case
study results for each research question. discusses
limitations and future work. [Section VI discusses related

work. [Section VII| summarizes our findings and concludes
the paper.

— fremove— _
—~

7~ - -
7
7
7/
X
function f1() x _ [4 _ N function f1()
Add Add Modify ~ Add Add Modify ~ Modify

{
Call function f2()

f2() f3() f3(0) f1()

f1() {
Call function f2()

f4() f4()

Call function f3() Change 1 Change 2

} Period 1 Period 2

(a) function before

changes

Change 3 Change4 Change5

(b) changes introduced to entities over time (c)

Change 6 Change 7 Call function f4()

Period 4 }

Period 3

function after

changes

Figure 1. Time dependence relations for an example system before and after making changes. The arrows in [1b] connect changes 6 and 7 to
all changes they build on. The dashed arrow connects a change to the most recent change of any entity to which it added or removed a reference (e.g.

function call).

II. METHODOLOGY

Software evolution studies usually track the progress of a
project using traditional metrics like Lines of Code (LOC)
between different versions of a software system [1[], [2.
In this paper we wish to track the evolution of a project
along the analogy of a building structure with new changes
building on prior changes and new periods building on older
periods.

We consider a change as the insertion, deletion or
modification of a source code entity. Related changes are
committed together into a change list to the source code
repository of a project. To track the evolution of changes,
we define a time dependence relation between changes. A
time dependence relation links a change of a source code
entity I (e.g., a function or type definition) at time 7" to the
most recent change before 1" of E and of each entity that E
depends on before or after the change (via its call graph).
The latter makes sure there is a time dependence relation
corresponding to added and removed function calls.

A time dependence relation between periods (e.g., month,
quarter, year) abstracts the time dependencies between
changes to the time periods in which these changes reside. A
time dependence between periods gives a higher-level view
of the time dependence relations in terms of periods instead
of individual changes.

illustrates a small example of the time de-
pendence between changes and periods. The example has
changes happening across four time periods. In change 7, a
developer modifies function f£1 () by removing
the call to £3 () and adding a call to £4 () (Figure Ic.
Such a change builds on the last change to the function
£1 () itself, and on the last change to all previously (£2 ()
and £3()) and newly (£4 ()) called entities. The time
dependence edges express these dependencies. Rectangular
nodes represent periods and edges represent time depen-
dence relations between changes in these periods.

only shows edges for changes 6 and 7, but similar edges can
be drawn for other changes as well. The time dependence
relation between two periods corresponds to the union of
edges between any two changes in these two periods. For
example, between periods 3 and 4, there is only one time
dependence relation (small black edge).

We define inner- and outer-period time dependencies.
Inner-period dependencies are when an edge starts and ends
in the same period, i.e., self-loops. These indicate that a
period builds on itself. Outer-period dependencies are when
an edge starts in a period and ends in a different period.

We can also measure the backward and forward time
dependence of a period. The backward time dependence of
a period produces the set of all outgoing time dependence
edges. These edges point to all prior periods on which
this current period builds. The larger the number of edges
produced when calculating the backward time dependency,
the more this period builds on prior periods. The forward
time dependence of a period produces the set of all time
dependence edges pointing to that period. The source nodes
of these edges correspond to all future periods which build
on this current period. The larger the number of edges
produced when calculating the forward time dependency,
the more foundational a period is. Periods on which a
large number of other periods build are considered to be
foundational periods.

We can also study the age of a time dependence relation
, which is the time difference between the source and desti-
nation periods of a time dependence relation. For example,
the age of the backward time dependence relation between
change 4 and change 7 in is two periods.

We expect that in practice systems have foundational
periods on which new changes continuously build. These
periods contribute essential code which forms the structural
foundation on which future changes build. An example of
such structural foundation are changes which define APIs

or platform libraries on which other code changes build.
Also, the first import of code into the source code repository
provides a structural foundation on which many changes
build. As a project evolves, we expect that new foundational
periods will emerge whenever there are major restructurings
and rework.

The required information for calculating the time de-
pendence edges is readily available in the source control
repository of a project. Our approach uses information at the
entity level while most source control systems store change
data at the line level. We developed a technique which lifts
the line-level change information to the level of code entity
changes, like functions, function calls and variables [3].
Using this entity-level information, we can reconstruct the
call graphs for functions and build the time dependence
relation for each source code change. By decorating time
dependence information with metadata attached to each
change [4], such as the change commit message and the
name of the developer responsible for the change, we can
figure out the prior code changes on which a change builds.
We developed a lexical approach which helps us detect and
ignore changes done for indentation or copyright update
purposes [3].

ITI. RESEARCH QUESTIONS

Using the calculated time dependence relations between
periods, we sought to explore the following three research
questions. We briefly state and motivate the relevance of
each question:

Q1 How does the distribution of time dependence on vary
over time?

Do projects in general build on old periods, more recent
periods or inner-period dependencies? In the latter two
cases, a project builds on recent features and changes,
whereas if it builds on much older periods, the project
is likely in maintenance mode. Based on the results of
this question, we can get a better understanding of the
evolution of software projects using a building structure
analogy instead of using metrics such as LOC.

Q2 As projects age, do they build more on older periods?

Do projects continuously build on older periods when
they age or does their dependence on old and new
periods vary? The former hints at a mature project,
whereas the latter gives indications about a cyclic
development process.

Q3 What are the foundational periods in a lifetime of a
project?

Are there periods on which changes happening months
or even years later still build? Identifying such periods
permits us to focus on improving our knowledge of

[[[PostgreSQL | FreeBSD |
type DBMS Operating System
period 19962007 1993-2005
#changes 84,311 353,958
#entities 31,863 253,896
#files 2,053 21,093
Table 1

CHARACTERISTICS OF THE STUDIED SYSTEMS.

such periods. Managers should ensure that develop-
ers with crucial experience about these periods are
retained. Moreover, managers should archive and en-
hance any missing documentation from these periods.
Examples of such documentation can be change re-
quests, requirements and important email or mailing
list discussions.

IV. CASE STUDY

To explore the three research questions, we performed a
case study on two large long-lived open source projects. We
first present the two studied systems, then we present the
results for our three research questions.

A. Studied Systems

For our case studies, we used data from the open
source PostgreSQL (1996-2007) and FreeBSD (1993-2005)
projects. PostgreSQL is a relational database system of
which the original design goes back to the 1980s [6],
whereas FreeBSD is an operating system distribution derived
from the Berkeley flavor of UNIX [7]. We studied the
FreeBSD base system, which corresponds to the kernel and
a limited number of crucial system utilities like run-time
libraries and a compiler. We studied the time dependence at
the level of a quarter, since it is a common time period for
project planning [8] (other time periods could be explored
using our approach). We picked both systems due to their
long and archived history of changes, as shows. The
two systems being from two different domains (databases
and operating systems) would help us verify the generality
of our findings across domains.

Q1. How does the distribution of time dependence on vary
over time?

In general, projects building on old periods face problems
when recruiting new developers, as new people need to learn
about these older, most likely undocumented periods [9].
On the other hand, building on changes made in the current
period might be risky as the code is still fresh and relatively
untested compared to the older code, leading to the appear-
ance of more bugs [10]. Hence, it is important to understand
how the time dependence on older periods varies over time.

To study the variance in the time dependence of periods,
we calculate the backward time dependencies of each period
in the lifetime of a project. Then, we measure the age of

age

quarter

Figure 2. [Illustration of a heatmap showing the distribution of backward
time dependencies over time. Darker cells mean that a period has more
backward time dependencies of that age. Age is calculated in quarters.

each of these backward time dependencies for each quarter.
To facilitate our analysis, we graphically rendered this
information as a heatmap. is a simple illustration
of a heatmap to explain the concept, whereas and
show the actual heatmaps for PostgreSQL and
FreeBSD, respectively.

A colored cell with coordinate (3,2) in[Figure 2l means that
quarter 3 builds on changes from two quarters ago, i.e. these
changes are two quarters old. An age of zero corresponds to
building on changes from the current quarter, but we do not
show this in [Figure 3al and [Figure 3b| (more on this later).
The darker the color of cell (3,2), the more changes from
two quarters ago quarter 3 builds on. The color is relative
to the whole heatmap, i.e. black corresponds to the highest
number of backward dependencies across all quarters and
ages, whereas white means that there are no backward time
dependencies to that period. As the coloring is relative to
the whole heatmap, black cells in [Figure 3a] and [Figure 3b|
represent different numbers of backward time dependencies.
Hence, we cannot compare the absolute colors between the
PostgreSQL and FreeBSD heatmaps, but we can compare
the relative coloring patterns within a particular heatmap to
study the distribution of backward time dependencies over
time.

Each column of cells in[Figure 2] shows how the age of the
backward time dependencies of a quarter is distributed over
time. As shown on [Figure 3a| and [Figure 3b| this distribution
is not uniform, and it varies widely across quarters. We
briefly summarize our most pertinent findings.

On average, up to 48% of the backward time dependencies
are inner-period dependencies.

[Figure 4a| and [Figure 4b| show that the percentage of
inner-period backward time dependencies of a period varies
between 18.4% and 100% for PostgreSQL and 21.3% and
100% for FreeBSD. The averages are 40.4% and 47.9%
respectively. The most foundational period for each quarter

is the quarter itself. We do not include dependencies of age
0 (i.e., inner-dependencies) in our heatmap, otherwise they
would dominate the plot with a very dark line across all
periods and with other cells being much lighter in color.

Quarters with many changes do not always build on more
changes

Some columns in the heatmaps are very lightly colored
compared to the other columns, like for example quarter 4
in whereas others are very dark. This is because
the corresponding quarters respectively are less or more
dependent on previous periods. A peak or a low in the
total amount of changes on which each quarter depends
corresponds to a relatively darker/lighter column in the
heatmaps.

It seems intuitive that a quarter would build more on
prior quarters (dark column) if more source code changes
have been performed in that quarter. The Pearson correlation
between the total amount of backward time dependencies of
a quarter and the total number of changes made in that quar-
ter is 0.51 for PostgreSQL and 0.87 for FreeBSD. Hence,
in FreeBSD higher developer activity in a period indeed
means that the changes in that period depend more on older
periods as they have more backward time dependencies.
However, in PostgreSQL there are multiple periods in which
this conjecture does not hold, with a large number of changes
being done, yet these changes not building on older periods.

On average, up to 48% of the changes in a period
build on changes done in the same period. Quarters
with many changes do not always indicate a depen-
dence on older periods.

Q2. As projects age, do they build more on older periods?

Intuitively, we expect that projects become more stable
over time. Applied to the topic of this paper, this would
mean that projects would build more on older changes as
the projects age. Periods in which the age of backward time
dependencies suddenly decreases give strong indications
of huge restructurings or the addition of new features on
which later periods tend to build. To study the evolution of
backward time dependencies over time, we use the boxplots
in [Figure 5a] and [Figure 5b] in addition to the heatmaps.

The boxplots show for each quarter how the age of back-
ward time dependencies is distributed over time. The ex-
treme whiskers on the boxplots correspond to the minimum
and maximum age. The minimum age is always zero (which
represents inner-period dependencies), whereas every period
still builds on the first period of development (maximum
age). The boxes in the boxplots show the lower quantile
(bottom of a box), median (line in the middle of a box) and
upper quantile (top of a box). These respectively mean that
25/50/75% of the backward time dependencies of a quarter
is younger than the value of the lower quantile/median/upper

age
2 8 14 22 30 38

25 30 35 40 45

quarter

(a) PostgreSQL

age
25 35 45

15

quarter

(b) FreeBSD

Figure 3.

Heatmaps showing the distribution of backward time dependencies through the lifetime of both projects. For each period (i.e., column), the

cells vary in darkness based on the number of backward time dependencies of that age relative to all dependencies for all quarters. Darker cells indicate

more dependencies at that age. Age is calculated in quarters.

quantile. The distance between the lower and upper quantile
is called the “inter-quartile range” (IQR). We briefly explain
our findings below.

PostgreSQL progressively builds on older periods

Backward time dependencies in PostgreSQL are slightly
more widespread over time (larger IQR) than those in
FreeBSD. In other words, PostgreSQL progressively builds
on old changes. This becomes more obvious when looking
at the median age of the backward time dependencies for
PostgreSQL. The black curve formed by the medians of
adjacent boxplots forms an almost continuous curve that
shows two trends. Until quarter 34, the curve roughly
followsa constant trend. From quarter 34 on (see [Figure 3al),
the curve steadily increases into a steep trend. In addition,
the bottoms of the boxplots shift up to age three or even
four, and the IQR grows slightly. Hence, PostgreSQL builds

more on older changes as it ages.

This means that by quarter 34 PostgreSQL has reached
such a degree of stability that most changes can just build
on a proven foundation instead of requiring invasive changes
that would lead to new foundational periods.

FreeBSD periodically cycles between old and recent periods

For FreeBSD, the median curve shows a very strong
periodical trend starting from quarter 7 as shown in
We see periods building on earlier recent periods
(low median) followed by an aging median, which suddenly
resets to zero again. Between quarters 30 and 45, the median
strongly increases (similar to PostgreSQL), but at quarters 37
and 46 the median age of backward time dependencies resets
back to zero.

Comparing [Figure 5b| with [Figure 4b, we find that the
median age of backward time dependencies jumps back to

%
15 30 45 60 75 90

0

R A e
2 46 8 11 14 17 20 23 26 29 32 35 38 41 44 47

quarter

(a) PostgreSQL

%
15 30 45 60 75 90

0

Figure 4. The percentage of inner-period backward time dependencies of a quarter.

45

35
I

age
25

15

TTTT TTTTT
14 7 11 15 19 23 27 31 35 39 43

quarter
(a) PostgreSQL

Figure 5.
Age is calculated in quarters.

zero when there are peaks in the relative percentage of inner-
period backward dependencies. These peaks actually coin-
cide with peaks in the total amount of changes on which a
quarter is built. We manually investigated these observations
using the FreeBSD commit logs. The peaks corresponding
to quarters like 14, 27, 37 and 46 are due to the importing
of new versions of large, externally developed source code
systems like GCC, binutils, openssh and sendmail to the
FreeBSD repository. These systems are imported because
the FreeBSD base system combines the FreeBSD kernel with
crucial externally developed system tools like compilers and
libraries. These external tools are imported and significantly
customized to better integrate them with the FreeBSD core.
The effect of these modifications gradually fades out, after
which the median age of backward time dependencies in-
creases again. Hence, the periodical evolution of the age of
backward time dependencies as time goes by is inherent to
the nature of FreeBSD.

FreeBSD builds more on recent periods than PostgreSQL

The heatmap of FreeBSD in shows that back-
ward time dependencies are concentrated on recent periods,

2 46 8 11 14 17 20 23 26 29 32 35 38 41 44 47
quarter
(b) FreeBSD
Q_ TTIII
T |
. TT|||I
Tl
8 RN
i T
o 0 | AR RN R
g - AT
- prhret ey L
o el
her ettt 1
- |II I||||||
I S I
LD_
o 4
TTTT 77 TTT
1 4 7 11 15 19 23 27 31 35 39 43 47
quarter

(b) FreeBSD

Boxplots showing the minimum, lower quartile, median, upper quartile and maximum of the age of backward time dependencies of a quarter.

as the color of old changes in the columns quickly fades
out. PostgreSQL has a more even distribution of backward
time dependencies over time, i.e. overall the cells are darker.
[Figure 4al and [Figure 4b| corroborate this: the percentage
of inner-period backward dependencies for FreeBSD is
frequently up to 20% higher than for PostgreSQL.

It took 1.5 year before FreeBSD started building on older
periods

The periodical aging and renewing of backward time
dependencies in FreeBSD only starts from quarter 7. Before,
FreeBSD almost completely built on inner-period changes,
as the boxes of boxplots disappear before quarter 7 in
unlike PostgreSQL. Similarly, darker colors for
the FreeBSD heatmap appear later in FreeBSD’s
evolution (at quarter 7) than for PostgreSQL (Figure 3al).

This pattern means that FreeBSD underwent significant
overhauls during its first one and a half year before it got
more stable and later quarters could start to build on the
established foundation. This seems strange, as FreeBSD was
a fork of the very stable Berkeley BSD operating system
line. An investigation of the history of FreeBSD reveals

that the initial FreeBSD releases (December 1993) were
based on the 4.3BSD-Lite (“Net/2”) operating system from
Berkeley [7]. Then there was a lawsuit between Novell and
Berkeley after which the 4.3BSD-Lite operating system was
deemed contaminated. FreeBSD had to be rewritten com-
pletely based on incomplete fragments of another operating
system (4.4BSD-Lite). It took until the end of 1994, i.e.
quarter 7, before FreeBSD was stable again.

PostgreSQL progressively builds on older changes,
whereas FreeBSD shows a periodical trend in the age
of backward time dependencies.

Q3. What are the foundational periods in a lifetime of a
project?

developed the concepts of forward time depen-
dence in order to identify foundational periods of develop-
ment. Later periods all build on these major changes. Identi-
fication of foundational periods is crucial for understanding
which phases of the software development process have to
be understood very well.

To find out in to which quarter the backward
time dependencies of age 2 in cell (3,2) point, it suffices to
follow the diagonal line of cells crossing (3,2) in the lower-
left direction, because backward dependencies of age 2 in
quarter 3 (3,2), stem from the same quarter as the backward
dependencies of age 1 in quarter 2 (2,1), i.e. the inner-period
dependencies of quarter 1 (1,0). If we turn this reasoning the
other way around, we can find all quarters that build on the
changes made in a given quarter by following the diagonal
line of cells crossing that quarter in the upper-right direction.
In other words, the dark diagonal lines in the heatmap stem
from the foundational periods.

The longer and the darker the diagonal, the more founda-
tional a quarter is, i.e. later quarters keep on building on the
changes made in that quarter. [Figure 3a and [Figure 3b| show
some explicit diagonal lines, but also white regions (similar
to [Figure 7). These regions correspond to quarters that are
no longer foundational for later quarters. In PostgreSQL, for
example, diagonal lines originating from quarters 10 to 13
suddenly stop at quarters 23 and 24 (Summer of 2002). In
this quarter, important parts (e.g., plug-ins and tools) of the
source code were extracted from the PostgreSQL code base
and moved to the GBorg (now: PgFoundry) PostgreSQL
community repository. Globally, FreeBSD has more light
periods than PostgreSQL. We discuss our findings below.

The first foundational period in PostgreSQL and FreeBSD
is the most foundational

The heatmaps in [Figure 3al and [Figure 3b| of both Post-
greSQL and FreeBSD have one or two very long diagonals
early on in their life. To better analyze the diagonal lines
in the heatmaps, we measured for each quarter its impact
on later quarters, i.e. the total number of forward time

dependencies in a quarter. This corresponds to the sum of
the number of backward time dependencies along the cells
in each diagonal of the heatmaps. This data is plotted in
[Figure 6a and [Figure 6b] Foundational quarters show up as
peaks in these graphs.

For PostgreSQL, the most foundational periods are quar-
ters 1 and 2, for FreeBSD this is quarter 5. PostgreSQL
started in 1996 from the Postgres95 1.01 source code, which
had been made available as open source. The first half year
of PostgreSQL’s life, was spent on significantly cleaning
up and restructuring the source code (e.g. the header file
directories), culminating in the release of PostgreSQL 6.0
in January 1997. After this cleanup, the core of PostgreSQL
did not change that drastically anymore, resulting in two
foundational periods. The influence of FreeBSD’s quarter 5
stems from the 4.3BSD-Lite lawsuit we discussed in Q2.
Ten year later, there are still many changes depending on
changes from these quarters. Every developer needs a good
understanding of these quarters and the code changes in
them to reliably and confidently make changes up until
today.

Both the PostgreSQL and FreeBSD heatmaps show a
sequence of short diagonals following the diagonal of their
first foundational quarter. Manual analysis shows that these
short diagonals correspond to periods of polishing of less
crucial parts of the source code.

Quarters are foundational because of large code imports or
invasive changes

[Figure 6a] and [Figure 6b] show that PostgreSQL and
FreeBSD both have peaks, but that FreeBSD has much more
pronounced foundational quarters, i.e. the dark regions in the
heatmap of contrast more with the white regions.
This again confirms the periodic nature of time dependencies
in FreeBSD.

For PostgreSQL, quarters 1 and 2 were highly founda-
tional (as mentioned earlier). In quarter 23 a large piece
of code was duplicated in preparation of the migration to
the GBorg repository, whereas peaks near quarter 25 were
responsible for the actual migration and important changes
of key libraries and client program interfaces. Quarters 29
and 33 saw important changes to the database indexing sys-
tem and the introduction of tablespaces. It is also noticeable
from that PostgreSQL develops less foundational
periods starting from quarter 34, when it starts to build on
older periods as discussed in Q2 and shown in |Figure Saj

FreeBSD’s first foundational quarter (quarter 5) has been
discussed earlier. Similar to Q2, the most foundational
quarters coincide with the imports of large, external chunks
of source code into the base system. Quarters 14 and 22 saw
the import of CVS, GCC, sh, bison, tcl and Perl. Quarter
43 contained “device mega-patches” (changes to drivers),
important changes to the locking of per-process resource
limits and the massive modification of many source code

restructuring Postgres95

60000
|

migration to Gborg

50000
|

indexing the database system

40000
|

less foundational

T

30000
|

20000
|

#forward time dependencies

10000
|

0
|

TTTTTTTTT TTITITTT
2468 11 14 17 20 23 26 29 32 35 38 41 44 47
quarter

(a) PostgreSQL

re-writing 4.3BSD-Lite
-)import of CVS & GCC

150000

import of bison & tcl

110000

changes to binutils

70000
|

#forward time dependencies

30000
|

0
!

T
6 9 13 17 21 256 29 33 37 41

quarter

45 49

(b) FreeBSD

Figure 6. The total number of forward time dependencies in quarters for PosgreSQL and FreeBSD.

files. Finally, quarter 46 saw huge changes to the binutils,
gdb, GCC, libstdc++ and sendmail versions in the base
system.

Large code imports or invasive changes occur in foun-
dational quarters. PostgreSQL’s very first quarters
are very foundational, whereas it took FreeBSD a few
quarters to create its foundational structure.

V. LIMITATIONS AND FUTURE WORK

Our case study is based on two open source projects,
so our findings may not generalize to commercial projects,
as open source projects have different characteristics. In
addition, our findings might not generalize to open source
projects in other domains, although we considered two
systems from different domains to counter this threat to
validity.

We calculate time dependencies for each quarter. Other
periods (e.g., monthly, yearly, or per release) could be used
and are likely to lead to other interesting results.

This paper considers “foundational periods” as those
periods with the highest spikes in the number of forward
time dependencies. However, managers and people who have
better understanding of the projects could explicitly define
“(non-)foundational periods” for their individual projects
in terms of a threshold for the number of forward time
dependencies.

Our time dependence relations are derived from static
code dependencies. Implicit dependencies due to dynamic

dependencies are not considered. Because of this, we would
miss some of the time dependence relations.

We only look into one level of call graph dependencies,
i.e. the direct dependencies of an entity. Dependencies below
the first level are not considered in our study, because the
impact of changes to these dependencies is smaller due
to information hiding [11]. We would like to explore this
assumption in future work.

In addition, we would like to study the relation between
core architectural components of software projects and
foundational periods. We would like to discover whether
or not architectural cores appear in foundational periods.
This could allow to identify architectural cores based on
foundational periods.

VI. RELATED WORK

In this section we discuss related work to this paper. In
general, research in software evolution [12f], [1], [2] and
software metrics [13]], [[14] detects or monitors development
periods and areas with slow or rapid growth. However, these
approaches examine the final outcome (the changes) instead
of exploring the temporal dependence of these changes.

Other researchers studied static dependencies between
software entities like classes and methods to predict change
coupling, i.e., what other part of the code needs to be
changed if a given piece of code is changed [15l], [L6].
However, the dependencies studied relate entities to other
entities in the same version of the code base, whereas time
dependence relates a change of an entity to past changes of
itself and its call graph entities.

Several researchers used historical data to understand
long-lived software systems. Chen et al. [17] introduced
CVSSearch, a tool that tracks the fragments of source
code by using CVS comments. Mockus et al. [18] classify
maintenance activities by studying the textual description of
a change. They validate their study by comparing the result
of their automated approach with opinions of developers.
Hassan and Holt [4]] attach Source Sticky Notes to a static
dependency graph to better understand the architecture of
software systems. Our approach of tracking time dependence
of source code changes leverages historical data to under-
stand the foundational periods on which the development
activity in a period is built.

We introduced the concept of time dependence in previous
work [10] to assist managers in tracking the progress of a
project. For this, we only had to consider the most recent
backward time dependency of all changes in a period instead
of considering all backward and forward time dependencies
of an entity as done in this paper. By only considering
the recent backward time dependency, one cannot find the
foundational periods as those periods are defined in terms of
all future periods that build on it. Hence the need to establish
time dependence relations between a change and all prior
changes it builds on. Our prior work also explored the impact
of time dependencies on the appearance of bugs. Studying
the relation between foundational periods and appearance of
bugs is left as future work.

Brudaru and Zeller propose to measure the genealogy of
changes [19]]. They use a directed acyclic graph to model the
impact of changes on defects at the level of lines of code.
This information is used to analyze the future impact of
changes on defects, development effort and maintainability
of a system. Change dependencies are obtained by iteratively
building the system without a change and then observing
which changes are broken, although alternative heuristics
are explored in their approach. Our approach makes use of
readily available information to build our time dependence
relations at the entity-level instead of the line-level.

The closest work to this paper is done by German et
al. [20]. They propose the concept of a Change Impact
Graph (CIG) to detect the impact of dependent changes
when changing a source code entity. They visualize the call
graph of a function and call graphs of its called entities
iteratively within a time window. German et al. use their
approach primarily to locate defects of a function. Our
approach is not directly aimed at assisting developers during
their daily development tasks. Rather, it assists managers and
researchers in understanding which periods have provided
the structural foundation on which later periods build.

VII. CONCLUSION

Building software has many similarities with physical
construction, with new changes often building on older
changes. Throughout the lifetime of a project, there exists

foundational periods during which critical code changes are
done. Such code changes create the foundational structure
on which other code changes and periods build. A good
understanding of this hierarchy of temporal dependence is
needed for managers to better plan their projects and for
researchers to study the evolution of long-lived projects.
Knowing such foundational periods, managers should ensure
that either the documentation about these periods is up-to-
date or that sufficient human expertise is available about
these periods.

Through a case study on two large open source systems,
we made the following important findings: 1) On average,
up to 48% of the changes done in a period build on changes
in the same development period (i.e., quarter). 2) As projects
age and become more stable, they either progressively build
on older periods or cycle between building on old and new
periods. 3) Invasive refactorings and major code imports are
done during foundational periods, with earlier foundational
periods having a stronger impact on the other periods.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments.

REFERENCES

[1] M. W. Godfrey and Q. Tu, “Evolution in open source soft-
ware: A case study,” in ICSM ’00: Proceedings of the In-
ternational Conference on Software Maintenance (ICSM’00).
Washington, DC, USA: IEEE Computer Society, 2000, p. 131.

[2] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry,
and W. M. Turski, “Metrics and laws of software evolution -
the nineties view,” in METRICS ’97: Proceedings of the 4th
International Symposium on Software Metrics. Washington,
DC, USA: IEEE Computer Society, 1997, p. 20.

[3] A. E. Hassan, “Mining software repositories to assist devel-
opers and support managers,” Ph.D. dissertation, University
of Waterloo, Waterloo, ON, Canada, 2004.

[4] A. E. Hassan and R. C. Holt, “Using development history
sticky notes to understand software architecture,” in IWPC
’04: Proceedings of the 12th IEEE International Workshop
on Program Comprehension. Washington, DC, USA: IEEE
Computer Society, 2004, p. 183.

[5] A. E. Hassan, “Automated classification of change messages
in open source projects,” in SAC '08: Proceedings of the 2008
ACM symposium on Applied computing. New York, NY,
USA: ACM, 2008, pp. 837-841.

[6] “PostgreSQL official website,” http://www.postgresql.org/.

[7] “FreeBSD official website,” http://www.freebsd.org/.

[8] A. E. Hassan and R. C. Holt, “The chaos of software devel-
opment,” in IWPSE ’03: Proceedings of the 6th International

Workshop on Principles of Software Evolution. Washington,
DC, USA: IEEE Computer Society, 2003, p. 84.

(91

(10]

(1]

[12]

(13]

[14]

(15]

K. Bennett, “Legacy systems: Coping with success,” IEEE
Software, vol. 12, no. 1, pp. 19-23, 1995.

O. Alam, B. Adams, and A. E. Hassan, “Measuring the
progress of projects using time dependence of code changes,”
in ICSM ’09: Proceedings of the 25th IEEE International
Conference on Software Maintenance (ICSM’09), 2009, to
Appear.

D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” Commun. ACM, vol. 15, no. 12, pp.
1053-1058, 1972.

H. Gall, M. Jazayeri, and J. Krajewski, “CVS release history
data for detecting logical couplings,” in IWPSE ’03: Pro-
ceedings of the 6th International Workshop on Principles of
Software Evolution. Washington, DC, USA: IEEE Computer
Society, 2003, p. 13.

S. Bouktif, G. Antoniol, and E. Merlo, “A feedback based
quality assessment to support open source software evolution:
the grass case study,” in ICSM ’06: Proceedings of the 22nd
IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
155-165.

P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa,
and T. Yamashita, “Improving software development man-
agement through software project telemetry,” IEEE Softw.,
vol. 22, no. 4, pp. 76-85, 2005.

S. Mirarab, A. Hassouna, and L. Tahvildari, “Using bayesian
belief networks to predict change propagation in software

[16]

(17]

(18]

[19]

(20]

systems,” in ICPC ’07: Proceedings of the 15th IEEE Interna-
tional Conference on Program Comprehension. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 177-188.

Y. Zhou, M. Wiirsch, E. Giger, H. C. Gall, and J. L,
“A bayesian network based approach for change coupling
prediction,” in WCRE ’08: Proceedings of the 2008 15th
Working Conference on Reverse Engineering. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 27-36.

A. Y. Yao, “Cvssearch: Searching through source code using
cvs comments,” in ICSM ’01: Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM’01).
Washington, DC, USA: IEEE Computer Society, 2001, p. 364.

A. Mockus and L. G. Votta, “Identifying reasons for software
changes using historic databases,” in ICSM ’00: Proceedings
of the International Conference on Software Maintenance
(ICSM’00). Washington, DC, USA: IEEE Computer Society,
2000, p. 120.

I. I. Brudaru and A. Zeller, “What is the long-term impact
of changes?” in RSSE '08: Proceedings of the 2008 inter-
national workshop on Recommendation systems for software
engineering. New York, NY, USA: ACM, 2008, pp. 30-32.

D. M. German, G. Robles, and A. Hassan, “Change Impact
Graphs: Determining the Impact of Prior Code Changes,” in
International Working Conference in Source Code Analysis
and Manipulation (SCAM) 2008, Sept. 2008.

	Introduction
	Methodology
	Research Questions
	Case Study
	Studied Systems

	Limitations and Future Work
	Related Work
	Conclusion
	References

