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• Logging statements record useful information about the state of 

a system during its execution

Logging statements
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function Thesis(){ 

log.info(“In Thesis”);

//…

log.info(“Exiting Thesis”);

}

[13:40:00]  In Thesis

[13:40:05]  Exiting Thesis



• Logging has evolved from simple printf statements into more 
complex and commonly used logging libraries

Evolution of logging
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Ad hoc logging 

1990s

Printf / system.out.println



• Logging has evolved from simple printf statements into more 
complex and commonly used logging libraries

• Basic libraries provide logging levels and centralized output 
locations

Evolution of logging
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Ad hoc logging Basic libraries

Log4j

1990s 2002
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• Abstraction libraries allow several different logging libraries to 
be used within the same project

Abstraction and unification libraries
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Abstraction libraries

JCL Slf4j

2004



• Abstraction libraries allow several different logging libraries to 
be used within the same project

• Unification libraries provide features of both basic and 
abstraction libraries
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Abstraction libraries Unification libraries

JCL Slf4j Logback Log4j2

2004 2010

Abstraction and unification libraries
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Challenges in modern day logging

Infrastructural Challenges

Processing Challenges



Part 1: Infrastructural challenges

Published in MSR 2016



10

Infrastructural challenges

Developers migrate from one 
logging library to another
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Infrastructural challenges

Developers migrate from one 
logging library to another

How often is the 
migration?
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Approach

Projects Keyword search
Identify logging 

library migrations
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• 49 attempts identified in JIRA

• 33 projects successfully migrated (at least once)

How often is the migration?
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1. Nobody stepped up to make the required changes

2. Developers did not agree on the value of the migration

14 migration attempts were abandoned
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Infrastructural challenges

Developers migrate from one 
logging library to another

How often is the 
migration?

Why do they 
migrate?
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Approach

Projects Keyword search
Identify logging 

library migrations
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Approach

Projects Keyword search
Identify logging 

library migrations

Identify drivers of logging 
library migration

JIRA discussion
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Why do developer migrate logging libraries?

1 Flexibility 57.4%

2 Performance 37.0%

3 Code maintenance 33.3%

Based on manual tagging of JIRA issues that are related to 
logging library migration (multiple tags per issue possible)
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24 out of 33 projects encounter an 
average of 2 post-migration bugs due 

to the migration

Migrations can lead to problems
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Infrastructural challenges

Developers migrate from one 
logging library to another

How often is the 
migration?

Why do they 
migrate?

What are the 
performance 

benefits?
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We calculate the time to generate 
output of one logging statement 

pre and post-migration

Was the migration justified?
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What are the performance benefits?

Projects

Execution time 
without logging
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What are the performance benefits?

Projects

Execution time 
without logging

Execution time 
with logging
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What are the performance benefits?

Projects

Execution time 
without logging

Execution time 
with logging

# of generated logs

Logging 
time
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What are the performance benefits?

Projects

Execution time 
without logging

Execution time 
with logging

# of generated logs

Logging 
time

Time per 
log
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There is a 28 - 44% speedup of logging after 
migration
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However…

in 2 out of 3 projects this speedup is only noticeable at debug 
level

(so  NOT in practice!)

There is a 28 - 44% speedup of logging after 
migration
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Infrastructural challenges
conclusion

Developers should better estimate the needed effort, the 
performance improvements achieved from migration 

and plan for avoiding post-migration bugs
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Part 2: Processing challenges

Published in SANER 2016
Extension – EMSE (under review)
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Terabytes of logs generated every hour !!!
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Processing challenges

..

Log.info(“Connection request received from {}”, 

ip_address);

..

Log.info(“Connecting to {}”, Ip_address);

Release 1
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Processing challenges
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Processing challenges

..

Log.info(“Connection request received from {}”, 

ip_address);

..

Log.info(“ New Connection”);

Release 2
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Processing challenges
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Processing challenges

..

Log.info(“Connection request received from {}”, 

ip_address);

..

Log.info(“ New Connection”);

Release 2
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Processing challenges
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Processing challenges

Developers change logging
statements which can break 

log processing tools

How often do 
logging statements 

change?
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Processing challenges

Developers change logging
statements which can break 

log processing tools

How often do 
logging statements 

change?

Can we determine 
logging statement 

changes?
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Approach

Git 
repository

Extract and track 
logging statements

Commit history
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Approach

Git 
repository

Extract and track 
logging statements

Collect content, 
context and 

developer metrics

Changed and 
unchanged logging 

statements

Commit history
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Approach

Git 
repository

Extract and track 
logging statements

Collect content, 
context and 

developer metrics

Changed and 
unchanged logging 

statements

Commit history

Random forest 
classifier

Cox models
Preliminary 

analysis results
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Random forest classifiers and 
Cox models

Random forest 
classifier

Cox models

Just-introduced
logging statements

Long-lived
logging statements
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20% - 45% of logging statements are changed at-
least once
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• Our random forest classifiers achieve a precision 
of 0.83-0.91 and a recall of 0.65-0.85 for just-
introduced logging statements

• Our Cox models are a good fit and can accurately 
determine the likelihood of long-lived logging 
statements changing

We can accurately determine the likelihood 
of just-introduced logging statements
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Processing challenges

Developers change logging
statements which can break 

log processing tools

How often do 
logging statements 

change?

Can we determine 
logging statement 

changes?

Which metrics 
affect logging 

statement changes?
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Developer experience

Metrics affecting the likelihood of a logging 
statements changing

Important metric to determine the likelihood of logging 
statements

File ownership
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Developer experience is an important metric to 
determine the likelihood of logging statements
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Logging statements by owners of the file are less 
likely to be changed
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Evolution of logging

Ad hoc logging Basic libraries

Log4j

1990s 2002

Printf / system.out.println

Abstraction libraries Unification libraries

JCL Slf4j Logback Log4j2

2004 2010
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Infrastructural challenges
Conclusion

Developers should better estimate the needed effort, the 
performance improvements achieved from migration 

and plan for avoiding post-migration bugs.
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20% - 45% of logging statements are changed at-
least once
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Developer experience

Metrics affecting the likelihood of a logging 
statements changing

Important metric to determine the likelihood of logging 
statements

File ownership
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