
By: Suhas Kabinna (M.Sc. Thesis)

Supervisor: Dr. Ahmed E. Hassan

Date: May 27, 2016

Outline

• Background on logging statements

• Evolution of logging

• Challenges in modern day logging

• Logging library migrations

• Logging statement stability

• Conclusion

1

• Logging statements record useful information about the state of

a system during its execution

Logging statements

3

function Thesis(){

log.info(“In Thesis”);

//…

log.info(“Exiting Thesis”);

}

[13:40:00] In Thesis

[13:40:05] Exiting Thesis

• Logging has evolved from simple printf statements into more
complex and commonly used logging libraries

Evolution of logging

4

Ad hoc logging

1990s

Printf / system.out.println

• Logging has evolved from simple printf statements into more
complex and commonly used logging libraries

• Basic libraries provide logging levels and centralized output
locations

Evolution of logging

5

Ad hoc logging Basic libraries

Log4j

1990s 2002

Printf / system.out.println

• Abstraction libraries allow several different logging libraries to
be used within the same project

Abstraction and unification libraries

6

Abstraction libraries

JCL Slf4j

2004

• Abstraction libraries allow several different logging libraries to
be used within the same project

• Unification libraries provide features of both basic and
abstraction libraries

7

Abstraction libraries Unification libraries

JCL Slf4j Logback Log4j2

2004 2010

Abstraction and unification libraries

8

Challenges in modern day logging

Infrastructural Challenges

Processing Challenges

Part 1: Infrastructural challenges

Published in MSR 2016

10

Infrastructural challenges

Developers migrate from one
logging library to another

11

Infrastructural challenges

Developers migrate from one
logging library to another

How often is the
migration?

12

Approach

Projects Keyword search
Identify logging

library migrations

13

• 49 attempts identified in JIRA

• 33 projects successfully migrated (at least once)

How often is the migration?

14

1. Nobody stepped up to make the required changes

2. Developers did not agree on the value of the migration

14 migration attempts were abandoned

15

Infrastructural challenges

Developers migrate from one
logging library to another

How often is the
migration?

Why do they
migrate?

16

Approach

Projects Keyword search
Identify logging

library migrations

17

Approach

Projects Keyword search
Identify logging

library migrations

Identify drivers of logging
library migration

JIRA discussion

18

Why do developer migrate logging libraries?

1 Flexibility 57.4%

2 Performance 37.0%

3 Code maintenance 33.3%

Based on manual tagging of JIRA issues that are related to
logging library migration (multiple tags per issue possible)

19

24 out of 33 projects encounter an
average of 2 post-migration bugs due

to the migration

Migrations can lead to problems

20

Infrastructural challenges

Developers migrate from one
logging library to another

How often is the
migration?

Why do they
migrate?

What are the
performance

benefits?

21

We calculate the time to generate
output of one logging statement

pre and post-migration

Was the migration justified?

22

What are the performance benefits?

Projects

Execution time
without logging

23

What are the performance benefits?

Projects

Execution time
without logging

Execution time
with logging

24

What are the performance benefits?

Projects

Execution time
without logging

Execution time
with logging

of generated logs

Logging
time

25

What are the performance benefits?

Projects

Execution time
without logging

Execution time
with logging

of generated logs

Logging
time

Time per
log

26

There is a 28 - 44% speedup of logging after
migration

27

However…

in 2 out of 3 projects this speedup is only noticeable at debug
level

(so NOT in practice!)

There is a 28 - 44% speedup of logging after
migration

28

Infrastructural challenges
conclusion

Developers should better estimate the needed effort, the
performance improvements achieved from migration

and plan for avoiding post-migration bugs

29

Part 2: Processing challenges

Published in SANER 2016
Extension – EMSE (under review)

30

Terabytes of logs generated every hour !!!

31

Processing challenges

..

Log.info(“Connection request received from {}”,

ip_address);

..

Log.info(“Connecting to {}”, Ip_address);

Release 1

32

Processing challenges

33

Processing challenges

..

Log.info(“Connection request received from {}”,

ip_address);

..

Log.info(“ New Connection”);

Release 2

34

Processing challenges

35

Processing challenges

..

Log.info(“Connection request received from {}”,

ip_address);

..

Log.info(“ New Connection”);

Release 2

36

Processing challenges

37

Processing challenges

Developers change logging
statements which can break

log processing tools

How often do
logging statements

change?

38

Processing challenges

Developers change logging
statements which can break

log processing tools

How often do
logging statements

change?

Can we determine
logging statement

changes?

39

Approach

Git
repository

Extract and track
logging statements

Commit history

40

Approach

Git
repository

Extract and track
logging statements

Collect content,
context and

developer metrics

Changed and
unchanged logging

statements

Commit history

41

Approach

Git
repository

Extract and track
logging statements

Collect content,
context and

developer metrics

Changed and
unchanged logging

statements

Commit history

Random forest
classifier

Cox models
Preliminary

analysis results

42

Random forest classifiers and
Cox models

Random forest
classifier

Cox models

Just-introduced
logging statements

Long-lived
logging statements

43

20% - 45% of logging statements are changed at-
least once

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ActiveMQ Camel Cloudstack Liferay

Changed logging statements Unchanged logging statements

44

• Our random forest classifiers achieve a precision
of 0.83-0.91 and a recall of 0.65-0.85 for just-
introduced logging statements

• Our Cox models are a good fit and can accurately
determine the likelihood of long-lived logging
statements changing

We can accurately determine the likelihood
of just-introduced logging statements

45

Processing challenges

Developers change logging
statements which can break

log processing tools

How often do
logging statements

change?

Can we determine
logging statement

changes?

Which metrics
affect logging

statement changes?

46

Developer experience

Metrics affecting the likelihood of a logging
statements changing

Important metric to determine the likelihood of logging
statements

File ownership

47

Developer experience is an important metric to
determine the likelihood of logging statements

48

Logging statements by owners of the file are less
likely to be changed

49

Evolution of logging

Ad hoc logging Basic libraries

Log4j

1990s 2002

Printf / system.out.println

Abstraction libraries Unification libraries

JCL Slf4j Logback Log4j2

2004 2010

50

51

Infrastructural challenges
Conclusion

Developers should better estimate the needed effort, the
performance improvements achieved from migration

and plan for avoiding post-migration bugs.

52

53

20% - 45% of logging statements are changed at-
least once

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ActiveMQ Camel Cloudstack Liferay

Changed logging statements Unchanged logging statements

54

55

Developer experience

Metrics affecting the likelihood of a logging
statements changing

Important metric to determine the likelihood of logging
statements

File ownership

56

