
1

Studying Ad Library Integration Strategies of Top
Free-to-Download Apps

Md Ahasanuzzaman, Member, IEEE, Safwat Hassan, Member, IEEE, and Ahmed E. Hassan, Fellow, IEEE

Abstract—In-app advertisements have become a major revenue source for app developers in the mobile app ecosystem. Ad libraries
play an integral part in this ecosystem as app developers integrate these libraries into their apps to display ads. In this paper, we study
ad library integration strategies by analyzing 35,459 updates of 1,837 top free-to-download apps of the Google Play Store. We observe
that ad libraries (e.g., Google AdMob) are not always used for serving ads – 22.5% of the apps that integrate Google AdMob do not
display ads. They instead depend on Google AdMob for analytical purposes. Among the apps that display ads, we observe that 57.9%
of them integrate multiple ad libraries. We observe that such integration of multiple ad libraries occurs commonly in apps with a large
number of downloads and ones in app categories with a high proportion of ad-displaying apps. We manually analyze a sample of apps
and derive a set of rules to automatically identify four common strategies for integrating multiple ad libraries. Our analysis of the apps
across the identified strategies shows that app developers prefer to manage their own integrations instead of using off-the-shelf features
of ad libraries for integrating multiple ad libraries. Our findings are valuable for ad library developers who wish to learn first hand about
the challenges of integrating ad libraries.

Index Terms—Ad libraries, Integration strategies, Mining Android mobile apps, Google Play Store

F

1 INTRODUCTION

The mobile app market is continuously evolving at a
tremendous rate with billions of mobile app downloads
every year [50]. The majority of the apps in app stores
are free-to-download [2]. To earn revenue from these free-
to-download apps, app developers primarily use an in-app
advertising model. In this model, app developers display
advertisements (ads) to app users and earn revenue based
on the number of displayed ads and the interactions of
users with these ads. The in-app advertising model is a
growing market with a forecasted revenue of over $200
billion by 2021 [26]. Figure 1 presents an overview of the
in-app advertising model. The in-app advertising model
consists of four main components: (1) advertising companies
that pay for the display of ads for promoting their products,
(2) ad-displaying apps that display ads and earn revenue from
the displayed ads, (3) mobile ad networks which act as a
bridge between advertising companies and ad-displaying
apps, and (4) users who use the ad-displaying apps and
interact with the displayed ads.

To display ads, app developers need to register with
an ad network (e.g., Facebook Audience Network) and
integrate into their app an ad library that is offered by the
ad network. The objectives of an ad library is to manage
the communication with an ad network, to display ads
on a user’s device, and to track user interactions with the
displayed ads.

Since in-app advertising is a growing market, many
ad networks are emerging in this market with their own

• Md Ahasanuzzaman, Safwat Hassan, and Ahmed E. Hassan are with
the Software Analysis and Intelligence Lab (SAIL), School of Computing,
Queen’s University, Canada.
E-mail: md.ahasanuzzaman@queensu.ca,
{shassan, ahmed}@cs.queensu.ca

has contract with

Advertising
company

providesAd network servesAd library

integrates

displaysAd-displaying
app

Ad

installsApp User

Fig. 1: An overview of the in-app advertising model.

ad libraries. In this competitive market, app developers
select an ad network that maximizes their revenue (e.g.,
offering a high fill rate1) [8]. To earn more app revenue, app
developers integrate multiple ad libraries with their apps to
increase the fill rate [47].

Despite the integral role of ad libraries in the mobile
app ecosystem, prior studies have not examined how these
libraries are integrated into mobile apps and how app devel-
opers handle multiple ad libraries. In this paper, we perform
an in-depth study of the common strategies of integrating
such ad libraries in the top free-to-download apps in the
Google Play Store. Our study can help ad library developers
understand the common challenges of integrating multiple
ad libraries into mobile apps. Hence, ad library developers
can improve the design and the offered features of their ad
libraries to ease the ad library integration process.

To study the integration strategies for ad libraries, we

1Fill rate is the ratio of the number of displayed ads over the
number of requested ads.

2

analyzed 35,459 updates of 1,837 top free-to-download apps
across all the categories of the Google Play Store. Our scope
for this research is to study how popular apps integrate ad
libraries using standard practices. In particular, we studied
such strategies along with the following research questions
(RQs):
RQ1: What are the characteristics of apps which integrate
multiple ad libraries?
The integration of multiple ad libraries occurs commonly
in the apps with a large number of downloads and ones in
app categories where a high proportion of apps integrate ad
libraries.
RQ2: How do app developers integrate multiple ad libraries
with their apps?
We manually examined a statistically representative random
sample of ad-displaying apps (62) that integrate multiple
ad libraries and derived a set of rules to automatically
identify (four) strategies that app developers employ for
integrating multiple ad libraries: (1) external-mediation strat-
egy (app developers use an external-ad-mediator package
that is provided by an ad library and do not write their
own code to integrate other ad libraries), (2) self-mediation
strategy (app developers write their own centralized code
(self-mediator) to integrate ad libraries), (3) scattered strategy
(app developers scatter their code across the different app
screens), and (4) mixed strategy (app developers use both the
external-mediation strategy and the scattered strategy).

We document the definition, example app, the benefits,
and drawbacks of each identified strategy for integrating
multiple ad libraries. Developers of ad libraries can leverage
our strategies to ensure that their ad libraries can support
the varying needs of ad-displaying apps.
Paper organization. Section 2 describes our data collec-
tion process. Section 3 discusses the characteristics of our
dataset. Section 4 presents the results of our study. Section 5
discusses how app developers maintain their integrated ad
libraries over time. Section 6 describes the implications of
our work. Section 7 describes threats to the validity of our
observations. Section 8 discusses related work, and Section 9
concludes the paper.

2 DATA COLLECTION

This section describes our process for collecting ad library
data. Figure 2 represents an overview of our data collection
process. As shown in Figure 2, we first collected the updates
of top free-to-download apps in the Google Play Store. Then,
we identified ad libraries that are integrated by the apps in
these updates. Finally, we identified the updates that display
ads. We briefly highlight each step below.

2.1 Collecting updates of the top free-to-download
apps

Step 1: Select top Android apps. In our study, we focus on
the top free-to-download apps as these apps have a large
user-base. Hence, these apps are likely to follow the in-app
advertising model to earn revenue. Moreover, these apps are
likely to carefully maintain their ad integration code in order
to ensure that they do not lose any ad revenue. To obtain the
list of popular apps, we used the App Annie’s report [25]

Google Play
Store

35,459 updates of
the top 1,837

apps

1) Collecting updates of the top
free-to-download apps

Crawl app
data

Select top
Android

apps

List of the
top 1,840

apps

2) Identifying the integrated ad libraries
List of the 63

identified ad libraries

3) Identifying updates that display ads
List of updates that

display ads

Fig. 2: An overview of our data collection process.

that lists the popular apps across the 28 categories (e.g.,
Games) in the Google Play Store in 2016. Then, we selected
the top 100 apps in each app category so that our study does
not have any bias due to variances across the different app
categories. During the app selection process, we found that
746 apps were already removed from the Google Play Store
at the start of our study period and 214 apps were repeated
across the app categories. In total, we selected 1,840 apps
and downloaded all their deployed updates for our study.
Step 2: Crawl app data. We ran a custom crawler (based
on the Akdeniz [23] Google Play crawler) for 18 months
from April 20th 2016 to September 20th 2017 to collect
the deployed updates of our studied apps. To study any
changes (e.g., code changes) of an app, we need at least two
updates of the app. We observed that three apps have only
one update during our study period. Therefore, we removed
these three apps from our study. Finally, we collected 35,459
updates of the 1,837 top free-to-download apps.

2.2 Identifying the integrated ad libraries
App developers integrate many third-party libraries and
identifying an ad library package from these third-party
libraries is a non-trivial task. To identify an ad library
package, we followed a similar approach to the exhaustive
one that is employed by Ruiz et al. [48]. We detail our
process below.

First, we converted the APKs of the collected updates
to JARs using the dex2jar tool [6]. Then, we used the BCEL
tool [24] to extract the fully qualified class names (i.e., the
class name and the package name) of all classes in the
generated JARs. Since prior studies show that an ad library’s
packages or class names contain the term “ad” or “Ad” [44],
we filtered the fully qualified class names using the regular
expression “[aA][dD]”. However, this exhaustive regular
expression matches many class names that are not related
to ad libraries (e.g., com.fbox.load.ImageLoad). Hence, to
identify ad libraries, we followed Ruiz et al.’s [48] approach
by manually verifying online the package name of each of
the matched classes. We manually verified 303 packages on
the web. In total, we identified 63 ad libraries.

2.3 Identifying updates that display ads
In the previous step, we identified the list of the integrated
ad libraries. However, integrating an ad library in an update
does not necessarily imply that the update displays ads

3

(e.g., ad libraries can be used for analytical purposes as
we discovered in our study). To identify the updates that
display ads, first, we identified the app screens (as ads
need to be displayed through the app screens). Then, we
identified the screens that display ads. The details of our
approach are as follows.
Step 1: Identify app screens. To create a single app screen,
app developers write the required functionality of the screen
in a java class which is known as an Activity. Then, app
developers define the app screens (i.e, activities) in the
AndroidManifest.xml file using the “<activity>” tag [1].
Hence, to identify the app screens, we parsed the Android-
Manifest.xml file and listed all the defined activities (using
the “<activity>” tag) and their corresponding classes.
Step 2: Identify the screens that display ads. First, we iden-
tified the integrated libraries in every screen using the BCEL
tool [24]. Then, we identified screens that display ads if the
screen code invokes the display method in the integrated
ad library (e.g., calling the showAd() method). To identify
the display ad methods, we read the documentation of the
studied ad libraries and summarized the list of methods that
are used for displaying ads. In our replication package2, we
added a list of such methods for each studied ad library.
Finally, we flagged an update as an ad-displaying update if
the update contains at least one screen that displays an ad.

At the end of this step, we identified all updates that
display ads.

3 DATA CHARACTERISTICS

In this section, we describe the characteristics of our dataset
in terms of (1) ad-displaying functionality, (2) app category,
and (3) integrated ad libraries.
Ad libraries are not only used for serving ads but also
for analytical purposes. The studied apps can be classified
into two main categories: (1) ad-displaying apps (i.e., apps
that integrate ad libraries to display ads) and (2) non-ad-
displaying apps (i.e., apps that do not display ads). Table 1
describes our dataset.

As shown in Table 1, non-ad-displaying apps can be of
two types: (1) apps that integrate ad libraries but do not
display ads and (2) apps that do not integrate ad libraries.
We observe that 22.5% of the non-ad-displaying apps belong
to type 1 (i.e., integrate ad libraries but do not display ads),
and all of these apps integrate the Google AdMob ad library.
We also identified 77 apps (4.2% of the studied apps), where
we observe that the apps contain ad library packages, but
the static analysis tool could not find any method call to
ad library packages. Of these 77 apps, we observe that 69
apps use native code. Studying native apps using static
analysis tools is difficult and could introduce false positive
cases in our analysis. Therefore, in this paper, we focus
on studying the apps (1,076 apps) that our static analysis
approach identifies a call to show-ad methods of ad libraries
from app code.

In our further analysis of the non-ad-displaying apps
that integrate ad libraries, we observed that all these apps
integrate the Google AdMob ad library for analytical pur-
poses. We observed that analytical libraries (e.g., Google

2https://github.com/SAILResearch/suppmaterial-18-ahsan-
ads consumer apps

TABLE 1: Statistics of the studied apps.

App category Category definition # of
apps

% of
apps

Ad-displaying Apps that integrate ad libraries and
display ads (i.e., apps that call show-ad
methods).

1,076 58.6%

Non-ad-displaying Apps that do not contain any of the
identified ad library packages.

530 28.9%

Apps that integrate Google AdMob for
analytical purposes instead of
displaying ads.

154 8.4%

Others Apps that contain ad library packages
that are not used (called) by any other
packages in the app: 69 apps with
native code and 8 apps that do not
contain native code.

77 4.2%

TABLE 2: Top ten third party libraries that depend on the
Google AdMob ad library.

Package name Library name

of
apps
using

the
package

% of
apps
using

the
package

com.google.android.gms.analytics [13] Google Analytics 151 98.1%
com.appsflyer [3] AppsFlyer Analytics 23 14.9%
com.flurry.sdk [7] Flurry Analytics 14 9.1%
com.kochava.android.tracker [9] Kochava Analytics 13 8.4%
com.localytics.android [11] Android Location Tracker 10 6.5%
com.life360.android.location [10] Life 350 Location Tracker 4 2.6%
com.mologiq.analytics [14] MoLogiq Analytic 4 2.6%
com.quantcast.measurement.service [15] Quantcast Measure 4 2.6%
com.urbanairship.analytics [18] Urban Airship Analytics 3 1.9%
com.moat.analytics.mobile.ovi [12] Moat Analytics 2 1.3%

TABLE 3: Statistics for the top ten integrated ad libraries.

Ad library
of ad-

displaying
apps

% of ad-
displaying

apps

Google AdMob 1,043 96.9%
Facebook Audience Network 478 44.4%
MoPub 287 26.7%
Amazon Mobile Ad 122 11.3%
Flurry 105 9.7%
InMobi 105 9.7%
Millennialmedia 104 9.6%
AdColony 91 8.5%
Applovin 84 7.8%
Unity Ads 65 6.1%

Analytics and AppsFlyer analytics) were dependent on the
Google AdMob ad library for uniquely identifying a users
device. Table 2 shows the top ten used third-party libraries
that depend on the Google AdMob ad library (for the
studied 154 apps) to identify a users device. For exam-
ple, the Google Analytics library depends on the package
“com.google.android.gms.ads.identifier” [5] of the Google
AdMob ad library which provides the functionality to gen-
erate an Android Advertising ID (AAID) to identify a users
device instead of using a users personal information (e.g.,
IMEI number or device MAC address – a practice that is not
recommended by Google) [19], [52].

Given our abovementioned observation that ad libraries
are not used only for serving ads, further studies of ad
libraries need to be careful that the analyzed apps are ad-
displaying apps (i.e., the integrated ad libraries are used for
serving ads). Otherwise, researchers on mobile ad libraries
could falsely identify the ad-displaying apps.
Although the Google AdMob and Facebook Audience Net-

4

work are the most integrated ad libraries throughout
the studied ad-displaying apps, some ad libraries are
popular within certain app categories. Table 3 presents the
top ten integrated ad libraries of the studied ad-displaying
apps. The Google AdMob is the most widely integrated
ad library (96.4% of the ad-displaying apps integrate the
Google AdMob ad library).

To understand the popularity of an ad library in every
app category, we measured the percentage of apps that
integrate every ad library in each app category. Table 4
shows the top five integrated ad libraries in each app
category. We observe that the Google AdMob and Facebook

TABLE 4: Top five ranked ad libraries in each app category.

App category Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Music and audio GA(95%) FAN(34%) MP(23%) MM(13%) IM(11%)
Weather GA(100%) MP(53%) FAN(45%) AMA(38%) MM(30%)
Personalization GA(96%) FAN(85%) MP(37%) FL(9%) UA(8%)
Entertainment GA(85%) FAN(43%) MP(27%) AV(23%) UA(21%)
Photography GA(94%) FAN(59%) MP(23%) MV(19%) AV(10%)
Game GA(90%) UA(52%) AC(50%) VL(40%) AV(41%)
News and magazines GA(95%) FAN(31%) MP(28%) FH(15%) IA(11%)
Tools GA(98%) FAN(69%) MP(45%) FL(18%) DAP(18%)
Video players GA(95%) FAN(28%) MP(15%) IM(8%) AV(6%)
Auto and vehicles GA(100%) FAN(14%) MP(14%) – –
Sports GA(90%) FAN(20%) FH(15%) MP(13%) MM(11%)
Social GA(92%) FAN(65%) MP(37%) FL(27%) IM(22%)
Comics GA(88%) FAN(30%) AMA(22%) AC(19%) IM(13%)
Books and reference GA(88%) FAN(24%) MP(13%) AMA(13%) AB(11%)
Health and fitness GA(100%) FAN(35%) MP(20%) AMA(17%) MV(10%)
Productivity GA(95%) FAN(64%) MP(26%) FL(16%) DAP(9%)
Lifestyle GA(100%) FAN(45%) MP(31%) AMA(18%) FL(13%)
Communication GA(89%) FAN(54%) MP(35%) FL(21%) IM(18%)
Medical GA(100%) MP(30%) FAN(23%) AM(15%) AC(11%)
Shopping GA(90%) FAN(18%) TJ(4%) MP(4%) VL(4%)
Finance GA(100%) FAN(13%) MP(6%) FY(6%) MM(6%)
Maps and navigation GA(92%) FAN(7%) MP(7%) AS(3%) –
Travel and local GA(78%) MP(21%) MM(14%) FL(7%) AOL(7%)
Education GA(96%) FAN(33%) MP(22%) FL(7%) –
Libraries and demo GA(65%) MP(11%) IM(11%) FL(11%) MP(11%)
Business GA(91%) FAN(35%) MP(13%) AMA(8%) DAP(4%)
The abbreviations for ad libraries are as follows: AdColony (AC), AdMarvel (AM),
AerServ (AS), Amazon Mobile Ad (AMA), AppBrain (AB), Du Ad Platform (DAP),
Facebook Audience Network (FAN), Flurry (FL), FreeWheel (FH), Google AdMob
(GA), InMobi (IM), MillennialMedia (MM), MobVista (MV), MoPub (MP), TapJoy
(TJ), Unity Ads (UA), and Vungle (VL).
* The bold text highlights ad libraries (in Rank 2) other than Facebook Audience
Network (FAN) ad library.

Audience Network are the most integrated ad libraries in
each app category. However, other ad libraries are popular
within certain app categories. For example, we observe that
the Unity Ads ad library is the second most integrated ad
library in the Game category (52% of the ad-displaying apps
in the Game category integrate the Unity Ads ad library).
One possible reason for the popularity of the Unity Ads ad
library in the Game category is that the library provides easy
integration to the apps that are built on the Unity framework
(a popular framework for building games). In addition, the
Unity Ads ad library offers features for displaying rewarded
video ads (e.g., users earn an extra life or coins if they
watch a video ad), which have become popular among
video gaming apps as these ads improve user engagement
with the app [16], [20].

We also observe that the MoPub (MP) ad library is the
second most popular ad library in four app categories (i.e.,
the Weather, Medical, Travel and local, and Libraries and
demo app categories). One possible reason for the MoPub’s
popularity in these categories is that the MoPub ad library
offers an external-ad-mediator. The external-ad-mediator is
an ad library feature that facilitates the integration of mul-
tiple other ad libraries. In particular, we observe that 76%

42.1%

15.1%

10.9% 9.9%

7.1% 6.3%

2.4% 1.4% 1.3% 0.9% 0.7% 0.6% 0.3% 0.3% 0.2% 0.1% 0.1% 0.2%
0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19
Number of ad libraries

P
er

ce
nt

ag
e

of
 a

d−
di

sp
la

yi
ng

 a
pp

s

Fig. 3: The percentage of ad-displaying apps that integrate a
specific number of ad libraries.

of the ad-displaying apps in the Weather category integrate
multiple ad libraries with the external-ad-mediator of the
MoPub ad library. We also observe that the external-ad-
mediator of the MoPub ad library is the most used external-
ad-mediator in other app categories (i.e., Medical, Travel
and local, and Libraries and demo app categories).

Summary

While ad libraries are commonly integrated for serv-
ing ads, they are often integrated for analytical pur-
poses. The mobile ad market is heavily dominated
by the Google AdMob and Facebook Audience Net-
work ad libraries, yet other ad libraries still play a
leading role in some particular app categories.

4 A STUDY OF THE INTEGRATION STRATEGIES OF
AD LIBRARIES

We now present our study of the integration strategies of
ad libraries. For each research question, we discuss the
motivation, approach and results.

4.1 RQ1: What are the characteristics of apps which
integrate multiple ad libraries?
Motivation: Ad networks decide whether to serve ads for a
requesting app based on different factors (e.g., the character-
istics of the user-base of that app). Hence, apps most often
integrate more than one ad library. A good understanding
of the apps that integrate multiple ad libraries would help
the developers of ad libraries better understand how apps
use their ad libraries and how their libraries co-exist with
other competing ad libraries.
Approach: For this study, we calculated the percentage of
ad-displaying apps that integrate a specific number of ad
libraries. Then, we calculated the multiple-ads ratio (as the
ratio of apps that integrate multiple ad libraries to apps that
integrate a single ad library) across every download range. A
multiple-ads ratio that is higher than one indicates that the
number of apps that integrate multiple ad libraries is higher
than the number of apps that integrate a single ad library
(for a certain download range).
Findings: 57.9% of the ad-displaying apps integrate mul-
tiple ad libraries. Figure 3 shows the percentage of ad-
displaying apps along with the number of integrated ad

5

0

1

2

3

4

5

6

50000
100000

500000

1000000

5000000

10000000

50000000

100000000

Number of downloads

Fig. 4: A line plot showing the ratio of the number of apps
that integrate more than one ad library over the number of
apps that integrate a single ad library across the number of
app downloads. The red dotted line in the figure shows the
ratio value 1.

libraries. The number of integrated ad libraries could reach
up to 19 ad libraries. For instance, the “FreeTone Free Calls
& Texting”3 app integrates 19 ad libraries; these ad libraries
represent 32% of the binary size of the app. App developers
integrate multiple ad libraries to increase the ad fill rate (i.e.,
to ensure that their apps can always display an ad) [47].

Apps with a large number of downloads are more
likely to integrate multiple ad libraries. Figure 4 presents
a line plot of the multiple-ads ratio along with the number
of downloads. The ratio value increases as the number of
downloads increases. The increase in the ratio value from
one to five indicates that apps having a high number of
downloads tend to integrate multiple libraries.

The Spearman’s rank-order correlation between the
number of downloads and the multiple-ads ratio is ρ = 0.92
(with a p − value less than 0.05), indicating that the proba-
bility of integrating multiple ad libraries increases with the
growth in the number of downloads.

Ad-displaying apps are distributed across app cate-
gories – with apps in categories having a high proportion
of ad-displaying apps integrating multiple ad libraries.
Table 5 presents the distribution of ad-displaying apps, the
median number of integrated ad libraries, and the maxi-
mum number of integrated ad libraries in each app category.
Ad-displaying apps are distributed across app categories,
with some categories having a higher penetration of ads.
For example, more than 90% of the studied apps in the Music
and audio, the Weather, and the Personalization app categories
integrate ad libraries.

The median number of integrated ad libraries is greater
than one for 57.6% of the app categories. The Spear-
man’s rank-order correlation between the percentage of ad-
displaying apps and the number of integrated ad libraries
(median) for every app category is ρ = 0.7 (p − value is
less than 0.05), indicating that the number of integrated ad
libraries increases with the growth in the proportion of ad-
displaying apps within a category.

3https://play.google.com/store/apps/details?id=com.textmeinc
.freetone

TABLE 5: Distribution of apps that use ad libraries in each
app category.

App category
of

studied
apps

of ad-
displaying

apps

% of
ad-

displaying
apps

Median
of inte-

grated
ad

libraries

Maxi-
mum # of

inte-
grated ad
libraries

Music and audio 67 64 95% 2 11
Weather 76 71 93% 5 13
Personalization 89 82 92% 3 10
Entertainment 52 42 81% 3 15
Photography 94 77 81% 2 10
Game 59 47 79% 6 17
News and magazines 78 59 76% 2 7
Tools 93 69 74% 3 9
Video players 59 44 71% 1 7
Auto and vehicles 10 7 70% 1 2
Sports 74 52 70% 2 11
Social 81 54 67% 3 19
Comics 56 36 64% 2 7
Books and reference 77 45 58% 1 9
Health and fitness 70 38 54% 2 6
Productivity 80 42 52% 2 10
Lifestyle 42 20 49% 2 7
Communication 76 36 48% 3 12
Medical 55 26 47% 1 6
Shopping 53 22 42% 1 4
Finance 38 15 39% 1 4
Travel and local 69 27 39% 1 8
Maps and navigation 69 26 37% 1 3
Education 70 24 34% 1 6
Libraries and demo 27 9 33% 1 5
Business 81 23 28% 1 5

One of the possible explanations for integrating multiple
ad libraries is that as the number of downloads of an app
increases or the proportion of ad-displaying apps increases
in a category, the competition for ads to display from ad
libraries increases, which in turn leads to a lower fill rate.
Hence, integrating multiple ad libraries increases the chance
of having an ad to display and the potential ad revenue for
ad-displaying apps [47].

Summary of RQ 1

The probability of integrating multiple ad libraries
increases as the number of downloads of an app
increases. Apps in categories with a high proportion
of ad-displaying apps are more likely to integrate
multiple ad libraries. We hypothesize that the inte-
gration of multiple ad libraries is a mechanism to
cope with the high demand for ads in an attempt to
improve the ad fill rate.

4.2 RQ2: How do app developers integrate multiple ad
libraries?

Motivation: Integrating multiple ad libraries is a common
practice in ad-displaying apps. A good understanding of
how app developers integrate multiple ad libraries can
help ad library developers identify the challenges and the
possible improvements for their ad libraries.
Approach: To identify the strategies for integrating multiple
ad libraries, the first and the second author of this paper
manually analyze several ad-displaying apps where app
developers integrate multiple ad libraries as follows.
Step 1: Selecting a statistically representative sample of
ad-displaying apps. Our data set has 623 ad-displaying
apps that integrate multiple ad libraries. Analyzing all these
ad-displaying apps manually is both difficult and time

6

consuming. Therefore, for our manual study, we selected a
statistically representative random sample of 62 apps (out of
the 623 ad-displaying apps) providing us with a confidence
level of 90% and a confidence interval of 10%.
Step 2: Generating a static call graph for each selected
app. To understand how app developers integrate multiple
ad libraries, we need to analyze the call-site source code
(i.e., the packages, classes, and methods that are needed to
communicate with an ad library). Hence, we decompiled
the generated JARs (in Section 2) into Java source code
files using the Class File Reader (CFR) tool [4]. Then, we
used the Understand tool [17] to generate and visualize the
dependency call graph of each studied ad-displaying app.
Step 3: Identifying the strategies of integrating multiple
ad libraries. We start our manual analysis with an open-
ended question “How does an app integrate multiple ad
libraries?”. We observe that apps differ in the way by which
they integrate ad libraries with respect to two practices:
(1) whether the app code uses a centralized component
(i.e., an ad mediator component) that handles the access
to the multiple ad libraries and (2) whether the centralized
component is written by the app developer or by the library
designer.

Hence, we manually investigate every selected ad-
displaying app based on the following two questions: “Does
the app code call a centralized component that handles the
access to the multiple ad libraries?” and “Is that central-
ized component written by the app developer or by the
library developer?”. Then, we grouped apps with similar
integration behavior (in the context of the aforementioned
investigated questions) as an integration strategy. Finally,
we derived a set of rules to automatically identify the
integration strategy for any unseen app.

To generate the static call graph and analyze the app
code (i.e., classes, methods, and packages) for identifying
integration strategies, we took 40 minutes on average for
each of the studied apps.
Step 4: Analyzing the characteristics of the identified
integration strategies. We ran the derived rules on the
studied 623 ad-displaying apps and identified apps that
belong to every integration strategy. Then, we studied the
characteristics (i.e., the number of call-cite classes) of the
apps that belong to every integration strategy. Finally, based
on our analysis of the apps, we provide a description, an
example, the benefits, and the drawbacks of each identified
strategy for integrating multiple ad libraries.

To better understand the integration strategies for ad
libraries, we analyze qualitative data sources. In particular,
we manually examine two artifacts: (1) 500 Stack Overflow
(SO) posts that are related to mobile ads, and (2) 35 ad-
related articles from the developer forums and blogs of the
top ten ad libraries (e.g., the InMobi blog) as follows:

Step 1: Collecting qualitative data. To identify the
Android ad-network-related posts in Stack Overflow we
employ SO’s search option using the following keywords:
“multiple ad network”, “fill rate android”, “ad mediation”,
and “admob banner facebook native”. The SO’s search
option returned 255 posts for “multiple ad networks”, 118
posts for “file rate android”, 113 posts for “mediation
ads android”, and 14 posts for “admob banner facebook
native”. In total, we collect 500 ad-network-related posts.

TABLE 6: Distribution of apps across the different integra-
tion strategies.

Ad library integration
strategy # of apps % of apps

Mixed strategy 317 50.9%
Self-mediation strategy 166 26.6%
External-mediation strategy 63 10.2%
Scattered strategy 77 12.3%

The collected SO posts are answered within one (median)
day with a median of 667 views – highlighting that our
topic and addressed challenges are of great relevance to the
development community. To identify ad-network-related
articles, we search on Google using a combination of the
aforementioned keywords and the names of the different ad
libraries. We select only those articles that are related to the
forum discussions (e.g., Google Mobile Ads SDK Technical
Forum) and blogs of ad libraries. We collected 35 ad-related
articles from the developer forums and blogs of the top ten
ad libraries.

Step 2: Investigating qualitative data. In this step, the
first two authors of this paper manually investigate each
of the collected SO posts. Our objective of the analysis is to
understand the strategies that developers follow to integrate
multiple ad libraries into their apps and the associated
issues with these strategies. To achieve this objective, we
carefully read the title and body of each SO post. In addition,
we examine the answers and the comments of every post
to understand the integration strategies for ad libraries.
Although each of the selected SO posts adds knowledge
about integrating multiple ad libraries, we identified 25 SO
posts that specifically mention drawbacks or benefits of the
integration strategies for ad libraries.

During our manual analysis, if there was a disagreement
in the meaning of a post, we (the authors) carefully reread
the answers and the comments related to the post and
further discussed it until consensus was reached. Since both
authors analyzed together all SO posts and agreements (on
all analysis of the examined posts) were reached in the end,
the authors did not compute the inter-rater agreement. To
facilitate the replicability of our work, the studied SO posts
are available in our replication package. We follow the same
approach to manually study the 35 ad-related articles to
understand the process of integrating multiple ad libraries.

It took around 7 minutes to read each SO post and 10
minutes to read each ad-related article (from each author).
In total, it took around 12 hours from each author to finish
analyzing all the selected SO posts and ad-related articles.
Findings: We identified four strategies for integrating multi-
ple ad libraries. Table 6 shows the distribution of apps across
the identified strategies. In the next section, we explain the
identified integration strategies.

(1) External-mediation strategy

Description of the external-mediation strategy:
In this strategy, app developers write code to integrate
only one ad library that offers a mediator package. This
mediator package is responsible for serving ads from other
ad networks, which are supported by the ad library. Since

7

App Screen 1

App Screen 2

App Screen 3

External-ad-
mediator

Ad Library 2

Ad Library 4

Ad Library 3

Ad Library 1

App Code Integrated Ad Libraries

Fig. 5: An overview of the external-mediation strategy.

the mediator is not written by the app developers, we call
this an external-mediation strategy.

Figure 5 shows an overview of how app developers
integrate multiple ad libraries using an external-mediation
strategy. App developers integrate an ad library (Ad Li-
brary 1) that has an external-ad-mediator. Every app screen
that displays ads communicates only with the external-ad-
mediator of the Ad Library 1. The external-ad-mediator
communicates with the integrated ad libraries and serves
ads from these libraries.
Rules for automatically identifying apps that use the
external-mediation strategy:
We determine that an ad-displaying app is using the
external-mediation strategy if the following two rules are
met:
1) The number of accessed ad libraries by the app code is
one, and the number of integrated ad libraries in the app is
more than one.
2) The package of the accessed ad library contains an
external-ad-mediator package that is accessed by the app
code.
An example app that uses the external-mediation strategy:
The “Ringtones & Wallpapers for Me”4 app, a popular app
in the Personalization category, displays ads from ten ad
libraries. The app code (i.e., the code that is written by the
app developer) of this app contains the code for integrat-
ing only one ad library (Google AdMob). This app uses
the external-ad-mediator of the Google AdMob ad library
(com.google.andorid.gms.ads.mediation) which communi-
cates with the other nine ad libraries as well as the Google
AdMob ad library for displaying ads.
Benefits of using the external-mediation strategy:
• The ease of integrating multiple ad libraries is one of the
main benefits of this strategy as the external-ad-mediator
implements the required logic for serving ads from multiple
ad libraries [51]. For example, to integrate a new ad library,
app developers include the new ad library (along with the
external-ad-mediator) in their apps. This process does not
require any changes to the ad-call-cite code (compared to
the self-mediator strategy that needs changes to the self-
mediation support code). The ease of integrating multiple
ad libraries maybe one of the reasons for the high ratio of
adding or deleting ad libraries for the external-ad-mediator
strategy compared to the other integration strategies.

Nevertheless, based on our qualitative analysis of Stack
Overflow questions, we noticed that the process of using the

4https://play.google.com/store/apps/details?id=com.apalon.
ringtones

external-mediation strategy is not that intuitive as develop-
ers may not know that they need to include the external-ad-
mediator in their apps (in addition to adding the required
ad libraries)5,6,7.
• The external-ad-mediator selects an ad library for serving
ads from the supported ad libraries based on dynamically
estimated measures such as the eCPM which captures the
ad monetization performance of an ad library at run-time;
leading to much more dynamic and accurate estimates of
the revenue for a served ad [21].
Drawbacks of using the external-mediation strategy:
• The external-ad-mediator of an ad library may not sup-
port all the existing ad libraries that are available in the
app market, and integrating unsupported ad libraries could
crash mobile apps [28]. Therefore, app developers cannot
serve ads from the unsupported ad libraries.

For example, we observe that only 5 out of the identified
63 ad libraries offer an external-ad-mediator. The external-
ad-mediators of these five ad libraries (Google AdMob,
MoPub, AerServ, Fyber and HeyZap) offer support for
serving ads from only 13 ad libraries (20% of the identified
ad libraries). Hence, apps that use the external-mediation
strategy cannot serve ads from other ad libraries unless they
are supported by the external-ad-mediators.
• The entire process of serving an ad is not transparent as
app developers have less control over the exact ad library
from which an ad is to be served. For example, in one of the
discussions in the Google Mobile Ads SDK Technical Forum
about how external-ad-mediator works, a developer of the
Google Mobile Ads SDK Team states: “Be noted that AdMob
will be the one that would decide which mediated ad
would display on an ad unit at any given time, depending
on various factors (mostly on network priority and eCPM
floors)” [31]. This answer indicates that app developers have
no control over the selection algorithm. In addition, the
external-ad-mediator might provide a preferential serving
of ads from its network over other ad networks. This lack
of transparency might cause a mistrust issue leading app
developers to avoid the use of the external-ad-mediators of
some ad libraries [33].

(2) Self-mediation strategy

Description of the self-mediation strategy:
In this strategy, app developers write their centralized
package (i.e., self-mediator), which communicates with the
integrated ad libraries and manages the process of serving
ads.

Figure 6 presents an overview of the self-mediation
strategy. All three app screens communicate with the self-
mediator, and the self-mediator communicates with the
integrated ad libraries to serve ads from them.
Rules for automatically identifying apps that use the self-
mediation strategy:

5https://stackoverflow.com/questions/14481380/how-
implement-the-mediation-ad-in-android

6https://stackoverflow.com/questions/48363760/admob-
mediation-with-facebook-audience-network-in-xamarin-forms

7https://stackoverflow.com/questions/25008446/android-
mediation

8

App Screen 1

App Screen 2

App Screen 3

Self-
mediator

App Code

Ad Library 3

Ad Library 2

Integrated Ad Libraries

Ad Library 1

Fig. 6: An overview of the self-mediation strategy.

We determine that an ad-displaying app is using the self-
mediation strategy if the following rules are met:
1) The number of integrated ad libraries is more than one.
2) The number of accessed ad libraries by the app code and
the number of integrated ad libraries are equal.
3) The app code contains a centralized package that com-
municates with the integrated ad libraries.
An example app that uses the self-mediation strategy:
The “Calculator Plus Free”8 app, a popular app in the Tool
category, integrates seven ad libraries using the self medi-
ation strategy. The developer of the app wrote their self-
mediator (com.digitalchemy.foundation.advertising), which
communicates with the integrated ad libraries to serve ads.
Benefits of using the self-mediation strategy:
• A self mediation strategy provides a good encapsulation
of the code code [34] because app developers write a cen-
tralized package that manages the selection and serving of
ads from multiple ad libraries.
• App developers are free to integrate any ad library instead
of being limited to a handful of supported ad libraries like
in the case of the external-mediation strategy. For example,
we observe that apps that use the self-mediation strategy
integrate 41 ad libraries with 67.6% of these libraries not
supporting external ad-mediators.
• App developers have more control over selecting the ad
library from which to serve an ad. We observe that app
developers mainly use the following three approaches:
1) A round-robin approach without a preferred list of ad
libraries. In this approach, a random list of the integrated ad
libraries is generated. If the first ad library in the list fails to
serve an ad, the self-mediator requests an ad from the next
ad library. This process continues in a circular order until an
ad is served from an ad library.
2) A round-robin approach with a preferred list of ad
libraries. In this approach, app developers set a preferred
list of the integrated ad libraries based on some measures
(e.g., the popularity of the ad library in a country or the
offered feature of the ad library). The self-mediator selects
the best preferred ad library for requesting an ad. If that
library cannot serve an ad, then the mediator selects another
ad library in a circular fashion from the preferred list until
an ad is served from an ad library.
3) A custom event-based approach. In this approach, the
self-mediator of an app selects an ad library based on
custom events (e.g., when a user clicks a particular menu
item or when a user earns a reward in the app). This custom

8https://play.google.com/store/apps/details?id=com.digitalchemy.
calculator.freedecimal

App Screen 2

App Screen 3

App Code

Ad Library 1

Ad Library 3

Ad Library 2

App Screen 1

Integrated Ad Libraries

Fig. 7: An overview of the scattered strategy.

event-based approach allows app developers to select the
most suitable ad library for increasing user-engagement for
that particular event.
Drawbacks of using the self-mediation strategy:
• App developers must write and maintain the code for the
self-mediator. The self-mediator represents 8% (median) of
the total number of classes of an app (in our studied apps).
For example, the “High-Powered Flashlight”9 app, a popular
app in the Tool category, serves ads off 10 ad libraries
which are integrated using the self-mediation strategy. The
self-mediator (the “com.ihandysoft.ad” package) represents
22% of all the classes of this app. We observe that app
developers modify the self-mediation support code in 64.5%
(median) of their updates – supporting our intuition about
the maintenance challenges of the self-mediation strategy.
• The ordering of ad libraries is static in nature. In contrast,
the ordering of the external-ad-mediator is much more dy-
namic as it can order ad libraries based on the dynamically
estimated eCPM value which is calculated at run-time based
on the buying and selling of ads as conducted through real-
time auctions that are facilitated by digital marketplaces
(i.e., ad exchanges) [42]. For example, in a Stack Overflow
question about the best practice for implementing a self-
mediator for displaying ads10, the accepted answer rec-
ommends iterating among the integrated ad libraries (i.e.,
selecting the first ad library then the next one without
considering the current ad network data such as ad fill rate,
ad response time, and eCPM). Hence, app developers may
not select the best ad library based on the current market
conditions [42].

(3) Scattered strategy

Description of the scattered strategy:
In this strategy, app developers neither write their own
mediator nor use the external-ad-mediator of an ad library
to serve ads from the integrated ad libraries. Rather, de-
velopers write code individually for each app screen to
integrate each ad library for that particular screen.

Figure 7 shows an overview of the scattered strategy.
Each app screen communicates with the integrated ad li-
braries directly. The integration code for the Ad Library 2
is written by the app developer for every app screen that
displays an ad.

9https://play.google.com/store/apps/details?id=com.ihandysoft.
ledflashlight.mini

10https://stackoverflow.com/questions/26685425/best-coding-
practice-for-implementing-not-using-mediation-multiple-ad-networks

9

Rules for automatically identifying apps that use the
scattered strategy:
We determine that an ad-displaying app is using the scat-
tered strategy if the following rules are met:
1) The number of integrated ad libraries is more than one.
2) The number of accessed ad library by the app code and
the number of integrated ad libraries are equal.
3) The app code does not contain any centralized package
that communicates with the integrated ad libraries.
An example app that uses the scattered strategy:
The “Audiomack – Download New Music”11 app, a popular
app in Music & audio category, integrates four ad libraries
using the scattered strategy. The app displays ads on two
screens. The developer of this app wrote code in two app
screens for displaying ads from ad libraries individually.
Benefits of using the scattered strategy:
• App developers can quickly integrate several ad libraries
as developers do not need to write a centralized package
(e.g., the self-mediation support code). Designing a flexible
and reusable self-mediator is challenging. For example, in a
Stack Overflow question about the design of a self-mediator
using the Factory pattern12. The answerer notes the com-
plexity of developing a self-mediator: “In case some of ads
controller need additional action (for example update its state or
something) you have to add a new method to interface, and this
will be unused with other 100500 implementations”.
• App developers can select ads of different ad formats
(e.g., banner or native ad format) from different ad libraries
based on custom events in their apps. For example, the
“The Coupons App”13 app, a popular app in the Shopping
category, integrates Google AdMob and Facebook Audience
Network ad libraries in the same app screen. The app selects
the Google ad library to serve banner ads and the Facebook
Audience Network to serve native ads based on custom
events in the app (e.g., the clicking of different buttons in
that particular screen).
Drawbacks of using the scattered strategy:
• App developers need more effort to maintain their code
because they need to write the same integration code (i.e.,
copy and paste) for an ad library if the ad library is inte-
grated for displaying ads in different app screens. We ob-
serve that the probability of modifying an ad-call-site code
(i.e., the app code that invokes the methods for integrating
an ad library) is 20% (median) across all ad integration
strategies, with that probability increasing considerably to
30% (an increase of 50%) for the scattered strategy. We also
observe that the median probability of modifying the ad-
call-site code for apps that use the mixed strategy is twice
that of the median probability of modifying ad-call-site code
for apps that use the external-mediation strategy. Hence,
app developers need to modify the ad-call-site code at a
much larger rate. We further discuss the maintenance effort
of each integration strategy in Section 5.
• The scattered code fetches ads from a single ad library
for displaying ads on an app screen. For example, the “The

11https://play.google.com/store/apps/details?id=com.audiomack
12https://stackoverflow.com/questions/35146989/admodule-

architecture-using-abstract-factory-pattern
13https://play.google.com/store/apps/details?id=thecouponsapp.

coupon

App Screen 1

App Screen 2

App Screen 3

External-ad-
mediator

Ad Library 2

Ad Library 4

Ad Library 3

Ad Library 1

App Code Integrated Ad Libraries

Fig. 8: An overview of the mixed strategy.

Coupons App” app, a popular app in the Shopping category,
uses Google AdMob to serve banner ads and uses the
Facebook Audience Network to serve native ads in the same
app screen. If any of the integrated ad library fails to fetch
an ad (e.g., due to the network not filling the ad request),
the app screen will fail to display some ads. Alternatively,
the app could have used an external-ad-mediator, which
provides the needed logic to display ads from different ad
libraries if an ad library fails to fill an ad request [51]. Hence,
the scattered strategy is not able to deal with low fill rate
issues that might arise.

(4) Mixed strategy

Description of the mixed strategy:
In this strategy, app developers combine both the external-
mediation strategy and the scattered strategy to serve ads.

Figure 8 shows an overview of the mixed strategy. App
Screen 1 and App Screen 2 communicate with ad libraries
using an external-mediation strategy, whereas App Screen
3 communicates with the Ad Library 4 using a scattered
strategy.
Rules for automatically identifying apps that use the
mixed strategy:
We determine that an ad-displaying app is using a scattered
strategy if the following rules are met:
1) The number of integrated ad libraries is more than one.
2) The number of accessed ad libraries by the app is less
than the number of integrated ad libraries.
3) The app contains an external-ad-mediator package that
communicates to many of the integrated ad libraries.
An example app that uses the mixed strategy:
The “Real Guitar Free - Chords, Tabs & Simulator Games”14

app, a popular app in the Music category, integrates 14 ad
libraries to serve ads. The developers of the app use the
external-ad-mediator of the Google AdMob (com.google.
android.gms.ads.mediation) ad library to integrate 11 ad
libraries. To integrate the remaining three ad libraries, the
app developers write code in the activities of some specific
screens using the scattered strategy.
Benefits of using the mixed strategy:
• In the mixed strategy, app developers can leverage the
external-ad-mediator of an ad library to serve ads from dif-
ferent ad libraries and can also write their integration code
for other ad libraries that are not supported by the external-
ad-mediator. We observe that 73.9% of ad-displaying apps
with the mixed integration strategy call at least one ad

14https://play.google.com/store/apps/details?id=com.gismart.guitar

10

TABLE 7: Mean and five-number summary of each strategy
for integrating multiple ad libraries.

Ad library
integration strategy Mean Min. 1st

Qu.
Me-
dian

3rd
Qu. Max.

External-mediation strategy 4 2 2 4 5 10
Mixed strategy 5 2 4 5 6 19
Self-mediation strategy 3 2 2 3 4 12
Scattered strategy 2 2 2 2 4 5

library that is not supported by the currently available
external-ad-mediators.
• Apps that use the mixed strategy integrate more ad li-
braries than the apps that use other strategies. Table 7 shows
the mean and five-number summary of the integrated ad
libraries for each of the four identified strategies. App
developers integrate a maximum of 19 ad libraries using
the mixed integration strategy. We find two apps from the
“TextMe, Inc” company that integrate 19 ad libraries. We
observe that they use the external-ad-mediator of the Google
AdMob ad library which supports 13 ad libraries, the rest
of the ad libraries are integrated using a scattered strategy
since they are not supported by the external-ad-mediator of
the Google AdMob ad library.
• One possible reason for using the mixed strategy is that
app developers can display ad formats (e.g., native ads)
that are not supported by the external-ad-mediator. For
example, a Stack Overflow post notes that a developer
used an external-ad-mediator to successfully display banner
and interstitial ads from both FAN and Google AdMob
ad libraries. Later, the developer wanted to display native
ads from the Facebook Audience Network (FAN) using the
external-ad-mediator of the Google AdMob. The accepted
answer indicates that displaying native ads is currently not
supported by the external-ad-mediator (“Mediation through
FAN for Native Express Ads is currently not possible. Only
Banner ads and Interstitials have been enabled for mediation for
FAN.”)15. Therefore, app developers need to use the mixed
strategy to display banner, native, and interstitial ads from
multiple ad libraries.

Drawbacks of using the mixed strategy: Since the mixed
strategy is the combination of the external-mediation strat-
egy and the scattered strategy, some of the drawbacks of
these two strategies exist in the mixed strategy. For example,
developers need to spend considerable effort on maintain-
ing their ad library code as we observe that the mixed
strategy has the highest probability of modifying ad-call-
site code (37%) compared to other integration strategies. We
further discuss the maintenance effort of each integration
strategy in Section 5.

15https://stackoverflow.com/questions/37648710/facebook-
audience-network-native-ads-via-admob-mediation-adapter

Summary of RQ 2

App developers dominantly use the mixed and the
self-mediation strategy to integrate multiple ad li-
braries. This might be due to the currently available
external-ad-mediators not satisfying their needs. To
have more control over selecting ad libraries for
displaying ads, app developers write their own cen-
tralized packages (self-mediator) based on preferred
metrics (e.g., location information) or custom app
events in the self-mediation strategy.

5 DISCUSSION OF THE MAINTENANCE OVERHEAD
OF THE INTEGRATED AD LIBRARIES FOR EACH INTE-
GRATION STRATEGY

In this section, we discuss how app developers maintain
their integrated ad libraries over time across the different
ad library integration strategies. In particular, we discuss
the modifiability of the ad-call-site code (i.e., the app code
that invokes the methods for integrating an ad library) and
the flexibility of integrating ad libraries for each integration
strategy.

5.1 The modifiability of ad-call-site code

In this section, we discuss the modifiability of the ad-call-
site code along two aspects: (1) how frequently (in terms of
the proportion of the updates of an app) do app developers
modify the ad-call-site code, and (2) what is the proportion
of the ad-call-site code that is modified across the integration
strategies.

To determine if an ad-call-site code is modified, we fol-
low the same approach of Ruiz et al. [48]. In this approach,
for each update of an ad-displaying app that integrates
multiple ad libraries, we generate the class signatures for
all ad-call-site code (we consider only the statements that
invoke ad library methods) of the integrated ad libraries.
The ad-call-site code is modified in the app update (Ui+1) if
the signature of the app update (Ui+1) is different than the
signature of the app update (Ui).

The probability of modifying the ad-call-site code is
20% (median) across all integration strategies, with that
probability increasing considerably to 37% (an increase
of 60%) for ad-displaying apps which use the mixed
strategy. Figure 9 shows the probability of modifying ad-
call-site code for every integration strategy. The probability
of modifying the ad-call-site code for ad-displaying apps
that use the mixed or the scattered strategies is well above
the median. We also observe that the median probability of
modifying the ad-call-site code for apps that use the mixed
strategy is twice that of the median probability of modifying
ad-call-site code for apps that use the external-mediation
strategy. This result indicates one of the drawbacks of using
the scattered strategy since app developers would need to
modify the ad-call-site code in a much larger proportions of
the deployed updates of their apps.

To study whether the modifiability of ad-call-site code
is significantly different across the identified four ad library
integration strategies, we use the “Kruskal Wallis test” [54]

11

0

25

50

75

100

Mixed Scattered Self-mediation External-mediation
Ad library integration strategy

Th
e

pr
ob

ab
ilit

y
of

 m
od

ify
in

g
ad

-c
al

l-s
ite

 c
od

e
(#

 o
f u

pd
at

es
 o

f a
n

ap
p

w
he

re
 a

d-
ca

ll-
si

te
 c

od
e

is
 m

od
ifi

ed
/#

 o
f u

pd
at

es
 o

f t
ha

t a
pp

)

Fig. 9: The probability of modifying the ad-call-site code
in a update for each ad library integration strategy. The
red dotted line shows the median probability of modifying
the ad-call-site code.

TABLE 8: The proportion of modifying ad call-site-code
when an ad library is updated and when an ad library is
not updated.

% of the modified ad-call-site code (median)
Ad library integration when the integrated when the integrated

strategy ad library is updated ad library is not updated

Mixed strategy 12.5 0.0
Scattered strategy 8.0 0.0
Self-mediation strategy 3.3 0.0
External-mediation strategy 0.0 0.0

for the four categorical variables (i.e., the integration strate-
gies) and one metric (the probability of modifying ad-call-
site code). We observe that the generated p-value of the test
is less than 0.05 indicating that the the modifiability of ad-
call-site code is significantly different across the identified
four strategies.

The proportion of the modified ad-call-site code (# of
ad-call-site code that is modified / # of total ad-call-site
code) is highest in the apps that use the mixed strategy.
We observe that app developers mostly modify ad-call-
site code when they update their integrated ad libraries.
Table 8 shows the proportion of the modified ad call-site-
code in two cases: when the integrated ad library is updated
and when the integrated ad library is not updated. The
proportion (median) of the modified ad-call-site code is
zero for each integration strategy (when the ad library is
not updated) indicating that app developers usually do not
optimize or change their ad library integration code. We also
observe that in the case when an ad library is updated, the
proportion of the modified ad-call-site code for the apps that
use the mixed strategy is the highest whereas the proportion
is almost zero for the apps that use the external-mediation
strategy. This result is another indication that the mixed
strategy may require more effort for maintaining the ad-
call-site code over time.

0.0

0.1

0.2

0.3

0.4

0.5

Mixed External-mediation Self-mediation Scattered
Ad library integration strategy

Fl
ex

ib
ilit

y-
ra

tio
 =

 p
er

ce
nt

ag
e

of
 u

pd
at

es
 o

f a
n

ap
p

w
he

re
 a

n
ad

 li
br

ar
y

is
 re

m
ov

ed
 o

r a
dd

ed

Fig. 10: The ratio of adding/removing ad libraries for each
of the integration strategies.

5.2 The ratio of adding or removing ad libraries
To understand which ad integration strategy is more flex-
ible for modifying (adding or removing) ad libraries, we
calculate the ratio of adding/removing ad libraries for each
integration strategy. The ratio of adding/removing ad libraries
is the ratio of the number of updates of an app in which the
app developer adds or removes an ad library to the total
number updates of the app.

The mixed strategy provides app developers with the
highest flexibility. Figure 10 shows the the ratio of adding/re-
moving ad libraries for each identified strategy. The mixed
strategy has the highest ratio value. We identify ad libraries
that are added or removed in the cases of mixed strategy
and observe that all these ad libraries are supported by the
currently available external-ad-mediators that are currently
in use by these apps. One explanation of this result is that
developers do not need to write or update any code to add
or remove ad libraries. This hypothesis explains as well the
high ratio of adding or removing ad libraries for the external-
mediation strategy.

6 IMPLICATIONS

In this section, we describe the implications of our study of
ad library integration practices for ad library developers.

The developers of the Google AdMob should spin
out their functionality for uniquely identifying a user’s
device out of their ad library. As described in Section 4.1,
analytics libraries have a dependency on the Google Ad-
Mob ad library. These analytics libraries depend on one
of the packages of the Google AdMob ad library named
“com.google.android.gms.identifier” for the unique identi-
fication of a user’s device. These analytics libraries need this
functionality to track a user’s in-app behavior. However, the
main purpose of an ad library is to serve ads. This unusual
dependency on the Google AdMob increases the size of
many apps that use these analytical libraries. Hence, devel-
opers of the Google AdMob ad library should rethink their
design and offer a separate library for uniquely identifying
a user’s device.

Ad library developers should improve their external-
ad-mediators by (1) enabling the integration of new ad

12

libraries at run-time and (2) increasing the supported ad
libraries. In Section 5, we observed that app developers use
the mixed strategy to achieve the highest flexibility (i.e.,
continuously adding or removing an add library). To im-
prove the flexibility of the external-ad-mediators, ad library
developers need to provide some standardized interfaces to
enable the integration of new ad libraries for app developers
at run-time instead of only at design time. For example, the
Google AdMob ad library has started to offer an SDK-less
mediation feature that enables app developers to add or
delete any new ad library by re-configuring their Google
ads account (without a need for deploying an update that
adds/removes the required ad libraries) [40].

Another dimension for improving the external-ad-
mediators is to add support for a large number of ad
libraries. For example, in Section 4.2, we observed that 73.9%
of the ad-displaying apps that use the mixed integration
strategy call at least one ad library that is not supported
by any external-ad-mediators. Hence, we recommend ad
library developers who offer external-ad-mediators to sup-
port more ad libraries so that app developers can choose
different ad libraries and maximize ad revenue.

Ad library developers should offer more feature con-
trol over the selection of ad libraries. In Section 4.2, we
observed that the external-ad-mediator selects an ad library
from the integrated ad libraries based on dynamically calcu-
lated eCPM value. Although this selection process is useful
for accurately estimating the revenue for a served ad, it
might prevent an app from achieving an improved user-
engagement as the process is not customizable. In addition,
this process is not transparent to app developers (as eCPM is
calculated dynamically) and does not allow app developers
to control the selection of ad libraries. We observe that
app developers write code (representing a median of 8%
of the total number of classes of the app code) for their self-
mediator which offers them custom control when selecting
ad libraries based on a preferred list of ad libraries (e.g., a
list of ad libraries based on the popularity of ad libraries in
a country) or custom app events. Therefore, we recommend
ad library developers to offer a more configurable interface
for their external-ad-mediators so that app developers can
have more control in selecting ad libraries when they desire.

7 THREATS TO VALIDITY

Construct validity: App developers can obfuscate their code
using obfuscation tools (e.g., Proguard) before releasing
their apps. Although Google Admob requires app devel-
opers to keep the names of the ad-show methods non-
obfuscated (so apps do not get issues while displaying
ads) [39], we cannot assure that all the studied ad libraries
mandate the same requirement. Hence, code obfuscation
can impact our results as follows. First, if developers ob-
fuscated their package names, our approach will not be able
to identify whether an app contains an ad library (as our
approach depends on the library package name to identify
apps that integrate ad libraries). Moreover, if developers
obfuscated the method name of their code, our approach
cannot identify whether an app displays ads (as we de-
pend on the usage of the ad-show methods). To assess the
impact of code obfuscation on our analysis, we measured

the percentage of classes, methods and packages that are
obfuscated in our studied apps (i.e., 1,837). We followed
a similar approach to identify the code obfuscation that is
employed by Li et. al. [44]. We find at least one obfuscated
package and method in 18% and 39% of the studied apps,
respectively. However, in our further investigation on how
much code is obfuscated in an app, we find that only 0.5%
(median) of the methods in an app are obfuscated. This
result shows that there can be an impact (albeit a small
percentage) that this 0.5% of the obfuscated methods include
show-ad methods of ad libraries.

To identify the apps that display ads, our approach
depends on identifying the calls to the show-ad methods
of ad libraries. Hence, if an app is obfuscated, our approach
would miss identifying such apps as ad-displaying apps. As
shown in Table 1, 530 apps do not contain any of the iden-
tified ad library packages. Out of these 530 apps, 225 apps
(12% of our overall studied 1,837 apps) contain obfuscated
methods in their app code. Since we are not the owner of
such 225 apps, we cannot assure whether they integrate ad
libraries for displaying ads. Hence, our approach may miss
identifying ad-displaying apps for these 225 apps. To over-
come the issue of missing the identification of ad-displaying
apps, we extensively studied a large number of apps that
display ads to understand how app developers integrate
ad libraries into their apps on a large scale. It should be
noted that our objective of this study is to understand the
approaches that app developers use to integrate multiple ad
libraries instead of providing an approach on how to reverse
engineer obfuscated methods. Future studies could extend
our work by including more apps from different app stores.

Identifying the ad libraries among the many integrated
third-party libraries is a non-trivial task. First, we identify
packages using the regular expression [aA][dD] (following
a similar approach as proposed by Ruiz et al. [48]). Then,
we manually search online each identified package to de-
termine whether it corresponds to an ad library. However,
there is a chance, albeit an extremely rare one, that an ad
library exists for which we cannot find any web reference.
To measure the comprehensiveness of our identified inte-
gration strategies for ad libraries, we randomly examined
a statistical representative sample of 65 apps out of the
1,076 studied ad-displaying apps. Such a sample would
provide us with a confidence level of 90% and a confidence
interval of 10%. To eliminate any bias in our evaluation
results, we do not include the 62 apps that we initially used
for identifying the integration strategies for ad libraries.
For each of the examined apps, we manually examine the
app code (using the Understand tool [17]) and validate the
integration strategies for ad libraries. We observe that our
proposed rules correctly identify the integration strategies
for ad libraries in each of the studied 65 apps.

Our approach for detecting ad libraries could suffer from
both false positives and false negatives. In the case of false
positives, an app can have dead code with the word ad
in its class name or a popular third-party library might
include ads mischievously. However, we studied top apps
where we feel the chances of these concerns to occur are
extremely low. The chances of an app to not remove dead
code (and associated ad libraries) is quite low since mobile
apps are very mindful of the size of their binaries. The

13

chances of an app being malicious are very low again –
recall we are looking at the top apps in the market. In the
case of false negatives, there might be many ad networks
that do not have the term “ad” in its APIs. The chances of
an ad library not having the word “ad” is in it is quite low.
We also retrieved a list of ad libraries that is curated by
AppBrain [27] and find that the concern is not valid for that
curated list. The list contains 120 ad libraries. Of these 120 ad
libraries, we identified 63 ad libraries that are integrated by
the studied apps. For the remaining 57 ad libraries, we read
their documentation and GitHub packages and validate that
their API contains “ad” keyword.

To identify the display ad methods, we read the doc-
umentation of the studied ad libraries and summarized
the list of methods that are currently used for displaying
ads. However, APIs may evolve, and developers of ad
libraries might rename such methods (display ad methods).
To determine whether such show-ad methods were changed
during the evolution of their libraries, we investigated all
the historical versions that are released during our study
period of the top ten popular ad libraries as follows. First,
we identified the methods that are currently used for dis-
playing ads from the documentation of the selected ad
libraries. Then, for each version of the selected ad library,
we examined whether the identified methods exist in the
prior versions. We observed that all identified methods exist
in the prior versions. We did observe that a few ad libraries
(e.g., Unity Ads) added new parameters to these methods.
However, they did not change the name of these methods.
For example, developers of Unity Ads did not change the
name of the show method in version 2.0.0 but changed the
parameter of the show method (i.e., developers changed
“public void show (Map <String, Object> options)” to “public
void show (activity, placementId)” in version 2.0.0).

One possible threat in our analysis on the modifiabil-
ity of ad-call-site code is code obfuscation of the studied
apps as we cannot track the changes in code statements
of obfuscated code. Hence, in this analysis, we filtered
the obfuscated classes by following the approach of Li et
al. [44] and studied the classes of the app code that are
non-obfuscated. As illustrated in our discussion about code
obfuscation, the percentage of obfuscated code is only 0.5%
(median). Consequently, there might be cases (albeit a small
percentage) that the obfuscated code has modifications to
the ads-call cite statements.

Since native code in Android apps is deployed in the
app as executable and linkable format (ELF) files [56], using
static analysis tools cannot generate all the dependency links
accurately [22]. We observe that only 6.5% of the studied
apps (121 apps out of 1,837) use native code in our dataset.
We identified 69 of them integrate ad libraries (i.e., 6% of
the studied ad-displaying apps). Studying native apps using
static analysis tools is difficult and could introduce false-
positive cases in our analysis of the integration strategies
for ad libraries. Hence, we removed these 69 apps from our
analysis of the integration strategies for ad libraries. Since
these apps are only 3.8% of the studied apps (69 apps out of
1,837), we believe that they will not drastically impact our
overall study of the integration strategies for ad libraries.
External validity: In this study, we only focused on the top
free-to-download Android apps from the Google Play Store

as these apps have a large user-base. Hence, these apps
are likely to follow the in-app advertising model to earn
revenue. Future studies should broaden the scope of our
study and investigate how our findings apply to ad libraries
that are integrated into other types of apps, such as non-free
apps, Windows apps, or iOS apps.

According to the documentation of the top ten most used
ad libraries in our dataset, the standard way of displaying
ads (e.g., full-screen ads) is to call display methods (e.g.,
showAd()) of the integrated ad libraries [38], [46] from an
activity. However, we do not claim that this is the only way
to display ads. For example, app developers can display
ads using intents or background services16, which is not a
recommended practice for displaying ads [37]. In addition,
malicious apps and adware apps can also display ads using
background threads, which can be difficult to detect using
static analysis mechanisms. However, we analyzed popular
apps that are actively maintained and present in the Google
Play Store, and they are less likely to be malicious or adware
apps. Additionally, our scope for this research is to study
how popular apps integrate ad libraries using standard
practices.

In Section 6, we point out three implications for ad
library developers based on our study so that ad library
developers could improve their ad libraries. We cannot deny
that there might be some business constraints for improving
ad libraries. For example, supporting the integration of all
ad libraries in the ad market is not a simple task and
might be influenced by competitive business logic instead of
technical challenges. However, our findings and suggestions
show the current needs and the potential directions for
improving the design of third-party ad libraries. Hence, our
study could be helpful for ad library developers who wish
to improve their ad libraries.
Internal validity: In our analysis for identifying strategies
for integrating multiple ad libraries, we manually investi-
gated apps that integrate more than one ad library. In this
analysis, we cannot deny the possibility of misinterpreting
the identified strategies for integrating multiple ad libraries
since we are not the original developers of the studied
apps. To mitigate this threat, the first and the second author
leveraged the Understand tool to analyze the call graph of
the apps, carefully investigated each of the sampled apps,
and consolidated their results.

App users are prone to repackaged or piggybacked apps.
Hence, app stores (e.g., the Google Play Store) continuously
remove piggybacked apps or malware apps [55], [57]. In our
study, we selected 1,837 top free-to-download apps in the
Google Play Store. These apps have a large user-base, and
they are popular in the Google Play Store for multiple years.
Therefore, our studied apps are less likely to be malicious
apps.

There are different possibilities that can drive app de-
velopers to group their code in a single component. For
example, poorly designed apps can be one of the reasons
for this behaviour (e.g., app developers just group all their
code in a single package). However, based on our defini-
tion of the self-meditation strategy, an app contains a self-

16https://stackoverflow.com/questions/14313641/show-admob-
ads-from-service-context-android

14

mediator component whenever: (1) there is a centralized
component that handles all the calls to ad libraries and (2)
this component is separate from the main activity code com-
ponents. Our definition means that the design of the self-
meditation strategy encapsulates ad handling mechanism
in a single package. However, the identified self-mediation
components can be poorly designed if they contain non-
ad related features. Assessing the quality of mobile apps
architecture is out of the scope of this work. Further work
can analyze the architectural quality of mobile apps.

To validate our approach for identifying the “self-
mediation” strategy, we manually investigate a randomly
selected sample of 20 apps that use the “self-mediation”
strategy. We observe that all of these 20 apps have a cen-
tralized package that is mainly responsible for managing
the integration of multiple ad libraries. For example, the
“Agar.IO” app (a popular app in the Game category) has the
package “com.miniclip.ads”, which manages the integration
of 12 ad libraries.

8 RELATED WORK

Prior research mainly studies the updates of ad libraries,
the cost of ad libraries and the security and privacy issues
surrounding ad libraries. Our study is the first to investigate
the integration practices of ad libraries. We briefly highlight
the related works as follows:

8.1 The updates of ad libraries
Ruiz et al. [48] analyzed 120,981 free-to-download apps in
the Google Play Store and conducted an empirical analy-
sis on the rational for updating ad libraries. The authors
observed that ad libraries are updated frequently in 48%
of the studied apps. They also observed that updating the
interaction between ads and app users, integrating new
types of ads, bugs related to memory management, and the
improvement of the privacy of collected personal informa-
tion are the main reasons for updating ad libraries.

Salza et al. [49] conducted an empirical study on the
evolution history of 291 apps from the F-Droid repository to
study how mobile app developers perform updates of third-
party libraries including ad libraries. The authors observed
that developers usually upgrade towards a newer version.

Derr [30] et al. studied the updatability of third-party
libraries (including ad libraries). The authors analyzed the
updatability of the integrated libraries of 1,264,118 apps
from the Google Play Store. They observed that in 85.6%
of the cases the integrated ad libraries can be updated to at
least one version without any code changes.

8.2 The cost of ad libraries
Ruiz et al. [47] analyzed 236,245 apps of the Google Play
Store to study the effect of ad libraries on the rating. The
authors observed that there is no relation between the
number of integrated ad libraries and the rating of an app.
However, they observed that integrating certain ad libraries
could negatively impact the rating of an app.

Gui et al. [41] analyzed 21 apps from the Google Play
Store to study five types of costs due to the integration
of ad libraries: performance, energy consumption, network,

maintenance of ad-related code, and user reviews. The au-
thors observed that the cost of ads in terms of performance,
energy and bandwidth are the most concerning. They also
observed that complaints related to ads had a negative
impact on the rating of an app.

Gao et al. [35] designed a tool named IntelliAd to
automatically measure the ads-related consumption (e.g.,
memory) on apps. In another study, Gao et al. [36] used the
IntelliAd tool and analyzed 12 ad schemes that are used in
104 Android apps to measure and compare the performance
cost of different ad schemes. They observed that ad schemes
are significantly different and recommend app developers to
choose appropriate ad providers and ad sizes.

To study the ad network traffic, Vallina-Rodriguez et
al. [53] analysed the dataset of a European mobile career
with more than 3 million subscribers. The author observed
that ads account for 1% of all mobile traffic in the data and,
static images and text files are likely to be re-downloaded.
To limit the energy and network signalling overhead, the
authors built a prototype implementation using the caching
mechanism which shows an improvement of 50% in energy
consumption for offline ad-sponsored apps.

Mohan et al. [45] studied the communication costs for
serving ads by analyzing 15 Windows phone. The authors
observed that ad modules consume a significant part of an
app’s energy and the overhead of ads is bigger in apps with
no or small network activity. To reduce the energy of an
app that displays ads, the authors proposed an solution
of prefetching ads. The authors analyzed the logs of 1,693
Windows phone users over one month and 25 iPhone users
over one year to predict app usage from historical data
and built time-based models to predict available ad slots
in future. The entropy-based evaluation result of their ap-
proach shows that the approach is capable to reduce energy
consumption of client devices by 50%.

Li et al. [44] analyzed 1.5 million apps that use 1,113
third-party libraries and 240 ad libraries to investigate the
use of commonly integrated libraries. Their study showed
that the most used library is the Google ad library (AdMob).
Li et al. also found that a significant portion of apps that
used ad libraries are apps that are flagged by virus scanners.
In our study, we focus on top rated apps to avoid dealing
with malicious and spam apps.

8.3 The security of ad libraries
Book et al. [29] studied the evolution of the requested per-
mission of ad libraries. The authors analyzed the integrated
ad libraries of 114,000 apps for this study. They observed
that the use of permission has increased over time and most
of the requested permissions of ad libraries are risky in
terms of the privacy and security of app users.

Kim et al. [43] analyzed the protective security mea-
sures of the four ad libraries (Google AdMob, MoPub,
AirPush, and AdMarvel) against malicious advertis-
ing. The authors observed that malicious ads can col-
lect sensitive information about a user with the help
of permissions such WRITE EXTERNAL STORAGE and
READ EXTERNAL STORAGE which give access to exter-
nal storage.

Dong et al. [32] studied ad fraud (e.g., cheating adver-
tisers with fake ad clicks) in mobile apps and proposed an

15

automated approach for detecting ad fraud. Their approach
achieves 92% recall and 93% precision on a manually val-
idated data set of 100 apps. A further study on 12,000 ad-
supported apps that use 20 unique ad libraries showed that
no ad library was exempt from fraudulent behaviours and
AppBrain ad library is the most targeted ad library for ad
fraud.

9 CONCLUSIONS

In the mobile app economy, ad libraries play an integral role.
App developers integrate one or many ad libraries to dis-
play ads and gain revenue based on user interactions with
the displayed ads. Even though ad libraries play an essential
role in the app ecosystem, prior studies have not explored
how these libraries are integrated by app developers. In this
paper, we analyze 35,459 updates of the 1,837 top free-to-
download apps to study the ad library integration practices.
Our findings highlight how app developers leverage several
ad libraries to display ads. Moreover, we noted several
limitations of current ad libraries and offered suggestions
for ad library developers to better serve the needs of app
developers.

REFERENCES

[1] App Manifest Overview. https://developer.android.com/guide/
topics/manifest/manifest-intro. (Last accessed: March 2020).

[2] AppBrain Intelligence. https://www.appbrain.com/stats/. (Last
accessed: March 2020).

[3] AppsFlyer. https://www.flurry.com/. (Last accessed: March
2020).

[4] CFR. http://www.benf.org/other/cfr/. (Last accessed March
2020).

[5] com.google.android.gms.ads.identifier. https://developers.
google.com/android/reference/com/google/android/gms/
ads/identifier/package-summary. (Last accessed March 2020).

[6] dex2jar. http://sourceforge.net/projects/dex2jar/. (Last accessed
March 2020).

[7] Flurry Analytics. https://developer.yahoo.com/flurry/docs/
analytics/. (Last accessed: March 2020).

[8] How do you decide which Ad Network is best for your Mobile
App (eCPM, retention)? https://www.quora.com/How-do-you-
decide-which-Ad-Network-is-best-for-your-Mobile-App-eCPM-
retention. (Last accessed: March 2020).

[9] Kochava. https://support.kochava.com/. (Last accessed: March
2020).

[10] Life360. https://www.life360.com/. (Last accessed: March 2020).
[11] Localitics. https://docs.localytics.com/dev/android.html#

android. (Last accessed: March 2020).
[12] Moat Analytics. https://moat.com/analytics. (Last accessed:

March 2020).
[13] Mobile App Reporting in Google Analytics - Android.

https://developers.google.com/analytics/devguides/collection/
android/v4/. (Last accessed: March 2020).

[14] NinthDecimal. https://www.ninthdecimal.com/. (Last accessed:
March 2020).

[15] Quantcast. https://www.quantcast.com/. (Last accessed: March
2020).

[16] Rewarded video ads will continue to dominate through
2018. https://mobilemarketingmagazine.com/rewarded-video-
ads-will-continue-to-dominate-through-2018. (Last accessed
March 2020).

[17] Understand Tool. https://scitools.com/. (Last accessed: March
2020).

[18] Urban Airship Analytics. https://www.airship.com/platform/
analytics-data/performance-analytics/. (Last accessed: March
2020).

[19] Usage of Android Advertising ID. https://play.google.com/
about/monetization-ads/ads/ad-id/. (Last accessed March 2020).

[20] Video ads bring in 31% of app revenue, while rewarded video ads
top user experience approval charts. http://www.businessofapps.
com/news/video-ads-bring-in-31-of-app-revenue-while-
rewarded-video-ads-top-user-experience-approval-charts/.
(Last accessed March 2020).

[21] What is eCPM and How Can You Increase It? https://www.
ironsrc.com/blog/what-is-ecpm/. (Last accessed: March 2020).

[22] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Krügel,
G. Vigna, A. Doupé, and M. Polino. Going native: Using a large-
scale analysis of android apps to create a practical native-code
sandboxing policy. In Proceedings of the 23rd Annual Network and
Distributed System Security Symposium, NDSS ’16, 2016.

[23] Akdeniz. Google Play Crawler. https://github.com/Akdeniz/
google-play-crawler. (Last accessed: March 2020).

[24] Apache Software Foundation. Download Apache Commons
BCEL. https://archive.apache.org/dist/commons/bcel/, 2018.
(Last accessed March 2020).

[25] AppAnnie. App Annie. https://www.appannie.com/, 2016. (Last
accessed March 2020).

[26] AppAnnie. In-App Advertising Spend to Triple, Reach $201 Bil-
lion by 2021. https://www.appannie.com/en/insights/market-
data/app-advertising-spend-2021/, 2017. (Last accessed: March
2020).

[27] AppBrain. Android Ad Network statistics and market share.
https://www.appbrain.com/stats/libraries/ad-networks. (Last
accessed: March 2020).

[28] G. Bavota, M. L. Vásquez, C. E. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk. The impact of API change-
and fault-proneness on the user ratings of android apps. IEEE
Transactions on Software Engineering, 41(4):384–407, 2015.

[29] T. Book, A. Pridgen, and D. S. Wallach. Longitudinal Analysis of
Android Ad Library Permissions. Computing Research Repository,
abs/1303.0857, 2013.

[30] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. Keep Me
Updated: An Empirical Study of Third-Party Library Updatability
on Android. In Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, pages 2187–2200,
2017.

[31] G. M. A. S. Developers. Googlemobileads in unity –
mediation sample? how do other “mediation adapter” show?
https://groups.google.com/forum/#!topic/google-admob-ads-
sdk/qqcssGAYEk4. (Last accessed: March 2020).

[32] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and
J. Klein. FraudDroid: Automated Ad Fraud Detection for Android
Apps. In Proceedings of the 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE’18, pages 257–268, 2018.

[33] Eric Benjamin Seufert. Should I create a mobile ad mediation
for internal use or use an existing ad mediation solution (Fyber,
Appodeal, Heyzap)? https://www.quora.com/Should-I-create-
a-mobile-ad-mediation-for-internal-use-or-use-an-existing-
ad-mediation-solution-Fyber-Appodeal-Heyzap/answer/Eric-
Benjamin-Seufert, 2019. (Last accessed January 2019).

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., 1995.

[35] C. Gao, Y. Man, H. Xu, J. Zhu, Y. Zhou, and M. R. Lyu. Intel-
liAd: Assisting Mobile App Developers in Measuring Ad Costs
Automatically. In Proceedings of the 39th International Conference on
Software Engineering Companion, ICSE-C ’17, pages 253–255, 2017.

[36] C. Gao, J. Zeng, F. Sarro, M. R. Lyu, and I. King. Exploring the
effects of ad schemes on the performance cost of mobile phones.
In Proceedings of the 1st International Workshop on Advances in Mobile
App Analysis, A-Mobile ’18, pages 13–18, 2018.

[37] Google. Admob SDK out of main thread. https:
//groups.google.com/forum/#!searchin/google-admob-
ads-sdk/background|sort:date/google-admob-ads-sdk/
XkUAZ9RYfP0/XWqfefqcBwAJ. (Last accessed: March 2020).

[38] Google. Google AdMob - mobile ads SDK (Android) - get
started. https://developers.google.com/admob/android/quick-
start. (Last accessed: March 2020).

[39] Google. Google Ads Developer Blog. https://ads-developers.
googleblog.com/2015/10/proguard-and-admob-mediation.html.
(Last accessed: March 2020).

[40] Google. SDK-less Mediation: An easier way to mediate. https://
www.blog.google/products/admob/sdk-less-mediation/, 2016.
(Last accessed: March 2020).

https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://www.appbrain.com/stats/
https://www.flurry.com/
http://www.benf.org/other/cfr/
https://developers.google.com/android/reference/com/google/android/gms/ads/identifier/package-summary
https://developers.google.com/android/reference/com/google/android/gms/ads/identifier/package-summary
https://developers.google.com/android/reference/com/google/android/gms/ads/identifier/package-summary
http://sourceforge.net/projects/dex2jar/
https://developer.yahoo.com/flurry/docs/analytics/
https://developer.yahoo.com/flurry/docs/analytics/
https://www.quora.com/How-do-you-decide-which-Ad-Network-is-best-for-your-Mobile-App-eCPM-retention
https://www.quora.com/How-do-you-decide-which-Ad-Network-is-best-for-your-Mobile-App-eCPM-retention
https://www.quora.com/How-do-you-decide-which-Ad-Network-is-best-for-your-Mobile-App-eCPM-retention
https://support.kochava.com/
https://www.life360.com/
https://docs.localytics.com/dev/android.html#android
https://docs.localytics.com/dev/android.html#android
https://moat.com/analytics
https://developers.google.com/analytics/devguides/collection/android/v4/
https://developers.google.com/analytics/devguides/collection/android/v4/
https://www.ninthdecimal.com/
https://www.quantcast.com/
https://mobilemarketingmagazine.com/rewarded-video-ads-will-continue-to-dominate-through-2018
https://mobilemarketingmagazine.com/rewarded-video-ads-will-continue-to-dominate-through-2018
https://scitools.com/
https://www.airship.com/platform/analytics-data/performance-analytics/
https://www.airship.com/platform/analytics-data/performance-analytics/
https://play.google.com/about/monetization-ads/ads/ad-id/
https://play.google.com/about/monetization-ads/ads/ad-id/
http://www.businessofapps.com/news/video-ads-bring-in-31-of-app-revenue-while-rewarded-video-ads-top-user-experience-approval-charts/
http://www.businessofapps.com/news/video-ads-bring-in-31-of-app-revenue-while-rewarded-video-ads-top-user-experience-approval-charts/
http://www.businessofapps.com/news/video-ads-bring-in-31-of-app-revenue-while-rewarded-video-ads-top-user-experience-approval-charts/
https://www.ironsrc.com/blog/what-is-ecpm/
https://www.ironsrc.com/blog/what-is-ecpm/
https://github.com/Akdeniz/google-play-crawler
https://github.com/Akdeniz/google-play-crawler
https://archive.apache.org/dist/commons/bcel/
https://www.appannie.com/
https://www.appannie.com/en/insights/market-data/app-advertising-spend-2021/
https://www.appannie.com/en/insights/market-data/app-advertising-spend-2021/
https://www.appbrain.com/stats/libraries/ad-networks
https://groups.google.com/forum/#!topic/google-admob-ads-sdk/qqcssGAYEk4
https://groups.google.com/forum/#!topic/google-admob-ads-sdk/qqcssGAYEk4
https://www.quora.com/Should-I-create-a-mobile-ad-mediation-for-internal-use-or-use-an-existing-ad-mediation-solution-Fyber-Appodeal-Heyzap/answer/Eric-Benjamin-Seufert
https://www.quora.com/Should-I-create-a-mobile-ad-mediation-for-internal-use-or-use-an-existing-ad-mediation-solution-Fyber-Appodeal-Heyzap/answer/Eric-Benjamin-Seufert
https://www.quora.com/Should-I-create-a-mobile-ad-mediation-for-internal-use-or-use-an-existing-ad-mediation-solution-Fyber-Appodeal-Heyzap/answer/Eric-Benjamin-Seufert
https://www.quora.com/Should-I-create-a-mobile-ad-mediation-for-internal-use-or-use-an-existing-ad-mediation-solution-Fyber-Appodeal-Heyzap/answer/Eric-Benjamin-Seufert
https://groups.google.com/forum/#!searchin/google-admob-ads-sdk/background|sort:date/google-admob-ads-sdk/XkUAZ9RYfP0/XWqfefqcBwAJ
https://groups.google.com/forum/#!searchin/google-admob-ads-sdk/background|sort:date/google-admob-ads-sdk/XkUAZ9RYfP0/XWqfefqcBwAJ
https://groups.google.com/forum/#!searchin/google-admob-ads-sdk/background|sort:date/google-admob-ads-sdk/XkUAZ9RYfP0/XWqfefqcBwAJ
https://groups.google.com/forum/#!searchin/google-admob-ads-sdk/background|sort:date/google-admob-ads-sdk/XkUAZ9RYfP0/XWqfefqcBwAJ
https://ads-developers.googleblog.com/2015/10/proguard-and-admob-mediation.html
https://ads-developers.googleblog.com/2015/10/proguard-and-admob-mediation.html
https://www.blog.google/products/admob/sdk-less-mediation/
https://www.blog.google/products/admob/sdk-less-mediation/

16

[41] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth
in Advertising: The Hidden Cost of Mobile Ads for Software
Developers. In Proceedings of the 37th International Conference on
Software Engineering, ICSE ’15, pages 100–110, 2015.

[42] InMobi team. Seven reasons why you shouldn’t ignore mobile ad
mediation. https://www.inmobi.com/blog/2018/05/17/seven-
reasons-why-you-shouldnt-ignore-mobile-ad-mediation. (Last
accessed: March 2020).

[43] D. Kim, S. Son, and V. Shmatikov. What Mobile Ads Know
About Mobile Users. In Proceedings of the 23rd Annual Network
and Distributed System Security Symposium, NDSS ’16, pages 1–14,
2016.

[44] L. Li, T. F. Bissyandé, J. Klein, and Y. L. Traon. An Investigation
into the Use of Common Libraries in Android Apps. In Proceedings
of the 23rd Software Analysis, Evolution, and Reengineering, SANER
’16, pages 403–414, 2016.

[45] P. Mohan, S. Nath, and O. Riva. Prefetching mobile ads: Can
advertising systems afford it? In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 267–
280, 2013.

[46] MoPub. Initialize the MoPub SDK for Android. https://
developers.mopub.com/publishers/android/initialize/. (Last ac-
cessed: March 2020).

[47] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan. Impact of Ad Libraries on Ratings of Android
Mobile Apps. IEEE Software, 31(6):86–92, 2014.

[48] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan. Analyzing Ad Library Updates in Android Apps.
IEEE Software, 33(2):74–80, 2016.

[49] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia, and
F. Ferrucci. Do Developers Update Third-party Libraries in Mobile
Apps? In Proceedings of the 26th Conference on Program Comprehen-
sion, ICPC ’18, pages 255–265, 2018.

[50] Statista. Number of mobile app downloads worldwide in
2017, 2018 and 2022 (in billions). https://www.statista.com/
statistics/271644/worldwide-free-and-paid-mobile-app-store-
downloads/. (Last accessed: March 2020).

[51] Tapjoy. Mobile ad mediation – what developers need to know.
https://www.tapjoy.com/resources/mobile-ad-mediation/.
(Last accessed: March 2020).

[52] E. Terkki, A. Rao, and S. Tarkoma. Spying on Android users
through targeted ads. In Proceedings of the 9th International Con-
ference on Communication Systems and Networks, COMSNETS’17,
pages 87–94, 2017.

[53] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger,
K. Papagiannaki, H. Haddadi, and J. Crowcroft. Breaking for
commercials: Characterizing mobile advertising. In Proceedings of
the 2012 Internet Measurement Conference, IMC ’12, pages 343–356,
2012.

[54] A. Vargha and H. D. Delaney. The kruskal-wallis test and stochas-
tic homogeneity. Journal of Educational and behavioral Statistics,
23(2):170–192, 1998.

[55] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu. Why are android
apps removed from google play? a large-scale empirical study.
In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 18, page 231242, 2018.

[56] Wikipedia. Executable and Linkable Format. https://en.m.
wikipedia.org/wiki/Executable and Linkable Format. (Last ac-
cessed: March 2020).

[57] D. Wilde. Google removes 24 more malware-filled apps that
amassed 500,000 downloads. https://9to5google.com/2019/09/
10/google-removes-malware-apps/. (Last accessed: March 2020).

Md Ahasanuzzaman is a graduate student
in the Software Analysis and Intelligence Lab
(SAIL) at Queen’s University, Canada. His re-
search interests include mining software repos-
itories, analyzing mobile apps and app stores,
analyzing community question answering sties,
natural language processing, and machine
learning. His works got published in top venues
of Software Engineering (e.g., MSR, SANER,
and EMSE). He obtained his BSc from the Uni-
versity of Dhaka (Department of Computer Sci-

ence and Engineering), Bangladesh. He has been awarded presti-
gious awards, such as Deans scholarship award and Prime Minis-
ter Gold Medal for his outstanding achievements in the B.Sc pro-
gram. More about Md Ahasanuzzaman can be read on his web-
site:https://ahasanuzzaman.com/research/

Safwat Hassan currently works as a Post-
doctoral Fellow in the Software Analysis and
Intelligence Lab (SAIL) at Queen’s University,
Canada. Hassan worked as a software engineer
for ten years in different corporations, including
the Egyptian Space Agency (ESA), HP, EDS,
VF Germany (outsourced by HP), and Etisalat.
During his ten years in the software industry, he
worked on a variety of software systems, such
as web-based systems and embedded systems.
He also participated in diverse project roles (e.g.,

design service, customer support, and R&D) across multiple business
domains (e.g., telecommunication, supply-chain, and aerospace). His
research interests include data mining for software engineering, mobile
app store analytics, software architecture, system anomaly prediction,
continuous integration, and software performance analytics. More about
Safwat Hassan can be read on his website: https://safwathassan.com

Ahmed E. Hassan is an IEEE Fellow, an
ACM SIGSOFT Influential Educator, an NSERC
Steacie Fellow, the Canada Research Chair
(CRC) in Software Analytics, and the NSER-
C/BlackBerry Software Engineering Chair at the
School of Computing at Queen’s University,
Canada. His research interests include mining
software repositories, empirical software engi-
neering, load testing, and log mining. He re-
ceived a PhD in Computer Science from the
University of Waterloo. He spearheaded the cre-

ation of the Mining Software Repositories (MSR) conference and its
research community. He also serves/d on the editorial boards of IEEE
Transactions on Software Engineering, Springer Journal of Empirical
Software Engineering, and PeerJ Computer Science. More information
at: http://sail.cs.queensu.ca/

https://www.inmobi.com/blog/2018/05/17/seven-reasons-why-you-shouldnt-ignore-mobile-ad-mediation
https://www.inmobi.com/blog/2018/05/17/seven-reasons-why-you-shouldnt-ignore-mobile-ad-mediation
https://developers.mopub.com/publishers/android/initialize/
https://developers.mopub.com/publishers/android/initialize/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.tapjoy.com/resources/mobile-ad-mediation/
https://en.m.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.m.wikipedia.org/wiki/Executable_and_Linkable_Format
https://9to5google.com/2019/09/10/google-removes-malware-apps/
https://9to5google.com/2019/09/10/google-removes-malware-apps/

	1 Introduction
	2 Data collection
	2.1 Collecting updates of the top free-to-download apps
	2.2 Identifying the integrated ad libraries
	2.3 Identifying updates that display ads

	3 Data characteristics
	4 A Study of the Integration Strategies of Ad Libraries
	4.1 RQ1: What are the characteristics of apps which integrate multiple ad libraries?
	4.2 RQ2: How do app developers integrate multiple ad libraries?

	5 Discussion of the maintenance overhead of the integrated ad libraries for each integration strategy
	5.1 The modifiability of ad-call-site code
	5.2 The ratio of adding or removing ad libraries

	6 Implications
	7 Threats to validity
	8 Related work
	8.1 The updates of ad libraries
	8.2 The cost of ad libraries
	8.3 The security of ad libraries

	9 Conclusions
	References
	Biographies
	Md Ahasanuzzaman
	Safwat Hassan
	Ahmed E. Hassan

