
0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

1

The Impact of Class Rebalancing Techniques on
the Performance and Interpretation of Defect

Prediction Models
Chakkrit Tantithamthavorn, Member, IEEE, Ahmed E. Hassan, Senior Member, IEEE,

and Kenichi Matsumoto, Senior Member, IEEE

Abstract—Defect models that are trained on class imbalanced datasets (i.e., the proportion of defective and clean modules is not
equally represented) are highly susceptible to produce inaccurate prediction models. Prior research compares the impact of class
rebalancing techniques on the performance of defect models but arrives at contradictory conclusions due to the use of different choice
of datasets, classification techniques, and performance measures. Such contradictory conclusions make it hard to derive practical
guidelines for whether class rebalancing techniques should be applied in the context of defect models. In this paper, we investigate
the impact of class rebalancing techniques on performance measures and the interpretation of defect models. We also investigate the
experimental settings in which class rebalancing techniques are beneficial for defect models. Through a case study of 101 datasets that
span across proprietary and open-source systems, we conclude that the impact of class rebalancing techniques on the performance
of defect prediction models depends on the used performance measure and the used classification techniques. We observe that the
optimized SMOTE technique and the under-sampling technique are beneficial when quality assurance teams wish to increase AUC
and Recall, respectively, but they should be avoided when deriving knowledge and understandings from defect models.

Index Terms—Software quality assurance, software defect prediction, class rebalancing techniques, experimental design, empirical
investigation.

F

1 INTRODUCTION

DEFECT prediction models play a critical role in the
prioritization of SQA effort. Defect prediction mod-

els are trained using historical data to identify defect-
prone software modules. From an SQA perspective,
defect prediction models serve two main purposes. First,
defect prediction models can be used to predict mod-
ules that are likely to be defect-prone in the future [2,
14, 25, 40, 55–57, 65, 99]. SQA teams can use defect
prediction models in a prediction setting to effectively
allocate their limited resources to the modules that are
most likely to be defective. Second, defect prediction
models can be used to understand the impact of various
software metrics on the defect-proneness of a mod-
ule [8, 49, 54, 55, 76, 77]. For example, one builds a
prediction model using a code complexity metric with an
assumption that more complex code shares an increasing
relationship with defect-proneness. If the model shows
that code complexity is the most important metric (i.e,
top-rank metric). Such insights that are derived from
defect prediction models can help software teams avoid
past pitfalls that are associated with defective modules

• C. Tantithamthavorn is with the Faculty of Information Technology,
Monash University, VIC, Australia.
E-mail: chakkrit.tantithamthavorn@monash.edu.

• A. E. Hassan is with the School of Computing, Queen’s University,
Canada. E-mail: ahmed@cs.queensu.ca.

• K. Matsumoto is with the Graduate School of Information Science, Nara
Institute of Science and Technology, Japan. E-mail: matumoto@is.naist.jp.

Manuscript received August 1, 2017; revised August 12, 2018.

(e.g., developers should initiate a quality improvement
plan that would carefully examine more complex code
in an effort to avoid defects in future releases).

The performance and interpretation of a defect pre-
diction model depend heavily on the data on which
it was trained. Prior work raised concerns regarding
defect prediction models that are trained on imbalanced
datasets (i.e., datasets where the proportion of defective
and clean modules is not equally represented). Such
models are highly susceptible to producing inaccurate
prediction results [27]. Indeed, when training a defect
prediction model from an imbalanced dataset, traditional
classification techniques often fail to accurately identify
the minority class (i.e., defective modules).

To mitigate the risk of imbalanced datasets, prior
studies apply class rebalancing techniques (i.e., techniques
for rebalancing the proportion of defective and clean
modules of the training corpus). Such techniques aim
to produce an equal representation of two classes of
software modules (i.e., defective and clean modules)
prior to constructing a defect prediction model. Plenty
of prior studies have shown a performance improve-
ment when applying class rebalancing techniques in the
machine learning area. For example, Chawla [9] and
Seiffert et al. [73] show that the AUC performance can
be substantially improved by up to 40% when applying
class rebalancing techniques.

Recent defect prediction studies have compared the
impact of class rebalancing techniques on the perfor-
mance of defect prediction models [36, 48, 66, 68, 71, 81,

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

2

93]. For example, Kamei et al. [36] show the performance
improvement of class rebalancing techniques on 2 defect
datasets of proprietary systems. Recently, Malhotra et
al. [48] show the impact of class rebalancing techniques
on 6 defect datasets of open-source systems. In contrast,
Riquelme et al. [66] argue that class rebalancing tech-
niques have little impact on the performance of defect
prediction models when they are trained on 4 datasets
of NASA systems. Such contradictory conclusions make
it hard to derive practical guidelines about whether
class rebalancing techniques should be applied in the
context of defect prediction models. Since prior work
focuses on the different choice of datasets, classification
techniques, and performance measures, it is likely that
class rebalancing techniques may be useful for some
specific contexts of defect prediction models.

Moreover, Turhan [92] points out that applying class
rebalancing techniques may lead to bias in learned con-
cepts (i.e., concept drift) — the resampled training dataset
is not representative of the original dataset. Indeed,
concept drift appears when the class distributions of the
training and testing datasets are different. Thus, class
rebalancing techniques may impact the interpretation of
defect prediction models.

In this paper, we set out to investigate the impact of
5 popularly-used class rebalancing techniques (i.e., over-
sampling, under-sampling, Default SMOTE, Optimized
SMOTE, and ROSE techniques) on the performance and
interpretation of defect prediction models. We train our
defect prediction models using 7 commonly-used clas-
sification techniques, i.e., random forest (RF), logistic
regression (LR), naive bayes (NB), neural network (AVN-
Net), C5.0 Boosting (C5.0), extreme gradient boosting
(xGBTree), and gradient boosting method (GBM). We
evaluate the performance of defect prediction models
using 10 commonly-used performance measures, i.e.,
3 threshold-independent (e.g., AUC) and 7 threshold-
dependent (e.g., Precision, Recall, F-Measure) perfor-
mance measures.

To better understand the impact of class rebalancing
techniques on defect prediction models, we construct
statistical models to study the relationship between the
experimental factors (e.g., defective ratios, classification
techniques) and the performance and interpretation of
defect prediction models. Through a large-scale empir-
ical study of 101 publicly-available defect datasets that
span across open-source and proprietary systems that
are collected from 5 different corpus, we record our
observations with respect to 3 dimensions:
(1) The Nature of Imbalanced Defect Datasets

As little as 8% of defect datasets have a defective
ratio between 45%-55%, suggesting that class imbal-
ance is prominent in defect datasets, likely affecting
the performance and interpretation of defect predic-
tion models.

(2) Model Performance
Performance Analysis. The AUC measure is less im-
pacted by the under-sampling, over-sampling, and

default SMOTE techniques for defect prediction
models. On the other hand, the AUC measure is
substantially improved when the k SMOTE parame-
ter is optimized, suggesting that future studies must
optimized the SMOTE parameters.
Experimental Factors Analysis. The impact of the
under-sampling, over-sampling, default SMOTE and
optimized SMOTE techniques on the performance of
defect prediction models depends on experimental
settings. Defect prediction models yield the largest
AUC improvement when applying the optimized
SMOTE technique and the largest Recall improve-
ment when applying the under-sampling technique.

(3) Model Interpretation
Interpretation Analysis. Regardless of class rebalanc-
ing techniques, the learned concepts are shifted (i.e.,
biasing the interpretation of defect prediction mod-
els). We find that as little as 23%-34%, 55%-62%, and
68%-71% of the top variables in the top importance
rank of the re-balanced models appear in the top
importance rank of the baseline models for the neu-
ral network, logistic regression, and random forest
classifiers, respectively.
Experimental Factors Analysis. The impact of class re-
balancing techniques on the interpretation of defect
prediction models relies heavily on the used classi-
fication techniques, suggesting that researchers and
practitioners should avoid such rebalancing when
deriving knowledge and understandings from defect
prediction models.

Our results lead us to conclude that the impact of class
rebalancing techniques on the performance of defect pre-
diction models depends on the used performance mea-
sure and the used classification techniques. While the
commonly-used class rebalancing techniques (except the
optimized SMOTE technique) substantially improve the
Recall measure and decrease the Precision measure, they
have little impact on the AUC measure. On the other
hand, the commonly-used class rebalancing techniques
negatively impact the interpretation of defect prediction
models—i.e., we find that class rebalancing techniques
shift the learned concepts to the interpretation of defect
prediction models.

Based on our findings, we recommend that the opti-
mized SMOTE technique and the under-sampling tech-
nique are beneficial when quality assurance teams wish
to increase the ability to classify defective modules
(i.e., AUC) and the completeness of identifying software
defects (i.e., Recall), respectively, but they should be
avoided when deriving knowledge and understandings
from defect prediction models.

1.1 Novelty Statements

This paper presents the first empirical study to investi-
gate (1) the impact of class rebalancing on defect predic-
tion models using the largest number of commonly-used
defect datasets (i.e., 101 defect datasets)—prior studies

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

3

focus on less than 10 defect datasets; (2) the impact
of class rebalancing techniques on the interpretation
of defect prediction models; and (3) the experimental
design settings where class rebalancing yields the largest
benefits for defect prediction models.

1.2 Contributions

The contributions of our paper are as follows:
1) An empirical demonstration of the nature of class

imbalance in 101 publicly-available defect datasets.
2) An empirical investigation of the impact of class

rebalancing techniques on 10 commonly-used
threshold-dependent and threshold-independent
performance measures.

3) An empirical investigation of the impact of class re-
balancing techniques on the interpretation of defect
prediction models.

4) An in-depth examination of the impact of exper-
imental factors (including class rebalancing tech-
niques) on the performance and interpretation of
defect prediction models.

1.3 Paper organization

The remainder of this paper is organized as follows.
Section 2 illustrates the nature of class imbalance in
defect datasets. Section 3 introduces class rebalancing
techniques. Section 4 positions this paper with respect
to the related work. Section 5 discusses the design of
our case study, while Section 6 presents our results
with respect to our two research questions. Section 7
revisits our RQ2 and RQ3 analysis for the optimized
SMOTE technique. Section 8 offers practical guidelines
for practitioners and researchers. Section 9 discusses the
threats to the validity of our study. Finally, Section 10
draws conclusions.

2 THE NATURE OF IMBALANCED DEFECT
DATASETS

Motivation. Class imbalance refers to a classification
problem where the classes (i.e., the proportion of de-
fective and clean modules) are not represented equally.
However, little is known about the nature of class im-
balance in defect prediction datasets. Thus, we set out
to investigate the following research question.

(RQ1) How imbalanced are defect prediction datasets?

Approach. In order to assess whether class imbalance is
prominent in defect prediction studies, we analyze the
defective ratio of 101 publicly-available defect datasets
that have been popularly studied in prior defect predic-
tion research. 76 datasets are downloaded from the Tera-
PROMISE repository [51], 12 clean NASA datasets are
provided by Shepperd et al. [74], 5 datasets are provided
by Kim et al. [39] and Wu et al. [94], 5 datasets are
provided by D’Ambros et al. [14, 15], and 3 datasets are

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100
Defective Ratio

P
er

ce
nt

ag
e

Fig. 1: A histogram of the defective ratios of the 101
publicly-available defect datasets.

provided by Zimmermann et al. [99]. Figure 1 shows
a histogram of the defective ratios of the 101 defect
datasets.
Results. 64% of the defect datasets have a defective
ratio below 30%. Indeed, 38% of the defect datasets have
a defective ratio between 10%-20%, suggesting that the
majority of defect datasets are highly imbalanced. How-
ever, as little as 8% of defect datasets have a defective
ratio between 45%-55%, suggesting that there are only
few defect datasets that have a defective ratio of nearly
50% (i.e., balanced datasets). On the other hand, only 1%
of defect datasets (i.e., log4j-1.2,xalan-2.7) have a
defective ratio higher than 90%.

The majority of defect datasets (64%) that are popularly-
used in the literature have a defective ratio below 30%,
suggesting that class imbalance is prominent in defect
datasets, likely affecting the performance and interpretation
of defect prediction models.

3 CLASS REBALANCING TECHNIQUES FOR
DEFECT PREDICTION MODELS

A plethora of class rebalancing techniques exist [28], e.g.,
(1) sampling methods for imbalanced learning, (2) cost-
sensitive methods for imbalanced learning, (3) kernel-
based methods for imbalanced learning, and (4) active
learning for imbalanced learning. Since it is impractical
to study all of these techniques, we select a manageable
set of class rebalancing techniques for our study. As
discussed by He et al. [28], we start from the four families
of imbalance learning techniques. Based on a literature
surveys by Hall et al. [21], Shihab [75], and Nam [58],
we then select only the family of sampling techniques
for the context of defect prediction.

We first select the three commonly-used tech-
niques (i.e., over-sampling, under-sampling, and Default
SMOTE [10]) that were previously used in the literature

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

4

Original
Dataset

M
aj

or
ity

 C
la

ss
M

in
or

ity
 C

la
ss

Re-sampled
Dataset

A

B

A

B

A

B

Over-Sampling 
Technique

Original
Dataset

Re-sampled
Dataset

A

B

A

B

Under-Sampling 
Technique

SMOTE 
Technique

ROSE 
Technique

Original
Dataset

Re-sampled
Dataset

A

B

A

B

A

B

A

B

M
aj

or
ity

 C
la

ss
M

in
or

ity
 C

la
ss

M
aj

or
ity

 C
la

ss
M

in
or

ity
 C

la
ss

Original
Dataset

M
aj

or
ity

 C
la

ss
M

in
or

ity
 C

la
ss

Re-sampled
Dataset

A

B

…

…

A

B

…

…

Sy
nt

he
tic

 M
in

or
ity

 C
la

ss

Fig. 2: An illustrative overview of the 4 studied class rebalancing techniques.

[36, 38, 61, 72, 81, 85, 93, 95–97]. Recent research shows
that bootstrap resampling techniques tend to produce
more accurate and reliable estimates in the context of
software engineering [88]. Recently, Menardi et al. [50]
show that a smoothed bootstrap resampling technique
(ROSE) outperforms other techniques in a non-software
engineering domain. Thus, we select the ROSE tech-
nique [45, 50] in our study. Figure 2 provides an il-
lustrative overview of the 4 studied class rebalancing
techniques. Below, we provide a description and a dis-
cussion of the 4 studied class rebalancing techniques for
our study.

3.1 Over-Sampling Technique (OVER)

The over-sampling technique (a.k.a. up-sampling) ran-
domly samples with replacement (i.e., replicating) the
minority class (e.g., defective class) to be the same size
as the majority class (e.g., clean class). The advantage of
an over-sampling technique is that it leads to no infor-
mation loss. Since oversampling simply adds replicated
modules from the original dataset, the disadvantage is
that the training dataset ends up with multiple redun-
dant modules, leading to an overfitting. Thus, when ap-
plying the over-sampling technique, the performance of
with-in defect prediction models is likely higher than the
performance of cross-project defect prediction models.

3.2 Under-Sampling Technique (UNDER)

The under-sampling technique (a.k.a. down-sampling)
randomly samples (i.e., reducing) the majority class (e.g.,
clean class) in order to reduce the number of major-
ity modules to be the same number as the minority
class (e.g., defective class). The advantage of an under-
sampling technique is that it reduces the size of the
training data when the original data is relatively large.
However, the disadvantage is that removing modules
may cause the training data to lose important informa-
tion pertaining to the majority class.

3.3 Synthetic Minority Oversampling Technique
(SMOTE)

The SMOTE technique [10] was proposed to combat the
disavantages of the simple over-sampling and under-
sampling techniques. The SMOTE technique creates ar-
tificial data based on the feature space (rather than the
data space) similarities from the minority modules. The
SMOTE technique starts with a set of minority modules
(i.e., defective modules). For each of the minority defec-
tive modules of the training datasets, SMOTE performs
the following steps:

(Step 1) Calculate the k-nearest neighbors.
(Step 2) Select N majority clean modules based on the

smallest magnitude of the euclidean distances
that are obtained from the k-nearest neigh-
bors.

Finally, SMOTE combines the synthetic oversampling of
the minority defective modules with the undersampling
the majority clean modules.

3.4 Boostrap Random Over-Sampling Examples
Technique (ROSE)

The ROSE technique [45] uses a smoothed-bootstrapping
approach to draw artificial samples from the feature
space neighbourhood around the minority class [18].
ROSE combines oversampling and undersampling by
generating an augmented sample of the data (especially
belonging to the rare class). The ROSE technique consists
of four steps:

(Step 1) Resample the data of the majority class using
a bootstrap resampling technique to remove
modules of the majority class to a defective
ratio of 50% (undersampling).

(Step 2) Resample the data of the minority class using
a bootstrap resampling technique to repeat
modules of the minority class to a defective
ratio of 50% (oversampling).

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

5

(Step 3) Combine the data of the majority and minor-
ity classes from Steps 1 and 2 into a new
training sample.

(Step 4) Generate a new synthetic data for both the
majority and minority classes in its neighbor-
hood [50, p. 101] based on the combined data
from Step 3. The shape of the neighborhood
is determined by the kernel density function
with a Gaussian kernel K and a smoothing
matrix H with a d dimension (i.e., d is the
number of independent variables), where H =
diag(h1, ..., hd) and hd is defined as follows:

hq =

(
4

(d+ 2)n

)1/(d+4)

× σ̂q; q = 1, ..., d. (1)

, where σ̂q is the standard deviation of the qth

dimension of the observations belonging to a
given class [50, p. 102].

These four steps are repeated for each training sample
in order to produce a new synthetic training sample of
approximately equal size as the original dataset where
the number of modules for both classes equally represent
(i.e., a defective ratio of nearly 50%).

4 RELATED WORK & RESEARCH QUESTIONS

Defect prediction models may produce inaccurate pre-
dictions and interpretation when they are trained on im-
balanced datasets (i.e., a dataset where the proportion of
defective and clean modules is not equally represented).
Prior research investigated the impact of class rebalanc-
ing techniques on the performance of defect prediction
models. For example, Kamei et al. [36] investigate the
impact of class rebalancing techniques on 2 proprietary
datasets using 4 classification techniques (i.e., linear
discriminant analysis (LDA), logistic regression analysis
(LRA), neural network (NN), and classification tree (CT))
and 3 performance measures (i.e., Precision, Recall, and
F-Measure). Riquelme et al. [66] investigate the impact of
class rebalancing techniques on 4 open-source datasets
(i.e., CM1, KC1, KC2, PC1) using 2 classification tech-
niques (i.e., Naive Bayes and C4.5) and 1 performance
measure (i.e., AUC). Wang et al. [93] investigate the
impact of class rebalancing techniques on 5 open-source
datasets (i.e., CM1, KC3, PC1, PC3, MW1) using 2 clas-
sification techniques (i.e., Naive Bayes and AdaBoost)
and 5 performance measure (i.e., PD, PF, Balance, G-
mean, AUC). Tan et al. [81] investigate the impact of
class rebalancing techniques on 7 commercial and open-
source datasets using 7 classification techniques (i.e.,
Naive Bayes, Instance-based learning, Boosting, KNN,
and SVM) and 3 performance measure (i.e., Precision,
Recall, and F-Measure). However, prior work focus on a
limited number of datasets and performance measures,
which limits the generalization (i.e., external validity) of
their conclusions (see Table 6).

TABLE 1: An overview comparison of our study with
respect to prior work.

Study #Classification Datasets Performance Measures
Kamei et al. [36] 4 2 P, R, and F1
Riquelme et al. [66] 2 4 AUC
Wang et al. [93] 2 5 PD, PF, Balance, G-mean, AUC
Tan et al. [81] 7 7 P, R, and F1
Agrawal et al. [1] 6 9 P, R, PF, AUC
Bennin et al. [4] 5 40 P, R, AUC, Balance, G-mean
Our study 7 101 10 performance measures

Indeed, the conclusions of prior research are contradic-
tory. For example, Kamei et al. [36] find that class rebal-
ancing techniques improve the F-measure performance
by 7.8%-22.4%. However, Riquelme et al. [66] argue that
class rebalancing techniques do not improve the per-
centage of correctly classified modules (i.e., Accuracy),
but they do improve the AUC measure. A recent meta-
analysis of 42 primary defect prediction studies [47]
also demonstrates that class imbalance is not considered
harmful when the minority class is above 20%. Such
inconsistent conclusions make it hard to derive practical
guidelines when applying class rebalancing techniques
when constructing defect prediction models. To address
the inconsistent conclusions and generalization issue of
prior work, we address the following research question.

(RQ2) How do class rebalancing techniques impact the
performance of defect prediction models?

In addtion to being used for predictions, prior re-
search also uses defect prediction models to uncover
past pitfalls that lead to defective modules. For example,
Hassan [25] studies the impact of complexity of code
changes on software quality. Shihab et al. [76] investigate
the impact of code and process metrics on post-release
defects. Bettenburg et al. [5] investigate the impact of so-
cial interactions on software quality. McIntosh et al. [49]
investigate the impact of code review coverage and par-
ticipation on softwar equality. Thongtanunam et al. [90]
investigate the impact of code review ownership on soft-
ware quality. Such an understanding of defect character-
istics is essential to chart quality improvement plans.

Recently, Turhan [92] point out that class rebalancing
techniques may lead to bias in the learned concepts (i.e.,
concept drift). Yet, no research investigates the impact
of class rebalancing techniques on the interpretation of
defect prediction models. Thus, we address the following
research question.

(RQ3) How do class rebalancing techniques impact the
interpretation of defect prediction models?

5 CASE STUDY DESIGN

In this section, we describe the design of our case
study that we perform to address our research questions.
Figure 3 provides an overview of the case study design
that we apply to each studied dataset. We describe each
step below.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

6

Repeat 100 times

Defect  
Dataset

Testing  
Corpus

Training  
CorpusGenerate

bootstrap
sample

Rebalanced Model 
Performance

Baseline Model 
PerformanceCalculate 

Performance

Normality 
Adjustment

Correlation 
Analysis

X1

X2
Redundancy  

Analysis

X1
X2

Re-balance 
Defect  
Model

Baseline  
Defect 
Models

Rank the
Importance
of Variables

Var. Ranking of  
Baseline Models

Var. Ranking of  
Rebalanced Models

Apply Class
Rebalancing
Techniques

Construct Defect  
Models

Baseline 
training 
dataset

Rebalanced  
training 
dataset

Parameter 
Optimization

Fig. 3: An overview of our case study design.

5.1 Studied Datasets
In selecting the studied datasets, we identified two im-
portant criteria that need to be satisfied:
• Criterion 1—Datasets from different corpora and

domains. Our recent work [87] shows the tendency
of researchers to reuse experimental components
(e.g., datasets, metrics, and classifiers) can intro-
duce a bias in the reported results. To extend the
generality of our conclusions, we choose to train
our defect prediction models using datasets from as
many different corpora and domains as possible.

• Criterion 2—Publicly-available defect datasets. Re-
cently, replicability concerns are raised in our SE and
medical discipline. For example, Robles et al. [67]
point out that over 38% of 171 software engineering
studies do not use publicly-available datasets nor
provide their studied datasets. Moreover, Ioanni-
dis et al. [30] raise concerns that the majority of
medical studies in the highest ranked journals like
Nature Genetic are not replicable. To foster the
replication of our experiments, we choose to train
our defect prediction models using datasets that are
hosted in publicly-available data repositories.

To satisfy criterion 1 and 2, we opt to use the 101
publicly-available defect datasets that are described in
Section 2. The 101 studied systems include proprietary
and open source systems, with varying size, domain, and
defective ratio.

5.2 Generate bootstrap samples
In order to ensure that the conclusions that we draw
about our defect prediction models are robust, we use
the out-of-sample bootstrap validation technique [88],
which leverages aspects of statistical inference [17]. The
out-of-sample bootstrap is made up of two steps:
(Step 1) A bootstrap sample of size N is randomly

drawn with replacement from an original
dataset, which is also of size N .

(Step 2) A model is trained using the bootstrap sample
and tested using the rows that do not appear in
the bootstrap sample. On average, 36.8% of the

rows will not appear in the bootstrap sample,
since it is drawn with replacement [17].

The out-of-sample bootstrap process is repeated 100
times, and the average out-of-sample performance is
reported as the performance estimate.

5.3 Apply Class Rebalancing Techniques
In practice, class rebalancing techniques should only be
applied on training datasets, while . In order to investigate
the impact of class rebalancing techniques, we apply the
4 studied class rebalancing techniques (as described in
Section 3) only on the training datasets, while the test-
ing data is not rebalanced. To apply the over-sampling
technique, we use the implementation of the upSample
function that is provided by the caret R package [42].
To apply the under-sampling technique, we use the
implementation of the downSample function that is
provided by the caret R package [42]. To apply the
Default SMOTE technique, we use the implementation
of the SMOTE function that is provided by the DMwR
R package [91] with the default k setting (i.e., k = 5).
Section 7 provides an in-depth analysis on the impact
of optimized SMOTE technique on defect models. To
apply the ROSE technique, we use the implementation
of the ROSE function that is provided by the ROSE R
package [45].

5.4 Construct Defect Models
There are a plethora of classification techniques that have
been studied in defect prediction domain [20, 21, 43,
58, 75, 86]. Since it is impractical to study all of these
techniques, we would like to select a manageable set
of classification techniques for our study. In selecting
the classification techniques for our study, we select
to study only the top-ranked classification techniques,
according to our recent analysis on the ranking of clas-
sification techniques for defect prediction models when
automated parameter optimization is applied [89]. We
choose 7 classification techniques that appear at the top-
2 ranked classification techniques. We construct defect
prediction models using 7 classification techniques, i.e.,

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

7

TABLE 2: The definitions and descriptions of our studied threshold-depending performance measures.

Measures Definition Description
Precision (P) or Posi-
tive Predicted Values

TP
TP+FP A proportion of modules that are correctly clas-

sified as defective
Recall (R), Probability
of Detection (PD),
True Positive Rate
(TPrate, Sensitivity)

TP
TP+FN A proportion of defective modules that are cor-

rectly classified

F-Measure 2× P×R
P+R A harmonic mean of precision (P) and recall (R)

Matthews
Correlation
Coefficient (MCC)

TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

A balanced measure based on true and false
positives and negatives

G-mean
√

TPrate × TNrate A geometric mean of a true positive rate and a
true negative rate

G-measure 2×PD×(1−FPrate)
PD+(1−FPrate)

A harmonic mean of the probability of detection
(PD) and a false positive rate (FPrate)

Accuracy TP+TN
TP+FN+FP+TN A proportion of correctly classified modules

Note: TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative, FPrate = FP
FP+TN

Random Forest (RF), Logistic Regression (LR), Naive
Bayes (NB), neural network (AVNNet), C5.0 Boosting
(C5.0), extreme gradient boosting (xGBTree), and gradi-
ent boosting method (GBM).

Random forest constructs multiple decision trees from
bootstrap samples. Logistic regression measures the re-
lationship between a categorical dependent variable and
one or more independent variables. Naive bayes is a
probability-based technique that assumes that all of
the predictors are independent of each other. Neural
network is used to estimate or approximate functions
that can depend on a large number of inputs, and that
are generally unknown. C5.0 Boosting, extreme gradient
boosting (xGBTree), and the gradient boosting method
(GBM) perform multiple iterations, each with different
example weights, and makes predictions using classifier
voting.

Correlation Analysis. Jiarpakdee et al. [32] point out
that 10%-67% of metrics of publicly-available defect
datasets are redundant. Highly correlated independent
variables may interfere with each other when a model is
being interpreted. Indeed, our recent work [84, p. 288]
[87] demonstrates that collinearity and multicollinearity
issues can artificially inflate (or deflate) the impact of
software metrics when interpreting defect prediction
models. Recently, Jiarpakdee et al. [31, 33] point out
that correlated metrics impact the ranking of the highest
ranked metric of defect prediction models. Moreover,
Jiarpakdee et al. [31, 33] point out that removing cor-
related metrics improves the consistency of the highest
ranked metric regardless of how a model is specified
and negligibly impacts the performance and stability of
defect models. Thus, we perform correlation and redun-
dancy analyses prior to training our defect prediction
models. We measure the correlation between explanatory
variables using Spearman rank correlation tests (ρ). We

then use a variable clustering analysis [70] to construct
a hierarchical overview of the correlation and remove
explanatory variables with a high correlation. We select
|ρ| = 0.7 as a threshold for removing highly correlated
variables [37]. We perform this analysis iteratively until
all clusters of surviving variables have |ρ| < 0.7.

Redundancy Analysis. While correlation analysis re-
duces collinearity among our variables, it does not
detect all of the redundant variables, i.e., variables that
do not have a unique signal with respect to the other
variables. Redundant variables will interfere with each
other, distorting the modelled relationship between the
explanatory variables and the outcome. Therefore, we
remove redundant variables prior to constructing our
defect prediction models. In order to detect redundant
variables, we fit preliminary models that explain each
variable using the other explanatory variables. We use
the R2 value of the preliminary models to measure how
well each variable is explained by the others.

We use the implementation of redundancy analysis as
provided by the redun function of the rms R package
[23]. The variable that is most well-explained by the
other variables is iteratively dropped until either: (1)
no preliminary model achieves an R2 above a cutoff
threshold (for this paper, we use the default threshold of
0.9), or (2) removing a variable would make a previously
dropped variable no longer explainable, i.e., its prelimi-
nary model will no longer achieve an R2 exceeding the
threshold.

Parameter Settings. Since the studied classification tech-
niques have configurable parameter settings, we apply
Caret parameter optimization [42] prior to constructing
defect prediction models as suggested by Tantithamtha-
vorn [86].

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

8

Var. Ranking of 
defect model

(5.6.2) 
Ranking
variables

Original 
testing  
dataset

Randomly- 
permuted testing  

dataset

Var. imp. score

(Step-1)
Randomly
permute

values of a
variable

Repeat for all variables

V1 … VN Bug?
0.66 … 12 Yes

0.12 … 35 No
0.87 … 5 Yes

V1 … VN Bug?
0.87 … 12 Yes

0.12 … 35 No
0.66 … 5 Yes

V1 … VN

0.10 … 0.25

(Step-2) 
Compute

misclassifica- 
tion rate

(5.6.1) Calculate a generic variable importance score

Testing  
Corpus

A distribution of  
100 var. imp. scores

V1 … VN

0.10 … 0.25
0.12 … 0.20
… … …
0.08 … 0.18

Defect  
Model

Fig. 4: An overview of our generic variable importance score calculation.

5.5 Calculate Performance

We apply the defect prediction models that we train
using the training corpus to the untreated testing cor-
pus (i.e., not rebalanced) in order to measure their
performance. We use both threshold-independent and
threshold-dependent performance measures to quantify
the performance of our models. We describe the various
performance measures that we used below.

5.5.1 Threshold-Independent Performance Measures
First, we use the Brier score [7, 69] to measure the distance
between the predicted probabilities and the outcome.

The Brier score is calculated as B = 1
N

N∑
i=1

(ft − ot)
2,

where ft is the predicted probability, ot is the outcome
for module t encoded as 0 if module t is clean and 1 if it
is defective, and N is the total number of modules. The
Brier score ranges from 0 (best classifier performance) to
1 (worst classifier performance), where a Brier score of
0.25 is a random-guessing performance.

Second, we use the calibration slope to measure the
direction and spread of the predicted probabilities [13,
16, 22, 24, 52, 78, 80]. The calibration slope is the slope
of a logistic regression model that is trained using the
predicted probabilities of our original defect prediction
model to predict whether a module will be defective
or not [13]. A calibration slope of 1 indicates the best
classifier performance (i.e., the predicted probabilities
are consistent with modules labels) and a calibration
slope of 0 (or less) indicates the worst classifier perfor-
mance (i.e., the predicted probabilities are inconsistent
with module’s labels)

Third, we use the Area Under the receiver operator charac-
teristic Curve (AUC) to measure the discriminatory power
of our models, as suggested by recent research [16, 22,
29, 43, 79, 80]. The AUC is a threshold-independent
performance metric that measures a classifier’s ability
to discriminate between defective and clean modules
(i.e., do the defective modules tend to have higher
predicted probabilities than clean modules?). AUC is
computed by measuring the area under the curve that
plots the true positive rate against the false positive rate,
while varying the threshold that is used to determine
whether a file is classified as defective or not. Values of
AUC range between 0 (worst performance), 0.5 (random
guessing performance), and 1 (best performance). We use

the val.prob function of the rms R package [23] to
calculate the Brier score, calibration slope, and AUC.

5.5.2 Threshold-Dependent Performance Measures

In order to calculate the threshold-dependent perfor-
mance measures, the probabilities are transformed into a
binary classification (defective or clean) using a default
threshold value of 0.5, i.e., if a module has a pre-
dicted probability above 0.5, it is considered defective;
otherwise, the module is considered clean. Using the
threshold of 0.5, we compute nine threshold-dependent
performance measures. Table 2 provides the definitions
and descriptions of our 7 threshold-dependent perfor-
mance measures.

5.6 Rank the Importance of Variables

To identify the most important variables in our built
models, we compute the variable importance for each
variable in our models. To do so, we develop a generic
variable importance score that can be applied to any
classifier [89]. Figure 4 provides an overview of the
calculation of our variable importance measurement to
generate ranks of the important variables for each of the
baseline and rebalanced models.

5.6.1 Generic Variable Importance Score

The calculation of our variable importance score consists
of 2 steps for each variable.

(Step 1) For each testing dataset, we first randomly per-
mute the values of that particular variable, pro-
ducing a randomly-permuted dataset.

(Step 2) We then compute the difference in the misclas-
sification rates of defect prediction models that
are trained using the original-unpermuted and
the randomly-permuted datasets. The larger the
difference, the greater the importance of that
variable.

We repeat the Steps 1 and 2 for each variable in order
to produce a variable importance score for all variables.
Since the experiment is repeated 100 times, each variable
will have several variable importance scores (i.e., one
score for each of the repetitions).

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

9

5.6.2 Ranking Variables
To study the impact of the studied variables on our
models, we apply the improved Scott-Knott Effect Size
Difference (ESD) test (v2.0) [83, 88, 89]. The Scott-Knott
ESD test clusters variables according to statistically sig-
nificant differences in their mean variable importance
scores (α = 0.05).

Unlike our earlier version of the Scott-Knott ESD test
(v1.0) that post-processes the groups that are produced
by the Scott-Knott test, the Scott-Knott ESD test (v2.0)
checks the magnitude of the difference throughout the
clustering process by merging pairs of statistically dis-
tinct groups that have a negligible Cohen’s d effect size
difference for all of the treatments of those two groups.
Cohen’s d effect size [11] is an effect size estimate based
on the difference between the two means divided by
the standard deviation of the two datasets (d = x̄1−x̄2

s.d.).
The magnitude is assessed using the thresholds that
are provided by Cohen [12], i.e. |d| < 0.2 “negligible”,
|d| < 0.5 “small”, |d| < 0.8 “medium”, otherwise “large”.

The Scott-Knott ESD test also overcomes the con-
founding factor of overlapping groups that are produced
by other post-hoc tests [20, 53], such as Nemenyi’s
test [60], which were used in prior studies [43]. We use
the implementation of the Scott-Knott ESD test (v2.0)
that is provided by the ScottKnottESD R package [83].

Finally, we produce rankings for the variables in the
baseline models and rebalanced models. Thus, each vari-
able has a rank for each type of model.

5.7 Statistical Analysis of the Experimental Settings
To better understand which of the experimental settings
has the most impact on the performance of defect pre-
diction models (i.e., RQ2 and RQ3), we build regression
models to understand the relationship between experi-
mental settings and outcome (e.g., performance differ-
ence). To study the importance of each configuration
parameter, we perform an ANOVA analysis to examine
the relative contribution (in terms of explanatory power)
of each experimental settings to the regression model.
Figure 5 shows an overview of our sensitivity analysis
approach. We describe each step of our approach below.

(Step-1) Construct Models for Experimental Settings.
We build regression models to explain the relationship
that experimental settings have on the performance dif-
ference of defect prediction models. A regression model
fits a line of the form y = β0 +β1x1 +β2x2 + ...+βnxn to
the data, where y is the dependent variable and each xi
is an explanatory variable. We fit our regression models
using the Ordinary Least Squares (OLS) technique using
the ols function provided by the rms R package [23].

(Step-2) Assessment of Model Stability. We evaluate
the fit of our models using the Adjusted R2, which
provides a measure of fit that penalizes the use of addi-
tional degrees of freedom. However, since the adjusted
R2 is measured using the same data that was used to
train the model, it is inherently upwardly biased, i.e.,

Results of Defect  
Prediction Models  

(performance, 
interpretation)

(Step 2) 
Assess

Stability of
Model

(Step 3) 
Estimate
Power of

Explanatory
Variables

Model
Estimated  

Partial Effect

(Step 1) 
Construct 
Models for

Experimental
Settings

Fig. 5: An overview for our approach for statistical
analysis of the experimental settings.

“optimistic”. We estimate the optimism of our models
using the following bootstrap-derived approach [22].

First, we build a model from a bootstrap sample, i.e.,
a dataset sampled with replacement from the original
dataset, which has the same population size as the
original dataset. Then, the optimism is estimated using
the difference of the adjusted R2 of the bootstrap model
when applied to the original dataset and the bootstrap
sample. Finally, the calculation is repeated 1,000 times
in order to calculate the average optimism. This average
optimism is subtracted from the adjusted R2 of the
model fit on the original data to obtain the optimism-
reduced adjusted R2. The smaller the average optimism,
the higher the stability of the original model fit.

(Step-3) Estimate Power of Explanatory Variables.
We perform an ANOVA analysis to examine the relative
contribution (in terms of explanative power) of each
experimental settings to the regression models using the
Wald χ2 maximum likelihood (a.k.a., “chunk”) test. The
larger the Wald χ2 value, the larger the impact that a
particular explanatory variable has on the response [22].
Finally, we present both the raw Wald χ2 values, and its
bootstrap 95 percentile confidence interval.

6 CASE STUDY RESULTS

In this section, we present the results of our case study
with respect to the following two research questions.

(RQ2) How do class rebalancing techniques impact
the performance of defect prediction models?
Approach. To address RQ2, we start with the perfor-
mance distribution of defect prediction models that are
trained using original (i.e., unbalanced) and re-balanced
datasets. For each class rebalancing technique, we com-
pute the difference in the performance of classifiers that
are trained using using original and re-balanced datasets.
We then use boxplots to present the distribution of the
absolute performance for each of the 10 commonly-used
performance measures.
Results. Figure 6 shows the absolute performance when
applying class rebalancing techniques to defect predic-
tion models for each of the 10 commonly-used perfor-
mance measures. Figure 6 shows that the ROSE tech-
nique produces the least stable conclusions when ap-
plied to defect prediction models. Indeed, we observe
that the ROSE technique has both positive and negative

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

10

●
●●●

●●●

●●●●●●●
●
●
●●
●●●●
●
●

●

●●●
●●●●●●●

●
●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●

●
●

●
●

●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●

●●

●

●
●

●●

●

●●●

●●

●
●
●●

●●

●

●

●●

●●

●

●
●●●●●●●
●
●

●

●
●
●
●

●
●

●
●

●

●

●●

●●●

●

●●

● ●

●

●
●
●
●

●

●

●

●●

●
●
●
●●

●

●

●●●

●●

●

●
●
●●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●●
●

●

●

●

● ●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●
●●

●
●

●

●

●●
●

●
●

●

●
●

●

●

Fmeasure Accuracy MCC Gmean Gmeasure

Brier Slope AUC Precision Recall

OVER

UNDER

SM
OTE

ROSE

OVER

UNDER

SM
OTE

ROSE

OVER

UNDER

SM
OTE

ROSE

OVER

UNDER

SM
OTE

ROSE

OVER

UNDER

SM
OTE

ROSE

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Resampling Technique

A
bs

ol
ut

e
P

er
fo

rm
an

ce
 D

iff
er

en
ce

 (
R

es
am

pl
in

g
−

 O
rig

in
al

)

Fig. 6: The absolute performance difference when applying class rebalancing techniques to defect prediction models
for each of the 10 commonly-used performance measures. A red line indicates a performance difference of zero
(i.e., no improvement).

impact on the Recall, F-measure, G-measure, Gmean,
and Slope of defect prediction models, suggesting that
the ROSE technique should be avoid in future defect
prediction studies. In the remainder of this section, we
only focus on the under-sampling, over-sampling, and
default SMOTE techniques.

Below, we structure the following findings with re-
spect to the performance measures that (1) are not im-
pacted; (2) are improved; and (3) are decreased by class
rebalancing techniques.

The AUC measure is less sensitive to the under-
sampling, over-sampling, and default SMOTE tech-
niques. Looking at Figure 6, when applying over-
sampling, under-sampling, and SMOTE techniques, we
observe that the absolute performance values of AUC
measure (i.e., min-max) vary from -4 to 7 percentage
points. The absolute performance values that we observe
are relatively smaller than common findings in the ma-
chine learning domain. For C5.0 classification technique,
we observe that the maximum AUC improvement is
by up to 5 percentage points when applying SMOTE
technique to defect prediction models. We note that
C5.0 classification technique is an improvement of C4.5
classifier in terms of speed and memory usage while
sharing similar algorithms to C4.5 classifiers [41]. This
observation contradicts the conclusions of Chawla [9],
who found that C4.5 classifiers tends to achieve a 40% of
AUC improvement when applying SMOTE to machine
learning datasets with the default setting (k = 5). Our

contradictory observation shows that domain-specifics
play an important role—the default setting that works
well in machine learning domain might not always be
optimal for software engineering domain. This finding
suggests that the parameter optimization of the SMOTE
technique may be of importance for defect models. Sec-
tion 7 provides an in-depth analysis on the impact of
optimized SMOTE technique on defect models.

Moreover, we also observe similar trends with
the MCC measure which is less sensitive to class
rebalancing techniques. We find that the distributions of
the absolute performance of AUC and MCC are centered
at zero. For example, when applying over-sampling,
under-sampling, and SMOTE techniques, we find that
the absolute performance of the AUC measure for 75
percentage points of the defect prediction models (i.e.,
1st-3rd quantiles) vary from -0.8 to 0.5 percentage points.
The absolute performance values of the MCC measure
for 75 percentage points of the defect prediction models
(i.e., 1st-3rd quantiles) vary from -1.7 to 3.6 percentage
points. The distributions that are centered at zero
indicate that the AUC and MCC measures are not
impacted positively nor negatively by class rebalancing
techniques for defect prediction models. The AUC mea-
sure is insensitive to class rebalancing techniques since
it considers all probability thresholds for determining
a module is defective or clean. On the other hand,
the MCC measure is insensitive to class rebalancing
techniques since it considers all aspects of the confusion

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

11

●

●

●

●

●

●

●

●

●

●

Recall

Gmeasure

Brier

Fmeasure

Gmean

AUC

MCC

Slope

Accuracy

Precision

−0.10 −0.05 0.00 0.05 0.10 0.15

Estimated Partial Effect (R2=0.126)

P
er

fo
rm

an
ce

 m
ea

su
re

s

Fig. 7: Estimated partial effect plot of the relationship
between performance measures and the magnitude of
the performance difference with the 95% confidence
interval.

metrics (i.e., true and false positives and negatives).
In contrast to the AUC measure which is rarely im-

pacted, the other threshold-independent measures like
the Brier and Slope measures are sensitive when applied
class rebalancing techniques. The sensitivity of the Brier
and Slope measures has to do with the computation of
the Brier and Slope measures. Such computation relies
heavily on the predicted probabilities (see Section 5.5.1).
The Brier measure uses the predicted probabilities to
compute the distance between the predicted probabilities
and the outcome. The Slope measure uses the predicted
probabilities to compute their directions and spreads.

The under-sampling, over-sampling, and default
SMOTE techniques substantially improve the per-
formance of defect prediction models by up to 69
percentage points for Recall, 60 percentage points for
G-measure, for 27 percentage points of F-measure.
We find that the proportion of defective modules that
are correctly classified (i.e., Recall) improves by up to
69 percentage points when applying the over-sampling
technique to the mylyn dataset when constructing a
logistic regression classifier. Moreover, we find that the
F-measure improves by up to 27 percentage points
when applying under-sampling technique to the prop-5
dataset prior to constructing a logistic regression classi-
fier. These results indicate that class rebalancing tech-
niques tend to have a positive impact on the Recall, G-
measure, and F-measure when they are applied to defect
prediction models.

On the other hand, The under-sampling, over-

sampling, and default SMOTE techniques decrease the
performance of defect prediction models by up to 57
percentage points for Precision, 73 percentage points
for Accuracy. Interestingly, while class rebalancing tech-
niques substantially increase Recall, they decrease Preci-
sion. We find that the decrease in the Precision measure
has to do with an increased number of false positive
(FP) modules (i.e., the number of clean modules that are
misclassified), suggesting that the improvement of the F-
measure performance has to do with the improvement
of the proportion of defective modules that are correctly
classified (i.e., Recall).
Statistical Analysis of the Performance Measures. To
statistically (1) validate if the distributions of the per-
formance measures are statistically different; and (2) in-
vestigate which performance measures have the largest
and smallest impact, we construct a one-way ANOVA
model of the distributions of the performance measures.
The one-way ANOVA is a hypothesis test in which a
single categorical variable or a single factor (i.e., per-
formance measures) is considered when comparing the
mean distributions of the performance values for all
of the 10 studied performance measures. The one-way
ANOVA model confirms that there is a significant dif-
ference in the means among the performance measures
with a significant level of 0.05 (i.e., p-value < 0.05).
We then plot the estimated partial effect of the absolute
performance values with the 95% confidence interval
(see Figure 7). The x-axis describes the effect of the
performance differences, while the y-axis describes the
performance measures. The effect values indicate the
positive and negative magnitude of the absolute per-
formance values, while an effect value of zero indicates
that class rebalancing techniques have no impact to a
particular performance measure. The estimated partial
effect plot of Figure 7 confirms that AUC and MCC
are insensitive to class rebalancing techniques. Moreover,
Figure 7 also confirms that class rebalancing techniques
yield the largest positive impact on Recall and the largest
negative impact on Precision.

The AUC measure is less impacted by the under-sampling,
over-sampling, and default SMOTE techniques for defect
prediction models. Class rebalancing techniques impact
Recall the most positively and impact Precision the most
negatively.

Statistical Analysis of the Experimental Settings. To
better understand the experimental settings where class
rebalancing techniques yield the largest positive impact
on performance measures, we construct a regression
model to understand the relationship between the
experimental settings (i.e., EPV, defective ratio,
classification techniques, class rebalancing techniques,
and metric family) and the performance difference
of each performance measure using the high-level
approach of Section 5.7. EPV (Event-Per-Variables)—a
measure to evaluate the risk of overfitting—is the ratio

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

12

−0.1

0.0

0.1

0.2

0.3

0.4

10 20 30 40 50

DefectiveRatio

E
st

im
at

ed
 P

ar
tia

l E
ffe

ct

●

●

●

●

●

●

●

GLM

xGBTree

RF

GBM

AVNNet

C5.0

NB

0.0 0.1 0.2 0.3 0.4

Estimated Partial Effect

C
la

ss
ifi

ca
tio

n
Te

ch
ni

qu
e

●

●

●

●UNDER

OVER

SMOTE

ROSE

0.0 0.1 0.2 0.3 0.4

Estimated Partial Effect

C
la

ss
 R

eb
al

an
ci

ng
 T

ec
hn

iq
ue

●

●

●

●

●

D'Ambros

CK

Eclipse

Kim&Wu

McCabe

0.0 0.1 0.2 0.3 0.4

Estimated Partial Effect

M
et

ric
 F

am
ily

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100 120 140

EPV

E
st

im
at

ed
 P

ar
tia

l E
ffe

ct

Fig. 8: Estimated partial effect plots of the relationship between the experimental settings (i.e., Defective Ratio,
Classification Technique, Class Rebalancing Technique, Metric Family, and EPV) and the performance difference of
the Recall measure. The grey areas and error bars indicate the 95% confidence interval. The effect values indicate
the positive and negative magnitude of the absolute performance values, while an effect value of zero indicates
that class rebalancing techniques have no impact to a particular performance measure.

of events to the number of independent variables used
to train a model. Formally,

EPV =
#events (e.g., #defective modules)

#variables
(2)

where the event is the number of occurrences of the
least frequently occurring class of the dependent vari-
able (e.g., the numbers of defective modules), and the
variables is the number of independent variables used
to train the model (i.e., the number of software met-
rics) [88]. Recently, Tantithamthavorn et al. [88] demon-
strated that models that are trained using datasets where
the EPV is low (i.e., too few events are available relative
to the number of independent variables) are especially
susceptible to overfitting (i.e., being fit too closely to
the training data). We include the EPV measure in our
statistical models in order to control for a confounding
factor of dataset characteristics. Since we experiment on
101 defect datasets where each dataset has different set
of metrics, it is possible that some metrics are robust or
sensitive to class rebalancing techniques. To statistically
verify this assumption while controlling for other factors,
we also include a Metric Family (i.e., D’Ambros, CK,
Eclipse, Kim&Wu, and McCabe) into our statistical mod-
els. Tables 3 and 4 show the statistics of the regression
model for Recall and Precision measures. In total, we
analyze the results of the 2,828 experimental settings (i.e.,
101 datasets x 7 classification techniques x 4 class rebal-
ancing techniques) Below, we only discuss the analyses
for the Precision and Recall measures, since we find that
class rebalancing techniques have the largest impact on
Recall and Precision—the results of F-Measure, AUC and
MCC measures are included in the appendix.

The impact of the under-sampling, over-sampling,
and default SMOTE techniques for defect prediction
models relies heavily on the defective ratio of the de-
fect datasets and the used classification techniques for
Recall and Precision, respectively. Table 3 shows that
Defective Ratio is the most influential experimental factor
that impacts the Recall of defect prediction models.

TABLE 3: Statistics of the regression model of the re-
lationship between the experimental factors and the
performance difference of the Recall measure.

Factor Analysis
Adjusted R2 0.62

Optimism-reduced adjusted R2 0.60
Total Wald χ2 1,350

D.F. χ2 p-value
Defective Ratio 1 46% ***

Classification Technique 6 33% ***
Class Rebalancing Technique 3 19% ***

Metric Family 4 1% ***
EPV 1 1% ***

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

Table 4 shows that Classification Techniques is the most
influential experimental factor that impacts the Precision
of defect prediction models. Both statistical models can
explain the variability of the data with an R2 value of
0.60 and 0.58 for the Recall and Precision measures. On
the other hand, Tables 3 and 4 show that Metric Family
and EPV have little impact on the performance of defect
prediction models when applying class rebalancing
techniques, which is similar to the results of F-Measure
(see Table 7). Below, we discuss the impact of each ex-
perimental setting on the performance difference of class
rebalancing techniques for defect prediction models.

For the Recall performance measure, the under-
sampling, over-sampling, and default SMOTE tech-
niques yield the largest benefits when they are applied
to highly-imbalanced defect datasets with a defective
ratio below 20%. The estimated partial effect plot of
Figure 8 for defective ratios shows a negative ralation-
ship between the defective ratios of defect datasets and
the performance difference of defect prediction models.
Thus, we plot the performance difference of the Recall
measure for each range of the defective ratios in Fig-

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

13

TABLE 4: Statistics of the regression model of the re-
lationship between the experimental factors and the
performance difference of the Precision measure.

Factor Analysis
Adjusted R2 0.59

Optimism-reduced adjusted R2 0.58
Total Wald χ2 1,261

D.F. χ2 p-value
Classification Technique 6 50% ***

Defective Ratio 1 42% ***
Class Rebalancing Technique 3 5% ***

Metric Family 4 3% ***
EPV 1 0% ◦

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

●

●

●

●

●●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0%
−1

0%

10
%

−2
0%

20
%

−3
0%

30
%

−4
0%

40
%

−5
0%

Defective Ratio

A
bs

ol
ut

e
D

iff
er

en
ce

 o
f R

ec
al

l m
ea

su
re

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0−
10

10
−2

0

20
−3

0

30
−4

0

40
−5

0

50
−6

0

60
−7

0

70
−8

0

12
0−

13
0

13
0−

14
0

EPV

A
bs

ol
ut

e
D

iff
er

en
ce

 o
f R

ec
al

l m
ea

su
re

Fig. 9: The performance difference for the Recall measure
for each range of defective and EPV ratios.

ure 9. We find that class rebalancing techniques tend to
yield the largest performance improvement for defect
prediction models when they are applied to datasets
with a defective ratio below 20%. Specifically, for highly-
imbalanced defect datasets (i.e., a defective ratio below
10%), we observe that class rebalancing techniques con-
sistently improve the Recall of defect prediction models.
On the other hand, for nearly-balanced defect datasets
(i.e., a defective ratio between 40-50%), we find that
class rebalancing techniques have little impact on the
performance improvement.

Class rebalancing techniques yield the largest ben-
efits when they are applied to defect datasets with
an EPV ratio higher than 40. The estimated partial
effect plot of Figure 8 for EPV ratios shows a positive
rationship between the EPV ratios of defect datasets
and the impact on the performance of defect prediction
models. Thus, we plot the performance difference of
the Recall measure for each range of the EPV ratios in
Figure 9. We observe that class rebalancing techniques
tend to yield the largest performance improvement for
defect prediction models when they are applied to defect
datasets with an EPV ratio higher than 40. Our finding is
consistent with Blagus et al. [6]’s findings which points
out that SMOTE does not perform well with high-

dimensionality data.
Logistic regression is the most sensitive classifier

to imbalanced defect datasets, while more advanced
classification techniques like neural networks and
random forest tend to be less sensitive. Figure 8, the
estimated partial effect plot for classification techniques,
shows that the impact of class rebalancing techniques
on the performance of defect prediction models varies
between the studied classification techniques. We find
that logistic regression classifiers tend to yield the largest
benefit, while naive bayes classifiers tend to yield the
smallest benefit on the Recall performance measure.
Thus, class rebalancing techniques should be applied to
future defect prediction studies which making use of
logistic regression.

The under-sampling technique improves Recall mea-
sure the most. Figure 8, the estimated partial effect plot
for classification techniques, shows a positive rationship
between the class rebalancing techniques and the per-
formance of defect prediction models. We find that the
under-sampling technique tends to improve Recall mea-
sure the most, while the ROSE technique tends to im-
prove Recall measure the least. Similarly, Figure 6 shows
that the Recall improvement is, on average, 18 percent-
age points for under-sampling technique, 10 percentage
points for the SMOTE technique, 7 percentage points for
the over-sampling technique, and 3 percentage points for
the ROSE technique, indicating that the under-sampling
technique should be used when the main objective of
defect prediction model is the proportion of defective
modules that are correctly classified (i.e., Recall).

The impact of the under-sampling, over-sampling, and
default SMOTE techniques on the performance of defect
prediction models depends on experimental settings. Defect
prediction models yield the largest performance improve-
ment when applying the under-sampling technique to
logistic regression models using defect datasets that are
highly-imbalanced with an EPV ratio higher than 40.

(RQ3) How do class rebalancing techniques impact
the interpretation of defect prediction models?

Approach. To address RQ3, we start with the variable
ranking of the 7 studied classification techniques on each
of the 101 studied datasets for both classifiers that are
trained with the original and rebalanced datasets. For
each classification technique, we compute the difference
in the ranks of the variables that appear in the top-three
ranks of the classifiers that are trained using the original
and rebalanced datasets. For example, if a variable v ap-
pears in the top rank in both the original and rebalanced
models, then the variable would have a rank difference
of 0. However, if v appears in the third rank in the rebal-
anced model, then the rank difference of v would be -2.
Results. Class rebalancing techniques have a large
impact on the interpretation of defect prediction mod-
els that are produced by popularly-used classification

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

14

Rank 1 Rank 2 Rank 3

A
V

N
N

et
G

LM
R

F

−2 −1 0 1 2 3 4 5 6 7 −2 −1 0 1 2 3 4 5 6 7 −2 −1 0 1 2 3 4 5 6 7

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Difference in rank

P
er

ce
nt

ag
e

OVER UNDER SMOTE ROSE

Fig. 10: The difference in the ranks for the variables according to their variable importance scores among the defect
prediction models that are trained using original (i.e., baseline) and re-balanced datasets. The bars indicate the
percentage of variables that appear in that rank in the re-balanced model while also appearing in that rank in the
baseline model. The higher the percentage is, the least stable the interpretation of defect prediction models is.

techniques like random forest, logistic regression, and
neural network. Figure 10 shows that as little as 23%-
34%, 55%-62%, and 68%-71% of the top variables in the
top importance rank of the rebalanced models appear
in the top importance rank of the baseline models for
neural network, logistic regression, and random forests
classifiers, respectively. In other words, as much as 77%-
66%, 45%-38%, and 32%-29% of the top variables in
the top importance rank of the rebalanced models do
not appear in the top importance rank of the original
models. Moreover, the variables in the second and third
ranks are even more unstable. This is the first empirical
evidence that confirms the suspicious of Turhan [92]
who point out that class rebalancing techniques shift
the learned concepts (i.e., biasing the interpretation of
defect prediction models), suggesting that class rebal-
ancing techniques should be avoided in future defect
prediction studies, especially, when deriving knowledge
and understandings from these models.

Class rebalancing techniques shift the learned concepts (i.e.,
biasing the interpretation of defect prediction models). We
find that as little as 23%-34%, 55%-62%, and 68%-71%
of the top variables in the top importance rank of the
rebalanced models appear in the top importance rank of
the baseline models for neural network, logistic regression,
and random forest classifiers, respectively.

Statistical Analysis on the Experimental Settings. To
better understand the experimental setup where class
rebalancing techniques have the largest and smallest
impact on the interpretation of defect prediction mod-
els, we construct a regression model to understand the
relationship between the experimental factors (i.e., EPV,
defective ratio, classification techniques, class rebalanc-
ing techniques, and metric family) and the percentage
of the most important variables appearing in the same
rank using the high-level approach of Section 5.7. Table 5
shows the statistics of the regression model. Figure 7
shows the estimated partial effect of the relationship
between performance measures and the percentage of
the most important variables appearing in the same rank.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

15

TABLE 5: Statistics of the regression model of the re-
lationship between the experimental factors and the
percentage of the most important variables appearing in
the same rank.

Factor Analysis
Adjusted R2 0.15

Optimism-reduced adjusted R2 0.14
Total Wald χ2 406

D.F. χ2 p-value
Classification Technique 6 79% ***

Metric Family 4 10% ***
Class Rebalancing Technique 3 5% ***

Defective Ratio 1 4% ***
EPV 1 1% ◦

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

●

●

●

●

●

●

●

NB

RF

xGBTree

GLM

C5.0

GBM

AVNNet

40 60 80 100

Estimated Partial Effect

C
la

ss
ifi

ca
tio

n
Te

ch
ni

qu
e

Fig. 11: Estimated partial effect plot of the relationship
between the studied classification techniques and the
percentage of the most important variables appearing
in the same rank. The error bars indicate the 95% confi-
dence interval. The figure shows that neural network is
the most sensitive classification technique, while naive
bayes is the least sensitive classification technique to
class rebalancing techniques.

The impact of class rebalancing techniques on the in-
terpretation of defect prediction models relies heavily
on the used classification techniques. Table 5 shows that
classification technique is the most influential experimental
factor on the impact of class rebalancing techniques on
the interpretation of defect prediction models. Figure 11
confirms that neural network classifiers are the most
sensitive classification techniques when applying class
rebalancing techniques, suggesting that neural network

classification techniques should be avoided when inter-
preting insights from defect prediction models.

The impact of class rebalancing techniques on the inter-
pretation of defect prediction models relies heavily on the
used classification techniques, suggesting that researchers
and practitioners should avoid class rebalancing techniques
when deriving knowledge and understandings from defect
prediction models.

7 AN INVESTIGATION OF THE IMPACT OF THE
OPTIMIZED SMOTE TECHNIQUE ON DEFECT
MODELS

7.1 Motivation

Plenty of prior work show that the parameters of classifi-
cation techniques have an impact on the performance of
defect prediction models [86, 89]. Similarly, the SMOTE
class rebalancing technique has a configurable parameter
that needs to be specified. Similar to prior studies in
software engineering [3, 4, 72, 95], the results of our
RQ2 and RQ3 rely on one default parameter setting (i.e.,
k = 5). Recently, Agrawal and Menzies [1] pointed out
that the k SMOTE parameter may be sensitive to the
AUC performance of defect models. On the other hand,
Bennin et al. [4] pointed out that the SMOTE technique
does not improve the AUC performance of defect mod-
els. Thus, we set out to re-investigate the impact of the
k SMOTE parameter on our 101 studied defect datasets.
In addition to the contradictory conclusion, these two
recent studies do not further investigate to what extent
the k SMOTE parameter impacts the performance and
interpretation of defect prediction models.

7.2 Approach

To identify the optimized SMOTE parameter settings, we
use a grid-search optimization approach, as suggested by
recent studies [86, 89]. A key benefit of applying a grid-
search optimization technique is that the experimental
design is highly controlled—i.e., the candidate parameter
settings of the grid search technique do not vary for
each dataset and bootstrap sample, while the candidate
parameter settings of other advanced parameter opti-
mization techniques often vary, leading to substantially
more complex experimental settings.

To apply the optimized SMOTE technique, we start
from a training dataset that is generated by the out-
of-sample bootstrap (see Section 5.2). For each training
dataset, we randomly generate a bootstrap sample and a
validation sample for evaluating each of the 20 candidate
k parameter settings (i.e., from 1 to 20). To evaluate
each setting, we apply the SMOTE technique with the
candidate setting and evaluate the performance of the
candidate setting using the validation sample. We note
that the evaluation of k SMOTE parameter settings does not
involve any testing datasets to avoid generating optimisitc
performance estimates. Finally, we identify an optimal k

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

16

setting as the k setting that acheives the highest perfor-
mance among the candidate settings.

We apply the Optimized SMOTE technique to all
of the 101 studied defect datasets with 20 different
k SMOTE settings (i.e., from 1 to 20) for all of the
seven classification techniques. For each dataset and each
classification technique, we identify the optimal setting if
a k setting is the top-performing. We then measure the
AUC improvement as the absolute difference between
the AUC values of defect models when applying the
optimal SMOTE and default SMOTE techniques.

7.3 Results
In contrast to our RQ2 and Bennin et al. [4] which
conclude the SMOTE technique does not improve the
AUC performance of defect models, we find that the
AUC performance of defect models is substantially
improved when the k SMOTE parameter is optimized.
Figure 12a, which presents the AUC improvement of
defect prediction models when the optimized SMOTE
technique is applied for each of the studied classifi-
cation techniques, comfirming that optimizing SMOTE
parameter consistently improves the AUC performance
of defect prediction models. This finding echoes the
importance of the parameter optimization on the SMOTE
technique for defect models, which is similar to Agrawal
and Menzies [1].

In addition to Agrawal and Menzies [1], we observe
that the optimization of the k SMOTE parameter yields
the largest AUC improvement when it is applying
along with AVNNet, GBM, RF, and C5.0 classifiers.
Figure 12b presents boxplots of the AUC improvement
of defect prediction models when the optimized SMOTE
technique is applied to data when using each classifica-
tion technique. Figure 12b shows that the performance of
defect models improves by a median of 13-20 percentage
points for AVNNet, GBM, RF, and C5.0 classifiers when
the optimized SMOTE technique is applied. On the other
hand, Figure 12b shows that defect models yield less
improvement for GLM, NB, and xGBTree when the
optimized SMOTE technique is applied.

Similar to RQ3, the optimized SMOTE technique
has a large impact on the interpretation of defect
prediction models that are produced by popularly-used
classification techniques. Figure 12c shows that as little
as 28%, 73%, and 68% of the top variables in the top
importance rank of the rebalanced models appear in the
top importance rank of the baseline models for neural
network, logistic regression, and random forests classi-
fiers, respectively. This finding confirms our suggestion
that class rebalancing techniques should be avoided in
future defect prediction studies, especially, when deriv-
ing knowledge and understandings from these models.

8 PRACTICAL GUIDELINES
Table 6 summarizes a comparison of prior findings in
the literature with our findings. In this section, we offer
practical guidelines for future defect prediction studies:

(1) The optimized SMOTE technique and the under-
sampling technique are beneficial when quality
assurance teams wish to increase the ability to
classify defective modules (i.e., AUC) and the com-
pleteness of identifying software defects (i.e., Re-
call), respectively, since Figure 7 shows that class re-
balancing techniques substantially improve the pro-
portion of defective modules that are correctly clas-
sified (i.e., Recall measure). Specifically, Figure 8 also
shows that defect prediction models yield the largest
improvement in Recall when applying the under-
sampling technique to logistic regression models us-
ing defect datasets that are highly-imbalanced with
an EPV ratio higher than 40. Nevertheless, when
applying class rebalancing techniques, the improve-
ment of the Recall measure has to be sacrificed with
a decrease in the Precision measure.

(2) Class rebalancing techniques should be avoided
when deriving knowledge and understandings
from defect prediction models to initiate quality
improvement plans, since Figure 11 shows that
commonly-used classification techniques like logistic
regression, random forest, and neural networks are
sensitive to class rebalancing techniques. Moreover,
our statistical model (Table 5) of the experimental
factors analysis confirms that class rebalancing tech-
niques have a large impact on the interpretation of
defect prediction models.

9 THREATS TO VALIDITY

Like any empirical study design, experimental design
settings may impact the results of our study [82]. Be-
low, we discuss threats that may impact the results of
our study.

9.1 External Validity

We studied a limited number of proprietary and open-
source software systems. Thus, our results may not gen-
eralize to all software systems. However, to the best of
our knowledge, this study is among the largest empirical
study on the impact of class rebalancing techniques for
defect prediction models — our conclusions are drawn
from the 101 publicly-available defect datasets.

The conclusions of our case study rely on one defect
prediction scenario (i.e., within-project defect prediction
models). However, there are a variety of defect predic-
tion scenarios in the literature (e.g., cross-project defect
prediction [98], just-in-time defect prediction [34], het-
erogenous defect prediction [59]). Therefore, the practical
guidelines may differ when applying class rebalanc-
ing techniques to other scenarios. Thus, future research
should revisit our study in other scenarios of defect
prediction models.

Recent studies [35, 62–64] recommend the consid-
eration of developer effort when evaluating the per-
formance of defect prediction models. For example,

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

17

●
●
●

●●
●
●
●●
●

●
●
●

0.0

0.1

0.2

0.3

0.4

0.5

Rec
all

Gm
ea

su
re

Fm
ea

su
re

Slop
e

Gm
ea

n
M

CC
AUC

Pre
cis

ion

Acc
ur

ac
y

Brie
r

A
bs

ol
ut

e
P

er
fo

rm
an

ce

(a) The performance difference of defect
prediction models when the optimized
SMOTE technique is applied for each
performance measure.

●

●
●●

●

●

●

●

0.0

0.1

0.2

AVNNet GBM RF C5.0 GLM NB xGBTree

A
bs

ol
ut

e
A

U
C

 D
iff

er
en

ce

(b) The absolute AUC difference of defect
prediction models when the optimized
SMOTE technique is applied to each of
the studied classification techniques.

Rank 1 Rank 2 Rank 3

A
V

N
N

et
G

LM
R

F

−2−1 0 1 2 3 4 5 6 −2−1 0 1 2 3 4 5 6 −2−1 0 1 2 3 4 5 6

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

Difference in rank

P
er

ce
nt

ag
e

(c) The difference in the ranks for the
variables according to their variable im-
portance scores among the defect pre-
diction models that are trained using
original and re-balanced datasets that are
produced by the optimized SMOTE tech-
nique.

Fig. 12: The results of defect prediction models when the optimized SMOTE technique is applied.

TABLE 6: A comparison of prior findings in the literature to our findings.

Paper Their finding Our finding
Riquelme et al. [66] Class rebalancing techniques do not improve the per-

centage of correctly classified modules (i.e., Accuracy),
but they do improve the AUC measure for 4 NASA
datasets.

Class rebalancing techniques do improve the percentage
of correctly classified modules (i.e., Accuracy), but they
have little improvement for the AUC measure (espe-
cially for datasets with a high EPV value).

Chawla [9] SMOTE improves the AUC measure by up to 40% for
machine learning datasets.

The AUC measure is less sensitive to class rebalancing
techniques (especially for datasets with a high EPV
value).

Wang et al. [93] An advanced class rebalancing technique (i.e., Ad-
aBoost.NC) yeilds similar AUC performance when com-
pared to random forest for 10 NASA defect datasets.

The AUC measure is less sensitive to class rebalancing
techniques (especially for datasets with a high EPV
value).

Tan et al. [81] Class rebalancing techniques improve the Precision
measure but decrease the Recall measure for change
classification models.

Class rebalancing techniques decrease the Precision
measure but improve the Recall measure for defect
classification models.

Kamei et al. [36] Class rebalancing techniques improve the Recall and F-
measures but decrease the Precision measure.

Class rebalancing techniques improve the Recall and F-
measures but decrease the Precision measure.

Bennin et al. [4] The default SMOTE technique does not improve the
AUC performance of defect models

The AUC performance of defect models is substantially
improved when the k SMOTE parameter is optimized.

Agrawal et al. [1] The AUC performance of defect models is substantially
improved when the k SMOTE parameter is optimized

In addition to Agrawal et al., we observe that the
optimization of the k SMOTE parameter yields the
largest AUC improvement when it is applying along
with AVNNet, GBM, RF, and C5.0 classifiers, but the
optimized SMOTE technique has a large impact on the
interpretation of defect models.

Kamei et al. [63] suggest to evaluate defect predic-
tion models using the Area Under the Cost Effec-
tiveness Curve (AUCEC). While we studied a large
number of performance measures, i.e., 7 threshold-
dependent and 3 threshold-independent measures, our
results may not generalize to other performance mea-
sures (e.g., AUCEC). Since the AUCEC measure is
not currently compatible with the Caret implementa-
tion [42]. Caret measures the model performance based
on a summaryFunction function that only takes the
observed and predicted values. Hence, we are unable
to compute the AUCEC measure. Nonetheless, other
performance measures can be explored in future work.
We provide a detailed methodology for others who
would like to re-examine our findings using unexplored
performance measures.

9.2 Internal Validity

Recent work pointed out that class rebalancing tech-
niques suffer from creating an artificial bias towards
minority class [46]. Thus, Friedman et al. [19] suggested
to use advanced classification techniques (e.g., penalized
classification) to address the class imbalance problem
for defect prediction models without applying a class
rebalancing technique. Such penalization classifcation
imposes an additional cost on the models for making
classification mistakes on the minority class during train-
ing, while enabling the models to pay more attention to
the minority class. To assess if a penalized classification
technique addresses the class imbalance problem for
defect prediction models, we built penalized logistic re-
gression models for the 101 studied defect datasets using
the glmnet function that is provided by the glmnet R
package [26]. We then compared the AUC distributions
with the other seven classification techniques when both

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

18

class rebalancing techniques are applied and not applied.
We find that the penalized logistic regression models
have little improvement on the AUC performance. Fig-
ure 13 shows the AUC distributions of the 101 defect
datasets for each of the studied seven classification
technique, the five class rebalancing techniques, and the
penalized logistic regression technique. The results of
Figure 13 confirms that building random forest models
with the optimized SMOTE technique tends to be the
top-performing models for the AUC performance. We
suspect that the top-performing random forest models
when the optimized SMOTE technique is applied has
to do with the random process for constructing mul-
tiple trees in order to mitigate imbalance datasets, the
averaging calculation of the performance of a random
forest model, and the synthetic samples of the minor-
ity class that are generated by SMOTE. For example,
random forest may generate trees that are constructed
with balanced samples [44]. In addition, the averaging
of the performance from multiple trees may decrease
the negative impact of class imbalance on trees that are
constructed with imbalanced samples.

However, the goal of our paper is not to exam-
ine all classification techniques and class rebalancing
techniques that were used in the literature. Nonethe-
less, other classification techniques and class rebalancing
techniques [28] can be explored in future work. This
paper provides a detailed methodology for others who
would like to re-examine our findings using unexplored
class rebalancing techniques and advanced classification
techniques.

10 CONCLUSIONS
In this paper, we set out to investigate the impact of 4
popularly-used class rebalancing techniques, i.e., over-
sampling, under-sampling, SMOTE, and ROSE tech-
niques, on the performance and the interpretation of
defect prediction models. We train our defect prediction
models using 7 classification techniques and evaluate
the performance of defect prediction models using 10
commonly-used performance measures. To better un-
derstand in which experimental settings class rebal-
ancing techniques are beneficial for defect prediction
models, we also construct statistical models to study
the relationship between the experimental settings and
the performance and interpretation of defect prediction
models. Through a large-scale empirical study of 101
publicly-available defect datasets that span across open-
source and proprietary systems that are collected from 5
different corpus, we record the following observations:
• As little as 8% of defect datasets have a defective

ratio between 45%-55%, suggesting that class imbal-
ance is prominent in defect datasets, likely affecting
the performance and interpretation of defect predic-
tion models.

• The AUC measure is less impacted by the under-
sampling, over-sampling, and default SMOTE tech-
niques for defect prediction models. On the other

hand, the AUC measure is substantially improved
when the k SMOTE parameter is optimized, sug-
gesting that future studies must optimized the
SMOTE parameters.

• The impact of the under-sampling, over-sampling,
default SMOTE and optimized SMOTE techniques
on the performance of defect prediction models
depends on experimental settings. Defect predic-
tion models yield the largest AUC improvement
when applying the optimized SMOTE technique
and the largest Recall improvement when applying
the under-sampling technique.

• Unfortunately, class rebalancing techniques shift the
learned concepts (i.e., biasing the interpretation of
defect prediction models). We find that as little as
23%-34%, 55%-62%, and 68%-71% of the top vari-
ables in the top importance rank of the re-balanced
models appear in the top importance rank of the
baseline models for neural network, logistic regres-
sion, and random forest classifiers, respectively.

• The impact of class rebalancing techniques on the in-
terpretation of defect prediction models relies heav-
ily on the used classification techniques, suggesting
that researchers and practitioners should avoid class
rebalancing techniques when deriving knowledge
and understandings from defect prediction models.

Based on our findings, we make the following sugges-
tions for researchers and practitioners:

1) The optimized SMOTE technique and the under-
sampling technique are beneficial when quality as-
surance teams wish to increase the ability to classify
defective modules (i.e., AUC) and the completeness
of identifying software defects (i.e., Recall), respec-
tively.

2) Class rebalancing techniques should be avoided
when deriving knowledge and understandings from
defect prediction models to initiate quality improve-
ment plans.

ACKNOWLEDGMENTS

This work was supported by the Grant-in-Aid for JSPS
Fellows (No. 16J03360), and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES
[1] A. Agrawal and T. Menzies, “Is ”better data” better than ”better

data miners”?” in Proceedings of the International Conference on
Software Engineering (ICSE), 2018, p. To Appear.

[2] F. Akiyama, “An Example of Software System Debugging,” in
Proceedings of the International Federation of Information Processing
Societies Congress (IFIP’71), 1971, pp. 353–359.

[3] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Men-
sah, “Mahakil:diversity based oversampling approach to alleviate
the class imbalance issue in software defect prediction,” IEEE
Transactions on Software Engineering (TSE), p. To Appear, 2017.

[4] K. E. Bennin, J. W. Keung, and A. Monden, “On the relative value
of data resampling approaches for software defect prediction,”
Empirical Software Engineering, pp. 1–35, 2018.

[5] N. Bettenburg and A. E. Hassan, Studying the impact of social
interactions on software quality, apr 2012, vol. 18, no. 2. [Online].
Available: http://link.springer.com/10.1007/s10664-012-9205-0

http://link.springer.com/10.1007/s10664-012-9205-0

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

19

● ●
●

●

●

●
●
●

●
●
●

●
●

●
● ● ●

●●
●

●●
●

●
●

●
●●●

●
●● ● ●

● ●
●●

●

●
●

●

●●

●●

● ●
●

0.5

0.6

0.7

0.8

0.9

1.0

R
F

_O
pt

_S
M

O
T

E

C
5.

0_
O

pt
_S

M
O

T
E

A
V

N
N

et
_O

pt
_S

M
O

T
E

G
B

M
_O

pt
_S

M
O

T
E

G
LM

_O
pt

_S
M

O
T

E

R
F

_D
ef

_S
M

O
T

E

R
F

_O
R

IG
IN

A
L

R
F

_D
O

W
N

R
F

_U
P

C
5.

0_
D

ef
_S

M
O

T
E

C
5.

0_
O

R
IG

IN
A

L

C
5.

0_
U

P

C
5.

0_
D

O
W

N

A
V

N
N

et
_U

P

A
V

N
N

et
_D

ef
_S

M
O

T
E

N
B

_O
pt

_S
M

O
T

E

xG
B

Tr
ee

_U
P

A
V

N
N

et
_D

O
W

N

G
LM

_U
P

xG
B

Tr
ee

_D
ef

_S
M

O
T

E

xG
B

Tr
ee

_D
O

W
N

xG
B

Tr
ee

_O
R

IG
IN

A
L

G
LM

_O
R

IG
IN

A
L

[[G
LM

N
E

T
_O

R
IG

IN
A

L]
]

G
LM

_D
ef

_S
M

O
T

E

G
LM

_R
O

S
E

G
LM

_D
O

W
N

R
F

_R
O

S
E

N
B

_R
O

S
E

N
B

_O
R

IG
IN

A
L

N
B

_D
ef

_S
M

O
T

E

N
B

_U
P

G
B

M
_D

ef
_S

M
O

T
E

N
B

_D
O

W
N

G
B

M
_U

P

A
V

N
N

et
_R

O
S

E

C
5.

0_
R

O
S

E

G
B

M
_R

O
S

E

G
B

M
_O

R
IG

IN
A

L

G
B

M
_D

O
W

N

A
V

N
N

et
_O

R
IG

IN
A

L

xG
B

Tr
ee

_R
O

S
E

A
U

C

Fig. 13: The AUC distributions of the 101 defect datasets for each of the studied seven classification techniques, the
five class rebalancing techniques, and the penalized logistic regression technique.

[6] R. Blagus and L. Lusa, “Smote for high-dimensional class-
imbalanced data,” BMC Bioinformatics, vol. 14, no. 1, p. 106, 2013.
[Online]. Available: http://dx.doi.org/10.1186/1471-2105-14-106

[7] G. W. Brier, “Verification of Forecasets Expressed in Terms of
Probability,” Monthly Weather Review, vol. 78, no. 1, pp. 25–27,
1950.

[8] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb, “Software De-
pendencies, Work Dependencies, and Their Impact on Failures,”
IEEE Transactions on Software Engineering (TSE), vol. 35, no. 6, pp.
864–878, 2009.

[9] N. V. Chawla, “C4.5 and imbalanced data sets: investigating the
effect of sampling method, probabilistic estimate, and decision
tree structure,” in n Proceedings of the ICML03 Workshop on Class
Imbalances, vol. 3, 2003.

[10] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[11] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 1988.
[12] ——, “A power primer.” Psychological bulletin, vol. 112, no. 1, p.

155, 1992.
[13] D. R. Cox, “Two Further Applications of a Model for Binary

Regression,” Biometrika, vol. 45, no. 3, pp. 562–565, 1958.
[14] M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive Compar-

ison of Bug Prediction Approaches,” in Proceedings of the Working
Conference on Mining Software Repositories (MSR), 2010, pp. 31–41.

[15] ——, “Evaluating Defect Prediction Approaches: A Benchmark
and an Extensive Comparison,” Empirical Software Engineering,
vol. 17, no. 4-5, pp. 531–577, 2012.

[16] S. den Boer, N. F. de Keizer, and E. de Jonge, “Performance of
prognostic models in critically ill cancer patients - a review.”
Critical care, vol. 9, no. 4, pp. R458–R463, 2005.

[17] B. Efron, “Estimating the Error Rate of a Prediction Rule: Im-
provement on Cross-Validation,” Journal of the American Statistical
Association, vol. 78, no. 382, pp. 316–331, 1983.

[18] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap.
Boston, MA: Springer US, 1993.

[19] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths
for generalized linear models via coordinate descent,” Journal of
statistical software, vol. 33, no. 1, p. 1, 2010.

[20] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the im-
pact of classification techniques on the performance of defect
prediction models,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2015, pp. 789–800.

[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A

Systematic Literature Review on Fault Prediction Performance in
Software Engineering,” IEEE Transactions on Software Engineering
(TSE), vol. 38, no. 6, pp. 1276–1304, nov 2012.

[22] F. E. Harrell Jr., Regression Modeling Strategies, 1st ed. Springer,
2002.

[23] ——, “rms: Regression modeling strategies,” http://CRAN.
R-project.org/package=rms, 2015.

[24] F. E. Harrell Jr., K. L. Lee, and D. B. Mark, “Tutorial in Biostatistics
Multivariable Prognostic Models : Issues in Developing Models,
Evaluting Assumptions and Adequacy, and Measuring and Re-
ducing Errors,” Statistics in Medicine, vol. 15, pp. 361–387, 1996.

[25] A. E. Hassan, “Predicting Faults Using the Complexity of Code
Changes,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2009, pp. 78–88.

[26] T. Hastie, “glmnet: Lasso and Elastic-Net Regularized General-
ized Linear Models,” https://cran.r-project.org/web/packages/
glmnet/index.html, 2017.

[27] H. He and E. A. Garcia, “Learning from Imbalanced Data,”
Transactions on Knowledge and Data Engineering (TKDE), vol. 21,
no. 9, pp. 1263–1284, 2009.

[28] ——, “Learning from imbalanced data,” IEEE Transactions on
knowledge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[29] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” Transactions on Knowledge and Data Engineer-
ing, vol. 17, no. 3, pp. 299–310, 2005.

[30] J. P. Ioannidis, D. B. Allison, C. A. Ball, I. Coulibaly, X. Cui,
A. C. Culhane, M. Falchi, C. Furlanello, L. Game, G. Jurman
et al., “Repeatability of published microarray gene expression
analyses,” Nature genetics, vol. 41, no. 2, pp. 149–155, 2009.

[31] J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, “The impact
of correlated metrics on defect models,” Under review at IEEE
Transactions on Software Engineering (TSE), 2018, https://arxiv.org/
abs/1801.10271.

[32] J. Jiarpakdee, C. Tantithamthavorn, A. Ihara, and K. Matsumoto,
“A study of redundant metrics in defect prediction datasets,” in
Proceedings of the International Symposium on Software Reliability
Engineering (ISSRE), 2016, pp. 51–52.

[33] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “Autospear-
man: Automatically mitigating correlated metrics for interpreting
defect models,” in Proceeding of the International Conference on
Software Maintenance and Evolution (ICSME), 2018, p. To Appear.

[34] Y. Kamei, E. Shihab, B. Adams, a. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A Large-Scale Empirical Study of Just-in-Time
Quality Assurance,” IEEE Transactions on Software Engineering

http://dx.doi.org/10.1186/1471-2105-14-106
http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=rms
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://arxiv.org/abs/1801.10271
https://arxiv.org/abs/1801.10271

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

20

(TSE), vol. 39, no. 6, pp. 757–773, 2013.
[35] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams,

and A. E. Hassan, “Revisiting Common Bug Prediction Findings
Using Effort-Aware Models,” in Proceedings of the International
Conference on Software Maintenance (ICSM), 2010, pp. 1–10.

[36] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i.
Matsumoto, “The Effects of Over and Under Sampling on
Fault-prone Module Detection,” First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pp.
196–204, sep 2007. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4343747

[37] A. E. Kazdin, “The meanings and measurement of clinical signif-
icance.” 1999.

[38] T. Khoshgoftaar, K. G. K. Gao, and N. Seliya, “Attribute Selection
and Imbalanced Data: Problems in Software Defect Prediction,”
Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE International
Conference on, vol. 1, 2010.

[39] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with Noise in
Defect Prediction,” in Proceeding of the International Conference on
Software Engineering (ICSE), 2011, pp. 481–490.

[40] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller,
“Predicting Faults from Cached History,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2007, pp.
489–498.

[41] M. Kuhn, “C50: C5.0 decision trees and rule-based models,” http:
//CRAN.R-project.org/package=C50, 2015.

[42] ——, “caret: Classification and regression training,” http://
CRAN.R-project.org/package=caret, 2015.

[43] S. Lessmann, S. Member, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking Classification Models for Software Defect Predic-
tion: A Proposed Framework and Novel Findings,” IEEE Trans-
actions on Software Engineering (TSE), vol. 34, no. 4, pp. 485–496,
2008.

[44] A. Liaw and M. Wiener, “randomforest: Breiman and cutler’s
random forests for classification and regression,” http://CRAN.
R-project.org/package=randomForest, 2015.

[45] N. Lunardon, G. Menardi, and N. Torelli, “Rose: a package for
binary imbalanced learning,” R Journal, vol. 6, no. 1, pp. 79–89,
2014.

[46] L. Lusa et al., “Class prediction for high-dimensional class-
imbalanced data,” BMC bioinformatics, vol. 11, no. 1, p. 523, 2010.

[47] Z. Mahmood, D. Bowes, P. C. Lane, and T. Hall, “What is the
impact of imbalance on software defect prediction performance?”
in Proceedings of the 11th International Conference on Predictive
Models and Data Analytics in Software Engineering. ACM, 2015,
p. 4.

[48] R. Malhotra and M. Khanna, “An empirical study for software
change prediction using imbalanced data,” Empirical Software
Engineering, pp. 1–46, 2017.

[49] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact
of Code Review Coverage and Code Review Participation on
Software Quality,” in Proceedings of the Working Conference on
Mining Software Repositories (MSR), 2014, pp. 192–201.

[50] G. Menardi and N. Torelli, “Training and assessing classification
rules with imbalanced data,” Data Mining and Knowledge Discov-
ery, vol. 28, no. 1, pp. 92–122, 2014.

[51] T. Menzies, C. Pape, R. Krishna, and M. Rees-Jones, “The Promise
Repository of Empirical Software Engineering Data,” http://
openscience.us/repo, 2015.

[52] M. E. Miller, S. L. Hui, and W. M. Tierney, “Validation techniques
for logistic regression models.” Statistics in medicine, vol. 10, no. 8,
pp. 1213–1226, 1991.

[53] N. Mittas and L. Angelis, “Ranking and Clustering Software Cost
Estimation Models through a Multiple Comparisons Algorithm,”
IEEE Transactions on Software Engineering (TSE), vol. 39, no. 4, pp.
537–551, 2013.

[54] A. Mockus, “Organizational Volatility and its Effects on Software
Defects,” in Proceedings of the International Symposium on Founda-
tions of Software Engineering (FSE), 2010, pp. 117–127.

[55] A. Mockus and D. M. Weiss, “Predicting Risk of Software
Changes,” Bell Labs Technical Journal, vol. 5, no. 6, pp. 169–180,

2000.
[56] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Analysis of

the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2008, pp. 181–190.

[57] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Mur-
phy, “Change Bursts as Defect Predictors,” in Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE),
2010, pp. 309–318.

[58] J. Nam, “Survey on software defect prediction,” Department of
Compter Science and Engineerning, The Hong Kong University of
Science and Technology, Tech. Rep, 2014.

[59] J. Nam and S. Kim, “Heterogeneous defect prediction,” in Pro-
ceedings of the 2015 10th joint meeting on foundations of software
engineering. ACM, 2015, pp. 508–519.

[60] P. Nemenyi, “Distribution-free multiple comparisons,” Ph.D. dis-
sertation, Princeton University, 1963.

[61] L. Pelayo and S. Dick, “Applying novel resampling strategies
to software defect prediction,” Annual Conference of the North
American Fuzzy Information Processing Society - NAFIPS, pp. 69–
72, 2007.

[62] F. Rahman and P. Devanbu, “How, and Why, Process Metrics Are
Better,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2013, pp. 432–441.

[63] F. Rahman, I. Herraiz, D. Posnett, and P. Devanbu, “Sample Size
vs. Bias in Defect Prediction,” in Proceedings of the joint meeting of
the European Software Engineering Conference and the symposium on
the Foundations of Software Engineering (FSE), 2013, pp. 147–157.

[64] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the “Impre-
cision” of Cross-Project Defect Prediction,” in Proceedings of the
International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 61:1–61:11.

[65] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu,
“BugCache for Inspections: Hit or Miss?” in Proceedings of the
European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2011, pp. 322–331.

[66] J. Riquelme, R. Ruiz, D. Rodrı́guez, and J. Moreno, “Finding
defective modules from highly unbalanced datasets,” Actas de los
Talleres de las Jornadas de Ingenierı́a del Software y Bases de Datos,
vol. 2, no. 1, pp. 67–74, 2008.

[67] G. Robles, “Replicating msr: A study of the potential replicability
of papers published in the mining software repositories proceed-
ings,” in Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on. IEEE, 2010, pp. 171–180.

[68] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J. C.
Riquelme, “Preliminary comparison of techniques for dealing
with imbalance in software defect prediction,” in Proceedings of
the 18th International Conference on Evaluation and Assessment in
Software Engineering. ACM, 2014, p. 43.

[69] K. Rufibach, “Use of Brier score to assess binary predictions,”
Journal of Clinical Epidemiology, vol. 63, no. 8, pp. 938–939, 2010.

[70] W. S. Sarle, “The varclus procedure,” in SAS/STAT User’s Guide.
SAS Institute, Inc, 4th edition, 1990.

[71] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse, “Improving
software-quality predictions with data sampling and boosting,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 39, no. 6, pp. 1283–1294, 2009.

[72] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on
imbalanced and noisy software quality data,” Information Sciences,
vol. 259, pp. 571–595, feb 2014.

[73] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 40, no. 1, pp. 185–197, 2010.

[74] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:
Some comments on the NASA software defect datasets,” IEEE
Transactions on Software Engineering (TSE), vol. 39, no. 9, pp. 1208–
1215, 2013.

[75] E. Shihab, “An Exploration of Challenges Limiting Pragmatic
Software Defect Prediction,” Ph.D. dissertation, Queen’s Univer-

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343747
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4343747
http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest
http://openscience.us/repo
http://openscience.us/repo

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

21

sity, 2012.
[76] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E.

Hassan, “Understanding the Impact of Code and Process Metrics
on Post-Release Defects: A Case Study on the Eclipse Project,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2010.

[77] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan, “High-Impact
Defects: A Study of Breakage and Surprise Defects,” in Proceedings
of the joint meeting of the European Software Engineering Confer-
ence and the symposium on the Foundations of Software Engineering
(ESEC/FSE’11), 2011, pp. 300–310.

[78] E. W. Steyerberg, M. J. Eijkemans, F. E. Harrell Jr., and J. D.
Habbema, “Prognostic modelling with logistic regression analy-
sis: a comparison of selection and estimation methods in small
data sets,” Statistics in Medicine, vol. 19, pp. 1059–1079, 2000.

[79] E. W. Steyerberg, Clinical prediction models: a practical approach to
development, validation, and updating. Springer Science & Business
Media, 2008.

[80] E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, N. Obu-
chowski, M. J. Pencina, and M. W. Kattan, “Assessing the per-
formance of prediction models: a framework for some traditional
and novel measures,” Epidemiology, vol. 21, no. 1, pp. 128–138,
2010.

[81] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect Prediction
for Imbalanced Data,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2015, pp. 99–108.

[82] C. Tantithamthavorn, “Towards a Better Understanding of the
Impact of Experimental Components on Defect Prediction Mod-
elling,” in Companion Proceedings of the International Conference on
Software Engineering (ICSE), 2016, pp. 867–870.

[83] ——, “ScottKnottESD: The Scott-Knott Effect Size Differ-
ence (ESD) Test,” https://cran.r-project.org/web/packages/
ScottKnottESD/index.html, 2017.

[84] C. Tantithamthavorn and A. E. Hassan, “An experience report
on defect modelling in practice: Pitfalls and challenges,” in In
Proceedings of the International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP’18), 2018.

[85] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The Impact of Mislabelling on the Performance
and Interpretation of Defect Prediction Models,” in Proceedings of
the International Conference on Software Engineering (ICSE), 2015,
pp. 812–823.

[86] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Mat-
sumoto, “Automated Parameter Optimization of Classification
Techniques for Defect Prediction Models,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2016, pp.
321–322.

[87] ——, “Comments on ”Researcher Bias: The Use of Machine
Learning in Software Defect Prediction”,” IEEE Transactions on
Software Engineering (TSE), 2016.

[88] ——, “An Empirical Comparison of Model Validation Techniques
for Defect Prediction Models,” IEEE Transactions on Software En-
gineering (TSE), 2017.

[89] ——, “The Impact of Automated Parameter Optimization on De-
fect Prediction Models,” IEEE Transactions on Software Engineering
(TSE), 2018.

[90] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida,
“Revisiting code ownership and its relationship with software
quality in the scope of modern code review,” in Proceedings of
the International Conference on Software Engineering (ICSE), 2016,
pp. 1039–1050.

[91] L. Torgo, “DMwR: Functions and data for ”Data Min-
ing with R”,” https://cran.r-project.org/web/packages/DMwR/
index.html, 2013.

[92] B. Turhan, “On the dataset shift problem in software engineering
prediction models,” Empirical Software Engineering, vol. 17, no. 1-2,
pp. 62–74, 2011.

[93] S. Wang and X. Yao, “Using Class Imbalance Learning for Soft-
ware Defect Prediction,” IEEE Transactions on Reliability, vol. 62,
no. 2, pp. 434–443, 2013.

[94] R. Wu, H. Zhang, S. Kim, and S. C. Cheung, “ReLink: Recovering

Links between Bugs and Changes,” in Proceedings of the joint
meeting of the European Software Engineering Conference and the
symposium on the Foundations of Software Engineering (ESEC/FSE),
2011, pp. 15–25.

[95] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “Elblocker:
Predicting blocking bugs with ensemble imbalance learning,”
Information and Software Technology, vol. 61, pp. 93–106, 2015.

[96] X.-L. Yang, D. Lo, X. Xia, Q. Huang, and J.-L. Sun, “High-impact
bug report identification with imbalanced learning strategies,” J.
Comput. Sci. & Technol, vol. 32, no. 1, 2017.

[97] X. Yang, D. Lo, Q. Huang, X. Xia, and J. Sun, “Automated
identification of high impact bug reports leveraging imbalanced
learning strategies,” in Computer Software and Applications Confer-
ence (COMPSAC), 2016 IEEE 40th Annual, vol. 1. IEEE, 2016, pp.
227–232.

[98] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction,” in Proceedings of the European
Software Engineering Conference and the symposium on the Founda-
tions of Software Engineering (ESEC/FSE), 2009, pp. 91–100.

[99] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting Defects
for Eclipse,” in Proceedings of the International Workshop on Predictor
Models in Software Engineering (PROMISE), 2007, pp. 9–20.

APPENDIX

Tables 7, 8, 9 provide additional results with respect to
RQ2.

TABLE 7: Statistics of the regression model of the re-
lationship between the experimental factors and the
performance difference of the F-Measure measure.

Factor Analysis
Adjusted R2 0.50

Optimism-reduced adjusted R2 0.48
Total Wald χ2 837.51

D.F. χ2 p-value
Classification Technique 6 33% ***

Class Rebalancing Technique 3 33% ***
Defective Ratio 1 23% ***

EPV 1 8% ***
Metric Family 4 3% ***

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

TABLE 8: Statistics of the regression model of the re-
lationship between the experimental factors and the
performance difference of the AUC measure.

Factor Analysis
Adjusted R2 0.36

Optimism-reduced adjusted R2 0.33
Total Wald χ2 525.54

D.F. χ2 p-value
Class Rebalancing Technique 3 77% ***

Classification Technique 6 17% ***
Metric Family 4 5% ***

Defective Ratio 1 0% ◦
EPV 1 0% ◦

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

https://cran.r-project.org/web/packages/ScottKnottESD/index.html
https://cran.r-project.org/web/packages/ScottKnottESD/index.html
https://cran.r-project.org/web/packages/DMwR/index.html
https://cran.r-project.org/web/packages/DMwR/index.html

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876537, IEEE
Transactions on Software Engineering

22

TABLE 9: Statistics of the regression model of the re-
lationship between the experimental factors and the
performance difference of the MCC measure.

Factor Analysis
Adjusted R2 0.31

Optimism-reduced adjusted R2 0.28
Total Wald χ2 357.46

D.F. χ2 p-value
Classification Technique 6 59% ***

Class Rebalancing Technique 3 10% ***
Metric Family 4 10% ***

Defective Ratio 1 10% ***
EPV 1 11% ***

Statistical significance of explanatory power according to
Wald χ2 likelihood ratio test: ◦ p ≥ 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001

Chakkrit Tantithamthavorn is a lecturer at the
Faculty of Information Technology, Monash Uni-
versity, Australia. Prior to that, he was a lecturer
at School of Computer Science, the University
of Adelaide, a research fellow at Queen’s Uni-
versity, and a research fellow at Nara Institute
of Science and Technology. During his Ph.D.
study, he won one of the most prestigious and
selective sources of national funding in Japan,
i.e., a JSPS Research Fellowship for Young Re-
searchers and a Grants-in-Aid for JSPS Fellow,

and won a ”Best Ph.D. Student Award”. His work has been published
at several top-tier software engineering venues, such as the IEEE
Transactions on Software Engineering (TSE), the Springer Journal of
Empirical Software Engineering (EMSE) and the International Confer-
ence on Software Engineering (ICSE). His Ph.D. thesis aims to improve

the fundamentals of analytical modelling for software engineering in
order to produce more accurate predictions and reliable insights. His
research interests include empirical software engineering and mining
software repositories (MSR). He received the B.E. degree in computer
engineering from Kasetsart University, Thailand, the M.E. and Ph.D.
degrees in Information Science from Nara Institute of Science and
Technology, Japan. More about Chakkrit and his work is available online
at http://chakkrit.com.

Ahmed E. Hassan is the Canada Research
Chair (CRC) in Software Analytics, and the
NSERC/BlackBerry Software Engineering Chair
at the School of Computing at Queens Uni-
versity, Canada. His research interests include
mining software repositories, empirical software
engineering, load testing, and log mining. He
received a PhD in Computer Science from the
University of Waterloo. He spearheaded the cre-
ation of the Mining Software Repositories (MSR)
conference and its research community. He also

serves on the editorial boards of IEEE Transactions on Software Engi-
neering, Springer Journal of Empirical Software Engineering, and PeerJ
Computer Science. More about Ahmed and his work is available online
at http://sail.cs.queensu.ca/.

Kenichi Matsumoto is a professor in the Grad-
uate School of Information Science at Nara In-
stitute of Science and Technology, Japan. He
received the Ph.D. degree in information and
computer sciences from Osaka University. His
research interests include software measure-
ment and software process. He is a fellow of
the IEICE, a senior member of the IEEE, and
a member of the ACM, and the IPSJ. More
about Kenichi and his work is available online at

http://se-naist.jp/.

http://chakkrit.com
http://sail.cs.queensu.ca/
http://se-naist.jp/

