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Abstract—In a software ecosystem, a dependency relationship enables a client package to reuse a certain version of a provider
package. Packages in a software ecosystem often release versions containing bug fixes, new functionalities, and security
enhancements. Hence, updating the provider version is an important maintenance task for client packages. Despite the number of
investigations about dependency updates, there is a lack of studies about dependency downgrades in software ecosystems. A
downgrade indicates that the adopted version of a provider package is not suitable to the client package at a certain moment. In this
paper, we investigate downgrades in the npm ecosystem. We address three research questions. In our first RQ, we provide a list of the
reasons behind the occurrence of downgrades. Our manual analysis of the artifacts (e.g., release notes and commit messages) of a
package code repository identified two categories of downgrades according to their rationale: reactive and preventive. The reasons
behind reactive downgrades are defects in a specific version of a provider, unexpected feature changes in a provider, and
incompatibilities. In turn, preventive downgrades are an attempt to avoid issues in future releases. In our second RQ, we investigate
how the versioning of dependencies is modified when a downgrade occurs. We observed that 49% of the downgrades are performed
by replacing a range of acceptable versions of a provider by a specific old version. This observation suggests that client packages have
the tendency to become more conservative regarding the update of their providers after a downgrade. Also, 48% of the downgrades
reduce the provider version by a minor level (e.g., from 2.1.0 to 2.0.0). This observation indicates that client packages in npm should be
cautious when updating minor releases of the provider (e.g., by prioritizing tests). Finally, in our third RQ we observed that 50% of the
downgrades are performed at a rate that is 2.6 times as slow as the median time-between-releases of their associated client packages.
We also observed that downgrades that follow an explicit update of a provider package occur faster than downgrades that follow an
implicit update. Explicit updates occur when the provider is updated by means of an explicit change to the versioning specification (i.e.,
the string used by client packages to define the provider version that they are willing to adopt). We conjecture that, due to the controlled
nature of explicit updates, it is easier for client packages to identify the provider that is associated with the problem that motivated the
downgrade.
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1 INTRODUCTION

Prior research shows that code reuse is related to the
improvement of developers productivity, software quality,
and time-to-market of software products [1, 2]. In the last
decade, software ecosystems arose as an important mech-
anism to promote and support code reuse. In this paper,
we focus on ecosystems that are set around packaging plat-
forms for a programming language [3, 4]. Such platforms
are built upon the notion of dependencies between packages.
A dependency relationship enables a client package to reuse
a certain version of a provider package.

In several ecosystems, client packages can specify a
dependency as either a dependency to a specific version or
a range of versions of a provider. If a range of versions is
specified, the provider is implicitly updated whenever a new
version satisfying this range is released. If a specific version
is used, an update can only happen by switching it to a
newer specific version or by using an appropriate version
range. In addition, packages in software ecosystems typi-
cally adopt a version numbering scheme to communicate
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changes that are introduced in new releases. A popular
scheme is the Semantic Version specification, in which a
version number comprises three digits separated by a dot
(e.g., 1.0.0). The first digit represents the major level of
the version number, commonly incremented whenever a
backward-incompatible API change is introduced in a new
release. The second one represents the minor level, com-
monly incremented whenever a new backward-compatible
feature is introduced, and the third one represents the
patch level, commonly incremented whenever a bug fix is
introduced.

The benefits and drawbacks of updating providers in
software ecosystems have been extensively studied [5, 6, 7,
8, 9, 10, 11]. On the one hand, updating providers enables
a client package to benefit from bug fixes, new functional-
ities, security enhancements, and novel APIs. On the other
hand, updating providers also makes a client package more
susceptible to potential problems in the new version of the
provider. In the latter case, client packages might end up
downgrading a provider, i.e., reverting it to an older version.

In this paper, we study why and how downgrades occur.
Our motivation is based on the following observations:
• Downgrades naturally indicate that one or more provider ver-
sions caused problems to the client package. Despite being a
natural indication of issues, downgrades can be a simple
and rapid workaround for specific issues that arise when
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a provider package is updated. While prior research in-
dicates that backward-incompatible changes (a.k.a., break-
ing changes) [12], bugs [13, 14], and vulnerabilities in the
provider package [15] motivate downgrades, the actual rea-
sons behind downgrades have not been thoroughly investi-
gated. Our objective in this paper is to study the reasons that
motivate downgrades, such that practitioners can be aware
of the typical cases that lead to this type of workaround.
• Many software ecosystems platforms allow client packages to
accept implicit updates of provider packages. Such automatic up-
dates can hinder the identification of the provider package
behind a certain issue. As a consequence, the downgrade of
such a provider might be delayed, or even the downgrade of
unrelated providers might occur. Moreover we hypothesize
that such automated upgrading may lead to problematic up-
dates which in turn might force client packages to abandon
automated updating altogether.
• Downgrades indirectly impact packages in a software ecosys-
tem environment. A package that downgrades one of its
providers might affect some of its clients that indirectly
depend on features of the downgraded provider. Package
releases with downgrades and that are used by many client
packages have a particularly large potential impact.
• Downgrades increase the technical lag of client packages. The
technical lag represents the extent to which client pack-
ages are missing the latest features and bug fixes from a
provider. Measuring the technical lag that is introduced
when a downgrade is performed should help practitioners
understand the side-effects of this workaround.

All of the aforementioned issues raise important ques-
tions about how to reduce the potentially harmful side-
effects of a downgrade. Elucidating detailed reasons be-
hind downgrades, as well as how client packages perform
these downgrades, would provide a more in-depth under-
standing of downgrades and their consequences, ultimately
fostering further research and tool development to support
package developers.

To conduct our study, we collected data from npm1, the
largest ecosystem supporting the Javascript programming
language, containing more than 600K reusable packages.
According to a survey by StackOverflow2, JavaScript was
the most commonly used programming language in 2018,
with 69.8% out of more than 100K respondents affirming
their use of JavaScript. In addition, managing dependencies
in npm is a growing business and a number of commercial
tools to aid in this task are available nowadays [13, 16]. We
addressed the following research questions:

RQ1. Why do downgrades occur? We observed two types
of downgrades: reactive and preventive. The main reasons
behind reactive downgrades are: defects in the provider
version (during build-time, run-time, or development-time),
unexpected feature changes in the provider, and incompat-
ibilities (between provider versions, or with Node version).
Preventive downgrades occur by pinning a provider pack-
age to a prior version in an attempt to avoid issues in future
releases of this particular provider. Preventive downgrades
can be triggered by recommendations from automated tools.

1. https://npmjs.com
2. https://insights.stackoverflow.com/survey/2018/

RQ2. How is the versioning of providers modified in
a downgrade? Downgrades are commonly performed by
choosing a specific old version of the provider (62%) instead
of specifying a range of acceptable old versions (38%). In
75.5% of the client releases containing a downgrade, only a
single provider is downgraded. In 48% of the downgrades,
the provider version is reduced by a minor level (e.g., from
2.1.0 to 2.0.0). In addition, we calculated the technical lag
induced by downgrades, i.e., the number of releases that are
back skipped when a provider is downgraded. We observed
that downgrades of major version levels (e.g., from 2.0.0
to 1.2.3) introduce more technical lag than downgrades of
minor and patch version levels.
RQ3. How fast do downgrades occur? Half of the down-
grades are performed at a rate that is 2.6 times as slow as
the typical time-between-releases of their associated client
packages. The median time to downgrade an implicitly
updated provider is roughly 9 times higher than that for
an explicitly updated provider. In specific, only 5.6% of
the downgrades are performed in within 24 hours after the
update of the provider.

Our key contribution is providing empirically-sound
evidence from cross-linked data regarding why and how
downgrades occur on npm, while also discussing the impli-
cations of our findings to client package developers. As an
additional contribution, we provide an algorithm to recover
a branch-based ordering of releases, which may be reused
by other researchers studying downgrades (and updates) on
npm. Finally, we provide a supplementary material with the
data that is used in this study 3 as a means to bootstrap other
studies in the area.

The remainder of this paper is organized as follows.
Section 2 provides a background on how npm selects the
provider version to be loaded by a client package. Section 3
describes our approach to detect downgrades. Section 4
explains how we collected and processed the data from npm.
Section 5 presents the motivation, approach, and findings
to the aforementioned RQs. Section 6 presents a discussion
about our findings. Section 7 presents the related work
and Section 8 presents the threats to the validity. Finally,
Section 9 concludes our paper.

2 DEPENDENCY MANAGEMENT ON NPM

When developers publish a package on npm, they must in-
clude a metadata file called package.json. The package.json file
contains a list of providers that are used in a given release
of the published package. Each provider has a versioning
statement associated with it. The versioning statement spec-
ifies the version(s) of the provider on which the client (i.e.,
published package) is willing to depend.

The resolved version is the actual version of the provider
package that is going to be loaded as a dependency at the
time of the installation of the client package. For example,
if a client package C depends on a provider package P ,
the developer of C would include a versioning statement in
its package.json file such as “P”: “1.2.3”. This versioning
statement informs npm that version 1.2.3 of package P
should be loaded when package C is installed.

3. https://github.com/SAILResearch/replication-npm_downgrades

https://npmjs.com
https://insights.stackoverflow.com/survey/2018/
https://github.com/SAILResearch/replication-npm_downgrades
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A versioning statement can be one of two types: a
specific version (e.g., “P”:“1.2.3”) or a version range (e.g.,
“P”:“>1.2.3”). The specific version statement is satisfied
by a unique version of a provider, defined by the right-
hand side of the versioning statement (i.e., version 1.2.3).
The version range statement is satisfied by a range of
versions of a provider (i.e., any version greater than 1.2.3).
Version range statements are used by client packages when
they wish to implicitly update the version of a provider
without having to change their versioning statement. When
a provider releases a new version that is satisfied by the
existing version range statement by a client package, this
provider is implicitly updated. More specifically, the new
version of the provider is loaded for all new installs of the
client package.

A version range statement has three parts: the provider
to which it refers (“P”, in the previous example), an oper-
ator (“>”, in the previous example), and a numerical part
(“1.2.3”, in the previous example). The combinations of
operator and numerical part define the range of provider
versions that can be satisfied by the versioning statement. In
fact, there is a grammar for defining a version range in npm.
Such a grammar relies on a set of operator whose definitions
and examples are provided on the Appendix A. When a
version range is used, the resolved version corresponds to
the largest provider version that satisfies the range. Pre-
releases of the provider are not satisfied unless they are
explicitly included in the versioning statement.

The mechanism to resolve a provider version relies on
the precedence between version numbers, since npm needs
to know if a particular version number is greater than, less
than, or equal to another version number. npm adopts the
Semantic Version4 numbering scheme. A version number in
this scheme is comprised of three levels: major, minor, and
patch. Each level is separated by a “.” (dot) sign, such as
in 1.2.3, where 1 is the major level, 2 is the minor, and 3 is
the patch. It is also possible to append a“–” (hyphen) sign
to the version number, followed by a number or a string,
in order to indicate a pre-release. Furthermore, it is possible
to append a “+” (plus) sign, followed by a number or a
string, in order to indicate that a version is not production
ready (i.e., it is merely a new build). Similarly to decimal
numbers, semantic version numbers are compared initially
by the magnitude of their major level, then by their minor
and patch levels. For example, version 3.2.1 is lower than
versions 4.0.0 (by a major), 3.3.1 (by a minor), and 3.2.2 (by
a patch), but greater than versions 2.2.1 (by a major), 3.1.1
(by a minor), and 3.2.0 (by a patch).

A client package can set a provider package as either
a development or a production dependency. A provider
package that is set as a development dependency (so-called
development provider) is loaded only at the development
environment (e.g., the source code repository to which
developers commit changes). Consequently, development
providers are not loaded when the client package is installed
from npm. For instance, test frameworks are generally de-
velopment providers, since they need to be loaded by the
client package developers but not by the client users. As a
consequence, issues that arise from development providers

4. https://semver.org

do not affect the deployed client package (i.e., in the produc-
tion environment), making the reaction to such issues less
urgent. In turn, provider packages that are set as production
dependencies (so-called production providers) are loaded
both at the production and development environments.
When a client package is installed from npm, providers that
are set as production dependencies are also installed with
their respective resolved versions and loaded at runtime.

3 DOWNGRADE DETECTION

A downgrade is detected whenever the resolved provider
version decreases between two adjacent client releases. Con-
sidering the history of releases of a client package, the
definition of a downgrade relies on how the logical order of
client releases is defined. More formally, given a list of RC

releases of the client package C with the respective version
numbers and timestamps, the definition of a downgrade of
a provider P by the client C depends on how ri−1 and
ri, ∀i ∈ {1 . . . |RC |}, are defined. To detect downgrades,
we sorted the releases of the client packages according to a
branch-based ordering algorithm.

The conceived algorithm to derive the branch-based or-
dering works as follows: as the client releases are examined
in a chronological order, we check if any of the previously
visited releases are in the same branch as the current one
(being a branch defined by the major and minor levels, e.g.
the 1.0 branch contains versions 1.0.0 and 1.0.1). If so, then
the release with the largest version number in the branch of
the current release is deemed the predecessor of the current
release. Otherwise, the release visited so far with the largest
version number is deemed the predecessor of the current
release. We detected 19,651 downgrades by comparing the
resolved provider versions from adjacent client releases.
Of all detected downgrades, 48% are from development
providers and 52% are from production providers. Further
details about the approach that we conceived to detect
downgrades are described in Appendix B.

4 DATA COLLECTION

We obtained the package.json metadata file of 461,548 pack-
ages from the npm registry within the period of Decem-
ber 20, 2010 to July 01, 2017. The package.json file lists,
among other pieces of information, all the published re-
leases by a client package, the name of the used providers in
each release, the versioning statements associated with the
providers in each client release, and the timestamp of each
release.

We parsed the versioning statement of all dependencies
in the package.json files according to the adopted grammar
by npm (c.f. Section 2). Subsequently, we determined the
resolved version of each provider according to the ver-
sioning statement used by the client in that release. Such
information was used to detect the downgrades that were
studied in RQ1, RQ2, and RQ3. We also collected the list
of commits, issues, and release notes that are associated
with a statistically representative sample of the releases that
contain at least one downgrade, from which we obtained
information that was used to answer RQ1. Further details
about our data collection proccess are given in Appendix C.

https://semver.org
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5 RESULTS

This section presents the results for each of our RQs. For
each RQ, we discuss its motivation, the method that we used
to address the RQ, and our findings.

5.1 RQ1. Why do downgrades occur?

Motivation: Downgrades indicate that one or more provider
versions caused some problem to the client package. Prior
studies have only provided limited explanation regarding
what these problems are. Therefore, in this RQ, we investi-
gate the rationale behind downgrades.

Approach: We manually examined a statistically represen-
tative random sample of client releases in which a provider
downgrade occurred. We studied the various artifacts (e.g.,
release notes, commit messages, and modified files) asso-
ciated with a client and its release in search for explicit
mentions of the rationale for a downgrade. For example, in a
commit message that says “gulp-strip-comment 1.1.1 is broken.
force to use an old version”, the rationale for the downgrade is
that the package gulp-strip-comment at version 1.1.1 caused
a failure in the client package.

Figure 1 depicts the approach that we used to identify
the rationale for downgrades. We initially grouped the list
of 19,651 downgrades into the 10,967 client releases in which
at least one downgrade occurred. The reason for grouping
the downgrades by the client releases is that the distribution
of the number of downgrades per client release is skewed:
52% of the downgrades occur in 20% of the client releases
with downgrades. Hence, a simple random sampling of the
downgrades would be biased towards client releases with
many downgrades.

Manually analyze
artifacts  

(open coding)

Rationale for downgrades

Yes 

List of 19,651
downgrades

Group by  
client releases 

Sample client release
with at least one

downgrade 

Identify releases with downgrades

Sample releases with downgrades

VCS

No

Localize artifacts

Identify the rationale for downgrades

10,967 client
releases with
downgrade

371 client  
releases with
downgrades

Commits

Issues

Release notes

GitHub

VCS available 
& downgrade commit 

found? 

Fig. 1 Our approach to identify the rationale for downgrades.

After grouping the downgrades by the client releases, we
drew a statistically representative sample (95% confidence
level and ±5% confidence interval) from these releases (371
cases out of 10,967). For each client package release in
our sample of client releases with at least one downgrade,
we checked whether the VCS that is used by the package

was available and whether the exact commit in which the
downgrade was performed could be identified. Whenever
an observation in our sample did not meet any of these two
requirements, we randomly drew another observation from
the population of client releases containing downgrades.

Finally, we manually analyzed the sampled releases in
order to identify the rationale for downgrades. The exam-
ined artifacts were obtained from the VCS and ITS of each
client package. More than 98% of the examined packages
used GitHub5 as their ITS. We performed a thorough ex-
amination of the modified artifacts in a commit in which
a downgrade was performed. The following artifacts were
examined:

• Commit message;
• Artifacts that are modified in the commit, particularly the

package.json file and the release notes (if available);
• Issues that reference the commit (if available);
• Pull requests that reference the commit (if available).

We performed an open coding [17] over the examined
artifacts to categorize the rationale for the downgrades. The
codes generated as part of the open coding process are
included in our supplementary material.

Findings: Observation 1) Downgrades are performed by
client packages either to cope with an issue in a specific
provider version or in an attempt to avoid potential future
issues. This observation led us to separate downgrades in
two categories, according to their rationale: reactive and pre-
ventive. The motivation for reactive downgrades is to cope
with an issue in a specific provider version that negatively
affected the client package. Reactive downgrades are cap-
tured by quotes such as “tar@2.2.1 breaks build”, “Bluebird’s
2.9.x branch has proven to be rather buggy and introduces more
issues than it fixes, so let’s stick with the stable version”. On the
other hand, preventive downgrades are performed to avoid
issues from recent provider releases. This latter category
is represented by quotes such as “Locks down package.json
dependency versions to avoid build inconsistencies and variation
across systems”, or “We should consider pinning all dependencies
to prevent issues like this in the future”.

Observation 2) There are three issues that motivate a reac-
tive downgrade: defect in the provider version, unexpected
feature changes in a provider, and incompatibilities. In the
following, we describe each of these issues.

Issue 1) Defect in the provider version: The resolved
provider version contains a defect that leads to a failure
in the client package. The failure can manifest itself at three
different times:

a) Build-time – occurs when the client package fails while it
is being installed/built:

5. http://www.github.com

http://www.github.com
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“tar@2.2.1 breaks build.” [commit message from
pull request #103 of package urllib],

“The most recent 0.1.x (0.1.15) broke the build, hence
pin it to 0.1.13 for now until it is fixed.” [message on

commit #2b23764 of package noise-search],
“This library currently yield a warning on install”

[discussion on issue #28 of package ua-parser-json],
“Fix version range for devDependencies (...) fixes #28”

[message on commit #2dec1a8 of package
ua-parser-json]

b) Run-time – occurs when the client package fails while it is
running:

“The update has some breaking changes in how the
CircularProgress is rendenred [sic] (...)” [message on

commit #3273dae of package d2-ui],
“lock dependencies so specs run” [message on

commit #1dfad5e of package wunderbits.db when
downgrading provider karma],

“The way tokens are exposed seems to have changed
fundamentally, which broke parsing.” [message on

pull request #832 of package witheve when
downgrading provider chevrotain]

c) Development-time – occurs when the failure manifests itself
during the development and in-house testing of the client
package:

“fix versions of things in package.json to original
known working versions (trying to get react datum

tests working again)” [message on commit #7397630
of package bumble-test],

“Fixed package.json which for some reason was not
allowing webpack and karma validate for my tests.”

[message on commit #5d10a53 of package
karma-styluspreprocessor]

The defect in the provider might also occur due to
degradation of non-functional requirements. The actually
resolved provider version is not able to fully adhere to a
non-functional requirement of the client package:

“Downgrade ‘css-loader’ to 0.14.5 to address superslow
HMR builds (...)” [message on commit #67bec17 of

package brokerjs],
“Rollback the Karma dependency version. ‘karma‘ was

taking a long time (∼30s) to exit the test suites (...)”
[message on commit #6f49232 of package

packery-angular],
“Freeze dependencies version to better use cache on

Travis (...)” [message on commit #0d4633d of
package ember-cli-foreigner]

Issue 2) Unexpected feature changes: The current provider
version behaves in an unexpected and/or undesired way
compared to some prior version (however, the provider’s
behaviour is not considered defective).

“Reverting mysql to 2.1.1 (...) Unfortunately mysql
has changed the way it handles the charset setting (...)
We need to revert this upgrade until the issue is fixed

or we have a way to handle it nicely for our users.”
[message on commit #1f17d5b of package ghost],

“Downgraded esdoc to 0.4.3 because they got rid of CLI
options” [message on commit #67bec17 of package

brokerjs]

Issue 3) Incompatibilities: An incompatibility prevents the
client package from operating properly. We identified two
sources of incompatibilities.

a) Incompatibilities between provider versions – it occurs when
the version of two (or more) providers that are used by the
client package are not compatible with each other:

“release 1.3.2 fix fs-extras compability [sic].” [message
on commit #3f0f6c4 of package yog2-kernel],

“Package version modification for compatibility.”
[message on commit #d3f42 of package

mozaik-ext-jira-2 when downgrading package
superagent],

“reverted jquery version to 2 for jquery-ui
compatability [sic].” [message on commit #926653a

of package yasgui-yasr]

b) Incompatibilities with Node version – it occurs when the
resolved provider version requires a specific Node version,
which in turn is incompatible with the Node version that
is used by the client. Node is the run-time engine for
JavaScript, which is the language in which npm packages
are written:

“npm versions changed to run the project with node
5.4 (...)” [message on commit #ee5c524 of package

d3-composite-projections],
“Fix npm error on node 0.8.x.” [message on commit

#d5d3078 of package grunt-wget],
“remove caret to allow compatibility with node 0.8”
[message on commit #f0b57e4 of package nodo],
“(...) lock to very specific version that works on node
0.10” [message on commit #76de1c0 of package

stack-utils-node-internals]

Observation 3) A preventive downgrade is performed to
avoid potential issues from future releases of the provider.
This preventive action is often referred to in the examined
commit messages as “pinning” or “locking” the provider
version. It is done to avoid potential failures that might arise
when a provider is updated to a new version. When pinning
a provider version, the developer of the client package
typically removes the range operator from a version range
statement. Such a modification to the versioning statement
might lead to a downgrade. For example, if the version-
ing statement is modified from “P”: “>=2.0.0” to “P”:
“2.0.0” and the newest version of the provider P is 2.0.1,
then this provider will be downgraded from 2.0.1 to 2.0.0
when the range operator “>=” is removed. The following
excerpts are examples that we observed in the manually
examined downgrades:
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“We have now had 2 issues where a “patch” upgrade in
a dependency broke Parse Server. (...) We should

consider pinning all dependencies to prevent issues like
this in the future.” [discussion on issue #2040 of

package parse-server],
“Locks down package.json dependency versions to

avoid build inconsistencies and variation across
systems.” [message on pull request #82 of package

lightstep-tracer-javascript],
“Use exact versions in package.json: Because some of
the new ones caused issue when calling npm install.”

[message on commit #c1e12fe of package
atom-keymap],

“Lock broccoli-funnel to prevent rebuild error (...)”
[message on pull request #237 of package

ember-engines],
“please pin the moment dependency: By using >= you

expose anyone using your package and installing via
npm install to different versions of the package being

installed.” [discussion on issue #55 of package
emailjs],

“Lock broccoli-funnel to prevent rebuild error (...)”
[message on pull request #237 of package

ember-engines]

Observation 4) Preventive downgrades can be triggered
by recommendations from automated tools. Automated
tools that manage dependency versioning can recommend
that a client package converts all version ranges to specific
versions. These recommendations are deployed through
automatically created pull requests that simply remove the
range operator from all the versioning statements listed in
the client’s package.json file.

“Hello! We’re all trying to keep our software up to date,
yet stable at the same time. This is the first in a series of
automatic PRs to help you achieve this goal. It pins all

of the dependencies in your package.json, so you have
complete control over the exact state of your software.”
[message in pull request #16 of package noflo-core]

5.2 RQ2. How is the versioning of providers modified
in a downgrade?
In this RQ, we investigate how the versioning of providers
is modified when a provider is downgraded. Our investi-
gation contemplates three different angles, namely: how the
versioning statements are modified in releases containing a
downgrade (Section 5.2.1), how many providers are down-
graded in a release containing a downgrade (Section 5.2.2),
and how the resolved provider’s version changes when a
downgrade occurs (Section 5.2.3).

5.2.1 Modification of versioning statements
Motivation: From a client package perspective, using ver-
sion range statements has the advantage of reducing the
overhead of keeping its providers up-to-date. On the other
hand, the adoption of version range statements makes the
client package susceptible to bugs in provider versions that
are implicitly updated. We hypothesize that downgrades are
associated with a transition from version range statements
to specific versions, specially when a problematic implicit
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Fig. 2 Proportion of downgrades per type of versioning statement
change.

update triggers the downgrade. An evidence of such an
association is the occurrence of preventive downgrades and
the action of “pinning” dependencies, as we observed in
RQ1. In fact, practitioners often advocate against the adop-
tion of version range statements due to the possibility of
being caught by surprise by a newly introduced bug in a
provider version [18, 19, 20]. In this RQ, we investigate how
downgrades are associated with changes in the versioning
statements.
Approach: We calculate the proportion of downgrades that
resulted from replacing a version range statement with a
specific version and vice-versa. In addition, for the cases in
which a version range remains being used after a down-
grade, we investigate how the operators and numerical part
of the versioning statement are modified.
Findings: Observation 5) Almost half (49%) of the down-
grades occur due to a replacement of a version range state-
ment with a specific version. Figure 2 shows the proportion
of downgrades per type of versioning statement change.
The most common type of versioning statement change in
downgrades (49%) is from range to specific (of which 49%
are from production providers). In this subgroup, 68% of
the cases were performed simply by removing the range
operator and keeping the numerical part. As we observed
in RQ1, this is how preventive downgrades are typically
performed: instead of carefully choosing a provider version,
developers simply remove the version range operator from
versioning statements. Also, when the versioning statement
remains as specific, the proportion of downgrades that
are from production providers is 61%. In turn, the same
proportion is 48% when the versioning statement changes
from specific to range.

As also shown in Figure 2, the versioning statement re-
mains as a range in 37% of the downgrades (of which 51% are
from production providers). In this subgroup, 21.8% of the
cases involved replacing a caret (∧) operator with a tilde (∼)
operator. The tilde operator resolves towards a patch update
of the provider, while the caret operator resolves towards a
minor update. In 58.1% of the caret-to-tilde replacements,
the numerical part of the version range did not change.
As a consequence, the range of provider versions that are
accepted by the client is narrowed down. There are no cases
for which the change from caret to tilde would be effectless
(i.e., downgrades in which the versioning statement change
from “∧0.x.y” to “∼0.x.y”).
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Fig. 3 Number of downgraded providers in the same client release.

5.2.2 Number of providers that are downgraded in a re-
lease

Motivation: When one or more providers cause an is-
sue, client package developers might perform a reactive
downgrade. However, detecting the specific troublesome
provider might not be trivial and developers might end up
downgrading unrelated providers. In addition, “pinning”
a large number of providers might result in downgrading
many providers at once. Hence, in this research question we
investigate how localized downgrades are.

Approach: We categorize all client releases with down-
grades as having one, two, three, four, five, and more
than five providers downgraded. Afterwards, we count the
number of client releases with downgrades that fit these
categories. For each client release with a downgrade in one
of these categories, we verified the proportion of providers
(from the total number of used providers) that were down-
graded.

Findings: Observation 6) In 75.5% of the client releases
containing a downgrade, only a single provider is down-
graded in these releases. This observation is depicted in
Figure 3. In 58.3% of the releases in which a single provider
was downgraded, more than 10 providers were being used
by the client package (black portion of left-most stacked
bar). On the other hand, in only 2.5% of all releases with
downgrades all providers were downgraded at once (sum
of lightest gray portion over all stacked bars). These results
thus indicate that downgrades are often localized.

5.2.3 Introduced technical lag

Motivation: When a client package performs a downgrade,
there is an increase in the technical lag regarding the re-
solved provider version [21, 22]. As such, downgrades nat-
urally prevent client packages from leveraging the benefits
brought by newer releases, including bug fixes, vulnerabil-
ities fixes, and new features [8, 23, 24]. Thus, it is generally
advised that client packages keep their providers up-to-
date. The technical lag introduced in a downgrade can not
only affect the client package itself, but also affect transitive
dependencies. For this reason, it is important to evaluate the
impact of downgrades in other packages in the ecosystem.
In this RQ, we measure the impact of downgrades on
the technical lag and the extent to which the introduced
technical lag can impact client packages that use a release
with downgrade. Finally, Zerouali et al. [25] show that there
is a difference between the technical lag of development

Client release

Provider release

Patch update

Minor downgrade

1.0.0 1.1.0 1.1.1 1.1.2

Update from
1.1.1 to 1.1.2

Downgrade from
1.1.2 to 1.0.0

Resolved version
1.1.1 of provider

Fig. 4 Number of back skipped provider versions in a minor downgrade
following a patch update.

and production providers. Therefore, we study whether the
technical lag introduced in a downgrade differs between
these two types of providers.

Approach: We calculate the proportion of provider versions
that were reduced by a major, minor, and patch level in a
downgrade. In addition, we compare the increased tech-
nical lag when a downgrade occurs with the decreased
technical lag when the prior update occurred. The increase
(or decrease) in technical lag is measured by the number
of already published provider versions that are back (or
forward) skipped in a downgrade (or update), according
to the numerical ordering. Figure 4 depicts this calculation.
The figure shows an update followed by a downgrade. A
patch update changes the resolved provider version from
1.1.1 to 1.1.2, decreasing the technical lag by one patch
release. On the next client release, the fourth version (1.1.2)
of the provider is downgraded towards the first version
(1.0.0). In this example, the downgrade back skipped three
versions (1.1.2, 1.1.1, and 1.1.0). Hence, we say that the
technical lag was increased by three versions (or two patch
and one minor release). Finally, we calculate the proportion
of releases with downgrade that have at least one client
package.

We verify if the distribution of the number of back-
skipped major, minor, and patch releases is different
between downgrades of development and production
providers. To compare the distributions, we test the null
hypothesis that both distributions do not differ from each
other using the Wilcoxon Rank Sum test (α = 0.05) [26] and
assess the magnitude of the difference with the Cliff’s Delta
(d) estimator of effect size [27]. To classify the effect size, we
use the following thresholds [28]: negligible for |d| ≤ 0.147,
small for 0.147 < |d| ≤ 0.33, medium for 0.33 < |d| ≤ 0.474,
and large otherwise.

Findings: Observation 7) 13% of the downgrades induce an
unnecessary increase in the technical lag. Table 1 shows
the proportion of patch, minor, and major downgrades
that follow a patch, minor, and major update. Downgraded
version levels that are larger than the updated version level
are shown in grey filled cells. Almost one fifth of the minor
downgrades (18%) follow a patch update and a total of 18%
of the major downgrades follow a patch or a minor update.
For such cases, the downgrade not only nullifies the benefits
of the prior update, but also increases the technical lag.

In 48% of the downgrades, the provider package version
is reduced by a minor level. Patch and major downgrades
represent, respectively, 27% and 25% of the downgrades.
Interestingly, these proportions do not correspond to the
proportion of patch, minor, and major releases of down-
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TABLE 1 Proportion of major, minor, and patch downgrades that follow
a major, minor, or patch update.
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Fig. 5 Number of back skipped provider versions in a major, minor,
and patch downgrade.

graded packages which are, respectively, 72%, 23%, and
5%. In addition, almost one fifth (19.4%) of the releases
containing a downgrade have at least one client package,
representing cases in which the technical lag can affect
transitive dependencies.

Observation 8) Major downgrades back skip a median of
1 major, 1 minor, and 3 patch releases. Figure 5 shows the
increase in technical lag for each modified version level in
a downgrade. In 65% of the major downgrades, at least one
minor release is also back skipped, while in 91% a patch
release is also back skipped (59% back skip both minor and
patch releases). Also, we verified that 85% of the minor
downgrades back skip at least one patch release. Compar-
ing downgrades of development and production providers,
the difference between the distribution of the number of
backskipped major and patch releases is not statistically
significant (p-value > 0.05). While the difference for the
number of back skipped minors is statistically significant,
the effect size is negligible (|d| = 0.114).

Major downgrades represent one quarter of all down-
grades and typically follow a pattern. 82% of the major
downgrades are preceded by a major update. Also, 75%
of the updates preceding a major downgrade are explicit,
indicating that the versioning statement used at the update
time generally does not satisfy the new major releases of
the provider and that major updates tend to be a well-
thought-out decision. Finally, 70% of the major downgrades
are rollbacks (i.e., the target of the downgrade is the version
that was originally used by the client package). These results
suggest that major downgrades are likely the result of a
failed attempt to update to a major version.

In 88% of the major updates that precede a major down-
grade, the update was explicit. This observation shows that
the majority of the major updates that precede a major
downgrade are deliberated, suggesting that many issues
that arise after a major update of a provider manifest them-
selves in-field (i.e., after deployment) but not in-house (i.e.,
at the development environment).

5.3 RQ3. How fast are downgrades performed?

Motivation: A downgrade indicates that one or more
providers caused some issue to the client package. In
particular, when the provider is implicitly updated (i.e.,
because the new provider version satisfies the specified
version range), these issues can manifest themselves in a
sudden manner, making it challenging to rapidly identify
the provider that is associated with the issue. In fact, prior
research has shown how unexpected defects impact the
quality of a software product [29]. Measuring the time
between the update of a provider version and the conse-
quent downgrade can thus help to understand how fast
client packages are able to react to the issues behind down-
grades. Furthermore, client packages can react to issues
that arise from development and production providers with
a different degree of urgency. For example, issues from
development providers should not impact the deployed
client package and the contingency of such issues can be
delayed without affecting the client package’s users. In this
RQ we also differentiate between the time to downgrade
development and production providers.

Approach: To determine how fast a downgrade is per-
formed, we calculate the ratio shown in Equation 1. The
ratio is a means to compare the taken time to perform
a given downgrade with the typical time between two
releases of a client package. Values larger than 1 indicate
that a downgrade D takes more time to occur than a typical
release of the client package C . A typical time between
releases of a client packageC is calculated by timeRel(C) in
Equation 1. We verify whether there is statistical difference
between the speedRatio(C,D) of development and produc-
tion providers. To do so, we used the Wilcoxon Rank Sum
test (α = 0.05) and the Cliff’s Delta estimator of effect size
(see Section 5.2.3 for a classification of the effect sizes).

speedRatio(C,D) =
time(D)

rel(D)× timeRel(C)
(1)

where:
• time(D) is the elapsed time (in days) between the update

and the eventual downgrade D.
• rel(D) is the number of spanned client releases between

the update and the eventual downgrade D (inclusive).
• timeRel(C) is the median elapsed time between the last

half releases of a client package C (in days per release).
We also investigate whether downgrades of implicit

updates take longer than downgrades of explicit updates.
Given a downgrade, we determine the timestamp of the
preceding update based on how this update occurred. When
an update is explicit, i.e., it occurs because the versioning
statement was modified, the timestamp is the date at which
the client package publishes a release with the updated
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TABLE 2 Summary of the variables calculated in Equation 1.

1st quart. Median Mean 3rd quart.

speedRatio(C,D) 1.02 2.63 191.59 10.78

time(D) 10.73 34.84 79.76 95.86

rel(D) 1.00 2.00 5.05 4.00

timeRel(C) 1.24 5.55 19.14 18.14

provider (depicted as a shaded dot in the timeline on the
left-hand side of Figure 6). On the other hand, when an
update is implicit, i.e., it occurs because the actual version
range satisfies the new version of the provider, the update
timestamp is the date at which the provider released the
version that was eventually downgraded (depicted as a
shaded diamond in the timeline on the right-hand side of
Figure 6).

We compare the distribution of the elapsed time between
an explicit update and its eventual downgrade with the
distribution of the elapsed time between an implicit update
and the eventual downgrade. This comparison is controlled
by the downgraded version level (i.e., whether it is a patch,
minor, or major downgrade). We compared the distributions
using the Wilcoxon Rank Sum test (α = 0.05) and the
Cliff’s Delta estimator of effect size (see Section 5.2.3 for
a classification of the effect size).
Findings: Observation 9) 50% of the downgrades are per-
formed 2.6 times slower than k typical releases, where k is
the number of releases taken for the downgrade to occur.
Figure 7 shows the distribution of the speedRatio(C,D)
(Equation 1) for development and production providers.
The difference between the two distributions is statistical
significant (p < 0.05) with a negligible effect size (|d| =
0.026). The first quartile of both distributions is greater
than 1, indicating that more than 75% of the client releases
published during the update and following downgrade of
a provider are slower than the typical releases of the client
package. In addition, Table 2 shows the median, mean, first,
and third quartile for the variables used in Equation 1. The
median time for a downgrade to occur is 34.8 days and 50%
of the downgrades occur in one or two releases after the
update of the provider.
Observation 10) Downgrades of an implicit update gener-
ally take longer than downgrades of an explicit update. The
observed difference can be explained by the fact that implicit
updates are not controlled by client package developers.
Hence, an issue that arises after the provider is updated can
appear unexpectedly. Thus, developers might need addi-
tional time to identify the provider(s) that is(are) associated
with the issue that concerns the downgrade. On the other
hand, when performing an explicit update, developers are
aware of which providers were modified, making it easier to
identify a provider that eventually needs to be downgraded.

Considering explicit updates that precede a downgrade,
the median time to downgrade a provider is 35 days for
major downgrades, 37 days for minor downgrades, and 46
days for patch downgrades. Considering implicit updates,
the median time is, respectively, 36, 48, and 35 days for
major, minor, and patch downgrades. Figure 8 depicts the
distributions. All pairwise differences between the down-
graded version levels (grouped by implicit and explicit

updates) are statistically significant, but have negligible
effect size. In turn, comparing the update types (implicit vs.
explicit) for major, minor, and patch downgrades, we obtain,
respectively, a statistically significant difference with large
effect size (|d| = 0.474), medium effect size (|d| = 0.454),
and large effect size (|d| = 0.477).

Observation 11) Urgent downgrades occur more often after
an explicitly update than after an implicit update. Urgent
downgrades refer to downgrades that occurred in less than
one day after the update of the provider. Figure 8 depicts
this observation. We found that 5.6% of all downgrades
are performed in an urgent manner. Also, 37.1% of the
downgrades of explicit updates are urgent downgrades. In
contrast, only 3.8% of the downgrades of implicit updates
are urgent updates. This observation corroborates our con-
jecture that, because explicit updates are controlled by the
client packages, developers are more likely to react fast to
the issues that were brought by these updates. In addi-
tion, 67% of the urgent downgrades are from production
providers.

6 DISCUSSION

In this section, we discuss the lessons that we learned from
conducting this study (Section 6.1), as well as opportunities
for future research (Section 6.2).

6.1 Lessons learned

The general lesson learned from our findings is that pack-
age developers should manage their dependencies. In particular,
package developers should keep track of their dependen-
cies over time and be cautious with provider updates.
Ultimately, these practices should optimize the debug of
troublesome updates (consequently reducing the time to
fix issues that affect the packages’ clients) and reduce the
technical lag that is introduced when a downgrade occurs.
In the following, we present specific lessons learned to help
practitioners manage dependencies.

Learned lesson 1) Package developers can use automated
tools to support early discovery of provider issues and
thus decrease the time taken to downgrade. The issue that
motivates a downgrade can take some time to manifest
itself. In particular, downgrades associated with implicit
updates take longer to occur (c.f., Observation 10), thus
delaying the provision of the fix to the packages’ users.
Several tool-assisted approaches can be employed to sup-
port the early detection of troublesome provider updates.
A simple approach can be employed using three different
tools: (i) latest-version6 checks what the latest version of a
provider package is, (ii) next-update7 runs the client’s test
suites, and (iii) npm-check-updates8 automatically updates
the versioning statements in the package.json file A step fur-
ther in the degree of automation involves the usage of bots
to manage dependency updates, such as Greenkeeper9 and

6. https://www.npmjs.com/package/latest-version
7. https://www.npmjs.com/package/next-update
8. https://www.npmjs.com/package/npm-check-updates
9. https://greenkeeper.io

https://www.npmjs.com/package/latest-version
https://www.npmjs.com/package/next-update
https://www.npmjs.com/package/npm-check-updates
https://greenkeeper.io
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Fig. 6 Downgrades preceded by explicit and implicit updates.
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Fig. 8 Distribution of the elapsed time between the update and the
eventual downgrade of a provider package.

Renovate10. These bots interact with client package develop-
ers through the package’s ITS (e.g., GitHub). The following
workflow is generally implemented: (i) the bot identifies an
opportunity for an implicit update of a provider, (ii) the
implicit update is performed in an isolated branch, (iii) the
bot runs a suite of automated tests and attempts to rebuild
the package, (iv) in case the test suite or the build fails, the
bot opens an issue report with recommended actions.

Learned lesson 2) Client packages can log their dependency
tree to debug troublesome providers. While the approach
described in Lesson learned 1 ensures that tests pass and
the build does not break, it is still possible that a provider
package might lead to a problem. For instance, incompatibil-
ities or a performance regression might not be captured by
the package’s test suite. In this scenario, package developers
might need to debug the troublesome update. A lightweight
approach would consist of simply keeping a log file contain-
ing the state of the client package’s dependency tree (i.e., all
the provider versions that are loaded at a given time). With
such log files, developers can trace back the state of the
dependency tree at a given time and determine the exact
updates that potentially led to the problem. Logging up-
dates can be achieved by setting an automated background
routine that uses simple commands provided by npm and
the VCS. Such a routine can be implemented by: 1) using the

10. https://renovatebot.com

npm-update command in an isolated environment (e.g., in a
new branch or within any folder created to this end), such
that this isolated environment contains the client package
with its providers updated to the latest version that satisfies
the versioning statements, 2) using the npm-ls command to
produce a report of the dependency tree with the loaded
provider versions, 3) committing the dependency tree state
on a daily basis to the VCS, and 4) using some VCS’s tool
(e.g., blame11 from Git) to identify the update of a given
provider.
Learned lesson 3) Client packages using a flexible depen-
dency versioning strategy (i.e., extensive use of range state-
ments) should emphasize testing the functionalities that
involve provider packages. Reactive downgrades are caused
by issues coming from the provider packages. Therefore,
testing functionalities that rely on the providers should be
intensified. In addition, testing corner cases for the pro-
vided functionalities by the providers can safeguard client
packages, especially when those functionalities are not fully
tested by the provider itself. Moreover, due to incompatibili-
ties, client packages should, if possible, test scenarios where
multiple providers are used together.
Learned lesson 4) Client packages should be mindful of the
latest working provider version when pinning a dependency.
Almost half (49%) of the downgrades are performed by
pinning the provider version. Pinning is typically (68%)
performed by removing the range operator and keeping
the numerical part of the range statement (c.f., Observa-
tion 5). However, this downgrade pattern can lead to the
adoption of a version of the provider that is older than the
latest working provider version (thus increasing technical
lag). Therefore, client packages should consider the latest
working version of the provider instead of simply removing
the version range operator from the versioning statement.

6.2 Avenues for future research
In the following, we list future research that can be lever-
aged from our results.
• Further research must be carried out to understand how
downgrades affect packages throughout the dependency network.
Although we observed that only 19% of the releases with
downgrade have at least one client package, downgrades
can still transitively impact packages in the ecosystem. For
instance, a package A can depend on a package B which,
in turn, might depend on a package C . Therefore, package
A can transitively depend on some feature of package C .
If C is downgraded by B, A will transitively depend on
a downgraded version of C . However, in this paper, we
do not investigate the impact of downgrades in transitive
dependencies.

11. https://git-scm.com/book/it/v2/Git-Tools-Debugging-with-Git

https://renovatebot.com
https://git-scm.com/book/it/v2/Git-Tools-Debugging-with-Git
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• Further research is necessary to understand why downgrades
tend to take long to occur. We conjecture that either the prob-
lem that triggered the downgrade takes long to manifest
or tracing a problem back to a certain provider version is
not trivial. Also, we conjecture that, due to the controlled
nature of explicit updates, it is easier for client packages
to identify the provider that is associated with the problem
that motivated the downgrade.
• Further research should be performed to understand the extent
to which vulnerability and security advisories might be influenc-
ing client developers to downgrade a provider. Different studies
show the relevance of security vulnerabilities to the deci-
sion of updating a given provider [15, 30]. However, after
manually analyzing a representative sample of downgrades
(c.f. Section 5.1), we did not find any explicit mention of
security vulnerabilities. We conjecture that client packages
tend to wait for a vulnerability fix instead of performing a
downgrade.

7 RELATED WORK

In this section, we describe related work concerning depen-
dency downgrades, dependency management in npm, and
dependency management in other ecosystems.

Downgrade of dependencies: Two prior studies mention
the phenomenon of downgrades in the npm ecosystem. De-
can et al. [15] analyzed the impact of security vulnerabilities
in npm dependencies. The authors highlight that vulnerable
providers impact the quality of their client packages. The
authors also claim that vulnerability issues can be solved
by “rolling back to an earlier version” of a provider. When
analyzing a representative sample of the downgrade cases
(Section 5.1), we did not identify any explicit mentions to
downgrades being performed because of vulnerabilities in a
provider. However, we did identify that one of the rationales
for downgrades is the presence of defects in the provider.
In this sense, it is possible that these defects encompass
vulnerabilities issues.

Mirhosseini and Parnin [13] studied the effectiveness
of automated tools (e.g., bots) to manage dependencies in
npm. The authors show that providers are updated 1.6
times more often and 1.3 times faster when client pack-
ages use such bots, compared to clients that do not. By
means of a survey, the authors demonstrate that the three
most common developers concerns regarding the update of
providers are backward-incompatible changes, understand-
ing of the implications of changes, and migration effort.
Furthermore, 24% of the builds fail when some provider
version is changed. The authors also found that several
provider updates performed by bots were downgraded in
2 or 3 days after being merged. In this paper, we found that
defects in the provider, in particular the ones that affect the
client package build, motivate downgrades. In addition, we
identified that bot recommendation is one of the reasons
behind preventive downgrades of a provider.

A few other papers approach the subject of down-
grades in software ecosystems other than npm, such as the
Apache12 and the Android13 ecosystems. Mileva et al. [14]

12. https://www.apache.org
13. https://developer.android.com

performed an empirical study of over 250 Apache projects
with the goal of understanding how the popularity of a
package relates to its quality. They propose that the number
of downgrades of a given provider is an indicator of the
(lack of) quality of that package. Our findings corroborate
this proposition.

Salza et al. [12] analyzed the categories of provider pack-
ages that were downgraded in mobile apps. They found
that Graphical User Interfaces (GUI) and Utilities are the
categories of providers with the highest number of down-
grades. The authors show evidence that client packages
want to follow look and feel tendencies, which explains
the high number of updates of GUI-related providers. Also,
utility packages support the development of applications
in the ecosystem and are highly popular. Despite the high
number of packages that depend on those providers in
mobile apps, the authors did not explain why downgrades
of these providers are often performed.
Dependency management in npm: Wittern et al. [7] studied
the evolution of dependencies in npm. They found that
from 2011 to 2015, the proportion of packages being used
as dependencies (provider packages) increased from 23%
to 81%. As the number of dependencies increases in an
ecosystem, the likelihood of downgrades increases. Also,
the authors present evidence that the Semantic Version
specification is not being followed by provider packages
when they increment a version number. This is likely
problematic, since backward-incompatible changes could
be introduced when minor or patch levels of the provider
version are incremented. As a consequence, these backward-
incompatibilities would manifest themselves unexpectedly
on the client package side. Indeed, we identified that almost
half of the downgrades reduce the provider version by a
minor level.

Zerouali et al. [25] analysed the technical lag induced by
direct dependencies in npm over seven years period. The
authors found that the median technical lag is 1 major, 1
minor, and 4 patch releases. Our analysis (c.f. Section 5.2.3)
shows that major downgrades introduce a similar technical
lag compared to the technical lag that is typically induced
by direct dependencies.

Vulnerabilities in npm were studied by Zapata et al. [31].
The authors conjecture that fixing a vulnerability from a
provider package can cause a failure in the client package.
Also, Zerouali et al. [30] identified that vulnerabilities are
common in official Docker containers using npm packages
as dependencies. When analyzing a representative sample
of the downgrade cases (Section 5.1), we did not identify any
explicit mentions to downgrades being performed because
of vulnerabilities in a provider. However, we did identify
that one of the reasons for downgrades is the presence of
defects in the provider. In this sense, it is possible that these
defects encompass vulnerabilities issues.

In a survey with developers from 18 ecosystems, Bogart
et al. [32] show that provider packages in npm are often
introducing changes that require modifications in the client
code. This observation can partially explain the high num-
ber of downgrades found in npm: client package developers
use downgrades as a workaround to postpone the need for
change their code after a provider being implicitly updated.
Mezzetti et al. [33] propose a technique called type regres-

https://www.apache.org
https://developer.android.com
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sion that can detect changes in the provider package that
cause a failure in a client package (a.k.a breaking change).
Detecting breaking changes can be useful to avoid issues
that cause a downgrade to occur. However, this technique
is only accurate when providers are used by a large number
of client packages. Our results show that the number of
client packages that depend on a release with downgrade
is, in general, small, making the type regression technique
impractical for such cases.

Decan et al. [34] studied the dependency network of
seven software ecosystems (including npm) and concluded
that developers face issues when updating providers. Be-
cause packages in those ecosystems heavily depend on
each other, the authors highlight the fact that a change in
one package can affect many others. Kikas et al. [35] also
performed a similar study over the dependency network of
the npm, RubyGems, and Cargo14 (for the Rust language)
ecosystems. The authors identified a key set of packages
that, if modified, could impact over 30% of the other pack-
ages in the ecosystems. In Section 5.2.3, we verified that
19.4% of releases with downgrade have more than one client
package, representing cases in which the technical lag intro-
duced by a downgrade can affect transitive dependencies.

Decan and Mens [36] studied whether the Semantic
Version specification is respected by packages in four dif-
ferent ecosystems (including npm). The authors observed
that versioning statements used by client packages generally
accept implicit updates of providers that comply with the
Semantic Version specification, suggesting that packages in
this ecosystem tend to respect this specification.
Dependency management in other ecosystems: Prior stud-
ies focused on the management of dependencies versioning
in different software ecosystems. In the scope of the Android
ecosystem, McDonnell et al. [6] analyzed the relation be-
tween the adoption of API versions and the API stability.
The authors show that client packages avoid to update
towards unstable APIs (i.e., APIs that change frequently).
In our findings, we uncovered that defects in the provider
are one of the causes for providers to be downgraded.
Those defects might be associated with unstable APIs of the
provider packages. Ruiz et al. [37] analyzed the rationale
for Android applications (client packages) to update their
ad libraries (provider packages). Some of the reasons that
they identified are related to the rationale for downgrades
in npm. In particular, they found that fixing a bug and
improving performance are some of the reasons to update
an ad library. Derr et al. [8] performed a survey with An-
droid developers to understand how they update provider
packages. They observed that preventing incompatibilities
is the second-ranked reason why developers prefer to use
outdated providers. In our study, we also observed that
incompatibilities are one of the rationale for downgrading
a provider package.

The management of dependencies versioning was also
studied in some ecosystems for packages written in Java.
Bavota et al. [23] identified some factors associated with
updates that intersect with the factors that we identified
for downgrades. In particular, bug fix was identified as a
factor influencing the update of provider packages. Also,

14. https://crates.io

the authors observed that packages that have common
dependencies or common developers are more likely to
be updated. Kula et al. [10] show that vulnerability and
security advisories play a role in the decision to update a
provider version. As we observed in our study, preventing
errors is associated with downgrades.

Robbes et al. [38] studied how changes in the API of a
provider package propagate back to the client package in the
Pharo15 ecosystem (for the Smalltalk language). Changing
the API signature of a provider is one of the actions that
causes backward-incompatible changes. Normally, the client
package cannot avoid such changes when they are intro-
duced in a minor or patch release of the provider. We also
found that the majority of the downgrades involve patch
and minor version levels. A possible explanation is that
provider packages are changing API signatures in minor
and patch releases.

Zerouali et al. [39] analyzed the technical lag of outdated
installed packages in Docker containers. The authors found
that the technical lag on such containers is one to two
versions, which is similar to the technical lag that is typically
introduced by an npm downgrade.

8 THREATS TO VALIDITY

Internal validity: When identifying the reasons for a down-
grade, we searched for the specific commit in which the
provider versioning was changed in the package.json file.
However, it is possible that the downgrade reason was
revealed in some prior commit. We likely missed those cases
in our analysis. Furthermore, in our manual analysis, we
did not inspect every file in the commit but merely searched
for an explicit mention for a downgrade in the examined
artifacts (see method in Section 5.1). Also, we acknowledge
that different classifications of the downgrades (e.g., based
on prior theories about maintenance categories or derived
from interviews with developers) would likely yield a com-
plementary view to our results.

The proportion of published major, minor, and patch re-
leases are different across npm packages. Such non-uniform
distribution of releases types has an impact on the interpre-
tation of our results. We mitigate this threat by controlling
for release type (i.e., major, minor, and patch) when appro-
priate (Sections 5.2.1, 5.2.3, and 5.3).

External validity: Because we collected data exclusively
from npm, our findings might not be generalizable to other
ecosystems. Although npm is representative in size, in fact,
each software ecosystem has its own intrinsic characteristics.
The goal of this paper is not to build theories around down-
grades that would apply to all software ecosystems. Rather,
our study is only a first step towards a deeper understand-
ing of why and how packages are downgraded. Therefore,
we acknowledge that additional studies are required in
order to further generalize our results. Nonetheless, to the
best of our knowledge, this is the first paper to thoroughly
investigate the phenomenon of downgrades. In addition,
our approach can be replicated in other ecosystems. Struc-
tures similar to versioning statements (i.e., that allows one
to set a specific version or a range of versions to a given

15. http://catalog.pharo.org

https://crates.io
http://catalog.pharo.org
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provider) and version numbering schemes can be found
in several other software ecosystems, such as Bundler (for
Ruby), Cabal (for Haskell), pip (for Python) and Maven (for
Java). Downgrades of provider versions can also be found
in all those ecosystems platforms.
Construct validity: We identified the downgrades in npm
based on a heuristic for ordering the client releases, which
we call branch-based order (see Section 3). However, al-
though this heuristic is a best-effort to capture the logical
ordering of the releases, the actual ordering adopted by a
package can be arbitrary. Therefore, it is not guaranteed that
the use of such heuristic captures all downgrades performed
in npm. Nevertheless, we consider that, with respect to the
identification of the downgrades, the branch-based order-
ing represents the actual order of releases more accurately
than either the numerical or chronological orderings. The
reasons for this consideration are explained in Section 3.
Furthermore, our manual analysis served as a sanity-check
for the reliability of our approach to detect downgrades.
Finally, in Section 5.3, we calculate the typical inter-release
time of a package as the median time between the last half
releases. Although considering the last half releases is an
arbitrary decision, this is a reasonable form of representing
the current inter-release time of packages that have different
release schedules.

Swanson [40] proposes four dimensions of maintenance
activities, namely corrective, adaptive, perfective, and pre-
ventive. The classification of downgrades into reactive and
preventive (RQ1) is related with the dimensions of main-
tenance proposed by Swanson [40]. Conceptually, reactive
downgrades can be understood as a combined form of
corrective, adaptive, and perfective maintenance, while pre-
ventive downgrades can be understood as a preventive
maintenance activity. However, for some of the manually
investigated cases, it was impossible to determine, given
the available evidence, whether a reactive downgrade was
corrective, adaptive, or perfective. Hence, driven by the
constraints of the data that we investigated, we simply
classify downgrades into reactive and preventive.

9 CONCLUSIONS

The benefits of having up-to-date provider versions is ex-
tensively studied in the literature [5, 10, 37]. Prior studies
also point to the reasons why developers might prefer not
to update provider packages [8, 23, 41]. On the other hand,
only a few papers examine aspects related to downgrades in
software ecosystems [12, 14, 15]. Using historical data from
package releases, we empirically investigate downgrades
in npm. In particular, we study why provider packages
are downgraded, how they are downgraded, and how fast
the downgrade occurs. Our results show that downgrades
are a facet of the management of dependencies in software
ecosystems, being used as a workaround to deal with issues
coming from provider packages. In Section 6 we discuss a
set of procedures that practitioners can implement to better
cope with the need for downgrading a provider. We make
the following observations:
• Downgrades are performed because of issues that arise from
the provider, but are also performed for preventive purpose.
We identified two types of downgrades as reactive and

preventive (Observation 1). Three issues motivate reactive
downgrades, namely defects in the provider version (during
build-time, run-time, or development-time), sudden feature
changes in the provider, and incompatibilities (between
provider versions, or with Node version) (Observation 2).
On the other hand, preventive downgrades are originated
from the preventive action often called by client developers
as “pinning” the provider version (Observation 3). Also,
preventive downgrades can be triggered by bot recommen-
dations (Observation 4).
• Downgrades are associated with a change to a more conser-
vative versioning of providers. We observed that 49% of the
downgrades change the versioning statement from range-
to-specific. In addition, when the versioning statement re-
mains as range after a downgrade, the range of acceptable
versions is often narrowed down (Observation 5). In 75.5%
of the client releases with downgrade, a single provider
is downgraded (Observation 6). 13% of the downgrades
induce an unnecessary increase in the technical lag (Ob-
servation 7). Nonetheless, downgrades of major versions
also occur and they normally introduce a larger technical
lag on the client package compared to minor and patch
downgrades (Observation 8). An explanation is that client
packages often delay the integration of major releases of a
provider due to its inherent increased difficulty compared
to minors and patches.
• The speed with which a downgrade occurs is associated with
how the provider was formerly updated. Client releases pub-
lished between the update and the following downgrade
of a provider take 2.6 times longer than the typical time-
between-releases of the same client package (Observation
9). More than half of the downgrades that follow an explicit
update are performed almost 10 times faster than half of the
downgrades following an implicit update (Observation 10).
Also, we observed the occurrence of urgent downgrades,
i.e., those that occur up to 24 hours after the prior down-
grade. There are almost 9 times more urgent downgrades
following an explicit update (36%) than urgent downgrades
following an implicit update (3.8%) (Observation 11).

Our findings contribute to the advance of the research
concerning dependency management in software ecosys-
tems. In particular, it complements prior studies that relate
downgrades to issues in the provider packages, but that did
not describe what those issues were. Based on the identified
causes for downgrades and on the understanding of how
downgrades are commonly performed, we derived a set of
lessons learned to help client packages mitigate the side-
effects of downgrades. Lastly, we contribute to the field by
listing future research opportunities.
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APPENDIX A
VERSION RANGE OPERATORS

Table 3 gives the definition and examples for the operators
in the version range grammar used by npm. The grammar
in Backus-Naur form can be found at https://www.npmjs.
com/package/semver.

TABLE 3 Operators in the grammar of npm version range.

Operator(s) Definition Example

>, <,
>=, <=

Allows, respectively, any
version greater, smaller,
greater or equal, or smaller
or equal to a given semantic
version number.

“P”: “>1.0.0” is satisfied
by any version of P greater
than 1.0.0 (e.g., 1.0.2, 1.2.0,
or 2.0.0).

∼ (tilde) Allows changes to the least
precedent (left-most) level of
the semantic version number.
Intuitively, the tilde operator
resolves towards a patch
update of the provider.

“P”: “∼1.2.3” is satisfied
by any version of P greater
than or equal to 1.2.3 and
less than 1.3.0. Still, “P”:
“∼1.2” is satisfied by any
version of P greater than or
equal to 1.2.0 and less than
1.3.0.

∧ (caret) Allows changes that do not
modify the non-zero least
precedent level in a semantic
version number. Intuitively,
the caret operator resolves
towards a minor update of
the provider.

“P”: “∧1.2.3” is satisfied
by any version of P greater
than or equal to 1.2.3 and
less than 2.0.0. Still, “P”:
“∧0.2.3” is satisfied by
any version of P greater than
or equal to 0.2.3 and less
than 0.3.0.

—
(hyphen)

Allows an inclusive set of
versions.

“P”: “1.2.3 — 2.3.4” is
satisfied by any version
greater than or equal to 1.2.3
and less than or equal to
2.3.4.

omit a
semantic
version
level or
replace it
by “x”

Allows changes in the
omitted/replaced semantic
version level.

Both “P”: “1.x” or “P”:
“1” are satisfied by any
version of P greater than or
equal to 1.0.0 and less than
2.0.0. Still, both “P”:“1.2”
or “P”:“1.2.x” are satisfied
by any version greater than
or equal to 1.2.0 and less
than 1.3.0.

“∗”,
“latest”,
“last”,
“”

Resolves to the largest
version available.

Both “P”: “*” or “P”: “” are
satisfied by the largest
version of P.

|| Combines two or more
versioning statements in a
logic ‘OR’.

“P”: “∧2.0.0 || ∼3.0.0”
indicates that any of the
statements “∧2.0.0” or
“∼3.0.0” are satisfied by
any version of P in
accordance with the
statement definition.

APPENDIX B
DOWNGRADE DETECTION

In this appendix, we describe our approach for identifying
downgrades on npm. We start by discussing the problems
that occur when either the chronological or the numerical
ordering of the client releases is used to detect downgrades.
Subsequently, we describe our solution in the form of an
algorithm that derives a branch-based ordering of client
releases.

The problem with chronological versus numerical or-
dering of versions: A downgrade is defined as an event
that occurs between two adjacent releases 〈ri−1, ri〉 of a

client package C . When the resolved version of a provider
package P in ri is smaller than the resolved version of this
same provider in ri−1, we say that P was downgraded by
C in ri. Hence, the definition of a downgrade relies on the
definition of the logical order of client releases. Analogously,
the definition of an update also relies on such a definition.

Prior studies use either a chronological [11, 12] or a
numerical ordering [7, 35] to recover the release history of
packages. However, assuming those orderings leads to in-
consistencies in how the resolved provider version changes
from one client release to another. In the remainder of this
section, we show that none of these orderings are suitable
to detect updates and downgrades in the resolved provider
packages.

When analyzing the order of package releases in npm,
we observed that several releases can be actually maintained
in parallel. Releases are developed in parallel because, even
with the existence of releases with a higher numerical order,
a release with a lower numerical order might need to be
patched. For example, in Figure 9, even though the release
2.0.0 was already available, the release 1.1.2 had to be
published in order to patch the release 1.1.1. Hence, the
version 1.1.1 is considered adjacent to both versions 1.1.2
and 2.0.0. Because the numerical and chronological ordering
are linear, they are not suitable to represent the parallel
releases of npm.

1.0.0 1.0.1
1.1.0 1.1.1 1.1.2

2.0.0 2.0.1

Tim
e

B
ranches1.0

1.1
2.0

Fig. 9 Development of parallel versions in npm.

Applying the chronological and numerical orderings to
the releases that are shown in Figure 9 would yield the
following results (≺ denotes a precedence relation):

Chronological:
1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 2.0.0 ≺ 1.1.2 ≺ 2.0.1

Numerical:
1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 1.1.2 ≺ 2.0.0 ≺ 2.0.1

Branch-based:
1.0.0 ≺ 1.0.1 ≺ 1.1.0 ≺ 1.1.1 ≺ 1.1.2≺ 2.0.0 ≺ 2.0.1

For a client package that releases according to Figure 9,
analyzing the changes in the resolved provider version from
one client release to another would produce different results
depending on the assumed ordering. Figure 10 illustrates
the inconsistencies that arise when assuming either the
chronological or the numerical orderings to detect down-
grades or updates. The timeline at the top of the Figure
depicts a sequence of releases from the provider and the
client packages. For the client package releases, the Figure
also shows the used versioning statement and the resolved
provider version.

When the chronological order of the client releases is as-
sumed (see Figure 10), an incorrect downgrade from version
2.0.0 to 1.1.2 is detected due to a version inconsistency.
Logically, version 1.1.2 does not succeed version 2.0.0, since

https://www.npmjs.com/package/semver
https://www.npmjs.com/package/semver
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2.0.0 1.1.2 

1.1.1 1.0.2

Version inconsistency

Chronological order

Resolved 
provider 
version 

Client 
version 

1.1.1
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Numerical order

Resolved 
provider 
version 

Client 
version 1.1.1 

1.1.0 1.0.2

Consistent change
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Resolved 
provider 
version 

Client 
version 2.0.0 1.1.2 1.1.2 

Client 
releases 
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1.1.1 
"P:~1.1.0" 

Time
2.0.0 

"P:~1.1.0" 
1.1.2 

"P:~1.0.0" 

1.1.1 1.0.2

1.0.2

1.1.0

Resolves to Resolves to Resolves to

Fig. 10 Numerical, chronological, and branch-based ordering to evalu-
ate the provider version changes over the client releases.

these versions belong to different branches. Similarly, when
the numerical order of the client releases is assumed (see
Figure 10), an incorrect update from version 1.1.2 to 2.0.0
is detected due to a time inconsistency. The provider version
resolved at the time that the client version 1.1.2 was released
(i.e., provider version 1.0.2) did not exist at the time of client
version 2.0.0. Hence, this update is invalid. However, when
the branch-based order of the client releases is assumed, the
changes in the resolved provider version from one client
release to another are consistent regarding both version and
time.

An algorithm for branch-based ordering: The collected
data from npm records only the chronological and numerical
orderings of the package releases. Therefore, we conceived
an algorithm to derive the branch-based ordering from these
two orderings, which works as follows: as the client releases
are examined in a chronological order, we check if any of
the previously visited releases are in the same branch as the
current one. If so, then the release with the largest version
number in the branch of the current release is deemed the
predecessor of the current release. Otherwise, the release
visited so far with the largest version number is deemed
the predecessor of the current release. If the releases in
chronological and numerical order, shown in Figure 9, are
given as input to our algorithm, then the branch-based
ordering of the releases (as shown in the same figure) is
returned as output.

Algorithm 1 gives the pseudo-code for the algorithm that
we conceived to recover the branch-based ordering. The pa-
rameters for the procedure BRANCH-RELEASE-ORDERING
are RTC

, the list of all releases of a client package C in
chronological order, and RNC

, the list of all releases of a
client package C in numerical order. This procedure man-
ages sets R and U . The set R stores the pairs of adjacent
releases 〈ri−1, ri〉 that are identified. In turn, U stores the
visited releases from RTC

. The procedure BRANCH(ri) re-
turns the set of releases that were added to the same branch
as that of release ri. If there are no releases that are added
to a given branch, this procedure returns Ø (the empty
set). In turn, the procedure UPDATE-BRANCH(ri , Rb) adds
a release ri to its respective branch (Rb). The procedure
LARGEST-VERSION-SMALLER-THAN takes a release ri and
a set L of release versions and returns the largest release
version rj ∈ L that is smaller than ri. In case there is no
version smaller than ri in L, the procedure returns a null
reference. A given release ri with a null reference as its
predecessor means that ri has no release preceding it. The
procedure LARGEST-VERSION-SMALLER-THAN obtains the
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Analyze package dependencies
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versioning
statements 

Detect dependency downgrades
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Identify artifacts that are  
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Fig. 11 Overview of our data collection approach.

precedence between the version number of the releases from
the numerical order (RNC

).

Algorithm 1 Sort releases according to a branch-based or-
dering

Input: Releases in chronological (RTC
) and numerical (RNC

) orders
Output: Releases in branch-based order

procedure BRANCH-RELEASE-ORDERING(RTC
, RNC

)
R← Ø
U ← Ø
for all ri ∈ RTC

do
APPEND(U, ri)
Rb ← BRANCH(ri)
if Rb 6= then

ri−1 ← LARGEST-VERSION-SMALLER-THAN(ri, Rb, RNC
)

else
ri−1 ← LARGEST-VERSION-SMALLER-THAN(ri, U , RNC

)
APPEND(R, 〈ri−1, ri〉) . Store ri−1 as the predecessor of ri
UPDATE-BRANCH(ri, Rb)

return R

Algorithm 1 Branch-based release ordering algorithm.

APPENDIX C
DATA COLLECTION

Four main steps were performed in our data collection:
collection of package metadata, analysis of package depen-
dencies, detection of dependency downgrades, and identi-
fication of artifacts associated with downgrades. Figure 11
depicts an overview of our data collection approach.

Collect package metadata: Obtain package.json files – We
crawled the registry16 of npm and obtained the package.json
metadata file of 461,548 packages. The metadata file of each
package lists, among other pieces of information, all the

16. https://github.com/npm/registry-follower-tutorial

https://github.com/npm/registry-follower-tutorial
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published releases by a client package, the name of the
used providers in each release, the associated versioning
statements with the providers in each client release, and the
timestamp of each release. An example of a package.json file
can be seen on Appendix D. We keep in our database only
package releases containing at least one provider. Our data
collection encompassed the period of December 20, 2010 to
July 01, 2017.

Analyze package dependencies: Parse versioning state-
ments – We parsed the versioning statement of all depen-
dencies in the package.json files according to the adopted
grammar by npm (c.f. Section 2). Two types of dependencies
were considered: (i) dependencies that are required for the
installation of a package and that are loaded at runtime and
(ii) dependencies that are not required for the installation
of a package and that are loaded only at development time.
These two types of dependencies are listed separately in
the package.json file (as “dependencies” and “devDepen-
dencies” respectively).
Resolve providers version – The package.json file contains
the date on which the releases of a package were published
on npm. Given a client package release and the name of a
provider that is used in such a release, we initially obtained
the list of published versions by the provider before the
client release date. Subsequently, we determined the re-
solved version of each provider according to the versioning
statement used by the client in that release (c.f. Section
2). Dependencies with a versioning statement that did not
satisfy any provider version were discarded. The output
of this step is the resolved provider version for all client
dependencies to providers.

Detect dependency downgrades: Compare the resolved
provider versions from adjacent client releases – We sorted
the releases of the client packages according to the branch-
based ordering algorithm that we discussed in Section 3
(c.f. Algorithm 1). Afterwards, we detected downgrades by
comparing the resolved provider versions from adjacent
client releases. The output of this step is a list of 19,651
downgrades, which were used as input to our RQs.

Identify artifacts that are associated with downgrades:
Link ITS & VCS artifacts to releases with downgrades –
From the list of downgrades, it is possible to identify the
releases of a client package in which at least one downgrade
occurred. In particular, for the packages whose Version
Control System (VCS) and Issue Tracker System (ITS) were
publicly available, one can also identify which artifacts (e.g.,
committed files, commit messages) were produced during
the releases with downgrades. We identified and examined
the artifacts of a statistically-representative sample of client
releases with downgrades (more details in Section 5.1). The
output of this process is thus a list of commits, issues,
and release notes that are associated with a sample of the
releases that contain at least one downgrade of a provider.

APPENDIX D
Package.json FILE EXAMPLE

Listing 1 shows an excerpt of a hypothetical package.json
file. The client package named client_package released
two versions: 1.0.0 and 1.0.1. In the former release, the

client package assigned the versioning statements “2.0.0”
and “<1.2.3” to the providers named provider_1 and
provider_2, respectively. In the latter release, the client
package assigned the versioning statements “2.0.1”
and “<1.3.0” to the providers named provider_1 and
provider_2, respectively. The bottom of the package.json file
shows the timestamp of each client release.

"name": "client_package",
"versions": {

"1.0.0": {
"dependencies": {

"provider_1": "2.0.0",
"provider_2": "<1.2.3"

}
},
"1.0.1": {

"dependencies": {
"provider_1": "2.0.1",
"provider_2": "<1.3.0"

}
}

},
"time": {
"1.0.0": "2016-11-24T00:48:15",
"1.0.1": "2017-02-08T13:26:38"

}

Listing 1 Excerpt of a package.json file
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