
1

Studying Bad Updates of Top Free-to-Download
Apps in the Google Play Store

Safwat Hassan, Cor-Paul Bezemer, and Ahmed E. Hassan

Abstract— Developers always focus on delivering high-quality updates to improve, or maintain the rating of their apps. Prior work has
studied user reviews by analyzing all reviews of an app. However, this app-level analysis misses the point that users post reviews to
provide their feedback on a certain update. For example, two bad updates of an app with a history of good updates would not be
spotted using app-level analysis. In this paper, we examine reviews at the update-level to better understand how users perceive bad
updates. We focus our study on the top 250 bad updates (i.e., updates with the highest increase in the percentage of negative reviews
relative to the prior updates of the app) from 26,726 updates of 2,526 top free-to-download apps in the Google Play Store. We find that
feature removal and UI issues have the highest increase in the percentage of negative reviews. Bad updates with crashes and functional
issues are the most likely to be fixed by a later update. However, developers often do not mention these fixes in the release notes. Our
work demonstrates the necessity of an update-level analysis of reviews to capture the feelings of an app’s user-base about a particular
update.

Index Terms—mobile app reviews, Google Play Store, bad updates, Android mobile apps

F

1 INTRODUCTION

App developers focus on publishing high-quality updates
to improve or at least to maintain the rating of their apps.
A 2015 survey shows that 77% of the users would not
download an app with a rating that is less than three
stars [27].

Mobile app stores, such as the Google Play Store and the
Apple App Store, enable app developers to rapidly deploy
new updates of their apps. In turn, users are able to provide
update-level feedback to developers. A recent survey of
138 app developers highlights app developers’ need for
understanding the characteristics of impactful updates (i.e.,
updates that have an impact on the rating of an app) [30].
App stores are starting to show the update rating [12].
Such update-level ratings are likely to impact whether users
download an app or not, highlighting the importance of the
update rating for app developers.

However, prior work [17], [18], [26], [41], [49] (including
our own prior work [22], [24], [33]) mostly focused on study-
ing reviews at the app-level instead of taking an update-
centric view to capture the dynamic nature of the response
of the user-base for a particular update. Recently, Gao et
al. [10] studied topics that are raised in reviews of each
update of an app. Gao et al. observed that the distribution
of the raised topics for an app changes with each update. In
addition, Martin et al. [30] showed that taking an update-
centric view when studying mobile apps is important. For
example, an update may lead to many crashes about which

• Safwat Hassan and Ahmed E. Hassan are with the Software Analysis
and Intelligence Lab (SAIL), School of Computing, Queen’s University,
Canada.
E-mail:{shassan, ahmed}@cs.queensu.ca

• Cor-Paul Bezemer is with the Department of Electrical and Computer
Engineering, University of Alberta, Canada.
E-mail: bezemer@ualberta.ca

users complain. The following update may address the
crashes, thereby introducing performance issues. An app-
level analysis of reviews will observe that reviews complain
about crashes and performance issues without identifying
the reality that user complaints were about two different
updates. In addition, the crash is already addressed and the
app currently has a performance issue. Our work performs
an in-depth analysis of mobile app reviews through an
update-centric view. Our main target audience consists of
researchers. For example, researchers could benefit from our
proposed approach by studying the reviews of each update
to analyze how the user-perceived quality of an app changes
over time.

The necessity of studying reviews at the update-level is
demonstrated by the following real-life example. Figure 1
shows the percentage of negative reviews per update of the
“GasBuddy: Find Cheap Gas” app. As shown in Figure 1,
the percentage of negative reviews increased after the U4

update (September 13th 2016) of the app. The update forces
users to enable the GPS location to locate the nearest station
instead of searching for the already saved favorite stations.
Users complained about sharing their GPS location. On the
following day (September 14th 2016), developers deployed
the U5 update that restored the favorites search. As shown
in Figure 1, the percentage of negative reviews started to
decrease after deploying the fix for the raised issue. An app-
level analysis of reviews would fail to identify that user
complaints are about a GPS issue that is already addressed
in the following updates.

In this paper, we present an in-depth analysis of bad
updates (i.e., updates with an increased burst of the per-
centage of negative reviews) of mobile apps. In particu-
lar, we analyzed 26,726 updates and 26,192,781 reviews of
2,526 top free-to-download apps in the Google Play Store.
We observed that (1) the update-level analysis is useful
for identifying how users perceive the updates of an app

2

0

10

20

30

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21
Update

P
er

ce
nt

ag
e

of
 n

eg
at

iv
e

re
vi

ew
s

Fig. 1: The percentage of negative reviews for the “GasBuddy: Find Cheap Gas” app.

over time and (2) the negative reviews of bad updates are
different from the negative reviews of regular updates. In
particular, the negative reviews of bad updates are more
descriptive and contain more update-related information
than the negative reviews of regular updates. These results
motivated us to further analyze such bad updates to learn
how users perceive a bad update and how developers could
recover from bad updates. In particular, we addressed the
following research questions:

RQ1: What do users complain about after a bad update?
A manual analysis of the release notes and neg-
ative reviews of the top 250 bad updates in
our dataset shows that functional complaints,
crashes, additional cost and user interface issues
are the most frequently raised issues in bad
updates. We observed that apps in the financial
and social categories have the highest percent-
age of bad updates. In addition, we measured
the negativity ratio of an update Ui as the ratio
of the percentage of negative reviews before
update Ui to the percentage of negative reviews
of update Ui. We observed that updates where
feature removal and user interface issues are
raised have the highest negativity ratio.
Our findings show that bad updates are not
only perceived as bad because of functional is-
sues as previously observed in prior app-centric
studies [33]. Instead, we observed that crashes,
additional cost and user interface issues are the
second most-often raised issues in bad updates.

RQ2: How do developers recover from a bad update?
Figure 2 shows an example of a bad update
U1 that makes the app crash. We determined if
an issue was addressed by looking at updated
reviews. For example, as shown in Figure 2, a
user complained about the crash after update
U1. The same user changed their review of the
following update U2 to say that the app “Still
does not work”. Finally, after update U4 the user
reported that the crash was addressed.
Out of 250 manually investigated bad updates,
we located evidence that developers could re-
cover from 105 bad updates. For these updates,

recovery was most likely when response time,
crashes, network problems, and functional is-
sues were raised (100%, 68%, 60%, and 59%
respectively). In the release notes of 44% of the
updates that address the raised issues in bad up-
dates, developers explicitly mentioned that they
addressed an issue. We measured the differences
in the negativity ratio (NegDiff) as the negativity
ratio of a bad update - the negativity ratio of
the fixing update. We measured the NegDiff in
both cases when developers mentioned explic-
itly that an update addresses the raised issue
and when developers mentioned general re-
lease notes (e.g., “bug fixes”). We observed that
the cases where developers mentioned explicitly
that they addressed the issues of a bad update
have a higher difference in the negativity ratio
(the median NegDiff = 1.9) than the cases where
developers do not mention that the issues were
addressed (the median NegDiff = 1.7). Hence, we
recommend that developers mention explicitly
in their release notes that an issue was addressed
to encourage users to download the update and
eventually update their rating leading to an im-
proved overall app rating.

The purpose of our study is twofold. First, we demon-
strate the importance of update-level analysis compared
to the traditional app-level view that most prior work on
app review analysis takes. Hereby, we propose an approach
which can be used by researchers. Second, we use the
update-level analysis to understand the characteristics of
bad/good updates and to analyze how developers recover
from bad updates, hereby allowing researchers to under-
stand the opinion of users about an app with a much finer
granularity.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 describes our method-
ology for identifying bad updates. Section 4 describes our
motivational study of bad updates. Section 5 analyzes the
characteristics of bad updates. Section 6 describes the im-
plications of our work. In addition to the analysis of bad
updates, to complete our analysis, we study why users
perceive an update as good in Section 7. Section 8 describes

3

Fig. 2: An overview of our approach for identifying how many updates are needed to recover from a bad update Ui

threats to the validity of our findings. Section 9 concludes
the paper.

2 RELATED WORK

In this section, we describe the work that is related to ana-
lyzing the characteristics of successful apps and analyzing
user reviews.

2.1 Characteristics of Successful Apps
Researchers studied the characteristics of successful apps
(i.e., apps with high ratings). In this subsection, we describe
the related research and the difference between the existing
work and our work.

Prior work primarily examined the characteristics (e.g.,
deployed APK file size and app category) of successful
apps based on the latest update and the overall rating
of an app [32], [36], [47], [48]. Ruiz et al. [43] observed
that the overall rating of an app is not impacted much by
individual updates. Hence, by taking an app-centric view
when studying mobile apps, important information about
updates may be lost. Therefore, in this paper, we focus on
studying mobile apps while taking an update-centric view.

Later, Martin et al. [28], [30] performed causal impact
analysis to study the impact of the deployed updates of
an app on the success of this app. The success of an app
is measured regarding three metrics: (1) the average app
rating (R), (2) the number of ratings of the app, and (3) the
number of weekly ratings of the app. Martin et al. found
that 33% of the studied updates have an impact on the
success of their apps. In addition, Martin et al. observed that
updates that positively impact the success of an app have
more descriptive release notes which mention bug fixes and
new features. Finally, Martin et al. reported that 39 out of 45
surveyed app developers wish to know the characteristics of
the impactful updates. Our work partially responds to this
wish by providing an approach for identifying bad updates
as bad updates can be impactful (in particular, since stores
are now showing update ratings as well) [12]. In addition,
we carefully examined the characteristics of bad updates
and how developers recovered from such updates.

Our prior work studied emergency updates of top An-
droid mobile apps [13]. We found eight patterns of issues

that often lead to emergency updates. Emergency updates
could be due to bad updates as developers attempt to fix
bad updates on a short notice.

2.2 User Reviews of Mobile Apps
In this subsection, we provide an overview of prior research
that analyzes user reviews. For a more thorough overview,
we refer to Martin et al.’s [31] and Genc-Nayebi et al.’s [11]
surveys.

Researchers often analyze user reviews to extract useful
information such as complaints and feature requests [17],
[18], [19], [21], [22], [24], [26], [33], [37], [49]. For example,
Iacob et al. [17], [18] proposed MARA (Mobile App Review
Analyzer) which uses linguistic rules to identify reviews
that contain bug reports or feature requests.

Maalej and Nabil [26] used different approaches to ex-
tract features from user reviews (such as review rating).
Then Maalej and Nabil used different algorithms (such
as Naive Bayes and decision tree) to label reviews into
four categories: (1) feature request, (2) bug report, (3) user
experience, and (4) unspecified based on the extracted fea-
tures. Maalej and Nabil’s evaluated their approach using
4,400 manually-labeled reviews. Their approach achieves a
precision that ranges from 70% to 95% and a recall that
ranges from 80% to 90% based on the approach that is used
to classify reviews.

Khalid et al. [22], [24] studied user complaints in mobile
apps and identified 13 issue types (e.g., crashes and bug
reports) that were raised in user reviews. McIlroy et al. [33]
improved the taxonomy of issue types that was identified
by Khalid et al. and proposed an approach to automatically
classify reviews into the corresponding issue type. McIlroy
et al. manually labeled 7,456 reviews of 24 apps in the
Google Play Store and the Apple App Store to evaluate
their approach. McIlroy et al. reported that their approach
achieves a 66% precision and a 65% recall in classifying
reviews into the corresponding issue types.

Panichella et al. [41], [42] proposed ARdoc (App Reviews
Development Oriented Classifier) which classifies user re-
views into five categories: (1) feature request, (2) bug re-
port, (3) providing information, (4) requesting information,
and (5) others. Similar to Maalej and Nabil’s approach,
Panichella et al. used different approaches (such as Natural

4

Language Processing (NLP) and sentiment analysis) to ex-
tract features from user reviews. Then, Panichella et al. built
models that classify reviews to the aforementioned five cat-
egories based on the extracted features. Finally, Panichella
et al. evaluated their approach by manually labeling 1,421
sentences from the reviews of seven apps [41]. Panichella et
al. observed that combining machine learning approaches
(e.g., sentiment analysis and text analysis) achieves higher
accuracy than using a single approach. Panichella et al.
evaluated ARdoc on reviews of different mobile apps and
found that ARdoc could achieve a precision that ranges from
84% to 89% and a recall that ranges from 84% to 89%.

Di Sorbo et al. [45], [46] proposed SURF (Summarizer of
User Reviews Feedback) which is based on Panichella et al.’s
approach [41], [42]. First, the SURF approach labels reviews
into the five categories that were proposed by Panichella
et al. [41], [42]. Then, Di Sorbo et al. manually analyzed
1,390 reviews and identified 12 topics that are mentioned
in these reviews. Finally, SURF identifies which topic of
these 12 topics (e.g., pricing) is mentioned in every review.
Di Sorbo et al.’s approach is useful for app developers to
automatically filter reviews that are related to a certain
category (e.g., feature request) and a certain topic (e.g.,
pricing).

Villarroel et al. [49] proposed CLAP (Crowd Listener for
releAse Planning) which classifies reviews into three issue
types: (1) bug report, (2) feature request, and (3) others.
Later, Scalabrino et al. [44] improved CLAP to classify
reviews into seven types: (1) bug report, (2) feature request,
(3) performance issues, (4) energy issues, (5) security issues,
(6) usability issues, and (7) others. CLAP groups similar
reviews in every issue type (e.g., group all reviews that
raise the same energy complaint). Finally, CLAP prioritizes
the identified groups based on different factors (such as the
average rating of all reviews in every group). CLAP is useful
for app developers to plan for the next release by selecting
the most important raised complaints in a particular issue
type (e.g., most important performance issue that was raised
in the reviews).

Chen et al. [8] proposed AR-Miner (Automatic Review
Miner) that filters out non-informative reviews and groups
similar reviews based on topic extraction. The AR-Miner
approach ranks topics based on different criteria such as the
number of reviews containing this topic or the average rat-
ing of the topic. Finally, the AR-Miner displays the identified
topics. The proposed approach is useful for app developers
to identify raised topics over time and easily select reviews
that are related to a certain topic.

Later Palomba et al. [39] leveraged Chen et al.’s ap-
proach to filter non-informative reviews and proposed the
CRISTAL approach. CRISTAL links user reviews to the
corresponding code changes (i.e., code commits and bug re-
ports) using text similarity. Palomba et al. applied CRISTAL
to 100 apps and observed that implementing features that
are requested in user reviews leads to a rating increase.
Palomba et al. results suggest that developers should lever-
age reviews analysis tools to continuously highlight the
requested features and implement these features to improve
their app rating. Palomba et al. [40] extended their study
by surveying app developers whether they consider the
requested features in user reviews. Palomba et al. observed

that at least 75% of the surveyed developers mentioned that
they frequently consider the features that are requested by
users. Later Palomba et al. [38] proposed the CHANGEAD-
VISOR approach to group user reviews that request similar
features and map these reviews to the corresponding source
code. The CHANGEADVISOR approach was applied to ten
apps and the CHANGEADVISOR approach achieves high
accuracy (81% precision and 70% recall) in mapping the
requested features from user reviews to the corresponding
source code elements.

Gao et al. [10] proposed IDEA (IDentify Emerging App
issues) that identifies the emerging topics in every update
of an app. IDEA automatically identifies the representative
sentence for each topic and displays the topic’s evolution
over time. The main difference between AR-Miner and
IDEA is that IDEA introduced the AOLDA (Adaptively
Online Latent Dirichlet Allocation) approach to adaptively
detect the topics of an update Ui based on the topics of the
previous updates. Gao et al. evaluated IDEA by comparing
the identified topics to the release notes of six apps. Gao et
al. observed that IDEA detects the topics with 60% precision
and 60% recall.

Table 1 summarizes prior studies which analyze user
reviews. Prior research mainly focused on app-level analysis
of reviews. Such app-level analysis does not identify how
users perceive every update and how to learn from users’
feedback about every update. In this paper, we demonstrate
the benefit of update-level analysis of user reviews to un-
derstand what leads to an update being perceived as a bad
update and how developers address the raised issues in
such updates.

In our prior work [14], we studied the dialogue between
app users and developers in the Google Play Store. We
found that reviews are not static and users change their
reviews over time. For example, a developer reply may lead
to an increase in the posted review rating. In this paper,
we leverage the analysis of the changes in user reviews by
studying if, how and after how long developers recover
from a bad update. Gao et al.’s research showed that the
distribution of the raised topics for an app changes with
each update. Our work differs from Gao et al.’s research as
we propose an approach for identifying bad updates and
we leverage this approach by analyzing the characteristics
of bad updates.

Our work differs from prior research on reviews as we
performed an in-depth analysis of reviews’ content at the
update-level, rather than at the app-level. In particular,
we provided an in-depth analysis of bad/good updates
and how developers recover from bad updates. Hence, our
analysis is useful for researchers to understand the opinion
of users about an app at a much finer granularity.

3 METHODOLOGY

In this section, we describe our approach for studying bad
updates from the Google Play Store. Figure 3 gives an
overview of the steps of our approach. We detail each step
below.

3.1 Collecting Data
In this section, we describe our selection criteria and data
collection process.

5

TABLE 1: Summary of the prior studies which analyze user reviews (ordered by the publication year)

Study Approach name Venue-Year Description

Iacob et al. [17], [18] MARA MSR-2013,
MobiCASE-2013

An apporach for classifying reviews that contain 1) bug reports or 2)
feature requests.

Khalid et al. [22], [24] - ICSE-2013,
IEEE Soft.-2015

Provided a taxonomy of 13 issue types in negative reviews.

Chen et al. [8] AR-Miner ICSE-2014 An approach that filters non-informative reviews and groups similar
reviews based on topic extraction.

Maalej and Nabil [26] - RE-2015 An approach that classifies reviews into four categories: (1) bug report,
(2) feature request, (3) user experience, and (4) unspecified.

Panichella et al. [41], [42] ARdoc ICSME-2015,
FSE-2016

An approach to classify user reviews into five categories: (1) feature
request, (2) bug report, (3) providing information, (4) requesting infor-
mation, and (5) others.

Palomba et al. [39], [40] CRISTAL ICSME-2015,
JSS-2018

An approach that links user reviews to the corresponding code changes
(i.e., code commits and bug reports).

McIlroy et al. [33] - EMSE-20016 An approach for classifying reviews into 14 issue types (e.g., crashes and
UI issues).

Di Sorbo et al. [45], [46] SURF FSE-2016,
ICSE-2017

An approach to label reviews into the five categories that are proposed
by Panichella et al. [41], [42]. Di Sorbo et al. identified 12 topics (e.g.,
pricing) that are raised in user reviews. SURF identifies which topics
of these 12 topics that are mentioned in every review. Di Sorbo et al.’s
approach is useful to automatically identify reviews that are related to a
certain category (e.g., feature request) and a certain topic (e.g., pricing).

Villarroel et al. [49] &
Scalabrino et al. [44]

CLAP ICSE-2016,
TSE-2017

An approach to classify reviews into seven types: (1) bug report, (2)
feature request, (3) performance issue, (4) energy issue, (5) security issue,
(6) usability issues, and (7) others.

Palomba et al. [38] CHANGEADVISOR ICSE-2017 An approach to group user reviews that request similar features and
map these reviews to the corresponding source code.

Hassan et al. [14] - EMSE-2017 Studied the dialogue between app users and developers in the Google
Play Store and found that reviews are not static and users change their
reviews over time.

Gao et al. [10] IDEA ICSE-2018 An approach that indentifies the emerging topics in every update of an
app.

3.1.1 Select Top Android Apps
We selected apps for our study based on the following
criteria:

• App popularity: We focused on popular apps as we
expect that these apps are maintained by developers
who care about the rating of their app, and have a large
enough user-base that has an opinion about the app.

• App diversity: We selected top popular apps across all
categories in the Google Play Store to ensure that the
app categories do not impact our observations.

We selected the top free-to-download apps in 2016 using
App Annie’s report on popular apps [1]. We focused on free
apps to avoid the impact of app price on our analysis. The
price of an app may have a significant impact on how users
perceive an update [36]. App Annie’s report of popular
apps contains 28 app categories (e.g., games and finance
categories). We selected the top 100 apps in each category.
In total, we selected 2,800 apps for our study. We found that
214 apps were repeated across categories and 60 apps were
already removed from the store when we started our study.
Hence, we conducted our study on 2,526 top apps.

3.1.2 Crawl App Data Over 12 Months
We used a Google Play crawler [5] to collect data from the
Google Play Store. For each studied app, we collected the
following data:

1) General data: app description, app title, the current
number of downloads and current rating of the app.

2) Updates: release notes of each update.
3) User reviews: review title, review contents, rating, re-

view time.

The crawler connects to the Google Play Store using the
Samsung S3 device model (as the Samsung S3 device was
one of the most popular models at the time that we started
to crawl [6]). Each time the crawler collects app data, the
crawler stores the current app data (e.g., the current rating)
and the latest 500 reviews of that app.

During our study, we observed that apps differ in the
amount of posted reviews per day. For example, some apps
receive thousands of new reviews per day (e.g., Facebook
and Instagram) while other apps receive a small number
of new reviews per day. To avoid overloading the Google
Play Store while still crawling as much data as possible, our
crawler automatically adjusts its crawling frequency per app
based on the number of newly posted reviews after each
crawl.

The Google Play Store allows users to post only one
review per app. Users can modify the contents or rating
of their posted review. Our crawler receives a chronological
overview of the review changes. We used changes in each
review to investigate the time that it takes a developer to
address a reported issue (i.e., by studying the time between
a user reporting an issue and the same user updating their
review to report that the issue was addressed).

We ran the crawler from April 20th 2016 to April 13th

2017. We crawled the store for almost a year as we need app
data for a longer period to identify a bad update. During our
study period, we collected 26,726 updates, and 26,192,781
reviews with 3,470,113 changes in reviews. We focused on
updates with at least 100 ratings to assure that every update
has sufficient data for our study. We ended up with 19,150
updates for our study. Table 2 describes our dataset. In the

6

2) Identifying bad updates

1) Collecting data

App data

General data including
app description, # of
downloads and rating

Updates

User reviews

Crawl app data
over 12 months

Select top Android
apps

Google Play
Store

Calculate the
negativity ratio

Negativity ratio of
 19,150 updates

Select updates that
received at least 100

ratings

Data for 19,150 updates

2,526 top apps

Top 250 bad
updates

Rank updates based on negativity
ratio and select the top 250 bad
updates with at least 20 negative

reviews

Fig. 3: An overview of our approach for studying bad updates

TABLE 2: Dataset description.

Number of studied apps 2,526
Number of collected updates 26,726
Number of collected reviews 26,192,781
Number of collected changes in reviews 3,470,113

next section, we explain how we used the collected data to
identify bad updates.

3.2 Identifying Bad Updates
In this section, we describe the steps for identifying bad
updates. First, we explain how to calculate the negativity
ratio which we used to identify bad updates.

3.2.1 Calculating the Negativity Ratio
To identify bad updates, we calculated the negativity ratio
for an update Ui as follows. First, we calculated the percent-
age of negative ratings (i.e., ratings of one or two stars [27])
of an update Ui (PNR(Ui)) as the ratio of the number of
negative ratings of update Ui to the total number of ratings
of update Ui. For example, an update with ten ratings (two
ratings with one star and eight ratings with four stars) has
a PNR of 0.2.

Then, we calculated the percentage of negative ratings
before update Ui (PNRB(Ui)) as the ratio of the number
of negative ratings before update Ui to the total number of
ratings before update Ui.

Finally, we calculated the negativity ratio of an update
Ui as follows:

Negativity ratio(Ui) =
PNR(Ui)

PNRB(Ui)
(1)

Note that we link a review to the latest update at the time
that the review was posted. A negativity ratio that is lower

TABLE 3: Mean and five-number summary of the negativity
ratio of the 19,150 studied updates.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Negativity ratio 1.0 0.0 0.8 1.0 1.1 26.3

than one means that users are less negative about the app
after releasing update Ui than before. On the other hand, a
negativity ratio higher than one means that users are more
negative about the app after the release of update Ui than
before. Table 3 shows the mean and five-number summary
of the negativity ratio of all 19,150 studied updates.

3.2.2 Identifying the Top 250 Bad Updates
To identify top bad updates, we focused on updates with the
highest negativity ratio. We applied the following approach.
First, we ranked all updates based on their negativity ratio.
Then for the top 1,000 updates with the highest negativity
ratio, if an app has consecutive updates in the list of the top
1,000 updates, we include only the first update in our study.
The reason is that we cannot verify whether the negative
ratings that are posted for a consecutive bad update are due
to an issue with the consecutive update or because users are
still complaining about an issue from the previous update.

Figure 4 shows an example of an app with nine updates.
The three updates U2, U3 and U8 are in the top 1,000 bad
updates. We included both updates U2 and U8 as users
clearly started to complain about these updates, while we
excluded update U3 since we cannot verify whether the
negative ratings that were posted for update U3 were due
to a new issue in update U3, or because users were still
complaining about update U2.

We selected the top 250 bad updates with at least 20 neg-
ative reviews to have enough data for our manual analysis

7

TABLE 4: Descriptive summary of the Top 250 bad updates.

Number of studied apps 211
Number of studied updates 250
Number of collected negative reviews 81,273
Number of collected changes in reviews 12,987

to help us understand why users perceive the update as a
bad update.

Table 4 shows the number of apps, the number of col-
lected reviews and the number of collected review revisions
of the studied bad updates.

3.3 Approach for Identifying the Types of the Raised
Issues in a Review
In our analysis of raised issues about bad updates, we
need to investigate which issues do users raise in a bad
update and what is the difference between the raised issues
in the negative reviews of bad updates and those issues
of negative reviews of regular updates. To answer these
questions, we need to manually read user reviews and
identify the issue type (e.g., crash) that is raised in every
review. Our approach for the manual analysis is as follows.
The first and the second author manually read the reviews
and identified the raised issues and the corresponding issue
type of each raised issue. McIlroy et al. manually analyzed
the complaints in user reviews of mobile apps and identified
14 issue types (e.g., crashing and user interface issue) [33].
We used the same issue types as McIlroy et al. [33]. Note
that Maalej and Nabil used several approaches (e.g., bag of
words) to automatically classify user reviews into four high-
level categories: bug report, feature request, user opinion
or rating [26]. In our analysis of negative reviews, we did
not use Maalej and Nabil’s high-level categories as the
proposed categories are too generic and do not provide
issue types at the level of detail (e.g., user interface issue
type or privacy and ethical issue type) that is necessary for
our analysis. Table 5 shows the list of McIlroy et al.’s issue
types, together with a description and an example of each
issue type. If there is a conflict between the two authors,
then both authors discuss how they interpreted the reviews
until both authors agree on the identified issue types of the
manually analyzed reviews. Finally, we calculated the agree-
ment between both authors using Cohen’s Kappa interrater
agreement [9]. Cohen’s Kappa measures the agreement be-
tween the two authors and provides value ranges from -1 to
+1 [9]. The highest Cohen’s Kappa measurement value (i.e.,
+1) means that both authors identified the same issue types
in all examined reviews.

In the following sections, we describe the motivation,
approach and the results of our study.

4 MOTIVATIONAL STUDY

In this section, we discuss our motivational study of bad
updates. Our motivational study has two parts. First, we
demonstrate the importance of update-level analysis of user
reviews. Second, we studied the difference between the
negative reviews of bad updates and the negative reviews of
regular updates. The motivation, approach and the results of
our motivational study are described in the following sub-
sections.

4.1 Demonstrating the Need for of Update-Level Analy-
sis of User Reviews
Motivation: We want to demonstrate the importance of
update-level analysis over the app-level analysis of reviews.
The app-level analysis shows the average percentage of neg-
ative reviews of an app across all updates, while the update-
level analysis shows the percentage of negative reviews for
each update. By comparing how the app-level and update-
level views change over time, we could determine whether
the update-level view is necessary.

We calculated the percentage of negative reviews instead
of using the average rating as the latter does not indicate
the percentage of the overall user-base who posted negative
reviews about the update. For example, if an app has two
updates. The first update has two ratings, one rating with
1-star and one rating with 5-stars. The second update has
six ratings, four ratings with 2-stars and two ratings with
5-stars. Both updates have the same average 3-stars, but the
percentage of users who posted negative reviews about the
update is different (50% for the first update and 67% for the
second update).

Approach: We measured the percentage of negative re-
views for each update for each studied app. Figure 5 shows
an example of changes of the percentage of negative reviews
for three different apps. We observe from Figure 5 that, (1)
the percentage of negative reviews may change from update
to another (e.g., the “WhatsApp Messenger” and “Handcent
Next SMS” apps in cases B and C), and (2) apps vary in how
fast they recover from a bad update (i.e., the “Handcent
Next SMS” app in case C).

We measured the standard deviation of the percentage of
negative reviews for all the studied updates. A low standard
deviation value means that the percentage of negative re-
views is almost stable for that app during the study period.
As shown in Figure 5 for the “WhatsApp Messenger” app,
the standard deviation of the app will not be impacted if
there is a bad update and the percentage of the negative
reviews recovered quickly in the following updates. Hence,
in addition to the standard deviation, we measured the
range of the percentage of negative reviews (Rangeneg%) per
app (i.e., the maximum percentage of negative reviews per
app - the minimum percentage of negative reviews per app).
A high Rangeneg% means that there are cases when there is
a burst of negative reviews that may point to a bad update.
The Rangeneg% alone does not show how fast an app recovers
from a bad update. Thus, we measured both the standard
deviation and the Rangeneg% to identify cases when there is
a burst of negative reviews and how fast an app recovers
from such cases.

Findings: Figure 6 shows the histogram of the standard
deviation of the percentage of negative reviews per app.
Table 6 shows the mean and the five-number summary of
the Rangeneg% per app.

We observe from Figure 6 and Table 6 that: (1) The
percentage of negative reviews does not vary much between
updates (the median standard deviation is 2.3%). (2) There
are peaks of negative reviews as the median difference
between the maximum and the minimum percentage of
negative reviews is 7% and the maximum difference is 88%.

To compare the app-level analysis with the update-level
analysis, Figure 5 shows the average percentage of negative

8

Fig. 4: An example of an app with nine updates U1 to U9. The blue dotted line in the figure shows the lowest negativity
ratio of the top 1,000 updates with the highest negativity ratio. In our study, we included both updates U2 and U8 as they
are separated by other updates while we excluded update U3 since it follows the bad update U2

TABLE 5: The identified issue types.

Issue type Description (D) - Example (E)

Functional Complaint D: The user complains about a functional issue in the app.
E: “It does not update cart. Also keeps login me off”

Crashing D: The user complains that the app crashes or does not work.
E: “Always crashes. It says it’s updating and then just closes out. Stupid useless app I just get on the Browser to pay
my card.”

User Interface D: The user complains about user interface issues (e.g., layout, icons, colors and style issues).
E: “Please revert back to old icon. Changing the icon took away the true identity of Instagram.”

Feature Request D: The user requests from developers to add a certain feature.
E: “The new update got rid of tabs.... one of the best features of the browser.”

Additional Cost D: The user complains about the additional cost of the app (e.g., an app has advertisements or asks for
additional payment).
E: “Too much advertisements are ruining the experience.”

Privacy and Ethical Issue D: The user complains about the private information that is requested by the app or the user complains
about ethical issues in the app.
E: “I would like an explanation of the need for the phone permission. Clearly app permissions in Android have become
useless.”

Network Problem D: The user complains about network or connectivity issues.
E: “New update running slowly and keeps prompting me to connect to wifi despite already being connected.”

Compatibility Issue D: The user complains about an issue for a certain device model or a certain Android version.
E: “Unable to sync lyrics on samsung j5”

Feature Removal D: The user requests from developers to remove a certain feature.
E: “Please remove the news section.” or “Mandates to rate. Hate the mandatory ratings after every ride.”

Response Time D: The user complains about the slow performance or the delay of the app.
E: “Very slow.”

Uninteresting Content D: The user complains that the app content is not useful or uninteresting.
E: “CNN has become too one sided and biased as a news organization. Will uninstall the app.”

Update Issue D: The user complains that the issue is related to the new update.
E: “New update is terrible”

Resource Heavy D: The user complains that the app consumes too many resources, such as battery, memory, CPU or storage.
E: “ESPN made it so if you want to listen to podcasts or live radio you are now required to use this app. My battery
usage has now jumped to 41% just for this app alone. Uninstalled and will not be using until this issue is fixed.”

Unspecified D: The review does not contain detailed information about a raised issue.
E: “Bad very bad”

TABLE 6: Mean and five-number summary of the Rangeneg%
per app.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Rangeneg% 9.8% 0% 4% 7% 12% 88%

reviews for the same three cases. As shown in Figure 5, the
update-level analysis could identify the burst of variation
in the negative reviews so users and store owners could
easily identify when there is a bad update and when an app
recovers from such a bad update.

4.2 Comparing the Raised Issues in Bad Updates to the
Raised Issues in Regular Updates

Motivation: Before analyzing the raised issues of every bad
update, we need to examine whether the overall base of
the negative reviews of bad updates differs from the overall
base of negative reviews of regular updates. If there is no
difference between the negative reviews of bad updates and
negative reviews of regular updates, then there is no need
for further analysis of bad updates. On the other hand, if
there is a difference between the type of raised issues for
negative reviews of bad updates versus regular updates,
then it is useful to further investigate how users perceive
bad updates (i.e., what do users complain about after a

9

● ● ● ● ● ● ● ● ● ● ●

Standard deviation = 0.5% and Rangeneg% = 2%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11
Update

P
er

ce
nt

ag
e

of
 n

eg
at

iv
e

re
vi

ew
s

(A) The "La Biblia en Español" app

●

●
● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

●

●

Standard deviation = 9% and Rangeneg% = 42%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19
UpdateP

er
ce

nt
ag

e
of

 n
eg

at
iv

e
re

vi
ew

s (B) The "WhatsApp Messenger" app

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

Standard deviation = 18.3% and Rangeneg% = 72%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23
UpdateP

er
ce

nt
ag

e
of

 n
eg

at
iv

e
re

vi
ew

s (C) The "Handcent Next SMS" app

Fig. 5: An example of: (A) the “La Biblia en Español” app with a low standard deviation (0.5%) and a small Rangeneg%
(2%), (B) the “WhatsApp Messenger” app with a burst in the percentage of negative reviews and a fast recovery of the
percentage of negative reviews (the standard deviation value is 9% and the Rangeneg% is 42%), and (C) the “Handcent Next
SMS” app with a burst in the percentage of negative reviews and a slow recovery of the percentage of negative reviews
(the standard deviation value is 18.3% and the Rangeneg% is 72%). The black dotted line in the figure shows the average
percentage of negative reviews of every app.

0

200

400

600

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Standard deviation of the percentage of negative reviews per app

N
um

be
r

of
 a

pp
s

Fig. 6: A histogram of the standard deviation of the per-
centage of negative reviews per app

bad update?) and how developers often recover from bad
updates.

Approach: Figure 7 shows an overview of our approach
for comparing the raised issues in the negative reviews of
bad updates versus the negative reviews of regular updates.
We followed these steps:

Step 1: Select a statistically representative sample of the

negative reviews of bad updates. As described in
Section 3, we observed that apps differ in the
number of received reviews. Hence, sampling
the overall collected reviews may lead to a bias
towards apps with many reviews. Thus, we first
randomly selected a statistically representative
sample of the negative reviews with a confi-
dence level of 95% and a confidence interval of
5% for each bad update of the top 100 bad up-
dates. Then, we grouped the collected random
samples. We ended up with a refined sample of
11,829 negative reviews out of 42,525 negative
reviews.
Finally, we randomly selected a statistically rep-
resentative sample of 372 reviews (out of 11,829
reviews) with a confidence level of 95% and a
confidence interval of 5%.

Step 2: Extract negative reviews of regular updates. To com-
pare reviews of bad updates and regular up-
dates, both types of updates should be related
to the same apps. In this way, we eliminate any

10

Step 2: Extract negative reviews of regular updates

Motivational
study

dataset

Extract negative reviews of bad updates
42,525

negative
reviews

Step 1: Select a
statistically

representative
sample of the

negative reviews
of bad updates

945
regular
updates

Extract
negative
reviews

226,460
negative
reviews

Step 4: Identify
the raised issues
in both samples

and compare
themStep 3: Select a

statistically
representative
sample of the

negative reviews
of the regular

updates

Differences
between the

raised issues of
bad and regular

updates

Find
regular
udpates

Find list of
apps

Apps
with bad
updates

Fig. 7: An overview of our approach for comparing the raised issues in bad updates to the raised issues in regular updates
of our motivational study dataset

bias caused by comparing reviews of different
apps. We observed that our motivational study
dataset (i.e., the top 100 bad updates) spans 94
apps with 1,450 updates.
To identify regular updates, first, we filtered
out bad updates (we kept 1,350 out of 1,450
updates). Then, we ranked the 1,350 updates
with their negativity ratio and removed the top
30% bad updates (i.e., updates with the highest
negativity ratio), so we can ensure with more
confidence that the remaining updates are not
bad updates. We ended up with 945 regular
updates, which have 226,460 negative reviews
in total.

Step 3: Select a statistically representative sample of the
negative reviews of the regular updates. For each
regular update, we randomly selected a sta-
tistically representative sample of its negative
reviews with a confidence level of 95% and a
confidence interval of 5%. Then, we grouped the
collected random samples. We ended up with
70,643 negative reviews (out of the collected
226,460 negative reviews).
Finally, we randomly selected a statistically rep-
resentative sample of 382 reviews (out of 70,643
reviews) with a confidence level of 95% and a
confidence interval of 5%.

Step 4: Identify the raised issues in both samples and com-
pare them. We manually read the reviews in both
samples and identified the raised issues and the
corresponding issue type in the negative reviews
of both samples (as described in Section 3.3).
We measured the agreement between both au-
thors. In addition, we compared the statistics
of the issue types across samples. Finally, we
applied a statistical test to examine the statis-
tical difference between the distribution of the
issues types in bad updates and regular updates.
In particular, we applied Pearson’s Chi-squared
test because it can be used to test distributions
of categorical variables for a statistical differ-
ence [2], [4]. We defined the null-hypothesis as
the hypothesis that the raised issue types for

bad updates are different from those raised in
regular updates.

Findings: The frequency of update-related issues in the
negative reviews of bad updates is higher than in regular
updates. Figure 8 shows the distribution of each issue type
for regular updates and bad updates. Users mention that an
issue is related to the latest update in 32% of the negative
reviews of bad updates and in 20% of the negative reviews
of regular updates. Hence, an important characteristic of
bad updates is that users complain more specifically about
an issue in the update. Thus, reading the negative reviews
of every bad update might provide insight as to why an
update is perceived as bad.

The frequency of unspecified issues in the negative
reviews of regular updates is almost four times higher
than that in bad updates. For regular updates, 26% of the
negative reviews do not specify an issue (e.g., a review only
says “Bad”). On the other hand, for bad updates, only 7% of
the negative reviews are not specific. This finding suggests
that negative reviews of bad updates are more descriptive
than the negative reviews of regular updates.

User interface, feature request, feature removal, addi-
tional cost, crashing and compatibility issues are raised
more frequently in the negative reviews of bad updates
than in regular updates. For negative reviews of bad up-
dates that raise user interface, feature request and feature
removal issues, we observed that users often ask developers
to revert back to the old user interface or an old feature. For
example, in reviews that request the addition of a feature,
users do not ask for new features. Instead, users ask for
the restoration of a removed feature. In the user interface
reviews, users ask developers to return to the original user
interface as they felt that the previous update had a better
user experience than the new update. Hence, it is important
that developers consult with their users before changing or
removing a feature.

We measured Pearson’s Chi-squared test and we found
that the p-value is < 0.01. The Pearson’s Chi-squared test
result shows that there is a statistical difference between the
issue types of regular updates and the issue types of bad up-
dates. As described in our approach section, we measured
the agreement between both authors. We observed that the

11

0

10

20

30

U
pd

at
e

Is
su

e

F
un

ct
io

na
l C

om
pl

ai
nt

F
ea

tu
re

 R
eq

ue
st

A
dd

iti
on

al
 C

os
t

C
ra

sh
in

g

U
se

r
In

te
rf

ac
e

P
riv

ac
y

an
d

E
th

ic
al

 Is
su

e

U
ns

pe
ci

fie
d

U
ni

nt
er

es
tin

g
C

on
te

nt

C
om

pa
tib

ili
ty

 Is
su

e

F
ea

tu
re

 R
em

ov
al

R
es

po
ns

e
T

im
e

N
et

w
or

k
P

ro
bl

em

R
es

ou
rc

e
H

ea
vy

P
er

ce
nt

ag
e

of
 r

ev
ie

w
s

Update type
Bad updates
Regular updates

Fig. 8: Distribution of each issue type for both regular
updates and bad updates of our motivational study dataset

Cohen’s Kappa interrater agreement between both authors
is 0.7.�

�

�

�

The update-level analysis is useful for identifying updates
with a burst of user complaints (i.e., bad updates). Ana-
lyzing a sample of negative reviews of bad updates shows
that the negative reviews of bad updates are different from
those of regular updates. In particular, negative reviews
of bad updates are more descriptive and raise more update-
related issues than those of regular updates. Hence, further
analysis on what do users complain about after a bad
update? and how do developers recover from a bad update?
can offer insights about bad updates and how to recover
from such updates.

5 A STUDY OF BAD UPDATES

In this section, we present our study of the top 250 bad
updates. For each RQ, we present our motivation, approach,
and results.

5.1 RQ1: What do users complain about after a bad
update?
Motivation: It is hard to make every user happy. Bad reviews
are inevitable. The real problem with bad reviews is when
they result in an alienation of the user-base of an app.
Prior work studied user complaints in reviews at the app-
level [15], [16], [17], [18], [19], [21], [26], [37], [49]. In our
motivational study, we demonstrated the need for update-
level analysis. In this section, we analyze user complaints at
the update-level. Our goal is to understand whether some
issue types are more likely to make a particular update be
perceived as bad. Our findings can help developers identify
the issues that should be dealt with more caution to avoid
bad updates.

Approach: We manually analyzed 17,646 negative reviews
of bad updates. Figure 9 shows an overview of our approach
for analyzing reviews at the update-level.

We grouped all reviews per update and analyzed what
is the primary raised issue for every bad update. For each

bad update Ui, we identified the negative reviews that are
posted between the release of update Ui and Ui+1. We
found 81,273 negative reviews that belong to the top 250 bad
updates (a median of 84.5 negative reviews per bad update).
Then, for each update Ui, the first and the second author
manually read a random sample of 100 negative reviews
as we observed that 100 reviews were enough to identify
the core issues of a bad update. Both authors independently
read the reviews to identify the raised issues in bad updates.
If there was a conflict between the two authors, then both
authors discussed how they interpreted the reviews until
both authors agreed on the identified issues for every bad
update. As described in Section 3.3, we used the issue types
that are listed in Table 5. The Cohen’s Kappa interrater
agreement between both authors for this classification is
0.78.

For each bad update, we observed that most of the
negative reviews complained about the same issue (the
primary issue). Hence, we documented the primary issue
for each update. We counted the number of updates that
refer to a certain issue type. As described in Section 4, If at
least 20% of the reviews of an update do not complain about
a specific issue (i.e., there is no primary issue), we consider
the raised issue for this update as unspecified. Additionally,
for each issue type, we calculated the median negativity
ratio of the updates that were labeled with this issue as the
primary issue. We also compared the percentage of apps
with bad updates across app categories.

Findings: Functional complaint and crashing issues are
the most frequently raised issues in bad updates. Table 7
shows the number of updates that were labeled with a
certain issue type. We observed that functional complaints
(70 updates) were the most occurring primary issue type in
bad updates. For 20 out of 70 updates, users complained
that they could not log in to the app. For 5 out of 20 login
issues, developers mentioned in the release notes of one of
the following updates that the login issue was addressed.
For the other 15 updates, the release notes have generic
content (e.g., “bug fixes”). For the two updates out of the
five updates with descriptive release notes, the reason was
that the login functionality did not work on all devices
(e.g., “Fixed issue on small screens where account button got
hidden”). Testing an app on all possible devices requires
considerable time and resources. Developers could benefit
from the existing studies to prioritize the needed devices
for testing their apps [23], [36].

We performed a comparison between the frequency of
the identified issue types in our update-level analysis and
the identified issue types in the app-level analysis work
that was performed by McIlroy et al. [33]. In particular,
we observed that crashes, additional cost and user interface
issues occur more frequently at the update-level than at
the app-level. On the other hand, reviews with feature
requests and network issues are more frequent at the app-
level than at the update-level. A possible explanation for
this difference is that the two studies were conducted on
different apps and analyzed user reviews at different times
which may impact the distribution of the raised issues in
the two studies. However, the differences between our work
and the work of McIlroy et al. indicate that our update-
level analysis provides a complementary view that is not

12

For every bad update Ui out of the top 250 bad updates

Top 250 bad
updates

Extract negative
reviews of bad

updates

81,273
negative
reviews

Manually identify the
primary raised issue
(e.g., crash) of every

update Ui

The raised issue
(along with the issue

type) of every bad
update Ui

Analyze the frequency
and the median

negativity ratio of each
issue type for the top

250 bad updates

Select a
random

sample of 100
reviews for
update Ui

100 reviews (in total
17,646 negative

reviews)

Fig. 9: An overview of our approach for studying the raised issues in bad updates

TABLE 7: The number of updates that were labeled with a
certain issue type and the median negativity ratio of each
issue type (ranked by the number of bad updates).

Issue type

of bad updates
containing this

issue as a primary
issue

Median
negativity

ratio*

Functional Complaint 70 2.8
Crashing 44 2.5
Additional Cost 35 2.5
User Interface 23 3.4
Privacy and Ethical Issue 23 2.5
Other 18 2.3
Feature Request 17 2.8
Uninteresting Content 16 2.6
Network Problem 10 2.5
Feature Removal 7 3.5
Compatibility Issue 3 2.8
Response Time 2 2.4
Resource Heavy 1 2.1

Total number of bad updates 250 2.7
* This column shows the median negativity ratio of the updates that

are flagged with this issue type as a primary issue.

available in other prior work on the analysis of mobile app
reviews.

Feature removal and user interface issues have the
highest median negativity ratio. We observed that the
highest median negativity ratio (3.5) occurred for bad up-
dates where users ask for removing a new feature that was
added by the latest update. For example, users complained
about an additional step that mandates users to create an
account to use the app or users asked for the removal of
notifications. In another example, the developer improved
the app’s security by making the user session expire after
a particular time, and users need to enter their credentials
(i.e., the username and the password) to remain signed
in. Although developers initially expected that the added
features would be perceived as a good update, users asked
developers to roll back this additional feature. Hence, app
developers should consult users before adding new features
to avoid such bad updates.

During our manual analysis of the 23 updates where user
interface issues were raised, we observed that user interface
issues could be classified into different subtypes. To identify

the different subtypes of user interface issues, we used an
approach similar to coding [7], [25]. We manually read the
previously-selected random sample of 100 reviews of each
of the 23 updates. Then, we identified the subtypes of the
user interface issues. If a new subtype was identified, it
was added to the list of identified subtypes. After reading
the reviews, we identified five different subtypes of user
interface issues in bad updates. Table 8 shows the five iden-
tified subtypes together with their description. Although
the identified subtypes seem minor issues and could be
addressed easily (e.g., icons or colors), clearly users care
about these user interface issues. Hence, it is recommended
that developers give more attention to how their apps
look because even trivial details like icons can impact their
ratings.

Finance and social apps have the highest percentage
of bad updates. Table 9 shows the number of apps with at
least one bad update, the number of updates, the percentage
of bad updates, and the median number of updates per app
in each app category. As shown in Table 9, finance apps
(e.g., the “Citi Mobile” and the “Bank of America Mobile
Banking” apps) and social apps (e.g., the “Instagram” and
the “Meetup” apps) have the highest number of bad up-
dates. One possible reason for the finance category having
more bad updates than others, is that users may expect
higher quality updates from large financial corporations.
For example, the “Citi Mobile” app released an update that
crashed, after which users posted negative reviews such as:
“I do not understand why such a big and powerful bank has this
awful app” and “Can’t believe it is a banking app by Citi... keep
giving error.. worst app ever”.

Considering the percentage of bad updates, financial
apps have the highest percentage of bad updates (27% of the
apps and 6% of the updates have bad updates). We observed
that while social, house and home, food and drink, commu-
nication and tools apps have the highest median number of
deployed updates per app, not all of these app categories
rank high when it comes to the number of apps with bad
updates. Hence, we cannot conclude that the number of
deployed bad updates per app is a direct consequence of
the total number of updates of an app.

13

TABLE 8: The identified sub-types of user interface issues.

Category Description (D) - Example (E)

Logo or icon D: The user complains about the main app logo or the displayed icons in the apps.
E: “The previous icon was much much better than this new updates icon... Didn’t like this”

Design and layout D: The user complains about the design or layout of the screens.
E: “The layout before was so easy to navigate and use. There is literally nothing I like about the new update.” or “No
more simplicity. So much wasted space and have to scroll miles for miles to look at anything. Not intuitive. Writing is
so small can’t read anything even tho my screen could accommodate much more. Peoples pics are tiny can’t even see
who’s attending the events. Whoever did this should be fired.”

Colors D: The user complains about the colors of the screen (e.g., screens are too bright or too dark).
E: “This new UI is too bright n I don’t find it comfortable to use it at night” or “I can barely even type this black on
black is kinda hard to use”

Photos/pictures quality D: The user complains about the quality of an image.
E: “New version is not good picture quality is very bad plz solved tha problem.. Discasting...’

Not user-friendly D: The user complains that functionality is not easily accessible in the new interface (e.g., users need to
perform many actions to navigate).
E: “Your changes are awful dumped all of my stocks no longer easy to look at requires multiple clicks to see
portfolio.should have left the app alone”

TABLE 9: The number of apps with bad updates grouped by the app category.

Category # of apps with
bad updates

of bad
updates

Total #
of apps

Total # of
updates

% of apps with
bad updates

% of bad
updates

Median # of
updates per app

Finance 22 30 81 544 27% 6% 5
Social 19 27 79 1,434 24% 2% 16
Shopping 18 20 88 1,042 20% 2% 9
News and Magazines 13 19 66 644 20% 3% 6
Sports 12 13 58 439 21% 3% 5
Communication 11 11 75 1,289 15% 1% 12
Productivity 11 13 79 965 14% 1% 9
Health and Fitness 10 11 70 746 14% 1% 8
Tools 10 11 92 1,729 11% 1% 12
Photography 9 10 91 1,337 10% 1% 9
Lifestyle 8 10 58 535 14% 2% 7
Weather 8 10 66 422 12% 2% 3
Games 7 8 79 757 9% 1% 7
Travel and Local 7 7 68 730 10% 1% 8
Business 6 8 76 657 8% 1% 7
Entertainment 6 7 81 656 7% 1% 7
Education 5 5 66 690 8% 1% 7
Maps and Navigation 5 5 57 495 9% 1% 3
Personalization 5 5 76 826 7% 1% 6
House and Home 4 5 11 132 36% 4% 14
Medical 3 3 45 257 7% 1% 4
Music and Audio 3 3 76 882 4% 0% 8
Books and Reference 2 2 64 512 3% 0% 6
Food and Drink 2 2 13 229 15% 1% 17
Parenting 2 2 6 50 33% 4% 8
Auto and Vehicles 1 1 11 132 9% 1% 7
Comics 1 1 29 175 3% 1% 3
Video Players 1 1 55 619 2% 0% 7

�

�

�

�

Bad updates are not only perceived as bad because of
functional issues. Instead, crash, additional cost and user
interface issues are often occurring in bad updates whereas
at app-level these issues do not occur as often. In addition,
we observed that feature removal and user interface issues
have the highest negativity ratio.

5.2 RQ2: How do developers recover from a bad up-
date?

Motivation: Receiving low ratings and negative reviews can
be devastating for an app [27]. Hence, it is important that in
the event of a bad update, developers can recover quickly by
releasing a good update. Analyzing how developers behave
after a bad update can provide insights on how developers
can recover from future bad updates. Therefore, we studied

if, how and after how long do developers recover from a
bad update.

Approach: For each bad update Ui, we studied how many
updates are needed to recover from this bad update (e.g., by
addressing the primary reported issue). To identify whether
the primary issue was addressed, we manually conducted
the following steps:

Step 1: Examine changes in reviews of the bad update.
As described in Section 3, our crawler stores changes in
reviews. Hence, for all negative reviews of a bad update
Ui, we manually examined the changes that users made
after the bad update Ui. By tracking the changes in the prior
reviews, we could figure out whether users still complained
about the primary issue or whether the issue was addressed.
If a user reported that the issue was addressed, we used the
posting time of the updated review to identify which update

14

TABLE 10: User review changes and release notes for the “Handcent Next SMS” app.

User review and release notes Date Rating

Release Notes: (Version 7.0.0)
“Next SMS new features: - New set of emoji, more fun with animated ones. - Application level changes
to greatly improve the overall speed. - UI overhaul to give a more immersive and polished material design.
- Redesigned pop-up window look and functionality. - Optimization for much lower power usage. - Add
night mode to make it easier on the eyes.”

11-8-2016 -

User: “This is the only app I use that consistently gets awful reviews everytime you ‘improve’ it. Wasted,
useless heading space, distracting grey shadows around time stamp in convos, jarring electric blue box
around contact pictures in convo lists, and my contact picture disappeared completely. And what is with
the hideous stop sign red unread message counter I cant get rid of!? It gives me the anxiety to have my
texting app scream at me about how many messages I need to read. Please, can you tell me the point?”

11-8-2016

Release Notes: (Version 7.0.1)
“Less space on conversation item, display conversations. - Fixed share pic at gallery. - Fixed some force
close issues. - Improve MMS. ** Please be patient if you get blank inbox when first upgrade to ,it need
some minutes optimize sync messages ***”

12-8-2016 -

User: “First update fixed a few things. Still seeing strange stop sign red unread message counter, but
better already” 12-8-2016

Release Notes: (Version 7.0.5)
“Remove top navigator bar for saving space. - Add blacklist feature display main window. - Improve
function. - Add resend message feature. - Fixed background of password input for privacy box. - Fixed
known issue. - Add avatar self. -Add My Theme table theme service window.’

15-8-2016 -

User: “First update fixed a few things. Took nearly 5 days, but it did eventually load all my convos. Still
seeing strange stop sign red unread message counter, but better already.” 15-8-2016

TABLE 11: The number of bad updates for which we observed evidence that developers could recover from the bad update,
the number of bad updates for which users were still complaining at the end of the study period and the number of bad
updates for which there is not enough information to verify whether an issue was addressed.

Decision # of bad
updates Description

Developer recovers
from a bad update

105 We observed changes in user reviews mentioning that the primary issue was addressed.

Users still complain 58 We observed that users still complain about the primary issue and either (1) the release notes for the
following updates do not mention any details about the issue (43 updates), (2) the release notes mention
a fix for the issue but users continue to complain (9 updates) or (3) there are no further updates at the
end of our study (6 updates).

There is not enough
information

97 We could not verify (a) precisely when the primary issue was fixed as user reviews were changed at
different times (6 updates) or (b) whether the primary issue was addressed (87 updates) as (1) there was
no primary issue (18 updates) or (2) we did not find any changes in the reviews after the bad update
(63 updates). We also read the release notes of the apps of these 63 updates and we still could not
verify whether the primary issue was addressed as (1) the release notes for the following updates do
not mention any details about the issue (52 updates) or (2) developers mentioned a fix for the issue but
there were no changes in the review contents to verify whether the issue was addressed (11 updates).

addressed the issue. In total, we analyzed 12,987 review
revisions out of the 81,273 negative reviews that belong to
the top 250 bad updates.

Step 2: Examine the release notes. We examined the
release notes of all the updates that were deployed after the
bad update Ui until we observed an update that mentioned
in the release notes that the primary issue was addressed.

As described in Section 3, the Google Play Store provides
the current app data (e.g., the current review contents and
the currently deployed update). To track the changes in user
reviews and examine the following release notes of a bad
update, we need to crawl the Google Play Store over a
period of time to track these changes. Hence, as described in
Section 3, we built our own crawler and crawled the Google
Play Store for 12 months to collect the changes in user
reviews and the deployed updates of an app. Table 10 shows
an example of changes in a single user review over time for
an issue that occurred in the “Handcent Next SMS” app. On
August 11th 2016, developers deployed update Ui (version

7.0.0) that made changes to the user interface. Users started
complaining about the new user interface. On the next day,
developers deployed update Ui+1 but the update did not
address all user interface complaints. Then on August 15th

2016, the developers deployed update Ui+2 that improved
the user interface and many users updated their reviews
accordingly by increasing their ratings. As shown in Table 10
it took two updates (from version 7.0.0 to version 7.0.5) to
recover from the user interface issue.

Findings: In 42% of the studied updates, we could verify
that app developers could recover from a bad update.
Table 11 shows the number of bad updates for which we
observed evidence that developers could recover from the
bad update, the number of bad updates for which users
were still complaining at the end of the study period and
the number of bad updates for which there is not enough in-
formation to verify whether the raised issue was addressed.
To understand the impact of solving the primary issue of
a bad update on the rating of an app, we calculated the

15

TABLE 12: The number of bad updates that raised a certain issue type, the number of recovered updates, the median
number of updates that were needed to recover from each issue type and the median negativity difference after
recovering from bad updates (ranked by the number of bad updates).

Issue type # of bad
updates (A)

of recovered
updates (B)*

% of recovered
updates (B/A)

Median # of
releases to recover

Median difference of
negativity ratio**

Functional Complaint 70 41 59% 1 1.8
Crashing 44 30 68% 1 1.5
Additional Cost 35 7 20% 4 2.5
User Interface 23 10 43% 2.5 2.7
Privacy and Ethical Issue 23 7 30% 1 1.9
Unspecified 18 0 0% NA NA
Feature Request 17 6 35% 2.5 1.7
Uninteresting Content 16 0 0% NA NA
Network Problem 10 6 60% 1 1.9
Feature Removal 7 3 43% 1 2.4
Compatibility Issue 3 1 33% 4 2.2
Response Time 2 2 100% 2 1.6
Resource Heavy 1 0 0% NA NA
* This column represents the number of bad updates for which we observed evidence that developers could recover from the update.
** This column shows the median of the difference between the negativity ratio of a bad update and the following update that addressed

the primary issue of that bad update.

difference between the negativity ratio of a bad update and
its following update that addressed the primary issue. We
observed that the median negativity difference is 1.8, which
means that the fixing updates have less negative reviews
than the bad updates. Our findings show that although
we could not verify that all apps could recover from a
bad update, listening to user feedback and addressing the
primary issue of a bad update can lead to an improvement
of the rating of an update.

For the bad updates for which we have evidence
that the developers could recover, we observed that they
recover the most often from bad updates where response
time, crashes, network problems, and functional issues
are raised. Table 12 shows the number and percentage of
updates from which they could recover, the median number
of needed updates to recover from a bad update and the me-
dian value of the difference between the negativity ratio of a
bad update and the recovery update. As shown in Table 12,
apps are most likely to recover from bad updates where
response time, crashes, network problems, and functional is-
sues are raised (100%, 68%, 60%, and 59% respectively). For
the 44 bad updates where crashes are raised, we observed
30 out of 44 updates that eventually were addressed. For
the remaining 14 updates, we could not confirm whether
the primary issue was addressed as the release notes for
the following updates were generic (e.g., “bug fixes”) and
no previously posted reviews were updated to confirm that
the issue was addressed. We also observed that the median
number of required updates to recover from crashes and
functional issues is one update, which indicates that these
types of issues are addressed fast.

Identifying similarity across negative reviews (such as
device model or SDK version) could help developers in
the identification of the issues. We observed that the release
notes of 2 out of 30 crash-fixing updates mentioned that the
crash occurred only on certain devices (i.e., for a certain
Android version or certain device model). For example, the
release notes of the “Period Tracker” app say: “Fixes crash
on notes page for devices with OS 4.0 and below.” In another
example, the release notes of the “HERE WeGo - Offline

Maps & GPS” app mention that: “Fixed a crash on app start
that affected some Samsung Galaxy users.” We observed that in
14 out of 97 (14%) of the posted reviews of the bad update,
the reviews mentioned that the crash occurred on Samsung
Galaxy devices (e.g., the Samsung Galaxy J5 or Galaxy Note).

The Google Play Store shows the meta-data of a review
to app developers (i.e., the installed SDK version and the
device model of a user who posted the review). Prior
research studied the relation between the device model
and the overall app rating so developers could identify
which devices impact their app ratings [23], [36]. Developers
could benefit from analyzing the meta-data of the negative
reviews to detect devices and SDK versions that have issues.
For example, developers can calculate the percentage of
negative reviews that have a certain device model or SDK
version to identify which devices or SDK versions are more
frequently associated with the reported issues of an update.

In 16 out of 23 (70%) of the bad updates where user
interface issues were raised, developers mentioned in
the release notes that they made improvements to the
user interface. In only 43% of the bad updates where
a user interface issue was raised, we observed evidence
that developers could recover from a bad update. The
median number of updates to recover from user interface
issues is two, which suggests that user interface issues
are not addressed as fast. For example, developers of the
“ATV Extreme Winter Free” app deployed two updates
to recover from the user interface issue (i.e., version 7.0.5
with release notes “Less space on conversation item and display
conversations” and version 7.0.7 with release notes “Remove
top navigator bar for saving space”). Only for update 7.0.7 did
users update their review and increased their ratings.

User feedback may force developers to reduce the
added cost. In 7 out of 35 updates (20%), we found evidence
that developers could recover from the complaints about the
additional cost (in 6 updates developers removed the addi-
tional cost after users complained about it, and in 1 update
developers provided alternative solutions for the additional
cost). For example, developers of the “MARVEL Contest of
Champions” app deployed an update with additional in-

16

app purchases. Users complained about the additional cost
and started writing the hashtag #boycottmcoc in the review
comments. For example, a user says “New update is horrible.
Used to love this game! Played for over 2 years. Spent LOTS on
money. Now its the worst game Ive seen. Go back to the previous
setup. #boycottmcoc”. We also observed that the campaign
that was initiated by users to boycott the app became
viral as many game players started complaining about the
additional cost in the app, which forced the developers to
reduce the additional app cost [3]. In our manual analysis
of the 35 updates where the additional cost issue is raised,
we identified three patterns for managing user complaints
about additional cost:

• Rolling back the additional cost (10 out of 35 updates).
These developers rolled-back the additional cost, e.g.,
by removing annoying advertisements or offering cer-
tain features for free. Note that in only 6 out of the 10
updates in which a developer rolled back the additional
cost, we observed evidence that the additional cost
issues were fixed and users increased their ratings. In
the remaining four cases, we did not find changes in
the user reviews to verify that the issue was fixed.

• Providing alternative solutions for the additional
cost (20 out of 35 updates). These developers offered
alternative solutions for the additional cost such as
(1) offering a non-free version that does not contain
advertisements (2 updates) or (2) keep on improving
their app by adding new features without reducing the
additional cost (18 updates). We observed that in only
one of the two updates related to offering a non-free
version, users liked the non-free version and increased
their review rating.

• Ignoring the user complaints (5 out of 35 updates).
These developers did not reduce the additional cost.
We could not identify evidence that they attempted to
satisfy the users in a different way.�

�

�

�

Crashes and functional errors have a higher recovery rate
and a faster recovery speed than other complaints. It is
relatively difficult to recover from user interface issues
compared to other complaints. In particular, 70% of the
apps tried to recover from bad updates with user interface
issues, while we could find evidence for only 43% of the
updates that they succeeded to do so. Our findings show
that app developers should carefully consult users before
changing their apps to avoid bad updates.

6 IMPLICATIONS

Studying reviews at the update-level rather than at the
app-level provides a richer view of the issues of an app.
The app-level analysis does not indicate how users perceive
each particular update. In particular, we observed during
our analysis for RQ1 that it is important to read several
reviews to understand the primary issue of an update.
Hence, to understand how users perceive an update, we
recommend that researchers analyze the overall sentiment
of an update as captured by many reviews instead of focus-
ing on a single review or a group of reviews for unrelated
updates.

App developers need to consult with their users be-
fore deploying a new update that makes changes that
can make users unhappy (e.g., changing the app’s user
interface). We observed that 55% of the raised issues in
bad updates are not due to crashes or functional issues
instead they are about other aspects (e.g., reducing features,
adding cost, or changing in the user interface of an app).
For example, we observed that additional cost and user
interface issues are the second most raised issue types in
bad updates, which indicates that mitigating such issues
may enable developers to reduce the probability of bad
updates. Existing tools could help in generating source code
or testing user interface components. For example, Moran
et al. [34], [35] proposed an approach that facilitates the
generation of mobile app source code from UI design mock-
ups. However, existing tools cannot automatically identify
all non-functional issues such as user interface issues (23
updates) or feature request/removal issues (24 updates)
that we encountered, because of the subjective nature of
these issues. Therefore, developers should not rely solely
on automated testing tools.

App developers should explicitly mention fixes in the
release notes of the updates following bad updates to
motivate users to download the new update. We observed
that developers often do not mention explicitly in the re-
lease notes whether they addressed the user-raised issues.
Instead, developers use either general words (e.g., “bug
fixes”), or they reuse the release notes of the bad update.
For example, we observed only 46 out of 105 (44%) fixing
updates for which developers mention explicitly that the
update addresses an issue that was raised in reviews of
the previous update. We measured the differences in the
negativity ratio (NegDiff) as the negativity ratio of a bad up-
date - the negativity ratio of the fixing update. We measured
the NegDiff in (1) where developers mentioned explicitly that
an update addresses the raised issue and (2) where devel-
opers mentioned general release notes (e.g., “bug fixes”).
We observed that the cases where developers mentioned
explicitly that they addressed the issues of the previous bad
update have a higher difference in the negativity ratio (the
average NegDiff = 1.9) than the cases where developers do
not mention that the issues were addressed (the average
NegDiff = 1.7). Hence, developers should mention in the
release notes the rationale of the new release (especially if
the release addresses a critical issue that was raised in the
previous update).

Store owners should provide both the overall rating
of an app and the rating of the latest update so users
can evaluate the new update before installing it. The
Google Play Store offers only the overall app rating. The
overall app rating hides useful information about the latest
update, such as whether the latest update was bad or
good. The Apple App Store provides rating information for
each update. Recently, the Apple App Store enabled app
developers to display either the rating of the latest update or
the overall rating of an app [12]. Future research is necessary
to investigate the impact of this option. For example, studies
need to be done on whether developers tweak this option to
make their app ratings look better to users.

Store owners (such as Google) should provide both the
overall app rating and the rating of the latest update, so

17

TABLE 13: Mean and five-number summary of the positivity
ratio of the 19,150 updates.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Positivity ratio 1.0 0.0 1.0 1.0 1.0 4.5

TABLE 14: Description of the top 100 good updates dataset.

Number of studied apps 82
Number of studied updates 100
Number of collected reviews 36,358
Number of collected changes in reviews 2,668

that users have the ability to decide whether to download
the new update.

7 ANALYZING GOOD UPDATES

In our study, we only focused on bad updates. To complete
our analysis, we study why users perceive an update as
good. To analyze good updates, we calculated the posi-
tivity ratio in a similar way as the negativity ratio, we
only counted positive ratings (i.e., ratings of four or five
stars [27]) instead of the negative ones. Table 13 shows the
mean and five-number summary of the positivity ratio of all
updates. We followed the same approach for identifying the
top 100 bad updates to identify the top 100 good updates us-
ing the positivity ratio. Table 14 shows the number of apps,
number of collected reviews and the number of collected
changes in reviews of good updates.

To understand what makes users perceive an update
as good, we followed the same approach of identifying
what do users complain about after a bad update, focusing
only on positive reviews, as follows. First, we randomly
selected 100 positive reviews for each of the top 25 good
updates. Then, we manually read the 100 positive reviews
of every good update and identified the primary reason for
an update being perceived as a good update. In total, we
manually read 1,879 positive reviews of the top 25 good
updates. Table 15 shows the list of the identified primary
reasons of good updates. As described in Section 3.3, Maalej
and Nabil studied several machine learning approaches
that could be used to automatically classify reviews into
four high-level categories: bug report, feature request, user
opinion or rating [26]. In our analysis of what makes users
perceive an update as good, we did not use Maalej and
Nabil’s high-level categories as these categories are too
generic for our purpose. Finally, for each of the identified
reasons for good updates, we calculated the number of
updates for this reason.

We observed that developing apps that provide great
functionality with an easy and straightforward user inter-
face is by far the top reason for an update to be perceived as
a good one. Table 16 shows the number and the percentage
of the reasons for the good updates. In 68% of the analyzed
updates, users liked an update because it provided great
functionality. In 24% of the analyzed updates, developing
a straightforward and easy to use app was the reason for
an update to be perceived as a good one. This finding
shows the importance of developing straightforward user
interfaces and providing great functionalities.

0

10

20

30

U
pd

at
e

Is
su

e

F
un

ct
io

na
l C

om
pl

ai
nt

F
ea

tu
re

 R
eq

ue
st

A
dd

iti
on

al
 C

os
t

C
ra

sh
in

g

U
se

r
In

te
rf

ac
e

P
riv

ac
y

an
d

E
th

ic
al

 Is
su

e

U
ns

pe
ci

fie
d

U
ni

nt
er

es
tin

g
C

on
te

nt

C
om

pa
tib

ili
ty

 Is
su

e

F
ea

tu
re

 R
em

ov
al

R
es

po
ns

e
T

im
e

N
et

w
or

k
P

ro
bl

em

R
es

ou
rc

e
H

ea
vy

P
er

ce
nt

ag
e

of
 r

ev
ie

w
s

Update type
Bad updates
Other updates

Fig. 10: Distribution of each issue type for both all updates
and bad updates of our motivational study dataset

In 12% of the analyzed updates, users asked for im-
provements or complained about issues in the app. That
means users still post positive reviews even if the app has
minor issues or the app requires improvements. Developers
can benefit from the positive reviews to identify the most
appreciated features by their users and focus on improving
and/or maintaining these features.

8 THREATS TO VALIDITY

8.1 Construct Validity

We assume throughout this paper that reviews belong to
the latest update at the time of posting the reviews. In our
previous work [13], we observed that in some cases users
still complained in the next few days after the release of a
fixing update, even though that update addressed the issue.
To mitigate this problem, we did not include consecutive
bad updates, as we cannot confidently determine to which
update a complaint belongs. We describe this problem in
more detail in Section 3.

In Section 4.2, we compared the raised issues in bad
updates to the raised issues in regular updates of the same
apps. Our results may be limited to characteristics of the
studied 94 apps with bad updates. To validate whether our
observations are still valid for other apps, we compared the
raised issues of bad updates to the raised issues of all other
updates. We followed the same approach as in Section 4.2,
except (1) In Step 2: We included all updates except the top
100 bad updates (19,050 out of 19,150 updates) and (2) In
Step 3: We randomly selected a statistically representative
sample of the negative reviews with a confidence level of
95% and a confidence interval of 5% for each update of
the 19,050 updates. Then, we grouped the collected random
samples together. We ended up with 1,181,974 negative
reviews (out of the collected 3,424,820 negative reviews).
Finally, we randomly selected a statistically representative
sample of 384 reviews (out of 1,181,974 reviews) with a
confidence level of 95% and a confidence interval of 5%.

Figure 10 shows the distribution of each issue type for all
updates and bad updates of our motivational study dataset.

18

TABLE 15: The identified reasons for an update being perceived as a good update.

Reason for good update Description (D) - Example (E)

Great functionality D: The user likes that the app provides great functionality (e.g., an important feature or
interesting content).
E: “Nice having schedule always available and can be updated. Keeps me organized”

Easy interface D: The user likes that the app has a straightforward and easy interface.
E: “Very easy to use.”

Ask for improvements D: The user asks for a new feature or an improvement to the app.
E: “Wish more reminders days before event”

Better than competitors D: The user is satisfied that the app provides better functionality than competitor apps.
E: “Works great! Far better than HBO GO!”

The update implemented a requested
feature or addressed an issue

D: The user is satisfied that the recent update implemented a previously requested feature or
addressed a previously reported issue.
E: “Thank you for bringing the Chromecast support. Really helps when we don’t have cable in every
room.”

Low cost D: The user appreciates that the app is free or inexpensive.
E: “Free weather app”

No specific information D: The user expresses a positive experience of using an app with no specific information.
E: “Great app!”

TABLE 16: Statistics for the reasons for good updates
(ranked by the number of updates).

Reason for good update # of
updates

Percentage
of updates

Great functionality 17 68%
Simple and easy 6 24%
Ask for improvements 3 12%
The update implemented a requested
feature or addressed an issue

3 12%

Low cost 3 12%
Better than competitors 1 4%
No specific information 1 4%

As shown in Figure 10, our observations still hold. For
example, the frequency of unspecified issues in all updates
is almost four times higher than that in bad updates. We
observed that the percentage of update-related issues in all
updates is less than in regular updates (7.3% and 19.6%
respectively). This difference can be explained as users of the
studied apps with bad updates are more likely to mention
in their reviews that the raised issues are due to the latest
update than the users of other apps.

8.2 Internal Validity
We collected data for the top 2,800 free popular apps in
2016 during almost one year. As described in Section 3, the
Google Play Store provides the current app data (e.g., the
current review contents and the currently deployed update).
Crawling the Google Play Store once will not provide us
with chronological information about the previously de-
ployed updates and the changes in the user reviews of an
app. Thus, we crawled the Google Play Store for almost one
year to have enough data for identifying bad updates and
analyzing why the overall user-base perceives an update as
a bad update. Collecting data for a longer period and for
more apps may provide more details about the characteris-
tics of bad updates.

In our study, we analyzed the characteristics of the top
250 bad updates. We focused on the top bad updates as these
updates provide good examples of unsuccessful updates.
Our work performs an in-depth analysis of mobile app
reviews while taking an update-centric view. Further studies

can extend our work by including more than just the top bad
250 updates.

The results of our manual studies are impacted by our
knowledge and experience. We are not the app owners, so
our analysis may be inaccurate in some cases (especially
if there was not enough data to understand user com-
plaints). To increase the accuracy of our manual analysis,
we included updates that contained at least 20 reviews.
In addition, we used data from different sources (i.e., user
reviews and release notes), so that, we could have a better
understanding of the raised issues.

In our analysis of bad updates, we need to understand
the primary issue of an update. We observed that it is im-
portant to read several reviews to understand the primary
issue (rather than just a single review) because of different
reasons. First, users may have different priorities, thereby
making a single review extremely biased. Second, users may
not report all issues in their review. Hence, to identify the
primary issue of an update, we read a random sample of 100
reviews of every update to understand the overall feeling of
the user-base about every update.

Recently, researchers attempted to automatically label
user-reviews with the corresponding issue type (e.g., crash-
ing or bug reports) based on the review content. For ex-
ample, McIlroy et al. [33] proposed an automated approach
that labels reviews with the corresponding issue type with
a precision of 66% and a recall of 65%. Later, Maalej and
Nabil compared different approaches and algorithms (e.g.,
bag of words and decision tree) to automatically classify
reviews into four high-level categories: (1) bug report, (2)
feature request, (3) user experience, and (4) unspecified [26].
Although the proposed approaches by Maalej and Nabil
have a higher precision (70 to 95%) and recall (80 to 90%)
than McIlroy et al.’s approach, their approach classifies
reviews into broad categories (e.g., bug report and feature
requests). Such broad categories are too high-level for our
study. In our study, we need a deeper understanding of
the rationale behind the negative reviews. In particular,
for every bad update, we need to understand what are
the raised issues and how developers could recover from
such issues. Labeling reviews with generic high-level labels,
such as bug reports or feature requests, will not provide

19

us with insights about the nature of the raised issues and
how developers addressed these issues. For example, if we
used Maalej and Nabil’s approach to classify the reviews
that were listed in Table 5, both reviews “It does not update
cart. Also keeps login me off” and “Unable to sync lyrics on
samsung j5” would be identified as bug reports while these
two reviews raise different issue types (functional complaint
and compatibility issue). This example clearly demonstrates
the need for our manual analysis. Hence, even if we would
use an automated approach to classify reviews into broad
categories, we still need to manually go through the posted
reviews of every bad update in order to get in-depth in-
sights about (1) what are the raised issues in every bad
update (e.g., users could not log in to the app, or users
complain about privacy issues such as the sharing of their
GPS location) and (2) how developers could recover from
bad updates (e.g., whether the login issue is resolved and
whether the developer resolved the previously mentioned
privacy issues). In conclusion, while manual analysis might
consume more resources than an automated approach, we
decided to manually read and investigate the issues of bad
updates to have more accurate results and to achieve a better
understanding than we would have gotten using automated
approaches.

In our analysis, we observed that apps in the financial
and social categories have the highest percentage of bad
updates. This observation does not necessarily mean that
apps in these categories have lower quality than apps in
other categories. It might be about the passion of the user-
base towards an app rather than that this app is of a lower
quality. For example, users of apps in the financial category
may expect higher quality updates from large financial
corporations.

In our study, we observed that identifying similarity
across negative reviews (such as device model or SDK
version) could help developers in the identification of the
issues. To analyze similarity across negative reviews, we
need to determine the device model or the SDK version of a
user who posted the review. The Google Play Store provides
the device model or SDK version of the user that posted
a review to the developer of an app. In particular, in our
collected dataset, we do not have the installed SDK version
of a user who posted the review. The crawler could collect
the device model for only 1.6% of the collected negative
reviews. Hence, we could not perform further analysis
about the similarity of the device model or the SDK version
of a user who posted the review across negative reviews.

In our study, we applied our analysis of the bad updates
for all app categories and the number of downloads. We
analyzed the difference in the negativity ratio and positivity
ratio across app categories and the number of downloads. To
examine whether our analysis of bad updates should be re-
peated across app categories and the number of downloads.
First, we applied the Scott-Knott test to group the negativity
ratio of app categories into groups based on the negativity
ratio [20]. The Scott-Knott test is an analysis of variance
test (ANOVA) that is used to validate if app categories or
download ranges have statistical differences in negativity
ratio. The Scott-Knott test places two distributions in dif-
ferent groups only if they are significantly different. The
Scott-Knott test result indicated that all app categories fit

into one group for the negativity ratio values. Hence, in
our study, we did not need to rerun our analysis of bad
updates for each app category. Second, we applied the Scott-
Knott test to study the difference of the negativity ratio
across the number of downloads. The Scott-Knott test results
indicate that all download ranges fit into one category for
the negativity ratio. Therefore, we also did not need to
repeat our analysis across the different number of download
ranges.

8.3 External Validity
The Google Play Store shows only the most recent 500 re-
views per app which means that previously-posted reviews
or changes in the existing reviews will not be accessible. In
our study, we needed to collect as many reviews for each
update as possible to understand the primary issue of a bad
update. As shown in Section 5.2, we needed to track the
changes in user reviews to identify when the raised issues
in bad updates are addressed. Martin et al. [29] discussed
the sampling error in analyzing store data. To minimize the
sampling error, we adjusted our crawler to visit the store
many times per day. During our crawling period from April
20th 2016 to April 13th 2017), the crawler connected to the
store 759,413 times. During our study, we found 1,284 out of
759,413 crawling cases (0.16%) in which the crawler found
500 new reviews. This means that in 99.84% of the crawling
times, the crawler could collect all crawlable store data for
the studied apps (i.e., we did not miss any data). Hence, we
are confident about the analysis of user’s complaints about
a bad update and how developers recover from such bad
updates as we miss a very minor amount of data (such as
reviews or changes in the user reviews) for the studied apps
that could impact our analysis.

9 CONCLUSIONS

Below are the key findings of our study:
1) An update-level analysis of reviews is necessary to

capture the overall feelings of the user-base about a
particular update. An app-level analysis is not sufficient
to capture these transient feelings.

2) Bad updates are not only perceived as bad because of
functional issues. Instead, crash, additional cost and
user interface issues are often occurring in bad updates
whereas at the app-level these issues do not occur
as often. We also observed that feature removal and
user interface issues have the highest median negativity
ratio.

3) We observed evidence that bad updates where response
time, crashes, network problems, and functional issues
were raised have the highest probability of their issues
being addressed (100%, 68%, 60%, and 59% respec-
tively). However, developers do not often mention in
the release notes that the updates after the bad updates
address the previously-reported issues. Therefore, we
recommend that app developers mention in their re-
lease notes the rationale for the new update to motivate
users to download the fix.

4) Uninteresting content and additional cost issues have
the lowest recovery rate. Additional cost and user in-
terface issues require the largest number of updates to

20

recover. In addition, feature removal and user interface
issues have the highest median negativity ratio. As
such issues are difficult to detect automatically, app
developers should consult users before releasing a new
update to avoid such bad updates.

Our findings highlight the need for studying reviews at
the update-level instead of at the app-level as is commonly
done in literature nowadays.

REFERENCES

[1] App Annie. https://www.appannie.com/ (Last accessed: July
2018).

[2] Chi-squared test of independence. http://www.r-
tutor.com/elementary-statistics/goodness-fit/chi-squared-
test-independence. (Last accessed: July 2018).

[3] Players upset about recent ‘Marvel Contest of Cham-
pions’ changes organize “#BoycottMCOC Movement” .
http://toucharcade.com/2017/03/09/players-upset-about-
recent-marvel-contest-of-champions-changes-organize-
boycottmcoc-movement/ (Last accessed: July 2018).

[4] Tutorial: Pearson’s Chi-square test for independence. http://
www.ling.upenn.edu/∼clight/chisquared.htm. (Last accessed:
July 2018).

[5] Akdeniz. Google Play Crawler. https://github.com/Akdeniz/
google-play-crawler (Last accessed: July 2018), Sept. 2013.

[6] AppBrain. Top Android phones. http://www.appbrain.com/
stats/top-android-phones. (Last accessed: July 2018).

[7] S. Borgatti. Introduction to grounded theory. http://www.
analytictech.com/mb870/introtogt.htm. (Last accessed: July
2018).

[8] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. AR-
miner: mining informative reviews for developers from mobile
app marketplace. In Proceedings of the 36th International Conference
on Software Engineering, ICSE ’14, pages 767–778, 2014.

[9] J. Cohen. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1):37–46, 1960.

[10] C. Gao, J. Zeng, M. R. Lyu, and I. King. Online app review
analysis for identifying emerging issues. In Proceedings of the 40th
International Conference on Software Engineering, ICSE ’18, 2018.

[11] N. Genc-Nayebi and A. Abran. A systematic literature review:
Opinion mining studies from mobile app store user reviews.
Journal of Systems and Software, 125:207–219, 2017.

[12] Google. Ratings, Reviews, and Responses. https://developer.
apple.com/app-store/ratings-and-reviews/ (Last accessed: July
2018).

[13] S. Hassan, W. Shang, and A. E. Hassan. An empirical study
of emergency updates for top Android mobile apps. Empirical
Software Engineering, 22(1):505–546, 2017.

[14] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan.
Studying the dialogue between users and developers of free
apps in the Google Play Store. Empirical Software Engineering,
23(3):1275–1312, 2017.

[15] H. Hu, C.-P. Bezemer, and A. E. Hassan. Studying the consistency
of star ratings and the complaints in 1 & 2-star user reviews for
top free cross-platform Android and iOS apps. Empirical Software
Engineering, 2018.

[16] H. Hu, S. Wang, C.-P. Bezemer, and A. E. Hassan. Studying the
consistency of star ratings and reviews of popular free hybrid
Android and iOS apps. Empirical Software Engineering, 2018.

[17] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps
feature requests from online reviews. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, pages
41–44, 2013.

[18] C. Iacob, R. Harrison, and S. Faily. Online reviews as first
class artifacts in mobile app development. In Proceedings of the
5th International Conference on Mobile Computing, Applications, and
Services, MobiCASE ’13, pages 47–53, 2013.

[19] C. Iacob, V. Veerappa, and R. Harrison. What are you complaining
about?: a study of online reviews of mobile applications. In
Proceedings of the 27th International BCS Human Computer Interaction
Conference, BCS-HCI ’13, page 29, 2013.

[20] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman. ScottKnott: A
package for performing the Scott-Knott clustering algorithm in R.
Trends in Applied and Computational Mathematics, 15(1):3–17, 2014.

[21] S. Keertipati, B. T. R. Savarimuthu, and S. A. Licorish. Approaches
for prioritizing feature improvements extracted from app reviews.
In Proceedings of the 20th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’16, pages 33:1–33:6, 2016.

[22] H. Khalid. On identifying user complaints of iOS apps. In Pro-
ceedings of the 35th International Conference on Software Engineering,
ICSE ’13, pages 1474–1476, 2013.

[23] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing
the devices to test your app on: a case study of Android game
apps. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’14, pages
610–620, 2014.

[24] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What
do mobile app users complain about? IEEE Software, 32(3):70–77,
2015.

[25] S. H. Khandkar. Open coding. http://pages.cpsc.ucalgary.ca/
∼saul/wiki/uploads/CPSC681/open-coding.pdf. (Last accessed:
July 2018).

[26] W. Maalej and H. Nabil. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In Proceedings of
the 23rd International Requirements Engineering Conference, RE ’15,
pages 116–125, 2015.

[27] P. Martin. 77% will not download a retail app rated lower than 3
stars. https://blog.testmunk.com/77-will-not-download-a-retail-
app-rated-lower-than-3-stars/. (Last accessed: July 2018).

[28] W. Martin. Causal impact for app store analysis. In Proceedings of
the 38th International Conference on Software Engineering, ICSE ’16,
pages 659–661, 2016.

[29] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The app
sampling problem for app store mining. In Proceedings of the 12th
Working Conference on Mining Software Repositories, MSR ’15, pages
123–133, 2015.

[30] W. Martin, F. Sarro, and M. Harman. Causal impact analysis
for app releases in Google Play. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE ’16, pages 435–446, 2016.

[31] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of
app store analysis for software engineering. IEEE Transactions on
Software Engineering, 43(9):817–847, 2017.

[32] S. McIlroy, N. Ali, and A. E. Hassan. Fresh apps: an empirical
study of frequently-updated mobile apps in the Google play store.
Empirical Software Engineering, 21(3):1346–1370, 2016.

[33] S. McIlroy, N. Ali, H. Khalid, and A. E. Hassan. Analyzing and
automatically labelling the types of user issues that are raised in
mobile app reviews. Empirical Software Engineering, 21(3):1067–
1106, 2016.

[34] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshy-
vanyk. Machine learning-based prototyping of graphical user in-
terfaces for mobile apps. IEEE Transactions on Software Engineering,
2018.

[35] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk.
Automated reporting of GUI design violations for mobile apps. In
Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE ’18, 2018.

[36] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo. A
study of the relation of mobile device attributes with the user-
perceived quality of Android apps. Empirical Software Engineering,
22(6):3088–3116, 2017.

[37] J. Oh, D. Kim, U. Lee, J. Lee, and J. Song. Facilitating developer-
user interactions with mobile app review digests. In Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 1809–1814, 2013.

[38] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. C. Gall,
F. Ferrucci, and A. D. Lucia. Recommending and localizing change
requests for mobile apps based on user reviews. In Proceedings of
the 39th International Conference on Software Engineering, ICSE ’17,
pages 106–117, 2017.

[39] F. Palomba, M. L. Vásquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia. User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps. In
Proceedings of the 31st International Conference on Software Mainte-
nance and Evolution, ICSME ’15, pages 291–300, 2015.

[40] F. Palomba, M. L. Vásquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia. Crowdsourcing user reviews
to support the evolution of mobile apps. Journal of Systems and
Software, 137:143–162, 2018.

https://www.appannie.com/
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-of-champions-changes-organize-boycottmcoc-movement/
http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-of-champions-changes-organize-boycottmcoc-movement/
http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-of-champions-changes-organize-boycottmcoc-movement/
http://www.ling.upenn.edu/~clight/chisquared.htm
http://www.ling.upenn.edu/~clight/chisquared.htm
https://github.com/Akdeniz/google-play-crawler
https://github.com/Akdeniz/google-play-crawler
http://www.appbrain.com/stats/top-android-phones
http://www.appbrain.com/stats/top-android-phones
http://www.analytictech.com/mb870/introtogt.htm
http://www.analytictech.com/mb870/introtogt.htm
https://developer.apple.com/app-store/ratings-and-reviews/
https://developer.apple.com/app-store/ratings-and-reviews/
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
https://blog.testmunk.com/77-will-not-download-a-retail-app-rated-lower-than-3-stars/
https://blog.testmunk.com/77-will-not-download-a-retail-app-rated-lower-than-3-stars/

21

[41] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall. How can I improve my app? classifying user
reviews for software maintenance and evolution. In Proceedings
of the 31st International Conference on Software Maintenance and
Evolution, ICSME ’15, pages 281–290, 2015.

[42] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora,
and H. C. Gall. ARdoc: app reviews development oriented
classifier. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’16, pages
1023–1027, 2016.

[43] I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. E. Hassan. Examining the rating system used in mobile-app
stores. IEEE Software, 33(6):86–92, 2016.

[44] S. Scalabrino, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta.
Listening to the crowd for the release planning of mobile apps.
IEEE Transactions on Software Engineering, pages 1–1, 2017.

[45] A. D. Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall. What would users change in
my app? summarizing app reviews for recommending software
changes. In Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’16, pages
499–510, 2016.

[46] A. D. Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and
G. Canfora. SURF: summarizer of user reviews feedback. In Pro-
ceedings of the 39th International Conference on Software Engineering,
ICSE ’17, pages 55–58, 2017.

[47] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan. What are the
characteristics of high-rated apps? A case study on free Android
applications. In Proceedings of the 31st International Conference on
Software Maintenance and Evolution, ICSME ’15, pages 301–310,
2015.

[48] M. L. Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk. API change and fault proneness:
a threat to the success of Android apps. In Proceedings of the
9th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, ESEC/FSE ’13, pages 477–487, 2013.

[49] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. D. Penta.
Release planning of mobile apps based on user reviews. In Pro-
ceedings of the 38th International Conference on Software Engineering,
ICSE ’16, pages 14–24, 2016.

Safwat Hassan is a Ph.D. candidate at
School of Computing, Queen’s University.
Safwat worked as a software engineer for ten
years in different corporations like Egyptian
Space Agency (ESA), HP, EDS, VF Germany
(outsourced by HP), and Etisalat. During
his ten years work experience, he worked on
different large-scale systems (varying from Web-
Based systems to embedded systems) and in
diverse project types (design service, customer
support, and R&D) across various domains

(Telecommunication, Supply-chain, and Aerospace). His research
interest includes data mining, big data analytics, software engineering,
mobile app store analytics. Contact him at shassan@cs.queensu.ca.

Cor-Paul Bezemer currently works as an assis-
tant professor in the Electrical and Computer-
ing Engineering department at the University of
Alberta in Canada. Before that, he was a post-
doctoral research fellow in the Software Analysis
and Intelligence Lab (SAIL) at Queen’s Univer-
sity in Kingston, Canada. His research interests
cover a wide variety of software engineering
and performance engineering-related topics. His
work has been published at premier software
engineering venues such as the TSE and EMSE

journals and the ESEC-FSE, ICSME and ICPE conferences. He is one
of the vice-chairs of the SPEC research group on DevOps Performance.
Before moving to Canada, he studied at Delft University of Technology
in the Netherlands, where he received his BSc (2007), MSc (2009) and
PhD (2014) degree in Computer Science. More about Cor-Paul can be
read on his website: https://www.ece.ualberta.ca/∼bezemer/

Ahmed E. Hassan is the Canada Research
Chair (CRC) in Software Analytics, and the
NSERC/BlackBerry Software Engineering Chair
at the School of Computing at Queen’s Univer-
sity, Canada. His research interests include min-
ing software repositories, empirical software en-
gineering, load testing, and log mining. Hassan
received a PhD in Computer Science from the
University of Waterloo. He spearheaded the cre-
ation of the Mining Software Repositories (MSR)
conference and its research community. Hassan

also serves on the editorial boards of IEEE Transactions on Software
Engineering, Springer Journal of Empirical Software Engineering, and
PeerJ Computer Science. Contact him at ahmed@cs.queensu.ca.

https://www.ece.ualberta.ca/~bezemer/

	1 Introduction
	2 Related Work
	2.1 Characteristics of Successful Apps
	2.2 User Reviews of Mobile Apps

	3 Methodology
	3.1 Collecting Data
	3.1.1 Select Top Android Apps
	3.1.2 Crawl App Data Over 12 Months

	3.2 Identifying Bad Updates
	3.2.1 Calculating the Negativity Ratio
	3.2.2 Identifying the Top 250 Bad Updates

	3.3 Approach for Identifying the Types of the Raised Issues in a Review

	4 Motivational Study
	4.1 Demonstrating the Need for of Update-Level Analysis of User Reviews
	4.2 Comparing the Raised Issues in Bad Updates to the Raised Issues in Regular Updates

	5 A Study of Bad Updates
	5.1 RQ1: What do users complain about after a bad update?
	5.2 RQ2: How do developers recover from a bad update?

	6 Implications
	7 Analyzing Good Updates
	8 Threats to Validity
	8.1 Construct Validity
	8.2 Internal Validity
	8.3 External Validity

	9 Conclusions
	References
	Biographies
	Safwat Hassan
	Cor-Paul Bezemer
	Ahmed E. Hassan

