
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306049014

The Use of Summation to Aggregate Software Metrics Hinders the

Performance of Defect Prediction Models

Article in IEEE Transactions on Software Engineering · January 2016

DOI: 10.1109/TSE.2016.2599161

CITATIONS

17
READS

53

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Mining Online Gaming Stores View project

Mining the Google Play Store View project

Ahmed E. Hassan

Queen's University

363 PUBLICATIONS 7,964 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ahmed E. Hassan on 23 August 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/306049014_The_Use_of_Summation_to_Aggregate_Software_Metrics_Hinders_the_Performance_of_Defect_Prediction_Models?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/306049014_The_Use_of_Summation_to_Aggregate_Software_Metrics_Hinders_the_Performance_of_Defect_Prediction_Models?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mining-Online-Gaming-Stores?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mining-the-Google-Play-Store?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queens_University?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmed_E_Hassan?enrichId=rgreq-0054aca5a044e1c707cdb6b23d260a0e-XXX&enrichSource=Y292ZXJQYWdlOzMwNjA0OTAxNDtBUzo2NjI5MDQ4NTI0NzE4MDhAMTUzNTA2MDI0MTg2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The Use of Summation to Aggregate
Software Metrics Hinders the Performance

of Defect Prediction Models
Feng Zhang, Ahmed E. Hassan,Member, IEEE,

Shane McIntosh,Member, IEEE, and Ying Zou,Member, IEEE

Abstract—Defect prediction models help software organizations to anticipate where defects will appear in the future. When training a

defect prediction model, historical defect data is often mined from a Version Control System (VCS, e.g., Subversion), which records

software changes at the file-level. Software metrics, on the other hand, are often calculated at the class- or method-level (e.g.,

McCabe’s Cyclomatic Complexity). To address the disagreement in granularity, the class- and method-level software metrics are

aggregated to file-level, often using summation (i.e., McCabe of a file is the sum of the McCabe of all methods within the file). A recent

study shows that summation significantly inflates the correlation between lines of code (SLOC) and cyclomatic complexity (CC) in Java

projects. While there are many other aggregation schemes (e.g., central tendency, dispersion), they have remained unexplored in the

scope of defect prediction. In this study, we set out to investigate how different aggregation schemes impact defect prediction models.

Through an analysis of 11 aggregation schemes using data collected from 255 open source projects, we find that: (1) aggregation

schemes can significantly alter correlations among metrics, as well as the correlations between metrics and the defect count; (2) when

constructing models to predict defect proneness, applying only the summation scheme (i.e., the most commonly used aggregation

scheme in the literature) only achieves the best performance (the best among the 12 studied configurations) in 11 percent of the

studied projects, while applying all of the studied aggregation schemes achieves the best performance in 40 percent of the studied

projects; (3) when constructing models to predict defect rank or count, either applying only the summation or applying all of the studied

aggregation schemes achieves similar performance, with both achieving the closest to the best performance more often than the other

studied aggregation schemes; and (4) when constructing models for effort-aware defect prediction, the mean or median aggregation

schemes yield performance values that are significantly closer to the best performance than any of the other studied aggregation

schemes. Broadly speaking, the performance of defect prediction models are often underestimated due to our community’s tendency to

only use the summation aggregation scheme. Given the potential benefit of applying additional aggregation schemes, we advise that

future defect prediction models should explore a variety of aggregation schemes.

Index Terms—Defect prediction, aggregation scheme, software metrics

Ç

1 INTRODUCTION

SOFTWARE organizations spend a disproportionate amount
of effort on the maintenance of software systems [1]. Fix-

ing defects is one of the main activities in software mainte-
nance. To help software organizations to allocate defect-fixing
effort more effectively, defect prediction models anticipate
where future defectsmay appear in a software system.

In order to build a defect prediction model, historical
defect-fixing activity is mined and software metrics,
which may have a relationship with defect proneness, are

computed. The historical defect-fixing activity is usually
mined from a Version Control System (VCS), which records
change activity at the file-level. It is considerably easier for
practitioners to build their models at the file-level [2], since
it is often very hard to map a defect to a specific method
even if the fixing change was applied to a particular
method [3]. Instead, mapping defects to files ensures that
the mapping was done to a more coherent and complete
conceptual entity. Moreover, much of the publicly-available
defect data sets (e.g., the PROMISE repository [4]) and cur-
rent studies in literature [5], [6], [7], [8], [9], [10] are at the
file-level. Understanding the impact of aggregation would
benefit a large number of previously-conducted studies that
build defect prediction models at the file-level.

It has been reported that predicting defective files is more
effective than predicting defective packages for Java systems
[11], [12], [13]. Typically, in order to train file-level defect pre-
diction models, the method- or class-level software metrics
are aggregated to the file-level. Such a process is illustrated
in Fig. 1. Summation is one of the most commonly applied
aggregation schemes in the literature [5], [6], [7], [8], [9], [10],
[11], [14], [15], [16], [17]. However, Landman et al. [18] show
that prior findings [19], [20] about the high correlation

� F. Zhang and A.E. Hassan are with the School of Computing, Queen’s
University, Kingston, ON K7L 3N6, Canada.
E-mail: {feng, ahmed}@cs.queensu.ca.

� S. McIntosh is with the Department of Electrical and Computer Engineer-
ing, McGill University, Montr�eal, QC H3A 0G4, Canada.
E-mail: shane.mcintosh@mcgill.ca.

� Y. Zou is with the Department of Electrical and Computer Engineering,
Queen’s University, Kingston, ON K7L 3N6, Canada.
E-mail: ying.zou@queensu.ca.

Manuscript received 14 Aug. 2015; revised 6 June 2016; accepted 24 July
2016. Date of publication 9 Aug. 2016; date of current version 22 May 2017.
Recommended for acceptance by M. Di Penta.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2599161

476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

between summed cyclomatic complexity (CC) [21] and
summed lines of code (i.e., SLOC) may have been overstated
for Java projects, since the correlation is significantly weaker
at the method-level. We suspect that the high correlation
betweenmanymetrics at the file-level may also be caused by
the aggregation scheme. Furthermore, the potential loss of
information due to the summation aggregation may nega-
tively affect the performance of defect predictionmodels.

Besides summation, there are a number of other aggrega-
tion schemes that estimate the central tendency (e.g., arithme-
tic mean and median), dispersion (e.g., standard deviation
and coefficient of variation), inequality (e.g., Gini index [22],
Atkinson index [23], and Hoover index [24]), and entropy
(e.g., Shannon’s entropy [25], generalized entropy [26], and
Theil index [27]) of a metric. However, the impact that aggre-
gation schemes have on defect prediction models remains
unexplored.

We, therefore, set out to study the impact that different
aggregation schemes have on defect prediction models. We
perform a large-scale experiment using data collected from
255 open source projects. First, we examine the impact that
different aggregation schemes have on: (a) the correlation
among software metrics, since strongly correlated software
metrics may be redundant, and may interfere with one
another; and (b) the correlation between software metrics
and defect count, identifying candidate predictors for defect
prediction models. Second, we examine the impact that dif-
ferent aggregation schemes have on the performance of
four types of defect prediction models, namely:

(a) Defect proneness models: classify files as defect-prone
or not;

(b) Defect rank models: rank files according to their defect
proneness;

(c) Defect count models: estimate the number of defects in
a given file;

(d) Effort-aware models: incorporate fixing effort in the
ranking of files according to their defect proneness.

To ensure that our conclusions are robust, we conduct a
1,000-repetition bootstrap experiment for each of the stud-
ied systems. In total, over 12 million prediction models are
constructed during our experiments.

The main observations of our experiments are as follows:

� Correlation analysis. We observe that aggregation can
significantly impact both the correlation among

software metrics and the correlation between soft-
ware metrics and defect count. Indeed, summation
significantly inflates the correlation between SLOC

and other metrics (not just CC). Metrics and defect
count share a substantial correlation in 15-22 percent
of the studied systems if metrics are aggregated using
summation, while metrics and defect count only
share a substantial correlation in 1-9 percent of the
studied systems if metrics are aggregated using other
schemes.

� Defect prediction models. We observe that using only
the summation (i.e., the most commonly applied
aggregation scheme) often does not achieve the best
performance. For example, when constructing mod-
els to predict defect proneness, applying only the
summation scheme only achieves the best perfor-
mance in 11 percent of the studied projects, whereas
applying all of the studied aggregation schemes
achieves the best performance in 40 percent of the
studied projects. Furthermore, when constructing
models for effort-aware defect prediction, the mean
or median aggregation schemes yield performance
values that are significantly closer to the best ones
than any of the other studied aggregation schemes.
On the other hand, when constructing models to pre-
dict defect rank or count, either applying only the
summation or applying all of the studied aggrega-
tion schemes achieves similar performance, with
both achieving closer to best performance more often
than the other studied aggregation schemes.

Broadly speaking, solely relying on summation tends to
underestimate the predictive power of defect prediction
models. Given the substantial improvement that could be
achieved by using the additional aggregation schemes, we
recommend that future defect prediction studies use the 11
aggregation schemes that we explore in this paper, and even
experiment with other aggregation schemes. For instance,
researchers and practitioners can generate the initial set of
predictors (i.e., aggregated metrics, such as the summation,
median, and standard deviation of lines of code) with all of
the available aggregation schemes, and mitigate redundan-
cies using PCA or other feature reduction techniques.

1.1 Paper Organization

The remainder of this paper is organized as follows. Section 2
summarizes the relatedwork on defect prediction and aggre-
gation schemes. We present the 11 studied aggregation
schemes in Section 3. Section 4 describes the data that we use
in our experiments. The approach and results of our case
study are presented and discussed in Section 5. We discuss
the threats to the validity of our work in Section 6. Conclu-
sions are drawn and future work is described in Section 7.

2 RELATED WORK

In this section, we discuss the related work with respect to
defect prediction and aggregation schemes.

2.1 Defect Prediction

Defect prediction has become a very active research area in
the last decade [9], [10], [28], [29], [30], [31], [32]. Defect pre-
diction models can help practitioners to identify potentially

Fig. 1. A typical process to apply method-level metrics (e.g., SLOC) to
build file-level defect prediction models.

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 477

defective modules so that software quality assurance teams
can allocate their limited resources more effectively.

There are four main types of defect prediction models: (1)
defect proneness models that identify defective software
modules [10], [33], [34]; (2) defect rank models that order
modules according to the relative number of defects
expected [15], [28]; (3) defect count models that estimates
the exact number of defects per module [7], [28]; and (4)
effort-aware models are similar to defect rank models
except that they also take the effort required to review the
code in that file into account [35], [36].

Software modules analyzed by defect prediction models
can be packages [15], [28], files [9], [10], [30], [34], classes
[31], [37], methods [32], [38], or even lines [39]. Since soft-
ware metrics are often collected at method- or class-levels, it
is often necessary to aggregate them to the file-level.

While summation is one of themost commonlyused aggre-
gation schemes [8], [15], prior work has also explored others.
For example, D’Ambros et al. [31] compute the entropy of
both code and process metrics. Hassan [30] applies Shannon’s
entropy [25] to aggregate process metrics as a measure of the
complexity of the change process. Vasilescu et al. [40] find that
the correlation between metrics and defect count is impacted
by the aggregation scheme that has been used. However,
to the best of our knowledge, the impact that aggregation
schemes have on defect prediction models has not yet been
explored. Thus, we perform a large-scale experiment using
data from 255 open source systems to examine the impact that
aggregation schemes can have on defect predictionmodels.

2.2 Aggregation Scheme

While the most commonly used granularity of defect pre-
diction is the file-level [9], [10], [30], [34], many software
metrics are calculated at the method- or class-levels. The dif-
ference in granularity creates the need for aggregation of the
finer method- and class-level metrics to file-level. Simple

aggregation schemes, such as summation and mean, have
been explored in the defect prediction literature [5], [6], [7],
[8], [9], [10], [11], [14], [15], [16], [17]. However, recent work
suggests that summation may distort the correlation among
metrics [18], and the mean may be inappropriate if the dis-
tribution of metric values is skewed [41].

Apart from summation and mean, more advanced metric
aggregation schemes have been also explored [41], [42], [43],
[44], [45], [46], including the Gini index [22], the Atkinson
index [23], the Hoover index [24], and the Kolm index [47].
For instance, He et al. [45] apply multiple aggregation
schemes to construct various metrics about a project in order
to find appropriate training projects for cross-project defect
prediction. Giger et al. [44] use the Gini index to measure the
inequality of file ownership and obtain acceptable perfor-
mance for defect proneness models. In addition to correla-
tions, we also study the impact that aggregation schemes
have on defect prediction models. We investigate how 11
aggregation schemes impact the performance of four types
of defect predictionmodels.

3 AGGREGATION SCHEMES

In this section, we introduce the 11 aggregation schemes that
we studied for aggregating method-level metrics to the file-
level (Fig. 1). We also discuss why we exclude some other
aggregation schemes from our study. Table 1 shows the for-
mulas of the 11 schemes. The details are presented as follows.

3.1 Summation

An important aspect of a software metric is the accumulative
effect, e.g., files with more lines of code are more likely to
have defects than files with few lines of code [48]. Similarly,
files with many complex methods are more likely to have
defects than files withmany simple methods [49]. Summation
captures the accumulative effect of a software metric.

TABLE 1
List of the 11 Studied Aggregation Schemes

Category Aggregation scheme Formula

Summation Summation Sm ¼ PN
i¼1 mi

Central tendency

Arithmetic mean mm ¼ 1
N

PN
i¼1 mi

Median

Mm ¼
mnþ1

2
if N is odd

1
2

�
mn

2
þmnþ2

2

�
otherwise.

8
<

:

Dispersion
Standard deviation

sm ¼
ffi
1
N

PN
i¼1ðmi � mmÞ2

q

Coefficient of variation Covm ¼ sm
mm

Inequality index

Gini index [22] Ginim ¼ 2
NSm

½PN
i¼1ðmi � iÞ � ðN þ 1ÞSm�

Hoover index [24] Hooverm ¼ 1
2

PN
i¼1

mi
Sm

� 1
N

���
���

Atkinson index [23] Atkinsonm ¼ 1� 1
mm

�
1
N

PN
i¼1

ffiffiffiffiffiffi
mi

p �2

Entropy

Shannon’s entropy [25] Em ¼ � 1
N

PN
i¼1½freqðmiÞ

N � ln freqðmiÞ
N �

Generalized entropy [26] GEm ¼ � 1
Nað1�aÞ

PN
i¼1½ðmi

mm
Þa � 1�;a ¼ 0:5

Theil index [27] Theilm ¼ 1
N

PN
i¼1½mi

mm
� lnðmi

mm
Þ�

In the formulas, mi denotes the value of metric m in the ith method in a file that has N methods. Methods in the same file are sorted in the
ascending order of the values of metricm.

478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

Specifically, we study the summation scheme, which sums the
values of a metric over all methods within the same file. The
summation scheme has been commonly used in defect predic-
tion studies [5], [6], [7], [8], [9], [10], [11], [14], [15], [16], [17].

3.2 Central Tendency

In addition to the accumulative effect, the average effect is
also important. For example, it is likely easier to maintain a
file with smaller methods than a file with larger ones, even
if the total file size is equal. Computing the average effect
can help to distinguish between files with similar total size,
but different method sizes on average. The average effect of
a software metric can be captured using central tendency
metrics, which measure the central value in a distribution.
In this paper, we study the arithmetic mean and medianmeas-
ures of central tendency.

3.3 Dispersion

Dispersion measures the spread of values of a particular
metric, with respect to some notion of central tendency. For
example, in a file with low dispersion, methods have similar
sizes, suggesting that the functionalities of the file are bal-
anced across methods. On the other hand, in a file with high
dispersion, some methods have much larger sizes than the
average, while some methods have much smaller sizes than
the average. The large methods may contain too much func-
tionality while small methods may contain little functional-
ity. We study the standard deviation and the coefficient of
variationmeasures of dispersion.

3.4 Inequality Index

An inequality index explains the degree of imbalance in a dis-
tribution. For example, a large degree of inequality shows that
most lines of code of a file belong to only a fewmethods. Such
methods contain most of the lines of code, and thus, have a
higher chance of falling victim to the “Swiss Army Knife”
anti-pattern. Inequality indices are often used by economists
to measure income inequality in a specific group [43]. In this
paper, we study the Gini [22], Hoover [24], and Atkinson [23]
inequality indices. These indices have previously been ana-
lyzed in the broad context of software engineering [41], [43].

Each index captures different aspects of inequality. The
Gini index measures the degree of inequality, but cannot
identify the unequal part of the distribution. The Atkinson
index can indicate which end of the distribution introduces
the inequality. The Hoover index represents the proportion
of all values that, if redistributed, would counteract the
inequality. The three indices range from zero (perfect equal-
ity) to one (maximum inequality).

3.5 Entropy

In information theory, entropy represents the information
contained in a set of variables. Larger entropy values indi-
cate greater amounts of information. In the extreme case,
from the code inspection perspective, files full of duplicated
code snippets contain less information than files with only
unique code snippets. It is easier to spot defects in many
code snippets that are duplicated than in many code snip-
pets that are different from each other. Hence, a file with
low entropy is less likely to experience defects than a file
with high entropy. In this paper, we study the Shannon’s
entropy [25], generalized entropy (a ¼ 0:5) [26], and the Theil
index [27]. Shannon’s (and generalized) entropy measure

redundancy or diversity in the values of a particular metric.
The Theil index, an enhanced variant of the generalized
entropy, measures inequality or lack of diversity.

3.6 Excluded Aggregation Schemes

Distribution shape is another widely used family of aggre-
gation schemes. Skewness and kurtosis are two commonly
used measures that capture the shape of a distribution. In
the formulas for computing skewness and kurtosis, the
denominator is the standard deviation. If the standard devi-
ation is zero, the skewness and kurtosis are both undefined.
In our data set, we observe that a large number of methods
have exactly the same value of a particular metric, produc-
ing zero variance. Hence, we exclude skewness and kurtosis
from our analysis, since they are undefined for many files.

Kolm index [47] is another candidate scheme that meas-
ures the absolute inequality of a distribution. However, the
computation of Kolm index requires the exponentiation of
metric values. Since many of our metrics have values larger
than 1,000, the Kolm index becomes uncomputable. There-
fore, it is not suitable for our study.

4 EXPERIMENTAL DATA

In this section, we describe our experimental data, including
the characteristics of the dataset, the defect data, and the
software metrics that we use.

4.1 Dataset Characteristics

In this study, we begin with the dataset that was initially
collected by Mockus [50]. The dataset contains 235 K open
source systems hosted on SourceForge and GoogleCode.
However, there are many systems that have not yet accu-
mulated a sufficient amount of historical data to train defect
models. Similar to our prior work [10], we apply a series of
filters to exclude such systems from our analysis. Specifi-
cally, we exclude the systems that:

(F1) Are not primarily written in C, C++, C#, Java, or Pas-
cal, since the tool [51] that we use to compute the
software metrics only supports these languages.

(F2) Have a small number of commits (i.e., less than the
25th percentile of the number of commits across all
remaining systems), as systems with too few com-
mits have not yet accumulated enough historical
data to train a defect model.

(F3) Have a lifespan of less than one year, since most
defect prediction studies collect defect data using
two consecutive six-month time periods [15]. The
first six-month period is used to collect defect data
and metrics for building a defect prediction model,
and the second six-month period is used to evaluate
the performance of the model.

(F4) Have a limited number of fix-inducing and non-fixing
commits (i.e., less than the 75th percentile of the num-
ber of fix-inducing and non-fixing commits across all
remaining systems, respectively). We do so to ensure
thatwe have enoughdata to train stable defectmodels.

(F5) Have less than 100 usable files (i.e., without unde-
fined values of aggregated metrics). This ensures
that we have sufficient instances for bootstrap model
validation.

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 479

Table 2 provides an overview of the 255 systems that sur-
vive our filtering process.

4.2 Defect Data

In general, defect data is mined from commit messages.
Since these commit messages can be noisy, data mined from
commit messages are often corroborated using data mined
from Issue Tracking Systems (ITSs, e.g., Bugzilla1) [15].
However, we find that only 53 percent of the studied sys-
tems are using ITSs. Hence, to treat every studied system
equally, we mine defect data solely based on commit mes-
sages. While this approach may introduce bias into our
dataset [52], [53], [54], prior work has shown that this bias
can be offset by increasing the sample size [55]. There are
255 subject systems in our dataset, which is larger than
most defect prediction studies to date [56].

Similar to our prior study [57], we consider that a commit
is related to a defect fix if the commit message matches the
following regular expression:

ðbugjfixjerrorjissuejcrashjproblemjfailjdefectjpatchÞ
To further reduce the impact that noise in commit mes-

sages may introduce, we clean up noisy words like
“debug” and “prefix” by removing all words that end with
“bug” or “fix”. A similar strategy was used by Mockus
and Votta [58] and is at the core of the popular SZZ algo-
rithm [59]. In addition, similar to prior work [15], we use a
six-month time period to collect defect data, i.e., we check
for defect-fixing commits that occur in a six-month time
period after a software release has occurred. Unfortu-
nately, many systems on SourceForge or GoogleCode have
not recorded their release dates. Hence, we simply choose
the date that is six months prior to the last recorded com-
mit of each system as the split date. Defect data is collected
from commit messages in the six-month period after the
split date.

4.3 Software Metrics

We group software metrics into three categories, i.e., tradi-
tional metrics, object-oriented metrics, and process metrics.
In the scope of defect prediction, Radjenovi�c et al. [60] per-
form a systematic review and report that traditional metrics
are often collected at the method-level, object-oriented met-
rics are often collected at the class-level, and process metrics
are often collected at the file-level. In this paper, we study
traditional metrics, so that we can focus on investigating
how the studied aggregation schemes impact defect predic-
tion models.

In this study, we choose six method-level metrics that are
known to perform well in defect prediction models [38].
Table 3 provides an overview of the studied metrics. Source
Lines Of Code (SLOC) is a measure of the size of a method.
Cyclomatic complexity and essential complexity (EVG) are meas-
ures of the complexity of a method. The number of possible
paths (NPATH) measures the complexity of the control flow
of a method. The number of inputs (FANIN) and the number of
outputs (FANOUT) are used by Giger et al. [38] to measure the
control flow of a method only, but we use the original defi-
nition [61] of these two metrics to measure the information
flow (i.e., both data and control flow) of a method.

To compute these metrics, we use theUnderstand [51] tool
on the release (or split) code snapshot of each studied sys-
tem. This code snapshot is the historical version of the stud-
ied system at the date just before the six-month time period
used for collecting the defect data.

5 CASE STUDY

In this section, we report the results of our case study along
two dimensions. First, we study the impact that different
aggregations have on the correlation among software met-
rics and the correlation between software metrics and defect
counts. Second, we evaluate the impact of aggregations on
four types of defect prediction models, i.e., defect prone-
ness, defect rank, defect count, and effort-aware models.
Finally, we provide comprehensive guidelines regarding
the choice of aggregation schemes for future studies.

5.1 Correlation Analysis

Correlation analysis can be used to investigate how the rela-
tionship between any two particular metrics vary after
aggregation, regardless how the aggregation is computed.
When choosing software metrics to build a defect prediction
model, it is a common practice to explore the correlations
among software metrics, and the correlations between soft-
ware metrics and defects [7], [15], [28], [62], [63]. Strongly
correlated software metrics may be redundant, and may
interfere with one another if used together to train a defect
prediction model. Furthermore, a substantial correlation
between a software metric and defect count may identify
good candidate predictors for defect prediction models.

Aggregation schemes are required to lift software metrics
to the file-level. However, aggregation schemes may distort
the correlation between SLOC and CC in Java projects [18]. If

TABLE 2
The Descriptive Statistics of Our Dataset

Programming
language

of
systems

of
files

of
methods

Defect ratio
(mean � sd)

C 34 8,140 167,146 43% � 26%
C++ 85 20,649 479,907 40% � 27%
C# 15 2,951 666,046 38% � 23%
Java 121 32,531 527,203 37% � 27%

All 255 64,271 1,840,302 39% � 27%

TABLE 3
List of Software Metrics at Method-Level

Metric Description

SLOC Source lines of code, excluding comments
and blank lines.

CC McCabe’s cyclomatic complexity.
EVG Essential complexity is a modified version

of cyclomatic complexity.
NPATH The number of possible execution paths in a

method.
FANIN The number of inputs, including parame-

ters, global variables, and method calls.
FANOUT The number of outputs, such as updating

parameters and global variables.

1. http://www.bugzilla.org/

480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

two metrics have a much stronger correlation after aggrega-
tion, it is unclear if the two metrics are actually strongly cor-
related, or if the aggregation has distorted one or both of the
metrics.

Understanding the impact that aggregation schemes have
can prevent the removal of useful metrics. Hence, we want to
examine the impact that aggregations have in order to avoid
potential loss of information in themodel construction step.

5.1.1 Research Questions

To study the impact that aggregations have on the correlation
among software metrics and their correlation with the defect
count, we formulate the following two research questions:

RQ1.1 Do aggregation schemes alter the correlation bet-
ween software metrics?

RQ1.2 Do aggregation schemes alter the correlation bet-
ween software metrics and defect count?

5.1.2 Experimental Design

1) Correlation Among Metrics. In this study, we use
Spearman’s r [64] to measure correlation. Spearman’s r

measures the similarity between two ranks, instead of the
exact values of the two assessed variables. Unlike paramet-
ric correlation techniques (e.g., Pearson correlation [64]),
Spearman correlation does not require that the input data
follow any particular distribution. Since Spearman correla-
tion is computed on rank-transformed values, it is more
robust to outliers than Pearson correlation [65]. Further-
more, in the presence of ties, Spearman’s r is preferred [66]
over other nonparametric correlation techniques, such as
Kendall’s t [64]. Spearman’s r ranges from �1 to +1, where
�1 and +1 indicate the strongest negative and positive cor-
relations, respectively. A value of zero indicates that the
two input variables are entirely independent.

Fig. 2 presents our approach to examine the impact that
aggregations have on correlation among software metrics.
To understand the correlation among metrics before aggre-
gation, for each system, we calculate r between each pair of
metrics at the method-level. Assessing if two metrics are
strongly correlated is often applied to determine their
redundancy in the scope of defect prediction [67], [68]. Simi-
lar to prior work [67], [68], [69], we consider that a pair of
metrics are too highly correlated to include in the same
model if jrj � 0:8 (we call it a “strong” correlation). Hence,
we report the percentage of metrics that have jrj < 0:8
across all of the studied systems (see Table 4).

To study the impact that aggregation schemes have on
these correlation values, we use SLOC as our base metric, and
for each system, we compute r between SLOC and the other
metrics at both method- and file-levels. We denote the corre-
lation between SLOC and metric m as cor:methodðSLOC;mÞ at
the method-level, and as cor:fileðSLOC; AGðmÞÞ at the file-
level after applying an aggregation scheme AG. We test the
null hypothesis below for each scheme:

H01: There is no difference between the method-level corr-
elation cor:methodðSLOC;mÞ and the file-level correlation
cor:fileðSLOC; AGðmÞÞ.

To testH01, we use two-sided Mann-Whitney U tests [64]
with a ¼ 0:05 (i.e., 95 percent confidence level). The Mann-
Whitney U test checks if equally large values exist in two
input samples. As a non-parametric statistical method, the
Mann-Whitney U test makes no assumptions about the dis-
tributions that the input samples are drawn from. If there is
a statistically significant difference between the input sam-
ples, we can reject H01 and conclude that the corresponding
aggregation scheme yields statistically significantly differ-
ent correlation values at the method- and file-levels. To con-
trol family-wise errors, we apply Bonferroni correction and
adjust a by dividing by the number of tests.

We also calculate Cliff’s d [70] to quantify the size of the
difference in correlation values at the method- and file-lev-
els (see Table 5). We opt to use Cliff’s d instead of Cohen’s
d [71] because Cliff’s d is widely considered to be a more
robust and reliable effect size measure than Cohen’s d [72].
Moreover, Cliff’s d does not make any assumptions about
the distributions of the input samples.

Cliff’s d ranges from �1 to +1, where a zero value indi-
cates two identical distributions. A negative value indicates

Fig. 2. Our approach to analyze the impact of aggregations on the corre-
lations between software metrics (RQ1.1).

TABLE 4
The Percentage of the Studied Systems That Do Not Have

Strong Correlations Among All Six Metrics at the Method-Level

Metric CC NPATH FANIN FANOUT EVG

SLOC 58% 59% 100% 39% 100%
CC - 0% 100% 96% 99%
NPATH - - 100% 96% 99%
FANIN - - - 100% 100%
FANOUT - - - - 100%

TABLE 5
The Cliff’s d of the Difference in Correlation Values Between

SLOC and Other Metrics Before and After Aggregation

Scheme CC NPATH FANIN FANOUT EVG

(1) Sum �0.881 �0.655 �0.884 �0.907 �0.969
(2) Mean �0.363 n.s. 0.269 �0.279 �0.386
(3) Median 0.188 0.213 0.206 n.s. 0.239
(4) SD �0.290 �0.128 0.388 n.s. �0.401
(5) COV n.s. 0.345 0.605 0.608 �0.181
(6) Gini 0.022 0.305 0.646 0.609 �0.082
(7) Hoover 0.195 0.505 0.737 0.729 n.s.
(8) Atkinson 0.105 0.388 0.767 0.778 �0.104
(9) Shannon n.s. n.s. �0.584 �0.481 �0.295
(10) Entropy 0.104 0.388 0.767 0.778 �0.104
(11) Theil n.s. 0.370 0.469 0.458 �0.143

(bold font indicates a large difference, and n.s. denotes a lack of statistical
significance).

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 481

that values in the first sample tend to be smaller than those
in the second sample, while a positive value indicates the
opposite. To ease interpretation of the effect size results, we
use the mapping of Cliff’s d values to Cohen’s d significance
levels as proposed by prior work [72]:

Negligible: 0 � jdj < 0:147
Small: 0:147 � jdj < 0:330
Medium: 0:330 � jdj < 0:474
Large: 0:474 � jdj � 1

2) Correlation Between Metrics and Defect Count. To further
understand the impact of aggregations, we investigate the
correlation between defect count and metrics aggregated by
each of the studied schemes. Fig. 3 provides an overview of
our approach.As defect count is used inmodels for predicting
defect rank, defect count, and in effort-aware models, correla-
tion analysis between defect count and metrics may provide
insights formetric selection in the three types of defect predic-
tionmodels. Softwaremetrics having a substantial correlation
with defect count are usually considered to be good candidate
predictors for defect prediction models [7], [15]. Similar to
prior work [7], [15], we consider that ametric shares a promis-
ing correlation with the number of defects if the correspond-
ing jrj � 0:4 (we call it a “substantial” correlation). Hence, we
report the percentage of studied systems that have jrj � 0:4
for the defect count and any given metric after applying any
of the studied aggregation scheme (see Table 6).

5.1.3 Case Study Results

Aggregation can Significantly Alter the Correlation Among Met-
rics Under Study. Table 4 shows that many method-level
metrics do not have strong correlation values with one
another (i.e., jrj < 0:8). For example, FANIN is not strongly
correlated with the other metrics in any of the studied sys-
tems. Moreover, SLOC is not strongly correlated with CC in
58 percent of the studied systems.

On the other hand, some method-level metrics also have
consistently strong correlation values. For example, CC is
strongly correlated with NPATH in all of the studied systems.
However, we find that selecting some aggregation schemes
can help to reduce the strong correlation values that we
observe at the method-level. For example, CC and NPATH are
strongly correlated in all of the studied systems at the
method-level. But when aggregated to the file-level using
the summation, mean, median, standard deviation, coeffi-
cient of variation, Gini index, Hoover index, Atkinson
index, Shannon’s entropy, generalized entropy, and Theil
index, they do not share a strong correlation with one
another in 1-14 percent of the studied systems. This weaker
correlation between CC and NPATH would allow one to

safely use both metrics in a defect prediction model. One
possible reason for the weak correlation is that aggregation
does not only consider the metric values, but also the distri-
bution of metric values. Two semantically correlated met-
rics may experience different distributions at method level.
Thus, the aggregated metrics could significantly differ. As a
result, the correlations between aggregated CC and NPATH

can become either stronger or weaker.
Different Aggregation Schemes have Various Impacts on the

Correlation Between SLOC and Other Metrics. To illustrate the eff-
ect of the various aggregation schemes, we compute the gain
ratios of the correlation values between a metric and SLOC

when aggregated to the file-level. Below, we define the gain
ratio for a metric m when aggregated using a particular
schemeAG

cor:gain:ratioðm;AGÞ ¼ cor:fileðSloc; AGðmÞÞ
cor:methodðSloc;mÞ (1)

While we find that aggregation schemes do impact corre-
lation values, most aggregation schemes do not have a con-
sistent impact on all of the studied metrics. On the one
hand, the gain ratios of Fig. 4 show that summation tends to
increases the correlation between SLOC and all of the other
metrics. On the other hand, for the NPATH, FANIN, and FAN-

OUT metrics, Fig. 4 shows that the median gain ratios are
often below 1, indicating that most aggregation schemes
decrease the correlation values between these metrics and
SLOC in half of the studied systems.

Table 5 presents the results of the Mann-Whitney U tests
and Cliff’s d. We find that summation has a consistently large
impact (i.e., p-value is belowa and the absolute value of Cliff’s
d is greater than 0.474) on the correlation between SLOC and the
other metrics in software systems developed in C, C++, C#,
and Java. This observation is consistent with Landman et al.’s
work [18], which found that summation tends to inflate the
correlation between SLOC and CC when aggregated from the
method- to the file-level in Java projects.

Not all metrics are sensitive to aggregation schemes.
Indeed, only the FANIN and FANOUT metrics are significantly
sensitive to aggregation schemes. Furthermore, contrary to
the Cc results, these aggregations tend to weaken their cor-
relation with SLOC.

When compared to the other aggregation schemes, summation
has the largest impact on the correlation between the studied metrics
and defect count. Table 6 shows the percentage of the studied
systems that have a substantial correlation (i.e., jrj � 0:4)

Fig. 3. Our approach to analyze the impact of aggregations on correla-
tions between software metrics and defect count (RQ1.2).

TABLE 6
The Percentage of Studied Systems Where the Defect Count
Shares a Substantial Correlation (jrj � 0:4) with the Metrics

Scheme SLOC CC NPATH FANIN FANOUT EVG

(1) Sum 20% 22% 15% 16% 20% 16%
(2) Mean 2% 1% 3% 2% 1% 3%
(3) Median 1% 2% 2% 1% 1% 0
(4) SD 4% 2% 5% 4% 1% 4%
(5) COV 3% 3% 7% 1% 1% 4%
(6) Gini 3% 2% 5% 1% 1% 3%
(7) Hoover 1% 2% 5% 1% 1% 3%
(8) Atkinson 1% 2% 6% 1% 1% 4%
(9) Shannon 9% 7% 6% 9% 9% 2%
(10) Entropy 1% 2% 6% 1% 1% 4%
(11) Theil 2% 3% 6% 3% 1% 4%

482 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

between defect count and a given metric when aggregated
using the studied schemes. File-level metrics that are aggre-
gated by summation share a substantial correlation with
defect count in 15 to 22 percent of the studied systems. The
other aggregation schemes show potential to make file-level
metrics substantially correlate with defect count, with 1-9 per-
cent of the studied systems yielding substantial correlation
values. We further investigate how likely it is that the
observed improvements could have happened by chance, i.e.,
whether an aggregation scheme has the identical effect (i.e.,
the improvement in the correlation values) on different met-
rics. We perform a non-parametric test, namely the Cochran’s
Q test, using the 95 percent confidence level (i.e., a ¼ 0:05).
The p-values of the Cochran’s Q test on the mean, median,
and standard deviation schemes are greater than 0.05, indicat-
ing that we cannot reject the null hypothesis that these three
aggregation schemes have similar impact on the correlation
values between defect count and all six studied metrics. On
the other hand, the p-values of the Cochran’s Q test on other
aggregation schemes are less than 0.05, indicating that these
aggregation schemes have significantly different effects on
different metrics. We observe that these aggregation schemes
tend to yield substantial correlation values between defect
count and the metric NPATH in more subject systems than that
of defect count and other metrics. In addition to summation,
applying other aggregation schemes may provide useful new
features for defect predictionmodels.

5.2 Defect Prediction Models

Our analysis in the prior section shows that aggregation
schemes can significantly alter the correlation among met-
rics and the correlation between defect count and metrics.
These results suggest that using additional aggregation
schemes may generate new metrics that capture unique
characteristics of the studied data, and that may be useful
for defect prediction. In this section, we investigate the
impact that aggregation schemes have on four types of
defect prediction models. While we use the same metrics in

each type of defect prediction model, the dependent vari-
able varies as described below:

� Defect proneness: A binary variable indicating if a file
is defective or not.

� Defect rank: A ranked list of files according to the
number of defects that they will contain.

� Defect count: The exact number of defects in a file.
� Effort-aware: A cost-effective list of files ranked in

order to locate the most number of defects while
inspecting the least number of lines.

5.2.1 Research Questions

To investigate the impact that aggregation schemes have on
our four types of defect prediction models, we formulate
the following four research questions:

RQ2.1 Do aggregation schemes impact the performance of
defect proneness models?

RQ2.2 Do aggregation schemes impact the performance of
defect rank models?

RQ2.3 Do aggregation schemes impact the performance of
defect count models?

RQ2.4 Do aggregation schemes impact the performance of
effort-aware models?

5.2.2 Experimental Design

In this section, we present the design of our experiments,
including the evaluation method, the modelling techniques,
the performance measures, the model training approach,
and the null hypotheses. Fig. 5 gives an overview of our
approach to address RQs 2.1-2.4.

1) Evaluation Method. In our experiment, we use the out-
of-sample bootstrap model validation technique [73]. The
out-of-sample bootstrap is a robust model validation tech-
nique that has been shown to provide stable results for
unseen data [73]. The process is made up of two steps.

First, a bootstrap sample is selected. From an original
dataset with N instances, N instances are selected with
replacement to create a bootstrap sample. The probability of

an instance not being selected after N times is ð1� 1
NÞN , and

limN�>þ1 ð1� 1
NÞN ¼ e�1 ¼ 0:368. Thus, on average,

approximately 63.2 percent (i.e., 1-e�1) of unique instances
would be selected from the original dataset.

Fig. 4. Boxplots of the gain ratios in correlations between SLOC and other metrics at file-level. The order of the 11 aggregation schemes are the same
as shown in Table 5.

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 483

Second, a model is trained using the bootstrap sample
and tested using the 36.8 percent of the data from the origi-
nal dataset that does not appear in the bootstrap sample.

The two-step process is repeatedK times, drawing a new
bootstrap sample with replacement for training a model and
testing it on the unselected data. The performance estimate
is the average of the performance of each of these bootstrap-
trained models. For each studied system, we perform 1,000
bootstrap iterations (i.e., K ¼ 1;000) in order to derive a sta-
ble performance estimate.

2) Modelling Techniques and Performance Measures. Defect
Proneness. Random forest is a robust classification tech-
nique [74] and is quite robust to parameter choices in defect
proneness models [75]. Similar to much prior work [76],
[77], we apply the random forest algorithm [78] to train our
defect proneness models. We use the R package randomFor-
est [79] with default parameters except for the number of
trees that is set to 200 (sensitivity analysis with settings of
100 or 300 trees reach the same conclusion for this research
question). Common performance measures for defect
proneness models include precision, recall, accuracy, and F-
measure. These measures are calculated using a confusion
matrix that is obtained using a threshold value. The thresh-
old value is applied on the predicted probability of defect
proneness to differentiate between defective and clean enti-
ties. Since the aforementioned performance measures are
sensitive to the selected threshold, we opt to use the Area
Under the receiver operating characteristic Curve (AUC)—a
threshold-independent performance measure. AUC is com-
puted as the area under the Receiver Operating Characteris-
tics (ROC) curve, which plots the true positive rate against
the false positive rate while varying the threshold value
from 0 to 1. AUC values range between 0 (worst perfor-
mance) and 1 (best performance). A model with an AUC of
0.5 or less performs no better than random guessing.

Defect Rank. To train our defect rank models, we apply
linear regression, which has been successfully used in sev-
eral prior studies of defect density models [28] and defect
count models [7], [15]. The regression model is applied to
all files in the system and the files are ranked according to
their estimated defect count. As suggested by prior
work [15], [28], we use Spearman’s r to measure the perfor-
mance of our defect rank models. We compute r between

the ranked list produced by the model and the correct rank-
ing that is observed in the historical data. Larger r values
indicate a more accurate defect rank model.

Defect Count. Similar to our defect rank models, we apply
linear regression to train our defect count models. We use
the Mean Squared Error (MSE) to measure the performance
of our linear models, which is defined as follows:

MSE ¼ 1

n

Xn

i¼1

ðŶi � YiÞ2; (2)

where Yi and Ŷi are the actual and predicted value of the ith
file, and n is the total number of files. The lower the MSE,
the better the performance of the defect count model.

Effort-Aware. We also apply linear regression to train our
effort-aware models. We use the Popt measure proposed by
Mende and Koschke [80] to measure the performance of our
effort-awaremodels. The Popt measure is calculated by draw-
ing two curves that plot the accumulated lines of analyzed
code on the x-axis, and the percentage of addressed bugs on
the y-axis. First, the optimal curve is drawn using an order-
ing of files according to their actual defect densities. Second,
the model performance curve is drawn by ordering files
according to their predicted defect density. The area between
the two curves is represented asDopt, and Popt ¼ 1� Dopt. The
higher the Popt value, the closer the curve of the predicted
model is to the optimal model, i.e., the higher the Popt value,
the better.

Table 7 summarizes themodelling techniques and perfor-
mancemeasures for each type of defect predictionmodels.

3) Prediction Model Training. In each bootstrap iteration,
we build 48 models—one model for each combination of
the four types of defect prediction models and 12

Fig. 5. Our approach to build and evaluate defect prediction models on each of the studied 255 projects, using file-level metrics aggregated from
method-level metrics (RQs 2.1 to 2.4).

TABLE 7
The Modelling Techniques and Performance

Measures Used in This Study

Prediction type Modelling
technique

Performance
measure

Defect proneness Random forest AUC
Defect rank Linear regression Spearman’s r
Defect count Linear regression MSE
Effort-aware defect count Linear regression Popt

484 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

configurations of the studied aggregation schemes. We use
one configuration to study each of the 11 aggregation
schemes individually, and a 12th configuration to study the
combination of all of the aggregation schemes.

In each configuration, we use the six software metrics
aggregated by the corresponding scheme as predictors for
our defect prediction models. Thus, for 11 configurations
that only involve one aggregation scheme, we use six pre-
dictors, and for the configuration that involves all schemes,
we use 66 (i.e., 6	 11) predictors.

Since the predictors may be highly correlated with one
another, they may introduce multicollinearity, which can
threaten the fitness and stability of the models [81]. To address
this concern, a common practice is to apply Principal Compo-
nent Analysis (PCA) to the input set of predictors [82], [83].
PCA permits us to leverage all the signals in our metrics
whereas correlation analysis is binary in nature (i.e., we have to
include or exclude a metric). Although principal components
are difficult to interpret [84], the analysis of the impact of partic-
ular metrics is out of the scope of this paper. Hence, we adopt
this technique to simplify the process of building defect predic-
tion models in this study. We order the principal components
by their amount of explained variance, and select the first N
principal components that can explain at least 95 percent [83] of
variance for inclusion in our defect prediction models. In total,
we train over 12 million (i.e., 48	 1;000	 255) models in our
defect prediction experiment.

4) Null Hypotheses. As the four types of prediction models
are similar, we formulate two general hypotheses to structure
our investigation of the impact that aggregation schemes have
on defect prediction models. To enable the comparison, we
create an ideal model that achieves the best performance of
models that are obtained using any of the 12 studied configu-
rations. For each type of defect predictionmodel, the best per-
formance is determined by the corresponding performance
measure (see Table 7) for each iteration. We test the following
two null hypotheses for each studied system:

H02a: There is no difference in the performance of the best
model and models that are trained using metrics that are aggre-
gated by scheme AG.

H02b: There is no difference in the performance of the best
model and models that are trained using metrics that are aggre-
gated using all 11 schemes.

To test our hypotheses, we conduct two-sided and paired
Mann-WhitneyU tests [64]with a ¼ 0:05. Aswe have 255 sys-
tems in total, we apply Bonferroni correction to control fam-
ily-wise errors, and then adjust a by dividing by the number
of tests.We use Cliff’s d to quantify the size of the impact.

We consider that a model fails to yield the best perfor-
mance if the p-value of Mann-Whitney U test is less than a

and Cliff’s jdj � 0:474 (i.e., large effect).

5.2.3 Case Study Results

In this section, we present our findings from an overall per-
spective and a programming language-specific perspective.

1) General Findings. The summation scheme (i.e., the most
commonly applied aggregation scheme in the literature) can sig-
nificantly underestimate the predictive power of defect prediction
models that are built with the studied metrics. Table 8 shows
that solely using summation achieves the best performance
when predicting defect proneness in only 11 percent of

projects. When predicting defect rank or performing effort-
aware prediction, solely using summation yields the best
performance in 56 percent and 31 percent of projects,
respectively. Such findings suggest that the predictive
power of defect prediction models can be hindered by solely
relying on summation for aggregating metrics.

On the other hand, using all of the studied aggregation
schemes is significantly better than solely using summation
in models that predict defect proneness (Fig. 6a). Specifi-
cally, using all schemes achieves the best performance in 40
percent of projects. This finding indicates that exploring
various aggregation schemes can yield fruitful results when
building models to predict defect proneness.

In models that predict defect rank (Fig. 6b) and defect
count (Fig. 6c), the difference between using all schemes
and solely using summation is marginal, and both are closer
to the best performance than any other aggregation scheme.
In models that predict defect rank, using all schemes is
slightly better than solely using summation (i.e., 60 versus
56 percent). When predicting defect count, solely using
summation is slightly better than using all schemes (i.e., 99
versus 97 percent). Given the higher percentage of studied
systems where the defect count shares a substantial correla-
tion with the summed metrics (Table 6), it is understandable
that summation would be a good aggregation scheme for
predicting defect count.

When fitting effort-aware models (Fig. 6d), the situation
changes, i.e., neither using all schemes nor solely using
summation is advisable. The median scheme provides the
best performance in 71 percent of projects. Using the mean
scheme is a viable alternative, as it achieves the best perfor-
mance in 69 percent of projects. Both mean and median
aggregation schemes are much better than using any other
configuration of aggregators.

We suspect that using either the median or the mean
scheme performs the best for effort-aware models because
files with the same number of predicted defects may be still
distinguishablewhen using these two schemes. For example,
let’s consider two files having the same number of predicted
defects. In a model that is built using only LOC (such a model
may still achieve good predictive power [13]), these two files
may have the same sum Sloc (when the model is built using

TABLE 8
The Percentage of the Studied Systems on Which the Model
Built with the Corresponding Configuration of Aggregations

Achieves the Best Performance

Scheme Defect
proneness

Defect
rank

Defect
count

Effort-aware

All schemes 102 (40%) 153 (60%) 248 (97%) 42 (16%)
Sum 28 (11%) 143 (56%) 253 (99%) 79 (31%)
Mean 19 (7%) 33 (13%) 222 (87%) 176 (69%)
Median 21 (8%) 28 (11%) 210 (82%) 180 (71%)
SD 17 (7%) 37 (15%) 230 (90%) 124 (49%)
COV 24 (9%) 40 (16%) 238 (93%) 58 (23%)
Gini 21 (8%) 31 (12%) 231 (91%) 69 (27%)
Hoover 20 (8%) 28 (11%) 227 (89%) 83 (33%)
Atkinson 21 (8%) 37 (15%) 230 (90%) 106 (42%)
Shannon 36 (14%) 92 (36%) 246 (96%) 51 (20%)
Entropy 25 (10%) 39 (15%) 229 (90%) 103 (40%)
Theil 19 (7%) 42 (16%) 232 (91%) 77 (30%)

The bold font highlights the best configuration.

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 485

the summation scheme) or the same avg Sloc (when the
model is built using the mean scheme). Then these two files
have the same density of defects (when using the summation
scheme) or their density of defects is further determined by
the number of methods (when using the mean scheme). In
the latter case, these two files can be distinguished from one
another. The filewith fewermethods (thus smaller sum_SLOC

and less effort for code inspection) has a higher density of
predicted defects and is ranked before the other one. This is
in agreement with the concept of effort-aware defect predic-
tion, i.e., finding the same number of defects with less effort.

Fig. 6 provides boxplots of the best performance of our
various model configurations, together with the perfor-
mance of models built using each configuration relative to
the best model. As described above, Fig. 6 shows that when
using all schemes together, the performances of defect
proneness models are generally greater than using a single
scheme. Furthermore, when predicting defect rank and
count, solely using summation or using all schemes achieve
very similar amounts of predictive power, and both are

generally better than using any other aggregation scheme.
Hence, applying all schemes together is beneficial for defect
proneness models, while using summation is likely suffi-
cient for models that predict defect rank and count. More-
over, when building effort-aware models, either using
mean or median generally achieves better performance than
using any other configuration. Hence, the median or mean
schemes are advisable for building effort-aware models.

2) Programming Language-Specific Findings. The distribu-
tions of software metric tend to vary based on the program-
ming language in which the system is implemented [57].
This varying distribution may interfere with our analysis of
aggregation schemes. To investigate the role that program-
ming language plays, we partition the results of Table 8
according to programming languages, and present the
results in Table 9.

Irrespective of the programming language, the impact that aggre-
gation schemes have on defect prediction models that are built with
the studied metrics remains largely consistent. For instance, using
all schemes is generally beneficial to most of the studied

Fig. 6. In each sub figure, the left boxplot shows the best performance, and the right boxplots present the performance by models built with each
aggregation scheme relative to the best performance. The order of aggregation schemes: all schemes, summation, mean, median, SD, COV, Gini,
Hoover, Atkinson, Shannon’s entropy, generalized entropy, and Theil.

486 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

systems when predicting defect proneness (Table 9a), nomat-
ter what programming language the system is written in.
When predicting defect rank (Table 9b), using all schemes
achieves results that are the closest to the performance of the
best model for projects developed in C and C++, while using
summation is slightly better than using all schemes for only
one project developed in Java. For projects developed in C# or
Java, solely using summation in models that predict defect
count (Table 9c) is slightly better than using all schemes with
a two and three projects difference, respectively. When build-
ing effort-aware models (Table 9d), using the median scheme
is beneficial to most of the systems written in C, C#, and Java.
For systems written in C++, using the mean scheme achieves
results that are slightly closer to the best performance than
usingmedian.Hence, we conclude that the impact of aggrega-
tion schemes is largely consistent across systems developed in
any of the four studied programming languages.

5.3 Guidelines for Future Defect Prediction Studies

In this section, we discuss the broader implications of our
results by providing guidelines for future defect prediction
studies. Note that these guidelines are valid for studies
using exactly the same metrics as this study. If different
metrics are used, researchers and practitioners can follow
our approach to derive the most appropriate guidelines for
their studies. All the needed information to perform our
analysis can be obtained from the training data (e.g., data
from a previous release) that is used to build a model as in
all prior defect prediction studies.

1) Regardless of the programming language, using all stud-
ied aggregation schemes is recommended when building
models for predicting defect proneness and rank.With the
initial set of predictors that are aggregated using all
of the available schemes, feature reduction (e.g.,
PCA) could then be applied to mitigate redundan-
cies before fitting a prediction model. In particular,
defect proneness models that use all aggregation
schemes achieve the best performance in 40 percent
of the studied systems, while solely using the sum-
mation scheme achieves the best performance in
only 11 percent of projects. Furthermore, for models
that rank files according to their defect density, using
all schemes is better than solely using summation for
projects developed that are in C and C++.

2) Using summation is recommended for defect count models.
Solely using summation is better than using all
schemes for projects that are developed in C# or Java,

TABLE 9
The Percentage of the Studied Systems per Programming Language, on Which the Model Built with the

Corresponding Aggregation Scheme Achieves Similar Predictive Power as the Best Model

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 487

and leads to the same predictive power as using all
schemes for projects that are developed inC andC++.

3) Either the mean or the median aggregation scheme should
be used in effort-aware defect prediction models. In partic-
ular, the median aggregation scheme should be used
for projects developed in C, C#, or Java. The mean
aggregation scheme is suggested when building
effort-aware defect prediction models for C++ proj-
ects. In general, using median achieves the best per-
formance for 71 percent of the studied systems.

6 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
study with respect to Yin’s guidelines for case study research
[85].

Threats to conclusion validity are concerned with the rela-
tionship between the treatment and the outcome. The threat
to our treatments mainly arises from our choice of metrics
(i.e., only six method-level metrics, and no class-level met-
rics), our choice of modelling techniques (i.e., random forest
for defect proneness models and linear regression for the
other three types of defect prediction models), and our
choice of model parameters (i.e., 200 trees in random forest).
The choice of parameters has been explored in prior work
[75], [86], [87]. However, the primary goal of our study is
not to train the most effective defect prediction models, but
instead to measure relative improvements by exploring dif-
ferent aggregation schemes.

Threats to internal validity are concerned with our selec-
tion of subject systems and analysis methods. As the major-
ity of systems that are hosted on SourceForge and
GoogleCode are immature, we carefully filter out systems
that have not accumulated sufficient history to train defect
prediction models. To obtain a stable picture of the perfor-
mance of our defect prediction models, we perform 1,000
iterations of out-of-sample bootstrap validation. In addition,
we apply non-parametric statistical methods (i.e., Mann-
Whitney U test and Cliff’s d) to draw our conclusions.

Threats to external validity are concerned with the generaliz-
ability of our results. We investigate 11 schemes that can cap-
ture five aspects (summation, central tendency, dispersion,
inequality index, and entropy) of the distribution of software
metrics. Moreover, we study 255 open source systems that are
drawn from a broad range of domains. Hence, we believe that
our conclusionsmay apply to other defect prediction contexts.
Nonetheless, replication studiesmay prove fruitful.

Another threat is our choice of PCA for removing multi-
collinearity, as we lose interpretability of the produced
models. If the goal of a study is interpretability, a more care-
ful choice of aggregations might be needed. Since the focus
of this work is on model performance, our exploration
approach is useful. But future work may want to explore
other methods for preserving interpretability.

Threats to reliability validity are concerned with the possi-
bility of replicating this study. Our subject projects are all
open source systems, and the tool for computing software
metrics is publicly accessible. Furthermore, we provide all
of the necessary details of our experiments in a replication
package that we have posted online.2

7 CONCLUSION

Aggregation is an unavoidable step in training defect pre-
diction models at the file-level. This is because defect data is
often collected at file-level, but many software metrics are
computed at the method- and class-levels. One of the
widely used schemes for metric aggregation is summa-
tion [5], [6], [7], [8], [9], [10], [11], [15], [17]). However, recent
work [18] suggests that summation can inflate the correla-
tion between SLOC and CC in Java projects. Fortunately, there
are many other aggregation schemes that capture other
dimensions of a low-level software metric (e.g., dispersion,
central tendency, inequality, and entropy). Yet, the impact
that these additional aggregation schemes have on defect
prediction models remains largely unexplored.

To that end, we perform experiments using 255 open
source systems to explore how aggregation schemes impact
the performance of defect prediction models. First, we
investigate the impact that aggregation schemes have on the
correlation among metrics and the correlation between met-
rics and defect count. We find that aggregation can increase
or decrease both types of correlation. Second, we examine
the impact that aggregation schemes have on defect prone-
ness, defect rank, defect count, and effort-aware defect pre-
diction models. Broadly speaking, we find that summation
tends to underestimate the performance of defect proneness
and effort-aware models. Hence, it is worth applying multi-
ple aggregation schemes for defect prediction purposes. For
instance, applying all 11 schemes achieves the best perfor-
mance in predicting defect proneness in 40 percent of the
studied projects.

From our results, we provide the following guidelines for
future defect prediction studies. When building models for
predicting defect proneness and rank, our recommendation
is to use all of the available aggregation schemes to generate
the initial set of predictors (i.e., aggregated metrics, such as
the summation, median, and standard deviation of lines of
code), and then perform feature reduction (e.g., PCA) to
mitigate redundancies. For models that predict defect count,
solely using summation is likely sufficient. For effort-aware
defect prediction models, surprisingly, using all 11 schemes
to generate the initial set of predictors does not outperform
using a single scheme (i.e., the median or the mean scheme);
instead, the median scheme is advised for projects devel-
oped in C, C#, or Java, and the mean scheme is suggested
for projects written in C++.

If a researcher or a practitioner has a reason for selecting
a particular aggregation scheme, that should indeed trump
our approach. But, in many cases, selecting an aggregation
scheme is not straightforward. Our results show that
na€ıvely selecting the summation may not yield the best
results. Instead, in such cases, our approach would be bet-
ter. The improvement in model performance is substantial
enough to outweigh the analysis cost on these additional
aggregation schemes. Therefore, we suggest that research-
ers and practitioners experiment with many aggregation
schemes when building defect prediction models.

REFERENCES

[1] P. Bhattacharya and I. Neamtiu, “Assessing programming language
impact on development and maintenance: A study on C and C++,”
in Proc. 33rd ACM Int. Conf. Softw. Eng., 2011, pp. 171–180.2. http://www.feng-zhang.com/replications/TSEaggregation.html

488 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

[2] A. Tosun, A. Bener, B. Turhan, and T. Menzies, “Practical consid-
erations in deploying statistical methods for defect prediction: A
case study within the Turkish telecommunications industry,”
Inform. Softw. Technol., vol. 52, no. 11, pp. 1242–1257, Nov. 2010.
[Online]. Available: http://www.sciencedirect.com/science/arti-
cle/pii/S0950584910001163

[3] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design space of bug fixes and how developers navigate it,” IEEE
Trans. Softw. Eng., vol. 41, no. 1, pp. 65–81, Jan. 2015.

[4] T. Menzies, R. Krishna, and D. Pryor, “The promise repository
of empirical software engineering data,” North Carolina State
University, Department of Computer Science, (2015). [Online].
Available: http://openscience.us/repo

[5] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for
defect prediction,” in Proc. 30th ACM Int. Conf. Softw. Eng.,
May 2008, pp. 181–190.

[6] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol. 34,
no. 4, pp. 485–496, Jul.-Aug. 2008.

[7] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in Proc. 30th Int. Conf.
Softw. Eng., 2008, pp. 531–540.

[8] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction
metrics for defect prediction,” in Proc. 19th ACM SIGSOFT Symp.
13th Eur. Conf. Found. Softw. Eng., 2011, pp. 311–321.

[9] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc.
2013 Int. Conf. Softw. Eng., 2013, pp. 382–391. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486839

[10] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards build-
ing a universal defect prediction model,” in Proc. 11th Work. Conf.
Mining Softw. Repositories, 2014, pp. 41–50.

[11] T. Nguyen, B. Adams, and A. Hassan, “Studying the impact
of dependency network measures on software quality,”
in Proc. 26th IEEE Int. Conf. Softw. Maintenance, Sep. 2010,
pp. 1–10.

[12] D. Posnett, V. Filkov, and P. Devanbu, “Ecological inference in
empirical software engineering,” in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2011, pp. 362–371.

[13] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect predic-
tion approaches: A benchmark and an extensive comparison,”
Empirical Softw. Eng., vol. 17, no. 4/5, pp. 531–577, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.1007/s10664–011-9173-9

[14] A. G. Koru and H. Liu, “Building defect prediction models in
practice,” IEEE Softw., vol. 22, no. 6, pp. 23–29, Nov. 2005.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1524911

[15] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. Int. Workshop Predictor Models Softw. Eng.,
May 2007, Art. no. 9.

[16] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj,
and A. Zeller, “Predicting defects in SAP Java code: An experience
report,” in Proc. 31st IEEE Int. Conf. Softw. Eng.-Companion Vol.,
2009, pp. 172–181. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5070975

[17] R. Premraj and K. Herzig, “Network versus code metrics to pre-
dict defects: A replication study,” in Proc. Int. Symp. Empirical
Softw. Eng. Meas., 2011, pp. 215–224.

[18] D. Landman, A. Serebrenik, and J. Vinju, “Empirical analysis of
the relationship between CC and SLOC in a large corpus of java
methods,” in Proc. 30th IEEE Int. Conf. Softw. Maintenance Evolu-
tion, Sep. 2014, pp. 221–230.

[19] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and fail-
ures in a complex software system,” IEEE Trans. Softw. Eng., vol. 26,
no. 8, pp. 797–814, Aug. 2000. [Online]. Available: http://ieeex-
plore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=879815

[20] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault inci-
dence using software change history,” IEEE Trans. Softw. Eng.,
vol. 26, no. 7, pp. 653–661, Jul.2000. [Online]. Available: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=859533

[21] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. TSE-2, no. 4, pp. 308–320, Dec. 1976.

[22] C. Gini, “Measurement of inequality of incomes,” Econ. J., vol. 31,
no. 121, pp. 124–126, Mar. 1921. [Online]. Available: http://dx.
doi.org/10.1007/s12546–014-9138-0

[23] A. B. Atkinson, “On the measurement of inequality,” J. Econ. The-
ory, vol. 2, no. 3, pp. 244–263, 1970. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/0022053170900396

[24] J. Hoover and M. Edgar, “The measurement of industrial local-
ization,” (in English), Rev. Econ. Statist., vol. 18, no. 4, pp. 162–171,
1936. [Online]. Available: http://www.jstor.org/stable/1927875

[25] C. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, pp. 379–423/623–656, 1948.

[26] F. A. Cowell, “Generalized entropy and the measurement of
distributional change,” Eur. Econ. Rev., vol. 13, no. 1, pp. 147–159,
1980. [Online]. Available: http://www.sciencedirect.com/sci-
ence/article/pii/0014292180900513

[27] H. Theil, Economics and Information Theory. Amsterdam, The Neth-
erlands: North-Holland Pub. Co., 1967.

[28] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. 27th ACM Int. Conf. Softw.
Eng., 2005, pp. 284–292.

[29] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller,
“Predicting faults from cached history,” in Proc. 29th Int. Conf.
Softw. Eng., 2007, pp. 489–498.

[30] A. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. 31st IEEE Int. Conf. Softw. Eng., 2009, pp. 78 –88.

[31] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive compari-
son of bug prediction approaches,” in Proc. 7th IEEE Work. Conf.
Mining Softw. Repositories, May 2010, pp. 31–41. [Online]. Avail-
able: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5463279

[32] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on
fine-grained module histories,” in Proc. Int. Conf. Softw. Eng., 2012,
pp. 200–210. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2337223.2337247

[33] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–13, Jan. 2007.

[34] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
versus domain versus process,” in Proc. 7th Joint Meeting Eur.
Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2009,
pp. 91–100. [Online]. Available: http://doi.acm.org/10.1145/
1595696.1595713

[35] T. Mende and R. Koschke, “Effort-aware defect prediction mod-
els,” in Proc. 14th Eur. Conf. Softw. Maintenance Reengineering, 2010,
pp. 107–116. [Online]. Available: http://dx.doi.org/10.1109/
CSMR.2010.18

[36] Y. Kamei, S. Matsumoto, A. Monden, K.-I. Matsumoto, B. Adams,
and A. Hassan, “Revisiting common bug prediction findings
using effort-aware models,” in Proc. 26th IEEE Int. Conf. Softw.
Maintenance, Sep. 2010, pp. 1–10.

[37] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault pre-
diction,” IEEE Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct.
2005.

[38] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall, “Method-level
bug prediction,” in Proc. ACM-IEEE Int. Symp. Empirical Softw.
Eng. Meas., 2012, pp. 171–180. [Online]. Available: http://doi.
acm.org/10.1145/2372251.2372285

[39] X. Meng, B. Miller, W. Williams, and A. Bernat, “Mining software
repositories for accurate authorship,” in Proc. 29th IEEE Int. Conf.
Softw. Maintenance, Sep. 2013, pp. 250–259.

[40] B. Vasilescu, A. Serebrenik, and M. Van den Brand, “By no means:
A study on aggregating software metrics,” in Proc. 2nd ACM Int.
Workshop Emerging Trends Softw. Metrics, 2011, pp. 23–26. [Online].
Available: http://doi.acm.org/10.1145/1985374.1985381

[41] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative
analysis of evolving software systems using the Gini coefficient,” in
Proc. 25th IEEE Int. Conf. Softw.Maintenance, Sep. 2009, pp. 179–188.

[42] A. Serebrenik and M. Van Den Brand, “Theil index for aggrega-
tion of software metrics values,” in Proc. 26th IEEE Int. Conf. Softw.
Maintenance, Sep. 2010, pp. 1–9.

[43] B. Vasilescu, “Analysis of advanced aggregation techniques for
software metrics,” Master’s thesis, Dept. Math. Comput. Sci.,
Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2011.

[44] E. Giger, M. Pinzger, and H. Gall, “Using the Gini coefficient for
bug prediction in eclipse,” in Proc. 12th Int. Workshop Principles
Softw. Evolution 7th ACM Annu. ERCIM Workshop Softw. Evolution,
2011, pp. 51–55. [Online]. Available: http://doi.acm.org/10.1145/
2024445.2024455

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 489

[45] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automated Softw.
Eng., vol. 19, no. 2, pp. 167–199, Jun. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s10515–011-0090-3

[46] O. Goloshchapova and M. Lumpe, “On the application of inequal-
ity indices in comparative software analysis,” in Proc. 22nd Austra-
lian Softw. Eng. Conf., Jun. 2013, pp. 117–126.

[47] S.-C. Kolm, “Unequal inequalities. I,” J. Econ. Theory, vol. 12, no. 3,
pp. 416–442, 1976. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/0022053176900375

[48] J. E. Gaffney, “Estimating the number of faults in code,” IEEE
Trans. Softw. Eng., vol. 10, no. 4, pp. 459–464, Jul. 1984.

[49] B. Kitchenham, L. Pickard, and S. Linkman, “An evaluation of some
designmetrics,” Softw. Eng. J., vol. 5, no. 1, pp. 50–58, Jan. 1990.

[50] A. Mockus, “Amassing and indexing a large sample of version
control systems: Towards the census of public source code histo-
ry,” in Proc. 6th IEEE Int. Work. Conf. Mining Softw. Repositories,
May 2009, pp. 11–20.

[51] SciTools, “Understand 3.1 build 726,” 2015. [Online]. Available:
https://scitools.com, Accessed on: Jun. 15, 2015.

[52] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,” in
Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.
Found. Softw. Eng., 2009, pp. 121–130. (2009). [Online]. Available:
http://doi.acm.org/10.1145/1595696.1595716

[53] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proc. 33rd ACM Int. Conf. Softw. Eng., 2011,
pp. 481–490. [Online]. Available: http://doi.acm.org/10.1145/
1985793.1985859

[54] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” in Proc. 35th Int. Conf.
Softw. Eng., 2013, pp. 392–401. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2486788.2486840

[55] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size
versus bias in defect prediction,” in Proc. 21th ACM SIGSOFT
Symp. 15th Eur. Conf. Foundations Softw. Eng., 2013. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?doid=2491411.2491418

[56] F. Peters, T. Menzies, and A. Marcus, “Better cross company
defect prediction,” in Proc. 10th Work. Conf. Mining Softw. Reposito-
ries, 2013, pp. 409–418. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2487085.2487161

[57] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan, “How
does context affect the distribution of software maintainability
metrics?” in Proc. 29th IEEE Int. Conf. Softw. Maintainability, 2013,
pp. 350–359.

[58] A. Mockus and L. Votta, “Identifying reasons for software
changes using historic databases,” in Proc. 16th Int. Conf. Softw.
Maintenance, 2000, pp. 120–130.

[59] J. �Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” in Proc. 2nd Int. Workshop Mining Softw. Repositories,
2005, pp. 1–5.

[60] D. Radjenovi�c, M. Heri�cko, R. Torkar, and A. �Zivkovi�c,
“Software fault prediction metrics: A systematic literature
review,” Inform. Softw. Technol., vol. 55, no. 8, pp. 1397–1418, 2013.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584913000426

[61] S. Henry and D. Kafura, “Software structure metrics based on
information flow,” IEEE Trans. Softw. Eng., vol. 7, no. 5, pp. 510–
518, Sep. 1981.

[62] R. Subramanyam and M. Krishnan, “Empirical analysis of CK
metrics for object-oriented design complexity: Implications for
software defects,” IEEE Trans. Softw. Eng., vol. 29, no. 4, pp. 297–
310, Apr. 2003.

[63] M. Jureczko and D. D. Spinellis, “Using object-oriented design
metrics to predict software defects,” Proc. 5th Int. Conf. Dependabil-
ity Comput. Syst., pp. 69–81, 2010. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0378375808000207

[64] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 4 ed. London, U.K.: Chapman & Hall/CRC, Jan. 2007.

[65] M. Triola, Elementary Statistics. Upper Saddle River, NJ, USA:
Pearson/Addison-Wesley, 2004. [Online]. Available: https://
books.google.ca/books?id=MX5GAAAAYAAJ

[66] M.-T. Puth, M. Neuh€auser, and G. D. Ruxton, “Effective use of
Spearman’s and Kendall’s correlation coefficients for association
between two measured traits,” Animal Behaviour, vol. 102, no. 0,
pp. 77–84, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0003347215000196

[67] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, and Y. Zou,
“Studying the impact of clones on software defects,” in Proc. 17th
Work. Conf. Reverse Eng., Oct. 2010, pp. 13–21.

[68] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N.
Ubayashi, “An empirical study of just-in-time defect prediction
using cross-project models,” in Proc. 11th ACMWork. Conf. Mining
Softw. Repositories, 2014, pp. 172–181. [Online]. Available: http://
doi.acm.org/10.1145/2597073.2597075

[69] G. Succi, W. Pedrycz, S. Djokic, P. Zuliani, and B. Russo, “An
empirical exploration of the distributions of the Chidamber and
Kemerer object-oriented metrics suite,” (in English), Empirical
Softw. Eng., vol. 10, no. 1, pp. 81–104, 2005. [Online]. Available:
http://dx.doi.org/10.1023/B

[70] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordi-
nal questions,” Psych. Bull., vol. 114, no. 3, pp. 494–509, Nov. 1993.

[71] J. Cohen, Statistical Power Analysis for the Behavioral Sciences: Jacob
Cohen, 2nd ed. Washington, DC, USA: Lawrence Erlbaum,
Jan. 1988.

[72] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek,
“Appropriate statistics for ordinal level data: Should we really be
using t-test and Cohen’s d for evaluating group differences on the
NSSE and other surveys?” in Proc. Annu. Meet. Florida Assoc. Insti-
tutional Res., Feb. 2006, pp. 1–33.

[73] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Abing-
don, U. K.: Taylor & Francis, 1994. [Online]. Available: http://
books.google.ca/books?id=gLlpIUxRntoC

[74] M. Robnik-�Sikonja, “Improving random forests,” in Proc. 15th Eur.
Conf. Mach. Learning, 2004, pp. 359–370. [Online]. Available:
http://dx.doi.org/10.1007/978–3-540-30115-8_34

[75] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “Automated parameter optimization of classification tech-
niques for defect prediction models,” in Proc. 38th ACM Int. Conf.
Softw. Eng., 2016, pp. 321–332. [Online]. Available: http://doi.
acm.org/10.1145/2884781.2884857

[76] G. Gousios, M. Pinzger, and A. V. Deursen, “An exploratory study
of the pull-based software development model,” in Proc. 36th
ACM Int. Conf. Softw. Eng., 2014, pp. 345–355. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568260

[77] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara,
and K. Matsumoto, “The impact of mislabelling on the perfor-
mance and interpretation of defect prediction models,” in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., May 2015,
pp. 812–823.

[78] L. Breiman, “Random forests,” (in English), Mach. Learning,
vol. 45, no. 1, pp. 5–32, 2001. [Online]. Available: http://dx.doi.
org/10.1023/A

[79] A. Liaw and M. Wiener, “Randomforest: Breiman and Cutler’s
random forests for classification and regression,” 2015. [Online].
Available: http://CRAN.R-project.org/package=randomForest,
Accessed on: April 18, 2016.

[80] T. Mende and R. Koschke, “Revisiting the evaluation of defect
prediction models,” in Proc. 5th ACM Int. Conf. Predictor Models
Softw. Eng., 2009, pp. 7:1–7:10. [Online]. Available: http://doi.
acm.org/10.1145/1540438.1540448

[81] C. van Koten and A. Gray, “An application of Bayesian network
for predicting object-oriented software maintainability,” Inf. Softw.
Technol., vol. 48, no. 1, pp. 59–67, 2006.

[82] N. E. Fenton and M. Neil, “Software metrics: Roadmap,” in Proc.
ACM Conf. Future Softw. Eng., 2000, pp. 357–370. [Online]. Avail-
able: http://doi.acm.org/10.1145/336512.336588

[83] G. Denaro and M. Pezz�e, “An empirical evaluation of fault-prone-
ness models,” in Proc. 24rd Int. Conf. Softw. Eng., May 2002,
pp. 241–251.

[84] E. Shihab, “Practical software quality prediction,” in Proc. IEEE
Int. Conf. Softw. Maintenance Evolution, Sep. 2014, pp. 639–644.

[85] R. K. Yin, Case Study Research: Design and Methods, 3rd ed. New-
bury Park, CA, USA: SAGE, 2002.

[86] A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and M. L. Corn�elio,
“GA-based method for feature selection and parameters optimiza-
tion for machine learning regression applied to software effort
estimation,” Inform. Softw. Technol., vol. 52, no. 11, pp. 1155–1166,
Nov. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.
infsof.2010.05.009

[87] L. Song, L. L. Minku, and X. Yao, “The impact of parameter tuning
on software effort estimation using learning machines,” in Proc.
9th ACM Int. Conf. Predictive Models Softw. Eng., 2013, pp. 9:1–9:10.
[Online]. Available: http://doi.acm.org/10.1145/2499393.2499394

490 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 5, MAY 2017

Feng Zhang received the bachelor’s and master’s
degrees from Nanjing University of Science and
Technology (China), in 2004 and 2006, respec-
tively. He received the PhD degree in computer sci-
ence from Queen’s University, in 2016. He is
currently a postdoctoral research fellow in the
Department of Electrical and Computer Engineer-
ing, Queen’s University, Canada. His research
interests include empirical software engineering,
software re-engineering, mining software reposito-
ries, source code analysis, and defect prediction.

His research has been published at several top-tier software engineering
venues, such as the International Conference on Software Engineering
(ICSE), and the Springer Journal of Empirical Software Engineering
(EMSE). More about him and his work is available online at http://www.
feng-zhang.com

Ahmed E. Hassan is the Canada Research Chair
(CRC) in Software Analytics, and the NSERC/
BlackBerry Software Engineering Chair at the
School of Computing at Queen’s University, Can-
ada. His research interests includemining software
repositories, empirical software engineering, load
testing, and log mining. Hassan received a PhD in
Computer Science from the University of Waterloo.
He spearheaded the creation of the Mining Soft-
ware Repositories (MSR) conference and its
research community. Hassan also serves on the

editorial boards of IEEE Transactions on Software Engineering, Springer
Journal of Empirical Software Engineering, Springer Journal of Computing,
and PeerJ Computer Science. Contact ahmed@cs.queensu.ca. More
information at: http://sail.cs.queensu.ca/

ShaneMcIntosh received the bachelor’s degree in
applied computing from the University of Guelph
and theMScandPhDdegrees in computer science
fromQueen’s University. He is an assistant profes-
sor in the Department of Electrical and Computer
Engineering, McGill University. In his research, he
uses empirical software engineering techniques to
study software build systems, release engineering,
and software quality. His research has been pub-
lished at several top-tier software engineering ven-
ues, such as the International Conference on

SoftwareEngineering (ICSE), the International Symposiumon the Founda-
tions of Software Engineering (FSE), and theSpringer Journal of Empirical
Software Engineering (EMSE). More about him and his work is available
online at http://shanemcintosh.org. He is amember of the IEEE.

Ying Zou is the Canada research chair in Software
Evolution. She is an associate professor in the
Department of Electrical and Computer Engineer-
ing, and cross-appointed to the School of Comput-
ing, Queen’s University, Canada. She is a visiting
scientist of IBM Centers for Advanced Studies,
IBM Canada. Her research interests include soft-
ware engineering, software reengineering, soft-
ware reverse engineering, software maintenance,
and service-oriented architecture. More about her
and her work is available online at http://post.
queensu.ca/
zouy. She is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: THE USE OF SUMMATION TO AGGREGATE SOFTWARE METRICS HINDERS THE PERFORMANCE OF DEFECT PREDICTION... 491

View publication statsView publication stats

https://www.researchgate.net/publication/306049014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

