
Report on MSR 2005:

International Workshop on Mining Software Repositories

Stephan Diehl
Computer Science

Catholic University Eichstätt
Eichstätt, Germany
diehl@acm.org

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa, holt}@plg.uwaterloo.ca

Abstract

A one-day workshop on the topic of Mining Software Repos-
itories (MSR) was held at ICSE 2005 in St. Louis, Mis-
souri. Researchers and practitioners in the MSR field try to
transform static record keeping software repositories to ac-
tive ones. These repositories permit researchers to gain em-
pirically based understanding of software development, while
software practitioners use these repositories to predict and
plan various aspects of their project.

Following the success of last year’s workshop, MSR 2005
had a large number of high quality submissions and a great
number of participants. 22 papers were accepted from 38
submissions – 11 papers were presented as Lightning talks
(5 mins) and another 11 papers were presented as regular
talks (15 mins). The Lighting talks were followed with a
walk-around demo and discussion session.

This report includes an overview of the presentations made
during the day and a summary of the issues raised through-
out the workshop.

Introduction

Software repositories such as source control systems, archived
communications between project personnel, and defect track-
ing systems are used to help manage the progress of software
projects. Software practitioners and researchers are begin-
ning to recognize the potential benefit of mining this infor-
mation to support the maintenance of software systems, im-
prove software design/reuse, and empirically validate novel
ideas and techniques. Research is now proceeding to un-
cover the ways in which mining these repositories can help
to understand software development, to support predictions
about software development, and to plan various aspects of
software projects.

Scope and Topics of Interest

We sought position papers that address issues along the gen-
eral themes, including but not limited to the following:

• Approaches to study the quality of the mined data along
with guidelines to ensure the quality of the recovered
data

• Proposals for exchange formats, meta-models, and in-
frastructure tools to facilitate the sharing of extracted
data and to encourage reuse and repeatability

• Models for social and development processes that occur
in large software development projects

• Search techniques to assist developers in finding suitable
components for reuse

• Techniques to model reliability and defect occurrences

• Analysis of change patterns to assist in future develop-
ment

• Case studies on extracting data from repositories of
large long lived projects

• Suggestions for benchmarks, consisting of large software
repositories, to be shared among the community

Workshop Format

We received 38 papers from 14 countries. Papers were re-
viewed by the workshop’s program committee in terms of
their relevance to the aims of the workshop and their techni-
cal content. Accepted papers were posted on the workshop’s
web site prior to the workshop at:

http://msr.uwaterloo.ca

The workshop program was broken into five sessions: 4
with regular talks and one combined Lightning talks and
demo session.

Regular talks were 15 minutes with one clarification ques-
tion. At the end of each session we had an open discus-
sion of all papers in that session. In contrast the lightning
talks were only 5 minutes long with no clarification questions.
The lightning talks were followed by a one hour walkaround
demos and discussion session.

Workshop Sessions

Session 1: Evolution and Change Patterns

The papers in this session investigated how changes occur
in evolving software systems and how to deal with the large
amount of data.

1

ACM SIGSOFT Software Engineering Notes Page 1 September 2005 Volume 30 Number 5

Neamtiu et al. studied the effect of changes on the ab-
stract syntax trees and found that change increases with
depth within the tree. Williams et al. recovered system
specific function usage patterns from the change history.

In a case study Fischer et al. looked at the BSD operating
system and its offspring (NetBSD, FreeBSD, and OpenBSD)
to see how the evolution of product families differs from that
of single programs.

Finally, by looking at the evolution of code clones Kim
and Notkin characterized different kinds of clones and found
that there are actually good clones – those that are foreseen
to diverge later in the development process.

Session 2: Defect Analysis

In general defect analysis is concerned with where bugs come
from and how well we can predict them.

Sliwerski and Zimmermann tried to identify bug-inducing
changes. These changes are followed later by bug-fixing
changes which correct the bug-inducing changes. In par-
ticular they found, that bug-inducing changes occur more
frequently on Fridays.

Görg and Weißgerber developed a method to automati-
cally detect incomplete refactorings. Some of the incomplete
refactorings that they found lead to compilable, but erro-
neous programs. So their version analysis could detect prob-
lems, that static analysis could not.

Session 3: Education

Papers in this session mined student projects to allow teach-
ers to understand better the progress of students, instead of
mining archives of medium to large open source programs.

Spacco et al. investigated the ability of warnings produced
by different static analyzers to predict exceptions raised
when testing the program.

Mierle et al. extracted various quantitative measures from
200 CVS archives of student projects and tried to relate these
with grades. Surprisingly, no predictors stronger than simple
lines-of-code were found.

Session 4: Lightning Talks

The talks in this session were divided into four themes:

4a) Text Mining Ohba and Gondow suggested to mine
for concept keywords in identifiers. The key idea is that iden-
tifiers are divided into terms. Terms that occur frequently
in a document are characteristic for the document. They
applied the technique to relate bug reports and source code.

In a case study Ying et al. found different kinds of Eclipse
comments that start with TODO and argued that these and
other source code comments provide important information:
”Someone left a note for you in the code”. Hayes et al.
undertook a pilot study to examine the impact of analyst
decisions on the final outcome of the text mining process.

4b Software Changes and Evolution Kim et al. de-
veloped a taxonomy of function signature change patterns.
They analyzed 8 open source software systems to see how
often each of these change patterns occur.

Ratzinger et al. identified two bad change smells, i.e. bad
practices of how to change code, and showed in a case study
that these can be used to find bad smells in the source code.

In a case study by Antoniol et al., two techniques from
signal processing, namely Linear Predictive Coding and Cep-
stral analysis, are used to identify files with similar size
changes patterns.

4c) Process and Collaboration VanHilst et al. ar-
gue that mining software repositories provides useful process
metrics without adding overhead to the process itself.

Huang and Liu applied social network analysis to divide
modules into conceptual kernel and non-kernel modules, as
well as developers into core and none-core teams. Huang and
Liu received the Lightning award for the best presentation
in this session.

4d) Taxonomies and Formal Representations Two
different taxonomies were proposed:

Kagdi et al. proposed a taxonomy based on technical as-
pects, e.g. the kinds and granularity of mining, whereas
German et al. considered the goals and context, i.e. the
different kinds of users and their needs.

Hindle and German designed a query language to formu-
late hypotheses and reason about data in software reposito-
ries. Their language is based on a formal model of reposito-
ries consisting of four entities: authors, modification request,
revisions, and files.

Session 5: Integration and Collaboration

Robles and González-Barahona combined various sources of
data to map the different identities used by a developer in
one or more open source projects to a single person.

Ohira et al. developed a graph-based tool to analyze and
visualize the relationship among projects and developers.
They found that about 66 percent of all projects at Source-
Forge had only one developer.

Conklin et al. reported about a repository for researchers
to store and share meta-data (developer names, platforms,
licence types, etc.) extracted from general repositories like
SourceForge, GNU Savannah and the like.

1 Conclusions

Tools and approaches were presented that extract various
kinds of information from software archives, identify poten-
tial bugs, or discover who are the core-team members of a
project. The techniques applied ranged from classical data
mining to signal processing. In the discussions the question
of what are the underlying heuristics and concerns about
their validity, were raised several times. Also privacy issues

2

ACM SIGSOFT Software Engineering Notes Page 2 September 2005 Volume 30 Number 5

were discussed: although the archives are publicly available,
should the mining results be publicly available as the results
often provide condensed information about individual devel-
opers.

By looking at the data stored in software archives, re-
searchers found that there are good code clones, that stu-
dents who put spaces after commas get better grades and
that programmers should not work on Fridays. As more
of these tools become available, they will enable us to see
whether these findings generalize to our own projects or stu-
dents.

Finally, there are plans to hold MSR as a two days work-
shop in 2006 including a posters session and a mining chal-
lenge task so we can gain a better understanding of the
strength and weakness of the various proposed approaches
in the field.

3

ACM SIGSOFT Software Engineering Notes Page 3 September 2005 Volume 30 Number 5

