
INVESTIGATING SELENIUM USAGE CHALLENGES AND REDUCING

THE PERFORMANCE OVERHEAD OF SELENIUM-BASED LOAD TESTS

by

SHAHNAZ MOHAMMEDI SHARIFF

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

February 2019

Copyright © Shahnaz Mohammedi Shariff, 2019

Abstract

S
ELENIUM automates the testing of web applications. Quality Assurance (QA)

engineers usually write Selenium scripts to test the content that is rendered

in a browser and simulate user interactions with the web content for web ap-

plications. Apart from test automation, Selenium is also used to perform load testing

and web scraping tasks. Selenium has gained a great amount of attention from users

as observed from the trend of Selenium-tagged questions on StackOverflow (a pop-

ular online development forum). The percentage of StackOverflow questions that are

tagged with “Selenium" has been constantly increasing (i.e., it increased six folds, from

2011 to 2018), reaching around 0.6% in 2018.

In this thesis, we first explore the Selenium-related questions on StackOverflow

to understand users’ questions about Selenium, programming-language specific is-

sues, browser-specific concerns and the difficult aspects of Selenium. Some of the

notable findings from our empirical study are: Questions about Python have become

i

the most frequent and the fastest growing programming language related questions in

Selenium, while questions on Java have become stable in recent years. We also find

that Chrome tag is the most frequently used browser tag among other browser related

tags associated with Selenium. However, different browsers may be used for different

purposes. For example, PhantomJS widely used for web scraping while Firefox is fre-

quently used with Selenium-IDE.

Several users discuss performance issues in Selenium tests on StackOverflow. Prior

work on Selenium also points out that Selenium tests are resource intensive. As Sele-

nium needs to launch a browser for each instance (e.g., a client) of a test, it is usually

very resource consuming to run a load test using Selenium as one would need to run

thousands of user instances. Therefore, we investigate the challenges in Selenium-

based load tests by performing experiments using different type of browsers. We pro-

pose an approach to improve the testing efficiency of Selenium-based load tests. Our

approach shares browser instances between user instances, thereby reducing the per-

formance overhead that is introduced by launching many browser instances. The main

contribution of this thesis is that our approach can significantly increase the number

of user instances that can be tested on a test driver machine without overloading the

machine. We improve the testing efficiency of Selenium-based load tests by at least

20%.

The insights that we share in this work can help the developers of Selenium un-

derstand how Selenium is used in practice and how they can offer better support for

Selenium. Further, software practitioners can benefit from our approach to improve

the efficiency of Selenium-based load tests.

ii

Acknowledgments

I extend my greatest gratitude to Prof. Ahmed E. Hassan for being the best supervi-

sor. His guidance and mentorship allowed me to get this thesis in shape. I am ex-

tremely grateful to have worked under him. I would like to thank everyone at SAIL

(Software Analysis & Intelligence Lab), for creating a friendly and supportive environ-

ment to work in. I would like to especially thank my collaborators and mentors, Dr.

Heng Li and Prof. Cor-Paul Bezemer. Their advice, critical comments and timely feed-

back helped me immensely.

My heart goes out to my mother (Nasreen) and my brother (Sarfraz), my greatest

cheerleaders and support systems. I would like to dedicate my work to my father (Late.

M.N Shariff). I hope that this achievement will complete the last dream that you had

for me. Last but not the least, I would like to thank these Good Samaritans - Dev, Ganga,

Gopi and my other family members for their constant support during my masters jour-

ney.

iii

Table of Contents

Abstract i

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Thesis Overview . 3
1.3 Thesis Contributions . 5

2 Background and Related Work 7

3 An Empirical Study of Selenium Questions on Stack Overflow 12
3.1 Case Study Setup . 16
3.2 Case Study Results . 19
3.3 Threats to Validity . 43
3.4 Conclusion . 46

4 Reducing the Performance Overhead of Selenium-based Load Tests 47
4.1 Load testing using Selenium . 50
4.2 Experimental Design . 51
4.3 A systematic exploration of the performance overhead of Selenium-based

load testing . 64
4.4 Experimental Results . 67
4.5 Threats to Validity . 72
4.6 Lessons learned . 75
4.7 Conclusion . 78

5 Conclusions and Future Work 80

iv

5.1 Summary . 80
5.2 Future Work . 82

Bibliography 84

v

List of Tables

3.1 Stats for users in each of the programming language related tags in Se-
lenium . 31

3.2 Stats for the user communities of each of the browser and driver tags in
Selenium . 36

4.1 Browser definitions . 55
4.2 Maximum number of user instances in each experimental setting 61
4.3 Performance measures in headless browsers . 69
4.4 Performance measures in regular browsers (with Xvfb) 69

vi

List of Figures

3.1 Trend analysis of ‘Selenium’ tag . 13
3.2 Data extraction process . 17
3.3 Most popular Selenium-related tags . 23
3.4 Relationship between Selenium-related tags . 24
3.5 Attention received by Selenium-related tags. The dotted lines indicate

the median attention for each group. 25
3.6 Evolution of questions added in each group . 27
3.7 Tag association between programming languages 29
3.8 Evolution of the asked questions in each of the programming language

related tags . 32
3.9 Tag association between browsers (combined with drivers) 35
3.10 Evolution of questions added in each browser (with the corresponding

drivers) . 37
3.11 Percentage of questions with accepted answers for each of the Selenium-

related tag. The dotted lines indicate the median percentage of accepted
answers for each group. 40

3.12 Answering speed for the top 35 Selenium-related tags. The dotted lines
indicate the median time to get accepted answer (in hours) for each
group. 42

4.1 Experimental Setup . 51
4.2 Independent browsers setting - Persistent browsers 53
4.3 Independent browsers setting - Non-persistent browsers 57
4.4 The merging of tasks across different user instances to produce a com-

mon list of tasks . 57
4.5 Steps to execute scheduled tasks in each browser 60
4.6 Our approach of using shared persistent browsers 60
4.7 Our approach of using fixed number of non-persistent browsers 60
4.8 Median CPU and Memory in different browsers 65
4.9 Median CPU and memory values for headless and regular browsers . . . 65
4.10 95th percentile CPU and memory values for headless and regular browsers 66

vii

CHAPTER 1

Introduction

S
ELENIUM is becoming increasingly popular among developers and testers as

it can be used for various software engineering tasks such as test automa-

tion, web-scraping, and load testing. The popularity of Selenium is evident

from the percentage of Stack Overflow questions that are tagged with “Selenium" as it

has been constantly increasing (i.e., it increased six folds, from 2011 to 2018), reaching

around 0.6% in 2018. Until Nov 2018, there are 73,617 Selenium-related questions and

more than 100,000 Selenium-related answers on StackOverflow.

Analysis of Selenium-related questions raised by thousands of users is essential for

the developers of Selenium to understand the Selenium-related issues and how these

issues are related to each other. Further, the programming languages and browsers

supported by Selenium have to be studied to learn how each of them is used in practice

1

CHAPTER 1. INTRODUCTION 2

along with Selenium. The developers of Selenium can benefit from knowing which

Selenium-related questions require a long time to get an answer and the factors that

impact the speed of receiving a response to such questions.

The performance overhead of Selenium tests has been discussed by the users on

StackOverflow (StackOverflow, 2017, 2018b,a). For example, one of the questions dis-

cusses the high memory consumption of Chrome instance and the overall CPU con-

sumption of the server during the load test StackOverflow (2018c). Further, prior work

(Vila et al. (2017)) also highlight that Selenium tests can be both time and memory in-

tensive. Selenium tests consume a large amount of resources as browsers are launched

for each test run. Therefore, load-testing using Selenium is extremely resource inten-

sive as one would need to run thousands of browser instances to simulate thousands

of user instances. Traditional load testing tools, like JMeter, generate load for thou-

sands of user instances using HTTP requests. However, they fail to capture real usage

scenarios or enable the verification of the rendered JavaScript of web applications.

As web applications are becoming increasingly more complex, browser-based load

testing has to be performed instead of protocol-level load testing. Moreover, simu-

lating and replaying even a secure login into a user session is extremely challenging

using protocol-level load-testing as is done with JMeter. Further, the importance of

using Selenium over JMeter has been discussed by Dowling and McGrath (2015). They

discuss that JMeter cannot be used to check the rendering of a webpage and for exe-

cuting Javascript. Due to these reasons, Selenium is a better choice for load-testing as

it can effectively render JavaScript, test real usage scenarios and it is much easier than

hard-coding protocol level HTTP requests. However, there is no tool or technique that

improves the testing efficiency of Selenium-based load tests in order to increase the

CHAPTER 1. INTRODUCTION 3

number of user instances that can run on test driver machines.

1.1 Thesis Statement

Selenium-related questions on StackOverflow offer an overview of the challenges

facing practitioners who use Selenium. Moreover, since protocol-level load testing

tools cannot be used to verify the complex behavior of web applications, reducing

the performance overhead of Selenium tests would enable us to effectively leverage

browser-based tests for load testing.

1.2 Thesis Overview

In this section, we provide an outline of our thesis.

1.2.1 Chapter 2: Background and Related work

This chapter gives background information about the Selenium tool. We also provide

an overview of prior research that is related to our work. In particular, we focus on prior

research in the following three areas: (1) Selenium (2) Load testing (3) Stack Overflow

data.

1.2.2 Chapter 3: An Empirical Study of Selenium Questions on Stack

Overflow

In this chapter, we aim to understand the issues in Selenium and how the issues are re-

lated to each other. We provide a detailed analysis of Selenium-related questions that

CHAPTER 1. INTRODUCTION 4

are related to programming-languages and browsers. We also analyze which Selenium-

related questions take a long time to receive an answer and the factors that are asso-

ciated with such delayed answers. We observe that questions on programming lan-

guages are the most popular and fastest growing type of Selenium-related questions

while browser-related questions concerning Selenium get the most attention. Python

tag is the fastest growing among other programming language related tags, while Java

tag has become stable in recent years. We also find that Chrome tag is the most fre-

quently used browser tag among other browser tags related to Selenium. However, dif-

ferent browsers may be used for different purposes. For example, PhantomJS is widely

used for web scraping while Firefox is frequently used with Selenium-IDE. We observe

that less than half of Selenium-related questions get accepted answers. The time taken

to get an accepted answer is statistically significantly impacted by the number, the me-

dian reputation, and the experience level of the answerers of each tag. Our findings

could help the developers of Selenium and users understand how Selenium is used in

practice and provide better support for Selenium.

1.2.3 Chapter 4: Reducing the Performance Overhead of Selenium-

based Load Tests

In this chapter, we propose an approach to reduce the resource usage of Selenium-

based load testing. Our approach shares browser instances between user instances,

thereby reducing the performance overhead that is introduced by launching too many

browser instances during the execution of a test. Our experimental results show that

our approach can significantly increase the number of user instances that can be tested

on a test driver machine without overloading the machine. Our approach and our

CHAPTER 1. INTRODUCTION 5

experience can help software practitioners improve the efficiency of Selenium-based

load testing.

1.3 Thesis Contributions

In this thesis, we study the Selenium-related questions on StackOverflow to under-

stand the difficult aspects of Selenium and Selenium usage in practice. We also dis-

cuss the advantages of using browser-based load tests (using Selenium) over protocol

level load tests (using JMeter). We propose an approach that shares browser instances

among tested clients to reduce the performance overhead associated with launching

many browser instances for load testing. In particular, our main contributions are as

follows:

1. We present a detailed analysis of Selenium-related questions on StackOverflow.

We believe that new users of Selenium will benefit from this study to know which

programming language and browser to use depending on the use case. Our in-

sights will also help Selenium developers prioritize their efforts to address the

difficult aspects in Selenium.

2. This thesis is the first work to propose an approach that increases the number

of user instances in Selenium-based load tests by at least 20% using the same

hardware resources.

3. We provide a systematic exploration of various testing scenarios (i.e. headless vs.

regular browsers and persistent vs. non-persistent browsers) for Selenium-based

load testing.

CHAPTER 1. INTRODUCTION 6

4. We share our experience of using Selenium for load testing including the chal-

lenges encountered in designing Selenium scripts, our investigations of the per-

formance issues in Selenium, and how we addressed them.

CHAPTER 2

Background and Related Work

S
ELENIUM 1 is a browser automation tool that is used to test the functionality of a

web application by simulating the user’s interactions with an actual browser.

User interactions for simpler applications such as telnet, ftp, passwd etc can

be automated using tools such as Expect (Expect (2018)). Whereas, Selenium is used

to automate the testing of modern web applications. Selenium is commonly used for

testing by popular web applications such as Bugzilla, Mozilla Add-ons, Jenkins, and

Wikia. Selenium consists of a set of different software tools each with a different ap-

proach to support test automation.

Selenium is composed of multiple software tools: Selenium Webdriver, Selenium

1https://www.seleniumhq.org/

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Remote Control (RC), Selenium Integrated Development Environment (IDE) and Se-

lenium Grid (Altaf et al. (2015)). Selenium 2 supports the Webdriver API along with

the Selenium RC technology to provide flexibility in porting tests written for Selenium

RC. One of Selenium’s key features is the support for executing one’s tests on multiple

modern browsers such as Google Chrome, Mozilla Firefox, and Safari. The Webdriver

uses browser-specific libraries (i.e., browser drivers) to launch and control browsers.

For example, the Webdriver uses the Chromedriver to control a Chrome browser.

Listing 2.1: Selenium Code Snippet

launch browser using Chromedriver

d r i v e r = webdriver . Chrome(’ /path/ to /chromedriver ’)

go to URL

d r i v e r . get (" http : / / example . com/")

l o c a t e element using XPATH

more_information_link = d r i v e r . \

find_element_by_xpath (’ /html/body/div /p [2] / a ’)

c l i c k on the element

more_information_link . c l i c k ()

The Selenium WebDriver enables testers to write scripts to launch a browser, sim-

ulate various human interactions with the browser and support various approaches to

verify the loading results of web pages. Selenium provides various locator strategies

(to locate web elements) such as CSS selectors, XPath, ID, class name etc. Human in-

teractions are simulated by locating web elements (using one of the locator strategies)

and performing suitable actions on them (e.g., click a button). Code listing 3.2 shows

CHAPTER 2. BACKGROUND AND RELATED WORK 9

a sample test snippet. After the browser is launched, we navigate to a URL, locate an

element using a suitable locator strategy (XPath in this case) and then click on the ele-

ment.

Selenium tests are verified by using asserts that look for specific text, images, or

other web elements. The verification checks depend on the Application Under Test

(AUT) and the goal of the test case.

2.0.1 Prior research in Selenium

A large amount of Selenium-related studies focuses on automated test generation (Mi-

lani Fard et al., 2014; Stocco et al., 2015; Mirshokraie et al., 2013). Tests are generated

using a combination of human written scripts and crawlers to fetch the dynamic states

of the application. Researchers also discuss the challenges and drawbacks of Selenium,

motivating them to develop new tools and frameworks (Gojare et al., 2015; Le Breton

et al., 2013). Other studies on Selenium are experience reports (Dowling and McGrath,

2015; Debroy et al., 2018; Arcuri, 2018). Leotta et al. (2013) compare the maintenance

effort of several locator strategies that Selenium provides. Kongsli (2007) show how Se-

lenium can be used for Security testing. Our work is different from the aforementioned

work since we analyse the Selenium-related questions and answers that are posted on

StackOverflow. While prior work uncovers some of the limitations of Selenium based

on the experiences of using it, our work analyzes Selenium-related questions and their

associated answers that are posted by thousands of users on Stack Overflow.

The performance overhead of Selenium has been discussed by Vila et al. (2017).

They highlight that the Selenium WebDriver consumes a large amount of resources

as the whole application needs to be loaded in the browser (including all the images,

CHAPTER 2. BACKGROUND AND RELATED WORK 10

css and js files). Our experimental results also show that Selenium-based testing is

resource-intensive. Therefore, we propose an approach to improve the efficiency of

Selenium-based load tests.

2.0.2 Prior research in load testing

Load testing is usually performed to determine a system’s behavior under anticipated

peak load conditions (Jiang and Hassan (2015)). Prior work proposes various approaches

to simulate workloads in a load test. Step-wise load is one of the approaches where the

load is increased steadily to study the stability of the Application Under Test (AUT).

Neves et al. (2013) use step-wise workloads to study the performance of JAVA and PHP

web server technologies. They identify that JAVA can handle a large number of simul-

taneous requests better than PHP. Similarly, in a study by Goldschmidt et al. (2014), the

authors gradually added virtual users to the system. This was done in order to evaluate

the scalability of time series databases in cloud-based systems. In this thesis, we em-

ploy a similar approach. We increase the number of user instances in small increments

(2, 5 or 10) to identify the maximum number of error-free user instances.

Using JMeter for load testing is widely discussed in the past. For example, Abbas

et al. (2017) compare the performance of popular load testing tools such as Apache

JMeter, Microsoft Visual Studio (TFS), LoadRunner and Siege. Kiran et al. (2015) dis-

cuss the associated challenges of using JMeter for applications that use Unified Au-

thentication Platform (UAP). However, there is no work on Selenium-based load test-

ing. To the best of our knowledge, there exists no prior work that proposes an approach

to use Selenium for load testing. As web applications are becoming increasingly more

complex, browser-based load testing has to be performed instead of protocol-level

CHAPTER 2. BACKGROUND AND RELATED WORK 11

load testing. Moreover, simulating and replaying something like a secure login into a

user session is extremely challenging using protocol-level load-testing as is done with

JMeter. Further, the importance of using Selenium for load testing over JMeter has

been discussed by Dowling and McGrath (2015). They note that JMeter cannot be used

for checking the rendering of a webpage and for executing Javascript. Therefore, Sele-

nium tests would have to be written separately to check rendering of the webpage and

the execution of Javascript.

2.0.3 Prior studies on Stack Overflow

StackOverflow data has been widely analyzed in prior work. Some studies (Barua et al.,

2012; Ponzanelli et al., 2014), use all the posts on SO within a certain time period and

focus on providing insights on the entire user-base. Several prior studies analyze Stack

Overflow data on one domain or aspect of Software engineering. For example, Venkatesh

et al. (2016) perform an empirical study on 32 Web APIs to study the concerns of Web

developers; Abad et al. (2016) study posts on requirements engineering; Yang et al.

(2016) study security related questions on StackOverflow. Similarly, we study ques-

tions and answers related to Selenium. The work closest to ours is the work by Kochhar

(2016). The author analyzes software testing related questions on StackOverflow by fo-

cusing on Software testing questions with the test tag. In comparison, we perform a

detailed study of Selenium-related questions. For example, we analyze the difference

between the Selenium questions that are associated with different programming lan-

guages or different browsers.

CHAPTER 3

An Empirical Study of Selenium Questions on Stack Overflow

Selenium 1 is a popular browser-based test automation tool that is used to test the

functionality of web applications. Selenium supports the testing of web applications

running on different browsers, such as Firefox and Google Chrome. Selenium pro-

vides direct support for programming languages such as Java, Python, C#, Ruby and

provides third-party support for programming languages such as JavaScript, Perl, and

PHP. While Selenium is predominantly used for test automation, it is being used for

web-scraping as well (Chaulagain et al. (2017)).

Selenium started in 2004 as “JavaScriptTestRunner" and then the Selenium Remote-

Control (RC) technology came into the picture. Selenium RC was followed by Selenium

IDE and finally the WebDriver. Selenium RC uses a server to launch browsers and acts

1https://www.seleniumhq.org/

12

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 13

Figure 3.1: Trend analysis of ‘Selenium’ tag

as an HTTP proxy for web requests that arrive from the browsers. Selenium IDE is used

to record scripts and replay them for later use. Selenium IDE comes as a plugin in pop-

ular browsers such as Chrome and Firefox. The WebDriver is the latest addition to the

Selenium toolkit. The implementation of the WebDriver provides all the functions to

write test automation scripts, such as the functions used to launch browsers, navigate

to URLs and locate web-elements. Selenium is being used to test popular systems such

as Bugzilla, 2 Mozilla Add-ons, 3 and Wikia 4.

Selenium-related issues are widely discussed on Stack Overflow. Until Nov 2018,

there are 73,617 Selenium-related questions and more than 100,000 Selenium-related

answers. Figure 3.1 shows that the percentage of Stack Overflow questions tagged with

2https://github.com/mozilla-bteam/bmo/tree/master/qa/t
3https://github.com/mozilla/addons-server/tree/master/tests/ui
4https://github.com/Wikia/selenium-tests

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 14

“Selenium" has been constantly increasing (i.e., it increases six folds, from 2011 to

2018), reaching around 0.6% in 2018 5. While the proportion might appear small, we

wish to highlight that it still represents a sizable proportion given the wide scope of

SO as it covers all aspects surrounding Software Development. For example, the pro-

portion of questions on a popular IDE such as Eclipse is less than that of Selenium

(0.4%). Similarly, JMeter, a popular load testing tool covers 0.1% of the total questions

on SO. In this chapter, we explore Selenium-related questions to understand the needs

and concerns of the developers and the support avenues for Selenium through online

development forums such as StackOverflow.

In this chapter, we collect all the questions and answers related to Selenium that are

posted on StackOverflow from August 11 2008 until November 11 2018. Since SO ex-

isted even before Selenium, we have a complete historical view of Selenium issues and

challenges instead of a partial view. By examining these Selenium-related questions,

we aim to understand the issues and challenges of using Selenium and the provided

support by the Selenium community. In particular, our work proposes the following

research questions:

RQ1: What questions are being asked about Selenium?

In this RQ, we extract and analyze the tags used in Selenium-related questions.

We observe that tags related to programming languages (e.g., Python, Java, C#

etc) are the most popular and fastest growing compared to other Selenium-related

tags. Questions on browsers get more attention than the other Selenium-related

questions; questions on testing frameworks have stabilized over the last few years

5https://insights.stackoverflow.com/trends?tags=selenium

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 15

while the number of new questions is increasing for most of the other Selenium-

related questions.

RQ2: Do users ask different type of Selenium-related questions for the different pro-

gramming languages?

We study the programming languages supported by Selenium in order to study

the associations between programming language tags and the popular Selenium-

related tags. For example, we identify that tags such as web-scraping and python

have a strong association. On studying the user community in each of the pro-

gramming language tags, we identify that java and python tags form the largest

user base in Selenium. Further, the evolution of the number of new questions

shows that only questions tagged with python, java and C# have an increasing

trend.

RQ3: Do users ask different type of Selenium-related questions for the different browsers?

In this RQ, we analyze browser and driver tags associated with Selenium. We

combine browser tags with their corresponding driver tags as they are used to-

gether in tests. For example, we combine selenium-chromedriver with google-

chrome. Google-chrome related questions are the fastest-growing browser re-

lated questions used with Selenium. However, different browsers may be used

for different purposes. For example, PhantomJS tag is widely used for web scrap-

ing while Firefox tag is frequently used with Selenium-IDE.

RQ4: Which Selenium-related questions are difficult to answer?

We identify the difficult aspects of Selenium using the time taken to receive an

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 16

accepted answer and the percentage of accepted answers as proxies for the diffi-

culty of questions. We observe that less than half of Selenium-related questions

get accepted answers. The answering speed varies across tags. Factors such as

the age of the user on SO, size of the community and the reputation of the user are

significant predictors of the answering speed, while the percentage of accepted

answers is not impacted by those factors.

This is the first work to support Selenium users in making informed decisions when

determining the appropriate browser and programming-language for their specific use-

case i.e., test automation or web-scraping. Selenium developers can benefit from our

analysis to understand the user community and the challenging aspects of Selenium.

Our results also provide insights on the factors that influence the speed to get accepted

answers and the ratio of accepted answers for Selenium-based questions.

Chapter organization. The remainder of the chapter is organized as follows. Sec-

tion 3.1 describes the data source and our data extraction process. Section 3.2 presents

our results for answering the research questions. Section 3.3 discusses the threats to

the validity of our findings. Finally, Section 3.4 draws conclusions.

3.1 Case Study Setup

This section describes the data source and the data extraction process used in our case

study.

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 17

3.1.1 Data Source

Stack Overflow is a popular online platform where users can exchange information re-

lated to computer programming and software engineering tasks. The website allows

users to ask technical questions and answer existing questions, as well as to “vote" or

“downvote" questions and answers based on the quality of the post. A score of each

question or answer is calculated based on the sum of the votes and downvotes. Users

can earn reputation points based on the upvotes that they receive for their questions

and answers. Users are expected to add a maximum of 5 keywords (tags) to describe

the topics of their question. For example, ‘How to use Selenium Webdriver in Python?’

would be tagged with Selenium, Webdriver and Python. In this example, the tags pro-

vide the main technologies/tools associated with Selenium.

Stack

Exchange
Data

Stack
Exchange

Data Explorer

Questions

Answers

Users

Query
 Selenium-related

data from
Stack

Overflow

RQ1, RQ2, RQ3, RQ4

RQ2, RQ3, RQ4

RQ2, RQ3

Figure 3.2: Data extraction process

3.1.2 Data Extraction

We query the data from Stack Overflow using the StackExchange Data Explorer (SEDE) 6.

SEDE is an open source tool for running arbitrary queries against public data from the

Stack Exchange network (StackOverflow is a part of the StackExchange network). Fig-

ure 3.2 shows an overview of the data extraction process using SEDE. First, we query

the Posts table to get all the questions with title containing words like ‘selenium’ or tags

6https://data.stackexchange.com/stackoverflow/queries

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 18

like ‘selenium’. We obtain a total of 73617 questions (56,906 questions with “selenium"

tag, 16207 questions with tags containing Selenium in them and 504 questions with

title of the post containing Selenium). As SEDE restricts the number of returned rows

in each query to 50k, we repeat the same query twice to gather all the rows. We make

use of the query parameters to manually enter the first and last IDs of posts to keep

track of the returned posts in each query. Listing 1 shows the query used to extract

Selenium-related questions from SEDE.

Listing 3.1: Query to extract Selenium-related ‘Questions’

1 /* Select unique questions from Posts table */

2 select distinct * from posts

3 /* Include questions that contains selenium -like tag

4 or title containing selenium -like word */

5 where (tags like ’%selenium%’ OR

6 title like ’%selenium%’) AND

7 /* Use query parameters ‘starting ’ and ‘ending ’ to

8 enter the first and last post id */

9 id >= ## Starting:int## AND

10 id < ## Ending:int##

We query the Posts table again to obtain the answers on the extracted questions (as

shown in Listing 2).

Listing 3.2: Query to extract Selenium-related ‘Answers’

1 /* Select unique posts */

2 select distinct * from posts as pp

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 19

3 /* Join Posts table to get only the answers (parentid

4 will be present only when the post is an answer) */

5 join

6 posts as p

7 on pp.id = p.parentid

8 /* Use query parameters ‘starting ’ and ‘ending ’

9 to enter the first and last post id */

10 where (pp.Tags like ’%selenium%’

11 or pp.Title like ’%selenium%’)

12 /* Use a custom defined parameter to know the

13 starting point for the next query */

14 AND pp.id >= ## Starting:int##

15 AND pp.id < ## Ending:int##

In this chapter, we also study the user aspects of Selenium-related questions. There-

fore, we executed another query that extracts data from both the Posts and Users tables.

In this way, we extract all the necessary information related to Selenium posts that are

needed to answer our research questions.

3.2 Case Study Results

In this section, we present the results of our research questions. For each research

question, we present the motivation of the research question, the approach that we

used to address the research question, and our experimental results.

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 20

RQ1: What questions are being asked about Selenium?

Motivation

Tags are keywords that the users pick to describe a question asked on StackOverflow.

As tags are added by users themselves, they serve as an important piece of information

to study the discussions on StackOverflow. Therefore, we use these tags to understand

the techniques/tools that are associated with Selenium and the relationship between

them. Our findings could help the developers of Selenium and users understand how

Selenium is used in practice.

Approach

Identifying popular tags. We study the distributions of the tags that co-occur with

the Selenium tag. We define a concurrent tag that co-occurs with the Selenium tag as

a Selenium-related tag (e.g., Python, Firefox, web-scraping). We identify the ‘popular

tags’ based on the number of times a tag has been used in Selenium-related questions

i.e., we pick the popular tags based on a threshold - among the 73k studied questions,

we pick the tags that appear in at least 730 questions i.e., comprising of 1% of the stud-

ied questions. We obtain the top 38 tags based on this approach. As some of the tags

are duplicates, we manually merge them together. For example, we merged selenium-

webdriver and webdriver, automated-tests and automation. We ended up with 35 pop-

ular tags which are used for the analysis throughout this chapter.

Grouping popular tags. We identify groups within the 35 popular Selenium-related

tags:

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 21

• Programming languages (java, Python, c#, JavaScript, ruby, php, node.js, angu-

larjs)

• Browsers and drivers (chromedriver, Firefox, google-chrome, phantomjs, internet-

explorer)

• Selenium components (webdriver, selenium-ide, selenium-grid, selenium-rc)

• Testing frameworks (testng, protractor, appium, cucumber, capybara, robot frame-

work, junit)

• General processes and tools (automation, testing, web-scraping, android, maven,

eclipse, jenkins)

• Web elements and locators (html, css, xpath, css-selectors)

Identifying commonly occurring tag pairs. In order to study the strength of associ-

ations between tag pairs and the communities in Selenium, we first filter the data to

account for associations that constitute 0.1% of the studied questions i.e., tag pairs that

occur in at least 73 questions.

Calculating attention metric. Among the final set of popular tags, we identify the tags

that receive a large amount of attention. We use the number of views as a proxy metric

to capture the received attention in Selenium-related tags. As older questions tend to

have more views, we calculate the median of normalized view count for questions in

each tag. We choose median over other central tendency measures as the view count

data is generally skewed i.e., contains outliers. The normalized view count is calculated

using:

Normalized view count =Number of views / Age of the question in days

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 22

Calculating the evolution of added questions. In order to study the trend in the added

Selenium-related questions over time, we group the created questions every month for

each of the tag groups that we identified.

Results

Programming languages and browsers are among the most popular tags associated

with Selenium. Figure 3.3 shows the distribution of the number of questions for the

popular tags in Selenium. From the top 5 tags, we see that 4 out of the 5 tags belong

to the ‘programming languages’ group. We observe that Selenium questions are re-

lated to specific programming languages that Selenium supports. Java, Python, C# and

JavaScript are the most popular programming language tags. Among tags related to

browsers and drivers, selenium-chromedriver, Firefox and google-chrome are the most

popular ones. Other popular Selenium-related tags are webdriver, xpath, automation,

testng and html. Our analysis shows that webdriver is the most-asked Selenium com-

ponent; xpath is the most-asked locator strategy. Leotta et al. (2013) show that the time

spent for repairing XPath-based test cases is much more than the time spent for repair-

ing the ID-based ones. XPath requiring more maintenance effort as shown by Leotta

et al. (2013) could drive developers to ask more questions on it.

Selenium-related tags co-occur with clear patterns, as we observe closely-related

groups within Selenium-related tags. The network graph in Figure 3.4 shows the as-

sociation between the commonly occurring tag pairs. We use the Force Atlas layout in

Gephi 7 to get the nodes with high input links towards the centre of the graph and the

ones with high output links towards the periphery. The size of the node indicates the

7https://gephi.org/

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 23

0

10000

20000

30000
w

eb
dr

iv
er

ja
va

py
th

on c#
ja

va
sc

rip
t

se
le

ni
um

−c
hr

om
ed

riv
er

xp
at

h
au

to
m

at
io

n
fir

ef
ox

te
st

ng
ht

m
l

te
st

in
g

pr
ot

ra
ct

or

go
og

le
−c

hr
om

e
ru

by

se
le

ni
um

−i
de

w
eb

−s
cr

ap
in

g
ph

an
to

m
js

ap
pi

um

se
le

ni
um

−g
rid

se
le

ni
um

−r
c

cu
cu

m
be

r
je

nk
in

s
ec

lip
se

m
av

en
no

de
.js

ca
py

ba
ra

an
gu

la
rjs

ju
ni

t

ro
bo

tfr
am

ew
or

k
cs

s
ph

p

in
te

rn
et

−e
xp

lo
re

r
an

dr
oi

d

cs
s−

se
le

ct
or

s

Selenium−related Tag

N
um

be
r

of
 q

ue
st

io
ns

Group

Browsers and drivers
General processes and tools
Programming language
Selenium component
Testing framework
Web elements and locators

Figure 3.3: Most popular Selenium-related tags

strength of the incoming links (or the indegree). The nodes with same colors constitute

a community. We use the modularity class function in Gephi for community detection

(Blondel et al. (2008)). We observe that tools and frameworks along with the program-

ming language that the tools and frameworks are written in constitutes a community.

For example, ruby, capybara and cucumber and JavaScript, node.js, angular.js and pro-

tractor constitute a community. Similarly, java-related libraries and tools form a com-

munity. The community with Python, web-scraping, selenium-chromedriver, google-

chrome, robot framework tags shows interesting associations such as the association

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 24

between web-scraping and Python tags.

Figure 3.4: Relationship between Selenium-related tags

Questions related to browsers get the most attention while questions related to web-

elements and locators receive the least attention. Figure 3.5 shows the median nor-

malized view count for each of the Selenium-related tags. Among the 6 groups identi-

fied, the median normalized view count is the highest for ‘browsers and drivers’ group

(0.55), followed by ‘testing frameworks’ (0.51). We observe that google-chrome, robot-

framework and selenium-chromedriver are the most viewed tags among the Selenium-

related tags. Vila et al. (2017) discuss the opportunities and threats in developing a new

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 25

framework based on Selenium WebDriver. They argue that the creation of automa-

tion testing framework with Selenium WebDriver could reduce time for development

among other advantages. Reduced development time could be the reason why users

adopt testing frameworks and therefore testing frameworks related questions receive

a large amount of attention on StackOverflow.

0.0

0.2

0.4

0.6

0.8

w
eb

dr
iv

er
ja

va
py

th
on c#

ja
va

sc
rip

t

se
le

ni
um

−c
hr

om
ed

riv
er

xp
at

h
au

to
m

at
io

n
fir

ef
ox

te
st

ng
ht

m
l

te
st

in
g

pr
ot

ra
ct

or

go
og

le
−c

hr
om

e
ru

by

se
le

ni
um

−i
de

w
eb

−s
cr

ap
in

g
ph

an
to

m
js

ap
pi

um

se
le

ni
um

−g
rid

se
le

ni
um

−r
c

cu
cu

m
be

r
je

nk
in

s
ec

lip
se

m
av

en
no

de
.js

ca
py

ba
ra

an
gu

la
rjs

ju
ni

t

ro
bo

tfr
am

ew
or

k
cs

s
ph

p

in
te

rn
et

−e
xp

lo
re

r
an

dr
oi

d

cs
s−

se
le

ct
or

s

Selenium−related Tag

M
ed

ia
n

N
or

m
al

iz
ed

 V
ie

w
 C

ou
nt

Group
Browsers and drivers
General processes and tools

Programming language
Selenium component

Testing framework
Web elements and locators

Figure 3.5: Attention received by Selenium-related tags. The dotted lines indicate the
median attention for each group.

The questions with each category of tags have been increasing over time; among

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 26

them, the questions with programming languages-related tags have been increas-

ing the fastest. We study the evolution of the popular tags categorized in the 6 groups

obtained from RQ1. Figure 3.6 captures the overall trend of each of the groups. We

observe that all groups have an increasing trend in the number of new questions from

2010 to 2018. Although programming language related tags receive less attention com-

pared to the tags in other groups, Selenium questions that are associated with pro-

gramming languages are increasing the fastest. Selenium questions on browsers, se-

lenium components and general processes and tools are steadily increasing, whereas

Selenium questions on testing frameworks and web elements and locators have been

stable in the past years.

Programming languages are the most popular and fastest-growing tags; browser-

related tags get the most attention. The number of new questions per month is in-

creasing for most of the tags except for tags related to ‘testing frameworks’ which

have stabilized over the last few years.

RQ2: Do users ask different type of Selenium-related questions for the

different programming languages?

Motivation

From the result of RQ1, we observe that askers of Selenium-related questions ask programming-

language specific questions. Although all the programming languages share the same

functionalities, we observe that different programming languages are associated with

different tools/techniques. Therefore, we study the differences in the questions that

are associated with different programming languages in terms of the associated tags

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 27

Testing frameworks General processes and tools Web elements and locators

Programming languages Browsers and drivers Selenium components

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

0

300

600

900

1200

0

300

600

900

1200

N
um

be
r

of
 q

ue
st

io
ns

Figure 3.6: Evolution of questions added in each group

and the characteristics of the communities around these tags. We also study the evo-

lution of the programming languages used for Selenium scripts.

Approach

Calculating the tag association metric. In order to calculate the association between

programming language related tags and other tags (i.e., the tag association), we obtain

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 28

the normalized values of the number of times each of the popular tags appears with

each of the programming language related tags. For example, if the total number of

questions with the web-scraping tag is 1888 and 1673 of which occur with the python

tag, then the tag association would be 0.89 (1673/1888). A tag association value close

to 1 would indicate a high degree of association.

Identifying non-casual users. To study the user communities for different program-

ming languages related tags, we use the Users dataset to calculate the distinct users, the

median reputation and the median number of asked or answered questions by each of

these users. We also define ‘non-casual askers/answerers’ as those users who asked

or answered more than 1 question on SO. We also define ‘casual askers/answerers’ as

those users who asked or answered 1 question on SO. We calculate the percentage of

questions that are asked by non-casual askers/answerers to determine the amount of

contribution by the non-casual users of Selenium on SO.

Results

Java and Python tags are associated with most of the popular Selenium-related tags.

Figure 3.7 shows the tag association for the tags that correspond to all the programming

languages that Selenium supports. We observe that most of the top popular tags are

asked along with the Java tag, suggesting that Java is the most commonly used tag in Se-

lenium. Apart from Java tag, Python tag is also widely used with the popular Selenium-

related tags.

It is interesting to note that the web-scraping tag in Selenium mostly co-occurs with

the Python tag than any other programming language related tag. This could be due

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 29

android
angularjs

appium
automation

capybara
css

css−selectors
cucumber

eclipse
firefox

google−chrome
html

internet−explorer
jenkins

junit
maven
node.js

phantomjs
protractor

robotframework
selenium−chromedriver

selenium−grid
selenium−ide
selenium−rc

testing
testng

webdriver
web−scraping

xpath

c#

ja
va

ja
va

sc
rip

t

pe
rl

ph
p

py
th

on

ru
by

Programming language

S
el

en
iu

m
−

re
la

te
d

ta
g

0.0

0.2

0.4

0.6

0.8

Tag Association

Figure 3.7: Tag association between programming languages

to the availability of several python scraping packages such as beautiful-soup 8 and

scrapy 9. These python packages can be easily integrated with Selenium scripts writ-

ten in Python to navigate to several URLs and scrape data. Appium, a test automation

tool for mobile apps is used with Java more than Python. Therefore, users who would

want to use Appium for future projects can use Java for testing mobile apps as it has

8https://www.crummy.com/software/BeautifulSoup/
9https://scrapy.org/

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 30

better support on SO. We observe that JavaScript-based frameworks and libraries re-

late closely to JavaScript, e.g., node.js, angularjs and protractor tags. Similarly, users of

ruby tag discuss about capybara and cucumber much more than the users of other pro-

gramming language related tags. These results are consistent with the findings from

the network graph shown in RQ1.

We observe that users of Java & Python tags use Selenium directly and users of other

programming language related tags such as Ruby & JavaScript use several other tools

built on top of Selenium. For example, user of ruby tag may most likely use capybara

and cucumber while users of JavaScript tag may use protractor.

Users of PHP tag discuss tools and frameworks built to test applications written in

PHP e.g., behat, codeception. Although tags that co-occur with the Perl tag are popular,

the number of questions that contain both Perl tag and the corresponding Selenium-

related tag is very few (around 10). Therefore, the tag association is not significant.

This could be because Selenium does not provide direct support for these languages

(PHP, Perl and Javascript).

Selenium users of Java and Python form a more mature community than other pro-

gramming languages, in terms of the percentage of non-casual users, the percent-

age of questions asked/answered by non-casual users. Users of Java and Python tags

form the largest community of users among Selenium-related tags, followed by the

users of Javascript tag, which is consistent from the results obtained before. The non-

casual askers of Python and Java contribute to a higher percentage of the Python and

Java questions, compared to other programming languages. It is interesting to note

that although users of Java tag form a mature community, the median reputation of

answerers is the lowest among users of other programming language related tags.

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 31

Programming language related tags Overall

User stats C# Java Python Ruby Javascript Perl PHP Selenium

Distinct askers 3,411 10,729 9,279 1,210 4,334 117 669 39,782
Median questions asked 1 1 1 1 1 1 1 1
Percentage of non-casual askers 26.5 28.2 31.8 23 14.2 22 12.9 29.8
Percentage of questions asked
by non-casual askers

55.9 59 61.8 51.2 31.74 48.8 28 61.6

Median reputation of askers 32 20 33 81.4 66.5 63 156 26
Distinct answerers 3,834 10,632 7,738 1,425 4,019 164 697 32,489
Median questions answered 1 1 1 1 1 1 1 1
Percentage of non-casual answerers 22.3 27 30.7 18.8 17.4 20 15.8 27.4
Percentage of questions answered
by non-casual answerers

61.4 73.2 74.4 54.3 52.8 44.5 36.9 76.5

Median reputation of answerers 363 174 324 650 501 1,892 900 187

Table 3.1: Stats for users in each of the programming language related tags in Selenium

Slag et al. (2015) report that about half of the users ask or answer only once (casual

users). Among Selenium users, we observe that users with 1 contribution is more than

half of the overall community (70.2%). We identify that the small group of non-casual

users contribute to majority of the posts on Selenium i.e., 29.8% of non-casual askers

contribute to 61.6% of the questions and 27.4% of non-casual answerers contribute

to 76.5% of the questions. Similarly, among programming languages, casual askers

contribute to more than half of the Javascript, Perl, and PHP questions while casual

answerers contribute to more than half of the Perl and PHP questions.

Answerers have much higher reputation than askers, especially for Perl questions;

answerers of Perl, PHP, and Ruby have the highest reputation. The average reputation

of general users in SO (as of Dec 16 2018) is 108. From Table 3.1, we observe that the

median reputation of askers is less than the average reputation, while the median rep-

utation of answerers is well above the average reputation of a user.

Python tag is the fastest growing programming language related tag of Selenium,

while Java tag has become stable in recent years. In RQ1, we saw that ‘Programming

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 32

languages’ group has a steep increase in the number of new questions compared to the

other groups. Therefore, in this RQ, we study the trend for each programming language

tag that Selenium supports. Python, and C# questions are increasing while questions

on other programming languages are stable. Python questions is the fastest-growing

programming language related questions in Selenium. Java questions has been stable

in the past few years.

perl

ruby javascript php

python java c#

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

0

200

400

0

200

400

0

200

400

N
um

be
r

of
 q

ue
st

io
ns

Figure 3.8: Evolution of the asked questions in each of the programming language re-
lated tags

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 33

Users of Java and Python tags of Selenium form more mature communities than the

users of other programming language related tags. Questions about Python have

become the most frequent and the fastest growing programming language related

questions in Selenium, while questions on Java have become stable in the recent

years.

RQ3: Do users ask different type of Selenium-related questions for the

different browsers?

Motivation

In this RQ, we want to study the differences among the browser and driver tags that Se-

lenium supports. Studying the commonalities and differences among browser tags will

let a new user be aware of the shortcomings and possible strengths of certain browsers

and drivers. Similarly, studying the characteristics of user communities for each of the

browser and driver tags will be useful for Selenium-users to identify browser tags with

good support on SO.

Approach

Merging browser and driver tags. As drivers are always used with their corresponding

browsers, we combine selenium-chromedriver questions with google-chrome; gecko-

driver questions with Firefox and selenium-iedriver questions with internet-explorer

in order to study the associations among tags, the user communities and the evolution

of asked questions.

Calculating the tag association metric. We calculate the association between browsers

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 34

and other tags (i.e., the tag association) using the same approach followed for program-

ming language related tags as shown in RQ2.

Results

Google Chrome tag appears with most of the popular Selenium-related tags; how-

ever, different browsers are used for different purposes. For example, we observe

strong associations between PhantomJS and Web-scraping tags From Figure 3.9, we

observe that, google-chrome tag co-occurs with most of the popular tags in Selenium

compared to other browser tags, which is followed by the Firefox tag. We observe that

internet-explorer tag is used less frequently with any of the popular tags. Another in-

teresting observation is that PhantomJS tag occurs with web-scraping tag more than

any of the other popular tags. PhantomJS is a headless browser used for automating

web page interactions. Therefore, the strong association suggests that users prefer us-

ing headless browser instances to perform web-scraping as the GUI is not necessary

to scrape data. We also observe that selenium-rc tag and selenium-ide tag occurs with

Firefox tag more than the other browser related tags. The IDE was initially a Firefox

browser plugin. However, now the Selenium IDE is also available for Chrome browsers

as the Katalon Recorder 10.

We also observe that the eclipse tag co-occurs with the Firefox tag more than the

tags that correspond with any other browser. By manually analyzing the questions with

Firefox and eclipse tags, we observe that some users have trouble running selenium-rc

tests with eclipse configurations especially when the scripts works from the console or

10https://chrome.google.com/webstore/detail/katalon-recorder/ljdobmomdgdljniojadhoplhkpialdid

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 35

android
angularjs

appium
automation

c#
capybara

css
css−selectors

cucumber
eclipse

html
java

javascript
jenkins

junit
maven
node.js

php
protractor

python
robotframework

ruby
selenium−grid
selenium−ide
selenium−rc

testing
testng

webdriver
web−scraping

xpath

fir
ef

ox

go
og

le
−c

hr
om

e

in
te

rn
et

−e
xp

lo
re

r

ph
an

to
m

js

Browser

S
el

en
iu

m
−

re
la

te
d

ta
g

0.00

0.05

0.10

Tag Association

Figure 3.9: Tag association between browsers (combined with drivers)

command line, others report compatibility issues between selenium server and spe-

cific Firefox browser versions.

Users of Chrome and Firefox tags form mature communities; only a small percent-

age of PhantomJS tag users are non-casual - however, they have the highest reputa-

tion among the users of other browser related tags Table 3.2 summarizes the char-

acterisitcs of users using different browser and driver tags. Users of Google-chrome

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 36

tag form the largest community among users of other browser tags. As per the stats

from google-chrome and Firefox questions, we observe that about 27% of the users

answer close to 60% of the questions; upto 40% of the questions are asked by non-

casual askers. However, 80% of the users are casual askers. Internet-explorer tag users

form the smallest community in SO, among users of other browser tags. However, the

median reputation of their answerers is the second highest among the users of other

browser tags. The non-casual askers and answerers of PhantomJS questions comprise

only 11% of the total PhantomJS users. However, it is interesting to note that 11% of

non-casual users answer upto 38% of the questions. The median reputation of askers

and answerers is higher than askers and answerers of other browser tags.

Browsers (with drivers) Overall

User stats google-chrome Firefox internet-explorer phantomjs Selenium

Distinct askers 5,291 3,179 826 1,310 39,782
Median questions asked 1 1 1 1 1
Percentage of non-casual askers 22.61 21.02 11.64 11.76 29.8
Percentage of questions
asked by non-casual askers

42.39 39.78 25.08 25.39 61.6

Median reputation of askers 43 62.5 60 100 26
Distinct answerers 4,640 3,170 905 1,078 32,489
Median questions answered 1 1 1 1 1
Percentage of non-casual answerers 27.51 26.22 18.14 11.51 27.4
Percentage of questions answered
by non-casual answerers

62.49 58.49 42.72 37.96 76.5

Median reputation of answerers 180 334.5 377 651 187

Table 3.2: Stats for the user communities of each of the browser and driver tags in Se-
lenium

Chrome tag is the fastest growing tag among browser tags and it becomes the most

frequently used browser tag used with Selenium, while the use of Firefox and Phan-

tomJS browser tags is declining over the recent years. Figure 3.10 shows that only

google-chrome tag has an increasing trend in the number of new questions. PhantomJS

has a declining trend over the last few years. We also observe that internet-explorer tag

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 37

has a constant and negligible number of added questions every month. With Firefox,

we observe that the number of new questions increased from 2016, but became con-

stant after that.

internet−explorer phantomjs

google−chrome firefox

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

Ja
n

20
10

Ja
n

20
12

Ja
n

20
14

Ja
n

20
16

Ja
n

20
18

0

100

200

300

0

100

200

300

N
um

be
r

of
 q

ue
st

io
ns

Figure 3.10: Evolution of questions added in each browser (with the corresponding
drivers)

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 38

Chrome tag is the fastest growing tag among browser tags in Selenium. However,

different browsers may be used for different purposes. For example, PhantomJS tag

is widely used for web scraping while Firefox tag is frequently used with Selenium-

IDE.

RQ4: Which Selenium-related questions are difficult?

Motivation

In this RQ, we study the difficult aspects in Selenium. We measure the difficulty based

on the percentage of accepted answers and the time taken to receive an accepted an-

swer for each tag. Understanding the difficult questions could benefit the developers

of Selenium in offering better help on these difficult areas. It could also benefit Sele-

nium users to understand how well they can get support from the community.

Approach

Metrics to calculate difficulty levels. We use two metrics to measure the difficulty

level: (1) Percentage of accepted answers for the tag (2) Time to get accepted answers.

We calculate the time to get accepted answers by subtracting the creation date of the

accepted answer and the creation date of the question in each of the data subsets i.e.,

dataset specific to each tag.

Model Construction. We build linear regression models to study the relationship be-

tween the community of non-casual answerers and the speed and likelihood of getting

an accepted answer. Non-casual answerers are users who answer more than 1 ques-

tion on the platform. We consider the user communities in the top 35 popular tags to

carry out this study.

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 39

Ŷi = β̂0+ β̂1X i + ε̂i (3.1)

The dependent variables for the models are (1) Median time to get accepted an-

swers and (2) Percentage of accepted answers. We include features (i.e., independent

variables) such as size of non-casual answerers (i.e., the number of non-casual answer-

ers in each tag), the median reputation of non-casual answerers and the median age

of the non-casual answerers.

Results

Less than half of the Selenium-related questions get accepted answers. In particu-

lar, questions related to browsers, and general processes and tools are less likely to

get accepted answers. 53% of questions have accepted answers on StackOverflow (as

of Dec 18 2018 - total number of questions = 16,928,570, total number of questions

with accepted answers = 8,955,202). From Figure 3.11, we see that most of the tags

have about 40% accepted answers. Therefore, Selenium questions have less accepted

answers in general. We observe that questions that are tagged with css-selectors, web-

scraping and xpath have the highest percentage of accepted answers. While questions

about ‘web elements and locators’ and ‘programming languages’ have the most num-

ber of accepted answers, the majority of the questions on ‘browsers and drivers’ and

‘general processes and tools’ have the least number of accepted answers. The reason

for ‘web elements and locators’ group to have the highest percentage of accepted an-

swers could be because (1) the concept of locators is the most fundamental aspect in

Selenium and the Selenium documentation explains the various locator strategies very

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 40

clearly (2) web elements such as HTML and CSS are generally easy and most develop-

ers know the basics of such concepts. Whereas general processes and tools such as

appium, android, jenkins are not specific to Selenium and therefore lack accepted an-

swers. Similarly, although Selenium supports several browsers and drivers, the docu-

mentation lacks details specific to each browser or driver.

0

20

40

w
eb

dr
iv

er
ja

va
py

th
on c#

ja
va

sc
rip

t

se
le

ni
um

−c
hr

om
ed

riv
er

xp
at

h
au

to
m

at
io

n
fir

ef
ox

te
st

ng
ht

m
l

te
st

in
g

pr
ot

ra
ct

or

go
og

le
−c

hr
om

e
ru

by
se

le
ni

um
−i

de
w

eb
−s

cr
ap

in
g

ph
an

to
m

js
ap

pi
um

se
le

ni
um

−g
rid

se
le

ni
um

−r
c

cu
cu

m
be

r
je

nk
in

s
ec

lip
se

m
av

en
no

de
.js

ca
py

ba
ra

an
gu

la
rjs

ju
ni

t

ro
bo

tfr
am

ew
or

k
cs

s
ph

p

in
te

rn
et

−e
xp

lo
re

r
an

dr
oi

d
cs

s−
se

le
ct

or
s

Selenium−related Tag

P
er

ce
nt

ag
e

of
 q

ue
st

io
ns

 w
ith

 a
cc

ep
te

d
an

sw
er

s

Group
Browsers and drivers
General processes and tools

Programming language
Selenium component

Testing framework
Web elements and locators

Figure 3.11: Percentage of questions with accepted answers for each of the Selenium-
related tag. The dotted lines indicate the median percentage of accepted answers for
each group.

Questions related to Selenium components, browsers, and general processes and

tools take the longest time to get accepted answers; while questions related to web

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 41

elements and locators and programming languages get the accepted answers much

faster. We observed that Selenium-related tags did not show a large amount of vari-

ation in the percentage of accepted answers i.e., the values are close to each other.

However, the time taken to receive an accepted answer shows lots of variations among

the Selenium-related tags. It is interesting to note that questions on Selenium com-

ponents such as selenium-grid and selenium-rc take almost a day to receive accepted

answers. While selenium-rc is deprecated now and therefore lacks support, it is also in-

teresting to see that questions on other active components such as selenium-grid and

selenium-ide also take a long time to receive accepted answers. The most difficult as-

pects in Selenium seem to be Selenium components. Other tags that take the longest

time to get accepted answers include android, internet-explorer and appium.

Questions on “web elements and locators” seem to get accepted answers very quickly

(around 1 hour). Question on ‘web-scraping’ also get accepted answers fairly quickly.

Comparing these results with prior observations, we understand that questions on css-

selectors, web-scraping and xpath are most likely to get accepted answers quickly. Pro-

gramming languages such as Python, Java, C# and JavaScript receives answers within

4.5 hours. However, when compared to the median time to get an accepted answer on

SO (i.e., 16 minutes Bhat et al. (2014), Selenium questions take much longer to receive

accepted answers.

The time taken to get accepted answers is statistically significantly impacted by the

number, the median reputation, and the experience level of non-casual answers of a

Selenium-related tag. With median time to get accepted answers as the response vari-

able, the results from linear model shows that the size of non-casual answerers (p<.01),

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 42

0

5

10

15

20

25

w
eb

dr
iv

er
ja

va
py

th
on c#

ja
va

sc
rip

t

se
le

ni
um

−c
hr

om
ed

riv
er

xp
at

h
au

to
m

at
io

n
fir

ef
ox

te
st

ng
ht

m
l

te
st

in
g

pr
ot

ra
ct

or

go
og

le
−c

hr
om

e
ru

by

se
le

ni
um

−i
de

w
eb

−s
cr

ap
in

g
ph

an
to

m
js

ap
pi

um

se
le

ni
um

−g
rid

se
le

ni
um

−r
c

cu
cu

m
be

r
je

nk
in

s
ec

lip
se

m
av

en
no

de
.js

ca
py

ba
ra

an
gu

la
rjs

ju
ni

t

ro
bo

tfr
am

ew
or

k
cs

s
ph

p

in
te

rn
et

−e
xp

lo
re

r
an

dr
oi

d

cs
s−

se
le

ct
or

s
Selenium−related Tag

M
ed

ia
n

tim
e

to
 g

et
 a

cc
ep

te
d

an
sw

er
 (

in
 h

ou
rs

)

Group

Browsers and drivers
General processes and tools
Programming language
Selenium component
Testing framework
Web elements and locators

Figure 3.12: Answering speed for the top 35 Selenium-related tags. The dotted lines
indicate the median time to get accepted answer (in hours) for each group.

median reputation of non-casual answerers (p<.02) and median age of non-casual an-

swerers (p <.0005) are significant predictors. The overall model fit was Adjusted R 2 =

0.34. We observe that age of the non-casual answerers had the most significant impact

on the answering speed in Selenium-based questions.

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 43

Our model shows that the size of the non-casual answerer community and the me-

dian reputation of the non-casual answerers have a positive correlation with the an-

swering speed. Therefore, this result implies that a community with a large size and a

high reputation (e.g., Java/Python) is more likely to get faster answers than a commu-

nity with a small size and a low reputation (e..g, PHP). Further, the age of the non-casual

answerers on the StackOverflow platform has a negative correlation with the answer-

ing speed. This shows that new users on SO are more likely to answer questions faster.

However, the results with percentage of accepted answers as the response variable

has a contrasting result. The size of non-casual answerers (p<.25), median reputation

of non-casual answerers (p<.12) and median age of non-casual answerers (p<.64) are

not significant predictors.

Less than half of Selenium-related questions get accepted answers. The answering

speed varies across different tags. The time taken to get accepted answers is statisti-

cally significantly impacted by the number, the median reputation, and the experi-

ence level of non-casual answerers of the Selenium-related tags.

3.3 Threats to Validity

External Validity. We only consider posts extracted from StackOverflow for this study.

Although, there exists other QA sites and forums, the total number of questions posted

is not high. For example, SQA forum has a total of 2,478 questions on Selenium 11; Soft-

ware Quality Assurance and Testing site 12 within StackExchange has 8,522 questions.

In contrast, Stack Overflow has over 73,000 questions about Selenium. Some people

may not use an online forum to ask questions. For example, they may use a mailing list.

11http://www.sqaforums.com/forums/selenium/
12https://sqa.stackexchange.com/

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 44

However, StackOverflow is the most popular QA site among software developers and

therefore, we study only Selenium-related questions in this chapter. Moreover, since

SO existed even before Selenium, we have a complete historical view of Selenium is-

sues or challenges instead of a partial view. Further, our approach to analyze Selenium

questions on StackOverflow is generalizable i.e., our approach can be used by others

to study the Selenium questions on other forums.

Internal Validity. We extract posts based on tags like Selenium and title containing

a word like Selenium. Although this approach captures most of the Selenium-related

posts, there is a chance that we would have missed posts that discusses Selenium in

the body of the post, without mentioning it in the title or including the tag. However,

in such cases, the post would not have a strong association with Selenium. We assume

that questions with the “selenium" tag or containing “selenium" in the title are more

relevant to Selenium.

The extracted data may contain duplicate tags. Most of the synonymous tags are

already identified by users in SO 13. However, some of the tags are yet to be reported. For

example, selenium-firefoxdriver and geckodriver refer to the same driver. We alleviate

this threat by using our domain expertise to ensure that similar tags are merged before

beginning our analysis.

In this chapter, we extract and analyze Selenium-related tags from StackOverflow.

Most studies that use StackOverflow data use Latent Dirichlet Allocation (LDA), a pop-

ular topic modelling technique for finding discussion topics in natural language text.

Due to this reason, we also run LDA on the data. We observed that the topics obtained

from LDA are close to the tags extracted. Topics such java code, automation, python

13https://stackoverflow.com/tags/synonyms

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 45

code, chromedriver, xpath, web scraping, webdriver overlap with our top 35 popular

tags. Therefore, we use only tags to perform our analysis. Further, LDA modelling

suffers from other drawbacks such as determining an appropriate number of topics

before running the model and deriving meanings from co-occurring words to assign

labels to topics. Future practitioners can use only tags in such cases, in order to reduce

the complexity of the analysis.

Among the six groups that were identified, we chose to study only ‘programming

languages’ and ‘browsers and drivers’ as users have the option to pick among the sev-

eral programming languages and browsers that Selenium supports. For example, users

have the choice to pick between Firefox and Chrome or between Python and Java. Due

to this reason, we did not study Selenium components as each component is designed

for a specific task. For example, selenium-ide is used to record and replay tests whereas

selenium-grid is used to run tests in different browsers and operating systems in par-

allel.

Construct Validity. A big threat to our study is that we use Stack Overflow questions

to capture Selenium aspects such as programming languages and browsers. However,

the questions on Stack Overflow may not represent the actual usages of Selenium.

We measure the difficult aspects in Selenium based on the time taken to receive

an answer. We assume that difficult questions may take a longer time to get accepted

answers. Moreover, Rosen and Shihab (2016) follow the same approach to measure the

difficult aspects in mobile technology.

In order to identify the factors that impact the answering speed and the percentage

of accepted answers, we use 3 characteristics of non-casual answerers such as the size,

reputation and age on the platform. The results discussed in this chapter show only the

CHAPTER 3. AN EMPIRICAL STUDY OF SELENIUM QUESTIONS ON STACK
OVERFLOW 46

correlation between the characteristics of the non-casual answerers and the answering

speed i.e., there is no causal relationship in either direction.

3.4 Conclusion

In this chapter, we perform an empirical study of Selenium-related questions on Stack-

Overflow. We first identify the most popular Selenium-related tags. Next, we study

the commonalities and differences in various programming language related tags and

browser related tags that Selenium supports. Finally, we study the difficult aspects of

Selenium and the factors that impact the answering speed and the likelihood of get-

ting accepted answers. Our results show that questions on programming languages is

the most popular and fastest growing among other Selenium-related questions while

browser-related questions get the most attention. We also find that Chrome tag is the

most frequently used browser tag among other browser tags related to Selenium. How-

ever, different browsers may be used for different purposes. For example, PhantomJS

is widely used for web scraping while Firefox is frequently used with Selenium-IDE.

Users of both Java and Python tags of Selenium form large communities than users of

other programming language related tags. However, Python tag is the fastest growing

among other programming language related tags, while Java tag has become stable in

the recent years. Further, factors such as the age of the user on the SO platform, size

of the community and the reputation of the user are significant predictors of the an-

swering speed. We believe that our insights will help Selenium developers improve the

support for the difficult aspects in Selenium and understand how Selenium is used in

practice.

CHAPTER 4

Reducing the Performance Overhead of Selenium-based Load

Tests

Load testing is usually performed to determine a system’s behavior under anticipated

peak load conditions (Jiang and Hassan (2015)). Load tests are crucial for large scale

systems to avoid crashes. Several crashes and application failures have been reported

in the past (Census (2016); NY Times (2013); CBC (2017)). These crashes were caused

due to the inability of the systems to process large amounts of concurrent requests.

These kinds of catastrophic events can be avoided if the software systems are tested

with realistic or field-like workloads.

Practitioners use tools such as JMeter to create a production-like workload (with

47

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 48

thousands of users) on the System Under Test (SUT), and measure its performance (re-

sponse time, resource utilization etc) under this load. However, JMeter’s major disad-

vantage is that it is not trivial to capture complex application behaviour. For example,

it is not possible to check the rendering of a webpage.

One way to overcome some of these disadvantages is by using browser-based tests.

Selenium is an example of browser-based test tool. Selenium is widely used to auto-

mate functional testing of web applications that run in web browsers (Dowling and

McGrath, 2015; Debroy et al., 2018; Gojare et al., 2015). Quality Assurance (QA) engi-

neers of web applications usually write Selenium scripts to capture the web content

that is rendered in a browser and simulate users’ interactions with the web content.

For example, Selenium can be used to determine whether a button element of a web

application is loaded and displayed properly, and simulate users’ actions to click the

button. Selenium supports the testing of web applications in different browsers, such

as Firefox and Google Chrome (Altaf et al. (2015)).

Apart from functional testing, Selenium can also be used to test the performance

of web applications (a.k.a., performance testing or load testing). Selenium-based load

testing has several advantages over tools using protocol-level requests. First, Selenium

drives browsers to execute the Javascript in the loaded HTML pages, while protocol-

level requests cannot. Second, Selenium-based load testing can capture the render-

ing of a web application in a browser, which is particularly important when testing

the web applications that dynamically load web content (e.g., using AJAX techniques);

protocol-level requests can only view the response as HTML but cannot render the

HTML pages. Third, writing Selenium test scripts is much easier than hard coding

protocol-level HTTP requests (e.g., Selenium tests leverage the rich functionality of

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 49

browsers to handle complex internet protocols such as the SSL certificates); Selenium-

based load testing can reuse the scripts of Selenium-based functional tests (whereas

protocol-level load testing needs separate scripts). Finally, Selenium allows the cap-

turing of real user scenarios in load tests.

However, Selenium has its own disadvantages, most notably its resource overhead

- as Selenium needs to launch a browser for each user instance (e.g., a client) of a load

test, it is usually very resource consuming to run a load test that simulates thousands

of users since one would need to run thousands of browser instances.

In this work, we take the first important step towards improving the efficiency of

load testing using Selenium. We share our experience of using Selenium for load test-

ing, include the performance issues that we encountered, our investigations of these

performance issues, and how we addressed them. In order to leverage the advantages

of Selenium-based load testing while reducing the high resource overhead, we propose

an approach to improve the efficiency of Selenium-based load testing. Our approach

shares browser resources among the instances of a load test, thereby avoiding the cost

of launching a browser for each user instance. Therefore, our approach significantly

improves the testing efficiency of Selenium-based load tests.

We believe that our approach and our shared experience can help software practi-

tioners improve the efficiency of Selenium-based load testing. The main contributions

of this work include:

• An approach that increases the number of user instances in Selenium-based load

tests by at least 20% using the same hardware resources.

• A systematic exploration of various testing scenarios (i.e. headless vs. regular

browsers and persistent vs. non-persistent browsers) for Selenium-based load

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 50

testing.

Chapter Organization. The remainder of this chapter is organized as follows: Sec-

tion 4.1 discusses the background of Selenium-based load testing. Section 4.2 presents

our experimental design. Section 4.3 outlines our systematic exploration of perfor-

mance issues associated with Selenium-based load testing. Section 4.4 presents the ex-

perimental results. Section 4.5 presents the threats to validity of our study. Section 4.6

discusses our various observations. Section 4.7 presents the conclusion.

4.1 Load testing using Selenium

Although Selenium is predominantly used for testing the functionality of web applica-

tions, there have been some prior attempts to use it to perform load testing as well

(Dowling and McGrath (2015)). In order to use Selenium for load testing, multiple

browsers are launched simultaneously. Due to the heavy resource overhead of launch-

ing a browser, a simplified version of a browser (without GUI) or a headless browser is

widely used in Selenium-based tests (Blazemeter (2018)).

Both regular and headless browsers are considered in our Selenium-based load

tests. In the case of regular browsers, in order to reduce the overhead caused by GUI

of several browsers, we make use of Xvfb displays (XVFB (2018)) as a virtual rendering

engine that requires lower resources relative to rendering to an actual display. In or-

der to perform load tests using Selenium, a browser instance is typically launched for

every user instance.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 51

SUT with Mail &
Web Server installed

Client Server
1. Initialize Mailbox

2. Execute tests

Load driver - To
generate workload

Figure 4.1: Experimental Setup

4.1.1 Load driver and the SUT

The load driver is the application that generates the workloads (i.e., Selenium scripts

in our case) and the SUT is the system running the tested web application. Figure 4.1

shows the client and server machines consisting of the load driver and the servers re-

spectively. Prior studies on load testing are mainly concerned with the resource usage

of the SUT (Gao and Jiang, 2017; Svard et al., 2015), while we are concerned with the

resource usage of the load driver. We measure the resource usages of the SUT to ensure

that it is not overloaded. Therefore, any overload observed in our experiments is due

to the overloading of the load driver.

4.2 Experimental Design

In this section, we describe our subject web application and our experimental design

for load testing of our subject application.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 52

4.2.1 Subject Application and Test Environment

In this work, we use RoundCube 1 as our subject application. RoundCube is an open-

source mail client that runs in a browser while providing an application-like user inter-

face. It provides features such as MIME support, address book, folder manipulation,

message searching and spell checking. We choose RoundCube because it makes per-

vasive use of the AJAX technology (i.e., dynamic loading of web page content) for its

user interface, for example, for its drag-and-drop message management.

Figure 4.1 illustrates our experimental setup. RoundCube can be installed and con-

figured to run on a LAMP/LEMP server (Linux operating system, Apache HTTP Server/

Nginx, MySQL relational database management system, and PHP programming lan-

guage). In this work, we deployed the Roundcube webmail client on an Nginx web

proxy server. We configured Postfix and Dovecot for our SMTP and IMAP servers, re-

spectively. We used MySQL as our mail database. The mail server and client is installed

in a Intel Core i7 desktop with 8 cores and 16GB of RAM running ubuntu 14.04.

We run the Selenium tests on a different machine (Client machine in Figure 4.1) that

consists of an AMD Phenom desktop with 6 cores and 8GB of RAM running Ubuntu

16.04. We run Selenium tests using Google Chrome (version 69) and Chromedriver

(version 2.37).

4.2.2 Load Test Plan

Test Suite

In order to test our subject application, we create a test suite that consists of 8 tasks

covering the typical actions that are performed in an email client: composing an email,

1https://roundcube.net/

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 53

replying to an email, replying to everyone in an email, forwarding an email, viewing an

email, browsing contacts, deleting an email and permanently deleting an email. Login

and logout actions are added to the beginning and the end of each task, respectively.

Test Schedule

In our load testing of the subject application, we emulate the scenario in which mul-

tiple user instances connect to a mail server and perform email tasks through web

browsers. We initialized the mailboxes and contacts of all the virtual users in order

to be able to have a fully functioning mail service.

We use an MMB3-based approach (MAPI (Messaging Application Programming In-

terface) Messaging Benchmark) to schedule the tasks for each of the emulated users.

MMB3 is a well-adopted standard for testing mail services (Makhija et al., 2006; Broth-

ers et al., 2008). MMB3 benchmark specifies the number of times that each task is per-

formed during a day, modelled around a typical user’s 8 hour work period. According

to the benchmark, 295 tasks are scheduled to run in a 8-hour period Exchange (2005).

In this work, we reduce the overall execution time while keeping the same intensity of

tasks as performed in the MMB3 schedule. Specifically, we run 19 tasks in a 30-minute

period.

 T2: Delete Email T3: Browse Contacts ... T19

T1: Reply All T2: View Emails T3: Delete Email ... T19

T1: Browse Contacts T2: Reply T3: Forward Email ... T19

30 mins

 T1: Send Email

Figure 4.2: Independent browsers setting - Persistent browsers

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 54

Figure 4.2 illustrates the scheduling of the tasks in our tests. Each of these 19 tasks

is randomly chosen from the eight email tasks as specified by MMB3. Each of the tasks

is also randomly scheduled within the testing period such that each task has an equal

probability to be scheduled at any point of the testing period (i.e., using a uniform

distribution). In a random schedule, one task might be scheduled immediately after

another. However, in a real usage case, users always finish one task before starting

another. Therefore, we set a minimum gap of 30 seconds between the scheduled time

of any two consecutive tasks.

Each user instance performs tasks according to its schedule. A task is not started

until its scheduled time. If the load driver is overloaded, tests may take longer time to

finish. Therefore, the start of a task might get delayed if the previous task has not been

completed. When a task is delayed, it is performed immediately after the completion

of the previous task. The browser waits until the scheduled time in order to execute the

commands in the task (i.e. the email action). If the scheduled time has already passed,

the browser executes the task immediately. We record the number of tasks that missed

their scheduled time since that measure would indicate an overloaded state.

Prior to starting a load test, every user’s mailbox is cleared and loaded with new

emails. This initialization step is done in order to avoid varying pre-test status which

might introduce noise that impact the results of tests. Further, as the tasks consists of

actions that modify the number of emails in the mailbox, this step is crucial to avoid

tests from failing due to the lack of emails in the mailbox. For instance, tests such as

view emails and delete emails would fail if the mailbox does not contain any email.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 55

Browser setting Definition

Persistent
A browser that is opened at the start of the load test and terminated at the end of the load test i.e., the browser
persists through the entire test session

Non-persistent
A browser that is opened at the start of each task and terminated at the end of the task i.e., the browser does
not persist through the entire test session

Independent A browser that is associated to one user instance
Shared A browser that is shared among user instances
Headless A browser that lacks a GUI component i.e., no display
Regular A regular browser that is used by users for browsing purposes
Regular with Xvfb display A regular browser with display transferred to a virtual frame buffer i.e., a dummy display

Table 4.1: Browser definitions

4.2.3 Load test Execution

We execute the load tests using independent browsers setting and shared browsers set-

ting (our approach). Table 4.1 defines the various browser settings. We repeat the load

test in each experimental setting for a given number of user instances and browser in-

stances 5 times in order to obtain consistent results. We identify the maximum number

of error-free user instances when the median error rate is more than 0 among the 5 rep-

etitions of the experiment. Repetitions are done to ensure that the test errors are not

due to random factors such as speed of the network. Further, we use a different ran-

dom schedule for each repetition to ensure that the results are not dependent on the

scheduler. We record the task schedules as the same schedules are used across differ-

ent experimental settings.

Independent browsers setting

For the independent browsers setting, we have two possible scenarios: 1. Where browser

instances are re-used for all tasks (Independent persistent browsers) and 2. Where

browser instances are relaunched for every task (Independent non-persistent browsers).

Independent persistent browsers. In this scenario, tasks for each user instance are ex-

ecuted in the same browser, without relaunching browsers for every task, as illustrated

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 56

in Figure 4.2. For each user instance, we open an independent browser and execute

all the tasks for that user instance according to the scheduled time. We terminate the

browser once all the tasks of that user instance are completed. There are some draw-

backs in using persistent browsers: apart from the difficulty in identifying the origin

of errors, there is a dependence in consecutive tasks that must be properly handled in

the tests, i.e. the failure of one task can affect the execution of the following task. For

example, when testing a webmail client, if a previous task fails before logging out, the

following task assumes that the current page is at the login screen and therefore fails

when the username or password cannot be located. Therefore, extra checks are needed

to ensure that the previous task does not impact the following task (e.g., to ensure that

the following task starts with the login page). Persistent browsers also accumulate local

and session storage data of all tasks as the browsers are active for the entire testing pe-

riod. This causes a memory overhead in comparison to non-persistent browsers which

are re-launched for every task.

Independent non-persistent browsers. In this scenario, browsers are launched for

every task as shown in Figure 4.3. For each task scheduled for each user instance, a new

browser instance is launched at the scheduled start time of each task; we terminate the

browser instance once the task is completed. In this setup, task dependence is not a

problem as using a new browser for each task ensures a clean session. Independent

non-persistent browsers do not require extra checks to ensure a new session. We use

the same task schedules as those used in independent persistent browsers in order to

be able to compare the results between the two browser settings (persistent and non-

persistent).

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 57

T2: Delete Email T3: Browse Contacts ... T19

T1: Reply All T2: View Emails T3: Delete Email ... T19

T1: Browse Contacts T2: Reply T3: Forward Email ... T19

30 mins

T1: Send Email

Figure 4.3: Independent browsers setting - Non-persistent browsers

Shared browsers setting

We developed an approach that can reduce the overhead introduced by the frequent

relaunching of browser instances. Our shared browsers approach shares browsers among

user instances in order to use the resources effectively and eventually increase the max-

imum number of error-free user instances that can run on the same testing machine.

Tools such as JMeter also employ a similar approach to manage their thread groups to

load test several users.

57 102 120

Common
List of Tasks

Time in seconds

T1 T2

T1 T2

57

65 102

120

Client 2 (C2)

Client 1 (C1)

C1T1 C2T1 C2T2 C1T2

65

Figure 4.4: The merging of tasks across different user instances to produce a common
list of tasks

As browsers are resource-intensive components, reducing the number of browsers

intuitively reduces the resulting error rate. In order to execute tasks with fewer browsers,

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 58

we combine the schedules of all clients to make a common list of tasks sorted based

on their scheduled start time (starting from the earliest task). Figure 4.4 shows an il-

lustration of how the tasks are gathered from all the clients to form the common list of

tasks. Client C1 has a task that is scheduled to start at the 57th second (Task C1T1) since

the beginning of the test and another task that starts at the 120th second (Task C1T2);

Client C2 has a task that is scheduled to start at the 65th second (Task C2T1) and an-

other task that starts at the 102th second (Task C2T2). These tasks are executed in the

following order: C2T1, C2T1, C2T2 followed by C1T2. This list of tasks is shared by all

the browsers. We use a pool of available browsers to execute the scheduled tasks. Fig-

ure 4.5 illustrates the overall workflow of our approach. Each available browser picks

the earliest task that has not been scheduled. A browser is removed from the pool of

available browsers each time it picks a task to execute. A browser is restored back to

the pool after performing its picked up task. One can set the size of the pool of avail-

able browsers, in order to control the maximum number of browsers running at the

same time. As we limit the number of browser instances (using the size of the pool),

our approach can reduce the peak usage of resources (CPU or memory) which is the

main reason for the errors in the load driving machine.

Since the list of tasks to be executed is shared by all the browsers, we deal with the

following two challenges:

• Preventing browsers from running the same task

Since browser instances can access the task-queue at the same time, browsers

can pick the same task. Therefore, we use a lock to ensure that only one browser

instance accesses the list of tasks to perform read or write operations at any time.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 59

• Preventing browsers from running tasks for the same client simultaneously

In addition to the above problem of running the same task, two browsers can

be assigned different tasks for the same client. This can cause conflicts during

tests. For example, running delete email and reply email tasks of the same user

instance at the same time could lead to a conflict if a browser is trying to reply

to an email while the same email is being deleted by the other browser. In order

to address this problem, we use a list to record the current active users. This list

is updated throughout the test. Before a task is assigned to a browser, the list is

checked to ensure that the user is not already active. If the task belongs to an

active user instance, the next task is picked from the pool.

Similar to the independent browsers setting, our approach of sharing browsers ap-

plies to both the scenarios of using persistent browsers and non-persistent browsers:

Shared persistent browsers. In this scenario, we make use of fewer browsers to do the

tasks for a larger number of user. Browsers are launched at the start of the test and

re-used for all the tasks until all the tasks are executed. Figure 4.6 illustrates this setup.

We launch a specified number of browser instances. Figure 4.5 shows how each

shared browser instance executes the scheduled tasks from the common list of tasks.

Shared non-persistent browsers. Similar to the shared persistent browsers setting, we

use a fewer number of browsers to run a larger number of user instances. We follow

the same steps as listed for the shared persistent browsers setting. The difference is

that we use non-persistent browsers i.e., we relaunch browsers for each task by open-

ing a browser at the scheduled start time of the task and terminate it after the task is

executed.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 60

Begin

 Read a task
 from the
common

list
of tasks

If the task if not assigned

Assign the task to a
browser instance

Add the current user
instance to the active

users list

Update the status of the
task as assigned

Wait till the scheduled time
& execute the task

Remove the current user
instance from the active

users list

Do

If all tasks
 are

executed

End
False

If the user
is not in the active

users list

True
False

False

True

True

Figure 4.5: Steps to execute scheduled tasks in each browser

T2: Delete Email T3: Browse Contacts ... T19

T1: Reply All T3: Delete Email ... T19

T1: Browse Contacts T2: Reply T3: Forward Email ... T19

30 mins

B1

B2

Pool of
Browsers

1

2

3

4

Shows the order of execution of tasks

T1: Send Email

T2: View Emails

Figure 4.6: Our approach of using shared persistent browsers

T2: Delete Email T3:Browse Contacts ... T19

T1: Reply All T2: View Emails

T3: Delete Email ... T19

T1: Browse Contacts T2: Reply T3: Forward Email ... T19

30 mins

B1

B2

Fixed
number
of active
browsers

1

2

3

4

Shows the order of execution of tasks

T1: Send Email

Figure 4.7: Our approach of using fixed number of non-persistent browsers

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 61

Table 4.2: Maximum number of user instances in each experimental setting

Headless Regular

Persistent Non-persistent Persistent Non-persistent

Independent browsers setting1 50 user instances 50 user instances 18 user instances 20 user instances
Shared browsers setting2 60 user instances 60 user instances 22 user instances 25 user instances

1 The maximum number of error-free user instances is less than the numbers listed. The numbers listed here
indicate the maximum number of user instances when the test driver machine reaches an overloaded state
(i.e., when the median error rate is more than 0).
2 The maximum number of error-free user instances is slightly more than the numbers listed. The numbers
listed here indicate the maximum number of user instances before the system reaches an overloaded state.

4.2.4 Load test analysis

The goal of this work is to improve the testing efficiency of Selenium-based load tests.

We analyze the results from different experimental settings to identify the maximum

number of user instances before the test machine (running the load driver) reaches an

overloaded state. We ensure that the SUT itself is not overloaded. We use the following

four metrics to measure the performance of our load testing:

Error rate

This metric is given by the number of failed tasks among the total number of tasks. Er-

rors (i.e. performance errors) start to occur when the load driver is overloaded. There-

fore, the error rate is used to indicate an overloaded state. We use error rate as our

primary metric to determine the maximum number of user instances that can run on

a load testing machine. In each experimental setting, we obtain the maximum number

of user instances when the median error rate is more than zero across 5 repetitions of

a test.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 62

Delay ratio

Delay ratio is defined as the ratio of tasks that miss their scheduled start time. In an

overloaded state, a task may take longer time to finish. Therefore, the following tasks

might miss their starting time (i.e. get delayed) when the previous task is not com-

pleted before the scheduled time of the task under consideration. As the time taken by

individual tasks can increase with the number of user instances, this metric serves as

an indicator to detect an overloaded load driver. For example, for a given test sched-

ule, when we execute a load test for 5-10 user instances, the average time to complete

a task is 10 seconds. However, the average time is about 20 seconds when we execute

more than 30 user instances. Therefore, the delay ratio of individual tasks is also an

indicator of overloading. We report the median delay ratio based on the delay ratio

obtained from the 5 repetitions of a test.

Resource usage

We record memory and CPU values of all processes (Chrome, Chromedriver and Sele-

nium scripts) for every second; then we aggregate the values across threads (running

browser instances). We calculate the median and 95th percentile values from the dis-

tribution of the recorded CPU and memory values every second. The median resource

usage values give an overall estimate of the used resources during a load test and the

95th percentile values account for the spikes (or the peak usage) in resources. We mon-

itor resources (i.e. CPU and memory) using pidstat. 2

2https://linux.die.net/man/1/pidstat

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 63

Runtime

We also monitor the overall runtime (the time taken to execute the load test). When

the load driver is not overloaded, all the tests should finish within the scheduled time

(e.g., 30 minutes). From the runtime metric, we obtain another perspective about the

load driver’s overloaded state e.g., a runtime of over 31 minutes would indicate an over-

loaded state as the tasks are expected to complete within 30 minutes.

4.2.5 Identifying the maximum number of error-free user instances

As there is no tool or technique to identify the number of error-free user instances that

can run on a system, we increase the number of user instances gradually in a step-wise

manner (Goldschmidt et al. (2014); Neves et al. (2013)). We start with 5 user instances

and increase the number of user instances based on the performance measures. In the

independent browsers setting, we stop increasing the number user instances when

the median error rate is more than 0 for 5 repetitions of the load test. Therefore, we

identify the maximum number of user instances when the load driver has reached an

overloaded state. Whereas in our approach, we report the maximum number of error-

free user instances before the load driver reaches an overloaded state. Our goal is to

identify the overloaded state using the current state-of-the-art practices (i.e., the inde-

pendent browsers setting); then apply our approach to identify the maximum number

of error-free user instances that can run in the same testing machine.

Although the stopping criteria is based on error rate (our primary metric), we mon-

itor the delay ratio to tune our parameters (number of browsers for the number of user

instances in the workload) in our approach. For example, we increase the number of

browsers when the delay ratio is high. As the number of errors increase with more

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 64

browsers, it is important to use an optimal number of browsers that result in no errors

and minimal delays.

4.3 A systematic exploration of the performance overhead

of Selenium-based load testing

In this section, we investigate the performance overhead of Selenium-based load test-

ing. We consider three different browser settings: 1) regular browser setting: the same

browser setting that end users use when they browse web applications; 2) regular browser

with Xvfb displays: same as the regular browser setting except that the display is redi-

rected to a dummy device; 3) headless browser setting: a browser setting without graph-

ical user interface.

In order to compare the performance overhead of Selenium for different browser

settings, we repeat the load test for 10 user instances in all three browser settings. We

use persistent browsers to perform the load test with the workload consisting of 19

tasks for a period of 30 minutes. We monitor the CPU and memory values during the

duration of the load test. As shown in Figure 4.8, regular browsers with Xvfb displays are

more efficient than regular browsers with actual displays; headless browsers are more

efficient (in terms of CPU and memory) than regular browsers and regular browsers

with Xvfb displays. Therefore, headless browsers are best suited for browser-based load

testing in terms of testing efficiency.

Only a limited number of user instances can run in a given system as selenium tests

are resource- heavy. Therefore, we perform experiments to identify the performance

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 65

54%

122%

84%

0

25

50

75

100

125

Headless
Chrome

Regular
Chrome

Regular
Chrome
with Xvfb

M
ed

ia
n

C
P

U
 U

sa
ge

6.1%

13%

6.7%

0

5

10

Headless
Chrome

Regular
Chrome

Regular
Chrome
with Xvfb

M
ed

ia
n

m
em

or
y

us
ag

e

Figure 4.8: Median CPU and Memory in different browsers

critical components in a Selenium test. Broadly, a Selenium test has two main compo-

nents: a browser that is used to execute the test and the Application Under Test (AUT).

We focus on studying the performance of the browser under different settings.

5.5%

324%

6.5%

482%

0

100

200

300

400

500

Headless
Chrome

Regular
Chrome

 with Xvfb

M
ed

ia
n

C
P

U

Setting

Busy
Idle

3.4%

28.8%

8.1%

44.7%

0

10

20

30

40

50

Headless
Chrome

Regular
Chrome
with Xvfb

M
ed

ia
n

m
em

or
y

Busy
Idle

Figure 4.9: Median CPU and memory values for headless and regular browsers

In our experiment, we compare the resource usage of 10 idle and busy browsers

(i.e., 10 user instances) for a period of 10 minutes. An idle browser (as the name sug-

gests) is a browser that does not perform any action after being launched, whereas

a busy browser performs actions throughout the given period (10 minutes in our ex-

periment). We perform this experiment for both headless and regular browsers (with

Xvfb displays). From the median CPU and memory usage (as shown in Figure 4.9), we

observe that headless browsers consume less resources compared to regular browsers.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 66

105%

462%

188%

537%

0

200

400

Headless
Chrome

Regular
Chrome
with Xvfb

95
th

 P
er

ce
nt

ile
 C

P
U

Setting

Busy
Idle

11%

34%

23%

51%

0

20

40

60

Headless
Chrome

Regular
Chrome
with Xvfb

95
th

 P
er

ce
nt

ile
 M

em

Busy
Idle

Figure 4.10: 95th percentile CPU and memory values for headless and regular browsers

Further, the median CPU for a busy headless browser is 324% whereas the median CPU

for idle headless browser is 5.5%. The median memory for a busy headless browser is

28.5% whereas the median memory for idle headless browser is 3.4%. Therefore, we

observe that each browser instance consumes resources irrespective of being idle or

busy. Moreover, in an actual test with persistent browsers, an idle browser may take

more resources as a web page might be loaded before it reaches an idle state.

We also measure the 95th percentile values (as shown in Figure 4.10) to understand

the peak usage as we see errors when the system is in an overloaded state. Therefore,

the 95th percentile values is directly related to errors. This metric is particularly im-

portant for our approach because our goal is to increase or maximize the number of

error-free user instances. From the 95th percentile values of CPU and memory, we see

that an idle browser instance consumes a huge amount of resources: almost 1/4th of

the memory in headless instances and half of the memory in regular browser with Xvfb

displays.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 67

4.4 Experimental Results

We perform experiments using both the independent browsers setting and shared browsers

setting (our approach) to compare the performance of the two settings and identify the

maximum number of error-free user instances in our approach.

4.4.1 Independent vs Shared browsers in the headless browser set-

ting

Table 4.2 shows the maximum number of user instances in each of the 4 experimental

settings. In persistent and non-persistent headless browsers, we were able to increase

the number of user instances that can run on the client machine by 20% (from 50 to

60 user instances).

Persistent browsers

We compare the number of user instances that can run in a persistent headless browser

in both the independent and shared browsers setting. Table 4.3 shows the performance

measures for our experiments using persistent headless browsers. We observed perfor-

mance errors when we reached 50 user instances in the independent browsers setting.

We also repeated the experiment in the independent browsers setting for 60 user in-

stances. The median error rate increases when the number of user instances increases

in the independent browsers setting i.e., from 50 to 60 user instances. Whereas, with

our approach, we used 20 browsers to run up to 60 error-free user instances. Therefore,

we end up increasing the number of error free user instances in this setting by 20%.

The median CPU values is reduced in our approach as shown in Table 4.3. Although

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 68

the median memory is higher in our approach, our approach reduces the 95th per-

centile values of both CPU and Memory as we run fewer browser instances. Reducing

the peak resource usage values reduces the possibility of errors. The runtime value

obtained for all 3 experiments (50 and 60 user instances using independent browsers

setting, 60 user instances using shared browsers setting) indicates that the system is

not overloaded. We also observe that the delay ratio is 0 in our approach indicating

that the load driver is not overloaded.

Non-persistent browsers

We compare the number of user instances that can run in a non-persistent headless

browser using the independent and shared browsers setting. In this setting, browsers

are re-launched for every task. As shown in Table 4.3, performance errors occur when

we reached 50 user instances in the independent browsers setting. We also tried run-

ning 60 user instances to compare the performance of our approach with the inde-

pendent browsers setting. The experiment with 60 user instances in the independent

browsers setting resulted in errors and delays. By using 15 browsers, we were able to

run up to 60 error-free user instances. Therefore, we increase the number of error-free

user instances in this setting by 20%.

As shown in Table 4.3, we observe that the CPU values are higher in our approach.

However, the memory values are consistent across both settings. We also observe that

the delay ratio is negligible in our approach. By restricting the number of active browser

instances, we obtain zero errors even for 60 user instances.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 69

Persistent headless Non-persistent headless

Independent
Browsers Setting

(50 users)

Independent
Browsers Setting

(60 users)

Shared Browsers
Setting

(20 browsers,
60 users)

Independent
Browsers Setting

(50 users)

Independent
Browsers Setting

(60 users)

Shared Browsers
Setting

(15 browsers,
60 users)

Median CPU 259 297 267 228 252 275
Median Memory 20.4 23.38 28.26 17.81 20.07 20.1
95th Percentile CPU 407.3 438 410.79 400 427.3 445.5
95th Percentile Memory 48.70 55.98 41.56 31.77 33.59 33.27
Runtime 1814 1823 1820 1818 1808 1811
Median Error rate 0.001 0.016 0 0.001 0.001 0
Median Delay ratio 0 0 0 0 0.001 0.003

Table 4.3: Performance measures in headless browsers

Persistent regular chrome (with Xvfb display) Non-persistent regular chrome (with Xvfb display)

Independent Browsers
Setting (18 users)

Independent Browsers
Setting (22 users)

Shared Browsers
Setting

(10 browsers,
22 users)

Independent Browsers
Setting (20 users)

Independent Browsers
Setting (25 users)

Shared Browsers
Setting

(6 browsers,
25 users)

Median CPU 279 331 343.335 129 159 161
Median Memory 20.77 30.02 27.69 18.11 22.58 15.485
95th Perc. CPU 477.4 496 500 294.75 331.95 328
95th Perc. Mem 40.182 50.39 43.218 28.136 34.47 22.791
Runtime 1840 1864 1822 1813 1807 1825
Median Error rate 0.009 0.007 0 0.005 0.004 0
Median Delay ratio 0 0.01 0.01 0 0.008 0.021

Table 4.4: Performance measures in regular browsers (with Xvfb)

4.4.2 Independent vs Shared browsers in the regular browser setting

Apart from emulating real-user behaviour, regular browsers come with all the features

provided by Chrome such as access to chrome settings, add-ons, extensions etc. Al-

though regular browsers are less efficient, they are still being used to perform browser-

based load testing. Table 4.2 shows the maximum number of user instances in regular

browsers. We were able to increase the number of user instances that can run on the

client machine by 22% in persistent browsers and 25% in non-persistent browsers

using the regular browser setting.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 70

Persistent Regular Chrome

We compare the number of user instances that can run in a persistent regular browser

(Chrome) using an Xvfb display in the independent and shared browsers setting. We

observed performance errors when we reached 18 user instances in the independent

browsers setting. We also executed the load test for 22 user instances in the indepen-

dent browsers setting. Using 10 browsers, we were able to run up to 22 error-free user

instances in our approach. Therefore, we were able to increase the number of error-

free user instances in this setting by 22%.

From Table 4.4, we observe that our approach uses less median memory although

the median CPU values are slightly higher. The runtime metric shows that our ap-

proach does not overload the load driver. However, the runtime for the experiments in

the independent browsers setting (1864 seconds for 22 user instances) shows signs of

overloading. This result further shows that the number of users identified is the maxi-

mum number of error-free user instances that can run on the testing machine.

Non-Persistent Regular Chrome

We compare the number of user instances that can run in a non-persistent regular

browser (Chrome) with Xvfb display in independent and shared browsers setting. We

observed performance errors when we reached 20 user instances in the independent

browsers setting. By using 6 browsers, we were able to run upto 25 error-free user in-

stances in our approach. Therefore, we increase the number of users in the setting by

25%. We also executed 25 user instances using the independent browsers setting and

observed higher error rate and delay ratio compared to load testing with 20 user in-

stances in the independent browsers setting, we reduce the median memory and the

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 71

peak values of CPU and memory using our approach.

In regular browsers, the maximum number of users is not the same in persistent

and non-persistent settings unlike headless browsers. We observe that persistent reg-

ular browsers are less efficient compared to non-persistent regular browsers as seen

in Table 4.4. The CPU and memory values in persistent browser is significantly higher

than the non-persistent counterpart. Further, we use a smaller number of browsers in

non-persistent regular browsers setting because relaunching browsers cause spikes in

the CPU/Memory values.

In a persistent browser setting, a specific number of browsers is always active. How-

ever, in a non-persistent browser setting, the actual number of active browsers is the

minimum of the specified number of browsers and the number of active tasks (a browser

is only launched for each task). Such an effect is significant for regular browsers but less

significant for headless browsers, as regular browsers are much heavier (i.e., requiring

more resources) than headless ones. Therefore, non-persistent regular browsers have

better performance than persistent regular browsers.

The number of delayed tasks is larger in the case of non-persistent regular browsers

compared to persistent browsers. This is because we use a very small number of browsers

(i.e. 6) to run 25 user instances. As the delays did not affect the error rate and the overall

runtime, we identify that our approach (i.e. 6 browser instances for 25 user instances)

is more efficient than the independent browsers setting.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 72

4.5 Threats to Validity

4.5.1 Internal Validity

The scheduling of tasks

In this work, we design a test schedule following the MMB3 benchmark. Our approach

assumes that the individual tasks of a user instance are not executed one after another

i.e., with no pauses in between the tasks. A different schedule may impact our results.

However, we follow the schedule of the MMB3 benchmark which is a well established

standard for testing mail servers. Furthermore, for other general web applications,

users usually have pauses between active tasks. Therefore, our approach can be ap-

plied to improve the testing efficiency for any type of web application.

Determining the overloaded state of load drivers

Due to the lack of existing metrics to evaluate Selenium-based load tests, we define

custom metrics such as delay ratio and error rate to evaluate our approach. In order to

have a holistic view of the load test, we also monitor the traditional performance mea-

sures such as runtime, CPU, memory and network resources. Since the network usage

is very small (less than 400kbit/second), we observe that network is not a bottleneck

in our load tests.

We use zero median error rate to derive the maximum number of user instances

that could run on a client machine. We also calculate the delay ratio to ensure that

the test schedule is not impacted by running too many user instances. Therefore, we

believe that the metrics defined in this work (delay ratio and error rate) can be used

by future practitioners as they detect an overloaded state for browser-based load tests.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 73

The metrics defined in this work (delay ratio and error rate) helped us identify the max-

imum number of user instances before the system reaches an overloaded state. We

believe that these metrics could help others as well. Nevertheless, others might wish

to define their own metrics if needed.

4.5.2 External Validity

Generalizing our results

Our approach works on the the AUT (i.e., Roundcube) that makes pervasive use of AJAX

technology. We expect our approach to work on other AJAX based web applications,

which comprises of a large number of current web applications. Our approach can

also be generalized to the testing of any web applications that can take concurrent re-

quests from browsers. Practitioners using web applications built using other technolo-

gies should examine the applicability of our approach on their web applications.

Performance of browsers

We observed that headless browsers are the most efficient in terms of CPU and mem-

ory compared to regular browsers and regular browsers with Xvfb displays. We also ob-

served that the number of error-free user instances is higher when headless browsers

are used. However, we tested our approach only on regular Chrome and headless

Chrome. The experimental results may vary for other browsers such as Firefox, IE etc.

That said, Chrome is the most popular browser among users. Further, Mozilla Fire-

fox’s Gecko Quantum browser engine has been replaced by Google Chrome’s engine,

Chromium (Mozilla (2018)).

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 74

Other automation tools

Apart from Selenium, there are other browser automation tools used in end-to-end

testing. However, some tools like the open-source version of Cypress (Cypress (2018))

cannot be used to run several instances of browsers. We also performed exploratory

tests to check the testing efficiency of automation tools that use visual locators like

Sikuli (Sikuli (2018)). Although Sikuli tests can be made to run in parallel, they are con-

siderably more resource consuming. Due to these limitations, we develop an approach

only for Selenium tests.

Additional factors

Our results can vary based on factors such as time when the experiment was sched-

uled, speed of the network etc. However, we mitigate this threat by repeating the ex-

periments at least 5 times in order to obtain consistent results. We also carefully ex-

amined each test and removed any tests that were impacted by unexpected network

issues (e.g., outages).

4.5.3 Construct Validity

Experimental Setup

Our results (i.e. the maximum number of error-free user instances) heavily depends

on the hardware configuration of the client machine. The other factors that impact

the results include the complexity of the AUT, browser configuration (headless or reg-

ular) and type of browsers (Firefox, chrome etc). Our approach improved the testing

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 75

efficiency in both headless and regular browsers. We believe that our results can gen-

eralize to other configurations.

Maximum number of error-free user instances

We arrived at the maximum number of error-free user instances in each experimen-

tal setting by increasing the number of user instances in small steps in each iteration,

following the step-wise workload strategy. Therefore, the number obtained is not ac-

curate. However, the focus of this work is to improve the testing efficiency of Selenium-

based load tests and not detect the exact number of user instances that a specific load

driver can support. Hence, we present an approximate result (i.e. maximum number

of user instances) in each setting and scale by a minimum of 20%.

4.6 Lessons learned

4.6.1 Dealing with flaky tests to enable load testing

Although we use functional test scripts for the load tests, we make a few changes to the

scripts to make them usable for load tests. In order ensure that each new task starts in

a new session, we perform a logout towards the end of each task i.e. we re-do logout if

the first attempt to logout failed. In the same way, we add precautionary steps in the

start of each task i.e. if the username is not found, we assume that the old task did not

complete and therefore, we execute commands to logout again. We verified that by

adding such checks before and after a task, we can successfully avoid cases where the

errors or failures of tasks are due to the failure of the previous task.

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 76

Apart from checks to ensure new sessions for new tasks, we had to solve the prob-

lem of intermittent failures or flaky tests. Flaky tests are caused due to wait times, con-

currency and test order dependency:

1. We resolve flaky tests caused due to undesirable wait times by making changes

to the polling frequency of Selenium scripts in order to locate HTML elements

faster. For example, we changed the polling frequency from 500ms to 100ms to

locate an alert box that appears for a very short duration. We observed that tests

failed while locating that element even when about 5 user instances are running

concurrently i.e. we resolved a functional issue rather than a performance issue.

2. We resolved flaky tests due to concurrent requests by identifying the order of ex-

ecution of scripts (i.e., JavaScript) and by locating elements in our tests based on

their order.

3. We resolved flaky tests due to test order dependency by initializing the mailboxes

with sufficient emails for every user and by designing independent tests. We

verified the same by running the tests in random order to ensure that there are

no dependencies between tests. For example, test_reply has no dependency on

test_delete and therefore, it can be executed in any order.

4.6.2 Dealing with the issues of using headless browsers and regular

browsers with virtual displays

Clearing cache in headless Chrome

In order to reduce the memory overhead in persistent browsers, we wanted to clear

cache before the task of every task. Using Selenium, it is possible to disable disk cache

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 77

using a chrome option to set the size of disk cache as 0. Selenium also provides a way

to delete cookies. However, there is no straightforward way that Selenium provides to

delete browser cache. With regular browsers, it’s possible to delete cache by navigating

to chrome://settings and clearing cache like a user would. This option is limited to

regular browsers and its not possible to do so in headless browsers.Therefore, this is

one of the limitations of persistent headless browsers.

Synchronizing webdriver creation to enable load testing using regular browsers with

Xvfb displays

There is a need to synchronize web-driver creation in order to start several regular

Chrome browsers. On the same note, Xvfb displays have to be terminated at the same

time (i.e. end of the test) in order to avoid errors that occur due to driver-display

mismatch. The display and driver instances are independent entities, therefore, even

when one of the displays is stopped during the execution of the load test, the remain-

ing tests in the workload fail. However, these additional steps are not necessary in the

case of headless browsers as the GUI or lack of GUI is tied to the driver instance.

4.6.3 Removing functional issues in load testing

We observe that failures in Selenium tests can be due to functional or performance is-

sues. In order to identify issues caused as a result of an overloaded system and thereby

to evaluate the testing performance, we distinguish performance issues from func-

tional issues: we identify functional errors as the errors that occur for one user instance

or very few user instances i.e. when the system is not overloaded. On the other hand,

an overloaded system causes performance or load errors. For instance, a timeout that

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 78

occurs when one user instance is tested is a functional error whereas a timeout that

only occurs when many user instances are tested is identified as a performance error.

We ensure that our test suite has no flaky tests (due to functional errors) by follow-

ing some of the best test design practices. We executed our tests several times to ensure

that no tests are flaky. Wait conditions, concurrency and test order (Google Testing Blog

(2016)) are the major causes of flaky tests (Luo et al. (2014)). We efficiently handled all

such cases in our tests to ensure that the errors in load tests are only due to client-side

performance issues.

One of the major challenges in designing Selenium scripts is estimating the wait

time needed for a page to reach the ready state (Lee et al. (2018)). Commands fail when

the scripts (i.e., javascript) associated with the previous command has not completed

its execution. The browser handles scripts sequentially (Innoq Blog (2018)); therefore

the current command could be blocked by one of the previous commands. For exam-

ple, one of the issues we faced was to locate an element after an email is sent. Only after

the script to reload the mailbox is complete (i.e., the script associated with the ‘send

email’ command), the next command in the test (i.e. locating an element) will be ex-

ecuted. Therefore, it is crucial to design robust tests by adding explicit commands to

ensure that the scripts have completed execution. Otherwise, Selenium tests fail with

timeout exceptions while locating elements.

4.7 Conclusion

Browser-based load testing of web applications has many advantages over protocol-

level load testing but its not used as much due to the performance issues in Selenium

tests. In this chapter, we present an approach that makes use of a pool of browser

CHAPTER 4. REDUCING THE PERFORMANCE OVERHEAD OF SELENIUM-BASED
LOAD TESTS 79

instances to execute tests for a large number of users. We perform experiments in dif-

ferent browser settings (headless vs regular, persistent vs. non-persistent) to identify

the maximum number of user instances that can run in each setting. We also present

our learned lessons using Selenium for load testing. Our approach improves testing ef-

ficiency by at least 20%. We believe that practitioners can benefit from our presented

approach.

CHAPTER 5

Conclusions and Future Work

T
HIS chapter summarizes our work and presents potential opportunities for

further work.

5.1 Summary

In this thesis, we study the challenges associated with the use of Selenium in practice

through the mining of Selenium-related questions on StackOverflow. We study how

various programming languages and browsers supported by Selenium are related to

other Selenium-related tags. We study the StackOverflow user community for each of

the programming language and browser related tags associated with Selenium. Finally,

80

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 81

we identify the difficult aspects of Selenium and the factors that impact the answering

speed and the likelihood of getting an accepted answer.

Our results show that questions on programming languages is the most popular

and fastest growing among other Selenium-related questions while browser-related

questions get the most attention. The number of new questions is increasing for most

of the tags except for tags related to ‘testing frameworks’ which has stabilized over the

last few years. Python tag is the fastest growing among other programming language

related tags, while Java tag has become stable in the recent years. We also find that

Chrome tag is the most frequently used browser tag among other browser tags related

to Selenium. However, different browsers may be used for different purposes. For ex-

ample, PhantomJS is widely used for web scraping while Firefox is frequently used with

Selenium-IDE. We observe that less than half of Selenium-related questions get ac-

cepted answers. The time taken to get accepted answers is statistically significantly im-

pacted by the number, the median reputation, and the experience level of non-casual

answerers of a Selenium-related tag.

We believe that new users of Selenium will benefit from this study by knowing which

programming languages and browsers to use depending on the use case. For example,

headless browsers such as PhantomJS are preferred for web-scraping tasks. Users will

also know which topics or tags have good support online based on the time taken to get

accepted answers. The insights shared in this work will also help Selenium developers

improve their support for the difficult aspects in Selenium.

We learn about the performance issues in Selenium from users’ questions on Stack-

Overflow and from prior work on Selenium. Therefore, in the next part of the thesis,

we investigate the performance overhead of Selenium-based tests in order to improve

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 82

the testing efficiency of Selenium-based load testing. We explore the advantages of

using Selenium for load testing over Protocol level testing tools like JMeter. We under-

stand that browser-based load testing of web applications has many advantages over

protocol-level load testing but its not used as much due to the performance overhead

of Selenium tests.

We propose an approach that makes use of a pool of browser instances to execute

tests for a large number of users. We perform experiments in different browser settings

(headless vs regular, persistent vs. non-persistent) to identify the maximum number

of users that can run in each setting. We also present the lessons learned in using Sele-

nium for load testing and the challenges faced in developing Selenium scripts for load

testing. Our approach improves testing efficiency by at least 20%. We believe that soft-

ware practitioners will benefit with the shared browsers approach that we presented

in this thesis. The other shared experiences will help users better understand the per-

formance overhead in Selenium tests, the resources consumption of browsers during

a Selenium-based load test and how certain browser settings are more efficient than

others.

5.2 Future Work

In this section, we explore potential opportunities for improving our work.

• We identify the most popular tags in Selenium based on the number of times

they are used in Selenium-related questions. We study only those tags that occur

in at least 1% of the total questions. Future research can study all the tags in

Selenium in order to get more insights about how Selenium is used. For example,

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 83

our study fails to cover new technologies and tools as they might not have enough

questions on StackOverflow.

• We perform LDA to verify that the obtained topics are equivalent to the ones that

are extracted from the user. Future studies can use LDA to process text from the

title and body of questions, answers and comments on Selenium-related posts

to gain more details about the issues in Selenium.

• Finding the best combination of browser instances and user instances in our ap-

proach of sharing browsers involves a great amount of time and effort. We have to

perform several experiments (by tuning parameters manually based on prior re-

sults) before we can arrive at the maximum number of error-free users for each of

the experimental settings. Therefore, a possible future work would be to develop

an automated approach to tune parameters dynamically during the execution of

a load test.

• We identify that headless browsers are more efficient than regular browsers, yet

many users still use regular browsers for load testing. Therefore, future practi-

tioners can develop an automated approach to migrate test scripts with regular

browsers to test scripts with headless browsers (fixing compatibility issues), to

enhance the testing efficiency of their tests.

Bibliography

Abad, Z. S. H., Shymka, A., Pant, S., Currie, A., and Ruhe, G. (2016). What are practition-

ers asking about requirements engineering? an exploratory analysis of social q&a

sites. In 2016 IEEE 24th International Requirements Engineering Conference Work-

shops (REW), pages 334–343.

Abbas, R., Sultan, Z., and Bhatti, S. N. (2017). Comparative analysis of automated load

testing tools: Apache jmeter, microsoft visual studio (tfs), loadrunner, siege. In 2017

International Conference on Communication Technologies (ComTech), pages 39–44.

Altaf, I., Dar, J. A., u. Rashid, F., and Rafiq, M. (2015). Survey on selenium tool in software

testing. In 2015 International Conference on Green Computing and Internet of Things

(ICGCIoT), pages 1378–1383.

Arcuri, A. (2018). An experience report on applying software testing academic results

84

BIBLIOGRAPHY 85

in industry: we need usable automated test generation. Empirical Software Engi-

neering, 23(4):1959–1981.

Barua, A., Thomas, S. W., and Hassan, A. E. (2012). What are developers talking about?

an analysis of topics and trends in stack overflow. Empirical Software Engineering,

19:619–654.

Bhat, V., Gokhale, A., Jadhav, R., Pudipeddi, J., and Akoglu, L. (2014). Min(e)d your

tags: Analysis of question response time in stackoverflow. In 2014 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining (ASONAM

2014), pages 328–335.

Blazemeter (2018). Driving headless browser testing with selenium

and python | blazemeter. https : / / www . blazemeter . com / blog /

driving-headless-browser-testing-with-selenium-and-python. (Ac-

cessed on 11/01/2018).

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding

of communities in large networks.

Brothers, T., Mandagere, N., Muknahallipatna, S., Hamann, J., and Johnson, H. (2008).

Microsoft exchange implementation on a distributed storage area network. Interna-

tional Journal of Computers and Applications, 30(3):251–264.

CBC (2017). Design flaws crashed statscan’s census website: doc-

uments | cbc news. http : / / www . cbc . ca / news / politics /

census-statistics-canada-computers-online-webpage-1 . 3649989.

(Accessed on 04/01/2018).

https://www.blazemeter.com/blog/driving-headless-browser-testing-with-selenium-and-python
https://www.blazemeter.com/blog/driving-headless-browser-testing-with-selenium-and-python
http://www.cbc.ca/news/politics/census-statistics-canada-computers-online-webpage-1.3649989
http://www.cbc.ca/news/politics/census-statistics-canada-computers-online-webpage-1.3649989

BIBLIOGRAPHY 86

Census (2016). Census 2016: It experts say bureau of statis-

tics should have expected website crash. https : / / www . smh .

com . au / national / census-2016-it-experts-say-bureau-of- \

statistics-should-have-expected-website-crash-20160809-gqosj7 .

html. (Accessed on 04/01/2018).

Chaulagain, R. S., Pandey, S., Basnet, S. R., and Shakya, S. (2017). Cloud based web

scraping for big data applications. In 2017 IEEE International Conference on Smart

Cloud (SmartCloud), pages 138–143.

Cypress (2018). Javascript end to end testing framework | cypress.io. https://www.

cypress.io/. (Accessed on 11/05/2018).

Debroy, V., Brimble, L., Yost, M., and Erry, A. (2018). Automating web application test-

ing from the ground up: Experiences and lessons learned in an industrial setting. In

2018 IEEE 11th International Conference on Software Testing, Verification and Vali-

dation (ICST), pages 354–362.

Dowling, P. and McGrath, K. (2015). Using free and open source tools to manage soft-

ware quality. Queue, 13(4):20:20–20:27.

Exchange (2005). Exchange performance result. https://www.dell.com/

downloads/global/solutions/poweredge6850_05_31_2005.pdf. (Accessed

on 11/05/2018).

Expect (2018). Expect tool. https://core.tcl.tk/expect/index. (Accessed on

01/23/2019).

https://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-\statistics-should-have-expected-website-crash-20160809-gqosj7.html
https://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-\statistics-should-have-expected-website-crash-20160809-gqosj7.html
https://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-\statistics-should-have-expected-website-crash-20160809-gqosj7.html
https://www.smh.com.au/national/census-2016-it-experts-say-bureau-of-\statistics-should-have-expected-website-crash-20160809-gqosj7.html
https://www.cypress.io/
https://www.cypress.io/
https://www.dell.com/downloads/global/solutions/poweredge6850_05_31_2005.pdf
https://www.dell.com/downloads/global/solutions/poweredge6850_05_31_2005.pdf
https://core.tcl.tk/expect/index

BIBLIOGRAPHY 87

Gao, R. and Jiang, Z. M. (2017). An exploratory study on assessing the impact of envi-

ronment variations on the results of load tests. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR), pages 379–390.

Gojare, S., Joshi, R., and Gaigaware, D. (2015). Analysis and design of selenium web-

driver automation testing framework. Procedia Computer Science, 50:341 – 346. Big

Data, Cloud and Computing Challenges.

Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., and Breivold, H. P. (2014).

Scalability and robustness of time-series databases for cloud-native monitoring of

industrial processes. In 2014 IEEE 7th International Conference on Cloud Computing,

pages 602–609.

Google Testing Blog (2016). Google testing blog: Flaky tests at google and

how we mitigate them. https://testing.googleblog.com/2016/05/

flaky-tests-at-google-and-how-we.html. (Accessed on 11/01/2018).

Innoq Blog (2018). How browsers load and process javascript. https://www.innoq.

com/en/blog/loading-javascript/. (Accessed on 11/02/2018).

Jiang, Z. M. and Hassan, A. E. (2015). A survey on load testing of large-scale software

systems. IEEE Transactions on Software Engineering, 41(11):1091–1118.

Kiran, S., Mohapatra, A., and Swamy, R. (2015). Experiences in performance testing of

web applications with unified authentication platform using jmeter. In 2015 Inter-

national Symposium on Technology Management and Emerging Technologies (IST-

MET), pages 74–78.

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.innoq.com/en/blog/loading-javascript/
https://www.innoq.com/en/blog/loading-javascript/

BIBLIOGRAPHY 88

Kochhar, P. S. (2016). Mining testing questions on stack overflow. In Proceedings of the

5th International Workshop on Software Mining, SoftwareMining 2016, pages 32–38,

New York, NY, USA. ACM.

Kongsli, V. (2007). Security testing with selenium. In Companion to the 22Nd ACM SIG-

PLAN Conference on Object-oriented Programming Systems and Applications Com-

panion, OOPSLA ’07, pages 862–863, New York, NY, USA. ACM.

Le Breton, G., Maronnaud, F., and Hallé, S. (2013). Automated exploration and analysis

of ajax web applications with webmole. In Proceedings of the 22Nd International

Conference on World Wide Web, WWW ’13 Companion, pages 245–248, New York,

NY, USA. ACM.

Lee, S., Chen, Y., Ma, S., and Lee, W. (2018). Test command auto-wait mechanisms

for record and playback-style web application testing. In 2018 IEEE 42nd Annual

Computer Software and Applications Conference (COMPSAC), volume 02, pages 75–

80.

Leotta, M., Clerissi, D., Ricca, F., and Spadaro, C. (2013). Comparing the maintain-

ability of selenium webdriver test suites employing different locators: A case study.

In Proceedings of the 2013 International Workshop on Joining AcadeMiA and Indus-

try Contributions to Testing Automation, JAMAICA 2013, pages 53–58, New York, NY,

USA. ACM.

Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. (2014). An empirical analysis of flaky

tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, FSE 2014, pages 643–653, New York, NY, USA. ACM.

BIBLIOGRAPHY 89

Makhija, V., Herndon, B., Smith, P., Roderick, L., Zamost, E., and Anderson, J. (2006).

Vmmark: A scalable benchmark for virtualized systems. Technical report, Citeseer.

Milani Fard, A., Mirzaaghaei, M., and Mesbah, A. (2014). Leveraging existing tests in au-

tomated test generation for web applications. In Proceedings of the 29th ACM/IEEE

International Conference on Automated Software Engineering, ASE ’14, pages 67–78,

New York, NY, USA. ACM.

Mirshokraie, S., Mesbah, A., and Pattabiraman, K. (2013). Pythia: Generating test cases

with oracles for javascript applications. In 2013 28th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE), pages 610–615.

Mozilla (2018). Goodbye, edgehtml - the mozilla blog. https://blog.mozilla.

org/blog/2018/12/06/goodbye-edge/. (Accessed on 01/20/2019).

Neves, P., Paiva, N., and Durães, J. a. (2013). A comparison between java and php. In

Proceedings of the International C* Conference on Computer Science and Software

Engineering, C3S2E ’13, pages 130–131, New York, NY, USA. ACM.

NY Times (2013). Inside the race to rescue a health care site, and obama

- the new york times. https://www.nytimes.com/2013/12/01/us/

politics / inside-the-race-to-rescue-a-health-site-and-obama .

html?pagewanted=all. (Accessed on 04/01/2018).

Ponzanelli, L., Mocci, A., Bacchelli, A., and Lanza, M. (2014). Understanding and classi-

fying the quality of technical forum questions. In 2014 14th International Conference

on Quality Software, pages 343–352.

https://blog.mozilla.org/blog/2018/12/06/goodbye-edge/
https://blog.mozilla.org/blog/2018/12/06/goodbye-edge/
https://www.nytimes.com/2013/12/01/us/politics/inside-the-race-to-rescue-a-health-site-and-obama.html?pagewanted=all
https://www.nytimes.com/2013/12/01/us/politics/inside-the-race-to-rescue-a-health-site-and-obama.html?pagewanted=all
https://www.nytimes.com/2013/12/01/us/politics/inside-the-race-to-rescue-a-health-site-and-obama.html?pagewanted=all

BIBLIOGRAPHY 90

Rosen, C. and Shihab, E. (2016). What are mobile developers asking about? a large

scale study using stack overflow. Empirical Software Engineering, 21(3):1192–1223.

Sikuli (2018). Sikuli script - home. http://www.sikuli.org/. (Accessed on

11/05/2018).

Slag, R., d. Waard, M., and Bacchelli, A. (2015). One-day flies on stackoverflow - why

the vast majority of stackoverflow users only posts once. In 2015 IEEE/ACM 12th

Working Conference on Mining Software Repositories, pages 458–461.

StackOverflow (2017). javascript - selenium starts running slower and slower

- stack overflow. https://stackoverflow.com/questions/43824636/

selenium-starts-running-slower-and-slower. (Accessed on 01/23/2019).

StackOverflow (2018a). performance - are all automated testing softwares slow? hav-

ing speed issues with selenium - stack overflow. https://stackoverflow.com/

questions/50959977/. (Accessed on 01/23/2019).

StackOverflow (2018b). performance - python selenium: Send keys is too slow

- stack overflow. https://stackoverflow.com/questions/49956239/

python-selenium-send-keys-is-too-slow. (Accessed on 01/23/2019).

StackOverflow (2018c). Selenium performance issue(1000+ in-

stances). https : / / stackoverflow . com / questions / 52879827 /

selenium-performance-issue1000-instances. (Accessed on 01/23/2019).

Stocco, A., Leotta, M., Ricca, F., and Tonella, P. (2015). Why creating web page objects

manually if it can be done automatically? In 2015 IEEE/ACM 10th International

Workshop on Automation of Software Test, pages 70–74.

http://www.sikuli.org/
https://stackoverflow.com/questions/43824636/selenium-starts-running-slower-and-slower
https://stackoverflow.com/questions/43824636/selenium-starts-running-slower-and-slower
https://stackoverflow.com/questions/50959977/
https://stackoverflow.com/questions/50959977/
https://stackoverflow.com/questions/49956239/python-selenium-send-keys-is-too-slow
https://stackoverflow.com/questions/49956239/python-selenium-send-keys-is-too-slow
https://stackoverflow.com/questions/52879827/selenium-performance-issue1000-instances
https://stackoverflow.com/questions/52879827/selenium-performance-issue1000-instances

BIBLIOGRAPHY 91

Svard, P., Li, W., Wadbro, E., Tordsson, J., and Elmroth, E. (2015). Continuous datacen-

ter consolidation. In 2015 IEEE 7th International Conference on Cloud Computing

Technology and Science (CloudCom), pages 387–396.

Venkatesh, P. K., Wang, S., Zhang, F., Zou, Y., and Hassan, A. E. (2016). What do client

developers concern when using web apis? an empirical study on developer forums

and stack overflow. In 2016 IEEE International Conference on Web Services (ICWS),

pages 131–138.

Vila, E., Novakova, G., and Todorova, D. (2017). Automation testing framework for web

applications with selenium webdriver: Opportunities and threats. In Proceedings

of the International Conference on Advances in Image Processing, ICAIP 2017, pages

144–150, New York, NY, USA. ACM.

XVFB (2018). Xvfb. https://www.x.org/releases/X11R7.6/doc/man/man1/

Xvfb.1.xhtml. (Accessed on 11/02/2018).

Yang, X.-L., Lo, D., Xia, X., Wan, Z.-Y., and Sun, J.-L. (2016). What security questions

do developers ask? a large-scale study of stack overflow posts. Journal of Computer

Science and Technology, 31(5):910–924.

https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Thesis Overview
	Thesis Contributions

	Background and Related Work
	An Empirical Study of Selenium Questions on Stack Overflow
	Case Study Setup
	Case Study Results
	Threats to Validity
	Conclusion

	Reducing the Performance Overhead of Selenium-based Load Tests
	Load testing using Selenium
	Experimental Design
	A systematic exploration of the performance overhead of Selenium-based load testing
	Experimental Results
	Threats to Validity
	Lessons learned
	Conclusion

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

