
Exploring the Development of Micro-Apps: A Case
Study on the BlackBerry and Android Platforms

Mark D. Syer1, Bram Adams1, Ying Zou2 and Ahmed E. Hassan1
Software Analysis and Intelligence Lab (SAIL)1, Software Reengineering Research Group2

School of Computing1, Department of Electrical and Computer Engineering2, Queen’s University, Canada
{mdsyer, bram}@cs.queensu.ca, ying.zou@queensu.ca, ahmed@cs.queensu.ca

Abstract—The recent meteoric rise in the use of smartphones
and other mobile devices has led to a new class of appli-
cations, i.e., micro-apps, that are designed to run on devices
with limited processing, memory, storage and display resources.
Given the rapid succession of mobile technologies and the fierce
competition, micro-app vendors need to release new features
at break-neck speed, without sacrificing product quality. To
understand how different mobile platforms enable such a rapid
turnaround-time, this paper compares three pairs of feature-
equivalent Android and Blackberry micro-apps. We do this by
analyzing the micro-apps along the dimensions of source code,
code dependencies and code churn. BlackBerry micro-apps are
much larger and rely more on third party libraries. However,
they are less susceptible to platform changes since they rely less
on the underlying platform. On the other hand, Android micro-
apps tend to concentrate code into fewer files and rely heavily on
the Android platform. On both platforms, code churn of micro-
apps is very high.

Index Terms—mobile platforms; micro-apps; Android; Black-
Berry;

I. INTRODUCTION

Mobile devices have changed the software development
world by the rapid emergence of a new class of software ap-
plications that has opened up a multi-billion dollar market [1].
Micro-apps, commonly referred to as apps (e.g., BlackBerry
App World, iPhone App Store), distinguish themselves from
applications that run on typical desktops or servers by their
limited functionality, low memory and CPU footprint, touch
interfaces, and limited screen sizes and resolutions. Similar
to web applications [2], micro-apps are rapidly developed
by small teams who may only have limited experience with
software development [3]–[6].

Although micro-apps have been around for over a decade,
micro-app development did not take off until 2008, when
Apple opened the Apple App Store [1], [7]. The total number
of stores selling (or hosting) micro apps has increased from
less than 5 in 2008 to over 50 in 2011. Downloads of micro-
apps have followed the same trends, rising from 7 billion
downloads in 2009 to 15 billion in 2010 and a projected 50
billion in 2012 [1]. The revenues from micro-app downloads
have also followed similar trends, rising from $4.1 billion
in 2009 to $6.5 billion in 2010 and $16.7 billion in 2012
(projected) [1].

The purpose of this paper is to explore the new world
of micro-apps, since such apps are expected to be one of
the major challenges for software maintenance and program

understanding in the near future. This software, and the
hardware it relies on, is constantly and rapidly evolving.
When micro-apps first rose to prominence in 2008 there were
very few mobile platforms. Now, three years later, there are
several major mobile platforms, each of which have taken
turns as the most popular one [8]–[10]. Developers need to
target multiple platforms in response to shifting consumer
preferences. However, amidst market pressure and with limited
resources and experience, how companies do (and should do)
this is an open research question.

As a first step towards addressing this question, we start
with an exploratory study to compare the differences between
micro-apps for different platforms: are there clear differences
in code characteristics, dependencies and churn? We have
studied micro-apps that have feature-equivalent versions for
different platforms. In total, six micro-apps and two platforms
were selected. Our study addresses the following three re-
search questions:

• RQ1: How different are the code characteristics between
platforms? – Less code is required to implement a feature
on the Android platform. BlackBerry micro-apps include
and customize more third party source code.

• RQ2: How different are the number and type of dependen-
cies between platforms? – Android micro-apps rely much
more on the underlying platform than BlackBerry micro-
apps do. Over 50% of the dependencies on the Black-
Berry platform can be attributed to user interface APIs.
Micro-apps written for either the Android or BlackBerry
platforms rely on the Java APIs for at least one third of
their dependencies.

• RQ3: How different is the amount of code churn between
platforms? – The maintained third party library code
changes very little. Code churn is very high on both
platforms.

This paper is organized as follows: Section II motivates our
case study of the development of Android and BlackBerry
micro-apps. Section III describes the setup of our case study
and Section IV describes and discusses the results of our
case study. Section V outlines the threats to validity. Finally,
Section VI concludes the paper.

II. MOTIVATION AND RELATED WORK

The number of purchases of micro-apps has seen an explo-
sive growth in the past few years. This growth is expected to

continue well into the future [3], [11]. Despite this growth, the
distribution of the number of micro-apps is highly non-uniform
across the different popular mobile platforms (Apple’s iPhone,
Google’s Android and Research In Motion’s BlackBerry).
Table I shows the total number of micro-apps available for
each platform as well as the average number of micro-apps
installed on each mobile device in September 2010 [12]–[15].
Since then, 100,000 micro-apps have been added to the Apple
App Store, 220,000 to the Android Market and 5,000 to the
BlackBerry App World [12]–[14].

TABLE I
NUMBER OF MICRO-APPS BY PLATFORM [12]–[15].

Company - Platform Number of Average Number of
Micro-Apps Micro-Apps Purchased

Available Per Device
Apple - iPhone 250,000 40
Google - Android 80,000 25
RIM - BlackBerry 10,000 14

The number of micro-apps available on each platform is
affected by many factors, including marketing, public percep-
tion and the overall development experience [9], [16]. Notwith-
standing the considerable differences presented in Table I, four
of the top five most popular micro-apps on each platform are
actually the same. This can be seen in Table II, which shows
the most popular micro-apps by platform based on a survey
of 4,000 micro-app users in August 2010 [15]. Therefore, in
order to reach the largest consumer base, micro-app developers
need to develop for each of these mobile platforms.

TABLE II
MOST POPULAR MICRO-APPS BY PLATFORM [15].

iPhone Android BlackBerry
1. Facebook 1. Google Maps 1. Facebook

2. Weather Channel 2. Facebook 2. Weather Channel
3. Google Maps 3. Weather Channel 3. Google Maps
4. iPod/iTunes 4. Pandora 4. Pandora

5. Pandora 5. YouTube 5. Twitter

However, companies have a hard time porting and main-
taining their micro-apps on multiple mobile platforms. First,
the explosion of new mobile devices, operating systems and
frameworks has resulted in a highly fragmented market [17].
Developers need to make their code aware of different features
and quirks of the supported devices, and update their micro-
app for every new major device or new version of the operating
system. Second, development tools have been released freely
to the general public so that anyone can develop a micro-app,
even without prior development experience [3]. However, to
our knowledge there have been no detailed studies on the
micro-app development or maintenance processes. A good
understanding of these processes is necessary to grasp the
speed and scale of micro-app development as well as the
need for mechanisms to defend against platform changes and
maintain backwards comparability.

Gasimov et al. have surveyed micro-apps and classified
them into general categories. The authors have also surveyed

the development tools available to micro-app developers [17].
To aid in cross platform development, Wu et al. use a mobile

web application engine that can run C++ code on the Android
platform through the Java Native Interface [18].

Teng and Helps have designed a project for a junior level
operating systems course in which 35 students were asked
to develop a micro-app. The authors surveyed the students
who completed the project to evaluate the overall development
and learning experience [19]. The authors determined that the
majority of students who took the course feel that micro-app
development is the important component of an information
technology curriculum.

As a first step toward understanding the development and
maintenance of micro-apps, this paper presents an exploratory
study of micro-app development for two popular mobile
platforms. In particular, we study the source code, dependency
and code churn properties of micro-apps on the Android and
BlackBerry platforms.

III. CASE STUDY SETUP

This section outlines our approach to explore the develop-
ment of micro-apps. First, we selected micro-apps that have
feature-equivalent versions for the Android and BlackBerry
platforms. Second, we measured the source code, dependency
and churn properties of theses micro-apps. We then compared
the measurements across the subject micro-apps.

A. Application Selection

We selected applications for our case study based on the
following criteria. First, the selected micro-apps must be open
source, as we require access to the source code repository. Sec-
ond, we require micro-app pairs that have feature-equivalent
versions that run on different platforms. This requirement
allows us to directly compare the effort it takes to implement
equivalent functionality on the two platforms, possibly written
by different developers (or companies). Third, we require that
the micro-apps were developed in the same programming
language. This requirement simplifies our case study, since it is
hard to compare the source code characteristics of a micro-app
written in Objective-C for the Apple iPhone platform versus
a micro-app written in Java for the Google Android or RIM
BlackBerry platforms.

We selected the Android and BlackBerry platforms as the
focus of our study, because (1) they are two of the most pop-
ular mobile platforms and (2) micro-apps for these platforms
are written mostly in Java [3], [8], [9].

Three micro-apps, WordPress, Google Authenticator and
Facebook SDK, were selected for our case study. To ensure
that the micro-app pairs are feature equivalent, we verified fea-
ture differences using feature lists on the micro-app webpages,
change logs for each release and feature requests in the forum
or issue tracking systems.

WordPress is one of the most popular content management
systems in use today. The WordPress micro-app is open-
source, available on the Android and BlackBerry platforms

and the features of both versions are nearly identical [20]–
[22]. The WordPress micro-apps allow users to manage their
blog or web page from their mobile device. Source code for the
WordPress for Android micro-app was first committed to the
repository in September 2009, while code for the BlackBerry
micro-app was first committed to the repository in April 2009.

Google Authenticator is a micro-app that allows users to
generate 2-step verification codes on their mobile devices
without an Internet connection. This adds an extra layer of
security to a user’s Google Account (e.g., Gmail) by requiring
the user to have access to his/her phone (in addition to the
typical username and password) [23]. Both versions of the
Google Authenticator micro-apps are developed by Google.
Hence, developers for both the Android and BlackBerry ver-
sions of the Google Authenticator micro-app share the same
source code repository and bug database. Source code for
both versions of the Google Authenticator micro-app was first
committed to the repository in March 2010.

The Facebook SDK is an open source project that allows
developers to integrate Facebook’s functionality into their own
applications [24], [25]. The Facebook SDK for BlackBerry
was developed by Research in Motion, whereas the Facebook
SDK for Android was developed by Facebook. Source code
for the Facebook SDK for Android was first committed to the
repository in May 2010. Source code for the Facebook SDK
for BlackBerry was first committed to the repository in July
2010.

The source code for each version of these micro-apps is
available in the repositories listed in Table III. We perform
our analysis on the source code in the repository up to, and
including, the last commit which was tagged as a release.

TABLE III
MICRO-APP REPOSITORIES.

WordPress
Android android.svn.wordpress.org 1.4.0
BlackBerry blackberry.svn.wordpress.org 1.4.6.2

Google Authenticator
Android google-authenticator.googlecode.com/hg 0.54
BlackBerry google-authenticator.googlecode.com/hg 1.1.2

Facebook SDK
Android github.com/facebook/facebook-android-sdk.git 1.5.0
BlackBerry facebook-bb-sdk.svn.sourceforge.net 0.4.5

B. Source Code Properties

We used the Understand tool by SciTools [26] to extract the
metrics in Table IV for each micro-app. Understand is a static
analysis toolset for measuring and analyzing the source code
of small- to large-scale software projects written in a number
of programming languages.

TABLE IV
SOURCE CODE VOLUME METRICS.

Metric Definition
Files Total Number of Files Containing Source Code
Classes Total Number of Classes
Lines Code Total Number of Lines of Code

We measured the source code volume metrics for the entire
micro-app, and for two subsets of the micro-app base: micro-
app specific source code and third party library source code.

Third party libraries consist of reusable software compo-
nents developed and maintained by developers unaffiliated
with the micro-app. For example, CWAC (CommonsWare
Android Components) is a collection of open source libraries
specifically developed to help Android micro-app developers
tackle common and recurring issues [27]. Micro-apps often
include, customize and maintain the source code of third party
libraries, therefore it is important to study the project-specific
source code metrics and the maintained third party library
source code independently.

In order to identify third party libraries, we examine the
projects’ directory structure looking for utility directories or
directories commonly associated with third party libraries
(e.g., src/com/ on the BlackBerry platform). In all six micro-
apps, the third party libraries are included as .java files.
Therefore, we are able to examine each source code file for
license agreements, disclaimers, documentation or links to
other projects in the source code comments.

After we classified each source code file as either third
party or project-specific, we compared the source code volume
metrics for both groups of files to determine how much of
the micro-app the developers have to develop and maintain
themselves (i.e., everything other than the third party code).

C. Dependency Properties

Similar to desktop and web applications, micro-apps make
use of APIs that provide access to functionality that the devel-
opers would otherwise have to implement themselves. Three
types of APIs are provided to developers: the Java API, the
platform API (i.e., Android- or BlackBerry-specific APIs) and
third party libraries. Android developers have access to nearly
all of the Java 2 Standard Edition APIs, whereas BlackBerry
developers have access to the Java 2 Micro Edition.

We used the Understand tool introduced in Section III-B to
extract, for each class in the micro-app, a list of classes on
which the class depends. These dependencies were classified
into one of the following categories based on the class name:

• Language dependency - dependency on a
class that is part of the Java platform (e.g.,
java.io.IOException or java.lang.Thread).

• User Interface dependency - dependency on a class
that is part of the device platform and that is respon-
sible for the user interface (e.g., android.view or
net.rim.device.api.ui).

• Platform dependency - dependency on a class that
is part of the device platform and not responsible for
the user interface (e.g., android.app.Activity or
net.rim.device.api.system.EventLogger).

• Third Party dependency - dependency on a class that
is part of a third party library.

• Project dependency - dependency on some class in the
micro-app code base other than a third party class.

Listing 1. Hello, World - An Android Developer’s First Micro-App [28].
1 import a n d r o i d . app . A c t i v i t y ;
2 import a n d r o i d . os . Bundle ;
3 import a n d r o i d . w id ge t . TextView ;
4
5 p u b l i c c l a s s H e l l o A n d r o i d ex tends A c t i v i t y {
6 p u b l i c vo id o n C r e a t e (Bundle s a v e d I n s t a n c e S t a t e) {
7 super . o n C r e a t e (s a v e d I n s t a n c e S t a t e) ;
8 TextView t v = new TextView (t h i s) ;
9 t v . s e t T e x t (” Hel lo , Android ”) ;

10 s e t C o n t e n t V i e w (t v) ;
11 }
12 }

Understand extracts and counts the following types of class
dependencies:

• Calls - call to a method in another class
• Casts - cast to an object type defined in another class
• Creates - creation of an object whose type is defined in

another class
• Extends - extending another class
• Implements - implementing an interface
• Sets - setting a variable or object defined in another class
• Typeds - use of an object type defined in another class
• Uses - use of a variable or object defined in another class
As an example of this analysis, consider the “Hello, World”

code for the Android in Listing 1 [28]. From this example,
Understand extracts the class dependencies in Table V.

TABLE V
LISTING 1 CLASS DEPENDENCIES

Dependency Cause Line
app.Activity HelloAndroid Extends Activity 5
os.Bundle savedInstanceState Typeds Bundle 6

widget.TextView

tv Typeds TextView 8
HelloAndroid.onCreate Creates TextView 8
HelloAndroid.onCreate Calls TextView 8
HelloAndroid.onCreate Calls setText 9

In this paper, we count the total and unique number of
dependencies on each dependency category. For example, we
can summarize the dependency information of Listing 1 as
in Table VI. Such a class dependency summary is a measure
of how strongly a micro-app is tied to Java, the underlying
platform, the UI, third party libraries or itself.

TABLE VI
LISTING 1 CLASS DEPENDENCY SUMMARY

Dependency Class Number of Dependencies
Total Unique

Language 0 0
User Interface 3 1
Platform 6 3
Third Party 0 0
Project 0 0

We define the “platform dependency ratio” as the ratio be-
tween the number of platform and user interface dependencies,
and the total number of dependencies. A low platform depen-
dency ratio indicates that developers do not rely significantly

on the platform APIs. For example, their micro-app may be
simple or self-contained, or the platform may be too difficult to
use. Such micro-apps can be easily ported to other platforms.
Conversely, a high platform dependency ratio indicates that
micro-app developers heavily exploit platform APIs. However,
this leads to platform “lock-in”, which complicates porting to
other platforms and potentially introduces instability due to
the rapid evolution of mobile device platforms. For example,
Listing 1 has a platform dependency ratio of 100%, i.e. it
is highly tied to the Android platform and might need to be
rewritten completely to port it to another platform.

The effort required to port a micro-app from one platform to
another depends on a number of factors (e.g., the number and
complexity of features and the platform dependency ratio).
In our specific case study, we study three pairs of feature
equivalent micro-apps. Therefore, we expect that the platform
dependency ratio is a good measure of platform lock-in.

D. Code Churn Properties

Source code is constantly changing throughout the devel-
opment process in response to maintenance and evolution ac-
tivities. Code churn measures how much source code changes
over time. We measure code churn using the following metrics:

• Number of files changed per change set.
• Number of project specific files changed per change set.
• Number of third-party files changed per change set.
• Number of lines changed per change set.
• Number of project-specific lines changed per change set.
• Number of third party lines changed per change set.
For our metrics, we ignored the initial commit, since this

would heavily skew the churn metrics, as well as change sets
that did not change any Java source code file. In addition, we
measure the number of non-white space lines of code. We did
not include changes to comment lines, since these are hard to
detect from the change set diffs. We calculated our line churn
metrics as the sum of all the added and deleted lines, for each
file, for each commit.

Given the wide variety of source code repository formats,
we used the following tools/commands to extract the number
of changes, changed files and changes lines from the following
repository formats:

• Subversion (svn) - We used statsvn [29] to extract the to-
tal number of changes and total number of changed lines
for each file and directory in a project. Statsvn is an open
source tool for generating project development metrics
that characterize developer activity, project growth and
code churn.

• GIT - we used git log --numstat, a standard git
command [30], on the entire repository to extract the
number of lines added and deleted from each file during
each commit.

• Mercurial (hg) - we used hg churn -f ’\%s’, a
standard mercurial extension [31], on each file in the
repository to extract the number of lines modified in each
file in each commit.

IV. CASE STUDY RESULTS

This section presents the results of our case study on the
three pairs of micro-apps selected in Section III-A.

RQ1: How different are the code characteristics between
platforms?

Motivation: Source code volume metrics have been shown
to be highly correlated to the complexity of a software system
[32], [33]. The complexity of a software system measures
the difficulty of understanding, evolving and maintaining the
system. We measure and compare the source code volume
metrics for each pair of micro-apps to determine if differences
between the Android and BlackBerry platforms require devel-
opers on either platform to write more complex source code
when implementing similar functionality.

We also measure and compare the source code volume
metrics for the micro-app and third party libraries. Reuse
of third party libraries has many possible benefits including
reduced development time and increased quality. However,
third party software has potential drawbacks, as micro-app
developers must ensure their copy of the third party API is
always in sync and up to date with the most recent updates
and bug fixes, although they may not be familiar with the third
party library code. In addition, micro-app developers can be
negatively impacted if support for the third party library or
parts of its functionalities are is abandoned.

Approach: We used the methodology presented in Sec-
tion III-B to extract source code volume metrics from each
micro-app. Table VII presents the results of these metrics and
the percentage of increase of each metric for the BlackBerry
version relative to the Android version for each micro-app
pair. After identifying which source code files belong to third
party code, and which files contain actual micro-app code, we
extracted the source code volume metrics of both groups of
files. Table VIII presents the values of these metrics and the
percentage (in parentheses) of the total code base for each
category of each micro-app pair.

TABLE VII
GLOBAL SOURCE CODE VOLUME METRICS AND DIFFERENCE RELATIVE

TO ANDROID.

WordPress
Metric Android BlackBerry Difference
Files 55 241 +338%
Classes 360 575 +60%
Lines Code 15,928 35,775 +125%

Google Authenticator
Metric Android BlackBerry Difference
Files 10 31 +210%
Classes 26 61 +135%
Lines Code 1,344 3,322 +147%

Facebook SDK
Metric Android BlackBerry Difference
Files 6 57 +850%
Classes 12 77 +542%
Lines Code 777 5,070 +553%

TABLE VIII
BREAKDOWN OF SOURCE CODE VOLUME METRICS ACROSS

PROJECT-SPECIFIC CODE.

WordPress
Metric Android BlackBerry Difference
Files 40 (73%) 211 (88%) 528%
Classes 331 (92%) 543 (94%) 164%
Lines of Code 12,948 (81%) 30,764 (86%) 237%

Google Authenticator
Metric Android BlackBerry Difference
Files 10 (100%) 17 (55%) 170%
Classes 26 (100%) 47 (77%) 181%
Lines of Code 1,344 (100%) 1,421 (43%) 106%

Facebook SDK
Metric Android BlackBerry Difference
Files 6 (100%) 21 (37%) 350%
Classes 12 (100%) 33 (43%) 275%
Lines of Code 777 (100%) 1,723 (34%) 222%

TABLE IX
BREAKDOWN OF SOURCE CODE VOLUME METRICS ACROSS THIRD

PARTY CODE.

WordPress
Metric Android BlackBerry Difference
Files 15 (27%) 30 (12%) 200%
Classes 29 (8%) 32 (6%) 110%
Lines of Code 2,980 (19%) 5,011 (14%) 168%

Google Authenticator
Metric Android BlackBerry Difference
Files 0 (0%) 14 (45%) —
Classes 0 (0%) 14 (23%) —
Lines of Code 0 (0%) 1,901 (57%) —

Facebook SDK
Metric Android BlackBerry Difference
Files 0 (0%) 36 (63%) —
Classes 0 (0%) 44 (57%) —
Lines of Code 0 (0%) 3,347 (66%) —

To better understand the distribution of project-specific file
sizes, we visualize the file size, in terms of the number of lines
of code, using bean plots. Bean plots are an alternative to box
plots to summarize and compare the distribution of different
sets of data [34]. Figure 1, 2 and 3 also show the median
file size of each micro-app (solid black line).

Results: Table VII shows that a micro-app written for the
BlackBerry platform contains two (+125%) to more than six
(+553%) times as many lines of code as the equivalent Android
micro-app. The differences in number of files are even larger
(+850%). This difference is not merely due to differences in
coding style of the developers developing the Android and
BlackBerry apps, since the Google Authenticator micro-apps
(developed by the same company) also show these differences.
If source code volume is a good indicator of development
effort, more effort seems to be needed on the BlackBerry
platform. However, since most BlackBerry micro-apps contain
both their own source code, as well as the source code for
third party libraries, it is necessary to break down the volume
metrics across micro-app and third party code (Table VIII).

Table VIII shows that in two of the three micro-app pairs
the BlackBerry micro-apps contain more lines of code in third
party libraries than in project-specific source code (57% in

Fig. 1. Distribution of file sizes across the WordPress Micro-App project-
specific files.

Fig. 2. Distribution of file sizes across the Google Authenticator Micro-App
project-specific files.

Fig. 3. Distribution of file sizes across the Facebook SDK project-specific
files.

Google Authenticator and 66% in the Facebook SDK). On the
other hand, in the Android micro-app’s third party libraries
are either not included at all (Facebook SDK and Google
Authenticator) or make up approximately 19% of the lines of
code (WordPress). When looking only at the project-specific
code, these BlackBerry micro-apps are still up to two times
as large as the corresponding Android micro-app.

From Figure 1, 2 and 3, Android micro-app developers
tend to write much larger files (with respect to lines of code)
than BlackBerry micro-app developers. First, from Figure 1
and Figure 2, Android micro-apps have more outliers, i.e.,
more files that are significantly larger than the median file
size. This is particularly true in the WordPress for Android
micro-app, where a significant amount of WordPress code
is concentrated in a few files. Second, from Figure 2 and
Figure 3, the median file size of an Android micro-app is
more than twice the median file size of the feature-equivalent
BlackBerry micro-app.

Note, however, that the area of bean plots is standardized
to 1 (i.e., the bean plots cannot be used to compare the total
code size of the micro-apps in each pair).

Less source code is required for Android micro-apps
than feature equivalent BlackBerry micro-apps. Android
micro-app developers typically write larger source code
files and tend to concentrate more code into fewer files.
BlackBerry micro-apps include more third party libraries
in their code base.

RQ2: How different are the number and type of dependencies
between platforms?

Motivation: We study the API usage properties of each
micro-app to uncover how micro-apps depend on language,
platform, user interface and third party APIs, and on their
own classes. Since micro-app developers need to port their
micro-apps to multiple platforms, a high platform dependency
ratio (defined in Section III-C) negatively impacts the porting
process by increasing the amount of code that needs to be
rewritten).

Approach: We use the methodology presented in Sec-
tion III-C to extract the number of dependencies for each
class in the micro-app. Table X presents our measurements
for these key metrics and the percentage of the total num-
ber of dependencies (in parentheses) for each category of
dependencies and each micro-app pair. Table X also presents
the percentage of increase in the metrics for the BlackBerry
version relative to the Android version of each micro-app.
Finally, Table XI presents the platform dependency ratio,
defined in Section III-C, for each micro-app.

Results: Table X and Table XI expose several interesting
trends. (1) Android micro-apps rely much more on platform
and user interface APIs than their BlackBerry equivalents
(platform dependency ratios of 41%, 51% and 34% on
the Android platform compared to 15%, 12% and 6% on

TABLE X
SOURCE CODE DEPENDENCY METRICS.

WordPress
Dependency Android BlackBerry Difference
Language 5860 (43%) 6720 (33%) +15%
Platform 3593 (27%) 600 (3%) -83%
User Interface 1961 (15%) 2473 (12%) +26%
Third Party 365 (3%) 665 (3%) +82%
Project Specific 1724 (13%) 10132 (49%) +488%

Google Authenticator
Dependency Android BlackBerry Difference
Language 312 (33%) 949 (58%) +204%
Platform 269 (28%) 43 (3%) -84%
User Interface 223 (23%) 154 (9%) -31%
Third Party 0 (0%) 192 (12%) —
Project Specific 156 (16%) 300 (18%) +92%

Facebook SDK
Dependency Android BlackBerry Difference
Language 252 (42%) 1176 (38%) +367%
Platform 170 (29%) 79 (3%) -54%
User Interface 31 (5%) 99 (3%) +219%
Third Party 0 (0%) 1101 (36%) —
Project Specific 140 (24%) 606 (20%) +333%

TABLE XI
MICRO-APP PLATFORM DEPENDENCY RATIOS.

Micro-App Android BlackBerry
WordPress 41% 15%
Google Authenticator 51% 12%
Facebook SDK 34% 6%

the BlackBerry platform). (2) BlackBerry micro-apps depend
heavily on project-specific classes, far more than they rely
on the BlackBerry platform (49% of WordPress dependen-
cies, 18% of Google Authenticator dependencies and 20%
of Facebook SDK dependencies compared to 3% non-User
Interface dependencies). (3) BlackBerry micro-apps rely on the
underlying platform primarily for the user interface libraries.
In the WordPress and Google Authenticator BlackBerry micro-
apps, 80% of the platform dependencies are on user interface
libraries. (4) For Android, the Android and Java APIs appear
to provide most of the dependencies of the micro-apps. Even
excluding the user interface APIs, over 25% of the Android
micro-app dependencies are on the Android platform, leading
to a relatively high platform dependency ratio (41% for Word-
Press, 51% for Google Authenticator and 34% for Facebook
SDK). (5) Finally, in all three Android micro-apps, third party
dependencies account for fewer dependencies than any other
dependency category.

From Table X, it seems that the extent to which each micro-
app depends on third party libraries seems to fluctuate from 0%
in the Google Authenticator micro-app and Facebook SDK for
Android to 36% in the Facebook SDK for BlackBerry. Manual
analysis shows that these third party libraries are especially
used for implementing functionality that is missing from a
language or platform API. Examples of missing functionality
on the BlackBerry platform are the Java Script Object Notation
protocol and regular expression support, and on both platforms

the module for XML-Remote Procedure Calls.

Java Script Object Notation (JSON) is a light weight
data interchange format for language-independent client-server
communication [35]. Within the BlackBerry version of the
WordPress micro-app, JSON is used for geocoding and fetch-
ing of page statistics from the WordPress back-end. JSON
is included in the Android API org.json [36], but on
the BlackBerry platform, prior to version 5.0.0, micro-app
developers needed to include their own implementation of the
JSON format [36]–[38]. Although JSON is included in version
6.0.0 of the BlackBerry platform, micro-app developers still
need to maintain a third party implementation of JSON to
preserve backwards compatibility. [38].

Regular expressions are typically used for search and
replace operations in strings and extraction of substrings.
Regular expression functionality is included in the standard
Java library java.util.regex [36], which is not available
on the J2ME platform that is supported by the BlackBerry
platform. The WordPress for BlackBerry micro-app uses the
Jakarta Regexp regular expression package from the Apache
Jakarta Project [39] to determine the number of characters in
a comment, post or page, before posting to a web site or blog.

XML-RPC is a lightweight mechanism for exchanging data
and invoking web services. XML-RPC is used by both the
Android and BlackBerry versions of the WordPress micro-app.
The WordPress for BlackBerry micro-app uses the kXML-
RPC implementation, a J2ME XML-RPC implementation built
on top of the kXML parser [40]. The WordPress for Android
micro-app uses the android-xmlrpc implementation, a very thin
XML-RPC client library for the Android platform [41].

Apart from missing functionality, third party libraries are
also used as an alternative to poorly implemented functionality
in the language or platform APIs. One example of poorly
implemented functionality on the Android platform is the
visualization of lists of thumbnails off the Internet. The third
party Thumbnail module from the CommonsWare Android
Components library allows to load and cache thumbnail im-
ages transparently in the background to avoid tying up the user
interface thread [27]. The module has been included in the
WordPress for Android micro-app. Since this module requires
the use of the Cache module, the latter module has also been
included in the WordPress for Android micro-app [27]. In this
case, including one third party library requires the inclusion
of a second third party library.

Android micro-apps rely primarily on the Android
APIs, whereas BlackBerry micro-apps rely on Java li-
braries and project-specific classes in the micro-app. An-
droid micro-apps contain little to no third party libraries.
More than half of the dependencies on the BlackBerry
platform are on user interface APIs. Android micro-
apps have a much higher platform dependency ratio than
feature equivalent BlackBerry micro-apps.

RQ3: How different is the amount of code churn between
platforms?

Motivation: Given the rapid pace and high pressure of the
micro-app development market, we want to characterize the
effort needed to develop each micro-app. We also explore the
code churn properties of the third party libraries to determine
the amount of effort needed to maintain them, i.e., do micro-
app developers highly customize such libraries, or mainly
clone them.

Approach: We use the methodology presented in Sec-
tion III-D to extract the code churn properties for each micro-
app. Table XII presents the values of these metrics and the
percentage of the total number of changes (in parentheses) for
each class of each micro-app pair.

TABLE XII
CODE CHURN METRICS.

WordPress
Metric Android BlackBerry
Total # File Changes 660 2760
Average # File Changes/File 12.00 11.45
Third Party File Changes 47 (7%) 59 (2%)
Project File Changes 613 (93%) 2701 (98%)
Total # Line Changes 23276 46823
Average # Line Changes/Lines 1.04 0.89
Third Party Line Changes 245 (1%) 648 (1%)
Project Line Changes 23031 (99%) 46175 (99%)

Google Authenticator
Metric Android BlackBerry
Total # File Changes 12 12
Average # File Changes/File 1.20 0.39
#Third Party File Changes 0 (0%) 0 (0%)
#Project File Changes 12 (100%) 12 (100%)
Total #Line Changes 306 94
Average # Line Changes/Lines 0.16 0.02
Third Party Line Changes 0 (0%) 0 (0%)
Project Line Changes 306 (100%) 94 (100%)

Facebook SDK
Metric Android BlackBerry
Total # File Changes 329 38
Average # File Changes/File 54.83 0.67
Third Party File Changes 0 (0%) 5 (13%)
Project File Changes 329 (100%) 33 (87%)
Total # Line Changes 2979 473
Average # Line Changes/Lines 1.80 0.05
Third Party Line Changes 0 (0%) 23 (5%)
Project Line Changes 2979 (100%) 450 (95%)

We also visualize the line churn using a box plot. Box plots
graphically depict the smallest observation, lower quartile,
median, upper quartile, and largest observation using a box.
Circles correspond to outliers. Figure 4, 5 and 6 depict the
line churn characteristics across all commits.

We also examine the growth of the micro-apps in size (lines
of code) over time. Figure 7 shows this evolution for the
WordPress BlackBerry micro-app over the project’s lifetime
(from May 2009 to March 2011).

Results: From Table XII, we can see that although Android
micro-apps have fewer commits to their repositories, the
average number of times a file is changed is much higher
for Android micro-apps. For example, the average number

Fig. 4. Line Churn Characteristics of the WordPress Micro-App.

Fig. 5. Line Churn Characteristics of the Google Authenticator Micro-App.

Fig. 6. Line Churn Characteristics of the Facebook SDK.

Fig. 7. Size (lines of code) of the WordPress for BlackBerry micro-app from
May 2009 to March 2011

of times a file is changed in Android Facebook SDK is
54.83 compared to 0.67 for the BlackBerry micro-app. In this
case, Table XII and Figure 6 show that Android micro-apps
see many small changes, whereas BlackBerry micro-apps see
fewer larger changes. On the other hand, Figure 4 and Figure 6
show that changes to BlackBerry micro-apps typically affect
more lines of code, even though Android micro-apps contain
more outliers. This indicates that although the size of most
changes to Android micro-apps is relatively small, there are a
number of relatively large changes.

From Table XII, Figure 4, 5 and 6, third party source code,
on either platform, experiences very little code churn after
the initial import. This suggests that these libraries are mostly
just copied to make the projects self-contained, rather than to
heavily customize them. Only for the WordPress micro-app,
many large changes are made. We checked the repository and
found that 80% of these changes correspond to refactoring
or fixing of defects in the kXML-RPC third party library.
Without access to the third party library source code micro-app
developers would not be able to fix or refactor these libraries
themselves.

Figure 7 shows the growth of the WordPress for BlackBerry
micro-app (lines of code) over time. The other five micro-apps
show a similar pattern, except for the micro-apps with shorter
project histories. Those micro-apps show very little growth
after the initial commit.

Source code files in Android micro-apps change more
frequently than source code files in BlackBerry micro-
apps, but typically see smaller changes. Third party li-
braries typically change very little.

V. THREATS TO VALIDITY

The studied micro-apps represent a small subset of the
total number of micro-apps available on the Android and
BlackBerry platforms. In addition, we did not consider micro-
app games, which are the most commonly downloaded micro
apps [15], [42], since we were unable to acquire a pair

of feature-equivalent micro-app games. Finally, the Google
Authenticator micro-app and the Facebook SDK are rather
small, approximately 5,000 lines of code. However, we do not
know whether these are typical sizes for a micro-app or an
outlier. The results of our case study may not generalize to
other micro-apps or platforms.

We investigated feature equivalence between each micro-
app pairs using feature lists on the micro-app webpages,
change logs for each release and feature requests in the forum
or issue tracking systems. However, we did not verify that
the functioning versions (i.e., installed and operating on a
mobile device) had these features. This may have introduced
false positives into the Application Selection process (i.e., two
micro-apps that are thought to be feature equivalent, are, in
fact, not feature equivalent). In addition, although two micro-
apps may be feature equivalent, the features may have been
implemented very differently (e.g., simple and straight-forward
user interface compared to a more complicated interface).

The identification of third-party libraries in each micro-app
was done using heuristics and manual analysis. It is possible
that some third-party libraries were misidentified using this
approach.

The Facebook SDK for BlackBerry was developed by
Research In Motion (the company behind the BlackBerry)
itself. This may have introduced bias into our study of platform
dependencies, since the developers have intimate knowledge of
the BlackBerry platform and may be biased towards relying
more on BlackBerry APIs. However, the results in Table X
seem to contradict this. Similarly, the Google Authenticator
micro-apps for Android and BlackBerry were both developed
by Google (the company behind Android). Since these devel-
opers were simultaneously developing the same micro-app for
the Android and BlackBerry platforms, they may have been
biased towards using Java APIs (as opposed to device-specific
APIs), as well as Android APIs. Table X suggests that such a
bias is possible.

Given that micro-apps like the ones that we analyzed are
typically only a couple of years old, they do not have the stable
project histories of long-lived, commonly studied projects like
Linux and Apache. This may have biased our code churn
metrics. Given this short history, it is not yet known which
micro-apps are (or will be) either successful or representative
of good development style.

Given the rapid pace of micro-app development and plat-
form evolution, the micro-apps in our case study are likely
to evolve considerably in the near term. The micro-app pairs
may no longer be functionally equivalent and may not even
be maintained any further.

Finally, one of the authors of this paper holds an NSER-
C/RIM Industrial Research Chair in Software Engineering.
Despite this, we believed we have objectively analyzed and
compared the Android and BlackBerry platforms and pre-
sented the results fairly and without bias.

VI. CONCLUSIONS

This paper presented an exploratory study of micro-apps on
two popular mobile platforms, as a first step toward under-
standing the development and maintenance process of micro-
apps. In particular, we studied the source code, dependency
and code churn properties of three pairs of feature-equivalent
micro-apps on the Android and BlackBerry platforms in order
to address the question of how micro-app developers can target
multiple platforms with limited resources.

Micro-apps written for the BlackBerry platform are more
than twice the size of feature-equivalent Android micro-apps.
Missing functionality in the BlackBerry and Java 2 ME APIs
has forced BlackBerry micro-app developers to rely on third
party libraries that have increased the size (lines of code) of
the micro-app.

BlackBerry micro-apps rely less on BlackBerry-specific
APIs and more on Java APIs and other classes in the micro-
app. On the other hand, Android micro-app developers lever-
age more Android and Java SE APIs. However, heavy reliance
on the Android platform has led to a greater degree of platform
lock-in in these Android micro-apps. Therefore, developers
who wish to target both the BlackBerry and Android platforms
should write their micro-apps for the BlackBerry platform then
port their micro-apps to the Android platform.

While micro-apps on both platforms experience a high
degree of churn due to constant and rapid evolution, included
third party libraries experience very little churn and therefore
require little effort by micro-app developers to maintain.

We intend to further explore the development and main-
tenance properties of additional micro-apps. Since this paper
has focused more on the development characteristics of micro-
apps, we intend to explore the maintenance characteristics of
micro-apps by examining quality metrics in the micro-app and
the relationship between software defects and the source code,
dependency and churn metrics that we studied in this paper.

REFERENCES

[1] C. Sharma, “Sizing Up the Global Apps Market,” Chetan
Sharma Consulting. [Online]. Available: blog.getjar.com/developer/
sizing-up-the-global-apps-market

[2] A. Hassan and R. Holt, “Architecture recovery of web applications,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2002, pp. 349–359.

[3] M. Butler, “Android: Changing the mobile landscape,” IEEE Pervasive
Computing, vol. 10, no. 1, pp. 4–7, Jan. 2011.

[4] S. Lohr. Google’s Do-It-Yourself App Creation Software. [Online].
Available: nytimes.com/2010/07/12/technology/12google.html

[5] H. Wen. The ascendance of App In-
ventor. [Online]. Available: radar.oreilly.com/2011/06/
google-app-inventor-programmers-mobile-apps.html

[6] D. Gavalas and D. Economou, “Development platforms for mobile
applications: Status and trends,” IEEE Software, vol. 28, no. 1, pp. 77–
86, jan 2011.

[7] “Gartner Says Worldwide Mobile Application Store Revenue Forecast
to Surpass $15 Billion in 2011,” Gartner Inc. [Online]. Available:
gartner.com/it/page.jsp?id=1529214

[8] “Apple Leads Smartphone Race, while Android
Attracts Most Recent Customers,” Nielsen Company.
[Online]. Available: blog.nielsen.com/nielsenwire/online mobile/
apple-leads-smartphone-race-while-android-attracts-most-recent-customers

[9] “Who is Winning the U.S. Smartphone Battle?” Nielsen
Company. [Online]. Available: blog.nielsen.com/nielsenwire/online
mobile/who-is-winning-the-u-s-smartphone-battle

[10] “U.S. Smartphone Battle Heats Up: Which is the Most Desired
Operating System?” Nielsen Company. [Online]. Available: blog.
nielsen.com/nielsenwire/online mobile/us-smartphone-battle-heats-up

[11] “comScore Reports May 2010 U.S. Mobile Sub-
scriber Market Share,” ComScore Inc. [Online]. Avail-
able: comscore.com/Press Events/Press Releases/2010/7/comScore
Reports May 2010 U.S. Mobile Subscriber Market Share

[12] Android Market. [Online]. Available: https://market.android.com
[13] BlackBerry App World. [Online]. Available: appworld.blackberry.com
[14] Apple App Store. [Online]. Available: apple.com/iphone/

apps-for-iphone
[15] “Games Dominate Americas Growing Appetite

for Mobile Apps,” Nielsen Company. [On-
line]. Available: blog.nielsen.com/nielsenwire/online mobile/
games-dominate-americas-growing-appetite-for-mobile-apps

[16] J. Murai. You Win RIM! (And Open Letter To RIM’s Developer Rela-
tions). [Online]. Available: blog.jamiemurai.com/2011/02/you-win-rim

[17] A. Gasimov, C.-H. Tan, C. W. Phang, and J. Sutanto, “Visiting mobile
application development: What, how and where,” in Proceedings of
the International Conference on Mobile Business and Global Mobility
Roundtable (ICMB-GMR), Jun. 2010, pp. 74–81.

[18] Y. Wu, J. Luo, and L. Luo, “Porting mobile web application engine to
the android platform,” in Proceedings of the International Conference on
Computer and Information Technology (CIT), Jul. 2010, pp. 2157–2161.

[19] C.-C. Teng and R. Helps, “Mobile application development: Essential
new directions for IT,” in Proceedings of the International Conference
on Information Technology: New Generations (ITNG), Apr. 2010, pp.
471–475.

[20] Usage Statistics and Market Share of Content Management Systems for
Websites. W3Techs - Web Technology Surveys. [Online]. Available:
w3techs.com/technologies/overview/content management/all

[21] WordPress for Android. [Online]. Available: android.wordpress.org
[22] WordPress for BlackBerry. [Online]. Available: blackberry.wordpress.

org
[23] Google Authenticator. [Online]. Available: code.google.com/p/

google-authenticator
[24] Facebook SDK for Android. [Online]. Available: github.com/facebook/

facebook-android-sdk
[25] Facebook SDK for BlackBerry. [Online]. Available: us.blackberry.com/

developers/started/facebook.jsp
[26] Understand Your Code. [Online]. Available: scitools.com
[27] CommonsWare Android Components. [Online]. Available:

commonsware.com/cwac
[28] Hello, World - Android Developers. [Online]. Available: developer.

android.com/resources/tutorials/hello-world.html
[29] StatSVN - Repository Statistics. [Online]. Available: statsvn.org
[30] git-log. [Online]. Available: kernel.org/pub/software/scm/git/docs/

git-log.html
[31] ChurnExtension - Mercurial. [Online]. Available: mercurial.selenic.

com/wiki/ChurnExtension
[32] R. Lind and K. Vairavan, “An experimental investigation of software

metrics and their relationship to software development effort,” Transac-
tions on Software Engineering, vol. 15, no. 5, pp. 649–653, May 1989.

[33] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles, “Towards a theo-
retical model for software growth,” in Proceedings of the International
Workshop on Mining Software Repositories (MSR), 2007, pp. 21–28.

[34] P. Kampstra, “Beanplot: A boxplot alternative for visual comparison of
distributions,” Journal of Statistical Software, Code Snippets, vol. 28,
no. 1, pp. 1–9, Nov. 2008.

[35] Java Script Object Notation. [Online]. Available: json.org
[36] Android Package Index. [Online]. Available: developer.android.com/

reference/packages.html
[37] BlackBerry JDE 5.0.0 API Reference. [Online]. Available: blackberry.

com/developers/docs/5.0.0api/index.html
[38] BlackBerry JDE 6.0.0 API Reference. [Online]. Available: blackberry.

com/developers/docs/6.0.0api/index.html
[39] Jakarta Regexp. [Online]. Available: jakarta.apache.org/regexp
[40] android-xmlrpc. [Online]. Available: code.google.com/p/android-xmlrpc
[41] kXML-RPC. [Online]. Available: kxmlrpc.objectweb.org
[42] “The State of Mobile Apps,” Nielsen Company. [Online]. Available:

blog.nielsen.com/nielsenwire/online mobile/the-state-of-mobile-apps

blog.getjar.com/developer/sizing-up-the-global-apps-market
blog.getjar.com/developer/sizing-up-the-global-apps-market
nytimes.com/2010/07/12/technology/12google.html
radar.oreilly.com/2011/06/google-app-inventor-programmers-mobile-apps.html
radar.oreilly.com/2011/06/google-app-inventor-programmers-mobile-apps.html
gartner.com/it/page.jsp?id=1529214
blog.nielsen.com/nielsenwire/online_mobile/apple-leads-smartphone-race-while-android-attracts-most-recent-customers
blog.nielsen.com/nielsenwire/online_mobile/apple-leads-smartphone-race-while-android-attracts-most-recent-customers
blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-smartphone-battle
blog.nielsen.com/nielsenwire/online_mobile/who-is-winning-the-u-s-smartphone-battle
blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up
blog.nielsen.com/nielsenwire/online_mobile/us-smartphone-battle-heats-up
comscore.com/Press_Events/Press_Releases/2010/7/comScore_Reports_May_2010_U.S._Mobile_Subscriber_Market_Share
comscore.com/Press_Events/Press_Releases/2010/7/comScore_Reports_May_2010_U.S._Mobile_Subscriber_Market_Share
https://market.android.com
appworld.blackberry.com
apple.com/iphone/apps-for-iphone
apple.com/iphone/apps-for-iphone
blog.nielsen.com/nielsenwire/online_mobile/games-dominate-americas-growing-appetite-for-mobile-apps
blog.nielsen.com/nielsenwire/online_mobile/games-dominate-americas-growing-appetite-for-mobile-apps
blog.jamiemurai.com/2011/02/you-win-rim
w3techs.com/technologies/overview/content_management/all
android.wordpress.org
blackberry.wordpress.org
blackberry.wordpress.org
code.google.com/p/google-authenticator
code.google.com/p/google-authenticator
github.com/facebook/facebook-android-sdk
github.com/facebook/facebook-android-sdk
us.blackberry.com/developers/started/facebook.jsp
us.blackberry.com/developers/started/facebook.jsp
scitools.com
commonsware.com/cwac
developer.android.com/resources/tutorials/hello-world.html
developer.android.com/resources/tutorials/hello-world.html
statsvn.org
kernel.org/pub/software/scm/git/docs/git-log.html
kernel.org/pub/software/scm/git/docs/git-log.html
mercurial.selenic.com/wiki/ChurnExtension
mercurial.selenic.com/wiki/ChurnExtension
json.org
developer.android.com/reference/packages.html
developer.android.com/reference/packages.html
blackberry.com/developers/docs/5.0.0api/index.html
blackberry.com/developers/docs/5.0.0api/index.html
blackberry.com/developers/docs/6.0.0api/index.html
blackberry.com/developers/docs/6.0.0api/index.html
jakarta.apache.org/regexp
code.google.com/p/android-xmlrpc
kxmlrpc.objectweb.org
blog.nielsen.com/nielsenwire/online_mobile/the-state-of-mobile-apps

	Introduction
	Motivation and Related Work
	Case Study Setup
	Application Selection
	Source Code Properties
	Dependency Properties
	Code Churn Properties

	Case Study Results
	Threats to Validity
	Conclusions
	References

