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ABSTRACT
Source control systems permit developers to attach a free
form message to every committed change. The content of
these change messages can support software maintenance
activities. We present an automated approach to classify a
change message as either a bug fix, a feature introduction,
or a general maintenance change. Researchers can study
the evolution of project using our classification. For ex-
ample, researchers can monitor the rate of bug fixes in a
project without having access to bug reporting databases
like Bugzilla.

A case study using change messages from several open
source projects, shows that our approach produces results
similar to a manual classifications performed by professional
developers. These findings are similar to ones reported by
Mockus and Votta for commercial projects.

1. INTRODUCTION
Source control systems such as CVS [8], ClearCase [6], and

Perforce [14] are used by large software projects to manage
their source code [15]. As a software system evolves, changes
to its code are stored in a source control repository. The
repository contains detailed information about the develop-
ment history of a project. The repository stores the creation
date of every file, its initial content and a record of every
change done to a file. A change record stores the date of
the change, the name of the developer who performed the
change, the numbers of lines that were changed, the actual
lines of code that were added or removed, and a change mes-
sage entered by the developer usually explaining the reasons
for the change.

Such change messages could be used by researchers to
build tools or to study approaches for assisting in the main-
tenance of long lived software systems. Chen et al. presented
a case study of a source code searching tool that makes use
of these change messages [4]. The tool uses the messages as
meta data that is attached to a changed line and which can
be searched when developers are looking for the implemen-
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tation location of specific features.
Mockus and Votta presented a lexical analysis approach

to classify a change based on the content of its change mes-
sage [13]. Such classifications can be used to monitor the
evolution of a software project and to gauge its reliability.
Using the classification, a manager could, for example, de-
termine the rate of bug fix changes versus feature introduc-
tion changes for a project. A high rate indicates that too
much effort is spent fixing bugs and may be sign that the
quality of the produced code must be improved. A man-
ager can then consider enforcing quality control practices
like code reviews and unit tests. These practices could re-
duce the rate of bug fixes in the future.

The aforementioned approaches demonstrate the value of
change messages in understanding and monitoring software
projects. Unfortunately, change messages are free form.
Their quality and content is not enforced in traditional source
control systems. For example, developers do not need to en-
ter any change message and do not need to specify the pur-
pose of a change in the entered message. Mockus and Votta
proposed an automatic classifier to classify change messages
in a large commercial telephony project [13]. Their results
show that 61% of the time, their automatic classifier and
the developer, who performed the change, agree on the clas-
sification of a change.

With the widespread of open source projects, researchers
have used their repositories instead of relying on the repos-
itories from commercial projects which are harder to ac-
quire. Work by Chen et al. [4] was conducted on open
source systems; whereas work by Mockus and Votta [13]
was conducted on commercial telecom projects. We are con-
cerned with the feasibility of applying an approach similar
to Mockus and Votta’s approach on open source software
projects. It is not obvious if open source developers would
input sufficient information in a change message for an au-
tomated classification approach to work. It may be the case
that Mockus and Votta’s approach worked well for com-
mercial projects due to the extensive software development
processes followed by commercial telecom projects. Recent
work cautioned of the quality and reliability of open source
change logs [5]. Change logs are usually stored in a single file
called the ChangeLog file. They provide a high level overview
of changes that occurred throughout the lifetime of a soft-
ware project. Whereas change logs summarize the purpose
of changes to the source code and are likely to omit a large
number of details, change messages derived from source con-
trol repositories record the specifics of every change to the
code.



1.1 Organization of Paper
This paper is organized as follows. In Section 2, we discuss

the logistics of our case study. In Section 3, we discuss the
results of our study of an automated classification approach.
Our approach classifies changes by lexically examining the
change message. Finally in Section 4, we summarize our
findings.

2. CASE STUDY
We now introduce the goals of our study and present our

study participants.

2.1 Study Goals
We want to determine if an automatic classification of

a change message would agree with a manual classifica-
tion performed by industrial developers. For many software
projects, source code repositories are the only source of his-
torical records about the project. Bug reports are commonly
not archived, making it impossible to perform any analysis
on the reliability of many open source projects. To study
the reliability of a project, we can use the source code repos-
itories to recover information about the occurrences of bugs
(e.g., [11]). We can use a lexical based approach, similar to
[13], to classify change records into three types based on the
content of the change message. The classification approach
would determine if a change was done to fix a bug, to add
features, or to perform general maintenance activities such
as updating copyright notices or indenting the source code.
Mockus and Votta have used such a lexical approach suc-
cessfully on commercial systems. However, it is not clear if
change messages in open source projects would benefit from
the same lexical analysis approach.

2.2 Study Participants
To perform our study, we picked a small number of partic-

ipants which are accessible to us so we can easily interview
them to clarify their replies if needed. We asked six soft-
ware developers to participate in the study. The developers
worked in companies in the following software domains: se-
curity, telecommunication, graphics, and databases. The
developers were chosen so they would represent two groups:
an intermediate and a senior group. We hoped that this
grouping would uncover if there are any noticeable varia-
tions in the study that may be attributed to experience or
managerial differences between both groups of developers:

• The first group consists of 3 intermediate software de-
velopers with at least 7 years of software development
with no experience of managing other software devel-
opers.

• The second group consists of 3 experienced software
developers with at least 9 years of experience devel-
oping industrial software systems and who have previ-
ously managed or are currently managing other soft-
ware developers.

Table 1 gives background information about the partici-
pants in our study. At the time of the study, the developers
worked at a five different companies. All the developers had
used source control systems for most of their professional
career.

A list of 18 change messages from several open source
projects were presented to every developer. Every developer

Dev. Development Source Control Avg. Team Team
# Experience (years) Experience (years) Size Lead

I1 7 5 5 No

I2 7 7 5 No

I3 7 7 30 No
S1 9 5 5 Yes

S2 15 12 8 Yes

S3 9 9 5 Yes

Table 1: Characteristics of the Participants of the Study

was asked to allocate 10 points to four categories. Three cat-
egories represented the possible purpose of a change: bug
fixing, feature introduction, and general maintenance. A
fourth category was “Not Sure” – Developers were asked
to use this category when the change message did not have
sufficient information for them to confidently classify the
change into one of the other three categories. We limited
the number of change messages in the study to 18 messages
so that the professional developers would finish the classifi-
cation in a timely and accurate fashion without interfering
with their busy schedules.

Application Application Start Programming
Name Type Date Language
NetBSD OS March 1993 C

FreeBSD OS June 1993 C

OpenBSD OS Oct 1995 C

Postgres DBMS July 1996 C

KDE Windowing April 1997 C++
System

Koffice Productivity April 1998 C++
Suite

Table 2: Summary of the Studied Systems

The 18 change messages were selected from the reposi-
tories of six large open source systems (NetBSD, FreeBSD,
OpenBSD, Postgres, KDE, Koffice - Table 2 lists details of
these projects). Every change message in these repositories
is already classified as either a bug fixing, feature introduc-
tion or general maintenance change using an automatic clas-
sifier described in Section 3. We randomly picked 18 changes
from the repository of every project: 6 bug fixing, 6 feature
introduction, and 6 general maintenance changes (for a to-
tal of 108 changes). We then randomly chose half of these
changes (54 changes) and broke them into three disjoint sets
of 18 changes. We followed this selection procedure to guar-
antee that the mathematical analysis performed later does
not suffer from any bias due to the type of change messages
or their sources. Every set was classified by a member of the
intermediate group and a member of the senior group. Each
group classified the three sets of changes. No two developers
in the same group classified the same set of changes.

3. STUDY RESULTS
We developed an automated classifier program that reads

every change message and classifies its change record as one
of the following three types:



Bug Fixing change (BF): These are the changes which
are done to fix a bug. Our automatic classifier labels
all changes which contain terms such as bug, fix, or
repair in the change message as BF change.

General Maintenance change (GM): These are changes
that are mainly bookkeeping changes and do not reflect
the implementation of a particular feature. Examples
of such changes are updates to the copyright notice
at the top of source files, re-indentation of the source
code by means of a code beautifier (pretty-printer).
Our automatic classifier labels all changes which con-
tain terms such as copyright/update, pretty/print, or
indent in the change message as GM changes.

Feature Introduction changes (FI): These are the changes
that are done to add or to enhance features. Our au-
tomatic classifier labels all changes that are not FR or
GM changes as FI changes.

Relative to the Swanson’s classical classification of changes
[9]:

• BF changes correspond to corrective maintenance which
is performed to correct defects.

• FI changes correspond to adaptive and perfective main-
tenance. Adaptive maintenance corresponds to func-
tional enhancements of a software system. Adaptive
maintenance corresponds to non-functional enhance-
ments.

• GM changes do not correspond to any of the change
classifications proposed by Swanson. GM changes do
not correspond to features instead they are concerned
with source code hygiene issues.

Each participating developer was shown the message as-
sociated with a change and asked to allocate a total of 10
points to four categories. Three of the categories mirrored
the automated classification categories (BF, GM, and FI).
A fourth category was “Not Sure” (NS). Developers were
asked to use the NS category when the change message did
not have sufficient information for them to confidently clas-
sify the change into one of the other three categories. For
the senior developer group only one out of 54 changes was
ranked as NS. For the intermediate developer group, three
out of 54 changes were ranked as such. For our analysis,
we considered changes classified as NS to be FI changes.
The automatic classifier uses FI as the default classification
when it cannot determine the type of a change; therefore,
we chose to use the same default rule for the manual classi-
fication done by developers.

Developers had the option to allocate points between dif-
ferent categories but our automatic classifier only assigns a
single category to a change. We chose to classify a manual
change based on the highest ranked category, so we can com-
pare manual classifications to the automated ones. When
there were ties, we used the following tie breaking prior-
ity order: BF, GM, then FI. For example, if a developer
allocates 5 points to the BF category and 5 points to the
FI category, we would consider this changes to a be an BF
change. This tie breaking order was used for only two clas-
sified changes. This order rule was followed as it is the same
rule followed by the automatic classifier. The automatic
classifier tends to be more pessimistic in classifying changes

by ensuring that changes that may be a combinations of
fault repairing and feature introduction are considered as
fault repairing changes to get a more complete count of re-
paired faults in a software system.

The two groups of developers were given the same 54
change messages to classify. Every developer in a group
was given a disjoint set of 18 messages to classify. We then
combined the classification by every developer to arrive to a
classification for the whole group (Intermediate and Senior
classifications). The same 54 change messages were classi-
fied using our classifier program. We performed two types
of analysis:

• In the first analysis we compared the intermediate group
classification to the automatic classifier (Analysis 1A)
and the senior group classification to the automatic
classifier (Analysis 1B).

• In the second analysis (Analysis 2), we combined the
classification done by the senior and intermediate groups
to create a common classification. We then compared
this common classification to the classification done by
the automatic classifier.

We now present the results of the two types of analysis.

3.1 Analysis 1A and 1B of Developers’ Classi-
fications

Automatic Classifier
Manual Classifier GM BF FI Total

GM 15 2 3 20
BF 4 14 7 25
FI 0 0 9 9

Total 19 16 19 54

Table 3: Classification Results for the Intermediate Devel-
opers Group vs. the Classifier Program (Analysis 1A)

Table 3 and 4 summarize the results for analysis 1A and
1B. The last row in both tables shows the distribution of
change types as classified by the automatic classifier. The
automatic classifier categorized the 54 changes into 19 GM,
16 BF, and 9 FI changes. The last column of both tables
shows the results of the manual classification which differs
between the two groups of software developers. Table 4
shows that our automatic classifier has classified 16 changes
as BF changes. By comparison column 2 of Table 4 shows
that the senior developers have classified 15 out of these 16
changes as FI and one of the changes as GM.

Automatic Classifier
Manual Classifier GM BF FI Total

GM 15 1 4 20
BF 3 15 4 22
FI 1 0 11 12

Total 19 16 19 54

Table 4: Classification Results for the Senior Developers
Group vs. the Automatic Classifier (Analysis 1B)

The diagonal of both tables lists the number of times
the developers and the automatic classifier agreed on their
classifications. Summing the diagonal values in both tables
shows that:



• For Table 3 the intermediate developers agreed 38 (15
+ 14 + 9) times with the automatic classifier. The
intermediate group agreed ( 38

54
= 70)% of the time with

the automatic classifier.

• For Table 4, the senior developers agreed 41 (15 + 15
+ 11) times with the automatic classifier. The senior
group agreed ( 41

54
= 76)% of the time with the auto-

matic classifier.

We calculated Cohen’s Kappa (κ) coefficient for both groups
of developers [7]. The Kappa coefficient is a widely adopted
technique to measure the degree of agreement between two
raters, in our case: the automatic classifier and the devel-
opers participating in our experiment. The Kappa for the
senior group and the automatic classifier is 0.64. The Kappa
for the intermediate group and the automatic classifier is
0.56. According to the Kappa thresholds values proposed
by El Emam [10] (see Table 5), the agreement between the
automatic classifier and the group of senior developers is
substantial. The agreement between the automated classi-
fication and the group of intermediate developers is high
moderate. These results are similar to the ones reported by
Mockus and Votta who found moderate agreement between
an automated classification and a manual classification us-
ing the El Emam classification. In brief, the results indicate
that an automated classification approach is likely to achieve
similar classifications to ones done manually by professional
software developers.

Kappa Value Strength of Agreement
< 0.45 Poor

0.45− 0.62 Moderate
0.63− 0.78 Substantial

> 0.78 Excellent

Table 5: Kappa Values and Strength of Agreement

3.2 Analysis 2 of Developers’ Classifications

Intermediate Classifier
Senior Classifier GM BF FI Total

GM 17 2 1 20
BF 2 19 1 22
FI 1 4 7 12

Total 20 25 9 54

Table 6: Classification Results for the Senior Developers
Group vs. the Intermediate Developers Group

For the second analysis, we combined the classifications
done by both the senior and intermediate developer groups
to create a common classification. We removed change mes-
sages, which both intermediate and senior developers dis-
agreed in their classification, from the common classifica-
tion. We felt that since both human classifiers could not
agree on the classification of a message, then we should not
expect an automatic classifier to determine the correct clas-
sification of that message. Table 6 summarizes the classifica-
tion results for the senior and intermediate developers. Out
of 54 change messages, the senior and intermediate devel-
opers disagreed on the classification of 11 change messages.
The Table indicates an 80% overall agreement between both

developer groups and a Kappa of 0.68, corresponding to a
substantial agreement. A closer look at the degree of agree-
ment between classifiers for each change type reveals that
there is an 85% agreement for GM changes, 81% agree-
ment for BF changes, and 68% agreement for FI changes.
In short, developers tend to agree more on classifying GM
or BF changes, than on classifying FI changes. This is likely
due to developers using specific keywords to classify GM and
BF messages like “indent”, “bug”, or “fix”.

We used the agreed on classifications to create a com-
mon classification for the remaining 43 change messages. We
compared the common and the automatic classification (see
Table 7). The Kappa for the common classification is 0.71.
Using the Kappa thresholds values shown in Table 5, we
note that the agreement between the automated classifica-
tion and the common classification is substantial. The table
indicates that the automated classification and the common
classification agree 81% of the time.

Automatic Classifier
Manual Classifier GM BF FI Total

GM 14 1 2 17
BF 2 14 3 16
FI 0 0 7 7

Total 14 15 12 43

Table 7: Classification Results for the Common Classifica-
tions vs. the Automatic Classifier (Analysis 2)

In addition to performing the Kappa analysis on the clas-
sifications, we performed a Stuart-Maxwell Test. While
Kappa examines the agreement between classifiers, the Stuart-
Maxwell Test examines the disagreement between classi-
fiers. In particular, the Stuart-Maxwell Test measures the
marginal homogeneity for all classification categories [1, 2,
3, 12]. One reason classifiers disagree is because of different
tendencies to use classification categories. For example, a
developer may tend to always classify changes as bug fixes.
The Stuart-Maxwell Test determines if classifiers have biases
towards specific classification categories or if they do not. A
small probability value P implies that there is an associa-
tion between both classifiers and that no bias exists. Table 8
summarizes the results for the Stuart-Maxwell Test for the
classification tables. The Stuart-Maxwell Test holds for all
classification tables at above 90%. These Stuart-Maxwell
Test results show that there is no bias and they agree with
the Kappa analysis performed above.

Maxwell Test
Classification Table Chi-Squared P
Intermediate vs. Automated (Table 3) 10.494 0.0053
Senior vs. Automated (Table 4) 6.786 0.0336
Common vs. Automated (Table 7) 5.238 0.0729

Table 8: Results of the Stuart-Maxwell Test

The results of analysis 1A, 1B, and 2 indicate that an au-
tomated classification approach for change records for open
source projects is likely to produce results that are sub-
stantially similar to classifications done manually by pro-
fessional developers. These results are encouraging as they
permit us to automatically recover a historical overview of
the bug fixes applied to an open source system. These bug



fix changes could be used, for example, to study the quality
of open source systems and to analyze the benefit of adopt-
ing different techniques to improve the quality of software
systems in general [11, 13].

4. CONCLUSION
In this paper, we investigated an artifact of software devel-

opment that is rarely studied; namely, the change messages
attached to every change committed to a source control sys-
tem. We investigated the possibility of classifying changes
automatically into bug fixing, bookkeeping and feature in-
troduction changes. Our results indicate that automated
classifications agree over 70% of the time with manual clas-
sifications by practitioners. Although our study involved a
small number of developers, we believe that their classifica-
tions are representative of developers in Industry, since they
worked at different companies spanning various domains and
they have several years of industrial experience. Neverthe-
less, it is desirable to investigate that our findings hold using
a larger number of participants and for additional projects.

Researchers should investigate techniques and approaches
to improve the quality of the change messages and to make
them more accessible for developers as they evolve software
systems.
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APPENDIX
In this appendix we show the questionnaire given to the
participants in our study.

The following are 18 actual change messages, which have
been randomly picked from several large software projects.
For every change, please classify the change message as

BF: A bug fix.

FE: A feature enhancement/addition

BK: A bookkeeping change such as merging of source con-
trol branches, updating copyright dates, indentations,
spelling corrections, etc.

NS: Not sure. The change message does not give enough
details to classify the change.

Please allocate 10 points among the 4 classes (BF, FE,
BK and NS).
For example, if you feel confident that a change is a bug fix
then assign all 10 points to BF. If you feel a change is likely
a bug fix and a feature enhancement then you could assign
5 points for BF and 5 points for FE. If you are not sure how
to classify the message then assign all 10 points to NS. For
example:

0. “fix error in hyperzont.c”

BF. _10_ FE.____ BK.____ NS.____

Here are the change messages that you are to classify.
[Personalized Generated List of Change Messages for Ev-

ery Participant ]

Using the Data from this survey
Can we acknowledge you when we report these results?

(yes/no, I would like to remain anonymous) ___


