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Abstract

AS today’s software systems are increasingly built with dependency rela-

tionships, where a client package makes use of a specific version of a

provider package, these client packages must effectively manage their

dependencies. To help facilitate this dependency management process, clients are

increasingly adopting dependency management bots to alert them when a provider

package they depend on releases a new version and whether the new version of

said provider package is compatible with their package.

Integrating these dependency management bots into a project requires a cer-

tain level of effort on the part of the client, and once the bot begins performing

its specific function, human intervention is usually required to either accept or re-

ject any action or recommendation the bot generates. This creates additional, and

sometimes unnecessary, work for clients, which can deter them from continuing to

use the bot. Additionally, dependency management bots have begun to implement
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the promising strategy of leveraging “the crowd” to help clients assess the involved

risks with accepting a dependency update. This opportunity to use knowledge from

“the crowd” to aid client packages with dependency management is interesting and

unique to dependency management bots, as they have access to the vast store of

data representing how compatible each provider package release is across many

client packages. In this thesis, we present two studies that examine these attributes

of dependency management bots. First, we describe a large empirical study on the

overhead that is introduced in client packages that adopt dependency management

bots. In particular, we provide a series of practical recommendations to help design-

ers of dependency management bots reduce the amount of unnecessary work they

create in client packages. Next, we describe a large scale study on the efficacy of de-

pendency management bots leveraging “the crowd” to provide supporting metrics

to help clients assess the risk of accepting a dependency update. Our findings will

help designers of dependency management bots effectively leverage crowd-sourced

data to aid client packages with dependency management.
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CHAPTER 1

Introduction

TODAY’S software systems are rarely built from scratch, with client packages

often making use of specific versions of provider packages through de-

pendency relationships. Because dependency relationships enable code

reuse, they have been shown to improve developer productivity, software qual-

ity, and time-to-market of software products (Lim, 1994; Basili et al., 1996; Mo-

hagheghi et al., 2004).

However, clients must also incur the cost of managing these dependencies, as

provider packages continuously release new versions containing bug fixes, new
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CHAPTER 1. INTRODUCTION 2

functionalities, and security enhancements. Still, clients cannot blindly accept ev-

ery dependency update, as there is an inherent risk that these new provider ver-

sions may modify existing functionality or introducing backwards incompatibilities

(a.k.a., breaking updates).

To help facilitate the process of dependency management, clients are increas-

ingly adopting dependency management bots to alert them when a provider on

which they depend releases a new version, and whether the new version of the

provider is compatible with their package (Storey and Zagalsky, 2016; Wessel et al.,

2018). Integrating these bots into a project’s workflow requires a certain level of

effort on the part of the client, and once the bot begins performing its specific func-

tion, human intervention is usually required to either accept or reject any action or

recommendation by the bot. Such bot recommendations can create additional, and

sometimes unnecessary, work for clients, which can deter them from continuing to

use the bot.

Perhaps the most common action generated by these dependency bots on which

clients must act is whether the client should accept a recommendation of a de-

pendency update by the bot. To support clients in making this decision, bots may

provide additional metrics on the new release of the provider, such as how com-

patible said release is with other client packages that also make use of the same

provider as a dependency. This opportunity to use knowledge from “the crowd” to

help clients assess the involved risk with a dependency update is interesting and

unique to dependency management bots, as they have access to a vast store of data

representing how compatible each provider package release is across many client

packages.
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In this thesis, we study the overhead that is introduced in clients that adopt

these dependency management bots, as well as explore the viability of dependency

management bots leveraging “the crowd” to help clients assess the involved risks

with accepting a dependency update. Based on our findings, we provide a series of

implications that are of interest for the designers of dependency management bots,

with attention given to practical recommendations to help reduce the amount of

overhead introduced by these bots, as well as how bots can effectively leverage the

crowd to further aid clients with dependency management.

1.1 Thesis Statement

Client packages are increasingly turning to bots to help facilitate the essen-

tial and risky task of dependency management. Therefore, it is important for

designers of these dependency management bots to understand issues clients

face when adopting these bots, as well as how to effectively provide support-

ing metrics that aid clients with dependency management.

1.2 Thesis Overview

In this section, we provide an outline of our thesis.

1.2.1 Chapter 2: Background

In this chapter, we provide background information related to dependency manage-

ment, discussing how practitioners manage their dependencies and common issues
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related to dependency management in software ecosystems. We then provide back-

ground information on software bots in general and how dependency management

bots are used to help alleviate the required work of practitioners in regard to de-

pendency management.

1.2.2 Chapter 3: Related Work

In this chapter, we provide an overview of prior research that is related to differ-

ent aspects of dependency management, including the prevalence of dependency

usage in software ecosystems, whether clients keep their dependencies up-to-date,

common issues related to dependency management, and methods that clients em-

ploy to guard against breaking dependency updates. We then discuss existing work

related to how bots are used in software engineering, the effects of adopting bots

in software projects and how bots are perceived by human developers, and bots

specifically designed for dependency management.

1.2.3 Chapter 4: Exploring the overhead introduced by the Green-

keeper dependency bot

As it becomes more commonplace for client packages to make use of software de-

pendencies, we have also seen an increase in popularity of using software bots to

automatically manage these dependencies. Although bots are able to help auto-

mate these monotonous tasks, integrating these bots into a package’s workflow in-

troduces a certain level of overhead for the client package, and once the bot begins
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performing its specific function, human intervention is usually required to either

accept or reject any actions or recommendations by the bot.

In this chapter, we describe an empirical study on the overhead that is incurred

by clients as a result of adopting the Greenkeeper1 dependency management bot.

We examine Greenkeeper issue reports (GKIRs), which are issue reports opened by

Greenkeeper when the bot detects a dependency-related problem in client pack-

ages, to explore the extent to which dependency management bots can either save

or create unnecessary work for these clients. In particular, we study (i) the over-

head introduced in client packages by the bot, (ii) the efficacy of recommended

actions by the bot, and (iii) the size of manual changes that are required by client

developers to resolve issues created by the bot. We observe that the bot introduces

a significant amount of work in the form of notifications and other artifacts (e.g.,

issue reports and comments) that must be addressed by client developers. We also

observe that automatically attempting to downgrade the failing dependency to the

previous working version (i.e., pinning), which should reverse any breaking changes

introduced by the dependency update with the least amount of effort and is auto-

matically attempted by Greenkeeper, is not an effective mechanism for resolving

issues that are created by the bot, as it fails more than two-thirds of the time. Af-

ter further manual analysis, we observe that GKIRs with pin attempts that fail are

caused by issues unrelated to the dependency being updated, such as misconfigured

pipeline environments, and often are in fact false alarms that are unrelated to the

dependency update. Finally, we observe that, while the majority of changes that

resolve GKIRs are small (1-3 lines of code) modifications to the client’s dependency

1https://greenkeeper.io/

https://greenkeeper.io/
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specification file, they can sometimes require changes to the client’s source code, in

which case they are comparable in size to changes that resolve non-GKIRs.

These findings indicate that, while bots like Greenkeeper can be an effective tool

for managing dependencies, they also can generate a significant amount of noise in

client projects. Leveraging our findings, we provide a series of implications that are

of interest for designers of dependency management bots, with attention given to

practical recommendations to help reduce the amount of overhead introduced by

these bots.

1.2.4 Chapter 5: On Bots Leveraging the Crowd for Dependency

Management: An Empirical Study of the Dependabot Com-

patibility Score

As the prevalence of client packages making use of provider packages in the form

of dependency relationships increases, client packages must face the essential and

risky task of keeping their provider packages up-to-date. To help facilitate this task,

clients are increasingly adopting dependency management bots to automatically

update and test a new version of a provider package when it is released. This

presents a unique opportunity, in that these bots have access to a vast store of data

representing how compatible each provider package release is across many client

packages.

Dependabot2, perhaps the most popular dependency management bot, is the

first to take advantage of this opportunity by providing a compatibility score for

each provider package release. This compatibility score is shown as a badge on

2https://github.com/dependabot

https://github.com/dependabot
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pull requests (PRs) opened by Dependabot, and is meant to give clients a sense

of the involved risk when updating a provider package by leveraging the knowl-

edge of “the crowd”, so that clients can be confident that a new provider version is

backwards compatible and bug-free.

In this chapter, we describe an empirical study on the efficacy of Dependabot

leveraging the crowd to provide a compatibility score to help clients assess the risk

of accepting a dependency update. Specifically, this chapter includes (i) an em-

pirical study that examines how effective Dependabot’s current compatibility score

strategy, (ii) a description and evaluation of additional data sources that depen-

dency management bots can consider when the crowd does not provide enough

support to calculate a compatibility score, and (iii) a description and evaluation of

an approach dependency management bots can employ to help calibrate the level

of trust clients should place in compatibility scores. We observe that the majority of

compatibility scores do not even have 5 candidate updates, which is the threshold

required for the compatibility score badge to be displayed on Dependabot PRs, and

when compatibility scores do have enough candidate updates, the vast majority of

the scores are above 90%. As a result of this skewness in both the number of can-

didate updates and the scores themselves, dependency management bots should

employ further methods to help amplify the input from the crowd and consider his-

torical upgrade metrics to assess whether a client package should accept or reject a

dependency update. Additionally, supporting metrics, such as a confidence interval,

should be provided alongside the compatibility score to help calibrate the level of

trust client packages should place in the score.
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1.3 Thesis Contribution

This thesis is focused towards helping designers of dependency management bots to

create tools that are easy to adopt and provide helpful metrics to further aid clients

handle the task of dependency management. In particular, our main contributions

are as follows:

1. This is the first work to perform a large empirical study on the overhead that

is introduced in client packages that adopt dependency management bots. In

particular, we provide a series of practical recommendations to help designers

of dependency management bots reduce the amount of unnecessary work they

create in client packages.

2. This is the first work to study on a large scale the efficacy of dependency

management bots leveraging the crowd to provide supporting metrics to help

clients assess the risk of accepting a dependency update. Our findings will

help designers of dependency management bots effectively leverage crowd-

sourced data to aid client packages with dependency management.



CHAPTER 2

Background

IN this chapter, we first provide an overview of how practitioners manage their

dependencies and common issues related to dependency management in soft-

ware ecosystems (Section 2.1). We then discuss how dependency manage-

ment bots are used to help alleviate the work that is required of practitioners in

regard to dependency management (Section 2.2).

2.1 Dependency Management

As more and more client packages depend on provider packages in the form of de-

pendency relationships, and these provider packages continuously release new ver-

sions containing new features and improvements, it is important to standardize how

9
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these changes are communicated from the provider package to the client package.

The most popular policy for communicating the kinds of changes made to a soft-

ware package is the Semantic Versioning1 (SemVer) scheme. A SemVer-compatible

version is a version number composed of a major, minor and patch number that

allows maintainers to logically order package releases. SemVer is adopted, for ex-

ample, in npm23, the largest software ecosystem, where provider packages need

to specify the version number of each release in their package.json metadata file4.

In turn, client packages can designate a dependency relationship with a provider

package in their package.json file as either a runtime dependency, which is required

by the client package in a production environment, or a development dependency,

which is only needed by the client package for local development and testing.

In addition to the dependency relationship type, clients can specify whether

they would like to accept either a specific version or a range of versions from the

provider. If a specific version is used (i.e., version pinning), the client will only

accept that unique version of the provider. If a version range is used, the provider

is implicitly updated whenever a new release from the provider is available that

satisfies the existing version range statement in the client package (i.e., an in-range

update). Version ranges are constrained using a set of operators that specify versions

that satisfy the range (e.g., “^” to accept only minor and patch updates, “∼” to accept

only patch updates, etc.). For example, if a client specifies an accepted version range

of ^1.0.0 for a provider, and that provider releases version 1.0.1, that provider

update is “in-range” for the client, and will be implicitly updated. In other words,

1https://semver.org
2https://www.npmjs.com/
3https://docs.npmjs.com/misc/semver
4https://docs.npmjs.com/files/package.json

https://semver.org
https://www.npmjs.com/
https://docs.npmjs.com/misc/semver
https://docs.npmjs.com/files/package.json
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if other developers clone the client project (i.e., client developers) and install the

client’s dependencies, they would receive version 1.0.1 of the provider package.

Additionally, if other projects make use of the client’s package as a dependency

(i.e., client users) and therefore transitively depend on the client’s dependencies,

they would also receive version 1.0.1 of the provider package when they install

their dependencies, which includes the client’s published package.

To illustrate this, Figure 2.1 shows an example of how the dependency ver-

sioning statement of a client package C for a provider package P affects the re-

solved version of P that is used by C when C is built. Initially at T0, P has released

version 1.0.0 and C specifies a versioning constraint as the range statement "P":

"^1.0.0" (i.e., implicitly accepting versions ≥1.0.0 ∧ <2.0.0 of P). Therefore, when

C is built, it will use version 1.0.0 of P. At T1, P releases version 1.0.1. Because this

version falls within C’s accepted version range, this version will now implicitly be

used when C is built. At T2, C changes their dependency version statement for P

from "P": "^1.0.0" to "P": "1.0.0" (i.e., pinning P to version 1.0.0). Now,

when C is built, only version 1.0.0 of P will be used. This can be seen at T3, where

P releases version 1.0.2, but C will continue to explicitly use version 1.0.0. In

other words, not only will C no longer benefit from any new features released by P

in the future, but they have also implicitly downgraded P from 1.0.1 to 1.0.0. At

T4, C again decides to modify their dependency version statement, this time chang-

ing from "P": "1.0.0" to "P": "^1.0.0" (i.e., unpinning P and again implicitly

accepting versions ≥1.0.0 ∧ <2.0.0 of P). Now, when C is built, version 1.0.2 of

P will be used. Finally, at time T5, P releases version 1.0.3, which falls within C’s

accepted version range, and therefore will now be used when C is built.
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Figure 2.1: An example of how the dependency versioning statement of a client
package C for a provider package P affects the resolved version of P that is used by
C when C is built.

While practitioners stand to reap the many benefits that come with reusing soft-

ware systems that have been previously built and are maintained by other develop-

ers, these dependencies often come with the increased cost of having to be managed

and updated. An important decision that is faced by clients is whether they should

constrain a dependency to a single specific version, or automatically accept a range

of versions from the dependency. By constraining their dependencies, clients are

able to drastically reduce the risk of a dependency update breaking their project.

However, clients must manually modify their dependency constraints if they want

to take advantage of bug fixes and new features in specific versions as they are

released by the provider.

By accepting a range of versions from a dependency, clients are able to au-

tomatically receive minor updates as they are released, potentially reducing the

overhead of managing their dependencies. However, there is a risk that providers
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will not respect the SemVer policy and release new versions that are not backwards-

compatible. Situations where the new provider release falls within the client’s range

of accepted versions and ends up breaking the client’s build (i.e., an in-range break-

ing update) can be a major problem for clients, especially if the provider is a runtime

dependency, as both client developers and client users will be impacted while the

issue remains unaddressed, being unable to successfully build or install the client

project.

Client developers can protect themselves from in-range breaking updates by us-

ing lock files (e.g., package-lock.json in npm) in their project. The lock file will

describe the entire dependency tree of the project as it is resolved when created,

including nested dependencies with specific versions. The lock file is intended to

pin down (i.e., lock) all versions for the entire dependency tree at the time that

the lock file is created, and is usually included to the client projects repository, so

that other client developers can install the exact dependencies specified in the lock

file. In other words, this ensures that installations remain identical and reproducible

throughout the client project’s entire dependency tree, across other developers, such

as team members working together, and across systems, such as when running a CI

build.5

However, while including a lock file in the client’s repository might protect other

client developers from in-range breaking updates, it does not protect the users of the

client package from these issues. This is because package-lock.json, for example,

cannot be published to npm6. This means that if a user of the client package (e.g.,

another developer with their own project) installs the client’s published package
5https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
6https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json#package-

lockjson-vs-npm-shrinkwrapjson

https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json#package-lockjson-vs-npm-shrinkwrapjson
https://docs.npmjs.com/cli/v8/configuring-npm/package-lock-json#package-lockjson-vs-npm-shrinkwrapjson
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from npm (rather than, say, another client developer cloning the git repository), the

user will never download the client’s package-lock.json file, and therefore it will

be completely ignored when the client’s dependencies (transitive dependencies to

the user of the client package) during the installation, allowing users of the client’s

package to use any version of the client packages dependencies that are compatible

with the version ranges dictated by the client’s package.json file. This is done

by npm in order to reduce the amount of package duplication caused when lots

of a package’s dependencies all depend on slightly different versions of the same

transitive dependency.

If a dependency update breaks a client’s build, the client may resort to version

pinning their dependencies to resolve the issue. Version pinning a dependency in-

volves a client changing their dependency specification for a provider package from

a range statement to a specific version statement, in effect locking the dependency

to the previously known working release, as can be seen at T2 in Figure 2.1. In this

example, the provider P may have made a backwards-incompatible change when

they released version 1.0.1, creating an issue in the client package C and prompt-

ing C to pin P to the previous working version (i.e., 1.0.0).

Version pinning a dependency is a common practice, usually motivated as a

workaround to fix breaking updates that occur from a dependency releasing a

backwards-incompatible change. Pinning is a legitimate option when developers do

not have the time or resources to fix an issue introduced by a dependency update,

as pinning is the action that requires a minimum overhead to potentially resolve

these type of issues. However, unless manual measures are taken to update the
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dependency constraints when new versions are released, the client will not receive

bug fixes or new functionalities from the provider.

2.2 Software Bots

Lebeuf (2018) defines software bots as:

“An interface that connects users to services. These services can be

internalized in the bot’s code and/or accessed externally. The bot also

provides some sort of additional value (in the form of interaction style,

automation, anthropomorphism, etc.) on top of the software service’s

basic capabilities.” - Lebeuf (2018)

In short, bots can be thought of as tools that perform repetitive predefined tasks

to save developers’ time, increase their productivity, and support them in making

smarter decisions (Storey and Zagalsky, 2016). Bots can either run continuously

or be triggered by occurrences associated with events, time conditions, or manual

execution. Bots can be useful for automatically completing a wide variety of chores,

such as automating CI pipelines, detecting flaky tests, and creating issues when a

service fails. Consequently, many software developers, teams, and companies take

advantage of bots to do these repetitive tasks because bots can perform those tasks

more efficiently than human users.

Specifically, client packages are increasingly turning to software bots to alleviate

the cost of managing their dependencies. The aim of these bots is to reduce the

workload of repetitive tasks related to dependency management faced by practi-

tioners (e.g., updating the client’s dependency constraints when a provider releases
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a new version) and to notify client packages about dependency updates that break

their build (e.g., automatically testing new dependency releases that satisfy the

client’s accepted dependency version range).

Greenkeeper, Dependabot, and Renovate7 are popular dependency manage-

ment bots that clients can integrate into their software packages to automate de-

pendency updates. All of these bots perform the same overarching task: to help

clients keep their dependencies up-to-date. This is accomplished by monitoring

the client’s dependencies and automatically testing new dependency releases to see

whether they are compatible with the client package. When one of a client’s de-

pendencies releases a new version, the bot will create a fresh branch with the new

dependency version applied to the client’s package, run the client’s CI pipeline, and

notify the client of the results with the option to update their dependency specifica-

tions. The client is then able to either accept or reject the recommendation of the

bot.

7https://docs.renovatebot.com/

https://docs.renovatebot.com/


CHAPTER 3

Related Work

IN this chapter, we provide an overview of prior research that is related to dif-

ferent aspects of dependency management (Section 3.1), including the preva-

lence of dependency usage in software ecosystem, whether clients keep their

dependencies up-to-date, common issues related to dependency management, and

methods that clients employ to guard against breaking dependency updates. We

then discuss existing work related to software bots (Section 3.2), including how bots

are used in software engineering, the effects of adopting bots in software projects

and how bots are perceived by human developers, and bots specifically designed

for dependency management.

17
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3.1 Dependency Management

In this section, we discuss existing work related to the prevalence of dependency

usage in software ecosystem (Section 3.1.1), whether clients keep their dependen-

cies up-to-date (Section 3.1.2), common issues related to dependency management

(Section 3.1.3), and methods clients employ to guard against breaking dependency

updates (Section 3.1.4).

3.1.1 Prevalence of Dependency Usage

Multiple studies examine the growing trend of using provider packages to build new

software. Wittern et al. (2016) examine the dynamics of npm and find that 81.3%

of packages depend on at least one other package, while 32.5% of them depend

on 6 or more packages. Fard and Mesbah (2017) find similar results, showing that

projects have an average of 6 dependencies and that this number is following a

growing trend.

Client packages that make use of a provider package also implicitly adopt all the

dependencies that said provider uses as well, called transitive dependencies. Kikas

et al. (2017) find that the ratio of transitive dependencies to direct dependencies

for projects is greater than 10, and packages exist in the ecosystem whose removal

could impact up to 30% of the entire ecosystem.

Practitioners will even rely on third-party dependencies to accomplish trivial

tasks. Abdalkareem et al. (2017a, 2020) conduct two studies that examine the

reasons clients choose to use “trivial” packages in the npm and PyPi ecosystems,

and find that clients believe trivial packages provide well-implemented and tested
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code, as well as increase development productivity. However, they also find that

clients worry that trivial packages introduce management overhead as well as a

risk of breaking their application. Chowdhury et al. (2021) perform a follow-up

study that looks at how trivial these “trivial” packages actually are, and find that

trivial packages are often used in central parts of software packages compared to

non-trivial packages, and that, while 16.8% of packages in the npm ecosystem are

considered trivial, in some cases removing one of them can impact 29% of the

ecosystem, further confirming the results obtained by Wittern et al. (2016) and

Kikas et al. (2017).

3.1.2 Outdated Dependencies

While clients continue to make use of dependency relationships, they are reluctant

to keep their dependencies up-to-date. The term “technical lag”, which was first

proposed by Gonzalez-Barahona et al. (2017), refers to packages lagging behind

with respect to using the latest version of their dependencies. Decan et al. (2017,

2018a) perform an analysis of multiple package dependency networks on the evo-

lution of technical lag and examined how technical lag can be reduced by relying

on the SemVer policy (the efficacy of which has been examined in multiple stud-

ies (Raemaekers et al., 2014, 2017; Dietrich et al., 2019; Decan and Mens, 2020;

Foo et al., 2018)).

The incurment of technical lag is not the only consequence that results from the

decision of clients to not keep their dependencies up-to-date. Decan et al. (2018b)

study how clients weigh the risks of using a vulnerable version of a dependency

against updating the dependency, and find that more than half of all dependent



CHAPTER 3. RELATED WORK 20

packages are affected by vulnerabilities in upstream packages. A large fraction of

affected dependent packages are not updated, even if an upstream fix is available,

usually caused by improper or too restrictive use of dependency constraints and

unmaintained packages. Kula et al. (2018) perform an empirical study on over

4,600 GitHub1 software projects and 2,700 packages to explore the impact of secu-

rity advisories on dependency updates, and find that 81.5% of the studied systems

keep their outdated dependencies regardless of whether there is a security advisory

for the dependency, which 69% of the surveyed developers claim to be unaware

of. Similarly, Cox et al. (2015) find that systems using outdated dependencies are

four times as likely to have security issues as opposed to systems that keep their

dependencies up-to-date.

3.1.3 Perils of Dependency Management

While the consequences of clients neglecting to keep their dependencies up-to-date

is well known, the obvious question that is raised is why would dependencies not

be kept up-to-date? After all, having up-to-date dependencies means that clients

benefit from the latest features, bug fixes, and security enhancements as they are

released from their dependencies. However, simply accepting the latest version of

a dependency is not necessarily a viable option for most packages. There is an

inherent risk when a client updates a dependency that the update will break the

client’s package in some way, and nearly all the studies mentioned thus far cite the

risk of breaking changes being one of the primary concerns that clients have when

it comes to determining whether they should update their dependencies.

1https://github.com/

https://github.com/


CHAPTER 3. RELATED WORK 21

Bogart et al. (2015, 2016) discuss their findings from interviews with develop-

ers concerning what they feel are primary issues with dependency management and

find that developers perceive dependency management and evolution as severe is-

sues and that existing awareness mechanisms (e.g., email notifications) are rarely

used. Brito et al. (2018b, 2020) examine the motivations behind developer’s deci-

sions to released backwards incompatible changes in their APIs and find that these

decisions were mostly motivated by the need to implement new features, to make

the package easier to use by simplifying the API, and to improve maintainability.

As explained in Section 2.1, a client may resort to version pinning their depen-

dencies as a workaround to fix breaking updates that occur from a dependency

releasing a backwards-incompatible change. Jafari et al. (2020) find that devel-

opers choose to pin some of their dependencies in over 52% of npm projects, and

Cogo et al. (2019) find in their study on dependency downgrades that 49% of all

downgrades occur due to a replacement of a version range statement with a specific

version (i.e., pinning the dependency). Additionally, Zerouali et al. (2018) find that

technical lag is often caused by clients using strict dependency version constraints,

such as pinning.

3.1.4 Guarding Against Breaking Updates

Multiple studies examine how to detect breaking changes in API updates (Jezek

et al., 2015; Brito et al., 2018a; Li et al., 2018). Specifically, Mezzetti et al. (2018)

and Møller and Torp (2019) describe the NoRegrets and NoRegrets+ tools, respec-

tively, that generate models for both the pre-update and the post-update version

of a provider, then compare the models to identify type regressions. Mujahid et al.
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(2020) describe a crowd-based approach for detecting breaking changes in provider

releases by leveraging the automated test suites of multiple client projects that de-

pend upon the same dependency to test newly released versions.

To detect whether clients would be affected by a dependency update, Møller

et al. (2020) propose a simple pattern language for describing API access points

that are involved in breaking changes, and provide an accompanying program anal-

ysis tool for locating which parts of the client code may be affected by the breaking

change. Nielsen et al. (2021) go a step further with their tool JSFIX, which detects

the locations affected by breaking changes in dependency updates, then transform-

ing those parts of the code to become compatible with the new provider version.

3.2 Software Bots

In this section, we discuss existing work related to the usage of software bots (Sec-

tion 3.2.1), the effects of adopting bots in software projects and how they are per-

ceived by human developers (Section 3.2.2), and bots for dependency management

(Section 3.2.3).

3.2.1 Usage of Software Bots

Storey and Zagalsky (2016) and Lin et al. (2016) find that bots are used to help

developers make smarter decisions and to support developers that need to commu-

nicate and coordinate with others. Both of these early exploratory studies examine

the roles that bots play in different aspects of the software development life-cycle,

as well as discuss the challenges and risks that bots may introduce and further
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research directions. Wessel et al. (2018) show that bots are primarily used for re-

porting build failures, decreasing code review time, and automating CI pipelines,

and that developers want both smarter and more configurable bots to work with.

Erlenhov et al. (2019) and Lebeuf et al. (2019) present taxonomies for classi-

fying software bots based on the observable properties, behaviours, and working

environments of different types of bots. They also discuss visions of what they

would consider for a future ideal bot, such as being autonomous, adaptive, and

technically and socially competent, ultimately acting akin to an artificial teammate

rather than a simple development tool.

Finally, multiple studies explore how developers interact with specific bots. For

example, Peng et al. (2018) study how developers work with Mention2 bot, an

automatic reviewer recommendation bot for PRs, reporting that developers appre-

ciate the effort that Mention bot saves but are hampered by its unstable setting and

unbalanced workload allocation. Urli et al. (2018) examine the efficacy of the auto-

matic program repair bot Repairnator3, and find that, while the Repairnator allows

researchers to collect a unique empirical dataset to study the challenges of program

repair, the bot itself has not yet succeeded in proposing an effective patch to human

developers. Wessel et al. (2019) analyze the adoption and usage over time of the

Stale4 bot, which helps maintainers in triaging abandoned issues and PRs, and find

that developers rarely modify the default configuration file of the bot.

2https://github.com/facebookarchive/mention-bot
3https://github.com/eclipse/repairnator
4https://github.com/marketplace/stale

https://github.com/facebookarchive/mention-bot
https://github.com/eclipse/repairnator
https://github.com/marketplace/stale
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3.2.2 The Effects of Bots on Software Projects and The Percep-

tion by Human Developers

The impact of introducing bots into software projects has been the subject of multi-

ple studies. Wessel et al. (2020a) investigate how several activity indicators change

after the adoption of a code review bot, and find that the adoption of a code re-

view bot increases the number of monthly merged PRs, decreases monthly non-

merged PRs, and decreases communication among developers. However, Wyrich

et al. (2021) find that PRs from bots are only accepted and merged 37% of the

time, versus 73% of PRs manually created by human developers. Additionally, they

find that it takes significantly longer for a bot PR to be interacted with and for it to

be merged, even though they contain fewer changes on average than human PRs.

Numerous studies have examined how software bots are perceived by human

developers. After introducing an autonomous refactoring bot into student software

development projects, Wyrich et al. (2020) conduct interviews with the students

and find that the bot was perceived as a useful and unobtrusive contributor, and

that the students were no more critical of it than they were about their human

peers.

Similarly, Wessel et al. (2018), Wessel et al. (2020b), Wessel et al. (2021), and

Erlenhov et al. (2020) perform interviews with industry practitioners and find that,

while bots are used to streamline tasks in software projects, their presence can cause

interruptions and noise, trust, and usability issues. Brown and Parnin (2019) also

report that bots still need to overcome problems such as notification overload in

order to enhance their interactions with humans.
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3.2.3 Bots for Dependency Management

Automated dependency management bots have become a popular area of research,

being at least partially examined in multiple studies (Erlenhov et al., 2019; Lebeuf

et al., 2019; Wessel, 2020; Wessel and Steinmacher, 2020). Most relevant to this

thesis, Mirhosseini and Parnin (2017) conduct a study on the effectiveness of dif-

ferent notification techniques designed to help developers keep their dependencies

up-to-date. They find that projects that use PR notifications in the form of depen-

dency management bots (e.g., Greenkeeper) and projects that use badge notifica-

tions (e.g., David-DM5) upgraded their dependencies 1.6 and 1.4 times as often,

respectively, as projects that did not use any tools. Still, they report that develop-

ers have negative perceptions of automated PRs and faced challenges convincing

users to upgrade out-of-date dependencies with Greenkeeper. While their work

specifically looks at whether tools like Greenkeeper can help developers keep their

dependencies up-to-date, in the studies described in this thesis we look to measure

the degree of unnecessary work that these types of tools create in client projects

that use them, as well as whether these types of tools are able to effectively take

advantage of their large user base to provide supporting crowd-sourced metrics to

help with dependency management.

Also, Alfadel et al. (2021) examine the use of Dependabot for automatically

creating PRs to fix dependency vulnerabilities in a client’s project. They find that

approximately 65% of Dependabot security PRs are merged and integrated in the

projects, usually within a day of being opened, and that 94% of PRs that are

not merged are closed by Dependabot itself. Interestingly, they find that half of

5https://david-dm.org/

https://david-dm.org/
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the PRs that are not merged were closed by Dependabot because a newer ver-

sion of the affected dependency was released. Their work specifically examines

the efficacy of Dependabot for increasing awareness of dependency vulnerabilities

and whether the tool helps developers mitigate vulnerability threats in JavaScript

projects, whereas we focus on the potential overhead introduced by dependency

management bots, as well as the efficacy of Dependabot’s strategy of leveraging

the crowd to provide clients with a sense of the involved risk with accepting a de-

pendency update.



CHAPTER 4

Exploring the overhead introduced by the Greenkeeper

dependency bot

This chapter is to appear in an upcoming publication of the ACM Transactions on Software
Engineering and Methodology (TOSEM).

DEPENDENCY management bots are increasingly being used to support the

software development process, for example to automatically update a

dependency when a new version is available. Yet, human intervention is

often required to either accept or reject any action or recommendation the bot cre-

ates. In this chapter, we describe our study on the extent to which dependency man-

agement bots create additional, and sometimes unnecessary, work for their users.

To accomplish this, we analyze 93,196 issue reports opened by Greenkeeper, a pop-

ular dependency management bot used in open source software projects in the npm

27
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ecosystem. We find that Greenkeeper is responsible for half of all issues reported in

client projects, inducing a significant amount of overhead that must be addressed

by clients, since many of these issues were created as a result of Greenkeeper tak-

ing incorrect action on a dependency update (i.e., false alarms). Reverting a broken

dependency update to an older version, which is a potential solution that requires

the least overhead and is automatically attempted by Greenkeeper, turns out to not

be an effective mechanism. Finally, we observe that 56% of the commits referenced

by Greenkeeper issue reports only change the client’s dependency specification file

to resolve the issue. Based on our findings, we argue that dependency management

bots should (i) be configurable to allow clients to reduce the amount of generated

activity by the bots, (ii) take into consideration more sources of information than

only the pass/fail status of the client’s build pipeline to help eliminate false alarms,

and (iii) provide more effective incentives to encourage clients to resolve depen-

dency issues.

4.1 Introduction

As clients continue to make use of dependency relationships to build software sys-

tems, software bots are increasingly being adopted to alleviate the cost of manag-

ing these dependencies. Integrating these bots into a project’s workflow requires a

certain level of effort on the part of the client developers, and once the bot begins

performing its specific function, human intervention is usually required to either ac-

cept or reject any action or recommendation the bot creates. One such dependency

management bot that clients can integrate into their projects is Greenkeeper. Each

time one of the providers a client depends on releases a new version, Greenkeeper
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opens a new branch in the client project with that update. The client’s continu-

ous integration (CI) tests kick in, and Greenkeeper watches them to see whether

they pass or fail. If the client’s CI pipeline fails with the new provider version and

the provider release is within the accepted dependency version constraints specified

by the client, the bot will create a Greenkeeper issue report (GKIR) in the client’s

repository with information stating which dependency caused the issue. Figure 4.1

provides an example of a GKIR with the provider package name, current version,

target version, and the dependency type in the client project highlighted.

Figure 4.1: An example of a Greenkeeper in-range breaking build update issue
report with the provider package name, current version, target version, and the
dependency type in the client project highlighted.

Regular users of the client package could potentially be affected by these GKIRs,

so there is incentive for clients to resolve GKIRs in a timely manner, yet this is

not always possible in an automated way. For example, if it is discovered that a
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new release of the provider is breaking the client, dependency management bots

often recommend downgrading a dependency to an older version. This downgrade

occurs by modifying the client’s dependency version constraints to only accept a

specific older version (a.k.a., version pinning). While this has been shown to be one

of the most applied workarounds requiring the least effort to resolve dependency

issues (Jafari et al., 2020), it introduces a host of other issues that can affect the

client unless manual measures are taken to constantly update the dependency con-

straint to a newer version. For example, older versions of a provider can contain

vulnerabilities, and more recent versions of providers often include fixes related

to project stability (Cox et al., 2015). In other words, tools like Greenkeeper will

automatically attempt to version pin the offending dependency when a GKIR is ini-

tially opened, in effect recommending to the clients to employ an anti-pattern in

their project.

While previous studies found that bots are able to automate dependency up-

dates (Mirhosseini and Parnin, 2017; Wessel et al., 2018), there is a lack of research

investigating the introduced overhead that accompanies integrating with these bots,

the efficacy of common actions recommended by bots for resolving dependency is-

sues, or the size of the changes that are required to be made by client developers

to resolve the issues reported by these bots. Therefore, in this chapter we perform

an empirical study of four years of Greenkeeper data to examine the extent to

which automated dependency management bots can either save or create unneces-

sary work in their client projects. Specifically, we investigate the following research

questions:
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RQ1: What is the overhead introduced in client projects by Greenkeeper? We

observe that Greenkeeper generates a significant amount of artifacts (e.g., issue

reports (IRs) and comments) that must be addressed by clients. GKIRs make up

approximately half of the IRs in all projects, or two-fifths in projects with a high

number of issue reports. The Greenkeeper bot itself generates nearly all the activity

on GKIRs. The vast majority of comments on GKIRs are from Greenkeeper, with

more comments continuing to be generated the longer the GKIR remains open.

Approximately one-fifth of user comments on GKIRs indicate that the GKIR is a false

alarm, meaning that, while the client’s CI pipeline might have failed with the new

provider release applied, the CI failure was not in fact caused by the new provider

release, and that the GKIR only serves to create noise in the client project.

RQ2: Is automated dependency pinning an effective mechanism for resolving

GKIRs? To our surprise, we observe that automatically attempting to pin the de-

pendency turns out to be a relatively ineffective solution to resolving GKIRs, failing

over two-thirds of the time. Yet, since the updated dependency is the only difference

between the GKIR branch and the project’s main branch, pinning the dependency

to the previous version (i.e. the version that was previously in use on the project’s

main branch) should in effect render the GKIR branch a duplicate of the project’s

main branch. After further manual analysis, we observe that GKIRs with pin at-

tempts that fail are caused by issues unrelated to the dependency being updated,

such as misconfigured pipeline environments, and often are in fact false alarms that

are unrelated to the dependency update.

RQ3: What are the performed code changes when resolving GKIRs? We observe

that more than half (56%) of commits that resolve GKIRs only modify dependency
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specification files, and that 57% of these commits only modify a single line in the

client’s dependency specification file, usually to upgrade the dependency version

specification. Commits referenced by GKIRs that require changes to the client’s code

are comparable in size to commits referenced by non-GKIRs, and tend to include

changes to a mixture of different file types.

The aforementioned findings show that significant overhead can be introduced

in client projects by dependency management bots in the form of numerous notifi-

cations and false alarm issues. To reduce this overhead, we argue that dependency

management bots should take into account more fine-grained information than sim-

ply the pass or fail status of the client’s CI pipeline when attempting to update a

dependency. Specifically, bots should be able to distinguish between CI pipeline fail-

ures caused by existing issues in the client’s project (e.g., incompatible Node version

errors) and valid CI pipeline failures caused by the updated dependency. Addition-

ally, dependency management bots should be mindful of the trade-offs introduced

by different features that could increase or reduce the overhead introduced by the

bot.

Our study has the following contributions:

• An empirical investigation of the overhead introduced by dependency man-

agement bots (RQ1), the efficacy of recommended actions by the bot (RQ2),

and the size of manual changes required by developers to resolve issues cre-

ated by the bot (RQ3);

• A discussion of practical implications for designers of automated dependency

management bots;
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• A dataset to help foment further empirical investigations on the related fields.

In addition, we make our parsers used to extract dependency information

from GKIRs public, so that they can be reused by developers and researchers

to aid further studies1.

The remainder of this chapter is organized as follows. Section 4.2 provides

a detailed explanation on Greenkeeper. Section 4.3 explains the employed data

collection procedures for the study. Section 4.4 presents the motivation, approach,

and findings of our three research questions. Section 4.5 discusses the implications

of our findings. Section 4.6 discusses the threats to the validity of our study. Finally,

Section 4.7 concludes the chapter.

4.2 Greenkeeper

Greenkeeper is a popular dependency management bots that functions similarly

to the description of automated dependency management bots provided in Sec-

tion 2.2. In our study, we focus on data from Greenkeeper because the artifacts

that Greenkeeper creates (i.e., GKIRs) are easily identifiable and require client de-

velopers’ attention. Recall that in-range breaking updates can potentially affect the

users of a client’s project, and therefore should be given special attention by client

developers. Greenkeeper also takes care of corner cases that don’t require client

developer’s attention (e.g., when client’s pin their dependencies), which makes the

data more suitable and reliable to study the phenomenon of interest. Addition-

ally, clients must make the deliberate decision to integrate with Greenkeeper (as

1https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead

https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead
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opposed to Dependabot, for example, which is automatically enabled on client

projects on GitHub to open security PRs2, which clients may end up paying less

attention). These attributes make Greenkeeper an ideal dependency management

bot to study in the context of generating overhead for clients. Therefore, although

we explain in further detail how Greenkeeper works, the dependency management

bots mentioned in Section 2.2, as well as others not mentioned, work in a similar

manner.

Greenkeeper sits between the client and their ecosystem package manager,

watching the providers the client depends on. Each time one of the providers re-

leases a new version, Greenkeeper creates an isolated branch with that dependency

update. The repository’s CI pipeline runs on the new branch, and Greenkeeper

watches the results to see whether they are successful. Based on the test results and

the client’s dependency constraints, Greenkeeper will open a GKIR in the client’s

repository with information stating which dependency update caused the problem,

an example of which can be seen in Figure 4.1.

Since dependency updates that cause GKIRs to be created are in-range break-

ing updates, they can directly affect users of the client package if the offending

dependency is a runtime dependency. Since the client’s dependency constraints

automatically allow for the new version of the dependency to be accepted when

users install the client package, users will be unable to successfully build or install

the client package while the GKIR remains unresolved, even if the client makes use

of lock files in their project. Therefore, GKIRs can represent major issues for the

2https://docs.github.com/en/code-security/supply-chain-security/managing-

vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-

updates#supported-repositories

https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates#supported-repositories
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates#supported-repositories
https://docs.github.com/en/code-security/supply-chain-security/managing-vulnerabilities-in-your-projects-dependencies/configuring-dependabot-security-updates#supported-repositories
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client, and there is an incentive for the client developers to resolve them in a timely

manner.

In addition to being alerted when a new GKIR is created in their project, clients

will receive notifications for any activity that occurs on these GKIRs. One of the

biggest drivers of these notifications is Greenkeeper itself. When a GKIR is first

created, Greenkeeper will often attempt to pin the dependency that caused the

GKIR to be opened, as explained before. Greenkeeper will then comment on the

GKIR whether the client’s tests are passing again with the pinned dependency. If

the client’s tests continue to fail, the client must manually resolve the issue with a

solution that potentially induces a higher level of overhead. This could include ei-

ther adapting their codebase to be compatible with the new release of the provider,

or by downgrading to an earlier version of the provider that their project is compat-

ible with. However, if the pin is successful, Greenkeeper provides a link to create a

pull request (PR) that commits the pinned dependency version specification to the

main repository branch. Figure 4.2 shows an example of Greenkeeper notifying

the client that their tests are passing again (4.2a) versus that their tests are still

failing (4.2b) with the affected provider version pinned to the previous release.

Greenkeeper will continue to generate activity on GKIRs while the GKIR re-

mains open. For example, if the dependency that caused the GKIR to be created

releases a new version while the GKIR is still open, Greenkeeper will automatically

re-run the client’s tests with the new version of the dependency and notify the client

whether their tests are passing again with the new version by commenting on the

GKIR thread. Figure 4.3 shows an example of Greenkeeper notifying the client that

their tests are passing again (4.3a) versus that their tests are still failing (4.3b) with
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(a) A Greenkeeper comment indicating that
the client’s tests are passing again with the
provider pinned to the previous version.

(b) A Greenkeeper comment indicating that
the client’s tests are still failing after pinning
the provider to the previous version.

Figure 4.2: Examples of comments from Greenkeeper providing the results of au-
tomatically attempting to pin the provider when a GKIR is created.

a new version of the provider that caused the GKIR to be created. This feature al-

lows for clients to be notified if the GKIR can actually be resolved by actions taken

by the provider, with minimal effort on the client’s part. For example, the provider

may realize they had released a breaking update, and perform a rapid release to

correct the issue. Instead of rushing to fix the GKIR on their side, clients can simply

wait for the provider to fix the issue, and Greenkeeper will notify the client if the

issue is resolved.

Greenkeeper recognizes that clients may depend on multiple subpackages from

the same provider that are maintained in the same related codebase (i.e., monorepo

package)3. For example, if a client were to depend on the Jest4 provider, the client

could depend on the core jest package, as well as the jest-cli and the jest-resolve

sub-packages. These monorepo packages tend to release new versions of their sub-

packages as a group, and if Greenkeeper were to treat each of these subpackages

individually, the clients would be flooded with new notifications for each subpack-

age they depend on when the provider releases an update. Therefore, in an effort to

3https://greenkeeper.io/docs.html#monorepo-dependencies
4https://github.com/facebook/jest

https://greenkeeper.io/docs.html#monorepo-dependencies
https://github.com/facebook/jest
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(a) A Greenkeeper comment indicating that
the client’s tests are passing again with a new
release of the provider tape that caused a
GKIR to be created.

(b) A Greenkeeper comment indicating that
the client’s tests are still failing with a new
release of the provider rollup that caused a
GKIR to be created.

Figure 4.3: Examples of comments from Greenkeeper when a new version from a
provider that caused a GKIR is released.

reduce the introduced overhead to the client, Greenkeeper will group releases from

a predefined set of popular monorepo providers together (e.g., Angular5, Babel6,

Jest, React7, etc. ) into bundled IRs.

4.3 Data Set

In this section, we discuss how we collect the data set to address the RQs that we

outlined in the introduction. We use the workflow of Figure 4.4: (i) we identify

projects on GitHub8 that use the Greenkeeper bot, (ii) we collect all IRs for each

identified project from the previous step, and extract the necessary information

from each GKIR, (iii) we collect any supporting artifacts related to each identified

5https://github.com/angular/angular
6https://github.com/babel/babel
7https://github.com/facebook/react
8https://github.com/

https://github.com/angular/angular
https://github.com/babel/babel
https://github.com/facebook/react
https://github.com/
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GKIR from the previous step. Next, we provide a more in-depth explanation of each

step in our data-collection workflow.

Figure 4.4: Overview of the data collection process.

4.3.1 Identify projects using Greenkeeper

To identify the projects using Greenkeeper, we first identify projects containing

GKIRs. For this, we leverage the title of the GitHub IRs, since GKIRs have a consis-

tent prefix for their titles, namely “An in-range update of. . . ”, as well as a user.login

attribute of greenkeeper[bot], and can therefore be distinguished from non-GKIRs.
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We use the GitHub Search API9 to search for IRs on GitHub that match this cri-

teria. Each IR record has an associated project attribute. So, once we identify

which IRs are GKIRs, we are able to construct a list of GitHub projects that have

integrated with the Greenkeeper bot and received at least one GKIR. One of the

prerequisites to integrate with Greenkeeper is that the project must have at least

one package.json file somewhere in the project10, which implies that all client

projects that have integrated with Greenkeeper are part of the npm ecosystem. In

total, we extract a list of 9,632 GitHub projects.

4.3.2 Collect and parse GKIRs

To build our data set of IRs, we use the GitHub API 11 to retrieve all IRs opened in

the list of projects we collected in Section 4.3.1. This step is necessary as a follow-up

to the step in Section 4.3.1 to make sure we capture all IRs from these projects, not

just GKIRs. We separate the IRs into GKIRs and non-GKIRs using the same criterion

described in Section 4.3.1. GitHub considers PRs to be a type of issue, however we

exclude PRs from our analysis, as our study focuses on actual IRs, rather than the

review process involved with dependency management. Overall, this process leaves

us with 93,196 GKIRs and 573,430 non-GKIRs.

To understand the types of providers and provider updates that cause GKIRs, we

extract the name of the provider package, the current version of the provider used

by the client and the newly released target version of the provider, and whether

the provider is a development dependency or a runtime dependency in the client

9https://docs.github.com/en/rest/reference/search
10https://greenkeeper.io/docs.html#prerequisites
11https://docs.github.com/en/rest

https://docs.github.com/en/rest/reference/search
https://greenkeeper.io/docs.html#prerequisites
https://docs.github.com/en/rest
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project. For the majority of GKIRs, this information is included in the body of the

GKIR. However, in some cases, depending on the version of Greenkeeper used in

the client project, not all of this information is available on the GKIR. Specifically,

we are not able to extract the provider dependency type from 4% of GKIRs. When

this information is required for our analysis, we omit the GKIRs that are missing

this data from our study.

The format of the GKIRs is not always consistent. For example, Greenkeeper

will group releases from a predefined set of popular monorepo providers together

(e.g., Angular, Babel, Jest, React, etc.). Additionally, clients can manually specify

whether certain provider releases can be grouped together for their projects. This

means that all provider updates made by Greenkeeper will be bundled together into

a single GKIR12, with information about each provider in the bundle in the body of

the same GKIR. We found that overall, 4.3% of GKIRs correspond to bundled GKIRs.

We identify 9 unique GKIR templates based on the version of Greenkeeper that the

client was using at the time the GKIR was created, as well as whether the GKIR

contained bundled updates. To parse each of these templates, we build 9 unique

parser implementations that are able to detect the type of GKIR and extract the

necessary information from the GKIRs using regular expressions. We make our

parsers available for reuse by developers and researchers, as well as to verify the

parsers’ correctness13.

12https://greenkeeper.io/docs.html#monorepo
13https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead

https://greenkeeper.io/docs.html#monorepo
https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead
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4.3.3 Collect artifacts related to GKIRs

To understand the activity generated on GKIRs and the maintenance level required

to resolve GKIRs, we gather any artifacts related to the GKIRs collected in the pro-

cess described in Section 4.3.2. In particular, we retrieve all comments on each

GKIR, as well as any commits referenced by GKIRs to analyze the level of activity

generated on GKIRs and the types of changes developers create to resolve GKIRs,

respectively. These artifacts are retrieved in the form of issue events14, which are

created whenever an interaction related to the issue occurs (e.g., a user references

the IR from a PR). We use the user login attribute on the GitHub comment records

to distinguish between comments left by users and comments left by bots, collecting

a total of 10,724 comments from users on GKIRs, 354,901 comments from bots on

GKIRs, and a total of 2,044 unique commits referenced by GKIRs.

Finally, we collect the number of stargazers each project has on GitHub, which

we use as a measure of popularity of the project (Borges et al., 2016). We also

determine whether the project is available as a provider package by searching for

the project’s name on the npm registry. In order for a project to be available to

download in the npm ecosystem as a provider package, it must be available on

the npm registry. However, a client package can make use of a provider package

available on the npm registry without itself being available on the registry (i.e.,

it is possible for a project to act as a client, a provider, or both on npm). We

find that 76.1% (7,322) of the projects in our dataset are available to download

on the registry. We use these projects specifically to explore how long it takes for

14https://docs.github.com/en/rest/reference/issues#events

https://docs.github.com/en/rest/reference/issues#events
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developers to address GKIRs, since GKIRs can potentially affect the users of these

packages.

The collected data is available as part of our supplementary package15.

4.4 Results

In this section, we present the results for each of our RQs. For each RQ, we discuss

the motivation, the approach we used to address the RQ, and our findings.

4.4.1 RQ1: What is the overhead introduced in client projects

by Greenkeeper?

Motivation. While software bots in general are useful for automating many tasks,

prior research has shown that they have the potential side effect of disrupting de-

velopers in their work (Wessel and Steinmacher, 2020; Storey and Zagalsky, 2016).

However, there is a lack of investigation to determine whether that is the case for

dependency bots and what types of overhead these specific types of bots introduce.

Wessel et al. (2018) found that package maintainers complain that bots in open

source software (OSS) projects provide incomprehensive or poor feedback on pull

requests, and that they are often overwhelmed with notifications, thereby increas-

ing the level of effort required to address any issues created by the bot. Therefore,

we consider overhead in the context of dependency management as referring to

the need for developers to address issues or recommendations created by the bot in

15https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead

https://github.com/SAILResearch/suppmaterial-22-ben-greenkeeper-overhead
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their projects. This includes any form of notification that requires developer’s atten-

tion, and may consist of a significant amount of noise (e.g., if the GKIR is created as

a result of some issue unrelated to the dependency update, and therefore is a false

alarm).

To that end, we explore the overhead that is introduced in clients who use tools

like Greenkeeper. Specifically, we investigate 1) how prevalent are GKIRs in client

projects and what are the artifacts (e.g., comments) created as a result of these

GKIRs (Section 4.4.1.1)?, 2) how long does it take for clients to address GKIRs

and these related artifacts (Section 4.4.1.2)?, and 3) are GKIRs and these related

artifacts actually useful to clients (Section 4.4.1.3)?

4.4.1.1 How prevalent are GKIRs in client projects and what are the artifacts

(e.g., comments) created as a result of these GKIRs?

Approach. We first examine the proportion of studied projects’ issues that are

GKIRs, beginning from the point in time when Greenkeeper first created a GKIR

in each project. We use this point in time as a proxy for when each project first

adopted Greenkeeper. Exploring this metric can provide a sense of how prevalent

Greenkeeper is in projects that adopt it. We aim to reduce any bias introduced

by projects with a low number of IRs, as these cases may skew the proportion of

GKIRs in a project (e.g., a project with only 3 IRs, 2 of which are GKIRs will have

a proportion of two-thirds). Therefore, for this RQ, we first calculate the median

number of IRs for projects in our dataset, and then specifically analyze projects that

have at least the median number of total IRs.
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If an IR has been closed, it is an indicator that someone (e.g., a human developer

or a configured bot) has decided that either the issue has been fixed, or that the

issue is not, in fact, a problem for the project in question (i.e., a false alarm),

and can be closed. Therefore, we consider any GKIRs that have been closed to be

resolved. We examine both the overall proportion of GKIRs that have been closed

versus those that remain open, as well as each individual project’s proportion of

GKIRs that have been closed. These metrics can provide a sense of how much

attention is required by Greenkeeper from package maintainers compared to the

rest of the project. We compare each project’s proportion of closed GKIRs to non-

GKIRs to discover whether GKIRs are resolved at a higher rate.

Findings. Observation 4.1) Half of the IRs in projects that have integrated

with Greenkeeper are GKIRs. This represents a very large proportion of IRs to

be created by a single bot. To account for packages with a significant number of

IRs in our results, we perform the same analysis only on projects that have at least

the median number of total issues. We find that 41.7% of IRs in these projects are

GKIRs, which is still a high percentage of a project’s IRs to be created by a bot.

The distributions of the proportion of GKIRs per project are shown in Figure 4.5.

This observation suggests that Greenkeeper is very prevalent in client projects that

adopt it, and requires much attention from client developers.

Observation 4.2) Clients close approximately the same proportion of GKIRs as

other issues in a project. We consider a GKIR being closed to indicate that it

was determined that the GKIR has either been fixed or the GKIR is not a problem.

Overall, we observe that 82.3% of GKIRs are closed (i.e., resolved), compared to

79.8% of non-GKIRs. This high proportion of closed GKIRs indicates that developers
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Figure 4.5: Violin-plot showing the distribution of the proportion of project issues
that are in-range breaking build update issues. The dashed lines indicate the first
quartile, median, and third-quartile.

are highly responsive to these issues, as a developer would have had to determine

that the GKIR has either been fixed or the GKIR is not a problem in order to close

the GKIR. Of the 17.7% of GKIRs that are not closed, we find that 99% do not have

any form of interaction from a client developer (e.g., a comment or a referenced

commit), indicating that these GKIRs are simply ignored by the client developers.

4.4.1.2 How long does it take for clients to address GKIRs and these related

artifacts?

Approach. There is incentive for clients to resolve GKIRs in a timely manner, espe-

cially if the offending dependency is a runtime dependency, as users of the client’s

project will be affected by the GKIR while the issue remains unaddressed, being

unable to successfully build or install the client project. However, this issue is only

relevant to clients who have dependent projects. Therefore, for this analysis, we
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only examine projects that have at least 10 stars on GitHub, which is a measure

of package popularity (Borges et al., 2016), and whose package name is available

on the npm registry, which indicates that the client package is also available as a

provider package for other projects to depend on. After applying this filter, we find

that 32.7% (3152) of the client projects in our dataset meet this criteria. For these

projects, we analyze the amount of time it takes for GKIRs to be resolved (closed)

compared to non-GKIRs. To do this, we calculate the distribution of the time differ-

ence (in days) between the creation date and the close date for closed GKIRs and

non-GKIRs for each project.

We compare the two distributions for each project and verify whether they are

statistically different. We test the null hypothesis that both distributions do not

differ from each other after using the Wilcoxon Rank Sum test (α = 0.05) (Bauer,

1972) and correct the resulting p values using Bonferroni type adjustment (Arm-

strong, 2014). For statistically significant distributions, we assess the magnitude

of the difference with the Cliff’s Delta (d) estimator of effect size (Cliff, 1996).

To classify the effect size, we use the following thresholds (Romano and Krom-

rey, 2006): negligible for |d| ≤ 0.147, small for 0.147 < |d| ≤ 0.33, medium for

0.33 < |d| ≤ 0.474, and large otherwise. We report the proportion of associated

projects with each effect size, as well as the distributions of the median time-to-

close GKIRs and non-GKIR per project.

Findings. Observation 4.3) Popular projects that are available as provider

packages take a median of 6 days to resolve GKIRs, which is in line with non-

GKIRs. During these 6 days, users of these popular client projects could potentially

be affected by the issue that caused the GKIR, which is a considerably long time for
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a package to be in a broken state. We consider whether clients may resolve GKIRs

faster depending on if the offending dependency was a runtime dependency or a

development dependency. Approximately three-quarters of GKIRs were opened for

updating a provider package that was a development dependency of the client. This

means the dependency is not required by the client project in production, and the

client’s users will not be affected by any issues that are caused by the dependency.

GKIRs for these types of dependencies are resolved in a median of 6.5 days. The

remaining quarter of GKIRs were for runtime dependencies, which are required

by the client in production. In these cases, if the GKIR was indeed caused by the

dependency, then new installations of the client project will fail because of the new

dependency release. GKIRs for these types of dependencies are resolved in a median

of 5.71 days. While the difference between the time taken to close GKIRs opened

for development or runtime dependencies is statistically significant (p < 0.05), the

effect size is negligible (|d| = 0.035), implying that the type of dependency that

caused the GKIR does not affect how fast client developers take to resolve these

issues.

When comparing projects’ median time taken to close GKIRs and non-GKIRs, we

find that the vast majority (98%) of the distributions are not statistically significant

or have a negligible effect size. This implies that developers tend to resolve GKIRs

at the same speed as non-GKIRs in their projects.
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4.4.1.3 Are GKIRs and these related artifacts actually useful to clients?

Approach. To explore the notifications that clients receive in addition to the noti-

fication caused by the creation of a GKIR, we examine the activity that occurs on

GKIRs in the form of comments and events. We use specific patterns (Table 4.1) that

are used by the bot at the time of the data collection to match types and frequency

of comments made by Greenkeeper on GKIRs (see Section 4.2).

Table 4.1: String patterns for classifying types of Greenkeeper comments.

Comment Type String Pattern

Failing new release Your tests are still failing with this version
Passing new release Your tests are passing again with this version
Failed pin attempt ˆAfter pinning to .* your tests are still failing
Passing pin attempt ˆAfter pinning to .* your tests are passing again

The comments left by users on GKIRs provide a unique source of information, as

developers may provide their rationale for considering the GKIR as resolved before

closing the IR. We use the user type attribute on the comment records to distin-

guish between comments left by users and comments left by bots.

We lemmatize the comments left by users on GKIRs, and initially set each lem-

matized comment body in the full data set as unclassified. The following steps are

then used to classify the comments: 1) the first author manually examined a sample

size of 50 unclassified comment bodies from the full data set to extract common pat-

terns that could be grouped into similar categories, 2) these new patterns are added

to a set of regular expressions, 3) the full data set of lemmatized comments are then

re-classified with the updated regular expressions, 4) the process is repeated until
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any new extracted patterns do not classify a threshold of at least 1% of the unclas-

sified comments. Once this threshold was reached, 74.8% of the comments in the

full data had been matched to one of the following three overarching categories:

Referenced Fix (i.e., the comment indicates the GKIR has been resolved), False Alarm

(i.e., the comment indicates the GKIR is a false alarm), and Tool Mentioned (i.e., the

comment mentions Greenkeeper, the CI system, or some other tool used by the

client developers). Each overarching category consists of multiple sub-categories,

the patterns for which are shown in Table 4.2. We then examine the proportion

of each of these categories as a lower bound estimate of how often developers are

responding to GKIRs due to a dependency problem or are indicating the GKIRs to

be false alarms.

Findings. Observation 4.4) GKIRs generate a significant amount of noise in

client projects. The vast majority (96.8%) of comments on GKIRs are from the

Greenkeeper bot itself. 80% of GKIRs have an initial comment from Greenkeeper

reporting the status of attempting to pin the dependency, and GKIRs in general

have a median of 2 comments from Greenkeeper. Figure 4.6 shows that the longer

a GKIR remains open, the higher the likelihood that it will continue to generate

notifications in the client project, as Greenkeeper will comment on the existing

GKIR while the GKIR remains open whenever the provider releases a new version,

rather than creating a new GKIR.

In total, 38% of GKIRs remain open long enough to see a new release from the

provider. Of these GKIRs, approximately four out of five (81.3%) only see new

releases that continue to fail the client’s tests. This means that if the GKIR is a

false alarm (i.e., the GKIR was not in fact caused by the dependency being updated,
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Table 4.2: String patterns for classifying “False Alarm” and “Fix Referenced” user
comments on GKIRs.

Category Sub Category Regular Expression

Fix Referenced PR URL https:\/\/github\.com\/[\S]*\/(pull)\/[\S]*
Closed By ((closed|fixed|resolved|done|updated)(

in|by|via|with)+ #\d*)
PR/Commit Number (^#\d*|(merged|close|pr|see).*#\d*)
Fix Mentioned (resolve|fix|bump|merge|upgrade|done|

clos(e|ing)|solved)

False Alarm Flaky flake|flaky|flakiness|fluke|unrelated

Inconsistent (inconsistent|brittle|unstable|

spurious( unit)?) test

Build Hiccup (server|test|CI|build) (hiccup|is actually

passing|failed for other reasons)

Random Failure (random|intermittent)( build|test|CI)?

(failure|error)

Rerun Pipeline re-?(run|ran|starting|build|tried|

trigger|start)

False Positive false (positive|alarm|negative|alert|flag)|

invalid|non-issue|no action

required|obsolete(d)?|not relevant

Timeout time-?out

Tool Mentioned Mention CI System (Travis|CircleCI|Cirecl

CI|Jarvis|Jenkins|BitHound|CI.*issue)

Mention Greenkeeper Greenkeeper

Mention Renovate Renovate

but rather some unrelated issue with the client’s project) the client will constantly

receive notifications that their build continues to fail with new dependency updates

until they determine the GKIR is, in fact, a false alarm and that they can safely close

the issue.

Observation 4.5) Developers tend to not comment on GKIRs, but when they do,

they usually indicate the issue has been resolved or is a false alarm. Only 9.3%

of GKIRs have a comment from a developer, versus 74.6% of non-GKIRs from the
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Figure 4.6: The distribution of the time taken to close a GKIR against the number of
comments on the GKIR. The bin colour indicates the frequency of each data point.

same set of projects. We classify these comments (Figure 4.7) using the method de-

scribed in the approach, and report the proportion that indicates the GKIR has been

fixed and how many indicate the GKIR is a false alarm, which are the two most com-

mon overarching categories. We found that approximately half (47.8%) of these

developer comments are referencing a fix for the GKIR. For example, users may ref-

erence a PR (e.g., “Fixed with PR #169.”), a commit (e.g., “Fixed via f6800c7”), or

simply say that the issue has been resolved(e.g., “Fixed manually”).

Additionally, we found that one in five (19.8%) developer comments indicate

that the GKIR is a false alarm. For example, users indicate that the GKIR was

caused by the CI pipeline (e.g., “The tests passed after re-running the Travis build.”,

“This is a false positive, the build had timed out.”), that their project’s tests failed
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Figure 4.7: Bar-plot showing the number of comments matched to each of the
patterns shown in Table 4.2.

for a non-deterministic reason (e.g., “Flaky test”), or simply that the GKIR is not, in

fact, an issue (e.g., “False positive”).
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RQ1: What is the overhead introduced in client projects by Greenkeeper?

• Greenkeeper induces a significant amount of overhead that must be addressed by clients,

with GKIRs making up half (50%) of the IRs in all projects, or two-fifths (42%) in projects with

a high number of IRs.

• The vast majority (97%) of comments on GKIRs are from Greenkeeper, with more comments

continuing to be generated by Greenkeeper the longer the GKIR remains open, creating further

notifications in client projects.

• Nearly one-fifth (19%) of user comments on GKIRs indicate that the GKIR is a false alarm,

meaning the GKIR only serves to create noise in the client project.

4.4.2 RQ2: Is automated dependency pinning an effective mech-

anism for resolving GKIRs?

Motivation. Greenkeeper’s automatic pin attempt feature is an interesting phe-

nomenon that deserves to be investigated further, as automatically attempting to

pin the dependency as a best-effort solution has the potential to make the client

package “downloadable” again quite quickly, with minimal effort on the part of the

client developers. It stands to reason that the pinning attempt should succeed the

majority of the time, since if a client’s build was passing before a dependency re-

leased a new version that broke the client’s build, pinning the dependency back

to the prior version should result in the client’s build passing again. Yet, pinning

should only be a temporary measure, as the client will no longer receive bug fixes

or security updates from the provider.

However, if the pin attempt fails, then the client developer’s attention is required

to address the GKIR. In this case, the overhead of resolving the associated problem
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with the GKIR will incur on the client developers. Additionally, a failed pin attempt

may be a good indicator that the GKIR was not in fact caused by the dependency be-

ing updated, but rather by some other issue that was already present in the client’s

project. Therefore, in this RQ, we investigate the efficacy of Greenkeeper’s auto-

matic pinning feature and the types of issues developers need to address when the

pinning attempt fails.

Approach. We look at the effectiveness of Greenkeeper’s automatic attempts at

pinning the offending dependency to resume passing the client’s CI pipeline. Green-

keeper posts a comment following one of two specific patterns to notify the user

whether the pin attempt was successful. We determine whether the automatic pin

attempt was successful by searching for comments on GKIRs from Greenkeeper

that match the pinning status patterns shown in Table 4.1.

To explore the types of issues that need to be addressed by client developers

when Greenkeeper’s automatic pinning attempts fail, we manually analyze a sta-

tistically significant sample (95% confidence level and ±5% confidence interval) of

GKIRs that have a failed pin attempt by Greenkeeper (381 cases out of 51,720).

For each GKIR with a failed pin attempt, we check whether the build logs for the CI

pipeline that failed are available. Whenever an observation in our sample did not

meet this requirement, we randomly drew another observation from the population

of GKIRs with a failed pin attempt. We then categorize the build logs to deter-

mine the reasons the client CI pipelines failed for the dependency updates that was

followed by a failed pin attempt.

To mitigate the risk of the classifications being biased by the author of this the-

sis, both the author of this thesis and a collaborator of this study independently
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classified 15% (58) of the random samples, first examining the build logs of each

sample and (if possible) summarizing the reason for why the build failed in one sen-

tence. Both the author of this thesis and the study collaborator then independently

extracted common categories for why the builds failed, and then discussed their

individual categories and consolidated the classes. During the discussion, there

were 15 cases for which the only difference was the level of granularity with which

we described the class (e.g., in a case where the client’s build failed because the

test suite timed out, one author considered the class to be a test failure, while the

other considered the class to be a timeout error) — we consolidated these cases

into classes that were commonly agreed. There were three more cases for which

the two authors disagreed (e.g., one authored mistakenly attributed a build failure

to a syntax error, when in fact a missing dependency caused the failure). The three

disagreements were discussed and an agreement was reached for them. Through

this manual analysis and following discussion, 10 different categories for created

GKIRs with a failed pin attempt were identified.

Considering the existence of 10 categories and three disagreements out of 58

analyzed cases, we calculate the inter-rater agreement in our methodology using

Cohen’s Kappa coefficient (Cohen, 1960). The Cohen’s Kappa coefficient has been

used to evaluate inter-rater agreement levels for categorical scales, and provides the

proportion of agreement corrected for chance. The resulting coefficient is scaled to

range between -1 and +1, where a negative value means less than chance agree-

ment, zero indicates exactly chance agreement, and a positive value indicates better

than chance agreement (Fleiss and Cohen, 1973). In our case, the level of agree-

ment is +0.93, which indicates that the classification results made by the author
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of this thesis are more likely to hold (Landis and Koch, 1977; Sim and Wright,

2005). Taking this high level of agreement into account, the author of this thesis

then classified the remaining 85% of the random sample using the 10 categories

agreed upon by both the author of this thesis and the study collaborator, which is a

common process and has been done in previous work (DiStaso and Bortree, 2012;

McDonald et al., 2019; Drouhard et al., 2017).

We found in the previous RQ that only approximately 1 in 5 GKIRs that see

a new dependency release actually have their client’s tests resume passing with

the new release. In this RQ, we extend this analysis to explore how often a new

release from the dependency is able to resume passing the client’s tests on a GKIR

that has a failed pin attempt, as a failed pin attempt on a GKIR could indicate

that Greenkeeper should limit its attempts to test new dependency releases on

opened GKIRs. Greenkeeper will comment on GKIRs whether a new release of

the dependency is able to resume passing the client’s tests. We determine these

comments by matching the comment body against the patterns shown in Table 4.1

for alerting the client of a new dependency release.

Findings. Observation 4.6) The vast majority of the unsuccessful pin attempts

are unrelated to the dependency and require a manual intervention from the

client developers. 80.3% of GKIRs have a pinning attempt. 3.3% of GKIRs are

for bundled dependency updates, which Greenkeeper does not perform any pin

attempt on, and it was not clear why no pin attempt was performed by Greenkeeper

on the remaining 16.4%.

Regarding the overall proportion of automatic pin attempts on GKIRs, we ob-

serve that only 32% are able to successfully resume passing the client’s tests. This
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finding was surprising, since, in principle, the updated dependency is the only dif-

ference between the GKIR branch and the project’s main branch, and pinning the

dependency to the previous version (i.e., the version that was previously in use on

the project’s main branch) should in effect render the GKIR branch a duplicate of

the project’s main branch. Therefore, we expected the majority of pinning attempts

to be successful. However, this was not the case, as over two-thirds of pinning at-

tempts fail, which implies the client’s build was already broken for an unrelated

reason to begin with, and that new installs of the client project may be failing as

well.

To further investigate why so many pin attempts were failing, we manually an-

alyze a statistically significant sample of GKIRs that have a failed pin attempt using

the process described in the approach. The categories are explained below, and are

summarized in Table 4.3.

• C1: Syntax/Linter/Project Guideline Error (17.6%): Client’s source code may

have existing syntax errors that cause the CI pipeline to fail, or a linter can fail a

build if any of the code in the project does not meet the style guidelines set by the

client. Listing 4.1 shows an example of a client’s build16 failing because of multiple

style rule infractions. Additionally, a build can be configured to fail if the bundle size

of the project grows too large or the test coverage drops below a specific threshold.

16https://travis-ci.org/github/cnap-cobre/synapse-frontend/jobs/490193979

https://travis-ci.org/github/cnap-cobre/synapse-frontend/jobs/490193979
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Table 4.3: Prevalence and description of reasons for created GKIRs with a failed pin
attempt.

ID Category Proportion Description

C1 Syntax/Linter/Project
Guideline Error

17.6% The client’s CI failed because of a syntax or linter
error in the source code, or some other require-
ment for the project was not met (e.g., code cov-
erage).

C2 Client Test Case Failure 13.6% The client’s CI failed because of an assertion error
in the client’s test suite.

C3 Incompatible
Node/NPM/Depen-
dency Version Error

13.4% The client’s CI failed because an invalid version of
either Node, npm, or one of their dependencies
was specified.

C4 Dependency Error 13.1% The client’s CI failed because one of their depen-
dencies threw an error (not related to the depen-
dency being updated).

C5 Missing File/Module 11.3% Either a file or an entire module was missing from
the client’s CI environment, causing it to fail.

C6 Lockfile Error 10.8% The client’s CI failed because the client’s pack-
age.json and the associated lockfile were out-of-
sync.

C7 Client Tests Failing to
Run Successfully

10.0% The client’s CI failed because the test suite en-
countered an internal issue and did not run to
completion.

C8 Timeout/Network Error 5.2% The client’s CI failed because either their build
process stalled for too long or communication
over a network was not successful.

C9 Security Error 2.6% The npm audit command detected a security
vulnerability in one of the client’s dependencies,
causing the CI pipeline to fail.

C10 Invalid Credentials Error 2.4% The client’s CI failed because the build environ-
ment had invalid credentials, or was missing them
entirely.
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Listing 4.1: Example error snippet of build logs with a linter error.

...

npm run lint

> synapse-frontend@0.3.4 lint /home/travis/build/cnap-cobre/synapse-frontend

> eslint src

/home/travis/build/cnap-cobre/synapse-frontend/src/components/FavoritesBar/FavoritesBar.js

73:6 error Missing semicolon semi

/home/travis/build/cnap-cobre/synapse-frontend/src/store/files/sagas.js

4:35 error Missing semicolon semi

130:33 error Missing semicolon semi

164:52 error Missing semicolon semi

4 problems (4 errors, 0 warnings)

4 errors and 0 warnings potentially fixable with the ‘--fix‘ option.

npm ERR! code ELIFECYCLE

npm ERR! errno 1

npm ERR! synapse-frontend@0.3.4 lint: ‘eslint src‘

npm ERR! Exit status 1

npm ERR!

npm ERR! Failed at the synapse-frontend@0.3.4 lint script.

npm ERR! This is probably not a problem with npm. There is likely additional logging output

above.

npm ERR! A complete log of this run can be found in:

npm ERR! /home/travis/.npm/_logs/2019-02-07T18_47_18_800Z-debug.log

The command "npm run lint" exited with 1.

...

• C2: Client Test Case Failure (13.6%): A client’s tests can fail for reasons un-

related to the dependency update, either due to some existing issue or perhaps a

flaky test. For example, log output may not match what is specified to be expected

in the test, or some other assertion test may evaluate to false, causing the client’s

tests to fail, as is shown in the excerpt of the build logs17 of Listing 4.2.

17https://travis-ci.com/github/SlimIO/TimeMap/builds/149528914

https://travis-ci.com/github/SlimIO/TimeMap/builds/149528914
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Listing 4.2: Example error snippet of build logs where a failure of the client’s test

case caused the CI pipeline to fail.

...

npm test

> @slimio/timemap@0.3.0 test /home/travis/build/SlimIO/TimeMap

> cross-env psp && ava --verbose

> Running Project Struct Policy at /home/travis/build/SlimIO/TimeMap

Finished with: 0 Criticals and 0 Warnings

1 test failed

construct new TimeMap

test/test.js:23

22: assert.is(Object.keys(map).length, 3);

23: assert.is(Reflect.ownKeys(map).length, 6);

24:

Difference:

- 7

+ 6

npm ERR! Test failed. See above for more details.

The command "npm test" exited with 1.

...

• C3: Incompatible Node/NPM/Dependency Version Error (13.4%): Projects

may run their builds with multiple jobs, for example, 1 job each for versions 4, 6,

and 7 of Node, but dependencies might require Node >= 6.0.0, which causes one

of the build jobs to fail, as is the case in the build logs18 shown in Listing 4.3. Addi-

tionally, dependency versions can conflict, or sometimes cannot be found altogether,

again causing the client’s CI pipeline to fail.

18https://travis-ci.org/github/jaumard/trailpack-acl/jobs/529853292

https://travis-ci.org/github/jaumard/trailpack-acl/jobs/529853292
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Listing 4.3: Example error snippet of build logs where an incompatible version of

Node was used.

...

yarn install v1.3.2

[1/5] Validating package.json...

[2/5] Resolving packages...

[3/5] Fetching packages...

error har-validator@5.1.3: The engine "node" is incompatible with this module. Expected version

">=6".

error Found incompatible module

...

• C4: Dependency Error (13.1%): One of the client’s dependencies used during

the CI pipeline can fail because they have not been configured properly. For exam-

ple, Listing 4.4 shows the build logs 19 where the client’s CI pipeline failed due to a

dependency not being initialized properly.

19https://travis-ci.org/github/chmanie/wdio-intercept-service/jobs/526469907

https://travis-ci.org/github/chmanie/wdio-intercept-service/jobs/526469907
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Listing 4.4: Example error snippet of build logs where an error from a dependency

of the client caused the client’s CI to fail.

...

-----

selenium-standalone installation finished

-----

wdio

/home/travis/build/chmanie/wdio-intercept-service/node_modules/@wdio/utils/build/

initialisePlugin.js:19

throw new Error(Could not initialise "\${name}".\n\${e.stack});

^

Error: Could not initialise "@wdio/local-runner".

Error: You can not reassign a plugin after applying another plugin

...

error Command failed with exit code 1.

Done. Your build exited with 1.

...

• C5: Missing File/Module (11.3%): A client’s CI pipeline can fail because of

missing files or even entire modules. We found cases where the initial clone of the

project failed, resulting in failed builds, as well as situations where dependencies

were not available. Listing 4.5 shows an example excerpt of a client’s build logs20

where the build configuration file is missing completely, automatically causing the

CI pipeline to fail.

20https://app.circleci.com/pipelines/github/unional/clibuilder/1/workflows/

23256a75-d014-4d80-acf0-842644bfae24/jobs/1719

https://app.circleci.com/pipelines/github/unional/clibuilder/1/workflows/23256a75-d014-4d80-acf0-842644bfae24/jobs/1719
https://app.circleci.com/pipelines/github/unional/clibuilder/1/workflows/23256a75-d014-4d80-acf0-842644bfae24/jobs/1719
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Listing 4.5: Example error snippet of build logs where the project was missing a

configuration file.

...

#!/bin/sh -eo pipefail

# No configuration was found in your project. Please refer to https://circleci.com/docs/2.0/ to

get started with your configuration.

#

# -------

# Warning: This configuration was auto-generated to show you the message above.

# Don’t rerun this job. Rerunning will have no effect.

false

Exited with code exit status 1

CircleCI received exit code 1

...

• C6: Lockfile Error (10.8%): Greenkeeper will bump the version specification

in the package.json file for the dependency being updated, then run the client’s CI

pipeline. However, clients can specify in their CI install script the --frozen-lockfile

flag, which results in the package.json file and the associated lockfile becoming out

of sync, as early versions of Greenkeeper were not able to update the lockfile21,

causing the build to fail. Greenkeeper has since added native support for this fea-

ture22. However, failed CI pipelines caused by out-of-sync lockfiles remain common,

an example of which is shown in the build logs23 of Listing 4.6.

21https://blog.greenkeeper.io/greenkeeper-and-lockfiles-a-match-made-in-heaven-

8260943fe521
22https://blog.greenkeeper.io/announcing-native-lockfile-support-85381a37a0d0
23https://travis-ci.org/github/travi/hapi-react-router/builds/619316527

https://blog.greenkeeper.io/greenkeeper-and-lockfiles-a-match-made-in-heaven-8260943fe521
https://blog.greenkeeper.io/greenkeeper-and-lockfiles-a-match-made-in-heaven-8260943fe521
https://blog.greenkeeper.io/announcing-native-lockfile-support-85381a37a0d0
https://travis-ci.org/github/travi/hapi-react-router/builds/619316527
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Listing 4.6: Example error snippet of build logs with a out-of-sync package.json and

package-lock.json error.

...

npm ci

npm ERR! cipm can only install packages when your package.json and package-lock.json or npm-

shrinkwrap.json are in sync. Please update your lock file with ‘npm install‘ before

continuing.

...

• C7: Client Tests Failing to Run Successfully (10.0%): While this category is

similar to C2: Client Test Case Failure, we differentiate the two because, in C2, the

client’s tests fail due to some assertion error, whereas in this category the client’s

test suite does not run to completion due to an issue. For example, Listing 4.7 shows

the build logs24 of a client’s test suite failing to run because of an error it the client’s

testing code.

24https://travis-ci.org/github/G5/gtm-controller/builds/463979922

https://travis-ci.org/github/G5/gtm-controller/builds/463979922
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Listing 4.7: Example error snippet of build logs that show a client’s test suite not

being able to run to completion.

...

npm run test:coverage

> @g5/gtm-controller@1.0.0 test:coverage /home/travis/build/G5/gtm-controller

> cross-env JEST_COVERAGE=true jest

PASS __tests__/triggers/iframeFocusTrigger.test.ts

PASS __tests__/helpers/ruleParser.test.ts

PASS __tests__/core/dataLayer.test.ts

FAIL __tests__/triggers/trigger.test.ts

- Test suite failed to run

TypeScript diagnostics (customize using ‘[jest-config].globals.ts-jest.diagnostics‘ option):

__tests__/triggers/trigger.test.ts:3:30 - error TS2314: Generic type ’Trigger<

SubscriptionDataType>’ requires 1 type argument(s).

...

• C8: Timeout/Network Error (5.2%): The project’s build may not receive any

output for a specified threshold of time, in which case the build will time out and

be marked as failed. Listing 4.8 shows an example excerpt of a client’s build logs25

with this scenario. Additionally, network requests (e.g., download a dependency or

upload code coverage statistics) can fail.

25https://travis-ci.org/github/visusnet/typereact/builds/549691105

https://travis-ci.org/github/visusnet/typereact/builds/549691105
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Listing 4.8: Example error snippet of build logs with a build timeout error.

...

Downloading https://nodejs.org/dist/v8.16.0/node-v8.16.0.tar.xz...

...

No output has been received in the last 10m0s, this potentially indicates a stalled build or

something wrong with the build itself.

Check the details on how to adjust your build configuration on: https://docs.travis-ci.com/user

/common-build-problems/#Build-times-out-because-no-output-was-received

The build has been terminated

...

• C9: Security Error (2.6%): The npm audit command will return a failure code

if any security vulnerabilities are detected in any of the project’s dependencies.

For example, if a vulnerability is found in a dependency other than the offending

dependency that caused the GKIR (or the offending dependency for that matter),

the npm audit command will still cause the pipeline to fail. Listing 4.9 shows an

example excerpt of a client’s build logs26 with this scenario.

Listing 4.9: Example error snippet of build logs with a security error.

...

npm audit

...

found 1 high severity vulnerability in 12912 scanned packages

run ‘npm audit fix‘ to fix 1 of them.

The command "npm audit" failed and exited with 1 during .

Your build has been stopped.

...

26https://travis-ci.com/github/r3nya/r3nya.github.io/builds/104464336

https://travis-ci.com/github/r3nya/r3nya.github.io/builds/104464336
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• C10: Invalid Credentials Error (2.4%): Clients often need to specify credentials

in their CI environment to allow authenticated actions (e.g., cloning the project,

pushing test results to an external repository, etc.). However, these credentials may

become invalid or be missing entirely from the CI environment, which can cause

the CI pipeline to fail. Listing 4.10 shows an example excerpt of a client’s build

logs27 where the CI environment does not have the correct access rights to clone

the project.

Listing 4.10: Example error snippet of build logs that error because of missing or

invalid credentials.

...

Using SSH Config Dir /home/circleci/.ssh

Cloning into ’.’...

Warning: Permanently added the RSA host key for IP address ’140.82.113.3’ to the list of known

hosts.

Permission denied (publickey).

fatal: Could not read from remote repository.

Please make sure you have the correct access rights

and the repository exists.

exit status 128

CircleCI received exit code 128

...

Observation 4.7) Fewer than 1 in 10 GKIRs that have a failed pin attempt and

eventually see a new dependency release have their build resume passing with

the new dependency release applied. The results from Greenkeeper’s automatic

27https://app.circleci.com/pipelines/github/gucong3000/gulp-reporter/7/workflows/

131b9bbd-51b4-4131-be90-cf92603a3790/jobs/1045

https://app.circleci.com/pipelines/github/gucong3000/gulp-reporter/7/workflows/131b9bbd-51b4-4131-be90-cf92603a3790/jobs/1045
https://app.circleci.com/pipelines/github/gucong3000/gulp-reporter/7/workflows/131b9bbd-51b4-4131-be90-cf92603a3790/jobs/1045
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pin attempt appear to be a good indicator of whether the GKIR is a false alarm.

91% of GKIRs that have a failing pin attempt and stay open long enough to see at

least one new release from the dependency never have their tests resume passing

again due to Greenkeeper attempting to update the dependency on the GKIR. In

other words, if the initial pin attempt on a GKIR is not successful, any subsequent

attempts by Greenkeeper to attempt to fix the GKIR by upgrading to a new release

of the dependency will also most likely fail, and only serve to flood the client’s

project with redundant notifications.

RQ2: Is automated dependency pinning an effective mechanism for resolving GKIRs?

• Greenkeeper’s automatic pinning attempts have a failure rate of 78%, which is surprising, as

pinning the dependency should render the GKIR branch a duplicate of the project’s main branch.

• GKIRs with a failed pin attempt are usually caused by an error with the client’s CI pipeline

(e.g., syntax error, incompatible Node version, etc.), rather than the new dependency release,

which means these GKIRs can be considered false alarms from the perspective of being a depen-

dency issue.

• 91% of GKIRs that have a failed pin attempt and are open long enough to see a new release

from the dependency never have their tests resume passing again due to Greenkeeper attempt-

ing to update the dependency on the GKIR, and only serve to flood the client’s project with

redundant notifications.
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4.4.3 RQ3: What are the performed code changes when resolv-

ing GKIRs?

Motivation. While pinning the breaking dependency to its previous working ver-

sion may be the quickest and easiest method to resolve the issue, it is not always suc-

cessful, and in fact is considered an anti-pattern for dependency management (Ja-

fari et al., 2020), as this type of versioning specification is often associated with

outdated dependencies (Zerouali et al., 2018). However, pinning is not the sole

method available to resolve GKIRs, and clients may prefer other more complex

strategies that allow them to continue taking advantage of the benefits of using a

version range for the dependency.

Ideally, minimal changes would be needed to resolve a GKIR while maintaining

the project’s updatability and resolving the issue in a timely manner. For this reason,

it is important to explore the code changes (other than pinning) that are performed

when resolving GKIRs, which is what we examine in this RQ.

Approach. First, we examine the proportion of file types that are most often mod-

ified, as well as the size of the modifications that clients are pushing to resolve

GKIRs. To do this, we collect the patch diff from any commits that are referenced

by GKIRs. Specifically, we look at the number of files changed in the commit, as well

as the lines of code (LOC) churn in the commit (i.e., added lines + removed lines),

which are metrics that have been used in previous work to measure the impact of

code changes (Munson and Elbaum, 1998; Nagappan and Ball, 2005). For exam-

ple, if a commit only modifies a single LOC (e.g., rename a variable), the churn

metric would have a value of 2 (i.e., 1 addition and 1 deletion). To compare these

changes against a baseline, we perform the same analysis on commits referenced by
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non-GKIRs from the same projects. To select the commits for our baseline, we find

the preceding non-GKIR that references a commit for each GKIR that references a

commit, and compare the metrics for these two distributions of commits.

We anticipate that the majority of commits referenced from GKIRs will contain

modifications to the project’s package.json, as Greenkeeper is a dependency man-

agement bot and this file contains the client’s dependency specifications. Therefore,

we additionally parse the changes made specifically to the package.json file to ex-

plore how clients are modifying their dependency version specifications in order to

resolve GKIRs. We extract the modifications made to the client’s dependency specifi-

cation files and parse the previous and current dependency specification version us-

ing the semver28 package. We then compare the previous and current dependency

specifications to determine whether the dependency was updated, downgraded,

pinned, added, or deleted. We use this information to learn the most common

strategies used by clients for resolving GKIRs that only modify their dependency

specifications, which would be simple solutions that dependency management bots

like Greenkeeper could automatically implement, potentially reducing the over-

head on client developers.

Additionally, for commits referenced by GKIRs that modify more than just the

client’s dependency specification files, we examine the most common file types that

are changed when resolving GKIRs. We again perform the same analysis on commits

referenced by preceding non-GKIRs from the same projects.

Findings. Observation 4.8) The changes required to resolve GKIRs are similar

to that of non-GKIRs. When comparing the number of file changes in commits

28https://pypi.org/project/semver/

https://pypi.org/project/semver/
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referenced by GKIRs and non-GKIRs, we find that they both change a median of 2

files per commit. Figure 4.8 shows the distribution of the number of files changed

in commits referenced by GKIRs and commits referenced by non-GKIRs immedi-

ately preceding GKIRs. The difference between the two distributions is statistically

significant (p < 0.05), however the effect size is negligible (|d| = 0.23).

Figure 4.8: Violin-plot showing the distribution of number of files changed in com-
mits referenced from GKIRs and commits referenced from non-GKIRs immediately
preceding GKIRs. The dashed lines indicate the first quartile, median, and third-
quartile.

Similarly, the size of the changes in the commits referenced by GKIRs and non-

GKIRs is comparable, with commits referenced by GKIRs having a median of 33 LOC

churn and commits referenced by non-GKIRs having a median of 38 LOC churn.

Figure 4.9 shows the distribution of the number of LOC churn in commits referenced

by GKIRs and commits referenced by non-GKIRs immediately preceding GKIRs. The

difference between the two distributions is not statistically significant (p > 0.05).

Observation 4.9) More than half (56%) of changes that resolve GKIRs only in-

clude changes to dependency specification files. These changes are primarily
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Figure 4.9: Violin-plot showing the distribution of lines of code (LOC) churn in
commits referenced from GKIRs and commits referenced from non-GKIRs immedi-
ately preceding GKIRs. The dashed lines indicate the first quartile, median, and
third-quartile.

made to the package.json file, which is manually maintained and is the most com-

mon file to be changed, being modified in 78% of commits referenced on GKIRs,

versus only 17% of commits referenced from non-GKIRs. Additionally, the npm

package-lock.json file and its similar counterpart yarn.lock, appear in 28% and 27%

of all referenced commits, respectively, versus just 4% and 3% of commits refer-

enced by non-GKIRs, respectively. However, these files are automatically generated

whenever a project’s dependency specifications change, and therefore changes to

these files do not indicate any significant overhead introduced on the client devel-

opers.

Changes that resolve GKIRs by only modifying dependency specification files

tend to be small, similar to changes from non-GKIRs. 57% of these commits on

GKIRs that modify the package.json file are only one-line changes, while 75% modify

3 or fewer lines. Similarly, commits on non-GKIRs that modify the package.json
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file are approximately the same size, with 66% being one-line changes and 81%

modifying 3 or fewer lines.

Figure 4.10 shows the proportion of dependency change types made by clients

when modifying the package.json file to resolve a GKIR. We found that 88.8% of the

dependency specification changes are dependency version upgrades (e.g., bump-

ing a dependency specification from ˆ1.2.3 to ˆ1.2.4), 7.8% are removing the

range specification of the dependency, effectively adopting the pinning action sug-

gested by Greenkeeper (e.g., changing the dependency specification from ∼1.2.0

to 1.2.0), 1.6% are adding new dependencies, 1.2% are deleting dependencies,

and less than 1% are downgrades (e.g., changing a dependency specification from

1.2.3 to 1.2.1).

Figure 4.10: Bar-plot showing the proportion of the dependency change types made
to the package.json file on commits referenced from GKIRs.

Additionally, we observe that clients may resolve multiple GKIRs in their project

with a single patch. While the majority (79%) of commits only reference a single



CHAPTER 4. EXPLORING THE OVERHEAD INTRODUCED BY THE
GREENKEEPER DEPENDENCY BOT 74

GKIR, 21% of commits resolve at least 2 GKIRs. We also found that a quarter of

commits upgrade at least four dependency version specifications, further suggesting

that clients might wait to perform all of their project dependency updates in a batch

fix.

Observation 4.10) Commits referenced by GKIRs that do not only modify de-

pendency specification files tend to include changes to a mixture of different file

types, similar to commits referenced by non-GKIRs. While these commits com-

monly include changes to source code files (e.g., JavaScript and TypeScript files),

they can also include changes to project configuration files (e.g., .eslintrc.json) and

build pipeline files (e.g., .travis.yml). In fact, these commits even sometimes include

changes to markdown files (e.g., README.md) and even the project’s .gitignore file.

Figure 4.11 shows the 10 most common file types that are changed in commits refer-

enced by GKIRs (4.11a) and non-GKIRs (4.11b) that do not only modify the client’s

dependency specification files (i.e., package.json, package-lock.json, and yarn.lock).

RQ3: What are the performed code changes when resolving GKIRs?

• Commits referenced by GKIRs that require changes to the client’s code are comparable in size

(median of 2 files changed, 33 LOC changed) to commits referenced to non-GKIRs (median of 2

files changed, 38 LOC changed).

• More than half (56%) of commits referenced by GKIRs only modify dependency specification

files.

• 55% of manual changes to dependency specification files only modify a single statement.

88% of manual changes to dependency specification files are upgrading a dependency version

specification, while 7% are pinning a dependency.
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(a) Commits referenced from GKIRs. (b) Commits referenced from non-GKIRs.

Figure 4.11: Top 10 files types that are changed in commits referenced from GKIRs
and non-GKIRs that do not only modify the client’s dependency specification files
(i.e., package.json, package-lock.json, and yarn.lock).

4.5 Discussion

In this section, we discuss the findings of Section 4.4. We present a set of prac-

tical implications for designers of dependency management bots with the aim of

reducing the overhead generated in client projects by these software bots (Sec-

tion 4.5.1), as well as the current state-of-the-art in dependency management bots

(Section 4.5.2).

4.5.1 Implications

Implication 4.1) Dependency management bots should provide features that al-

low clients to reduce the amount of activity generated by the bots. We found

in RQ1 that half of the IRs in client projects are opened by Greenkeeper. This is

a high ratio of IRs to be opened by a bot, and can overwhelm client developers



CHAPTER 4. EXPLORING THE OVERHEAD INTRODUCED BY THE
GREENKEEPER DEPENDENCY BOT 76

with excessive notifications in their projects. We also found that the longer these

GKIRs stay open, the more activity is generated on them by the bot, often in the

form of comments notifying the client whether a new release of the dependency

has resumed passing the client’s tests. This feature can generate a high amount of

notifications in the client project, especially if the provider package releases new

updates often, and does little to help the client with resolving the issue.

Additionally, if the GKIR turns out to be a false alarm, these notifications only

serve to distract the client, and may erode their trust in the dependency bot itself

if they find they are being bombarded with notifications for issues that turn out

to be false alarms. In fact, the number of notifications generated by dependency

management bots is already a common complaint amongst developers on forums

and IRs. 29, 30, 31, 32 Therefore, we argue that dependency management bots should

provide features that allow clients to configure the bot to reduce the amount of

activity generated in their projects, and be mindful of the trade-offs associated with

each feature in the context of overhead introduced for the client.

For example, one feature that dependency management bots should support is

to allow for a project’s dependency updates to be bundled into a single PR. The re-

sults in RQ1 show that half of the IRs in client projects are opened by Greenkeeper.

We also found in RQ3 that clients may manually group updates for multiple depen-

dencies into a single commit in order to resolve a batch of GKIRs, which suggests

that clients could benefit from having the dependency updates in these IRs and PRs

grouped, so as to reduce the amount of noise created by the bot in client projects.

29https://github.com/dependabot/dependabot-core/issues/2265
30https://github.com/dependabot/dependabot-core/issues/376
31https://github.com/dependabot/dependabot-core/issues/2526
32https://github.com/dependabot/dependabot-core/issues/1190

https://github.com/dependabot/dependabot-core/issues/2265
https://github.com/dependabot/dependabot-core/issues/376
https://github.com/dependabot/dependabot-core/issues/2526
https://github.com/dependabot/dependabot-core/issues/1190
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In fact, this issue has been a subject of discussion in at least four IRs 33, 34, 35, 36

in the Dependabot project, another popular automated dependency bot. However,

if one of the bundled dependency updates causes the client’s CI to fail, it could re-

quire a significant amount of manual work on the client’s part to determine which

dependency caused the problem.

To explore the efficacy of this recommendation, we compare the time required to

close PRs opened by Greenkeeper for grouped dependency updates from monore-

pos and single dependency updates from non-monorepos, and find that monorepo

PRs are closed in a median of 1 day 13 hours, while non-monorepo PRs are closed

in a median of 1 day 17 hours. The difference between distributions between

these two scenarios is not significant (p > 0.05), which implies that the speed

of monorepo updates is approximately the same as non-monorepo updates, even

though multiple dependencies are being updated by them. This suggests that

bundling updates could reduce the amount of activity generated by the bot.

To further reduce the amount of manual intervention required by clients to act

on PRs opened by dependency management bots, these bots should consider of-

fering an option to auto-merge any dependency updates if the updates meet a set

of requirements set by the client. For example, clients may trust certain provider

packages they use in their project, and may prefer to have any dependency updates

from these packages that pass their CI pipeline to be automatically merged. This

functionality would serve to reduce the overhead required by clients to act on PRs

that they would have merged anyway, and is a feature that has been requested for

33https://github.com/dependabot/dependabot-core/issues/2265
34https://github.com/dependabot/dependabot-core/issues/376
35https://github.com/dependabot/dependabot-core/issues/2526
36https://github.com/dependabot/dependabot-core/issues/1190

https://github.com/dependabot/dependabot-core/issues/2265
https://github.com/dependabot/dependabot-core/issues/376
https://github.com/dependabot/dependabot-core/issues/2526
https://github.com/dependabot/dependabot-core/issues/1190
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multiple bots. 37, 38 However, if a backwards-incompatible update is released by a

dependency that is not caught by the client’s CI tests, any issues related to the de-

pendency may not be discovered until after the update has been integrated into the

project, at which point the effort required to address the issue could be significant.

Additionally, in order to avoid client projects becoming saturated with PRs that

are opened by dependency management bots, these bots should consider providing

the option to limit the amount of active PRs they create in client projects. This

functionality will help client developers to avoid being overwhelmed by PRs from

the bot, and has in fact been discussed in at least two IRs. 39, 40 However, this

may lead to an increase in technical lag of dependencies, as the number of PRs for

dependency updates that can be opened at one time will be limited.

Implication 4.2) Dependency management bots should take into account the

state of the client’s test suite on their main branch when attempting to update

dependencies. We found in RQ2 that a high number of false alarms are caused

by issues that would have already existed on the project’s main branch before the

dependency update was attempted. For example, after manually analyzing why the

client’s CI pipeline failed for GKIRs that had a failed pin attempt, we found that

nearly one-fifth of the failures were caused by a syntax, linter or project guideline

error that would have already been failing the client’s main branch, and was not in

fact related to the dependency being updated. Therefore, dependency management

bots like Greenkeeper should consider the state of the client’s test suite on their

main branch when opening IRs for new dependency updates. In other words, if the

37https://github.com/dependabot/feedback/issues/954
38https://blog.mergify.io/replacing-dependabot-preview-auto-merge-feature/
39https://github.com/dependabot/dependabot-core/issues/2158
40https://github.com/dependabot/dependabot-core/issues/2189

https://github.com/dependabot/feedback/issues/954
https://blog.mergify.io/replacing-dependabot-preview-auto-merge-feature/
https://github.com/dependabot/dependabot-core/issues/2158
https://github.com/dependabot/dependabot-core/issues/2189
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client’s main branch is failing and the dependency update fails for the same reason,

the dependency update is most likely not the issue, and the bots should delay their

analysis until the main branch on the client project is passing again.

An example of an automated dependency management bot that does this well

is Dependabot, with its compatibility score feature41. Dependabot functions simi-

larly to Greenkeeper, with a compatibility score for each dependency update being

calculated as the percentage of client CI runs that passed when updating between

relevant versions. However, Dependabot will only include the results from client CI

runs that have a previously passing test suite on their main branch. Using this ap-

proach, they avoid negatively biasing the scores with failed CI pipeline runs that are

not caused by the provider package being updated. Including this type of function-

ality by default with automated dependency bots would help to reduce the overhead

generated by having to filter out false alarm IRs created by these bots as a result of

the client’s CI pipeline failing for an existing reason.

Implication 4.3) Dependency management bots should provide more detailed

information on a pin attempt than simply reporting whether it succeeded or

failed. Pinning the dependency is a simple solution that bot designers and devel-

opers expect to be effective. Since the updated dependency is the only difference

between the GKIR branch and the project’s main branch, pinning the dependency

to the previous version (i.e. the version that was previously in use on the project’s

main branch) should in effect render the GKIR branch a duplicate of the project’s

main branch. Thus, it is expected that pinning the dependency should resume pass-

ing the client’s CI pipeline.

41https://dependabot.com/compatibility-score/

https://dependabot.com/compatibility-score/
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However, we saw in RQ2 that this is often not the case. Therefore, dependency

management bots should provide more information to the client explaining why

the pin attempt failed, rather than simply commenting that the pin attempt was not

successful and that the issue might not be related to the dependency. At a minimum,

dependency management bots should analyze the CI logs of the client pipeline to

determine an overarching reason why the pin attempt failed. The categories of

causes of GKIRs with a failed pin attempt we reported in RQ2 provide a good basis

to categorize these failures. Dependency bots could parse the client’s build logs

and match the output to regular expressions of common error messages, including

information on any matched categories in the issue report.

One of the drawbacks of pinning a dependency is that the client will no longer

automatically use the most up-to-date version of the provider package, and will

begin to increasingly lag behind as the provider releases new versions. If the pin

attempt succeeds, Greenkeeper does a nice job of reducing the amount of technical

lag that is potentially introduced when clients decide to take the pinning route.

Greenkeeper will pin to the previous version of the dependency, which is better

than simply removing the range statement.

For example, if a client specifies they would like to accept the version range

of ∼1.2.0 from a provider (i.e., only accept patch updates), and version 1.2.4

of the provider causes a GKIR to be created in the client’s project, Greenkeeper

will attempt to pin the dependency to version 1.2.3 rather than version 1.2.0.

Doing so reduced the amount of technical lag introduced by the pinning action

from a lag of 4 patch versions to a lag of 1 patch version. Because the client was

using a range operator in their dependency constraints, the client would have been
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implicitly using version 1.2.3 of the provider in their project before the GKIR was

created, and therefore pinning to that version should not introduce any new issues.

Implication 4.4) Dependency management bots should provide a more effective

incentive to encourage clients to resolve dependency issues. We found in RQ1

that GKIRs can stay open for a median of 6 days, even when the offending depen-

dency is a runtime dependency. This is an especially long time to resolve an issue

that is potentially affecting the users of the client project, preventing them from suc-

cessfully building and installing the client’s project in their own project, resulting in

more failed builds.

A more effective approach may be to provide telemetry data on the IR itself. For

example, the bot could make use of GitHub’s dependency graph mechanism42 to

determine the dependants of the client’s package and monitor the publicly available

data of build systems (e.g., TravisCI43) of these dependencies. The bot could then

report the number of failed build attempts that have occurred since the IR had

been opened. Additionally, this sort of telemetry data could provide a reasonable

indicator of whether the IR is a false alarm. We found in RQ2 that GKIRs are often

false alarms, usually caused by the client’s CI pipeline. Providing the telemetry data

on the number of build attempts of the client package in production could give

a clearer picture of whether the dependency update has really broken the client’s

project and how widespread the issue is amongst the client’s users. This information

could help client developers quickly filter out false alarms, allowing them to react

to these issues faster.
42https://docs.github.com/en/code-security/supply-chain-security/understanding-

your-software-supply-chain/about-the-dependency-graph
43https://www.travis-ci.com/

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-the-dependency-graph
https://www.travis-ci.com/
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Implication 4.5) Dependency management bots should take the type of CI failure

into consideration when creating issues for new dependency releases. While

we recommend in Implication 4.2 that bots should take into account the initial

state of the client’s main branch when attempting to test dependency updates, they

should also take into account the reason the CI pipeline fails when testing a new

dependency update on an isolated branch. Rather than treating all CI pipeline

failures the same, these bots should be able to distinguish between CI pipelines

that failed because of valid issues potentially caused by the dependency update

and issues that are obviously unrelated to the dependency update. After all, these

are dependency management bots, which clients expect to use to manage their

dependencies, not to use as an alerting mechanism for when something in general

is wrong with their CI pipeline.

For example, Gallaba and McIntosh (2020) describe tools in their study on mis-

use of CI features that automatically detect and remove semantic violations in Travis

CI build configuration files. Dependency management bots could employ similar

techniques to automatically classify common CI failure types.

4.5.2 State-of-the-Art in Dependency Management Bots

While Greenkeeper was a very popular dependency management bot, creating over

130,000 PRs (Wyrich et al., 2021) and having been referenced in multiple stud-

ies (Mirhosseini and Parnin, 2017; Wyrich et al., 2021; Brown and Parnin, 2020), it

has since been acquired by Snyk44 and deactivated on June 3, 2020, and as such is

no longer available for clients to integrate with on GitHub. However, Greenkeeper
44https://snyk.io/

https://snyk.io/
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was one of the first dependency management bots available for use by software de-

velopers, and it is likely the designs of dependency management bots that followed

were influenced by Greenkeeper.

So, even though Greenkeeper is not state-of-the-art, it has many common fea-

tures that have been implemented in current state-of-the-art dependency manage-

ment bots. Still, newer bots may have implemented additional features that can

help to reduce the overhead they introduce on client developers. Therefore, we

explore and discuss features from three other popular state-of-the-art dependency

management bots available for open source software developers: Dependabot,

Renovate, and Depfu45. We select these 3 bots to discuss (in addition to Green-

keeper) as they are actively available across multiple ecosystems and have created

the most PRs on GitHub of all dependency management bot accounts (Wyrich et al.,

2021). We discuss common features available from all of these bots, as well as

unique features from each that aim to help ease the overhead they introduce on

client developers, and how these state-of-the-art bots square with our aforemen-

tioned implications.

All the default configurations of the aforementioned dependency management

bots (including Greenkeeper) perform essentially the same task: when one of a

client’s dependencies releases a new version, the bot will create a new branch with

the new version applied, run the client’s CI pipeline, and notify the client of the

results with the option to update their dependency specifications.

Each of these bots can be configured with multiple options, including ways that

can help decrease the amount of overhead they introduce on client developers. For

example, clients can set the bot to ignore certain dependencies if they know they
45https://depfu.com/

https://depfu.com/
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are never going to update said dependency and don’t want to be bothered by these

notifications from the bot.

Greenkeeper, Renovate, and Depfu all offer the option to bundle dependency

updates in order to reduce the amount of notifications received by client develop-

ers, which is one of our recommendations in Implication 4.1. It is notable that

Dependabot, which is currently the most popular automated dependency manage-

ment tool available, does not currently support this feature, even though it is a

highly requested feature.46

Dependabot, Renovate, and Depfu all offer the option for clients to configure

how often and at what date/time the bot will attempt to update the client’s de-

pendencies. This is a useful feature that can save client developers from a flood of

notifications if one of their dependencies frequently releases updates, as the bot will

only open a single PR to update the provider to the latest release at the scheduled

time. These three bots can also be configured to only open a maximum number of

concurrent PRs in the client project, so that client developers do not become over-

whelmed with dependency updates. Additionally, Renovate and Depfu can both

be configured to automatically merge dependency updates if the client’s CI pipeline

passes, which is in-line with Implication 4.1, and can help to further reduce the

number of concurrently opened PRs in client projects.

While there are many similarities between these bots, they each have unique

features that attempt to minimize the amount of noise they introduce in client

projects, and therefore reduce the overhead that comes with integrating with these

bots. Greenkeeper will remain silent on in-range updates that pass the client’s CI

pipeline. For example, if a client specifies a dependency constraint as “P: ^1.0.0”,
46https://github.com/dependabot/dependabot-core/issues/1190

https://github.com/dependabot/dependabot-core/issues/1190
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and the provider package releases version 1.0.1, Greenkeeper will run the client’s

CI pipeline with the new provider version applied, and remain silent if the pipeline

runs successfully (a GKIR will be created if the pipeline fails). Other bots (e.g.,

Dependabot) will still run the client’s CI pipeline with the new provider version ap-

plied, but will default to creating a PR to bump the client’s version specifications to

“P: ^1.0.1” (e.g., Dependabot) or “P: 1.0.1” (e.g., Renovate), regardless of the

outcome of the client’s CI pipeline. The implemented behaviour by Greenkeeper

aims to reduce the number of notifications received by clients47, and encourages de-

velopers to use version range statements (rather than specific versions) for their de-

pendency specifications48. Dependabot can be configured to act in a similar manner

using its versioning-strategy49 option, where clients can specify how Depend-

abot should modify the dependency specification file when updating dependencies.

For example, client’s can specify the widen strategy, where Dependabot will relax

the version requirement to include both the new and old version, when possible, or

the increase-if-necessary strategy, where Dependabot will increase the version

requirement only when required by the new version.

Renovate specifically allows clients to configure the types of notifications that

they would wish to ignore using the suppressNotifications50 option. For exam-

ple, clients can disable notifications from a PR being closed without being merged,

47https://github.com/greenkeeperio/greenkeeper/issues/990
48https://github.com/greenkeeperio/greenkeeper/issues/247
49https://docs.github.com/en/code-security/supply-chain-security/keeping-

your-dependencies-updated-automatically/configuration-options-for-dependency-

updates#versioning-strategy
50https://docs.renovatebot.com/configuration-options/#suppressnotifications

https://github.com/greenkeeperio/greenkeeper/issues/990
https://github.com/greenkeeperio/greenkeeper/issues/247
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#versioning-strategy
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#versioning-strategy
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#versioning-strategy
https://docs.renovatebot.com/configuration-options/#suppressnotifications


CHAPTER 4. EXPLORING THE OVERHEAD INTRODUCED BY THE
GREENKEEPER DEPENDENCY BOT 86

or can choose to not receive a warning notification for deprecated dependency re-

leases. Renovate also includes a stabilityDays51 option in which clients can con-

figure the number of days required before a new release is considered to be sta-

bilized. This feature is intended to help protect client developers from accepting

provider releases that later become unpublished (e.g., npm packages less than 3

days old can be unpublished, which could result in a service impact if the client

has already updated to it). These are helpful features that can help to address

the amount of activity created by dependency management bots (Implication 4.1),

although it is unclear how often clients actually make use of them in practice.

Depfu has an update strategy called “reasonably up-to-date”52 that clients can

use to reduce the amount of generated activity by the bot. The rationale behind this

update strategy is that there is a lot of value in a client having their dependencies

up-to-date, but there is very little value in being on all the latest versions. In other

words, clients just want their dependencies to stay current. When enabled, Depfu

will let new provider releases “mature” before creating a PR in the client project,

reducing the amount of dependency updates that clients receive, especially if the

provider package has a high release frequency. In fact, the developers of the Depfu

bot have tested this feature and found that clients can see a reduction of up to 50%

in the amount of PRs opened by the bot53, significantly reducing the amount of

noise clients must deal with (Implication 4.1).

51https://docs.renovatebot.com/configuration-options/#stabilitydays
52https://depfu.com/blog/reasonably-up-to-date
53https://depfu.com/blog/reasonably-up-to-date

https://docs.renovatebot.com/configuration-options/#stabilitydays
https://depfu.com/blog/reasonably-up-to-date
https://depfu.com/blog/reasonably-up-to-date
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4.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

4.6.1 Internal Validity

Threats to internal validity concerns factors that could have influenced our analysis

and findings. When we were looking for projects with GKIRs, we only searched for

IRs using the GitHub Search API that match the default title used by Greenkeeper.

Clients are able to configure the default title that Greenkeeper will use when open-

ing GKIRs, so we may have missed projects that have integrated with Greenkeeper

that do not use the default title for their GKIRs. However, we only found 19 projects

in our dataset where the client had switched from using the default Greenkeeper

title to a custom title, so we do not believe this scenario is very common.

When parsing the information from GKIRs, we were not able to successfully

extract the provider dependency type from approximately 4% of GKIRs. While this

is still a relatively high success ratio, we only use this information for a single angle

of our study in RQ1, so omitting these cases would not have had a major effect on

our analysis.

In RQ1, we compare the time taken to close GKIRs with non-GKIRs to explore

whether GKIRs are resolved at a faster pace. However, the time taken to close IRs in

general can be influenced by many factors (e.g., project maintainers simply might

not have enough time to fix issues quickly). We attempt to mitigate this threat by

comparing GKIRs and non-GKIRs at the project level, so that project-level factors

will be accounted for in our analysis.
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Also, in RQ1, the author of this thesis manually analyzed comments left by users

on GKIRs to extract common patterns so that they could be grouped into similar

categories. Only patterns that matched at least 1% of the comments were used,

so comments that did not follow a common pattern may not have been matched

to a specific category, and therefore the percentage of comments classified to each

category represent a lower bound. However, nearly 80% of the total comments

were able to be classified, which is a reasonably high proportion.

We cannot definitively provide an exact proportion of GKIRs that are considered

noise, as we would have to conclude whether each GKIR was in fact created as

a result of a dependency update causing the client’s CI pipeline to fail. However,

we are able to provide a lower bound of 1.8% using specific comments left from

developers on GKIRs (Observation 5), as well as a general approximation of 54.5%

for the proportion of GKIRs that are considered noise if we consider all GKIRs with

a failed pin attempt to be noise (Observation 6).

In RQ2, we manually analyze a sample of GKIRs that have a failed pin attempt

to identify the reasons for why these pin attempts fail. This analysis is subject to

author bias, as every investigator has a subjective method when classifying an error

that leads to a failed CI pipeline. We mitigate this threat by having the author of

this thesis and a collaborator of this study independently classify the reasons for

CI pipelines failing on 15% of the random samples, then calculating the inter-rater

agreement in our methodology (Cohen’s Kappa coefficient (Cohen, 1960)), after

which categories were consolidated as necessary. The level of agreement (+0.93)

indicates that the classification results made by the author of this thesis are more

likely to hold (Landis and Koch, 1977; Sim and Wright, 2005), and that the author
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of this thesis could independently classify the remaining 85% of the samples using

the agreed upon categories, which is a common approach and has been done in

previous work (DiStaso and Bortree, 2012; McDonald et al., 2019; Drouhard et al.,

2017).

When collecting commits from client projects to evaluate the level of mainte-

nance activity required to resolve GKIRs, we look for referenced issue events on

GKIRs that include a commit sha attribute, which indicates a relationship between

the GKIR and the associated commit. However, in order for a commit issue event

to be created for a GKIR, the client would have to reference the GKIR issue number

either on the commit message when the commit was created, or on the PR that

the commit was merged in. While these two heuristics are the main ones used in

practice, not every client project may follow these processes.

4.6.2 External Validity

Threats to external validity concern the generalization of our technique and find-

ings. Our study analyses GKIRs opened by Greenkeeper during the period from

October 10, 2016 to June 3, 2020. As previously mentioned, while Greenkeeper

was a very popular dependency management bot during this time period, creat-

ing over 130,000 pull requests (Wyrich et al., 2021) and having been referenced

in multiple studies (Mirhosseini and Parnin, 2017; Wyrich et al., 2021; Brown and

Parnin, 2020), it has since been acquired by Snyk54 and deactivated on June 3,

2020, and as such is no longer available for clients to integrate with on GitHub.

While we considered including data from Snyk, which offers a similar service, there

54https://snyk.io/

https://snyk.io/
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are differences between the two bots that might lead to inconsistencies in the analy-

sis. Also, there are other dependency management bots in addition to Greenkeeper

and Snyk, such as Dependabot, Renovate, and Depfu55 that should be studied in

future work, as they all have unique features that might affect the generalizabil-

ity of our results with Greenkeeper. However, Greenkeeper was one of the first

dependency management bots available for use by software developers, first being

released at least a year before the aforementioned dependency management bots,

and it is likely the designs of the dependency management bots that followed were

influenced by Greenkeeper. So, while our results may not generalize, our discus-

sion provides implications that can still apply to these bots.

Because the collected Greenkeeper data is exclusively from npm, our findings

might not be generalizable to other ecosystems. Although npm is representative

in size, each software ecosystem has its own intrinsic characteristics, such as the

frequency of package releases, the automatic update mechanism, and how package

changes are communicated across the ecosystem (Bogart et al., 2016). Therefore,

we acknowledge that additional studies are required in order to further generalize

our results. However, to the best of our knowledge, this is the first study to empiri-

cally analyze the potential overhead that is introduced by dependency management

bots and provide a series of practical recommendations for designers of these bots.

55https://depfu.com/

https://depfu.com/
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4.7 Chapter Summary

It has become commonplace for developers to reuse code from multiple provider

packages in the form of software dependencies. With this rise in software depen-

dencies in open source software projects, we have seen an increase in popularity

of using software bots to automatically manage these dependencies. Although bots

are able to help automate these monotonous tasks, integrating these bots into a

project’s workflow introduces a certain level of overhead in the client project, and

once the bot begins performing its specific function, human intervention is usually

required to either accept or reject any actions or recommendations the bot creates.

In this chapter, we describe an empirical study of 93,196 issue reports opened

by Greenkeeper (GKIRs), a popular software bot used to manage software depen-

dencies in the npm ecosystem, that examines the extent to which automated depen-

dency management bots can either save or create unnecessary work in their client

projects. Studying these GKIRs allows us to explore the amount of overhead cre-

ated by using these types of dependency management bots. Specifically, we exam-

ine the overhead introduced in client projects by Greenkeeper (RQ1). Our results

show that Greenkeeper introduces a significant amount of overhead in the form

of notifications and other artifacts (e.g., issue reports and comments) that must be

addressed by client developers. Next, we explore whether automated dependency

pinning is an effective mechanism for resolving GKIRs (RQ2), and observe that this

is not the case, with 68% of pin attempts failing, usually due to reasons unrelated to

the dependency update (e.g., pre-existing issue in the client’s CI pipeline). Finally,

we look at the performed code changes resolving GKIRs (RQ3). We observe that,

while the majority of changes that resolve GKIRs are small (1-3 LOC) modifications
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to the client’s dependency specification file, they can sometimes require changes to

the client’s source code, in which case they are comparable in size to changes that

resolve non-GKIRs.

These findings indicate that, while bots like Greenkeeper can be an effective

tool for managing dependencies, they also can generate a significant amount of

noise in client projects, especially if the client has a low quality CI pipeline that

is prone to intermittent failures. Leveraging our findings, we provide a series of

implications that are of interest for designers of dependency management bots,

with attention given to practical recommendations to help reduce the amount of

overhead introduced by these bots.



CHAPTER 5

On bots leveraging the crowd for dependency

management: An empirical study of the Dependabot

Compatibility Score

This chapter is under review in the IEEE Transactions on Software Engineering (TSE).

SOFTWARE is increasingly being built by client packages making use of provider

packages in the form of dependency relationships, which means client

packages must face the essential and risky task of keeping their provider

package dependencies up-to-date. Dependabot, a popular dependency manage-

ment tool, includes a “compatibility score” feature that helps client packages as-

sess the risk of accepting a dependency update by leveraging knowledge from “the

crowd”. For each dependency update, Dependabot calculates this compatibility

93
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score by dividing the number of successful updates by the total number of update

attempts (candidate updates) made by other client packages that also use the same

provider package as a dependency.

In this chapter, we describe our study on the efficacy of leveraging the crowd

to help client packages assess the involved risks with accepting a dependency up-

date. To accomplish this, we analyze 579,206 pull requests opened by Dependabot

to update a dependency, along with 618,045 compatibility score records calculated

by Dependabot. We find that the majority of compatibility scores do not have the

minimum number of required candidate updates for the compatibility score badge

to be shown on Dependabot pull requests. When the compatibility scores do have

enough candidate updates, the vast majority of the scores are above 90%, suggest-

ing that client packages should have additional angles to evaluate the risk of an

update and the trustworthiness of the compatibility score. To overcome the lack of

candidate updates when calculating a compatibility score, we propose metrics that

amplify the input from the crowd and demonstrate the ability of those metrics to

predict the acceptance of an update by client packages. We also verify that histori-

cal update metrics from client packages can be used to provide a more personalized

compatibility score. Finally, we find that client packages should be hesitant to place

total confidence in compatibility scores, as the candidate updates that are used to

calculate the scores can be low both in quantity and quality. Based on our findings,

we argue that, when leveraging the crowd, dependency management bots should

(i) be mindful of ways to amplify the input from the crowd, (ii) consider historical

metrics from the client package to provide a personalized compatibility score, (iii)

include a confidence interval to help calibrate the trust clients should place in the
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compatibility score, and (iv) take into consideration the quality of tests that exercise

candidate updates to avoid biasing the compatibility score.

5.1 Introduction

As software is increasingly being built by making use of dependency relationships,

an important development decision that is faced by clients is whether to update the

provider package from the presently used version in their package (i.e., the origin

version) to the newest release of the provider (i.e., the target version). Doing so al-

lows clients to receive the aforementioned potential benefits, but at the risk of these

new versions modifying existing functionality or introducing API-backwards incom-

patibilities (a.k.a., breaking updates) (Bogart et al., 2016). One strategy employed

by client packages to protect against breaking updates is to run their own contin-

uous integration (CI) pipeline, including unit and integration tests, against newly

released versions of their dependencies (Hilton et al., 2016). Unless an update is

intentionally breaking backwards compatibility (e.g., a major release), the client’s

CI pipeline should continue to pass with the new release applied (Raemaekers et al.,

2017).

However, many client packages do not have a full CI pipeline enabled (Hilton

et al., 2016), and therefore are unable to automatically test whether a dependency

update will be compatible with their package. One strategy that attempts to address

this issue is to leverage knowledge from the crowd to provide insights about the risk

of a newly released version of a provider package. In fact, Mujahid et al. (2020)

and Mezzetti et al. (2018) both propose techniques that leverage the test suites of

clients of a provider package in an effort to detect breaking changes in new releases
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of the provider package, and use these test outcomes as crowd-sourced indicators

of the risk of adopting said provider release.

Dependabot is an automated dependency management tool that packages on

GitHub can integrate with to automate the process of updating and testing new

releases from provider packages. Dependabot sits between a client’s package man-

ager and GitHub, observing all the provider packages the client package depends

on. Each time one of these providers release a new version, Dependabot opens a

pull request (PR) in the client package with the dependency update, and the client’s

CI pipeline is run automatically on the updated dependency to test if it is a breaking

update. Dependabot records the result of updating the dependency, and calculates

a compatibility score for the provider package release as the percentage of PRs with

a successful CI conclusion (successful updates) to the total number of PRs updating

between the origin and target versions of said provider (candidate updates). This

compatibility score is shown as a badge on PRs that are opened by Dependabot for

the same provider update, and is meant to give practitioners a sense of the involved

risk when updating a dependency by leveraging the knowledge of “the crowd”, so

that clients can be confident a new provider version is backwards compatible and

bug-free.

However, this technique has its limitations, as it requires a crowd of a large scale

to work effectively, and there is a lack of research that examines the value and chal-

lenges of using this approach. On the one hand, since Dependabot is state-of-the-art

and the most widely used automated dependency management bot leveraging the

idea of crowd-based risk assessment, clients stand to reap the benefits of these indi-

cator metrics to help them keep their dependencies up-to-date and their packages
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in working order. On the other hand, it is unknown whether the crowd is actu-

ally able to provide a strong enough signal for Dependabot to be able to calculate

trustworthy compatibility scores, nor the level of confidence clients should actually

place in these compatibility scores.

Therefore, in this chapter, we describe our study that explores the efficacy of De-

pendabot’s strategy of leveraging the crowd to provide a compatibility score to help

clients assess the involved risks with dependency management. In the following,

we list our research questions and key observations:

RQ1: Does the crowd provide enough support to calculate a trustworthy com-

patibility score? We examine the proportion of compatibility scores that have the

minimum number of candidate updates required by Dependabot and the range of

scores practitioners most often see when they receive a Dependabot PR. Our results

indicate that compatibility scores tend to have a small number of candidate updates

and are heavily skewed towards 100%. Therefore, clients should be hesitant to trust

compatibility scores, and other sources of information should be considered to cal-

culate compatibility scores to overcome the lack of candidate updates.

RQ2: Which other sources of information can be considered when the crowd

does not provide enough support to calculate a compatibility score? We ex-

amine seven features across two dimensions: i) origin version range compatibility

scores, which considers the candidate updates from a range of origin versions of a

provider package (e.g., 2.0.x) that have been updated to a specific target version

(e.g., 2.0.4) and aims to amplify the knowledge from the crowd, and ii) client his-

tory of updates, which aim to capture the historical stability of the client’s package in
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general, the historical compatibility of the provider package with the client’s pack-

age, and the historical level of confidence the client package places in the provider

package. We observe that considering a range of origin versions can increase the

number of candidate updates that are used to calculate compatibility scores. We

also find that features from both of the aforementioned dimensions can result in

models that predict whether a dependency update will be accepted or rejected by

a client package with an AUC of 0.64-0.80, with historical metrics from the client

package tending to have the highest predictive power.

RQ3: How much confidence should client packages place in the compatibil-

ity score? We evaluate the confidence Dependabot has in compatibility scores by

building an associated confidence interval for each compatibility score. We observe

that half of compatibility scores with at least 5 candidate updates have a confidence

interval whose bounds are further than 15% from the compatibility score. We also

explore the quality of checks that make up the CI pipelines of candidate updates,

and find that candidate updates that contribute to compatibility scores may not

always truly test the associated dependency update.

The aforementioned results led us to conclude that, while popular dependency

management bots like Dependabot making use of the crowd to assess the compat-

ibility of a dependency update is a promising strategy, the compatibility scores are

often not available, and, even when the scores are available, can be misleading

for clients without the support of a confidence interval. Additionally, bots should

employ further methods to help amplify the input from the crowd or consider his-

torical upgrade metrics to assess whether a client package should accept or reject a

dependency update.
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More generally, the main contributions of this study are: (i) an empirical study

that examines Dependabot’s current strategy of leveraging the crowd to provide

a compatibility score to help clients assess the involved risks with accepting a de-

pendency update, (ii) a description and evaluation of additional data sources that

can be considered when the crowd does not provide enough support to calculate

a compatibility score, (iii) a description and evaluation of an approach to help cal-

ibrate the level of trust clients should place in the score, (iv) a series of practical

recommendations for designers of automated dependency management bots on ef-

fectively leveraging the crowd to help clients assess the risk of accepting a depen-

dency update, and (v) a supplementary material package with the data that is used

in this study1 as a means to bootstrap other studies in the area.

The remainder of this chapter is organized as follows. Section 5.2 introduces key

concepts related to our study. Section 5.3 explains the employed data collection

procedures. Section 5.4 presents the motivation, approach, and findings of our

three research questions. Section 5.5 discusses the implications of our findings.

Section 5.6 discusses the threats to the validity of our study. Finally, Section 5.7

concludes the chapter.

5.2 Background and Motivating Example

In this section, we present the key concepts related to automated dependency man-

agement with Dependabot (Section 5.2.1), as well as existing studies in the field of

1https://github.com/SAILResearch/suppmaterial-22-ben-dependabot_compatibility_

score

https://github.com/SAILResearch/suppmaterial-22-ben-dependabot_compatibility_score
https://github.com/SAILResearch/suppmaterial-22-ben-dependabot_compatibility_score
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crowd-sourced software engineering (Section 5.2.2). We also present a motivating

example (Section 5.2.3) to help illustrate the intentions of the compatibility score.

5.2.1 Dependabot

Dependabot is perhaps currently the most popular automated dependency-management

tool, having first launched on May 26, 20172 and later being acquired by GitHub on

May 23, 20193. Dependabot supports a wide range of different language ecosys-

tems, including JavaScript, Ruby, and Python to name a few. Dependabot sits be-

tween a package manager and GitHub, observing all the providers on which a client

package depends. Each time one of these providers release a new version, Depend-

abot opens a new PR with the client’s dependency specifications updated to accept

the newly released provider version. Once a Dependabot PR is created, the client’s

CI pipeline, if configured, runs automatically against the PR branch to determine

if the new version of the provider passes all the client’s tests. The client can then

decide whether they would like to accept or reject the Dependabot PR.

To support clients in their decision of whether they should accept or reject a

Dependabot PR, Dependabot includes a summary statistic called a compatibility

score that leverages knowledge from the crowd to provide insights about the risk

of a newly released version of a provider package. When a new provider version

is released, Dependabot creates similar PRs across multiple client packages to up-

date the provider from the origin version used by each client to the target version

which has been newly released by the provider. More formally, the provider pack-

age named P , origin version VO, and target version VT create a 3-tuple for the

2https://dependabot.com/blog/introducing-dependabot/
3https://dependabot.com/blog/hello-github/

https://dependabot.com/blog/introducing-dependabot/
https://dependabot.com/blog/hello-github/
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dependency update (P , VO, VT ). For each client with CI enabled (e.g., Travis CI4 or

GitHub Actions5) and a previously passing test suite, Dependabot records whether

the 3-tuple dependency update breaks any of the client’s tests. Dependabot con-

siders PRs that meet this criteria to be candidate updates. Dependabot considers a

candidate update to be a successful update if the client’s CI pipeline is in a passing

state with the dependency update. Figure 5.1 provides an example of a Depend-

abot PR with the provider package name, origin version, target version, and the

compatibility score highlighted.

Figure 5.1: An example of a Dependabot pull request with the provider package
name, origin version, target version, and the compatibility score highlighted.

4https://travis-ci.com/
5https://docs.github.com/en/actions

https://travis-ci.com/
https://docs.github.com/en/actions
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The compatibility score of a dependency update is the percentage of CI runs that

passed when updating the dependency between the same origin and target versions

(i.e., the number of successful updates divided by the number of candidate updates

for the origin version and target version of the provider package). It is important to

note that the client does not necessarily have to merge the Dependabot PR in order

for it to be considered a candidate update and contribute to the compatibility score.

In order for the compatibility score to correctly show up on the Dependabot PR, the

dependency update must have at least 5 candidate updates6. Otherwise, the badge

will simply say that the compatibility score is “unknown”.

5.2.2 Crowd-sourced Software Engineering

Several researchers have studied how to use the “wisdom of the crowds” to help

in the software engineering domain. Stack Overflow7, a popular Question and

Answer (Q&A) site, has been the topic of many studies (LaToza and van der Hoek,

2016; Treude et al., 2011; Rosen and Shihab, 2016; Barua et al., 2014; Vasilescu

et al., 2013) that explore how the job of answering questions related to software

engineering is outsourced to the crowd. Specifically, Abdalkareem et al. (2017b)

analyze 1,414 Stack Overflow related commits and observe that developers use

this crowd based knowledge mostly for technical comprehension, collecting users’

feedback and code reuse.

The idea of using the crowd to help with dependency management has also

been studied. Mileva et al. (2009) proposed an approach and associated tool to

6https://github.com/dependabot/dependabot-core/issues/4001#issuecomment-

870399478
7https://stackoverflow.com/

https://github.com/dependabot/dependabot-core/issues/4001#issuecomment-870399478
https://github.com/dependabot/dependabot-core/issues/4001#issuecomment-870399478
https://stackoverflow.com/
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help client packages decide when to use which version of a provider package. They

reason that if a provider package version is used by more client packages, it should

be more likely to be recommended. To use the crowd to detect breakage changes

in new provider releases, Mujahid et al. (2020) propose a technique that leverages

the automated test suites of other client packages that make use of the same depen-

dency to test newly released versions, describing essentially an academic version of

the Dependabot compatibility score. They find that this crowd-based approach can

detect six of ten breakage-inducing versions they studied, and that their findings

can help clients to make more informed decisions when they update their depen-

dencies, which is also the goal of the Dependabot compatibility score. Similarly,

Mezzetti et al. (2018) describe an approach called type regression testing to auto-

matically detect type-related breaking changes. This approach leverages the tests

of clients of a provider package to construct models of new releases of provider

package APIs, and then compare these models to detect potential type regressions,

demonstrating that this approach can detect type-related breaking changes with

high accuracy. They argue that using the clients’ test suite, rather than the test suite

of the provider package itself, is more likely to provide representative executions

and only use the public parts of the provider package.

5.2.3 Motivating Example

To help illustrate how the compatibility score is used in practice and how it can be

misleading in the context of dependency management, we provide a simple moti-

vating example.
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Alice is a software developer responsible for developing and maintaining an ap-

plication in her company. In order to enable code reuse and speed up development

time, she relies on a few third-party packages to accomplish specific tasks in her

application. However, in order to keep up with the demanding timeline of her em-

ployer, she has only managed to build a CI testing pipeline that amounts to “smoke

tests”8 (i.e., a non-exhaustive set of tests that aim at ensuring only the most impor-

tant functions of her application work). She has not written any tests that exercise

the portions of her application that make use of her dependencies, as she figures

that these packages would be “deployment tested” (i.e., they are extensively used

in production by many clients).

As with many provider packages, the dependencies Alice uses get updated fre-

quently. Alice wants to be more proactive in managing her software dependencies,

so she uses Dependabot to automatically open PRs to update her dependencies as

new releases become available. She knows that Dependabot is the most commonly

used automated dependency management bot and enjoys the convenience of being

notified when her dependencies become out-of-date.

While Alice very much wants to keep her dependencies up-to-date, she is aware

of the involved risks with blindly accepting a new update. She has heard stories

from other developers who have had to drop all of their work in order to fix a bro-

ken CI pipeline caused by a dependency update. Even worse, Alice has even heard

of developers who were only informed by their customers that their application was

broken weeks after deploying a new version that contained a breaking dependency

update. She could only imagine the amount of work that it took to find that this par-

ticular dependency update was the root cause, not to mention the user’s perceived
8https://softwaretestingfundamentals.com/smoke-testing/

https://softwaretestingfundamentals.com/smoke-testing/
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lack of quality that comes with deploying a broken version of the application. Since

Alice knows her test suite does not sufficiently cover her application, she thinks the

compatibility score badge Dependabot includes on the PRs is a very helpful indi-

cator for the compatibility of the dependency update, and tends to rely on it when

deciding whether to accept a dependency update.

One day, Alice sees that Dependabot has opened a PR in her application. After

briefly examining the PR, she sees that her CI tests pass when applied against the

dependency update, but that Dependabot has not been able to calculate a compat-

ibility score for the update. Knowing that her tests are most likely not capable of

exercising major portions of her dependencies, she decides to hold off on taking

any action on this PR.

After a few days, Alice checks back on the PR, and finds that Dependabot reports

that updating the dependency from the version that she currently uses to the newly

released target version has a compatibility score of 100%. With this information in

mind, she decides to merge the PR.

A few days later, Alice gets a message from her boss stating that their application

is experiencing some unexpected behaviour. After debugging, Alice finds that the

recent change she made by merging the Dependabot PR for the dependency update

introduced the issue. Even though her CI testing pipeline passed, the tests were

not able to detect the breaking behaviour in the updated dependency - the tests

simply did not cover the case causing the unexpected behaviour. Remembering

the 100% compatibility score she saw when she merged the PR, she investigates

and discovers that the dependency update only had 5 candidate updates - one of

which was actually the PR Dependabot opened for her own application! Alice’s
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confidence in the compatibility score has been severely shaken after this incident.

She made the wrong decision because she didn’t know “how much” she could trust

the compatibility score when she merged the Dependabot PR, and now no longer

believes the compatibility score to be a reliable metric.

5.3 Data Collection

In this section, we discuss how we collect the dataset to address the RQs outlined

in the introduction. We use the workflow of Figure 5.2: (i) we identify packages on

GitHub that use Dependabot, (ii) we collect all Dependabot PRs for each package

that is identified in the previous step, and extract the necessary information and

collect related artifacts for each Dependabot PR, (iii) we collect the compatibility

scores for the provider package updates that are related to each Dependabot PR

identified in the previous step, (iv) we build two distinct datasets using the data

collected in the two previous steps.

Next, we provide a more in-depth explanation of each step in our data-collection

workflow.

5.3.1 Identify packages using Dependabot

To identify the packages using Dependabot, we leverage the Google BigQuery Pub-

lic Datasets9 to search for commits on GitHub that have been authored by Depend-

abot. Each of these commit records contains the parent package name on GitHub,

which we use to build our list of packages to include in our study. It is known

9https://cloud.google.com/bigquery/public-data/

https://cloud.google.com/bigquery/public-data/
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Figure 5.2: Overview of the data collection process.

that GitHub contains some toy packages (Kalliamvakou et al., 2014) which are not

representative of the software packages we aim to investigate. Therefore, once the

dataset of packages using Dependabot is collected, we apply some filtering criteria
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for selecting a set of packages with a history of activity. We only include packages

that are non-forked and contain at least 100 commits, as recommended by prior

studies (Alfadel et al., 2021; Mirhosseini and Parnin, 2017; Kalliamvakou et al.,

2014). In total, we extract a list of 7,733 GitHub packages that meet our filtering

criteria. Due to our filtering criteria, this is by no means an exhaustive list of all

packages that use Dependabot.

5.3.2 Collect Dependabot Pull Requests

We use the GitHub API10 to retrieve all Dependabot PRs opened in the list of pack-

ages that we collected in Section 5.3.1. This step is necessary as a follow-up to

Section 5.3.1 as it allow us to extract the information about the provider Depend-

abot is attempting to update with the PR. Overall, we collect a total of 579,206 PRs

opened by Dependabot for the time period between June 2017 and June 2021.

Dependabot includes information on the updated provider package in the title of

the PR (see Figure 5.1). We extract the provider package name, the origin version

of the provider used by the client, and the newly released target version of the

provider from the PR title using a set of regular expressions, which we use to collect

compatibility scores in Section 5.3.3. We are able to extract this information from

575,860 (99.4%) of the PRs. Upon closer examination of the PRs for which we

are not able to extract this information for, we find that these PRs are not in fact

dependency updates, but rather automatic PRs created by Dependabot to create

or modify the Dependabot configuration file in the client package, or to update

Dependabot itself.

10https://docs.github.com/en/rest

https://docs.github.com/en/rest
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To determine whether a client’s CI pipeline passed or failed when testing each

dependency update, we retrieve the GitHub Checks11 that ran on each PR. Checks

are pipeline runs or custom scripts that perform specific tasks (e.g., linters12 or

Travis CI builds), and they are used by Dependabot to determine the result of a

candidate update (i.e., success or failure). There can be multiple checks that run

against a PR. For example, a client might have a check that ensures the client’s

package builds, another check to run the test suite, and a final check to detect and

fix any code style issues. The set of checks that run against a PR make up the CI

pipeline for the client’s package. Overall, we find that 38% of Dependabot PRs (or

43% of client packages) have a configured CI pipeline (i.e., a set of checks) to run on

new PRs, which is in line with prior results by Hilton et al. (2016) when examining

the percentage of open-source packages that have a CI pipeline configured.

Hejderup and Gousios (2021) find in their study that it is common for clients

to have a low quality set of tests that run against dependency updates. With these

findings in mind, we decide to classify the types of checks to determine what types

of CI pipelines are run against Dependabot PRs. We use the name of the check,

which is used to give a high-level description of the task the check performs, to

assign each check to a specific overarching category. We match 91.8% of the checks

using the process described in Appendix A to one of the following six categories:

Build (58.1%), Test (17.2%), Useless (11.2%), Lint (7.0%), Deploy (4.9%), and Se-

curity Analysis (1.6%). We find that clients typically group their entire build, test,

and deploy pipeline into a single check workflow, which explains why the Build cat-

egory is the most common. The Useless category consists of checks that do not help

11https://docs.github.com/en/rest/reference/checks
12https://github.com/collections/clean-code-linters

https://docs.github.com/en/rest/reference/checks
https://github.com/collections/clean-code-linters
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with determining whether the changes contained in the PR are compatible with the

client package (e.g., automatically adding a label to the PR or uploading build logs

to a separate repository).

5.3.3 Collect Compatibility Scores

For each specific provider package we extracted in Section 5.3.2, we retrieve all

compatibility scores using the Dependabot API13. The Dependabot API requires a

package manager and a provider package name as query parameters, and returns

the compatibility score records for all 3-tuple update combinations that Dependabot

has recorded for that provider package. Each compatibility score record contains

the number of candidate updates and the number of successful updates Dependabot

has recorded for the 3-tuple dependency update in question. Overall, we collect the

compatibility score records for a total of 618,045 3-tuple dependency updates.

5.3.4 Create 3-tuple and 4-tuple Datasets

Because our package list in Section 5.3.1 is a non-exhaustive set of package that

use Dependabot, the Dependabot PRs we collect in Section 5.3.2 do not represent

the full list of the number of candidate updates that are used by Dependabot to

calculate the compatibility scores. Therefore, the process described in Section 5.3.3

is necessary to get the complete picture in terms of the number of candidate and

successful updates contributing to the associated compatibility score for each 3-

tuple update. Hence, we refer to the compatibility scores we collect in Section 5.3.3

as the “3-tuple dataset”.

13https://dependabot.com/compatibility-score/

https://dependabot.com/compatibility-score/
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However, records from the 3-tuple dataset only contain the compatibility scores

for the 3-tuple update in question, without any relating information on the specific

Dependabot PRs opened in client packages that are contributing as candidate or

successful updates to these scores. As a result, we are not able to study the rela-

tionship between compatibility scores and the associated merge status of candidate

update Dependabot PRs using the 3-tuple dataset.

Therefore, we link the compatibility score from the 3-tuple dataset with the

associated Dependabot PRs (if present) we collected in Section 5.3.2. This allows

us to link specific candidate update Dependabot PRs to a compatibility score and

provides a means to study the relationship between the compatibility scores and

the merge status of said Dependabot PRs. With the specific client linked to the 3-

tuple dependency update for the compatibility score, we form a 4-tuple consisting

of (C, P , VO, VT ), where C is the client package from a Dependabot PR, P is a

provider package used by C, VO is the origin version of P used by C at the time the

Dependabot PR was opened, and VT is the newly released target version of P at

the time the Dependabot PR was opened (notice that P , VO, and VT form a single

record from the 3-tuple dataset). Hence, we refer to this dataset as the “4-tuple

dataset”.

An additional description on how and why the 3-tuple and 4-tuple datasets may

differ is included in Appendix B.

5.4 Results

In this section, we present the results for each of our RQs. For each RQ, we discuss

the motivation, the approach we used to address the RQ, and our findings.
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5.4.1 RQ1: Does the crowd provide enough support to calculate

a trustworthy compatibility score?

Motivation. Client packages often want to be aware of the risk of a dependency

update breaking the build (Bogart et al., 2015), particularly when the quality of

test suites cannot be fully trusted – a relatively common scenario according to re-

cent research (Hejderup and Gousios, 2021). Dependency bots (e.g., Dependabot)

have recently integrated a new feature that leverages crowd-sourced information

to estimate the risk of an update in the form of a compatibility score. However, the

viability of the compatibility score has yet to be studied in practice, and it is unclear

whether Dependabot does in fact create enough dependency updates to be able

to effectively determine a consensus from the crowd about whether a dependency

update is safe or not, as well as whether client packages can rely on this consensus.

In fact, these issues have been the source of complaints on the Dependabot repos-

itory14 as well as developer blog sites15. Therefore, in this research question, we

look to answer i) how often do compatibility scores have the minimum number of

candidate updates required to be shown as a badge on Dependabot PRs? and ii)

when the badge is shown on Dependabot PRs, is the distribution of scores seen by

client packages useful to assess the risk of an update?

Approach. To determine how often a known compatibility score shows up on De-

pendabot PRs, we examine the proportion of candidate updates each dependency

update has. Recall that in order for a known compatibility score badge to show up

14https://github.com/dependabot/dependabot-core/issues/2443
15https://dev.to/lhuria94/comment/ofe5

https://github.com/dependabot/dependabot-core/issues/2443
https://dev.to/lhuria94/comment/ofe5
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on the PR, the dependency update must have at least 5 candidate updates. Other-

wise, the badge will simply say that the compatibility score is “unknown”. We then

examine the distribution of compatibility scores with at least 5 candidate updates

to determine the range of scores practitioners most often see when they receive a

Dependabot PR. We perform this analysis on the compatibility score for both the

3-tuple and 4-tuple datasets.

Findings. Observation 5.1) The majority (83%) of dependency updates

do not have enough candidate updates to display a compatibility score badge

on Dependabot PRs. Figure 5.3 shows the distributions of candidate updates

for compatibility scores with at least 1 candidate update from both the 3-tuple

and 4-tuple datasets. When examining the distribution of candidate updates for

compatibility scores from the 3-tuple dataset, we find that only 17% have at least

5 candidate updates. This finding was surprising, as it shows that, even though

Dependabot may be opening hundreds of PRs when a provider package releases

a new version, more than four-fifths of the associated compatibility scores are still

not shown on these PRs simply because the “consensus from the crowd” doesn’t

exist for the dependency update. In reality, this proportion is likely lower, as all

compatibility score records in our 3-tuple dataset must have at least 1 candidate

update (see Section 5.3.3), which means we do not include the compatibility scores

for dependency updates that have no candidate updates in our analysis.

We find that 43% of the compatibility scores from the 4-tuple dataset do not have

enough candidate updates for the compatibility score to show up on Dependabot

PRs, with the median number of candidate updates being 41. Recall that compat-

ibility scores from the 4-tuple dataset include compatibility scores for dependency
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updates from provider packages used by active clients, as well as commonly used

origin and target versions of these provider packages. Therefore, we expect these

compatibility scores to have a higher number of candidate updates than those from

the 3-tuple dataset. Although we observe this improvement compared to the 3-

tuple dataset, it must be considered that, while these may be popular dependency

updates, only 57% have a compatibility score with enough candidate updates to be

shown on the associated Dependabot PR. Our observations suggest that alternative

sources of information should be considered to support dependency updates when

the crowd does not provide enough input to calculate a compatibility score.

Figure 5.3: The distribution of candidate updates for compatibility scores with at
least 1 candidate update from the 3-tuple and 4-tuple datasets.

Observation 5.2) Client packages are usually forced to distinguish between only

a small range of compatibility scores. When the badge with the compatibility

score is shown on the Dependabot PR (i.e., the compatibility score has at least 5

candidate updates), we find that the vast majority of compatibility scores (76% and

89% in the 3-tuple and 4-tuple datasets, respectively) are greater than 90%.

Figure 5.4 shows the distributions of compatibility scores that have at least 5

candidate updates from both the 3-tuple and 4-tuple datasets. We can see that, with

so many compatibility scores grouped at the high end of the score range, it can be

difficult for client packages to distinguish between such a small range of scores, and
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in fact may be misled into thinking dependency updates are more compatible than

they actually are. In order to help calibrate clients’ trust on the usually excessively

high compatibility scores, additional supporting metrics, such as the adoption of an

accompanying confidence score for each compatibility score, might be useful.

Figure 5.4: The distribution of compatibility scores that have at least 5 candidate
updates from the 3-tuple and 4-tuple datasets.

RQ1: Does the crowd provide enough support to calculate a trustworthy compatibility

score?

• The majority of compatibility scores do not have the minimum number of candidate updates

to be shown correctly on Dependabot PRs.

• The vast majority of the shown scores are above 90%, hindering clients’ ability to differentiate

the risks of a dependency update.

5.4.2 RQ2: Which other sources of information can be consid-

ered when the crowd does not provide enough support to

calculate a compatibility score?

Motivation. We found in RQ1 that the majority of dependency updates do not have

enough candidate updates recorded by Dependabot to correctly show a compatibil-

ity score badge on PRs. Dependabot is the most popular dependency management
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bot available in the open-source community, and it is unlikely that there is another

tool that will be able to sample a crowd as large as the one available to Dependabot,

which presents a real issue with the concept of using the crowd to assess the risk

of a dependency update. Therefore, Dependabot should make use of metrics other

than the number of candidate and successful updates for a specific origin and tar-

get version of a provider package when attempting to support clients in dependency

management, especially when the number of candidate updates is low.

Approach. Our goal is to explore alternative metrics that Dependabot could take

into account to provide a sense of the compatibility of a new dependency version in

a client package, particularly when the crowd does not provide enough support to

calculate a compatibility score for the dependency update. We examine 7 metrics

divided into two dimensions (origin version range compatibility scores and client his-

tory of updates) that can be calculated using data already available to Dependabot

(summarized in Table 5.1).

Origin Version Range Compatibility Scores: Because Dependabot exclusively

counts candidate updates with the same origin and target version of a provider to-

wards a compatibility score, the number of candidate updates for each compatibility

score is severely limited. While there may be a high number of candidate updates

for the provider package overall, all of these candidate updates end up being spread

across a wide range of potential origin version and target version combinations.
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Table 5.1: Dimensions and their features that are used to assess the compatibility
of a new dependency version in a client package when the crowd does not provide
enough support to calculate a compatibility score for the dependency update.

Dimension Metric Name Rational Description

Origin Version
Range
Compatibility
Scores

Patch Origin
Version Range
Compatibility
Score

Amplify the input from the
crowd by considering candi-
date updates from similar ori-
gin versions.

The compatibility score for
provider package P calcu-
lated using the candidate
updates from all 3-tuples
matched in (P , x.y.*,
x.y.z).

Minor Origin
Version Range
Compatibility
Score

Amplify the input from the
crowd by considering candi-
date updates from origin ver-
sions which may be less simi-
lar than patch ranges, but still
should not contain breaking
changes.

The compatibility score for
provider package P calcu-
lated using the candidate
updates from all 3-tuples
matched in (P , x.*.*,
x.y.z).

Major Origin
Version Range
Compatibility
Score

Maximize amplifying the in-
put from the crowd by incor-
porating candidate updates
from all origin versions.

The compatibility score for
provider package P calcu-
lated using the candidate
updates from all 3-tuples
matched in (P , *.*.*,
x.y.z).

Client History
of Updates

Passing
Dependabot
PRs

Captures the historical stabil-
ity of the client’s package in
general.

The number of Dependabot
PRs previously opened in the
client package that have suc-
cessfully passed the client’s CI
pipeline.

Passing Provider
Dependabot
PRs

Captures the historical stabil-
ity between the client pack-
age and the provider package
Dependabot is opening a PR
to update.

The number of Dependabot
PRs for the same provider
previously opened in the
client’s package that have
successfully passed the
client’s CI pipeline.

Merged
Dependabot
PRs

Captures the level of trust the
client package has with De-
pendabot PRs in general.

The number of Dependabot
PRs previously merged by a
user in the client’s package.

Merged Provider
Dependabot
PRs

Captures the level of trust
the client package has in the
provider package Depend-
abot is opening a PR to up-
date.

The number of Dependabot
PRs for the same provider
previously merged by a user
in the client’s package.
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To address this issue, we consider using the candidate updates from a range of

origin versions that have been updated to a specific target version. We take inspira-

tion from the Semantic Versioning (SemVer) scheme16, a popular policy for commu-

nicating the type of changes made to a software package, where clients can specify

whether they would like to accept a range of versions from the provider17 (Dietrich

et al., 2019; Decan and Mens, 2020). Similarly, we calculate three origin version

range compatibility score metrics: a patch origin version range compatibility score, a

minor origin version range compatibility score, and a major origin version range com-

patibility score. These origin version range compatibility scores are calculated in the

same way as the raw compatibility score (i.e., the number of successful updates di-

vided by the number of candidate updates), but they each consider an increasingly

wider range of origin versions of the provider package to select candidate updates

from. The patch origin version range compatibility score considers all origin ver-

sions of a provider package where only the patch version number of the origin

version may differ. The minor origin version range compatibility score considers all

origin versions of a provider package where the minor or patch version numbers of

the origin version may differ. Finally, the major origin version range compatibility

score considers all origin versions of a provider package where the major, minor or

patch version numbers of the origin version may differ (i.e., all origin versions of

a provider package that have been updated to a specific target version). Table 5.1

provides an example of these matching patterns. It can be seen that the major origin

version range compatibility score will match more 3-tuple updates than the minor

16https://semver.org
17https://nodesource.com/blog/semver-tilde-and-caret/

https://semver.org
https://nodesource.com/blog/semver-tilde-and-caret/
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origin version range compatibility score, which in turn will match more 3-tuple up-

dates than the patch origin version range compatibility score. These metrics aim to

amplify the input from the crowd by expanding the range of considered candidate

updates for each compatibility score at the cost of generalizing the exact origin ver-

sion of the provider being considered for each origin version range compatibility

score.

Client History of Updates: Even when considering the candidate updates from

a range of origin versions, there still might not be enough support from the crowd

to reliably calculate a compatibility score. Therefore, we turn to historical metrics

from the client package to help assess the involved risk with a dependency up-

date. Specifically, we look at the number of Dependabot PRs previously opened

that passed the CI pipeline in the client package (both overall and for each specific

dependency). These metrics aim to capture the historical stability of the client’s

package in general, as well as the historical compatibility between the client pack-

age and the provider package that the Dependabot PR is attempting to update.

Additionally, we consider the number of Dependabot PRs that have previously

been merged in the client package (both overall and for each specific dependency).

These metrics aim to capture the level of trust the client has in the specific provider

package Dependabot is attempting to update and the client’s overall providers in

general, as a higher number of merged Dependabot PRs suggests a higher level of

trust by the client.

To investigate how well the individual dimensions can assess the compatibility of

a dependency (i.e., their predictive power), we built a random forest model for each

of the previously discussed dimensions, setting the dependent variable as whether
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the Dependabot PR is merged by a client package developer. We select whether the

client package developer accepts or rejects the dependency update rather than, for

example, the result of the client’s CI pipeline running against the dependency up-

date, because it is common for CI pipelines to contain low-quality tests (Hejderup

and Gousios, 2021), which would bias how we assess the compatibility of the de-

pendency update (e.g., low-quality CI pipelines might often fail due to flaky tests).

Using whether a client package developer decides to merge the Dependabot PR

allows us to capture whether deliberate action was taken by a human to either ac-

cept or reject the dependency update, as client package developers may be aware

of issues with their CI pipeline and merge Dependabot PRs with failed CI pipelines

anyway because they know their pipeline failed for reasons unrelated to the depen-

dency update. In fact, we found this to be the case in 28% of Dependabot PRs with

a failed CI pipeline, where the client decides to merge the Dependabot PR anyway.

When building these models, we only consider Dependabot PRs from the 4-tuple

dataset that have fewer than 5 candidate updates, as these are the cases where we

have recorded the Dependabot PR and the crowd has not provided enough support

for Dependabot to calculate a reliable compatibility score. As a baseline, we build

a random forest model with the raw compatibility score as the sole independent

variable and the dependent variable as the merge result of the Dependabot PRs.

For our baseline model, we only consider Dependabot PRs from the 4-tuple dataset

set that have at least 5 candidate updates. We use the ranger18 package in R as our

random forest implementation due to its enhanced performance.

18https://cran.r-project.org/web/packages/ranger/ranger.pdf

https://cran.r-project.org/web/packages/ranger/ranger.pdf
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To validate the performance and stability of our built models, we performed 100

out-of-sample bootstrap iterations to compute the median AUC (Area Under the re-

ceiver operator characteristics Curve) for each model. Prior work (Tantithamtha-

vorn et al., 2017; Lee et al., 2020) has shown that the out-of-sample bootstrap

technique had the best balance between the bias and variance of estimates. The

out-of-sample bootstrap technique randomly samples data with replacement for n

iterations. The sampled data in an iteration is used as the training set for that itera-

tion, while the data that was not sampled in that iteration is used as the testing set

for that iteration. We then trained a model with the training set and calculated the

AUC of the model with the testing set for each iteration.

In addition, to investigate how well both of the studied dimensions can help to

assess the compatibility of a dependency, we built a random forest model using all 7

metrics from both dimensions previously discussed. We evaluated the performance

of this combined model using the same aforementioned process of computing the

median AUC of the model with 100 out-of-sample bootstrap iterations.

Findings. Observation 5.3) There is room for improvement when establish-

ing the relationship between the compatibility score for a dependency update

and whether the associated Dependabot PR is merged by the client package.

We observe that our baseline model built with the compatibility score as the sole

predictor variable only achieves a median AUC of 0.62 (Figure 5.6 shows the distri-

bution of AUC improvements compared to the median AUC for this baseline model).

This shows that there is room for improvement when establishing the relationship

between the compatibility score and the result of whether the client merged the

Dependabot PR, and that it could be beneficial for Dependabot to consider further
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metrics when trying to convey how compatible a dependency update really is for

client packages.

Observation 5.4) Considering a range of origin versions for a specific target

version can help increase the number of candidate updates used to calculate the

compatibility score. While we find that the majority of compatibility scores from

the 3-tuple dataset do not see any increase in the number of candidate updates used

to calculate a compatibility scores when considering the patch origin version range

(although the third quartile see 3x the number of candidate updates), the minor and

major origin version range compatibility scores are able to consider respectively 5x

and 10x the number of candidate updates as what is used by the raw compatibility

score. We see relatively smaller improvements in the 4-tuple dataset, with the patch,

minor, and major origin version range compatibility scores seeing respectively a

median of 1x, 1.5x, and 1.9x the number of candidate updates as what is used by

the raw compatibility score. Figure 5.5 shows the distribution of ratios of candidate

updates for each origin version range compatibility score to the associated original

compatibility score from the 3-tuple and 4-tuple datasets.

Considering a range of origin versions for a specific target version can also help

to increase the number of compatibility scores that meet the required threshold

number of candidate updates (i.e., 5) for Dependabot to display the badge on the

associated PR. Recall from RQ1 that only 17% of compatibility scores from the 3-

tuple dataset have at least 5 candidate updates, while 83% of compatibility scores

from the 4-tuple dataset have at least 5 candidate updates. When we consider

our calculated origin version range compatibility scores for the 3-tuple dataset, we

find that 39%, 68%, and 78% of patch, minor, and major origin version range
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compatibility scores respectively have at least 5 candidate updates. For the 4-tuple

dataset, we find that 86%, 90%, and 92% of patch, minor, and major origin version

range compatibility scores respectively have at least 5 candidate updates.

Figure 5.5: The distribution of ratios of candidate updates for each origin version
range compatibility score to the associated raw compatibility score from the 3-tuple
and 4-tuple datasets.

Observation 5.5) Both the origin version range compatibility scores and the

client history of updates dimensions have significant predictive power to assess

whether a client package developer will accept or reject a dependency update.

The origin version range compatibility scores model achieves a median AUC 2.4%

higher (0.64) than the base model, with the minor origin version range compatibil-

ity score having the highest permutation importance. The client history of updates

model performs even better, achieving a median AUC 21.5% higher (0.76), with

the number of Dependabot PRs previously merged in the client package having

the highest permutation importance. Figure 5.6 shows the distribution of AUC im-

provements of both of these models compared to the baseline model median AUC.

Figure 5.7 and Figure 5.8 show the distribution of permutation importance’s of each
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metric for the origin version range compatibility scores model and the client history

of updates model, respectively.

Figure 5.6: The distribution of the improvement in AUCs of models constructed
with an individually studied dimension, and with all studied dimensions combined,
compared against the baseline model.

Figure 5.7: The distribution of permutation importance’s of each metric from the
origin version range compatibility scores model.
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Figure 5.8: The distribution of permutation importance’s of each metric from the
client history of updates model.

Figure 5.9: The distribution of permutation importance’s of each metric from the
model with combined metrics from both dimensions.
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Observation 5.6) Combining metrics from both dimensions into a single model

results in a larger predictive power than each of the studied dimensions indi-

vidually. Figure 5.6 shows the distribution of AUC improvements of the model

that combines the metrics from both the origin version range compatibility scores

dimension and the client history of updates dimension compared to the median

AUC of the baseline model. It can be seen that the combined model has a median

AUC 27.4% higher (0.80) than the base model, which is 0.18 points higher than the

base model, 0.16 points higher than the origin version range compatibility scores

model, and 0.02 points higher than the client history of updates model. Figure 5.9

shows the distribution of permutation importances of each metric for the model

with combined metrics from both dimensions.

RQ2: Which other sources of information can be considered when the crowd does not

provide enough support to calculate a compatibility score?

• Considering a range of origin versions to a specific target version helps to increase the number

of candidate updates, effectively amplifying the knowledge from the crowd.

• Metrics from the origin version range compatibility scores and client history of updates di-

mensions can help improve the prediction of whether a dependency update will be merged by a

client package developer, with the model combining all metrics having the highest performance.

• Historical upgrade metrics from a client package tend to have the highest predictive power

when considering whether said client package will accept or reject a dependency update.
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5.4.3 RQ3: How much confidence should client packages place

in the compatibility score?

Motivation. As previously explained, the compatibility score for a 3-tuple depen-

dency update is calculated as the ratio of successful updates to the total number of

candidate updates. The problem here is that a compatibility score with 5 successful

candidate updates (i.e., 100%) will result in the associated dependency update ap-

pearing as more compatible than a dependency update with a compatibility score

consisting of 99 successful updates and 1 failed update (i.e., 99%). But clearly, the

latter dependency update is more likely to result in further successful updates. We

use the phrase “more likely” since it is possible that the dependency update with the

former compatibility score consisting of 5 successful updates is in fact more compat-

ible in other client packages than the latter with the compatibility score consisting

of 99 successful updates. The hesitation to agree with this hypothesis is because

we have not seen the other 95 potential candidate updates that would contribute

to the compatibility score of the former dependency update. Perhaps it will achieve

an additional 95 successful updates and 0 failed updates and be considered better

than the latter, though not likely.

Not only does the quantity of candidate updates affect how much confidence

client packages should place in the compatibility score, but also the quality of these

candidate updates. For example, if a Dependabot PR is contributing as a candi-

date update to a compatibility score, but the client’s CI pipeline only consists of

a linter check, it will bear the same weight as a candidate update with which the

associated client’s CI pipeline consisting of a build check, unit & integration test

checks, and a deployment check. Evidently, client packages would be more inclined
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to place a higher level of confidence (i.e., trust) in a compatibility score that was

calculated using candidate updates similar to the latter example rather than the for-

mer. Therefore, in this RQ, we investigate 1) how trustworthy are the compatibility

scores based on the quantity of candidate updates? and 2) how trustworthy are the

compatibility scores based on the quality of candidate updates?

Approach. Our goal is to explore how much confidence (i.e., trust) client pack-

ages should place in the compatibility scores. Our approach takes into account the

quantity of candidate updates to calculate a metric that helps calibrate the trust of

client packages in compatibility scores. Our metric is a confidence interval that is

based on the total number of candidate and successful dependency updates used to

calculate the score, which is the ratio of successful updates to candidate updates for

a dependency update. The higher the number of candidate updates that are used

to calculate the compatibility score, the more confident we are in this compatibility

score. We calculate a 90% confidence interval for each compatibility score based

on the approach described by Davidson-Pilon (2015) (further details are given in

Appendix C). We choose a 90% confidence level because it is the least strict of the

three most commonly used confidence levels (i.e., 90%, 95%, and 99%), as we aim

to help clients estimate the compatibility of a dependency update, which does not

require exact measurements as is the case in other, more critical situations (e.g.,

dealing with human life) (Hazra, 2017).

To explore the trustworthiness of the compatibility scores from the standpoint

of quantity of candidate updates, we examine the distribution of confidence inter-

vals across both the 3-tuple and 4-tuple datasets, as well as the distance from the

compatibility score to the furthest confidence interval bound (i.e., the confidence
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interval precision). To explore the trustworthiness of the compatibility scores from

the standpoint of quality of candidate updates, we examine the number and types

of checks that ran against Dependabot PRs in our 4-tuple dataset, which were clas-

sified in Section 5.3.2. We exclusively examine Dependabot PRs that had a previ-

ously passing test suite (i.e., the CI pipeline has a successful conclusion on the main

branch the Dependabot PR is based off), which is a requirement for Dependabot to

consider the PR as a candidate update.

Findings. Observation 5.7) The confidence Dependabot has in compatibility

scores can vary wildly, even though they are always presented to client packages

as a similar badge. We find that half of compatibility scores with at least 5 candi-

date updates have a 90% confidence interval precision (i.e., the distance from the

compatibility score to the furthest CI bound, see Appendix C - Equation 2) greater

than 15%. The precision improves when examining compatibility scores from the

4-tuple dataset, with the median confidence interval precision dropping to 3.5%.

This improvement is expected, as compatibility scores from the 4-tuple dataset tend

to have more candidate updates than those in the 3-tuple dataset. This shows that,

while Dependabot will present every compatibility score as a similar badge on PRs,

it is very common for the confidence Dependabot has in these scores to vary wildly.

This can mislead client packages into thinking the dependency update is in fact

more stable than it actually is. The distributions of the 90% confidence interval

precision for both the 3-tuple and 4-tuple datasets are shown in Figure 5.10.

Observation 5.8) CI pipelines for candidate update Dependabot PRs often con-

tain a mixture of check types that are not always helpful for testing the com-

patibility of the dependency update. We find that candidate update Dependabot
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Figure 5.10: The distributions of the 90% confidence interval precision for both the
3-tuple and 4-tuple datasets.

PRs have a median of 3 checks that make up the client’s CI pipeline to test the

dependency update. The vast majority (94%) have at least a build or test check

that is part of the CI pipeline. However, while these checks may seem promising,

it is worth noting that it is common for client’s tests to not thoroughly exercise the

package’s dependencies (Hejderup and Gousios, 2021). Additionally, recall that just

over 1 in 10 (11%) check runs we collected were considered to be useless from the

standpoint of contributing to the compatibility score. A quarter (26%) of candidate

update Dependabot PRs have a CI pipeline that contains at least one of these use-

less check, while 1% of candidate update Dependabot PRs have only useless checks

that ran against the dependency update. Of the candidate update Dependabot PRs

with only useless checks, 94% of them had a successful CI conclusion, compared

with 88% of Dependabot PRs with at least one build check.

RQ3: How much confidence should client packages place in the compatibility score?

• Client packages should be hesitant to place total confidence in the accuracy of compatibility

scores, as more than half of the scores with at least 5 candidate updates have a 90% confidence

interval precision greater than 15%.

• Candidate updates that contribute to compatibility scores may not always truly test the asso-

ciated dependency update.
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5.5 Discussion

In this section, we discuss the findings observed in Section 5.4. We present a set of

practical implications for designers of dependency management bots with the aim

of using the crowd to help client packages assess the risk of accepting a dependency

update.

Implication 5.1) When the crowd does not provide enough support to calculate

a compatibility score for a specific dependency update, dependency management

bots should consider candidate updates from different origin version ranges to

amplify the input from the crowd. We found in RQ1 that fewer than 1 in 5

of dependency updates have at least 5 candidate updates, which is the threshold

required for the compatibility score to be shown on Dependabot PRs. We hypoth-

esize that such a low proportion of compatibility scores with less than 5 candidate

updates can be partially explained by two reasons. First, while Dependabot may

be opening a high number of PRs in client packages for dependency updates, only

a small portion of these client packages actually meet the requirements set by De-

pendabot for these PRs to be considered as candidate updates that contribute to

the associated compatibility score (i.e., the client has a CI pipeline configured and a

previously passing test suite on the main branch). Second, while many client pack-

ages may use the same provider package as a dependency, Dependabot may not be

creating PRs to update that provider from the same origin and target versions. For

example, for the provider package P and the 3 versions V1, V2, and V3 of P , the

3-tuple updates (P , V1, V3) and (P , V2, V3) will have two different compatibility

scores with separate candidate updates. So, while there may be a potentially high
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number of candidate updates for the provider package overall, all of these candi-

date updates end up being spread across a wide range of potential origin version

and target version combinations, resulting in a low number of candidate updates

for each specific origin version and target version combination.

While exploring the idea of Dependabot considering candidate updates from a

range of origin versions in RQ2, we found that this ratio increases to 2 in 5 when

considering all candidate updates from dependency releases with only a different

patch origin version number, and to over two-thirds when considering all candidate

updates from dependency releases with only a different minor or patch origin ver-

sion number. Moreover, while considering the candidate updates from the patch

origin version range did not result in a significant increase for the majority of com-

patibility scores, we found that considering a minor origin version range resulted in

5x the number of candidate updates as the raw compatibility score, while consider-

ing a major origin version range resulted in 10x the number of candidate updates

as the raw compatibility score. This is reflected in our results from RQ2, where

we found that the minor and major origin version range compatibility scores have

the highest permutation importance in the origin version range compatibility scores

model.

These are significant improvements which can lead to a more general form of

the compatibility score being available and useful to a higher number of client pack-

ages while attempting to minimize the accuracy lost due to the range of origin ver-

sions being considered for the score. The SemVer policy specifies that important

backward compatible changes require an update of the minor version component,
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and backward compatible bug fixes require an update of the patch version com-

ponent (Decan and Mens, 2020). Assuming this policy is followed by provider

package maintainers, which Decan and Mens (2020) found is becoming more com-

mon as software ecosystems mature, considering patch and minor origin version

ranges will still be able to provide a reasonably accurate compatibility score, as

major origin version range compatibility scores may be biased by breaking updates

purposely introduced by package maintainers, since the SemVer scheme specifies

that backward incompatible changes require an update of the major version com-

ponent. However, designers of dependency management bots should make it clear

to client packages that the origin version range compatibility scores might not be

representative of the exact dependency update the client package is considering.

Implication 5.2) When there are simply not enough candidate updates from the

crowd, dependency management bots should consider historical update metrics

from the client package. We found in RQ1 that 83% of compatibility scores do

not have enough candidate updates to be shown on Dependabot PRs. We explored

potential solutions to this issue in RQ2, one of which was to consider the candidate

updates from a range of origin versions, which we discussed in the previous impli-

cation. However, there are still cases where there are simply not enough candidate

updates from the crowd to calculate a trustworthy compatibility score, even when

considering the origin version range scores. Specifically, more than half (61%) of

patch origin version range compatibility scores still have fewer than 5 candidate

updates.
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In these situations, dependency management bots should turn to historical client

upgrade metrics to help clients assess whether they should accept or reject a depen-

dency update. Not only did this dimension result in the model with the highest

median AUC (improvement of 21.5% over the baseline), but we also found that the

number of Dependabot PRs previously merged by a client package developer and

the number of Dependabot PRs previously passing the client’s CI pipeline were the

most important features in our combined model. This suggests that taking historical

upgrade metrics from the client package into account when considering a depen-

dency update could be an effective way to provide a personalized compatibility

score for each client.

In fact, it can be beneficial for dependency management bots to take these ad-

ditional metrics into account not only when input from the crowd is low, but also

when input from the crowd is high. We tested our models on Dependabot PRs with

at least 5 candidate updates, and found similar results as in RQ2, with the combined

model achieving an AUC of 0.78, 0.16 points higher than the baseline model.

Implication 5.3) Regardless of the level of input from the crowd, dependency

management bots should provide supporting metrics alongside compatibility

scores to signal the level of trust client packages should place in the compatibil-

ity score. We found in RQ1 that it is common for compatibility scores to have a low

number of candidate updates, and what is lacking from the compatibility score is

supporting information that tells client packages how much they can trust the rec-

ommendation from Dependabot. When people interact with any complex system

(e.g., software bots), they create a mental model, which facilitates their use of the

system (Norman, 2002; Kulesza et al., 2012). In automation-supported software
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engineering (e.g., deciding whether to update a dependency), valid mental mod-

els of the reliability of the output (e.g., the compatibility score of the dependency

update) help the user (e.g., a client package) to know when to trust the recom-

mendation. In fact, Zhang et al. (2020) found that confidence intervals can help

calibrate people’s trust in automation-supported decision-making. Similarly, con-

fidence intervals could help Dependabot’s compatibility score by providing client

packages with an estimate of its trustworthiness, so that clients are able to distin-

guish between a 100% compatibility score with only 5 candidate updates and a 99%

compatibility score with 99 candidate updates.

We explore this idea of using a confidence interval to help calibrate the level of

trust client packages should place in the compatibility score in RQ3. We find that

if a 90% confidence interval based on the number of candidate updates used to

calculate a compatibility score was included on Dependabot PRs, half would show

that the confidence interval precision was greater than 15%. These findings suggest

that the level of trust client packages should place in compatibility scores can vary

wildly, even though the compatibility score is always presented as the same badge

style on Dependabot PRs. Therefore, dependency management bots should include

additional metrics, like the confidence interval we calculated in RQ3, that can help

to calibrate the level of trust client packages should place in the compatibility score.

Presenting this information could be especially useful to client packages that do not

have a CI pipeline configured, as they stand to gain the most benefit out of lever-

aging the crowd to assess the risk of a dependency update, and therefore should be

aware of the level of confidence with which the associated compatibility score has

been calculated.
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Implication 5.4) Regardless of the level of input from the crowd, dependency

management bots should place higher weights on packages with high quality CI

pipelines that thoroughly test the dependency being updated. We found in RQ3

that candidate updates that contribute to compatibility scores can have CI pipelines

that contain a variety of different types of checks, and may not always test the

associated dependency update. In the extreme scenario, we found that of the 1% of

Dependabot PRs that only had useless checks run against the dependency update,

94% of them had a successful CI conclusion. So, while these Dependabot PRs may

be contributing as successful updates towards the compatibility score, they have not

tested the dependency at all.

To address this issue, dependency management bots should take into account

additional metrics other than the simple pass/fail result of a client’s CI pipeline,

such as the types of tests and the level of test coverage in the client package, to

ensure that only high-quality input from the crowd is being considered. We saw in

RQ1 that compatibility scores are already heavily skewed toward the higher range,

which may be influenced by the fact that too many of the candidate updates con-

tributing to the scores are from low-quality pipelines in client packages that do not

truly test the dependency update. Therefore, dependency management bots should

attempt to quantify the level of quality of clients from the crowd, and then either

only consider clients that truly test the dependency update (i.e., have a high-quality

CI pipeline), or perhaps provide a weight to each client based on the level of quality

of their CI pipeline. This idea is similar to that of “Security Scorecards”19, in which

a number of heuristics associated with software security are tested against a pack-

age’s dependencies and assigned a score of 0-10. Dependency management bots
19https://github.com/ossf/scorecard

https://github.com/ossf/scorecard
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could apply the same principle against a package’s CI pipeline, evaluating heuris-

tics related to software build and test quality in order to assess whether they should

consider the CI pipeline when evaluating the compatibility of a new provider pack-

age release. However, designers of dependency management bots should be mind-

ful that, while this may lead to a higher quality compatibility score, the trade-off is

that fewer candidate updates may be available to calculate the compatibility score.

5.6 Threats to Validity

In this section, we discuss the threats to the validity of our study.

5.6.1 Internal Validity

Threats to internal validity concerns factors that could have influenced our anal-

ysis and findings. The Dependabot API simply returns every compatibility scores

Dependabot has a record of at the time of the request. This means that we only

retrieve a single snapshot of the compatibility scores for the dependencies being up-

dated, and that the scores we collected for specific updates might not be the actual

scores that a practitioner saw when Dependabot opened a PR on their package.

To investigate how this might have affected our analysis, we built a pipeline that

runs three times per day (i.e., every 8 hours), and retrieves all the Dependabot PRs

for the list of packages described in Section 5.3.1 that have been created since the

previous pipeline run. We then extract the 3-tuple data for the provider package

being updated, and retrieve the compatibility score for that update every time the

pipeline runs for the next 14 days. If a different client has a Dependabot PR for
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that same 3-tuple update, the 14-day threshold will reset. We let the pipeline run

from November 25, 2020 until April 1, 2021. This gives us a time series dataset of

compatibility scores that allows us to explore how long it might take or how many

candidate updates are required for a compatibility score to become stable. We con-

sider a score to have become stable at the latest point in time when the score is

within 5% of the final score record. We find that 85.6% of compatibility scores we

collect have the first score and all subsequent scores varying within 5% of the final

compatibility score. In other words, only 14.4% of the compatibility scores were

not instantly stable, which suggests that the analysis we conducted in our study

would not have been significantly impacted by the fact that we only collect a single

snapshot of the compatibility scores.

Additionally, the Dependabot API will not return a record for a specific 3-tuple

dependency update if Dependabot has not recorded any candidate updates for said

3-tuple. Consequently, all compatibility scores we analyze have at least 1 candidate

update. This means that the proportion of dependency updates that have compati-

bility scores with at least 5 candidate updates is likely lower than what we observe,

a point which we mention in RQ1, as we disregard any dependency updates that

have 0 candidate updates.

Another concern is related to the conclusions drawn when we consider whether

a dependency update on a Dependabot PR caused the client’s CI pipeline to fail.

We use the checks associated with each PR to determine whether the update failed

the CI pipeline, but checks can fail for reasons unrelated to the dependency update

(e.g., flaky tests, license issues, etc.). However, this would have minimal effect in

the context of studying the compatibility score, as Dependabot does not take the
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type of check that failed on a Dependabot PR into account when considering the

PR as a candidate update that contributes to the compatibility score.

Finally, it is important to note that the conclusions drawn when considering

whether a client package merged a Dependabot PR may have been affected by the

fact that factors other than the compatibility score can contribute to the client pack-

age’s decision of whether to merge the Dependabot PR or not. For example, a client

package may be very risk averse, resulting in very few merged Dependabot PRs, re-

gardless of the compatibility signals provided by Dependabot. Still, we attempt to

account for this threat by taking into account the historical upgrade metrics for each

client package when performing this analysis.

5.6.2 External Validity

Threats to external validity concern the generalization of our technique and find-

ings. Our study only focuses on the compatibility score implementation of Depend-

abot. Therefore, our results cannot be generalized to different implementation of

leveraging knowledge from the crowd to provide insights about the risk of a newly

released version of a provider package. For example, the Renovate bot has a feature

similar to Dependabot’s compatibility score called Merge Confidence20 that identi-

fies and flags undeclared breaking releases based on analysis of test and release

adoption data. Renovate’s Merge Confidence has unique features that might differ

from our results with Dependabot’s compatibility score. Still, to the best of our

knowledge, Dependabot was the first to leverage the crowd for dependency man-

agement by providing a compatibility score for each dependency update. So, while

20https://docs.renovatebot.com/merge-confidence/

https://docs.renovatebot.com/merge-confidence/
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our results cannot be generalized, our discussion provides implications that can still

apply to other bots that leverage the crowd to assess the risk of an update.

5.7 Chapter Summary

Today’s software systems are rarely built with code written by a single developer,

with client packages often making use of specific versions of provider packages in

the form of dependency relationships. These dependency relationships come with

the essential and risky task of keeping the client package’s dependencies up-to-

date. Dependabot, an automated dependency management bot, helps facilitate this

process by automatically opening PRs in client packages to update a dependency

when a new version of the provider is released, as well as providing a compatibility

score for each dependency update. This compatibility score is shown as a badge on

PRs opened by Dependabot, and is meant to give clients a sense of the involved

risk when updating a dependency by leveraging the knowledge of “the crowd”, so

that clients can be confident a new provider version is backwards compatible and

bug-free.

In this chapter, we describe an empirical study of 579,206 Dependabot PRs, as

well as 618,045 compatibility score records, that examines the viability of depen-

dency management bots leveraging the crowd to help clients assess the involved

risks with accepting a dependency update. We conclude that dependency man-

agement bots should go beyond only considering the result of clients’ CI pipeline

running against a dependency update when using the crowd to assess the risk of

said dependency update. This is especially relevant since we found that the major-

ity of compatibility scores do not have at least 5 candidate updates, which is the
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threshold required for the compatibility score badge to be displayed on Depend-

abot PRs, and when compatibility scores do have enough candidate updates, the

vast majority of the scores are above 90%. As a result of this skewness in both the

number of candidate updates and the scores themselves, dependency management

bots should employ further methods to help amplify the input from the crowd or

consider historical upgrade metrics to assess whether a client package should ac-

cept or reject a dependency update. Additionally, supporting metrics, such as a

confidence interval, should be provided alongside the compatibility score to help

calibrate the level of trust client packages should place in the score.



CHAPTER 6

Conclusions and Future Work

AS today’s software systems are increasingly built by client packages mak-

ing use of provider packages in the form of dependency relationships, it

becomes more important for these client packages to effectively manage

their dependencies. By keeping their provider packages up-to-date, client packages

can benefit from bug fixes, new functionalities, and security enhancements as they

are released by the provider packages. However, this can prove to be a risky task, as

new releases of the provider package may break API-backwards compatibility and

introduce regressions into the client package. To help facilitate this dependency

management process, clients are increasingly adopting dependency management

bots to alert them when a provider they depend on releases a new version and

whether the new version of the provider is compatible with their package.

142
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In this thesis, we study the overhead that is introduced in clients that adopt

these dependency management bots, as well as explore the viability of dependency

management bots leveraging “the crowd” to help clients assess the risks that are

involved with accepting a dependency update. Based on our studies, we provide

a series of practical recommendations that are of interest for designers of depen-

dency management bots, with attention given to practical recommendations to help

reduce the amount of overhead introduced by these bots, as well as how bots can

effectively leverage the crowd to further aid clients with dependency management.

6.1 Thesis Contributions

The main contributions of our thesis are listed below.

1. This is the first work to perform a large empirical study on the overhead that

is introduced in client projects who adopt dependency management bots. We

report that, while dependency management bots can be an effective tool for

managing dependencies, they also can generate a significant amount of noise

in client projects, especially if the client has a low quality CI pipeline that is

prone to intermittent failures. Leveraging our findings, we provide a series

of practical recommendations to help designers of dependency management

bots to reduce the amount of unnecessary work they create in client packages.

2. This is the first work to study on a large scale the efficacy of dependency

management bots leveraging the crowd to provide supporting metrics to help

clients assess the risk of accepting a dependency update. We report that de-

pendency management bots should be mindful of ways to amplify the input
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from the crowd, consider historical metrics from the client package to provide

a personalized compatibility score, and include a confidence interval to help

calibrate the trust clients should place in these crowd-sourced metrics. Our

findings will help designers of dependency management bots effectively lever-

age crowd-sourced data to aid client packages with dependency management.

6.2 Future Work

In the following, we list avenues for future research that can be leveraged from our

results.

• Further research should be done into how dependency management bots should

implement features specifically tailored to help reduce the amount of overhead

introduced on the client. For example, none of the bots mentioned throughout

this thesis have implemented advanced features, such as examining the logs

of the client’s CI pipeline to determine the root cause of a failure if a depen-

dency update does not pass the client’s CI pipeline, in order to help catch false

positive breaking updates. Additionally, these bots do not provide any form of

incentive to resolve breaking dependency updates, which may lead to client

developers simply ignoring the recommendations of the bot. These features

represent interesting avenues for future researchers to study, both in terms of

the practicality and efficacy of implementing these features aimed at reducing

the overhead introduced to client developers, as well as ensuring that crowd-

source compatibility indicators are not biased by failed client pipelines that

were broken by issues unrelated to the dependency update.
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• Further research should be done on exploring the efficacy of dependency manage-

ment bots employing sophisticated methods to automatically detect locations in

the client’s code affected by non-backwards compatible provider updates (such as

in Møller et al. (2020)), and transform those parts of the code to become compat-

ible with the new provider version (such as in Nielsen et al. (2021)). Combining

these areas of research could prove to be an effective approach to reducing

the effort on the part of client developers to address breaking changes. Ad-

ditionally, such methods could help to reduce the amount of noise generated

by automated dependency bots, as these tools could help to identify when,

for example, Greenkeeper has created a GKIR, but the code analysis tools

have not detected any non-backwards compatible API changes in the provider

package, and can flag the GKIR as a potential false alarm. Additionally, these

methods could provide a compatibility score for each dependency update that

is extremely personalized to each client package, as they could potentially de-

tect whether a client package is affected by a non-backwards compatible API

changes in the provider package.

• Further research should be done to explore the true amount of work that is re-

quired to address breaking dependency issues. While in Chapter 4 we explore

the overhead that is introduced by GKIRs using metrics such as the time to

resolve the issue and the size of changes required to resolve the issue, there

are additional, more implicit factors (e.g., debugging) that affects the true

effort required on the part of client developers to resolve breaking depen-

dency issues. However, this is not always easily measured, as it is difficult to
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accurately quantify the amount of work required on the developer’s part to ad-

dress breaking dependency issues, or software issues in general, and the time

needed to resolve issue reports may not always correlate with the actual effort

needed to resolve issue reports (Marks et al., 2011). For example, on the one

hand, an issue report may require minimal effort to resolve but have a low

priority, and therefore remains open for an extended period of time, as client

developers may delay addressing the issue if they are already overloaded with

work. On the other hand, even if only a small change was required to resolve

an issue report, the client developer may have expended a significant amount

of effort debugging the issue to determine exactly where the issue occurs and

exactly what section of the code needed to be modified to resolve the issue.
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Appendices

A Patterns for classifying CI build types

The following steps are used to classify the checks that run as part of the client’s

CI pipeline on Dependabot PRs: i) the first author manually examined the 20 most

popular unclassified check names (a check name is used to give a high-level descrip-

tion of the task the check performs) to extract patterns that could be grouped into

similar categories, ii) these new patterns are added to a set of regular expressions

that capture common check names and assign these checks to a specific overarch-

ing check type category, iii) the full data set of checks are then re-classified with the

updated regular expressions, iv) the process is repeated using only checks that have

not yet been classified until any new extracted patterns do not classify a threshold

of at least 0.01% of the unclassified checks. Once this threshold was reached, 91.8%

of the checks had been matched to one of six categories described in Table A.1.
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B Distinguishing between the 3-tuple and 4-tuple datasets

The list of client projects (Section 5.3.1) that we collected Dependabot PRs for

(Section 5.3.2) could have resulted in having multiple Dependabot PRs for the

same 3-tuple update. For example, for the 3-tuple update (P , V1, V2) for updating

the provider package P from version V1 to V2, we might have (C1, P , V1, V2) and

(C2, P , V1, V2), where C1 and C2 are different client projects that make use of P as a

dependency. However, we might not necessarily have at least one matching 4-tuple

update for every 3-tuple update. In other words, our list of client projects built in

Section 5.3.1 is by no means an exhaustive list of all projects that use Dependabot.

So, if Dependabot opens a PR in client C for a 3-tuple update that is contributing

as a candidate update, we would only potentially find a matching 4-tuple update

for the associated 3-tuple update if C is in our list of client projects.

If a client C is in our list of projects, and they use provider package P as a

dependency, there is no guarantee that Dependabot has opened a PR for every 4-

tuple combination of (C, P , VX , VY ), where VX and VY are two versions of P , with

VX being released prior to VY . For example, if C only adopts P as a dependency

beginning at version V4, then Dependabot would not have opened any PRs for the

4-tuple update (C, P , VX<4, VY <4) where VX<4 and VY <4 are versions of P that were

released prior to V4.

Additionally, Dependabot is constrained to opening PRs for dependency updates

that fall within the client’s dependency version specifications. For example, if C has

version pinned P to version V1, Dependabot would only open PRs that follow the

4-tuple (C, P , V1, VT ), where VT is the latest target release of P (assuming that C

does not change their version specifications for P ).
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A final reason that might explain why Dependabot might not open a PR for

specific 4-tuple updates is that clients are able to configure a limit for the number

of Dependabot PRs open in their project at any one time1. So if the limit of PRs

allowed to be opened by Dependabot at one time in client C has already been

reached (e.g., updates for other dependencies), Dependabot will not create any

new PRs to update P , even as P releases new versions, until the number of open

Dependabot PRs in C has dropped below the limit.

As a concrete example to illustrate the distinction between the 3-tuple update

and 4-tuple update datasets, we again use the scenario from Figure 5.1, which

shows a Dependabot PR for the 4-tuple update (C, Husky, 6.0.0, 7.0.4). We de-

termine that client C had integrated with Dependabot in Section 5.3.1. Then, the

Dependabot PR shown in Figure 5.1 is collected in Section 5.3.2, where we de-

termine that Dependabot has opened a PR to update the Husky provider package.

Next, in Section 5.3.3, we collect the compatibility scores for Husky from the De-

pendabot API. We end up collecting the compatibility scores not only for the 3-tuple

update (Husky, 6.0.0, 7.0.4), but also all other 3-tuple combinations of (Husky, VC ,

VT ) (e.g., (Husky, 6.0.1, 7.0.4), (Husky, 7.0.1, 7.0.4), (Husky, 6.0.0, 6.0.1), etc.).

So, the compatibility scores for all of these 3-tuples we collected are included in the

3-tuple dataset. However, only the compatibility score for which Dependabot has

opened a PR in C (e.g., (C, Husky, 6.0.0, 7.0.4)) is included in the 4-tuple dataset.

1https://docs.github.com/en/code-security/supply-chain-security/keeping-

your-dependencies-updated-automatically/configuration-options-for-dependency-

updates#open-pull-requests-limit

https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#open-pull-requests-limit
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#open-pull-requests-limit
https://docs.github.com/en/code-security/supply-chain-security/keeping-your-dependencies-updated-automatically/configuration-options-for-dependency-updates#open-pull-requests-limit
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C Calculating a 90% confidence interval for a com-

patibility score

We approach the task of calculating a confidence interval for a compatibility score

using Bayesian inference, which is a statistical approach that aims at estimating a

certain parameter (e.g., a mean or a proportion) from the population distribution,

given the evidence provided by the observed (i.e., collected) data (Hespanhol et al.,

2019). In our case, we model the compatibility scores (i.e., the successful update

ratio from the number of candidate updates) as a beta distribution, which defines

random variables between 0 and 1, making it an ideal distribution choice for mod-

elling the compatibility score (Gupta and Nadarajah, 2004). The beta distribution

takes two parameters: a and b. We start with a beta prior with a=1 and b=1 (which

is a uniform prior), and our observed data of successful and failed counts for a

dependency update. For a given true successful update ratio p and N candidate

updates, the number of successful updates S will look like a binomial random vari-

able with parameters p and N , where N is the number of candidate updates and

p is unknown. This is because of the equivalence between successful update ratio

and probability of a candidate update being a success or failure, out of N possible

candidate updates. So, with our Beta(a=1, b=1) prior on p and our observed suc-

cessful updates S ∼ Binomial(N , p), then our posterior is also a beta distribution

with a = 1 + S and b = 1 +N − S.
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We use a normal approximation to calculate the standard deviation of the pos-

terior beta distribution (Gupta, 2011). That is,

σ =

√
ab

(a+ b)2(a+ b+ 1)

where a = 1 + successful updates

b = 1 + failed updates

(1)

From there, we define a confidence interval precision as:

PrecisionCI = 1.65σ (2)

where 1.65 is the critical (z) value (derived from the mathematics of the standard

normal curve) to be used in confidence interval calculation associated with the 90%

confidence level (Hazra, 2017).

We define the bounds of the 90% confidence interval as:

CI = [max(CS − PrecisionCI , 0),

min(CS + PrecisionCI , 1)]

where CS = the existing compatibility score

(3)

Figure C.1 shows the posterior distributions resulting from the aforementioned

process for particular success/failure update pairs. It can be seen that the distribu-

tions with a lower number of total candidate updates (i.e., A and B) have relatively

wide distributions, expressing the uncertainly about what the true successful up-

date ratio might be, whereas the distributions with a higher number of candidate



BIBLIOGRAPHY 166

updates (i.e., C and D) have tighter distributions. The solid vertical lines in Fig-

ure C.1 show the original compatibility score for each particular success/fail update

pair, while the dashed vertical lines show the bounds of the associated 90% confi-

dence interval.

Figure C.1: Examples of posterior distributions for particular success/failure update
pairs with relatively low (A and B) and high (C and D) candidate updates. The
vertical lines mark the compatibility score (solid) and the upper and lower bounds
of the associated 90% confidence interval (dashed).
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Table A.1: String patterns for classifying the types of checks that ran against De-
pendabot PRs.

Category Percent Regular Expression (case-insensitive)

Build 58.1% (^| |-)(build|install)|Travis CI|

developing-with-angular|(main|workflow|setup)|

Node(.js)? \\d?\\d?|(Continuous
integration|^ci($| ))|(tsc|typescript)|monica

CI|(web|webpack)|PHP|(Try: )?ember((-|

)try)?|(macOS|windows|ubuntu|linux)(-latest)?|

Python|^3.\\d$|^2.\\d$

Test 17.2% (^| )test|Analy(s|z)e|Analysis|karma|e2e|

stoplightio|check|unit-js| run|Validation|rspec

Useless 11.2% WIP|^Rule: automatic merge for Dependabot pull

requests \(merge\)$|(Auto ?)?merge|^stale$|
^Update \.NET SDK$|^Summary$|fixupbot|Mixed
content|Rebase|Autosquash|Backport|docs|hyperjump|

kodiakhq: status|DCO|lock|Discord Listener|

Label|css|Clean GitHub pages|pre-commit|remove-pr|

markdown-link-check|Run CircleCI artifacts

redirector|pedrolamas.com|Auto Approve a PR by

dependabot|dependabolt|github/dependabot.yml|

greeting|chrome|firefox|finish|mui-org.material-ui|

jbhannah.net|Always run job|jhipster.generator-

jhipster|dispatch|Timeline protection|Inclusive

Language|mark-duplicate|migration|Generate HTML

log|feature flags

Lint 7.0% (es)?lint|ESLint Report Analysis|codecov|

Floating Dependencies|prettier| Coverage|

Standard|bundle-size|pronto|flake8| mypy|

CodeFactor|Code style

Deploy 4.9% Redirect rules|Header rules|deploy|release|Pages

changed|publish|artifact

Security
Analysis

1.6% code(| |-)ql|GitGuardian Security Checks|

SonarCloud Code Analysis|LGTM analysis|

depcheck|audit|rubocop
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