UNDERSTANDING THE IMPACT OF EXPERIMENTAL DESIGN CHOICES

ON MACHINE LEARNING CLASSIFIERS IN SOFTWARE ANALYTICS

by

GOPI KRISHNAN RAJBAHADUR

A thesis submitted to the School of Computing
in conformity with the requirements for the

Degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

September 2020

Copyright © Gopi Krishnan Rajbahadur, 2020

Abstract

OFTWARE analytics is the process of systematically analyzing software engi-
neering related data to generate actionable insights that help software prac-
titioners make data-driven decisions. Machine learning classifiers lie at the

heart of these software analytics pipelines and help automate the process of generat-
ing insights from large volumes of low-level software engineering data (e.g., static code
metrics of software projects). However, the generated results from these classifiers are
extremely sensitive to the various experimental design choices (e.g., choice of feature
removal techniques) that one makes when constructing a software analytics pipeline.
Despite that prior studies only explore the impact of a few experimental design choices
on the results of classifiers and, the impact of many other experimental design choices
on generated results remains unexplored. It is critical to further understand how the

various experimental design choices impact the generated insights of a classifier. Such

an understanding enables us to ensure the accuracy and validity of the generated in-
sights from a classifier.

Therefore, in this PhD thesis, we further our understanding of how several previ-
ously unexplored experimental design choices impact the results that are generated
by a classifier. Through several case studies on various software analytics datasets and
contexts, 1) we find that the common practice of discretizing the dependent feature
could be avoided in some cases (where the defective ratio of the dataset is <15%) by us-
ing regression-based classifiers. 2) In cases where the discretization of the dependent
feature cannot be avoided, we propose a framework that the researchers and practi-
tioners can use to mitigate its impact on the generated insights of a classifier. 3) We find
that interchangeable use of feature importance methods should be avoided as differ-
ent feature importance methods produce vastly different interpretations even on the
same classifier. Based on these findings we provide several guidelines for future soft-

ware analytics studies.

il

Acknowledgments

OMPLETING this thesis would not have been possible without the help of
several amazing people; I am deeply indebted to each and every one of
them.

First and foremost, I would like to thank my supervisor Prof. Ahmed E. Hassan
for the constant support and guidance these four years. Ahmed always gave me the
freedom, resources and the opportunity to pursue my interests. His honest critique
and unending encouragement every step of the way helped me become a better and
more confident researcher. Throughout my research, Ahmed provided me with many
opportunities to see the world and interact with some of the best minds in software
engineering research. Furthermore, the help and support he provided me during my
times of personal need is something for which I will eternally be grateful. Above all,
thank you Ahmed, for your willingness to take a chance on me and being in my corner.

You are an amazing supervisor and a wonderful human being.

1ii

Next, I would like to sincerely thank Prof. Shaowei Wang, Prof. Cor-Paul Bezemer
and Prof. Yasutaka Kamei. They were like elder brothers to me guiding me in every
step of my academic journey and providing me with endless encouragement and in-
valuable advice. In particular, thanks Shaowei for all the casual chats and dinners with
your family. Yasu, for all the coffee breaks and great conversations. Cor-Paul for all
the fitness and presentation advice. Every time, I make a presentation, I always think
what would Cor-Paul say. Also special thanks to Dr. Gustavo A. Oliva for all the advice,
feedback and encouragement on both personal and professional fronts.

I would also like to thank Dr. Andrew Walenstein and Dr. Andrew Malton in Black-
Berry for time and again providing me with great opportunities and guidance. I am
truly grateful to have you guys as my mentors. I also thank Prof. Nancy Salay and Prof.
Jurgen Dingel for all the interesting and invigorating conversations.

Special thanks to Dr. Satya Sai Prakash and Gayathri Manohar for being my men-
tors and cheer leaders. Gayathri, you have proven to be a true friend over the years. I
would never have dreamed of doing a PhD without your faith in me during my forma-
tive years.

[am also extremely fortunate to continuously rub shoulders with some of the best
minds in software engineering at SAIL lab. Thank you all for the engaging conversa-
tions, valuable feedback and all the lunch and coffee breaks over the years. You guys
made this journey a lot more enjoyable and fruitful.

My sincere thanks to all the friends I made in Canada who made my life enjoyable
here and helped me maintain my sanity even as I worked away on my research. Thank

you Sudharshan, Harshith, Sieglinde, Akash, Abarnath, Sai, Dayi, Jiayuan, Dan, Aadi

iv

and Shahnaz. I am extremely grateful for all the fun times and the support you have
given me over the years. Life would have been poorer without you folks being in it.
Finally, this thesis would not have been possible if not for the unconditional love
and the unwavering support of my family: my mom (amma) Uma Maheswari, my little
sister Bala kumari, my brother-in-law Arun Kumar and my friends Arvindh, Swami,
Kasthuri and Vidhya, who are like family to me. I am glad we made it here, for this

journey is every bit yours as it is mine.

Dedication

I dedicate this thesis to my amma Uma Maheswari and my sister Balakumari for their

unconditional love, sacrifices and support.

I also dedicate this thesis to the loving memory of my grandfather Bala krishnan, for the
love, kindness, late night cricket matches, game nights, stories and for always having

my back.

vi

Co-authorship

N all chapters and related publications of the thesis, my contributions are:
drafting the initial research idea; researching background knowledge and
related work; collecting data; conducting experiments and data analysis; and

writing and polishing drafts.

Earlier versions of the work in the thesis were published as listed below:

1. The impact of using regression models to build defect classifiers.

Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka Kamei and Ahmed E. Has-

san. In Proceedings of the 14" International Conference on Mining Software

Repositories (MSR), pages 135-145. Buenos Aries, Argentina. May, 2017.

2. Impact of Discretization Noise of the Dependent variable on Machine Learning
Classifiers in Software Engineering.

Gopi Krishnan Rajbahadur, Shaowei Wang, Yasutaka Kamei and Ahmed E. Has-

san. Transactions on Software Engineering (TSE), 2019, In Press.

vii

3. The impact of feature importance methods on the interpretation of defect
classifiers.

Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A. Oliva, Yasutaka Kamei

and Ahmed E. Hassan. Transactions on Software Engineering (TSE), 2020, Under

review.

The following publications are not directly related to material provided in this the-

sis, however they were produced in parallel to research performed in this thesis

1. A Survey of Anomaly Detection for Connected Vehicle Cybersecurity and Safety

Gopi Krishnan Rajbahadur, Andrew J. Malton, Andrew Walenstein and Ahmed

E. Hassan. In Proceedings of the Intelligent Vehicles Symposium (IV), pages 421-

426. Hangzhou, China. June, 2018.

2. Pitfalls Analyzer: Quality Control for Model-Driven Data Science Pipelines

Gopi Krishnan Rajbahadur, Gustavo A. Oliva, Ahmed E. Hassan and Juergen Din-

gel. In Proceedings of the 22" International Conference on Model Driven En-
gineering Languages and Systems (MODELS), pages 12-22. Munich, Germany.

Sept 15, 2019.

3. An Empirical Study of the Characteristics of Popular Minecraft Mods

Daniel Lee, Gopi Krishnan Rajbahadur, Dayi Lin, Mohammed Sayagh, Cor-Paul

Bezemer and Ahmed E. Hassan. Empirical Software Engineering (EMSE), 2020,

In Press.

4. Revisiting the Impact of Dependency Network Metrics on Software Defect Pre-

diction

viil

Lina Gong, Gopi Krishnan Rajbahadur and Ahmed E. Hassan. Transaction on

Software Engineering (TSE), 2020, Under review.

. Is my transaction done yet? An empirical study of transaction processing times
in Ethereum

Michael Pacheco, Gustavo A. Oliva, Gopi Krishnan Rajbahadur and Ahmed E.

Hassan. Transaction on Software Engineering and Methodology (TOSEM), 2020,

Under review.

Statement of Originality

, Gopi Krishnan Rajbahadur, hereby declare that I am the sole author of this the-
sis. All ideas, inventions and discoveries attributed to others have been prop-
erly referenced. This is a true copy of the thesis, including any required final

revisions, as accepted by my examiners.

[understand that my thesis may be made electronically available to the public.

Table of Contents

Abstract i
Acknowledgments iii
Dedication vi
Co-authorship vii
Statement of Originality X
List of Tables xiii
List of Figures xvi
1 Introduction 1
1.1 ThesisStatementttt i 5
1.2 TheSiSOVeIrVIEW ot i it e e e et et e e i 6
1.3 Thesis Contribution 10
2 Background and Motivation 11
2.1 Discretization Of The Dependent Feature 12
2.2 Feature Importance Methods 14
3 Literature survey 18
3.1 Literature Selection 19
3.2 DataPre-processingStep i e 20
3.3 Classifier Construction Step, 22
3.4 Classifier EvaluationStep i 23
3.5 Classifier ValidationStep 24
4 Avoiding the Discretization of the Dependent Feature by Using Regression-
based Classifiers 26
4.1 IntroduCtionttt e e e e 27

4.2 ExperimentSetup 29

4.3 PreliminaryStudy. 38
4.4 CaseStudyResults 42
4.5 DISCUSSIONt it e e e e 51
4.6 ThreatstoValidity 56
4.7 Chapter SUMMATIY« ottt ettt e e e e 59
5 Mitigating the Impact of Discretizing the Dependent Feature 61
51 Introductionttt 62
52 DataCollection ittt 66
5.3 Framework for Understanding the Impact of Discretization Noise 69

5.4 Understanding the Impact of Discretization Noise on the Performance
and InterpretationofaClassifier 77
5.5 DISCUSSIONottt e e 93
5.6 Guidelines for Using Our Framework 102
5.7 ThreatstoValidity 105
5.8 Chapter Summaryttt e 108
6 The Impact of Interchangeably Using Feature Importance Methods 110
6.1 Introductiont e 112
6.2 MOtivationot e e e e 116
6.3 CaseStudy Setupt 121
6.4 CaseStudyResults 132
6.5 DISCUSSION . . o v vttt e e e e e e 141
6.6 Implicationst e e e 152
6.7 ThreatstoValidity 155
6.8 Chapter SUMMATyttt et e 156
7 Conclusion and Future Work 158
7.1 Thesis Contributions i 159
7.2 FutureResearch Directions. 161
Appendices 195
A Arunning example for our framework L L oL oL 195
B Supplementary figuresandtables 198

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

4.6
4.7

5.1
5.2

5.3

5.4

9.5

5.6

Research venues used as a starting point to conduct our literature survey 20

An overview of the datasets that we use to study whether the dis-
cretization of the dependent feature could be avoided by using

regression-based classifiers. L i L. 30
Techniques that are selected from each machine learning family. 39
Average ranks of various discretized and regression-based classification
techniques e 40
Performance comparison of discretized and regression-based random
forestclassifiers.. 44
Rank shifts between discretized and regression-based classifiers on var-
ioustechniques. 50
Correlation between defective ratio and ratio of AUC of DRFC/RBRFC. .. 53
Correlation between AUC and R? for the RBRFC classifiers. 55
Details of datasetsusedinthestudy 65
Estimated discretization threshold, limits and % of data points in the
noisy area for the datasets considered inthestudy. 68

Percentage of improvement in median performance of various classi-
fiers with the noisy area removed over classifiers with no data removed
across various performance measures (The x value for which the per-
formance impact first occurs for the given measure is also provided). . .. 79
The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the computed feature importance ranks of an
RFCM trained on the whole dataset (Ranky,) and the dataset with the

noisy area removed (Rankyz) (columnB)., 90
Median performance (AUC) of the RFCMs on the different regions of the
data. ... e 92
Performance comparison (in AUC) of classifiers that are trained on dif-
ferent data configurations. i i 97

Xiii

6.1

6.2
6.3
6.4

6.5

6.6

6.7

B.1

B.2

B.3

B.4

B.5

Different feature importance methods used for interpreting various

classifiers in the software engineering literature 117
Overview of the datasets studied inour casestudy 122
Studied classifiers and their hyperparameters 124
Brief explanation about the working of caret’s CS methods that are used

nourstudy.o e e 126

Top-1 overlap, Top-3 overlap, and Kendall's W among the computed fea-
ture importance ranks by the CS method of each classifier. Best results
for each metricare showninbold.. 140
No. of dataset on which classifiers that are constructed using the top
3 features given by the studied feature importance method has similar
discriminative capability (i.e., if the Cohen’s d < 0.8) as that of the clas-
sifier that is constructed using all the features of a dataset. 144
No. of features per dataset with Friedman H-Statistic > 0.3 and > 0.5 .. .151

Percentage of improvement in median performance of various classi-
fiers with noisy area (generated with CT) removed over classifiers with
no data removed across various performance measures (The x value for
which the performance impact first occurs for the given measure is also
provided). 200
Percentage of improvement in median performance of various classi-
fiers with noisy area (generated with RTT) removed over classifiers with
no data removed across various performance measures (The x value for
which the performance impact first occurs for the given measure is also
provided). 201
The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a clas-
sifier that is trained on the whole dataset (Ranky,) and a classifier that is
trained on the dataset with the noisy area (with MT) removed (Ranky)
(column B). 203
The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a clas-
sifier that is trained on the whole dataset (Rank,,) and a classifier that is
trained on the dataset with the noisy area (with CT) removed (Ranky)
(column B). 204
The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a clas-
sifier that is trained on the whole dataset (Ranky,) and a classifier that is
trained on the dataset with the noisy area (with RTT) removed (Ranky)
(column B). 205

Xiv

B.6 Data complexity metrics that are used in our analysis. 208

List of Figures

1.1

4.1
4.2
4.3
4.4

4.5

4.6

4.7

4.8

5.1
5.2
5.3
5.4
5.5

6.1

An overview of software analytics pipeline. 3
An overview of our study approach. 30
Clustered features after correlation analysis for Poi-3.0. 31
An overview of performance evaluation. 35

Ratio of AUC of discretized/regression-based random forest classifiers
across different datasets. The datasets are ordered based on their defec-
tiveratiofromlowtohigh. L, 43
Ratio of AUC of discretized/regression-based defect statistical classifiers
across different datasets. The datasets are ordered based on their defec-
tiveratio fromlowtohigh. L 46
Rank Shifts Between DRFC and RBRFC in terms of permutation feature
importance across the datasets ordered by defective ratio of the dataset.

The mean values of rank shifts are marked with dashed lines. 48
Boxplot of the ratio between AUC of DRFC/ AUC of RBRFC on Prop-5
dataset. 53

Rank Shifts Between DRFC and RBRFC in terms of default feature im-
portance across the datasets. The mean values of rank shifts are marked

withdashedlines. 57
Overview of our framework., 70
Extremes and noisy area definitions ofadataset. 74
The procedure for estimation of the likelihood of a rank shift.. 88
Data complexity across quantum for the studied datasets. 99
User considerations and workflow that are associated with each of the

stepsof our framework. 103
Overview of our case study approach. 127

6.2

6.3

6.4

B.1
B.2

B.3

A density plot of Top-1 Overlap, Top-3 Overlap, and Kendall’s Tau
between CA and CS methods for each classifier across the studied
datasets. The circles and triangles correspond to individual observa-
tions. The dotted lines correspond to the metric-specific interpretation
scheme outlined in Section 6.3.5. The vertical lines inside the density

plots correspond to the median of the distributions.

A density plot over all six Top-1 Overlap, Top-3 Overlap, and Kendall’s
Tau values between the PDP and Permutation CA methods for each
of the studied classifiers. The dotted lines correspond to the metric-
specific interpretation scheme outlined in Section 6.3.5. The vertical
lines inside the density plots correspond to the median of the distribu-

Experiment setup of our discussion.

Detailed overview of the classifier construction step for Section 4.

Overall experimental setup for Discussion 1 explaining why classifiers

that are trained on the noisy area performs well on extremes.
Transformation of the data for the complexity analysis.

xvii

.133

.141

.199

.207

CHAPTER 1

Introduction

OFTWARE analytics is the process of systematically analyzing software engi-
neering related data to generate actionable insights that help software prac-
titioners make data-driven decisions (Buse and Zimmermann, 2012; Men-

zies and Zimmermann, 2013). For instance, many software practitioners analyze the
defects from earlier versions of a software system to flag potentially defect-prone mod-
ules in the current release of the system. Such analytics are routinely used by many
large software corporations (Shihab et al., 2012; Zimmermann et al., 2009; Lewis et al.,
2013; Shimagaki et al., 2016; Li et al., 2020; Thakkar et al., 2008) and researchers (Tian
et al., 2015; Chen et al., 2018; Nam et al., 2018).

Machine learning classifiers are at the heart of modern software analytics. These

classifiers typically classify data points (e.g, software modules in a current release) into

CHAPTER 1. INTRODUCTION 2

target classes (e.g., defective and non-defective) based on labelled historic data of the
same form (e.g., software modules from an earlier version along with labels indicat-
ing whether they were defective or not). By doing so, they help automate the process
of generating insights from large volumes of available low level software engineering
data (Agrawal et al., 2019, 2020; Fisher et al., 2012; Ghotra et al., 2015; Nam et al., 2018;
Moser et al., 2008; Tian et al., 2015; Bavota et al., 2014; Jiang et al., 2013; Zimmermann
et al., 2012; Shihab et al., 2013; Chen et al., 2018; Herzig et al., 2016).

In software analytics, classifiers serve two key purposes. First, to predict the tar-
get class of unlabelled data points. Second, to understand why the classifier assigns a
particular target class to a given data point. For example, Shihab et al. (2013) built a
Decision Tree classifier to predict whether a given bug fix would be re-opened or not.
In addition, they also interpreted this classifier and found features of a bug fix that
influence its re-opening likelihood. For instance, if it is found that bugs logged with
high-severity are more likely to be re-opened, then practitioners can use this insight to
ensure that these bugs and their fixes get more comprehensive reviews before they are
closed.

Figure 1.1 presents an overview of the software analytics pipeline that uses a clas-
sifier to extract insights from software engineering related data (i.e., data source). As
Figure 1.1 shows, first, the data that is to be analyzed for insights is mined from a rel-
evant data source. Following which a dataset is created by extracting the dependent
(i.e., class labels) and independent features (i.e., metrics that characterise each data
point) from the collected data. However, when building a classifier, if pre-defined class
labels are not available and only a continuous dependent feature could be observed,

these values are discretized into artificial target classes. Similarly, if the independent

CHAPTER 1. INTRODUCTION 3

1 Data pre-
1 processing step

Classifier
construction step

Classifier | Classifier
evaluation step | validation step

1
1
1

s ' X -

/ ° \ Classifier yperparameter ! 1

0 glt selection tuning 1 I Technique
1 1 selection

_________________ 1

Independent L Data pre- ! y»| Performance !

I~ features i computation |[I

=l stackoverflow {T[_prosessing |, : , .
. I 1 — 1 I —4 Performance
\ , I 1 1 Classifier scores
ﬁ oo b X Chapter 5, 6 . X Chapter 7 validation
| . 1
.< JIRA Machine _ Feature :
r/‘ Dependent b Discretization - learnin Ly importance i
features 1 g 1 5

| classifier compuistonl 1

I ! ! A 1

-Z\ 1 ! ! method 1

o 1 1 1 selection 1 Feature
Google Play ' 1 1] Importance
\ Data sources j N\ Dataset Experimental design choices ranks

Prior work My thesis

Figure 1.1: An overview of software analytics pipeline.

features exhibit any inconsistencies they are typically pre-processed (e.g., removing
missing values). These independent and dependent features together are used to con-
struct classifiers. Once a classifier is constructed, performance measures (e.g., accu-
racy) are used to quantify the predictive capability of the classifier. Similarly, feature
importance methods are used to compute a feature’s importance (i.e., feature impor-
tance ranks) in predicting the outcome. Finally, the computed results are validated
using a validation method (e.g., cross-validation) to ensure the statistical robustness
of any derived observations.

Several recent studies raise concerns that the computed performance measures
and feature importance ranks of a classifier are extremely dependent on the exper-
imental design choices (Song et al., 2010; Ghotra et al., 2015; Panichella et al., 2014;
Tantithamthavorn et al., 2018a; Fu et al., 2016; Tantithamthavorn et al., 2018b) that one
makes in a software analytics pipeline. For instance, choosing to use a Decision tree

classifier, instead of a Random Forest classifier or not tuning the hyper parameters of a

CHAPTER 1. INTRODUCTION 4

classifier could have an adverse effect (Ghotraetal., 2015; Fu et al., 2016; Tantithamtha-
vorn et al., 2018b). In summary, constructing a software analytics pipeline involves a
large number of experimental design choices and all of them could potentially impact
the generated insights.

However recent studies have only explored the impact of few experimental design
choices on the computed performance measures and feature importance ranks of a
classifier and the impact of many other experimental design choices remain unex-
plored. Figure 1.1 highlights the experimental design choices whose impact on classi-
fiers are relatively well explored as well as the ones whose impact remains unexplored.
In the context of software analytics, it is extremely pivotal to further our understanding
of how the various experimental design choices impact the results of software analytics
studies.

Though such impact may have been explored in other domains (e.g., data min-
ing), it is essential to explore it in the context of software analytics. Because, prior
studies show, software engineering datasets differ from non-software engineering
datasets (Menzies, 2019; Ray et al., 2016; Binkley et al., 2018). Therefore, findings from
other fields might not generalize in the context of software analytics. For instance, Ray
et al. (2016) show that software code has properties that are vastly different from
natural language. Consequently, language models (e.g., n-gram models) used in
other fields like data mining, when applied to software engineering data might yield

spurious results (Menzies, 2019).

CHAPTER 1. INTRODUCTION 5

1.1 Thesis Statement

This thesis aims to understand the impact of a number of experimental design choices
on the computed performance and feature importance ranks of a classifier and in turn,

provide actionable guidelines for future software analytics studies.

Experimental design choices impact the results of software analytics studies. How-
ever, the impact of several experimental design choices remain unexplored. Under-
standing how these unexplored experimental design choices impact the results of
software analytics studies enables the creation of actionable guidelines for future

software analytics studies.

In this thesis, we examine the impact of discretizing the dependant feature and
the interchangeable use of feature importance methods on the computed perfor-
mance and feature importance ranks of a classifier in software analytics. We choose
these two experimental design choices in particular over other design choices for the
following reasons. First, prior studies show that the discretization of the continuous
dependent feature to generate artificial target classes incurs information loss (Altman
and Royston, 2006; Austin and Brunner, 2004; Cohen, 1983; MacCallum et al., 2002;
Royston et al., 2006; Dawson and Weiss, 2012; Rucker et al., 2015). However, the dis-
cretization of the dependent feature is still widely practiced in software analytics (Tian
et al., 2015; Guo et al., 2010; Jiang et al., 2013). Therefore, we investigate the impact of
the discretization of the dependent feature along the following two directions. 1) We
study if the harmful discretization of the dependent feature could be avoided in the

first place (atleast in some cases) by building regression-based classifiers (Chapter 4),

CHAPTER 1. INTRODUCTION 6

2)In cases where the discretization of the dependent feature cannot be avoided, we de-
vise a framework to understand and mitigate the impact of discretizing the continuous
dependent feature (Chapter 5).

Second, we know that different feature importance methods work differently. For
instance the Permutation feature importance method computes feature importance
ranks differently than the Gini feature importance method (Strobl et al., 2007). How-
ever, software analytics studies tend to use different feature importance methods in-
terchangeably (Treude and Wagner, 2019; Yu et al., 2019). Such interchangeable use of
feature importance methods could impact the computed feature importance ranks of
a classifier and thereby affect the generated insights. Therefore, we study the impact
of interchangeably using feature importance methods on the computed feature im-
portance ranks of a classifier and provide guidelines for the future software analytics

studies (Chapter 6).

1.2 Thesis Overview

In this thesis, we examine the impact of a number of experimental design choices on
the generated insights of a classifier in software analytics. We do so by first providing a
background on the experimental design choices that we explore in this study. Follow-
ing which we survey the prior studies that study the impact of several experimental
design choices on the generated insights of a classifier. We then highlight the critical
gap that exists in the literature and set out to address this critical gap in the remainder
of this thesis.

Below, we provide a brief summary of each chapter of our thesis.

CHAPTER 1. INTRODUCTION 7

1.2.1 Background and Motivation (Chapter 2)

We present the relevant background about the discretization of the dependent feature
and feature importance methods in this Chapter. We also present the key arguments
from prior studies that motivate us to explore the impact of the discretization of the
dependent feature and interchangeable usage of feature importance methods on the

generated insights of a classifier.

1.2.2 Literature survey (Chapter 3)

In this Chapter, we surveyed prior studies in software analytics that investigated the
impact of various experimental design choices on generated insights of a classifier. We
group the surveyed results based on the step of the software analytics pipeline in which
the investigated experimental design choice is typically made. We grouped the results
along the four key steps of the software analytics pipeline: Data pre-processing, Classi-
fier construction, Classifier evaluation, Classifier validation. We find that, prior studies
do not investigate the impact of the discretization of the dependent feature and the
impact of interchangeably using the feature importance methods on the generated in-

sights of a classifier. This thesis aims to fill this critical gap.

1.2.3 Avoiding the discretization of the dependent feature by using

regression-based classifiers (Chapter 4)

The Discretization of the dependent feature before constructing a classifier is a com-
mon practice in software analytics. Particularly, in the filed of defect prediction where

the continuous defect counts are often discretized to defective and non-defective

CHAPTER 1. INTRODUCTION 8

classes before building a classifier (i.e., discretized classifiers). However, several prior
studies show that such discretization of the dependent feature causes information loss
that is akin to discarding a part of the data (Cohen, 1983; Altman and Royston, 2006).
Such information loss could potentially impact the performance and the interpreta-
tion of constructed classifiers. We could potentially avoid such discretization of the
dependent feature by using regression-models then discretizing the predicted defect
counts into defective and non-defective classes (i.e, regression-based classifiers).

In this chapter, we analyze if such regression-based classifiers could be used to
avoid the discretization of dependent feature. We do so by comparing the performance
and interpretation regression-based classifies and discretized classifiers using six com-
monly used machine learning techniques and 17 defect datasets. Our findings suggest
that, future studies should consider building regression-based classifiers to avoid the
discretization of the dependent feature (particularly when the defective ratio of the

dataset is less than 15%).

1.2.4 Mitigating the impact of discretizing the dependent feature

(Chapter 5)

From Chapter 4, we find that only in some cases, the discretization of the dependent
feature can be avoided. Therefore, in other cases the impact of the discretization of the
dependent feature needs to be understood and mitigated.

In this chapter, we propose a framework to help researchers and practitioners sys-
tematically analyze and mitigate the impact of the discretization of the dependent fea-

ture. We further demonstrate the usefulness of our framwork on 7 software analytics

CHAPTER 1. INTRODUCTION 9

datasets. We find that the discretization of the dependent feature impact different per-
formance measures of a classifier differently. Therefore, we suggest that future studies
should use our framework to estimate the exact amount of data points around the dis-
cretization threshold that one needs to discard in order to avoid the harmful effects of

discretizing the dependent feature.

1.2.5 The impact of interchangeably using feature importance

methods (Chapter 6)

Feature importance methods are widely and often interchangeably used by prior stud-
ies to determine the feature importance ranks from a classifier in software analytics.
However, these feature importance measures compute feature importances ranks dif-
ferently. Therefore, the computed feature importance ranks are likely to be different.
Hence such interchangeable use of feature importance methods could result in con-
clusion instabilities unless the feature importance ranks computed by the different fea-
ture importance methods are similar.

To understand if such interchangeable usage of feature importance methods to
compute feature importance ranks is acceptable, we conduct a case study on 18 de-
fect datasets through six commonly used classifiers. We find that the feature impor-
tance ranks computed by different feature importance methods indeed vary signifi-
cantly even among the features reported in the top-3 ranks. Therefore, we suggest that
practitioners avoid the use of feature importance methods interchangeably (especially
when replicating or validating a study), since the use of different feature importance

methods leads to extremely different conclusions.

CHAPTER 1. INTRODUCTION 10

1.3 Thesis Contribution

In this thesis, we investigated the impact of discretizing the dependent feature and
interchangeably using the feature importance methods on the generated insights of a
classifier in software analytics. In doing so, we make several contributions to the field

of software analytics. We highlight some of the key contributions as follows:

1. We show that the discretization of the dependent feature and in turn the associ-
ated information loss could be avoided in some cases by using regression-based

classifiers (Chapter 4).

2. We provide a framework that helps estimate and mitigate the impact of the dis-
cretization of the dependent feature for any given classifier and dataset (Chap-
ter 5). In addition, our proposed framework recommends the exact amount of
data points that one needs to discard from their analysis to avoid the harmful

impact of the discretization of the dependent feature.

3. We are the first study to empirically demonstrate the harmful impact of the dis-

cretization of the dependent feature in software analytics (Chapter 5).

4. We are the first study show that feature importance methods are interchangeably
used and demonstrate that such interchangeable usage of feature importance

could lead to conclusion instabilities in software analytics studies (Chapter 6).

CHAPTER 2

Background and Motivation

N this chapter, we provide a brief background on the discretization of the depen-
dent feature and feature importance methods used in software analytics. Fur-
ther, we summarize the key arguments from prior studies that motivated us to

analyze the impact of these two experimental design choices on the generated insights

of classifiers over other experimental design choices.

11

CHAPTER 2. BACKGROUND AND MOTIVATION 12

2.1 Discretization Of The Dependent Feature

2.1.1 What is discretization?

Discretization is the process of turning numerical data into discrete data with finite

intervals Garcia et al. (2013).

2.1.2 Discretization of the dependent feature

Typically, when class labels for data points are not available and instead only the
continuous dependent feature is available, that continuous dependent feature is
discretized using a threshold to generate class labels. For instance, consider example
of building a classifier to predict if a given module in the current release of a software
project might be defective or non-defective. To construct such a defect classifier,
we collect the historic data about these modules from their past releases with class
labels indicating if they were defective or non-defective in the prior releases. However,
typically only the number of defects associated with each module in their past release
is available. Therefore, many studies typically discretize the defect counts into “De-
fective” and “non-Defective” classes then use the discretized defect counts to build a

classifier.

2.1.3 Discretization of the dependent feature in software analytics

Discretization of the dependent feature is a common practice in software analytics.
Many software analytics studies like (Guo et al., 2010; Gay et al., 2010; Jiang et al., 2013;

Schumann et al., 2009; Jalali et al., 2008; Wang et al., 2018; Tian et al., 2015; Hassan

CHAPTER 2. BACKGROUND AND MOTIVATION 13

et al., 2018) discretize the dependent feature to generate class labels. These class la-
bels are later used to train the machine learning classifiers. For instance, Tian et al.
(2015) discretizes the app-ratings (a continuous dependent feature) of mobile apps in
Google play store into to “high-rated” and “low-rated” apps before building a classifier.
They used the constructed classifier to study what features influence the popularity
of a mobile app in the Google playstore. Similarly, before constructing their classi-
fier Wang et al. (2018) discretized the time it takes to receive an accepted answer for
a question posted in StackOverflow into “fast” and “slow” classes. They use the con-
structed classifier to understand which features determine how fast a question posted
in StackOverflow website gets an accepted answer.

Of these, some of the studies like (Wang et al., 2018; Tian et al., 2015; Hassan et al.,
2018) discard the data around the discretization threshold due to its ambiguous class
loyalties and use only the top and bottom x% to train their classifiers. Whereas some
other studies like (Guo et al., 2010; Gay et al., 2010; Jiang et al., 2013; Schumann et al.,
2009; Jalali et al., 2008) split the continuous dependent feature using various criterion

and include all the data points.

2.1.4 Arguments against discretizing the dependent feature

Many researchers have actively argued against the practice of the discretization of the
dependent feature. For instance, Altman and Royston (2006) and Cohen (1983) pointed
out that discretization at the median of a continuous feature leads to a loss of informa-
tion, and discretization at any other cut points away from the center lead to a much
greater information loss. In addition, several prior studies argued against the use of

any data-driven cutpoint to discretize dependent feature as it introduced noise and

CHAPTER 2. BACKGROUND AND MOTIVATION 14

bias (Rucker et al., 2015; Dawson and Weiss, 2012; Royston et al., 2006). MacCallum
et al. (2002). DeCoster et al. (2009) further state that discretization is rarely ever justi-
fiable and it is almost always safer not to discretize. In summary, a majority of the re-
search states that discretizing the dependent feature is not a safe practice and should
be avoided. However, as we show in the previous Section 2.1.3, the discretization of the

dependent feature is still widely practiced in software analytics.

Takeaway: The Discretization of the dependent feature is a harmful practice.
Therefore, itis pivotal to devise strategies to avoid /mitigate the impact of discretiza-
tion of the dependent feature on the computed insights of a classifier in software

analytics.

2.2 Feature Importance Methods

2.2.1 What are feature importance ranks?

Feature importance ranks is a ranked list that lists the features of the dataset in the

order of their influence on the classification.

2.2.2 What are feature importance methods?

Feature importance methods are used to determine the importance of a given feature
to the classifier. These importances are then used to compute ranking of feature im-
portances (i.e., the feature importance ranks) for a given classifier. These methods can

be divided into two categories as follows:

CHAPTER 2. BACKGROUND AND MOTIVATION 15

Classifier Specific (CS) methods. A CS method makes use of a given classifier’s in-
ternals to measure the degree to which each feature contributes to a classifier’s pre-
dictions. For instance, prior studies use Type 1/2 ANOVA to compute the feature im-
portance ranks from logistic regression classifiers Bird et al. (2011, 2009); Nagappan
et al. (2006); Nagappan and Ball (2005); Zimmermann et al. (2007). Therefore, a CS
method could only be used to compute the feature importance ranks of the classifier(s)

for which it was designed.

Classifier Agnostic (CA) methods. A CA method is not reliant on the classifier’s inter-
nals to measure the feature importance ranks. Therefore, CA methods could be used
to compute the feature importance ranks of any classifier. CA methods typically mea-
sure the contribution of each feature towards a classifier’s predictions. For instance,
some CA methods like permutation feature importance method measures the contri-
bution of each feature by effecting changes to that particular feature in the dataset and

observing its impact on the outcome.

2.2.3 Usage of feature importance methods in software analytics

Both CA and CS methods have been widely used by the software analytics researchers
to compute feature importance ranks. For instance, McIntosh et al. (2016) and Morales
etal. (2015) construct regression models and use ANOVA (a CS method) to understand
which aspects of code review impact software quality. In turn, Fan et al. (2018) use the
CS methods that are associated with a random forest classifier to identify the features
that distinguish merged and abandoned code changes. Similarly, various CS methods
that are associated with the random forest classifier have been used to identify features

that are important for identifying: who will leave a company (Bao et al., 2017), who

CHAPTER 2. BACKGROUND AND MOTIVATION 16

will become a long time contributor to an open source project (Bao et al., 2019), code
metrics that signal defective code (Guo et al., 2004), popularity of a mobile app (Tian
et al., 2015), likelihood of an issue being listed in software release note (Abebe et al.,
2016), and many other software analytics contexts. Furthermore, CS methods that are
associated with logistic regression and decision trees have also been used to generate
insights on similar themes (Briand et al., 1998; Cataldo et al., 2009; Calefato et al., 2019;
Gay et al., 2010; Bird et al., 2011, 2009). Correspondingly, previous studies also use CA
methods to interpret classifiers. For example, Tantithamthavorn et al. (2018a) use the
permutation CA method to study the impact of data pre-processing on a classifier’s fea-
ture importance ranks. Furthermore, Dey and Mockus (2018) use partial dependence
plots (PDP) to identify why certain metrics are not important for predicting the change
popularity of an npm package. whereas Mori and Uchihira (2019) use PDP to compute

the feature importance of random forest classifiers.

2.2.4 Arguments against the interchangeable usage of feature im-

portance methods

As we observe from the previous Section 2.2.3, both CS and CA methods are used in-
terchangeably to compute insights from a classifier. For example, we observe that Bao
et al. (2017) used a CS method, while Mori and Uchihira (2019) used a CA method to
compute the feature importance ranks of a random forest classifier. However, both
CS and CA methods work differently. Therefore such interchangeable use of feature
importance methods is acceptable only if the feature importance ranks computed by

these methods do not differ from each other.

CHAPTER 2. BACKGROUND AND MOTIVATION 17

Moreover, several prior studies from other fields hint that different feature impor-
tance methods generate different feature importance ranks. For instance, Grémping
(2009) compared the feature importance ranks computed by CS methods associated
with random forest and linear regression learners and found significant differences.
Similarly, several prior studies (Calle and Urrea, 2011; Nicodemus, 2011; Strobl et al.,
2008) show that different CS methods associated with random forest classifier com-
putes different feature importance ranks. Despite such evidence, feature importance
methods (both CS and CA methods) are used interchangeably to compute feature im-
portance ranks in software analytics. We provide a detailed discussion of how fre-
quently such interchangeable usage of feature importance methods is practiced in

software analytics studies in Section 6.2 of Chapter 6.

Despite the inherent differences between the workings of CA and CS methods, they
are used interchangeably to compute feature importance ranks in software analyt-
ics studies. Therefore, it is important to ascertain the impact of such interchange-
able usage of feature importance methods on the computed insights of a classifier

to provide guidelines for future software analytics studies.

CHAPTER 3

Literature survey

HIS chapter surveys prior work that examined the impact of various exper-
imental design choices on the computed performance and feature impor-
tance ranks of classifiers used in software analytics. A software analytics

pipeline (as shown in Figure 1.1) is typically comprised of four key steps: Data pre-
processing, Classifier construction, Classifier evaluation and Classifier validation. Each
of these steps requires one to make several experimental design choices that impact
the computed performance and feature importance ranks of a classifier. Therefore, in
this chapter, we group the existing literature that investigates the impact of experimen-
tal design choices into four categories along these aforementioned steps.

In this chapter, we first explain our literature selection process, then discuss the

existing studies along the four aforementioned categories.

18

CHAPTER 3. LITERATURE SURVEY 19

3.1 Literature Selection

Several prior studies have investigated the impact of various experimental design
choices on the conclusions of the software analytics studies. Tantithamthavorn’s
PhD thesis (Tantithamthavorn, 2016b) presents a comprehensive survey of literature
between 2007 to 2017, that investigates the impact of various experimental design
choices on the insights generated by classifiers in software defect prediction. We use
that as a starting point and we further search for papers published between 2017 and
2020 in major software engineering journals and conferences (please see Table 3.1)
with a particular focus on studies from software defect prediction (SDP) community.
We do so, as the SDP community is one of the most prominent, mature and advanced
users of machine learning classifiers in the field of software engineering. Though
we focus particularly on studies from the SDP community, we also present other
relevant studies (not from the SDP community) that investigate the impact of various
experimental design choices on the generated insights of a classifier.

To ensure that we survey all related literature, we followed the citations of each of
the reviewed paper. Finally, we summarize and present the results of all the relevant
papers between 2007 to 2020. These presented papers investigate the impact of various
experimental design choices on the computed performance and feature importance

ranks of a classifier in software analytics.

CHAPTER 3. LITERATURE SURVEY 20

Table 3.1: Research venues used as a starting point to conduct our literature survey

Venue Type Venue Name Abbrevation

Journal IEEE Transactions on Software Engineering TSE

Journal ACM Transactions on Software Engineering and TOSEM
Methodology

Journal Empirical Software Engineering EMSE

Conference ACM SIGSOFT Symposium on the Foundation of FSE/ESEC
Software Engineering/ European Software Engi-
neering Conference

Conference International Conference on Software Engineering ICSE

Conference International Conference on Automated Software ASE
Engineering

Conference International Conference on Software Mainte- ICSME
nance and Evolution

Conference International Conference on Software Analysis, SANER
Evolution, and Reengineering

Conference International Conference on Mining Software MSR
Repositories

3.2 Data Pre-processing Step

The data pre-processing step typically involves a variety of experimental design
choices (e.g., Noise removal and Feature transformation). Prior studies indicate that
all such design choices could impact the performance of a classifier.

Noise removal. Several prior studies note that noise in defect prediction datasets im-
pact the performance of a classifier (Bachmann et al., 2010; Tantithamthavorn et al.,
2015; Kim et al., 2011). Similarly, Huang et al. (2017) also show the impact of miss-
ing values in a dataset and the choice of data imputation techniques on such missing
values on the performance of a classifier.

Feature selection. Many prior studies remark about the impact of the choice of feature
selection technique on the performance of classifiers in software engineering (Men-

zies et al., 2006; Hall and Holmes, 2003; Muthukumaran et al., 2015; Xu et al., 2016;

CHAPTER 3. LITERATURE SURVEY 21

Jiarpakdee et al., 2018; Ghotra et al., 2017; Kondo et al., 2019). More recently, Ghotra
et al. (2017) and Kondo et al. (2019) suggest that for supervised classifiers correlation-
based feature selection methods yield the best performing classifiers in defect predic-
tion. For unsupervised classifiers, Kondo et al. (2019) suggest using neural-network
based feature reduction techniques. Jiarpakdee et al. (2019) investigated how corre-
lated features in software engineering datasets impact the interpretation of defect clas-
sifiers. They assert that the presence of correlated features yields spurious feature im-
portance ranks and suggest removing the correlated features before using them in the
software analytics pipeline.

Feature transformation. Several prior studies investigate how different feature trans-
formation techniques impact the generated insights from the classifiers in software
analytics (Zhang et al., 2017; Jimenez et al., 2018; Biswas et al., 2019; Peters et al., 2017,
Kang et al., 2019). For instance, Zhang et al. (2017) investigate how different feature
transformation techniques impact the results of cross-project defect prediction stud-
ies. Whereas, several other studies (Biswas et al., 2019; Peters et al., 2017; Kang et al.,
2019) explore how different feature transformation techniques affect the performance
of a classifier when the input features are comprised of natural language and software
code rather than tabular data.

Class rebalancing. The impact of various class rebalancing techniques to address the
class imbalance problem in software engineering datasets and in turn the impact of
this problem on the computed performance and feature importance ranks of the clas-
sifiers has been extensively studied (Jing et al., 2016; Malhotra and Khanna, 2017; Song
et al., 2018; Tantithamthavorn et al., 2018a; Agrawal et al., 2020; Hall et al., 2011; Wang

and Yao, 2013; Pelayo and Dick, 2012; Peters et al., 2013). All of these prior studies

CHAPTER 3. LITERATURE SURVEY 22

agree that class rebalancing improves the performance of the classifiers, though dif-
ferent studies champion different class rebalancing strategies. However, recent studies
by both Tantithamthavorn et al. (2018a) and Agrawal et al. (2020) agree that hyperpa-
rameter tuned SMOTE class rebalancing strategy yields the most optimal performance
gains. In addition, Turhan (2012) and Tantithamthavorn et al. (2018a) report that re-
balancing the dataset changes the computed feature importance ranks of a classifier.

Discretization. Several studies in software engineering discretize the independent fea-
tures as part of data pre-processing before constructing classifiers (Menzies et al., 2011;
Ma et al., 2012). For instance, Jiang et al. (2008) find that while the discretization of
independent features improves the performance of some classifiers, it does not uni-
versally benefit all classifiers (Jiang et al., 2008). Nam and Kim (2015) use a median
based discretization of independent features to assign class labels for un-labeled data
points to train a cross-project defect prediction model. Though these aforementioned
studies analyze the impact of discretizing the independent features on the results gen-
erated by a classifier none of the prior studies explore the impact of the discretization
of the dependent feature on the computed performance and feature importance ranks

of classifiers in software analytics.

3.3 Classifier Construction Step

The classifier construction step typically entails two key experimental design choices:
Classifier selection and hyperparameter tuning

Classifier selection. A remarkable number of studies investigate impact of choosing
different machine learning classifiers and its impact on the results of the software ana-

lytics studies (Ghotra et al., 2015; Shepperd et al., 2014; D’Ambros et al., 2010; Arisholm

CHAPTER 3. LITERATURE SURVEY 23

et al., 2007; Seiffert et al., 2009; Song et al., 2010; Agrawal et al., 2020, 2019; Chen et al.,
2018). All of these studies universally agree that the choice of classifier impact the com-
puted performance and feature importance ranks of a classifier. In contrast, Lessmann
et al. (2008) argue that the choice of classifier does not matter and all classifiers yield
similar performance scores. However, Ghotra et al. (2015) later show that is not the
case. More recently, Chen et al. (2018) and Agrawal et al. (2019) compare the perfor-
mance scores obtained by several latest machine learning classifiers and find that Fast
Frugal Trees yield the best performance for several software analytics tasks.

Hyperparameter Tuning. Tantithamthavorn et al. (2018b) point out that hyperparam-
eter tuning significantly impact the computed performance and feature importance
ranks of a classifier. They used a random search technique to hyperparameter tune
their classifier. Since then, the choice of hyperparameter technique and its subse-
quent impact on the performance of the classifiers has generated considerable interest
in software analytics (Agrawal et al., 2019, 2020; Fu et al., 2016). Fu et al. (2016) show
that the differential evolution technique for hyperparameter tuning generated better
performing classifiers over standard gird search. Later, Tu and Nair (2018) show that
there was no one hyperparameter tuning technique that always performs well. How-
ever recently, Agrawal et al. (2019) show that a technique called DODGE finds the best

hyperparameters for classifiers in software analytics.

3.4 C(lassifier Evaluation Step

Performance computation. Both threshold-dependent performance measures like
Accuracy, Precision, Recall, F-Measure and threshold-independent performance mea-

sures like AUC, Brier score are widely used to compute the performance of classifiers in

CHAPTER 3. LITERATURE SURVEY 24

software analytics (Song et al., 2010; Seiffert et al., 2009; Arisholm et al., 2007; Ghotra
et al., 2015). However, Lessmann et al. (2008) argued that threshold-dependent
performance measures are unreliable as identifying the right threshold to compute
the threshold-dependent performance measures requires knowledge of class and
cost distribution of a given dataset. Furthermore, they argue that such information
is not typically available for software analytics datasets and using a default threshold
or fixed threshold biases the computed performance measures. In addition, several
other studies (Agrawal et al., 2019; Menzies et al., 2007a) also argue against the use of
threshold-dependent performance measures to estimate the performance of classi-
fiers. Therefore, usage of threshold-independent performance measures is typically
recommended to evaluate the performance of classifiers in software analytics.

Feature importance ranks computation. A recent study by Jiarpakdee et al. (2020)
assert that the computed feature importance ranks varies when using instance level
feature importance methods. To the best of our knowledge this is the only study that
explores the impact of feature importance methods on the computed feature impor-
tance ranks. However, this study only explores that impact on a limited number of
instance level feature importance methods. Therefore, much of the impact of using
different feature importance methods interchangeably on the computed feature im-

portance ranks of a classifier remains largely unexplored.

3.5 Classifier Validation Step

The computed performance measures and feature importance ranks of a classifier
may not be statistically robust as they typically produce estimates that are unrealistic.

Therefore, classifier validation methods like k-fold validation are typically used

CHAPTER 3. LITERATURE SURVEY 25

to validate the computed performance and feature importance ranks of a classi-
fier (Lessmann et al., 2008; Tu and Nair, 2018; Jiarpakdee et al., 2020; Ghotra et al.,
2015). However the choice of classifier validation method can severely impact the
conclusions obtained from a classifier (Krstajic et al., 2014; Jiang et al., 2009; Mende,
2010). Recently, Tantithamthavorn et al. (2017) perform a comprehensive large scale
comparison of different classifier validation methods and assert that out-of-sample

bootstrap method provides the most stable performance estimates of a classifier.

Takeaway: Prior studies highlight the impact of several experimental design
choices on the computed performance and feature importance ranks of a classifier
in software analytics. However, there exists a limited understanding of how the dis-
cretization of the dependent feature and the choice of feature importance method
impact the computed performance and feature importance ranks of a classifier. Fu-
ture research needs to address this critical gap. Therefore, in this thesis we explore

the impact of the aforementioned experimental design choices on the computed

performance and feature importance ranks of a classifier in software analytics.

CHAPTER 4

Avoiding the Discretization of the Dependent Feature by Using

Regression-based Classifiers

Classifiers that identify the defect-prone modules (i.e., Defect classifiers) are extensively used
in software analytics. When constructing these classifeirs, it is common practice to discretize
the continuous defect counts into defective and non-defective classes and use these two classes
as a dependent feature when building defect classifiers (discretized defect classifiers). How-
ever, this discretization of continuous defect counts leads to information loss that might affect
the performance and interpretation of defect classifiers. We could avoid such discretization of
the dependent feature by using regression models and then discretizing the predicted defect
counts into defective and non-defective classes. In this chapter, we compare the performance
and interpretation of defect classifiers that are built using both approaches (i.e., discretized
classifiers and regression-based classifiers) across six commonly used machine learning tech-
niques and 17 datasets. We find that, in contrast to common practice, building a defect classi-
fier using discretized defect counts (i.e., discretized classifiers) does not always lead to better
performance. Hence we suggest that future defect classification studies should consider build-
ing regression-based classifiers and avoid discretizing the dependent feature.

An earlier version of this chapter is published in Proceedings of the 14th International Confer-
ence on Mining Software Repositories (MSR), 2017. (Rajbahadur et al., 2017)

26

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 27

4.1 Introduction

LASSIFIERS that identify the defect-prone modules (i.e., Defect classifiers)

are extensively used in software analytics (Shihab et al., 2012; Zimmer-

mann et al., 2009; Lewis et al., 2013; Chen et al., 2018; Nam et al., 2018).

This is because finding and fixing defects consume a significant amount of the total

budget of a software project. These costs can be reduced significantly if the defects

are identified and fixed early on (Arar and Ayan, 2015; Ceylan et al., 2006; Fagan, 1999;
Moser et al., 2008; Mullen and Gokhale, 2005; Shull et al., 2002).

Defect classifiers assist in software quality assurance efforts and in prioritizing pro-
cess improvement efforts. In particular, defect classifiers can identify defect-prone
modules (Hassan, 2009; Kim et al., 2007; Wang and Yao, 2013; Zimmermann et al.,
2007), in turn helping quality assurance teams allocate their limited resources to these
modules (e.g., packages, files, or classes). Moreover, the trained defect classifiers can
be used to understand the impact of the various features (e.g., process or product met-
rics) on the defect-proneness of a module, in turn helping practitioners (through pro-
cess improvement efforts) avoid pitfalls that have led to defective modules in the past.

The most common approach to build a classifier is through the discretization of
the continuous defect counts into “defective” and “Non-defective” classes and using
these classes as a target feature (i.e., discretized defect classifiers) (Cataldo et al., 2009;
Mockus, 2010; Lessmann et al., 2008). However, the discretization of continuous fea-
tures (i.e., defect counts in this case) into two classes often leads to a significant loss of
information (Altman and Royston, 2006; Cohen, 1983; Royston et al., 2006) and intro-

duces undesired false positives or false negatives (Austin and Brunner, 2004).

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 28

To avoid the information loss because of discretization, one possible solution
is to perform classification via regression (Hou et al., 2013; Singh et al., 2006; Xiang
et al., 2010). Classification via regression first builds a regression model using the
non-discretized defect counts then uses the predicted defect counts to identify the
presence or absence of defect (i.e., regression-based defect classifiers). However, it is not
clear which classifier building approach leads to better performing defect classifiers.
It is also not clear whether these two approaches would produce classifiers which are
influenced by different set of features (e.g., product versus process metrics). If the
regression-based classifiers produce better performing classifiers than discretized
classifiers, then the discretization of the dependent features could be avoided.

In this chapter, we examine the use of regression models to build defect classifiers
in terms of performance (i.e., Area Under the receiver operator characteristic Curve
(AUC)) and model interpretation (i.e., influential features that impact the defect-
proneness of a module). We do so to study if the discretization of the dependent
feature could be avoided. We conduct our study on six commonly used learners (i.e.,
linear/logistic regression, random forest, KNN, SVM, CART, and neural networks) and
using 17 Tera-PROMISE defect datasets (Sayyad Shirabad and Menzies, 2005). We

conduct our study through the following research questions:

* RQ1. How well do regression-based classifiers perform?
In contrast to current practices in our field, building classifiers using discretized
defect counts does not always lead to better performance. Regression-based
classifiers outperform discretized classifiers when the defective ratio of the mod-
eled dataset is low (< 15%) and the pattern reverses when the defective ratio is

high (> 35%).

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 29

* RQ2. Are discretized and regression-based classifiers influenced by the same
set of features?
The most influential features (i.e., Rank 1 features) do not vary significantly be-
tween both approaches for building a defect classifier (when using a random for-
est based learner). However, we note significant variances for features at lower

ranks.

Thus we suggest that future defect prediction and in turn software analytics studies
should consider building regression-based classifiers (in particular when the defective
ratio of the modelled dataset is low, in other words, when the class imbalance of the
modelled dataset is high). Moreover, we suggest that both approaches for building
classifiers should be explored, so that 1) Discretiztion of the dependent feature could
be avoided in certain cases 2) the best-performing classifier can be used when deter-

mining the most influential features.

4.2 Experiment Setup

This section describes the data collection, and gives an overview of our study approach.

4.2.1 Data collection

We use the data from Tera-PROMISE Repository (Sayyad Shirabad and Menzies, 2005).
Tera-PROMISE contains 101 software projects data, and the types of these projects
are diverse. Using data from Tera-PROMISE helps us draw more general observations
across different datasets. We select datasets based on following two criteria which are

similar to a prior study by Tantithamthavorn et al. (2018b):

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 30

Out-of-sample bootstrap (repeat 1,000 times) Preliminary !
study |
' H . . ’
Correlation v Construction of Bult \ | oo~ W | ===---
anlaysis : discretized defect discretized P:::l:?;:::‘e
classifier classifier B
i i1 | Generate T : [1
[bootstrap Training : :
P | smaple data ! L :
H Redundancy Lo : LS, ’
: analysis . R Built
: : ‘ Constr_ucllon of regression- Feature importance [—— Feature
! . regression-based based analysis . "
' . defect classifier = Yy T importance o '
: . classifier f h
S Q T RQ2 1
N . : 1
: Testing ' !

3 =) T '
Defect
Dataset B T LT T T T Tt LT P T TR PP -

Figure 4.1: An overview of our study approach.

Table 4.1: An overview of the datasets that we use to study whether the discretization
of the dependent feature could be avoided by using regression-based classifiers.

Project DR(%) #Files #Features #MACRA EPV
Eclipse-2.0 14.5 6,729 32 12 30
Eclipse-2.1 10.8 7,888 32 12 30
Eclipse-3.0 14.8 10,593 32 12 49
Camel-1.2 35.5 608 20 12 11
Mylyn 13.2 1,862 15 8 16
PDE 14.0 1,497 15 9 14
Prop-1 14.8 18,471 20 15 137
Prop-2 10.6 23,014 20 14 122
Prop-3 11.5 10,274 20 15 59
Prop-4 9.6 8,718 20 15 42
Prop-5 15.3 8,516 20 14 65
Xalan-2.5 48.2 803 20 14 19
Xalan-2.6 46.4 885 20 13 21
Lucene-2.4 59.7 340 20 13 10
Poi-2.5 64.4 385 20 12 12
Poi-3.0 63.6 442 20 13 14
Xerces-1.4 74.3 588 20 11 22

DR - Defective Ratio; MACRA - Features After Correlation and Redundancy Analysis

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 31

0.2
L
o
_

= o (&) @]
& o e © | 2
g S 1
g 18 g :T 0 o o
o 2 ©] 1 1 £ § § M g 8
= @© O 0 Q
e € £ 3 2 E © f |
o o X (o)}
2 c g H

Figure 4.2: Clustered features after correlation analysis for Poi-3.0.

Criterion 1: Remove datasets with an EPV that is larger than 10. Events Per Vari-
able (EPV) is defined as the ratio of the frequency of the least occurring class in the
outcome feature to the number of features that are involved in training of a classifier.
Prior studies show that the EPV value has a significant influence on the performance
of defect classifiers (Peduzzi et al., 1996; Tantithamthavorn et al., 2017). In particular,
defect classifiers trained with datasets with alow EPV value yield unstable results (Tan-
tithamthavorn et al., 2017, 2018b). To ensure the stability of our results, we select
datasets with an EPV value that is larger than 10 (Peduzzi et al., 1996). We calculate
the EPV for our datasets using the steps provided by Tantithamthavorn et al. (2017).

Criterion 2: Remove datasets that have more than 80% defective modules. We
choose datasets that have less than 80% defective modules, because it is highly un-

likely for any software project to have modules with defects that much more than clean

modules.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 32

Among the 101 Tera-PROMISE datasets, we excluded 78 datasets since they had an
EPV value that is less than 10. To satisfy criterion 2, we eliminate the Xalan-2.7 project
and end up with 22 datasets that satisfy our criteria. We had to eliminate another 5
datasets as they did not have the actual defect counts for each module (they only had
the module class, i.e., defective or not defective). We end up with 17 datasets for our
analysis. Table 4.1 shows the selected datasets for our study along with basic charac-

teristics about each dataset.

4.2.2 Overall approach

An overview approach of our study is presented in Figure 4.1. First, we perform correla-
tion analysis and redundancy analysis. Then, we build two defect classifiers, one using
the non-discretized defect counts and the other using the discretized defect count (i.e.,
“Defective” or “non-Defective”), respectively. After the classifiers are built, we calcu-
late their performance using the Area Under the receiver operator characteristic Curve
(AUC) and compute the feature importance for each classifier. We repeat this process
1,000 times using out-of-sample bootstrap validation to ensure that our drawn con-
clusions are statistically robust as suggested by Tantithamthavorn et al. (2017). In each
iteration of the bootstrap, we compute the AUC values and feature importance for the
discretized and regression-based classifiers. We use the computed AUC and feature
importances to conduct our preliminary study in Section 4.3 and answer our research
questions in Section 4.4.

The individual steps of our approach are explained in detail below.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 33

4.2.3 Correlation analysis and redundancy analysis

Correlation analysis: To avoid multicollinearity problems in our classifiers, we per-
form a correlation analysis to remove highly correlated features. We use a feature clus-
tering analysis technique to construct a hierarchical overview of the Spearman corre-
lations among features. For sub-hierarchies of features with correlations larger than
0.7, we select only one feature from the sub-hierarchy for inclusion into our classifiers.
When selecting the feature for inclusion, we select the feature that is simplest to in-
terpret and compute. We use the varclus function from the Hmisc R package in this
Chapter. For example, Figure 4.2 shows the hierachical clustering of the features of
the Poi-3.0 project. We observe that the features “wmc”, “npm”, “nfc” and “loc” have
correlation values larger than 0.7. We choose “loc” for inclusion in our classifier as it is
relatively easy to compute and explain. We repeat a similar process for other correlated
features.

Redundancy analysis Correlation analysis handles multicollinearity, but it does
not remove redundant features, which are features that do not add additional informa-
tion with respect to other features (Yu and Liu, 2004). The presence of these features
distorts the relationship between features and the target feature. Hence, it is impor-
tant to remove redundant features prior to classifier construction. We use the redun
function from rms R package to remove redundant features. The function drops fea-
tures iteratively until either no previously constructed model of features achieved an
R? above a chosen cutoff threshold (0.9 in our case). Table 4.1 shows the number of

remaining features in our datasets after employing feature selection on each dataset.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 34

4.2.4 Classifier construction

In our experiments, we use two approaches to build defect classifiers to predict
whether a module has defects or not: a traditional defect classifier that is built with
discretized defect counts (referred as a discretized defect classifier) and a classifier
that is built using a regression model that is built with non-discretized defect counts
(referred as a regression-based defect classifier).

Construction of discretized defect classifier. The continuous defect counts are
discretized to defect classes “Defective” and “Non-Defective” based on the condition:
If amodule’s defect count is greater than or equal to 1, it is classified as “Defective”; oth-
erwise it is classified as “non-Defective”. During the training phase, the defect classes
are then treated as the target feature and are feed to a classification technique (e.g., ran-
dom forest) along with the collected features to build the discretized classifier. During
the testing phase, the trained discretized classifier is tested on unseen testing data to
compute the performance (i.e., AUC) of the classifier and its most influential features.

Construction of regression-based defect classifier. Different from the construc-
tion of a discretized classifier, during the training phase, we use the non-discretized
defect counts (i.e., the actual values) to build a regression model then the pre-
dicted counts of the model are transformed into two classes (“Defective” and
“non-Defective”) based on a threshold which is not necessary to be 1. Then the model

performance and feature importance are computed.

4.2.,5 Performance calculation

We use the Area Under the receiver operator characteristic Curve (AUC) as the measure

of the performance when comparing between the discretized and regression-based

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY

USING REGRESSION-BASED CLASSIFIERS

35

[0.80,0,0,0.75]

Built
discretized
classifier

Defect class
probabilities

Testing
data

AUC
Calculator

[2,3,4,10...]

Built
regression-
based
classifier

Defect
counts

Normalize

[0.20,0.30,0.40,1...]

Figure 4.3: An overview of performance evaluation.

AUC of
discretized
classifier

AUC of
regression-
based
classifier

defect classifiers (Lessmann et al., 2008). AUC is computed by plotting the ROC curve,

which maps the relation between True Positive Rate (TPR) and False Positive Rate (FPR)

at all thresholds. We choose AUC because of following reasons:

1. AUC measures the performance across all the thresholds. When calculating

the AUC of both discretized and regression-based defect classifiers, a threshold

needs to be set up to classify the outcome as “Defective” if the predicted value is

above that threshold and “non-Defective” otherwise. It is challenging to decide

this threshold. To avoid the problem of threshold setting, we select AUC since

AUC measures the performance on all the thresholds (i.e., from 0 to 1) and

precludes our analysis from the peculiarities of setting up thresholds.

2. The AUC is insensitive to cost and class distributions (Lessmann et al., 2008) so

that the imbalance inherent to the software datasets is automatically accounted

for and provides a score that is objective. An AUC score close to 1 means the

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 36

classifier’s performance is very high and a classifier that has an AUC score of 0.5

is no better than random guessing.

We now briefly discuss the calculation of the AUC for the regression-based defect
classifier. Figure 6.1 depicts how the performance calculation component of Figure 4.1
works. The AUC calculation is accomplished by normalizing the predicted defect
counts to fall within the 0 and 1 range to mimic the class probabilities generated
by a discretized defect classifier. We use the normalized score along with the actual
classes to compute the AUC. In this way, we are comparing the discretized defect and
regression-based defect classifiers on a common ground. This also ensures that the
regression-based defect classifier is tested for its classification prowess rather than its

regression performance.

4.2.6 Feature importance analysis

We use permutation feature importance method (Altmann et al., 2010) (i.e., a CA
method) as a means of measuring the importance of a given feature. Understanding
the importance of each feature on a classifier, helps practitioners in their process
improvement activities for avoiding future defects. We use permutation importance
method in lieu of the built-in feature importance method of each classification and
regression technique (i.e., the CS method associated with each technique) since
permutaton importance method gives us a way of conducting feature importance
ranks estimation in an unbiased setting.

The permutation importance method works by randomly permuting the values of
one feature at a time so that the original relationship between the feature and the target

feature is disturbed. Then this permuted feature along with the other non-permuted

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 37

features are used to classify the testing data, and performance of the classifier is com-
puted. If the computed performance of the classifier that is built using the permuted
feature decreases significantly from the classifier that is built with non-permuted fea-
ture, then such performance decrease signifies the importance of this feature. This
process is repeated for each of the features and they are ranked based on the degree of

decrease in their performance once they are permuted.

4.2.7 Out-of-sample bootstrap

In order to ensure that the conclusions that we draw about our classifiers are ro-
bust, we use the out-of-sample bootstrap validation, which has been shown to yield
the best balance between the bias and variance in a recent study (Tantithamthavorn

etal., 2017). The out-of-sample bootstrap is conducted along the following steps:

1. Abootstrap sample of size N is randomly drawn with replacement from the orig-

inal dataset, which is also of size N.

2. Discretized and regression-based defect classifiers are trained using the boot-
strap sample (i.e., training data). On average, 36.8% of the data points will not ap-
pear in the bootstrap sample, since it is drawn with replacement (Tantithamtha-

vorn et al., 2017).

3. We calculate the AUC value and feature importance for each classifier on unseen

testing data that are data points that do not appear in the bootstrap sample.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 38

The out-of-sample bootstrap process is repeated 1,000 times. After the bootstrap,
1,000 AUC values and 1,000 lists of feature importance are generated. We perform fur-
ther analysis on these AUC values and feature importance to answer our research ques-

tions.

4.3 Preliminary Study

Prior studies have compared the performance of different machine learning tech-
niques when building discretized defect classifiers (Guo et al., 2004; Lessmann et al.,
2008). However, there is no knowledge about the performance of regression-based
classifiers. Hence we focus our preliminary study to examine the performance of
regression-based classifiers. Our goals are two folds: 1) To replicate prior findings in
order to understand whether prior findings for discretized defect classifiers would
hold for regression-based classifiers, 2) To help focus our analysis in the following
sections on the top performing regression-based classifiers.

Approach: We choose one representative technique from each widely used ma-
chine learning technique families that are listed by Lessmann et al. (2008) by satisfying

following criteria:

1. A classifier could be built based on both discretized and non-discretized defect

counts.

2. One is widely used in prior defect prediction studies.

Table 4.2 shows the techniques chosen for our analysis. All of these techniques

are used at their default settings. While a recent study by Tantithamthavorn et al.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 39

Table 4.2: Techniques that are selected from each machine learning family.

Family Classification tech- | Regression technique
nique

Statistical Logistic regression | Linear regression (Lin-
(Log-Reg) Reg)

Nearest neighbor K-NN classification | K-NN regression (KNN-
(KNN-C) R)

Support-Vector SVM classifier (SVM- | SVM regression (SVM-

machines 0! R)

Neural networks Neural Networks clas- | Neural Networks re-
sifier (NN-C) gression (NN-R)

Decision tree Classification tree | Regression tree (RT)
(CT)

Random forest Random forest classi- | Random forest regres-
fication (RF-C) sion (RF-R)

(2018b) shows that parameter optimization could improve the performance of some
techniques (e.g., C5.0), the techniques that are used in our study are not significantly
sensitive to parameter optimization. Thus, we use the default settings here.

We use the overall experiment setup that is outlined in Section 4.2 with all the six
families of chosen techniques. We start with data collection, then correlation and re-
dundancy analysis on the datasets. We then build the discretized and regression-based
defect classifiers using the six families of chosen techniques. The generated classifiers
are validated and the performance of each classier is evaluated using the AUC that is
obtained from the out-of-sample bootstrap as explained in the Section 4.2.

Once the AUC values are computed, we use a Scott-Knott Effect size clustering (SK-
ESD) (Tantithamthavorn et al., 2017) to rank the techniques based on the AUC values.
SK-ESD uses the effect size as computed by Cohen’s A (Cohen, 1988) to merge statisti-
cally similar groups into the same rank. These ranks are obtained for both discretized

and regression based defect classifiers on all 17 datasets for each of the six families of

Table 4.3: Average ranks of various discretized and regression-based classification techniques

Project Lin-Reg Log-Reg RF-R RE-C NN-R NN-C RT CT SVM-R SVM-C KNN-R KNN-C
R A R A R A R A R A R A R A R A R A R A R A R A

Eclipse-2.0 | 2 0.80| 2 083 1 0.84] 1 0.84| 6 0.63| 3 0.71] 5 0.71| 6 0.71| 4 0.75(5 0.76| 3 0.79] 4 0.78
Eclipse-2.1 1 0.79] 1 079 2 0.78]| 2 0.77| 3 0.73| 4 0.67| 3 0.73| 4 0.67| 5 0.62| 5 0.62| 4 0.72] 3 0.71
Eclipse-3.0 1 0.80| 1 0.80| 1 0.80| 1 0.80(5 0.62| 2 0.67| 3 0.73| 4 0.67| 4 071 5 0.71(2 0.75| 3 0.74
Camel-1.2 3 0.60| 2 0.61| 2 0.63] 1 0.64(5 0.55| 4 0.56| 3 0.55| 4 0.56] 1 0.64(5 0.64(2 0.59] 3 0.58
Mylyn 3 0.68| 1 070 1 0.74]| 2 0.68| 6 0.54| 2 0.60| 5 0.62| 4 0.60| 4 0.65(3 0.65(2 0.70] 1 0.70
PDE 2 0.69] 1 0.72] 1 0.71(2 071 5 0.56| 5 0.64| 4 0.64| 4 0.64| 4 0.64| 6 0.65(3 0.66| 3 0.65
Prop-1 4 0.71] 2 0.74| 1 0.79] 1 0.77| 5 0.62| 4 0.61]| 5 0.62| 4 0.61] 3 0.73| 3 0.72| 2 0.76] 1 0.76
Prop-2 4 0.66| 3 071 1 0.84] 1 081 5 0.57| 5 0.50| 5 0.57| 5 0.50| 3 0.68| 4 0.68| 2 0.76| 2 0.75
Prop-3 3 0.68| 2 071 1 0.72] 4 069 6 054 1 0.50| 5 0.58| 6 0.50| 4 0.64(5 0.64| 2 0.70] 3 0.70
Prop-4 2 0.73] 1 0.75| 1 0.77] 2 0.72| 5 0.63| 5 0.58| 5 0.63| 5 0.58| 4 0.67| 4 0.66| 3 0.71] 3 0.71
Prop-5 3 0.66| 2 071 1 0.73] 3 0.70(5 058 1 0.51| 4 0.63| 6 0.51] 3 0.66(5 0.66| 2 0.69| 4 0.69
Xalan-2.5 5 0.63| 3 0.65(1 0.75] 1 0.76| 6 0.62| 3 0.66| 4 0.64| 3 0.66| 2 0.72| 4 0.72| 3 0.70| 2 0.70
Xalan-2.6 3 0.78] 2 0.80| 1 0.82] 1 0.84| 5 0.66| 3 0.77] 4 0.77| 3 0.77] 2 0.80| 4 081 3 0.79] 2 0.81
Lucene-2.4 | 2 0.75| 2 0.74| 1 0.77] 1 0.77| 5 0.50(5 0.67| 4 0.67| 4 0.67| 3 0.72| 6 0.73| 3 0.72] 3 0.71
Poi-2.5 5 0.76| 3 081 2 0.85] 1 0.89| 6 0.50(3 0.80| 4 0.79| 3 0.80| 1 0.86| 4 0.86(3 0.82] 2 0.84
Poi-3.0 5 0.75| 2 084 1 0.82] 1 0.89| 6 0.50| 4 0.82] 4 0.75(3 0.82] 3 0.80(5 0.85(2 0.81] 2 0.85
Xerces-1.4 5 0.86| 1 094 1 091] 1 0.96| 6 0.50| 4 091| 5 0.86| 3 091| 3 090 5 091 2 0.90| 2 0.92
Avg. 3.12 0.73] 1.82 0.76| 1.17 0.78| 1.52 0.78| 5.29 0.58| 3.41 0.66| 4.23 0.68| 4.18 0.66| 3.11 0.72| 4.59 0.72| 2.52 0.74| 2.52 0.74

R - Rank; A - AUC

SHHIAISSVIO AASVA-NOISSHYOAd ONISN

A 4INIVAL INHANAdHd HHL 40 NOLLVZILAYOSIA HH.L ONIAIOAV ¥ H4LdVHO

oy

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 41

chosen techniques. The average ranks for each technique over 17 datasets are calcu-
lated and the technique with the lowest rank across both the approaches is considered

as the best technique.

Results: Random forest technique has the best performance across both dis-
cretized and regression-based defect classifiers. The ranks for each technique are
listed in Table 4.3. Random forest techniques have the best performance across both
discretized (i.e., average rank is 1.17) and regression-based defect classifiers (i.e., aver-
age rank is 1.52). This is compatible with the findings of prior studies that suggest that
a random forest classifier outperforms other learners for building discretized defect
classifiers (Ghotra et al., 2015; Lessmann et al., 2008). More specifically, the random
forest family performs the best in 14 out of 17 studied datasets for regression-based
defect classification and in 11 out of 17 studied dataset for discretized defect classifi-
cation.

The next best technique is K-Nearest Neighbor family which has an average rank
of 2.52 for both the regression-based and discretized defect classifier, followed by the
Statical classifiers (i.e., Linear and Logistic regressions) which have an average rank of
3.12 for discretized defect classifier and 1.82 for the regression-based defect classifier.

We also report the average AUC for each technique on the studied datasets in
Table 4.3. We find that random forest family has an average AUC of 0.78 across both
discretized and regression-based defect classifiers, which is the highest among all
considered techniques. The average AUC for linear and logistic regression is 0.73 for
regression-based defect classifiers and 0.76 for discretized defect classifiers, which is

followed by the KNN family at 0.74 for both types of classifiers.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 42

Random forest techniques perform the best across both discretized and regression-

based defect classifiers. Hence, we primarily focus our analysis in the following

sections on random forest techniques.

4.4 Case Study Results

4.4.1 RQIl. How well do regression-based classifiers perform?

Motivation: Both regression-based and discretized classifiers can identify defect-
prone modules. Prior research in software engineering has primarily used discretized
classifiers for identifying defect-prone modules. However the discretization that is
performed by discretized classifiers leads to information loss. Hence, regression-
based classifiers might be a viable option that could help us avoid the discretization
of the dependent feature. In this research question, we investigate the performance of
regression-based defect classifiers.

Approach: To answer this research question, we construct discretized and
regression-based classifiers on the 17 studied datasets. Based on our observations
in Section 4.3, we use random forest classifiers since they outperform other types of
machine learning techniques.

We then compare the performance of the discretized random forest classifiers
(DRFC) and regression-based random forest classifiers (RBRFC) using the AUC values.
To measure the differences between the two types of classifiers, we use a Wilcoxon
signed-rank test (Wilcoxon, 1945) since it does not need the data to follow a normal
distribution and it tests paired results. To quantify the magnitude of the performance

differences between DRFC and RBRFC, we use Cohen’s d effect size test (Cohen, 1988).

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY

USING REGRESSION-BASED CLASSIFIERS 43
O B Defective ratio <= 15
'a:" 1.3 -| B Defective ratio > 35
m o
o 8
&L) 1.2 + [
x 8 E -E— °
&) 5N L 8
-46 1.1 . ° .ﬁ_ . . '
: . Bimy ET
210y e mm
5 S mm oWy - - T -
- ° mu S o ¥ ° 4
2094 ¢ = : L]
© ! 0
o -
I I I I] I I I I I I I I I I I I
¥ N A ®»®m c 0O o +H 1 N O WS o W;n Y
£ 5788897857999 %27% ¢
o ©O o o o L LoL
= = 9 = = v O = = % % 8 S o 9
- 22 Egg oo
© ©C © X X Q
w W w O 3 <

Figure 4.4: Ratio of AUC of discretized/regression-based random forest classifiers
across different datasets. The datasets are ordered based on their defective ratio from
low to high.

The threshold for analyzing the magnitude is as follows: |d| < 0.2 means magnitude is
negligible, |d| < 0.5 means small, |d| < 0.8 means medium and |d| > 0.8 means large.
Results: In contrast to prior studies, building a defect classifier using discretized
defect counts does not usually lead to better performance. The comparison of DRFC
and RBRFC of all datasets are provided in Table 4.4. Overall, the Wilcoxon signed-rank
test results show that the differences between DRFC and RBRFC are significant on all
datasets. Cohen’s d results show that the performance differences between DRFC and
RBRFC are not negligible among 14 datasets (82%). More specifically, on 7 out of these
14 datasets, DRFC outperforms RBRFC; while, in contradiction to the intuition, RBRFC

outperforms DRFC on another 7 datasets.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY

USING REGRESSION-BASED CLASSIFIERS

44

Table 4.4: Performance comparison of discretized and regression-based ran-

dom forest classifiers.

Project Avg. AUC of Avg. AUC of p-Value Cohen’s DR(%)
DRFC RBRFC d
Prop-4 0.72 0.77 0 427(@ML) 96
Prop-2 0.81 0.84 0 432((@L) 105
Eclipse-2.1 | 0.77 0.78 0 046(S 10.8
Prop-3 0.69 0.72 0 267(L) 11.5
Mylyn 0.68 0.74 0 245(@IL) 13.2
PDE 0.71 0.71 0 0.12(N) 14.0
Eclipse-2.0 | 0.84 0.84 0 022(5 145
Eclipse-3.0 | 0.80 0.80 0.04 -0.03(N) 14.8
Prop-1 0.77 0.79 0 293(L) 14.8
Prop-5 0.70 0.73 0 297(@L) 153
Camel-1.2 | 0.64 0.63 0 -039(S) 355
Xalan-2.6 0.84 0.82 0 -096(L) 46.4
Xalan-2.5 0.76 0.75 0 -039(S) 482
Lucene 2.4 | 0.77 0.77 0 -0.16(N) 59.7
Poi 3.0 0.89 0.82 0 -242(L) 63.6
Poi 2.5 0.89 0.85 0 -146(L) 64.4
Xerces 1.4 | 0.96 0.91 0 -243(@L) 743

L- Large, S- Small, N- Negligible, DR - Defective Ratio

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 45

Regression-based random forest classifiers outperform discretized random for-
est classifiers when the defective ratio of the dataset data is less than 15% and this
trend is reversed when the defective ratio is greater than 35%. To understand how
the performance varies among different datasets, we plot the ratio of AUCs of DRFC
and RBRFC on the y-axis of Figure 4.4 and we sort the datasets from low defective ratio
to high defective ratio on the x-axis. We observe a consistent trend of RBRFC outper-
forming DRFC for datasets with a low defective ratio (< 15%) and DRFC outperforms
RBRFCwhen the defective ratio is greater than 35%. It should also be noted that though
the difference in average AUC is only a few percentage points, it is statistically signifi-
cant as highlighted in Table 4.4, hence the impact on actual prediction practice will be
significant.

One possible reason for DRFC having poorer performance than RBRFC on datasets
with low defective ratios is that discretized random forest classifiers are known to
be impacted by the imbalance in the dataset (Chen et al., 2004). It is the fact in our
case, our findings are suggestive of the fact that, these imbalanced datasets can be
better handled by using a regression-based random forest defect classifier in lieu of
the traditionally-used discretized classifiers.

The trend of discretized classifiers outperforming regression-based defect clas-
sifiers is unique to random forest classifiers. No similar trend is observed for other
types of classifiers(e.g., LogReg, LinReg, and KNN). When using other types of classi-
fiers, the discretized classifiers either outperform or perform as good as the regression-
based classifiers. For example, Figure 4.5 shows the ratio of AUCs between discretized
and regression-based statistical classifiers. We observe that the medians of the ratios

are all above the dashed line which indicates that discretized logistic classifiers always

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS

46

9 B Defective ratio <= 15 °

X 1.3 -{ B Defective ratio > 35 3_ 9

= oo

I |

> i E 8

O 1.2 2 b

DC:T) o E o o E j-_

— 1.1 - ; o 8 2 L5 H -

O g s _°'_ = . _o'_ - I I I : .
- ° — ' , : ' ' :

(:)) = iE- =, . .!. e

Q1.0 -y R R T e
o o - o } - ' o '

Y— e ' ! ' '

o ° : - .

g 09 1 -E_ ‘!V [}

% : ° e
I E— I E— I E— I E— I E— —
TN A ®E QOO dwN O, Y owY
229235 T2 TTYTET
- T 2ottt Egggt o

o S O S X X 8 ©
LLl w w | x

Figure 4.5: Ratio of AUC of discretized/regression-based defect statistical classifiers
across different datasets. The datasets are ordered based on their defective ratio from
low to high.

outperform or perform equally with regression-based linear classifier. More detailed
results are available in Table 4.3.

In summary, the common intuition of building a classifier using discretized defect
counts is not always correct. To achieve high performance and enhance quality as-
surance efforts, we advise the use of RBRFC instead of its discretized alternative on
datasets with a low defective ratio (i.e., less than 15%) and the use of DRFC on datasets
with a high defective ratio. For datasets with a defective ratio between 15% and 35%,
we cannot provide suggestions on which classifier to use, since we do not have datasets
in that range of defective ratio. To alleviate this problem, we revisit this point in Sec-

tion 4.5 where we simulate datasets with different defective ratios.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 47

In constrast to the common practice, building a defect classifier using discretized
defect counts does not always lead to better performance. Regression-based ran-
dom forest classifiers outperform discretized random forest classifiers when the de-
fective ratio of the datasetis low (< 15%) and the pattern reverses when the defective

ratio is high (> 35%).

4.4.2 RQ2. Are discretized and regression-based classifiers influ-

enced by the same set of features?

Motivation: Prior studies use defect classifiers to understand the impact that vari-
ous features (e.g., software metrics) have on the likelihood of a module containing a
defect (Cataldo et al., 2009; McIntosh et al., 2014; Mockus, 2010). Understanding the
most influential features helps practitioners identify process improvement plans and
act on them quickly so that the defects could be avoided in future version of a software
systems. In this Chapter, we propose a new approach to build defect classifiers (i.e.,
regression-based classifiers). In RQ1, we find that such an approach might lead to bet-
ter performing classifiers than the traditionally used approach for building classifiers
(i.e., discretized classifiers). Hence, in this RQ we wish to examine if these different
approaches to build classifiers might produce conflicting information about the most
influential features that impact the quality of a software module.

Approach: Similar to previous research question, we focus on exploring this RQ
with DRFC and RBRFC. However, we will provide insights about the other machine
learning techniques whenever appropriate. We follow the approach in Figure 4.1. We
build DRFC and RBRFC on the 17 studied datasets as in RQ1. But instead of gener-

ating the AUC values of the classifiers, we compute the feature importance ranks for

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 48

Rank shifts generated with default feature importance

1.0
B Rankl
B Rank2
@ Rank3
0.8 —
0.6 —
] —
=
e
%)
0.4 —
0.2
0.0 — =
¥ Q¢ o4 ® £ © 9o 9 o »w N © 1 ¥ o o ¥
2 2 9 2 5 a ¢ P 2 2 7 99T ¢ ¥ 7
o o o s o 1 L L
° 2 5 g = 5 8 &§ £ T 55 25 5 &
- s g+ & £ g § § & & 9
© o © X X Q
L LW O 3 X

Figure 4.6: Rank Shifts Between DRFC and RBRFC in terms of permutation feature im-
portance across the datasets ordered by defective ratio of the dataset. The mean values
of rank shifts are marked with dashed lines.

each feature in each dataset to understand the importance of each feature on identify-
ing the defect-proneness of modules. We first use a permutation importance method
for generating feature importance scores for both DRFC and RBRFC as outlined in sec-
tion 4.2. Once the feature importance scores are generated, we rank features using the
Scott-Knott ESD test (Tantithamthavorn et al., 2017). We then compare the computed
feature importance ranks of DRFC and RBRFC.

To estimate the impact of DRFC and RBRFC on model interpretation, we compute
the shifts in the ranks of the features that appear in the top three ranks for both the
DRFC and RBRFC classifiers on each dataset. We define rank shift as the amount that

a feature shifts its rank between the two classifier in relation to the total number of

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 49

features in the dataset. Suppose DRF C(k)={var,var,,...,var,} and RBRFC(k)=
{var,var,,...,var,,} are the features thatappearatrank k of DRFC and RBRF C. Let
PN be the number of features in the given dataset under consideration. We compute
the Shi fts(k) of a features on rank k between two classifier for a given dataset using

the equation 4.1.

Shifts(k)=(>, |k—Rankpsprc(var)]

vareDRF C(k)

+ Z |k—Rankpgrc(var)|)/PN
vareRBRF C(k)

4.1)

In Equation 4.1, Rankgrgrrc(var) denotes that rank of var from RBRFC and
Rankprpc(var) denotes the rank of var from DRFC. For example, if the Rank 1
features in the RBRFC are RBRFC(1) = {cbo,loc} (i.e., Coupling Between Objects
and Lines Of Code), Rank 1 features for DRFC is DRFC(1)={loc}, Rankprrc(cbo)
is 2 and NP is 13 for the dataset, we then compute the Shifts(1) between both
classifiers as 1/13 = 0.076, since only the feature c bo has different ranks across both
classifiers. We compute the feature importance shifts for all datasets in a similar
fashion. These rank shifts capture the difference in the influential features across the
two approaches to build classifiers.

Results: Rank 1 features do not vary significantly between the DRFC and RBRFC
classifiers, however the influential features vary significantly at the lower ranks. Fig-
ure 4.6 shows the rank differences between he DRFC and RBRFC classifiers. The DRFC
and RBRFC classifiers have exactly the same rank 1 features in 12 out of the 17 datasets
(80%). The features at rank 2 and 3 vary drastically since only 8 (47%) and 5 (29%)
datasets have the same features at rank 2 and 3, respectively. In terms of rank shift,

we observe that the shift between features in rank 1 (i.e., average shift is 0.04) is small

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 50

Table 4.5: Rank shifts between discretized and regression-based classifiers on various
techniques.

Technique Rank | Average Shifts | Variance
Rank 1 0.04 0.004
Random forest Rank 2 0.07 0.007
Rank 3 0.16 0.03
Rank 1 0.11 0.22
Statistical Rank 2 0.07 0.005
Rank 3 0.22 0.039
Rank 1 0.01 0.001
KNN Rank 2 0.02 0.002
Rank 3 0.07 0.008

and the feature importance varies slightly at rank 2 (i.e., average shift is 0.07). But from
rank 3 (i.e., 0.16), the shifts start becoming drastic (see the dashed horizontal lines that
represent the average shift in each rank between the features in Figure 4.6). We also
performed a paired Wilcoxon signed-rank test between the observed shifts and ideal
no shift case in which each shifts value is 0 for all datasets. The results show that the
shifts at rank 1 are not statistically significant (p-value > 0.05) and shifts at rank 2 and
3 are significant.

We also investigate the rank shifts between discretized and regression-based clas-
sifiers when using techniques other than random forest. We present the findings of
statistical and KNN classifiers in Table 4.5 as they are the next best techniques after
random forests in terms of performance. We find that KNN classifiers exhibit a similar
pattern as the random forest classifiers. The feature importance of Rank 1 features does
not vary significantly, nevertheless the feature importances start to vary significantly
from Rank 2. However, when using statistical classifiers the importance of features

shift significantly even at Rank 1.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 51

In summary, although the rank shifts of features appear to be technique depen-
dent, random forest has the most stable ranks for its features across both approaches
for building defect classifiers. Nevertheless, we recommend that computed feature im-
portance ranks of the best performing classifier should be used instead of relying solely
on the computed feature importance ranks results that are produced by the discretized
classifiers (since such classifiers might fail to accurately capture the studied datasets
as observed in RQ1)

~ a

The importance of Rankl features does not vary significantly between discretized

and regression-based random forest classifiers. However, lower ranked features
vary considerably between types of classifiers. Thus, we suggest practitioners to
employ caution on the feature importance variation and use the classifiers with su-

perior performance for model interpretation.

4.5 Discussion

4.5.1 Howdoes the performance of discretized and regression-based

random forest classifiers vary across different defective ratio?

In RQ1, we observe that the RBRFC outperforms DRFC on data with defective ratio
larger than 35% and the observations reverse on the data with defective ratio less than
15%. However, we have no idea how the performance of DRFCs and RBRFCs varies
on the data with defective ratio between 15% and 35%. In addition, recent studies
typically rebalance the dataset before building a classifier (Tantithamthavorn et al.,
2018a). Such resampled datasets might have a defective ratio between 15% and 35%.

To fill this gap and better understand the relation between the defective ratio and the

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 52

performance difference between both approaches for building defect classifiers, we
generate datasets with defective ratio ranging from 5% to 50% with 5% interval by re-
sampling the studied datasets with replacement (i.e. while keeping the data size fixed).
We do this by repeatedly and randomly sampling the datasets with replacement un-
til the datasets have the required defective ratio for our simulation study. Once the
datasets at all defective ratios are generated, we followed the experiment setup of RQ1
and analyzed the performance of the generated DRFC and RBRFC on various defective
ratios.

We find that as the datasets defective ratio increases the DRFC classifiers start to
outperform the RBRFC classifiers. Table 4.6 shows the spearman correlation (p) be-
tweentheratioof AUCofDRFC(dataset)/AUCofRBRFC(dataset)andthede-
fective ratio of each dataset. For most datasets (94% — 16 out of 17 datasets), there is
indeed a positive and strong correlation (i.e., > 0.5) between the defective ratio and the
ratio of the AUC in 16 out of 17 datasets.

For example, we show how the DRFC outperforms RBRFC as the defective ratio of
the dataset increases using the “Prop-5” dataset in Figure 4.7. After the defective ratio
crosses 40%, the DRFC classifier outperforms the RBRFC classifier. This study of vari-
ation in performance of AUC between DRFC and RBRFC reaffirms our findings in the
RQ1 that RBRFC classifiers perform better for datasets with low defective ratio whereas
the DREFC classifiers perform better as the defective ratio of the dataset increases.

Also, we find that the specific point where DRFC classifiers start outperforming
RBREFC classifiers is dataset specific. But as a general rule of thumb, DRFC classifiers

outperform RBRFC classifiers as the defective ratio in the dataset increases. Finally, for

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY

USING REGRESSION-BASED CLASSIFIERS

53

1.05

Ratio of AUC of DRFC/RBRFC

0.85 0.95

Defective ratio

I I I I I I I I I
10 15 20 25 30 35 40 45 50

Figure 4.7: Boxplot of the ratio between AUC of DRFC/ AUC of RBRFC on Prop-5

dataset.

Table 4.6: Correlation between defective ratio and ratio of AUC of DRFC/RBRFC.

Dataset Correlation | Dataset Correlation
Eclipse-2.0 | 0.90 Eclipse-2.1 | 0.81
Eclipse-3.0 | 0.84 Camel-1.2 | 0.89

Mylyn 0.79 Pde 0.78

Prop-1 0.90 Prop-2 0.88

Prop-3 0.92 Prop-4 0.91

Prop-5 0.95 Xalan-2.5 0.39
Xalan-2.6 0.86 Lucene-2.4 | 0.51

Poi-2.5 0.78 Poi-3.0 0.56
Xerces-1.4 | 0.54

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 54

datasets with defective ratio between 15% and 35% we suggest practitioners to try both

DRFC and RBRFC and use the classifier with superior performance.

4.5.2 Does the R? regression fit score impact the performance of

regression-based classifiers?

The R? regression score explains the variability in the data that is captured by the

regression model. Prior studies consider that higher R? is usually associated with
better performance and more accurate model interpretation (Nagappan et al., 2006).
But as we are using the regression-based classifier for the purposes of classification
(regression-based classifier), we find that this assumption no longer holds.

Low R? scores for the regression model does not imply that a regression-based
classifier will have a low AUC. There is no correlation between R? and a classifier’s
predictive power (i.e., AUC). Alow R? score does not indicate poor classification perfor-
mance. Table 4.7 presents the values of AUC, R? and the correlation between the AUC
and R? of the RBRFC classifier. Overall, the average AUC across all dataset is good (i.e.,
0.78), while the average R? is poor (i.e., 0.19). We find that in most of the datasets (88%),
the correlation between AUC and R? is considered weak (i.e., less than 0.4) (Boslaugh
and Watters, 2008). Only two datasets, the correlation between AUC and R? is con-
sidered as moderate (Boslaugh and Watters, 2008). For example, the RBRFC classifier
achieves a high AUC 0.84 on Prop-2, while its R? is only 0.12 and the correlation be-
tween the AUC and the R? is 0.17.

Therefore, future studies should use the classification performance measures,
instead of regression performance measures when assessing the viability of using

a regression-based classifier. From Table 4.7 we observe a higher AUC even when

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 55

Table 4.7: Correlation between AUC and R? for the RBRFEC classifiers.

Cor- Cor-

Avg. Avg.

Dataset rela- R Dataset rela- R
tion tion

Eclipse-2.0 | 0.14 0.29 | Eclipse-2.1 0.33 0.19
Eclipse-3.0 | 0.19 0.31 | Camel-1.2 0.32 0.04

Mylyn 0.28 0.05 | Pde 0.21 0.02
Prop-1 0.08 0.05 | Prop-2 0.17 0.12
Prop-3 0.21 -0.05 | Prop-4 0.18 0.11
Prop-5 0.21 0.10 | Xalan-2.5 0.41 0.16
Xalan-2.6 0.45 0.34 | Lucene-2.4 | 0.13 0.33
Poi-2.5 0.37 0.41 | Poi-3.0 0.11 0.32

Xerces-1.4 0.07 0.44

the regression model that was used to construct a regression-based classifier has a
low R? score. We argue that such a result is because classification is an inherently
simpler problem than regression. In other words, a regression model has to predict
the number of defects as closely as possible. Whereas for the same regression model to
function as a classifier, the regression-based classifier only has to distinguish enough

between the two “Defective” and “Non-Defective” classes.

4.5.3 Permutation feature importance vs. Default feature impor-

tance?

In RQ2, we propose permutation feature importance method as the method of choice
for generating feature importance scores. However, researchers primality use the de-
fault feature importance method (i.e., the CS method) that comes along with the im-

plementation of their classifiers. We examine here whether our findings for RQ2 would

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 56

hold when the default feature importance method is used. We use random forest clas-
sifiers for our investigation here. However, the observations hold for all the studied
family of classifiers.

Figure 4.6 and Figure 4.8 show the rank shifts between permutation and default
feature importance methods. We observe that the rank shifts of Rank 1 between DRFC
and RBRFC are low (i.e., average shift is 0.11) with default feature importance method.
However, compared with the rank shifts from permutation feature importance method
as shown in Figure 4.6, the default feature importance has a higher average rank shift
at rank 1. We also conduct the Wilcoxon signed-rank test and it suggests that the fea-
ture importances that are computed with default method vary significantly from rank
1. The findings that are observed from permutation and default feature importance

methods are still hold from rank 2, although the findings are different in rank 1.

4.6 Threats to Validity

We discuss the threats to the validity of our study.

Construct Validity. Threats to construct validity relates to the suitability of our
evaluation measures. We have used AUC to evaluate the performance of defect classi-
fiers in our study. While we have explained our reasons for choosing this metric, other
evaluation measures may lead different conclusions. However, AUC is a well-known
metric to evaluate classification models and also widely used in prior studies (Less-
mann et al., 2008; Tantithamthavorn et al., 2017). Furthermore, AUC is a threshold
insensitive metric (Lessmann et al., 2008) and therefore AUC allows us to derive results

that generalize over all potential thresholds. We have also performed statistical tests

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 57

Rank shifts generated with default feature importance

1.0
B Rankl
B Rank2
@ Rank3
0.8 —
0.6 —
(]
=
ey
n
0.4 —

Prop-3

Prop

Prop-5
Poi-3.0
Poi-2.5

Xalan-2.6
Xalan-2.5

N
T
T
£
@
o

Eclipse-2.1
Eclipse-2.0
Eclipse-3.0
Lucene-2.4
Xerces-1.4

Figure 4.8: Rank Shifts Between DRFC and RBRFC in terms of default feature impor-
tance across the datasets. The mean values of rank shifts are marked with dashed lines.

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 58

and effect size tests to check if the performance differences between different classi-
fiers are significant and substantial.

In this study we did not optimize the hyper-parameters for studied classifiers ex-
cept neural networks and CART, as most of the studied classifiers do not get a signifi-
cant performance boost with parameter optimization (Tantithamthavorn et al., 2017).
However, to reduce this threats, future studies should examine the impact of optimized
parameters on our findings.

Similarly, some prior studies rebalance the datasets so that the “Defective” and the
“Non-Defective” classes are similarly represented in the training data using various
class rebalancing techniques (Tantithamthavorn et al., 2018a). However, we do not in-
vestigate the impact of using regression-based classifiers on such a rebalanced dataset.
We do not do so as Tantithamthavorn et al. (2018a) showed that rebalancing the dataset
impacts the computed feature importance ranks. Since we wanted to observe how
the regression-based classifiers impact both the performance and feature importance
ranks, we consider the studied datasets as is. However, we think that it would be fruit-
ful for the future work to investigate how well the regression-based classifiers perform
when compared to discretized classifiers on artificially rebalanced datasets.

In our study we use Cohen’s d effect size test, which is a parametric test that as-
sumes the groups it tests to be normally distributed. However, we do not ensure if the
obtained performance scores are normally distributed before using the Cohen’s d ef-
fect size test. We acknowledge that this is a threat and future studies should revisit our
findings by using a non-parametric effect size test.

Internal Validity. Prior work shows that incorrect data influences the conclusions

drawn from software defect classifiers and potentially biases the results (Ghotra et al.,

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 59

2015). Even though we tried to control the purity of datasets by imposing conditions on
data collection, we cannot ensure that our datasets are correct. To reduce the internal
validity, future studies should investigate the correctness of the data further.

External Validity. Threats to external validity relate to the generalizability of our
results. In this study, we study 17 datasets and our results may not generalize to other
datasets. However, the goal of this Chapter is not to show a result that generalizes to all
datasets, but rather to show that there are datasets where regression-based classifiers
would outperform the commonly used discretized classifiers. Nonetheless, additional

replication studies may prove fruitful.

4.7 Chapter Summary

Defect classifiers are extensively used in software analytics. Traditionally, software de-
fect classifiers are built by discretizing the continuous defect counts of modules into
“Defective” and “Non-Defective” classes. However the discretization of continuous
features leads to a considerable loss of information. To avoid such information loss,
we consider a regression-based classifiers which uses the continuous defect counts as
the target feature for identifying defect-prone modules.

In this Chapter, we compare discretized and regression-based defect classifiers by
applying six machine learning techniques on 17 open datasets from Tera-PROMISE.
We observe that in contrast to current practices in our field, the discretization of the de-
pendent feature could be avoided in some cases (especially when the defective ratio is
<15%). We make such an assertion as we find that building classifiers using discretized
defect counts does not always lead to better performance. Hence future studies should

explore both approaches for building classifiers — Given the simplicity of building both

CHAPTER 4. AVOIDING THE DISCRETIZATION OF THE DEPENDENT FEATURE BY
USING REGRESSION-BASED CLASSIFIERS 60

types of classifiers, we believe that our suggestion is a rather simple and low-cost sug-
gestion to follow. Moreover, the most influential features vary between the different
approaches to build classifiers. Hence future studies should examine the influential
factors using the best performing classifier (i.e., discretized or regression-based) in-

stead of simply using discretized classifiers.

CHAPTER 5

Mitigating the Impact of Discretizing the Dependent Feature

Researchers usually discretize a continuous dependent feature into two target classes by intro-
ducing an artificial discretization threshold (e.g., median). However, such discretization may
introduce noise (i.e., discretization noise) due to ambiguous class loyalty of data points that
are close to the artificial threshold. Previous studies do not provide a clear directive on the im-
pact of discretization noise on the classifiers and how to mitigate the impact of such noise. In
this Chapter, we propose a framework to help researchers and practitioners systematically es-
timate and mitigate the impact of discretization noise on classifiers in terms of its impact on
various performance measures and the interpretation of classifiers. Through a case study of
7 software analytics datasets, we find that: 1) discretization noise affects the different perfor-
mance measures of a classifier differently for different datasets; 2) Though the interpretation of
the classifiers are impacted by the discretization noise on the whole, the top 3 most important
features are not affected by the discretization noise. Therefore, we suggest that practitioners
and researchers use our framework to understand the impact of discretization noise on the
performance of their built classifiers and estimate the exact amount of discretization noise to
be discarded from the dataset to avoid the negative impact of such noise.

An earlier version of this chapter is published in the Transaction on Software Engineering Journal
(TSE) (Rajbahadur et al., 2019).

61

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 62

5.1 Introduction

ACHINE learning classifiers are widely used throughout software ana-
lytics studies. Some of the most common uses of classifiers include
predicting defects (Ghotra et al., 2015; Krishna et al., 2017; Nam et al.,

2018), bug-fix times (Jiang et al., 2013), understanding the features that impact the de-
fect proneness of a software system (Cataldo et al., 2009; McIntosh et al., 2014; Mockus,
2010; Menzies et al., 2007b).

Usually, classifiers are trained on labeled data points and are used to predict the
target class of the unlabeled data points. In the absence of pre-defined class labels
and the availability of only the continuous dependent feature, researchers usually dis-
cretize the continuous dependent feature into artificial target classes. Such discretiza-
tion might be based on domain knowledge (Guo et al., 2010), a phenomenon that the
study wishes to observe (Jiang et al., 2013), or in many cases when there are no imposed
target classes, an artificial discretization threshold is used to discretize the target fea-
ture into binary (or n-ary) classes (de Almeida et al., 1998; El-Emam et al., 2001; Tian
et al., 2015; Wang et al., 2018).

However a plethora of prior studies note that the discretization of the continuous
dependent feature could be detrimental to the performance of classifier and may pro-
duce misleading results (Cohen, 1983; Dawson and Weiss, 2012; Royston et al., 2006;
DeCoster et al., 2009). One alternative approach to avoid such discretization noise
would be to train regression models on the continuous dependent feature and then
discretize the predicted outcome afterwards as we outline in Chapter 4. But as we ob-
serve in Chapter 4, only when there is a significant class imbalance in the dataset, clas-

sification through regression would yield better results. Therefore, the discretization

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 63

of continuous dependent feature with artificial discretization thresholds is still widely
practiced in software analytics as evidenced by (Guo et al., 2010; Gay et al., 2010; Jiang
et al., 2013; Schumann et al., 2009; Jalali et al., 2008; Wang et al., 2018; Tian et al., 2015;
Hassan et al., 2018). The impact of such discretization of the dependent feature needs
to be mitigated in cases where it cannot be avoided.

The other problem with such a discretization approach is that the data points that
are very close to the discretization threshold (e.g., median) get class labels that might
not be reflective of the true class to which they belong. While many previous studies
explore the harmful impacts of discretizing the continuous dependent features on the
performance of the classifiers (Cohen, 1983; Dawson and Weiss, 2012; Royston et al.,
2006; DeCoster et al., 2009), the problem of data points with ambiguous class labels
and its impact on the classifiers is completely unexplored. For instance, consider the
example of determining whether a bug was closed fast or slow. A domain-expert might
decide that any bug closed within a week is a “fast-closed” bug. However, such a dis-
cretization rule for the dependent feature would lead to noise for data points close
to that 7-days threshold. For instance, a bug that is closed within 7 days and 1 min
would be considered as a “slow-closed” bug. Such discretization introduces noise in
the data that is used for training the classifiers. We define such noise as the discretiza-
tion noise and the data points whose ambiguous class labels that generate the dis-
cretization noise as the noisy points.

In summary, the discretization of continuous dependent feature is both problem-
atic and generates discretization noise. However, the practice of discretizing the con-
tinuous dependent feature still remains a widely used practice in software analytics

without any consideration to the generated discretization noise.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 64

Therefore the main goal of our study is two-fold: first, to introduce awareness
among the software analytics researchers and practitioners about previously unex-
plored discretization noise. Second, we provide them with a framework - a systematic
and rigorous method for exploring the impact of discretization noise on their classifier
of choice for any given dataset.

We highlight the capability of our framework by conducting our study on four dif-
ferent types of software analytics datasets (Q&A websites data (4 websites), Linux patch
acceptance time data, bug-fix delay data, mobile app ratings data), as a binary classifi-
cation problem, where the discretization noise is caused by the discretization of a con-
tinuous dependent feature around artificial discretization thresholds. We applied our
proposed framework to four different families of classifiers (i.e., Random forest classi-
fier (RFCM), Logistic regression (LR), Classification and Regression Trees (CART), and
K-Nearest Neighbors (KNN)) to analyze the impact of discretization noise on the vari-
ous common performance measures (i.e., Accuracy, Precision, Recall, Brier score, AUC,
F-Measure, MCC). In addition, we also analyze the impact of discretization noise on
the interpretation of classifiers in terms of the computed feature importance ranks.

We highlight our findings and suggestions as follows:

1. The impact of discretization noise is inconsistent across multiple performance
measures for different datasets across all the studied classifiers. Though the im-
pact on Recall is the most pronounced (up to 139%), other performance measures -

Precision, Brier score, F-Measure, and MCC are also impacted at least up to 43.19%

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 65

due to the inclusion or exclusion of discretization noise (both positively and neg-
atively). Therefore, we urge the researchers and practitioners to use our frame-
work to analyze if (and how much) discretization noise exists and how to address

it.

2. Though the overall computed feature importance ranks are impacted by dis-
cretization noise, the importance ranks of the top three important features are
not affected. Therefore, in absence of any impact on the interpretation of the top x
features detected by our framework, one could include or discard the discretization
noise in their datasets as recommended by our framework. Especially without
being worried about the discretization noise’s impact on the interpretation of the

classifier.

Finally, we also provide the framework as an R package (and guidelines for using
our framework) to provide automated support to others who wish to revisit their prior
results or to consider discretization in the future studies.

Table 5.1: Details of datasets used in the study

Dataset #8Size #Features| R(dependent
feature)

Stack Overflow | 55,853 28 0-9,981.40 mins
Mathematics 70,336 27 0-30,073.72 mins
Ask Ubuntu 7,134 26 0-31,638.55 mins
Super User 10,776 27 0-51,376.33 mins
Patch 20,000 22 0-1,266.92 days
Bug-delay 2,434 23 | -1,319.06*-1,990.27 days
App-rating 7,365 22 1.41-4.97 stars

*The dependent feature has negative value since some developers
started fixing a bug before the bug was reported.
R(x) - Range(x)

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 66

5.2 Data Collection

In this study, we collect data based on two criteria: 1) the dependent feature is con-
tinuous; 2) the dependent feature lacks a clear-cut threshold for discretization. Based
on these two criteria, we collect 4 types of data (7 datasets): Q&A websites data (Wang
et al., 2018), Linux patch acceptance time (Patch) data (Jiang et al., 2013), Bug-fix
delay time (Bug-delay) data (Zhang et al., 2012), and Mobile app rating (App-rating)
data (Tian et al., 2015). Table 5.1 contains basic information about the number of data
points and the independent features of each of the studied datasets.

Q&A websites data: We reuse datasets from a prior study by Wang et al. (2018),
which investigated the features that potentially impact the needed time to receive an
accepted answer to a question on Q&A websites. The datasets, which were originally
collected from the Stack Exchange sites, are comprised of all of the questions that were
posted on Stack Overflow in the year 2015 and all the questions ever posted on Math-
ematics, Ask Ubuntu, and Super User until December 21st 2015. The datasets have
55,853, 70,336, 7,134, 10,776 data points for Stack Overflow, Mathematics, Ask Ubuntu,
and Super User, respectively. We use features that pertain to questions, answer, askers,
and answerers in the datasets as outlined by Wang et al. (2018). We treat the time that
it took for a question to get an accepted response as the dependent variable in our
study. We discretize this dependent variable at a chosen threshold into “fast” (class

1) and “slow” (class 2) to study how fast did a posted question get an accepted response.

Linux patch acceptance time (Patch) data: We use a dataset from a prior study
by Jiang et al. (2013). The dataset records the features that impact the acceptance time

of patches that are submitted to the Linux kernel’s source code. The dataset contains

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 67

251,418 data points. We use the patch acceptance time as our dependent variable,
which we discretized to “fast” (class 1) and “slow” (class 2) to study how fast did a

submitted patch was accepted.

Bug-fix delay time (Bug-delay) data: We use the dataset from a prior study by Zhang
et al. (2012). The dataset is obtained from the merging of the bug reports that are
available in the Bugzilla tracker for three open source projects Mylyn, Platform (run-
time provider of Eclipse), and PDE. The dataset contains 2,435 data points. We use
the DelayBeforeChange (DBC), the interval between the time when a bug is assigned
to a developer and the time when the developer starts to fix the bug, as the dependent
variable of interest in our study. We discretized the variable into “fast” (class 1) and

“slow” (class 2) classes.

Mobile app rating (App-rating) data: We use the dataset from a prior study by Tian
et al. (2015) on various features of 7,365 mobile apps spanning 30 categories. The
dataset was collected to understand the features of highly rated mobile apps. We
use the rating of the mobile apps as our dependent variable and discretize them into

highly rated apps (class 2) and apps with low rating (class 1).

Table 5.2: Estimated discretization threshold, limits and % of data points in the noisy area for the datasets considered

in the study.
MT CT RIT

Dataset Threshold | Noisy | Limit | Threshold | Noisy | Limit | Threshold | Noisy | Limit | g¢p size

area area area

(%) (%) (%)
SO 21.83 Mins 29 55 | 136.18 Mins 34 85 | 214.81 Mins 53 95 5
MA 30.28 Mins 41 70 | 154.48 Mins 38 85 | 502.98 Mins 44 95 5
AU 39.74 Mins 38 70 | 329.28 Mins 54 95 | 338.93 Mins 53 95 5
SU 30.14 Mins 31 60 | 193.06 Mins 62 95 | 262.53 Mins 56 95 5
PH 1.31 Days 10 30 0.06 Days 40 9.48 Days 22 60 5
BD 0.67 Days 6 50 0 Days * * | 47.29 Days 54 100 5
AR 4.03 Stars 43 7 3.86 Stars 50 10 3.74 Stars 63 15 0.5

*The automated noisy area estimation algorithm found no data points in the noisy area
MT- Median based discretization Threshold, CT- Univariate Clustering based discretization Threshold, RTT- CART based discretization threshold
Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User, PH- Patch, BD- Bug-delay, AR- App-rating

J4NIVdd

INHANHdId HH.L ONIZILAYOSIA 40 LOVAINT HH.L ONILVOILLIN S H41dVHO

89

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 69

5.3 Framework for Understanding the Impact of Dis-
cretization Noise

An overview of our framework for understanding the impact of discretization noise is

presented in Figure 5.1. The framework consists of six steps.

We detail the steps below (with more explanations where needed) with a running
example in Appendix A to better demonstrate the use of our framework.

The individual steps of our approach are explained in detail below.

5.3.1 Step 1: Correlation and Redundancy Analysis

We perform correlation and redundancy analysis on the independent features of a
studied dataset to remove correlated and redundant features from the dataset, thereby
not biasing our feature importance results (Tantithamthavorn and Hassan, 2018). We
perform correlation and redudancy analysis as we explain in Section 4.2.3. We do so in-
stead of using other common and state of the art dimensionality reduction techniques
like PCA, since, dimensionality reduction techniques like PCA combine and transform
the original features into principal components, which are no longer directly inter-
pretable. Finally, a recent MSR study by Ghotra et al. (2017) showed that correlation-
based feature selection is very robust for software analytics datasets. Though we use
and recommend correlation and redundancy analysis, our framework supports the use
of other methods. We do not pre-process the independent features of the dataset any
further in our study. However, practitioners can perform other data pre-processing

steps like imputation if required.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 70

Step 6: Inference validation } Step 4:

. Performance
""" . evaluation
Corrlelat_ion : Rienrr;ggreenmii)"sa;fea Performance Performanc|| !
anlaysis ! : L ‘ 1
Y : ! step_size until limit calculation ' : measures
v [Traini ——>! Classifier ! :
Redundancy | ; b
analysis Use the whole R !
: dataset
__________________ [Feature Featur
rrrrrrrrrr i ; importance | reaiure
] analysis importance
___It_'_r?_s_'_‘f)_l_d_____ Generate ,
_.Extremes [~ bootsirap Testng : Step 5:
. i| sample data : Featur
Noisy area : ” L _ Feature
' : Step 3: Classifier construction; importance
. Step 2: Discretization | {0 T ‘ calculation

Figure 5.1: Overview of our framework.

5.3.2 Step 2: Discretization

Threshold estimation: The primary objective of our framework is to understand and
mitigate the impact of discretization noise. We discretize the dependent feature with
respect to an artificial threshold (a.k.a a cutpoint) into two response classes: “class1”
and “class2”. We then assign the “class1” class label to all the data points with a de-
pendent feature that has a value that is less than or equal to the chosen discretiza-
tion threshold (e.g., median). The remaining data points are assigned the class label
“class2”.

The artificial threshold for such a discretization could be chosen in multiple ways.
The threshold could be domain specific and be defined by the experts (e.g., ideal
bug-fix time for a specific project as defined by the software engineers working on
the project). Alternatively, in the absence of such an established domain specific
discretization threshold, many of the prior studies have resorted to various heuristic,
intuitive and alternate thresholds for discretization (Altman and Royston, 2006;

de Almeida et al., 1998; El-Emam et al., 2001; Tian et al., 2015; Wang et al., 2018). But

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 71

irrespective of the choice of the discretization threshold, the data points close to the
discretization threshold produce discretization noise. Our framework analyzes the
impact of discretization noise generated by any such discretization threshold.

In this study, to demonstrate the generalizability and applicability of our frame-
work, we use three artificial discretization thresholds.
Median based discretization Threshold (MT): Many prior studies use median for dis-
cretizing the dependent feature into binary classes (de Almeida et al., 1998; El-Emam
etal., 2001) and it is often used in the absence of explicit domain knowledge about the
classes of a dependent feature (Altman and Royston, 2006).
Univariate Clustering based Threshold (CT): Univariate clustering is an automated
technique for discretization. Univariate clustering splits the dependent feature into
multiple groups in an optimal fashion. We use Wang and Song’s implementation
optimal k-means clustering in one dimension (ckmeans.1d.dp') here (Wang and Song,
2011). The ckmeans.1d.dp divides data in one dimension into k clusters so that the
sum of squares of within-cluster distances from each element to its corresponding
cluster mean is minimized (Wang and Song, 2011). We set k equal 2 since we wish to
divide the dependent feature into two classes.
CART based discretization Threshold (RTT): We use the regression tree approach as
described by Breiman (2017).? Here, we use the continuous dependent feature of our
dataset as both the independent and the target feature for the regression tree. We then
use the generated regression tree’s root node as the threshold for discretization since

we attempt to split the dependent feature into two classes.

https://cran.r-project.org/web/packages/Ckmeans.1d.dp/index.html
Zhttps://cran.r-project.org/web/packages/rpart/index.html

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 72

The generated discretization threshold is used for discretizing the continuous de-

pendent feature into binary classes.
Noisy area estimation: Once the dataset is discretized, we need to define the area of the
dataset which contains discretization noise as the noisy area. Domain experts could
determine a specific range of values around the discretization threshold to be noisy
and this could be used as the noisy area. But as we lack deep domain expertise of the
datasets considered in this study (which might be the case for many practitioners), we
present Algorithm 1: an automated algorithm for estimating the noisy area in a given
dataset.

We define the noisy area as the data points whose class loyalties are hard to dis-
cern due to their proximity to the artificial discretization threshold. Such a hypoth-
esis follows from the rationale of prior studies where the data points around the dis-
cretization threshold were discarded to provide better class separation in the training
data (Tian et al., 2015; Wang et al., 2018; Judd et al., 2009; Abdelwahab and Busso, 2015;
Abdelmoez et al., 2012). Algorithm 1 takes the dataset, cutpoint (i.e., the discretiza-
tion threshold), and step_size as input parameters. step_size controls the granularity
of the analysis (i.e., the size of the increment from the cut point) - a smaller value of
the step_size allows for a finer estimation of the noisy area, whereas a larger value pro-
vides a coarse estimation of the noisy area. The step_size used for all the datasets in
this study is given the Table 5.2.

Line 1 to 3 of the algorithm establishes the initial candidate noisy area, by selecting
the area around the cutpoint. More specifically, we consider the points within the area
cutpointxcutpoint=*100% as the candidate noisy area. We do so for two reasons:

1) most of the discretization noise would be concentrated around the discretization

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 73

threshold due to its proximity to the threshold. 2) if we consider more data, we might
not be able to ascertain if the impact of the noisy area on the performance and inter-
pretation of a classifier is due to discretization noise or the high volume of data that is
lost. Through line 4 to line 9 we incrementally subset the dataset into the quantum of
size given by cutpoint £cutpointxsetp_size and compute the non-linearity of
the quantum.

Non-linearity is one of the complexity measures defined by Ho and Basu (2002).
Non-linearity score attempts to quantify how hard it might be for a classifier to classify
the data points (please refer Section 6.5 and Table B.6 in the Appendix for more details
about complexity measures). Once we establish the non-linearity for all the quanta, we
take the quantum with the maximum non-linearity as the noisy area for our analysis
and the step_size that yielded the quantum as the /imit, which we use to demarcate
the noisy area. We use the maximum non-linearity to demarcate the noisy area as it
indicates the quantum with the highest data complexity (thereby harder for the classi-
fier). Figure 5.2 demonstrates how the limit value is used to demarcate the noisy area
in a dataset. We present the [imit thatis generated for demarcating the noisy area of
all the studied datasets for various discretization thresholds in Table 5.2.

Extremes estimation: Finally we establish the data points with the least discretization
noise as the extremes. These data points typically have high discriminative power as
they are the furthest away from the discretization threshold. Extremes are typically
the data points that are associated with the top and bottom x% of the sorted continu-
ous dependent feature. Prior studies usually consider the top and bottom x% as data

points that are devoid of noise and use them for constructing the classifier (Wangetal.,

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT

FEATURE 74
cutpoint
Bottom x% cutpoint- cutpoint+ Top X%
cutpoint*Limit cutpoint*Limit
| |
| | Data
1 1 (sorted
I I based on
: T the value
of the
! ! dependent
<> € >1€ > variable)
Extremes INoisy area |Noisy area ! Extremes
| |

Figure 5.2: Extremes and noisy area definitions of a dataset.

2018; Tian et al., 2015). We use x as 10% in this study. But the framework allows using

any value without any further change to the overall methodology.

5.3.3 Step 3: Classifier construction

To study the impact of discretization noise, we construct a classifier on the whole
dataset and on the dataset with the noisy area removed. One can choose any classifier
of their choice in this step. In our study, we consider the 6 classifiers considered
by Rajbahadur et al. (2017). From the 6 classifiers, we choose the classifiers that have a
default feature importance computation method as our framework studies the impact
of discretization noise on both the performance and feature importance. Therefore we
demonstrate the capability of our framework to analyze the impact of discretization
noise on random forest classifier (RFCM), Logistic Regression (LR), Classification and
Regression Tree (CART), and K-Nearest Neighbour (KNN). All of the chosen classifiers

are hyper parameter tuned to ensure the best and stable performance. We used the

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE

75

Algorithm 1: Automated noisy area estimation algorithm

e 0 N o

10

Input: dataset, cutpoint, step_size
Output: limit
Result: Estimates the noisy area in the data automatically by computing the
limit
lower_limit=cutpoint—cutpointx100%
upper_limit=cutpoint+cutpoint *100%
noisy_area=SUBSET(dataset,lower_limit,upper_limit)
while (cutpointtcutpointxstep_size)<upper_limit AND >
lower_limit)do
quanta=SUBSET(noisy_area, cutpoint—cutpoint *
Step_size,cutpoint+cutpointxstep_size)
nl_score=COMPUTE_NON_LINEARITY(quanta)
results[step_size]l=(nl_score)
Step_size+=step_size
end
limit=Indexof MAX(results)

method used by Tantithamthavorn et al. (2018b) to hyper-parameter tune all of our

classifiers.

Though we use the four aforementioned classifiers, one can use other classifiers

instead of these classifiers without any changes to the other steps in the framework.

5.3.4 Step 4: Performance evaluation

In this step, the desired classifier performance evaluation measures are chosen. In this

study, we observe and evaluate the performance of the constructed classifiers on Accu-

racy, Precision, Recall, Brier score, Area Under the receiver operator characteristic Curve

(AUC), F-measure, and Mathew’s Correlation Coefficient (MCC), since many prior stud-

ies studied the performance of classifiers using these measures (Zhang et al., 2014;

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 76

Boughorbel et al., 2017; Brier, 1950). We calculate these measures with “class 1” as
the relevant (positive) class.

Though we demonstrate our framework on the aforementioned performance mea-
sures, our framework allows users to use any performance evaluation measures (by

themselves or in combination with other measures).

5.3.5 Step 5: Feature importance calculation

We use the default feature importance calculation technique (i.e., the CS method) that
is associated with each of the studied classifiers to compute the feature importance for
each classifier. We use the feature importance computation method VarImp() of caret

package to compute the feature importance ranks of the studied classifiers.

5.3.6 Step 6: Inference validation

To ensure that the conclusions that we draw about our classifiers are statistically ro-
bust, as we do in Section 4.2.7 of Chapter 4, we use the 100 out-of-sample bootstrap
validation technique. We do so as Out-of-sample bootstrap yields an optimal balance
between the bias and variance as suggested in the recent study of Tantithamthavorn
etal. (2017).

The out-of-sample bootstrap process is repeated 100 times. After the bootstrap
validation, 100 performance measures and 100 lists of computed feature importance
ranks are generated. We carry out further analysis on these generated performance
measures and the computed feature importance ranks to investigate our research

questions.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 77

5.3.7 Framework deployment

We use our framework of 6 steps on any given dataset to analyze the impact of dis-
cretization noise (as demonstrated in Section 6.4) along with performance and inter-
pretation on the chosen classifier. Step 1 removes the correlation and redundancy
among the features in a dataset, while step 2 is pivotal for estimating the noisy area
and extremes for a chosen discretization threshold. Steps 3 to 6 are repeated by incre-
mentally discarding data points in increments of the step_size parameter (smaller
step_size enables finer analysis and vice versa) in the noisy area around the threshold
until all of the data points in the noisy area are discarded. Such an incremental analy-
sis helps the framework identify the impact of discretization noise and determine the
exact amount of data from the noisy area that needs to be discarded for a given dataset,
discretization threshold and classifier of choice. We also provide an R package® of our
framework to enable others and practitioners automated support to use our frame-

work with trivial effort.

5.4 Understanding the Impact of Discretization Noise on

the Performance and Interpretation of a Classifier

5.4.1 Studyingtheimpactofdiscretization noise on the performance

of a classifier

Motivation: It is intuitive to expect that discretization noise might impact the perfor-

mance of a classifier. Ferri et al. (2009) show that different performance measures are

Shttps://github.com/SAILResearch/suppmaterial-19-gopi-discretization_noise_impact

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 78

impacted differently by different types of noise in a dataset. Therefore, first, it is essen-
tial to establish if discretization noise impact the performance of a classifier like other
noises. Second, if the discretization noise does impact the performance of a classifier,
we need to analyze how the discretization noise in a dataset impact the performance
of a classifier (either positively/negatively) in different performance measures. Finally,
it is essential to establish how much data do we have to discard to avoid/mitigate the
impact of discretization noise (as opposed to using only the top and bottom x%).

In order to enable researchers and practitioners to perform such an analysis in a
generalizable fashion, we propose our framework. Our framework enables researchers
and practitioners to examine the impact of discretization noise on the performance of
various classifiers using a variety of software analytics datasets, across a multitude of

performance measures.

Approach: We employ our proposed framework (see Section 5.3) to perform an incre-
mental analysis as mentioned in Section 5.3.7 to estimate the impact of discretization
noise on the performance of a chosen classifier. We specifically draw attention to
the classifier construction (step 3) of the framework (see Figure 5.1). In order to
ascertain the performance impact of discretization noise on the classifiers, we train
the chosen classifier on data after excluding incremental amounts of discretization
noise. More specifically, we discard data points in windows which are defined as
cutpointxcutpoint=*x/100 and use the retained data as the training data to build
a classifier, where x varies from 0 to /imit in increments of step_size (as mentioned
in Step 2 of our framework (See Section 5.3.2)). The step_size can be different for

different datasets depending on the limit used to define the noise area for a particular

Table 5.3: Percentage of improvement in median performance of various classifiers with the noisy area removed
over classifiers with no data removed across various performance measures (The x value for which the performance
impact first occurs for the given measure is also provided).

ACC (%) PRC (%) RCL (%) BS (%) AUC (%) F-M (%) MCC (%)
Classifier | Dataset [Mag | x | Mag x Mag x Mag X Mag | x Mag x Mag x
SO | -0.65 | 50 5.07 | 15 -12.42 | 15 -8 5 0 0 -369 | 25 | -0.0547 | 55

MA 3.5 | 45 8.96 | 15 322 | 15 | -11.77 5| -1.23% | 70 | -11.61 | 20 -6.38 | 50

AU | -7.76 | 40 | 12.09 | 30 -99.02 | 25 -7.79 5 0 0| -43.19 | 25 | -18.64 | 45

RF SU | -0.53% 0 5.88 | 25 -20.4 | 20 -7.82 5 0% | 45 -7.59 | 30 0.36 0
PH | -1.64 | 10 1.36 | 25 -6.64 | 10 -2.04 5| -2.22 | 10 -2.62 | 10 -4.08 | 10

BD | 0.47% 0 0.72 0 0.75 0| -0.66" | 40 0% 0 0.748 0 1.81% 0

AR | -0.785 0| -4.23 3 13.17 2 -2.89 | 05 0 0 4.52 2 -2.93% 0

SO | -0.76" | 55 6.24 | 15 -20.81 | 20 -7.73 5 0S 0 -7.04 | 25 -0.83 0

MA | -1.78 | 15 | 1233 | 10 -46.87 | 10 | -12.02 5 of | 70 | -15.28 | 15 -2.59 | 25

AU | -5.54 | 50 | 11.47 | 30 | -139.29 | 25 | -10.42 | 10 | 1.56° 0| -59.78 | 25 -16.3 | 60

LR SU | -1.17 | 60 6.42 | 30 -48.2 | 20 -5.87 | 10 0 0| -18.92 | 20 -4.61 | 60
PH | -0.08% 0 223 | 15 -4.68 | 10 -2.59 5 0 0 -097 | 15 -1.28 | 20

BD -0.2 0 -0.39 0 1.63% 0| -0.78% | 40 0 0 0.98 0 -0.18 0

AR | -0.36% 0| -2.83 4 10.82 2 -8.03 | 05 0 0 3.95 2 0.44 0

SO 1.41 | 10 8.58 | 15 -16.77 | 20 | 2777 | 30 3.85 | 20 -3.42 | 35 5.36 | 15

MA | -1.67 | 10 | 11.26 | 20 -37.16 | 20 -6.54 | 60 0| 30 | -11.93 | 30 -1.27% | 10

AU | -0.56% 0 7.34 | 30 -40.49 | 30 -9.55 | 50 0| 50 | -15.97 | 40 2478 0

CART SU 1.46 | 20 6.93 | 25 -21.36 | 45 732 | 55 2.99 | 25 -7.05 | 50 9.52 | 20
PH | -1.12 | 10 1.76 | 25 -6.77 | 15 | -1.79% 0| -1.79 | 15 -2.45 | 10 -3.21 | 10

BD 1.28 0 1.335 0 0.67 0| -0.778 0 1.548 0 1.698 0 6.53% 0

AR 0.33 0| -1.06" | 65 9.92 | 35 | -3.62% 0 | 1.64% 0 435 | 35 3.79% 0

SO 2.64 | 10 6.02 | 10 -9.88 | 25 -3.72 5 4.29 5 -1.81 | 10 12.14 | 10

MA 155 | 10 | 10.45 | 10 -30.51 | 20 -6.74 5 4.29 | 10 -9.91 | 10 11.61 | 10

AU -0.15 0 412 | 50 -46.12 | 25 -452 | 10 | 1.75" | 55 | -21.44 | 30 4565 0

KNN SU 1.78 | 20 4.28 | 20 -19.06 | 30 -3.04 | 15 1.69 | 15 -7.01 | 40 17.31 | 20
PH | -1.13 | 20 -0.33 0 -4.09 | 15 -0.59 | 10 | -1.37 | 15 -2.18 | 15 -4.61 | 20

BD 0.77 0 0.86 0 0.44 0 | -0.228 0 1.85 0 0.67 0 17.43 0

AR 016 | 0 | -0.62% 0 11.54 2 -1.19 | 15 0 0 5.6 2 2.05 0

1. Performance Measures: ACC- Accuracy, PRC- Precision, RCL- Recall, BS- Brier Score, F-M- F-Measure
2. Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User, PH- Patch, BD- Bug-delay, AR- App-rating
3. Mag- Magnitude of the performance impact | x- % of data of the noisy area when dropped starts statistically impacting the given performance

measure
4. Cohen's d effect size: Negligible - No formatting, Small -5, Medium -#, Large - bold

5. '—‘indicates performance measure decreases due to removal of noisy area; '+‘ indicates performance measure increases due to removal of
noisy area

6. All the values with small, medium or large effect size are statistically significant with p <0.05
7.’—‘in cases of Brier score indicates an actual increase in the Brier score and "+ a decrease in Brier score (Lower the Brier score, the lesser the
error)

J4NIVdd

INHANHdId HH.L ONIZILAYOSIA 40 LOVAINT HH.L ONILVOILLIN S H41dVHO

6L

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 80

dataset. Table 5.2 presents the various limit and step _ size values used for different
datasets in our study. We perform this incremental analysis (see Fig B.1 of Appendix)
on all the studied datasets for the three different discretization thresholds (MT, CT,
and, RTT) considered in the study as given in Section 5.3.2 for all the four chosen
classifiers (RFCM, LR, CART, and, KNN).

To measure whether the performance of a chosen classifier is impacted by re-
moving data points in the noisy area (data containing discretization noise), we use a
Wilcoxon signed-rank test (Wilcoxon, 1945), since it is a non-parametric test without
any assumptions about the underlying distribution. Furthermore, to quantify the
magnitude of the performance differences between the performance of the classifier
with no data points removed and the classifier with data points in the noisy area
removed, we use Cohen’s d effect size test (Cohen, 1988). The threshold for analyzing
the magnitude is as follows: |d| < 0.2 means magnitude is negligible, |d| < 0.5 means
small, |d| < 0.8 means medium and |d| > 0.8 means large.

We perform these statistical tests between the performance measures of the clas-
sifier that is constructed on the whole data and the classifier constructed on each step
of the incremental analysis (where noisy points in the noisy area is incrementally re-
moved). We do so to estimate how much data needs to be discarded to observe a
statistically significant impact on the performance of a classifier. The x value (of the
cutpoint+cutpoint xx/100 used for discarding data in the noisy area) for which

different performance measures get significantly impacted is reported. If discarding

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 81

the whole of the noisy area does not create a statistically significant impact for a partic-
ular performance measure then 0 is reported instead of x to signify that the discretiza-
tion noise does not have a significant impact on that particular performance measure
for the studied classifier.

Results: The impact of discretization noise on the performance of different classi-
fiers varies across datasets. Similar performance impacts could be observed for the
discretization noise generated by all the discretization thresholds considered in the
study. Therefore, we only report the impact of discretization noise generated by the
median based discretization threshold (MT) on various performance measures for all
the four classifiers in Table 5.3 for brevity (See Table B.1 and Table B.2 of the appendix
for the performance impact due to other discretization thresholds on the studied clas-
sifiers).

Table 5.3 shows that the discretization noise impacts different classifiers differently.
For instance, in the case of both CART and KNN classifiers, for all the datasets except
for the patch dataset, the removal of discretization noise improves the performance in
terms of AUC. However, for the patch dataset removal of discretization noise negatively
impacts the AUC measure. For the same classifiers, even while the AUC and the Pre-
cision measures are positively impacted by the removal of discretization noise for (5/7
for CART and 6/7 for KNN), the Recall measure is negatively impacted for 5/7 datasets.
Similarly, for LR classifier, while we observe no large impact on the AUC, we could ob-
serve up to 139% impact on the Recall as we can observe from Table 5.3. Furthermore,
while the removal of discretization noise negatively impacts the accuracy of the RFCM

and LR classifier, for the Stack Overflow dataset, it positively impacts the accuracy of

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 82

the CART and KNN classifiers. Such a varied impact on the different performance mea-
sures for the different classifiers can be observed throughout (see Table 5.3). Therefore
we assert that different classifiers are impacted differently (either positively or neg-
atively) on the studied performance measures and datasets.

Additionally, in Table 5.3 we also provide the x, which tells us the percentage of
data from the noisy area, that when dropped, starts statistically impacting the given
performance measure. This value aids the users of our framework to know how much
data they need to discard in order to avoid the performance impact of the noise on a
particular performance measure for a studied classifier.

We find that the removal of discretization noise has both a positive and negative
impact on different performance measures for different classifiers. In addition, we
do not observe a generalizable trend in how the discretization noise affects different
performance measures. For instance, from Table 5.3, we see that the removal of the
noisy area from datasets negatively impacts the performance measures of an RFCM
for 6/7 datasets on Accuracy, Recall, Brier score, F-measure, 2/7 datasets on AUC, and
5/7 datasets on MCC, most of which in a statistically significant fashion with and a large
effect size. However, for 6/7 datasets, removal of noisy area positively impacts the Pre-
cision in a statistically significant fashion with a large effect size (in most cases). Fur-
thermore, while removal of noisy area negatively impacts the performance measures
for most datasets, it improves the Accuracy, Precision, Recall, F-Measure, and MCC for
the App-rating dataset in a statistically significant fashion with a large effect size. These
varied impacts of the discretization noise on the different performance measures high-
light the need for our frameworks to study the peculiarities of each case study as the

discretization noise affects the different performance measures differently

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 83

Finally, we also note that magnitude of the performance impact due to dis-
cretization noise varies for different performance measures. For instance, in all of
the classifiers, for most of the datasets, we could see that while Recall is impacted
heavily (up to 139% for LR in Ask Ubuntu), other performance measures even if
impacted significantly, are not at the same magnitude (e.g, only -5.54% for accuracy

in LR for Ask Ubuntu).

Discussion: We find that the magnitude of the impact of some performance mea-
sures is much greater than other performance measures. Also, from Table 5.3 we note
that for a given dataset and a classifier, some performance measures are impacted even
for small amounts of discretization noise (given by the x in the Table 5.3). Whereas,
some other performance measures are more resilient. For instance, in the case of the
Mathematics dataset for the RFCM classifier, discarding 15% of the data in the noisy
area significantly impacts both Precision and Recall with a large magnitude varying
from 8.96% to -32.2%. Whereas even with a drop of 70% data from the noisy area
the AUC gets impacted marginally by -1.23%, which indicates that some performance
measures are more resistant to discretization noise than others.

The different degrees to which different performance measures are impacted can
be attributed to the different nature of each performance measure and what they seek
to capture. For instance, Precision, Recall, and F-measure focus on capturing how
good a classifier performs in predicting one of the classes (Sokolova et al., 2006). There-
fore, a potential imbalance in the dataset caused by discarding different amounts of
datain the noisy area, even ifitis discretization noise (as such noisy points contain use-

ful information too), could impact these measures greatly. Furthermore, Flach (2003)

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 84

shows that these measures are easily impacted by class imbalance. These explain the
large impacts that we observe for the Precision, Recall, and F-measures (as opposed
to Accuracy which takes both the classes into consideration). Especially, with all of
our datasets having a skewed distribution of the dependent feature (average Skewness
of the dependent feature of all of the studied datasets is 12.99 and average Kurtosis
is 309.4). For example, let us consider the Ask Ubuntu dataset with MT as the dis-
cretization threshold. When the whole dataset is used (without any removal of data),
the number of data points belonging to each class are equal. However, discarding the
data in the noisy area according to Table 5.2 for MT induces a class imbalance in the
dataset. The number of data points belonging to “classl" only makes up 35% of the
dataset. Such class imbalance produced by discarding data induces a high degree of
impact on class-specific performance measures for the Ask Ubuntu dataset as shown
in Table 5.3.

However, the more balanced measures like AUC and MCC are more robust and in-
sensitive to class distributions (Lessmann et al., 2008). Therefore, AUC and MCC are
impacted much less severely by the discretization noise in the dataset. As we can ob-
serve from Table 5.3, the magnitude to which measures like AUC and MCC are im-
pacted is lesser than the class-specific measures like Precision, Recall, and F-measure.
For instance, while Recall is impacted by as much as 139%, AUC is impacted only by
at most 4.29% across all the datasets and classifiers. Even for the Ask Ubuntu dataset,
while the impact on class-specific performance measures is high, the AUC is seldom
impacted. A similar trend could be observed for MCC as they consider both false posi-
tives and false negatives, even though they are slightly more sensitive to the discretiza-

tion noise than AUC. As Huang and Ling (2005) and Mossman (1994) show balanced

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 85

measures like AUC are very stable and insensitive to noise hence even a small impactin
terms of magnitude (if the effect size is large) could be significant. Therefore though the
absolute magnitude of the impact is small for some performance measures like AUC
and Accuracy, the true nature of the impact needs to established by the practitioner.
Our framework seeks to provide a means for finding and measuring the impact. Fi-
nally, similar to other balanced measures we observe that the impact on Brier score is
moderate (within 13%) when compared to class-specific performance measures. Brier
score being an error metric calculates the mean squared difference between the actual
outcome and the assigned probability, which elucidates the distance between the clas-
sifier’s predictions and the actual classes in probability scale. Table 5.3 shows that Brier
score is universally negatively impacted for a RFCM (signifying an increase in Brier
score). Because, though the noisy points contain discretization noise, they also con-
tain useful information (see Section 6.5.1) and the removal of such information could
universally affect the predicted probability scores of classifiers, especially when they
are robust to noise (Folleco et al., 2008). However the Table B.1 and Table B.2 provided
in Appendix (for performance impact due to discretization noise that is generated by
CTT and RT) shows a varied but moderate impact (within 14%) for LR, CART and KNN,
which is similar to other balanced performance measures. In summary, unlike the
class-specific performance measures, balanced measures are impacted moderately
by the discretization noise.

To conclude, discretization noise impacts different performance measures differ-
ently for various datasets with varying magnitudes for different classifiers (0-139%) as
shown in Table 5.3. We also note that balanced performance evaluation measures

are more resilient to the discretization noise whereas class-specific performance

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 86

evaluation measures are greatly impacted by the discretization noise in the dataset.
Thus the inclusion of discretization noise in the construction of any chosen classifier
could be either beneficial or detrimental depending on the performance measure of
interest and the dataset at hand. Such unpredictability demonstrates the need for
our framework to better understand when it is advisable to remove the noisy points,
and how much of the data in the noisy area is to be removed to avoid impact on the

studied performance measure for a chosen classifier.

The impact of noisy discretization data points is inconsistent across multiple per-
formance measures for different datasets and different classifiers. Though the
impact on class-specific measures (Precision, Recall,F-measure) is the most pro-
nounced (up to 139%) other performance measures are also consistently impacted
at least up to 60% due to the inclusion or exclusion of discretization noise (both
positively and negatively). Hence, it is advisable to use our framework beforehand

to carefully understand if the noisy discretization data points are to be used or dis-

carded and how much of them needs to be discarded.

5.4.2 Studying the impact of discretization noise on the interpreta-

tion of a classifier

Motivation: Many prior studies use classifiers to understand the impact of features on
the dependent feature (McIntosh et al., 2016; Thongtanunam et al., 2016). From Sec-
tion 5.4.1, we observe that the data from the noisy area sometimes impacts the per-
formance of a classifier differently for different datasets. This could be because the

data in the noisy area contains useful information along with the discretization noise.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 87

Therefore removing/including such data may also lead to a misleading interpretation
of a classifier. Therefore, we seek to observe how the discretization noise impacts the
computed feature importance with our proposed framework to decide if such noisy
data points can be safely discarded or should they be included nevertheless.
Approach: We demonstrate the capability of our framework to analyze the impact of
discretization noise on the computed feature importance ranks. We adopt the same
incremental analysis approach that we adopted in the Section 5.4.1. But instead of
measuring the performance of the classifiers that are constructed by incrementally
discarding data from the noisy area, we note the feature importance values of these
classifiers (see step 3 of Section 5.3). We perform an incremental analysis on all the
studied datasets for the three different discretization thresholds (MT, CT, RTT) con-
sidered in the study in Section 5.3.2 (see Fig B.1 of Appendix) for all the four chosen
classifiers (RFCM, LR, CART, KNN).

We measure the computed feature importance values of the chosen classifier
trained on various data configurations. We use the Scott-Knott ESD test to rank (Tan-
tithamthavorn et al., 2017, 2018b; Li et al., 2017; Ghotra et al., 2015) the features with
their feature importance values. To observe whether the computed feature impor-
tance ranks vary significantly, we compare the computed feature importance ranks of
the classifier that is trained on the whole data and the classifier with x = limit (see
Table 5.2) data points removed from the noisy area for each of studied dataset across
all the discretization thresholds. We compute the difference between the computed
feature importance ranks for each feature in the dataset and compare them to the null

distribution (where the rank difference of each feature is zero) to see if removing the

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT

Ranks of the top 3 most
Features and their / \ important features

Incremental Feature analysis derived feature Bootstrap analysis F1 F2 F3

importance ranks 1 1 2

Feature importance of a] > 3
classifier constructed on o - 100

dataset with 0% noise % of nt:lse r‘emoved F1/F2(F3|...|F, Scott-Knott ESD L]

removed 0% noise 112]3] |25 ! 2 3

removed

2% noise

® —
° Scott-Knott ESD [removed 1121 |26 —L T

Whole noisy area

Featl._lr_e importance of a removed 2|33 |26 1> Bootstrap re-sampling
classifier constructed on Estimation for the
dataset with 100 % (i.e., Generated ranks of all the features likelihood of a rank shift
whole) noisy area for classifiers that are trained on
removed various data configurations .
repeat 100 times /

Figure 5.3: The procedure for estimation of the likelihood of a rank shift.

noisy area impacts the computed feature importance ranks of a classifier (Rajbahadur
etal., 2017).

For instance, lets consider the Stack Overflow dataset with MT as the discretization
threshold when used for training an RFCM. We wish to study the impact of discretiza-
tion noise on the interpretation of the constructed RFCM. For simplicity, lets consider
that the Stack Overflow dataset has only 5 features. For the RFCM that is intially trained
on the whole dataset, a computed feature importance ranks is generated for its 5 fea-
tures (F yhole =3, 1,5,4,2). Following which, an RFCM is trained on the Stack Overflow
dataset devoid of the noisy area (F sy area_removed = 2, 1,3,2,4). The difference between
Funole a0 F oisy area_removed 18 difference =1,0,2,2,2. If the F e and F sy area_removed
are the same, then the difference generated would be zero and would imply that the
discretization noise does not impact the interpretation of a classifier. If the difference
isnot 0 (asin our example), we compare the difference against a zero distribution (null_
distribution=0,0,0,0,0) with a Wilcoxon-signed rank test and Cohen’s effect size test
to determine whether if the difference is significant or otherwise.

In addition, even if the discretization noise impacts the overall interpretation of a
classifier, most researchers and practitioners care only about the top x most impor-

tant features (Hassan and Holt, 2005; Lewis et al., 2013). Therefore, in this section we

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 89

present the results of the top 3 features as a showcase. To measure how likely the rank
of a feature could shift due to the removal of the discretization noise, we compute the
likelihood of rank shifts for top 3 ranks. The importance rank of a feature is ascer-
tained by the median rank of the computed feature importance ranks for a feature of
the dataset.

We use a bootstrap analysis to compute the likelihood of rank shifts similar to prior
study by Tantithamthavorn et al. (2018b). Figure 5.3 outlines the process of estimation
of the likelihood of a rank shift. The feature importance ranks that are generated from
each classifier in the incremental feature analysis are taken as the input. These com-
puted ranks are then re-sampled with replacement (i.e., Bootstrap re-sampling). The
bootstrap re-sampled feature rank distribution is generated for all the features of each
of the studied datasets and they are re-ranked using the Scott-Knott ESD test as shown
in the “Bootstrap analysis” part of Figure 5.3. This process is repeated 100 times. The
intuition behind such a procedure is that the bootstrap re-sampling and re-ranking
would alleviate possible minor and insignificant fluctuations in the computed feature
importance ranks while highlighting the pattern of significant fluctuations in the com-
puted feature importance ranks for a feature, and thereby bringing out its true rank.
Now we have 100 computed feature importance ranks for all the features in each of the
studied datasets.

These 100 ranks (the output of the “Bootstrap analysis” part of Figure 5.3) for a fea-
ture are used for estimating the likelihood of a rank shift. The likelihood of a rank shift
for rank x feature is computed as the percentage of how many ranks are not equal to
x. For example, for rank 1 feature, out of 100 times 2 ranks are not equal to 1, then the

likelihood of a rank shift for that feature is 0.02. The estimation for the likelihood of

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 90

Table 5.4: The likelihood of rank shifts in the top 3 most important ranks (column A)
and the comparison of the computed feature importance ranks of an RFCM trained
on the whole dataset (Ranky,) and the dataset with the noisy area removed (Rank,)
(column B).

Dataset Rank shift likelihood (A) | Rank,, vs. Rank,; (B)
Rank1 | Rank2 | Rank 3 | p-value | Cohen’s d

Stack Overflow | 0 0 0 0 -1.29 (L)
Mathematics 0 0 0 0 -2.14 (L)
Ask Ubuntu 0 0 0 0 -2.84 (L)
Super User 0 0 0 0.01 -0.74 (M)
Patch 0 0 0 0.03 -0.62 (M)
Bug-delay 0 0 0 0 -1.39 (L)
App-rating 0 0 0 1 -0.30 (S)

rank shifts is done for the features in the top 3 ranks of all the studied datasets. If the
likelihood values are high for a particular rank in a dataset, it indicates that discretiza-
tion noise impacts the computed feature importance and the feature(s) reported at
that rank should be interpreted with caution in that dataset.

Results: The overall computed feature importance ranks are impacted by the
discretization noise for most of the studied datasets. We only report the impact of
discretization noise generated by median based discretization threshold (MT) on the
computed feature importance ranks for RFCM due to space constraints, However
similar results are noted on all the other classifiers (LR, CART, KNN) on all the studies
discretization thresholds (please refer to Table B.3, B.4, and B.5 of Appendix for other
results). We show a comparison of the computed feature importance ranks of an
RFCM that is trained on the dataset with and without the noisy area removed in
Table 5.4. The results highlight that for most of the studied datasets (6/7 datasets in

the case of the RFCM classifier and for all the datasets for other classifiers), the overall

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 91

computed feature importance ranks of all the features in a dataset, are significantly
impacted (i.e., p—value < 0.05) with a non-negligible effect size.

However, the computed feature importance ranks of the top 3 features are not
impacted by the discretization noise. To specifically understand how much of an im-
pact that the discretization noise has on the most important features, we computed
the likelihood of a rank shift for the top 3 important features. We present the results in
Table 5.4. For all the datasets, the ranks of the most important features (i.e., all fea-
tures at rank 1, rank 2 and rank 3) are not impacted due to discretization noise. We
further observe that these trends are not specific to RFCM and the discretization noise
generated by MT. From Table B.3, B.4, and B.5 (please see Appendix) we observe that
the most important features are not impacted by the discretization noise generated in
the dataset for any of the studied classifiers.

In summary, though the overall ranks of computed feature importance are im-
pacted by the discretization noise in the dataset, the top 3 (most important) features
that most researchers and practitioners focus on (Hassan and Holt, 2005; Lewis et al.,
2013; Rajbahadur et al., 2017; Tantithamthavorn et al., 2015) are not impacted by the
discretization noise. Therefore, we suggest that the decision of either including
or removing the data in the noisy area could be exclusively arrived at from the
results of Section 5.4.1 without being worried much about its impact on interpre-
tation. Nevertheless these results might vary for other settings (e.g., other datasets or
classifiers) and our framework is able to provide a case by case guidance.

~)

The discretization noise (generated by our studied discretization thresholds) does

not impact the computed feature importance of any of the top 3 features yet it im-

pacts the overall computed feature importance ranks.

Table 5.5: Median performance (AUC) of the RFCMs on the different regions of the data.

Training data — Testing data

Stack Overflow

Mathematics

Ask Ubuntu

Super User

Patch Bug-delay App-rating

Noisy area — Extremes

0.96

0.96

0.86

0.86

0.98

0.69

0.76

J4NIVdd

INHANHdId HH.L ONIZILAYOSIA 40 LOVAINT HH.L ONILVOILLIN S H41dVHO

c6

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 93

5.5 Discussion

5.5.1 Why does a classifier trained on the whole dataset (with dis-
cretization noise) sometimes perform better than the classifier

trained on data devoid of discretization noise?

From the Section 6.4, we observe that excluding data from the noisy area, i.e., data with
discretization noise, sometimes negatively impacts the performance of a classifier. We
seek to understand this counter intuitive phenomena. Furthermore, in this section,
we also remark about why the top 3 important features of a classifier are not impacted
by discretization noise.

We hypothesize that a classifier in some cases is able to capture the signal from
the noisy points in spite of the discretization noise. Doing so, allows the classifier to
capture more information from the noisy data points, in addition to information avail-
able from the clean data. Therefore, discarding those noisy points negatively impacts
the performance of a classifier. To examine our hypothesis, we start by constructing
classifiers with data points from the noisy area (generated with MT) and test them on
the data from the extremes and noisy areas. Such an experiment helps us understand
whether the data with the discretization noise contains any useful information.

We follow the steps outlined in our framework (see Section 5.3) to construct the
classifiers on the noisy area and generate the out-of-sample test sets from the extremes
and noisy area separately. For this experiment, we construct an RFCM and observe its
performance on the AUC measure. We do so just on RFCM as our intention is only to
analyze if the noisy area contains useful information and our results on RFCM could

help us test it succinctly. Furthermore, in this section we report only the AUC measure

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 94

as from Table 5.3 we could observe that AUC measure is the most resilient performance
measure that has the leastimpact across all the studied classifiers and we wish to report
the impact on the most resilient measure. A high AUC would therfore objectively jus-
tify the presence of useful information. However, all the other performance measures
follow the same trend.

The noisy area contains useful information that might help improve the perfor-
mance of RFCMs. From Table 5.5, we observe that the RFCMs that are trained on the
noisy area perform extremely well on the extremes for 5 out of the 7 studied datasets.
Three datasets have an AUC that is larger than 0.95. For instance, in the Stack Overflow
dataset, the RFCMs that are trained on the noisy area have an AUC of 0.96 when tested
on the extreme areas.

While the previous experiments show that noisy area contains useful information,
we cannot conclusively establish if the contained information in the noisy points
amidst the discretization noise could be successfully used by the classifiers. To test
if the studied classifiers can use the information contained in the noisy area, we
construct classifiers that are trained with extremes and data from the noisy area (in
contrary to the previous experiment, where we trained only on the noisy area) and
then add increasing amounts of data from the noisy area. If the performance of
a classifier does not degrade significantly (some degradation should be expected)
with the increased amount of noise, it may indicate that the classifier is capable of
capturing a signal as long as there is enough information in the data. Therefore, we
could infer that despite the presence of discretization noise, the data points in the
noisy area provide an additional signal to the classifier and the exclusion of the noisy

area, negatively impacts the performance of the classifier. On the other hand, if there

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 95

is a drastic and significant performance degradation of the classifier, it would then
invalidate our hypothesis that classifiers are able to learn an additional signal in spite
of discretization noise.

We perform the experiment by setting up a simulation study with the help of
our framework similar to the previous experiment, where we train all the classi-
fiers on the extremes with different amount data from the noisy area. We train our
classifiers on four different data configurations which are given by (extremes +
(noisyarea + over_sample% x (noisyarea)), where the over_sample takes
values of 0,100,200, 300. We oversample different amounts of data from the noisy area
while keeping the amount of the data from extremes constant. We build the classifiers
on four data configurations i.e., (extremes + (noisyarea + 0% x (noisyarea)),
(extremes +(noisyarea+100% % (noisy_area)), (extremes+(noisyarea +
200% * (noisy area)), and (extremes + (noisyarea + 300% x (noisy area)).
For instance, in the Ask Ubuntu dataset from our study for MT, the extremes have
1,427 data points and the noisy area has 2,711 data points as shown in the Table 5.2.
Therefore for the first configuration, we would have 4,138 data points, of which
65% is comprised of noisy points. Therefore for Ask Ubuntu dataset, our four data
configuration consist of 65%, 79%, 85% and 88% noisy points respectively along with
the clean data from the extremes. (See Figure B.2 of Appendix explaining the overall
experimental setup)

The performance of a classifier that is constructed on the aforementioned data con-
figurationsis evaluated on the out-of-sample test data from the extremes. Note that the
out-of-sample test data that is obtained from the extremes, is not used in the training

phase and is only used for testing the constructed classifier. The experimental setup for

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 96

constructing a classifier is similar to that of our framework, as outlined in Section 5.3.
Finally, we also capture the computed feature importance ranks and observe the likeli-
hood of rank shifts for the top 3 most important features as outlined in Section 5.3 and
Section 5.4.2.

Adding data from the noisy area to the training data does not greatly impact the
performance of a classifier. We report the results in Table 5.6. The columns in Table 5.6
correspond to different data configurations that we discussed earlier. We observe that
the median AUC of a classifier that is trained on the dataset without noise is quite close
to the AUC of a classifier that is trained on data with 300% noise. For RFCM, LR and
CART classifiers, even an addition of 300% of data from the noisy area only impacts
the AUC within 6% as we can observe from Table 5.6. Even in the case of the KNN
classifier, which is an instance-based classifier that is traditionally more sensitive to
noise in the data (Aha and Kibler, 1989), gets impacted only by 11% in terms of AUC
even with the addition of up to 300% data points from the noisy area. These results
signify that the performance of the constructed classifiers on the extremes does not
degrade significantly even when there is 300% (at least X% of the data is noisy) data
from the noisy area in addition to data from the extremes.

Furthermore, we also note that the likelihood of rank shifts for top 3 ranks between
classifiers that are trained on the first configuration (0%) and the last configuration
(300%) is 0. Which further reinforces the validity of our hypothesis that the classifiers
are able to capture the signal in the noisy points despite the discretization noise and
the most important features contributed by the true signal in the underlying data are

not perturbed by the discretization noise.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT

FEATURE

97

Table 5.6: Performance comparison (in AUC) of classifiers that are trained on

different data configurations.

Classifier | Dataset | 0% Noise | 100% Noise | 200% Noise | 300% Noise
SO 0.96 0.96 0.96 0.96
MA 0.96 0.96 0.96 0.96
AU 0.86 0.85 0.84 0.84
RF SU 0.86 0.86 0.87 0.85
PT 0.99 0.99 0.99 0.99
BD 0.69 0.68 0.66 0.65
AR 0.76 0.77 0.76 0.76
SO 0.92 0.93 0.92 0.92
MA 0.93 0.92 0.92 0.92
AU 0.78 0.77 0.76 0.76
LR SU 0.79 0.79 0.78 0.77
PT 0.98 0.98 0.98 0.97
BD 0.68 0.68 0.66 0.66
AR 0.72 0.72 0.71 0.71
SO 0.89 0.86 0.84 0.83
MA 0.87 0.86 0.87 0.85
AU 0.74 0.69 0.67 0.66
CART SU 0.72 0.70 0.69 0.68
PT 0.94 0.89 0.90 0.90
BD 0.64 0.62 0.60 0.60
AR 0.64 0.63 0.62 0.62
SO 0.80 0.75 0.71 0.69
MA 0.80 0.75 0.72 0.70
AU 0.62 0.61 0.59 0.58
KNN SU 0.69 0.64 0.62 0.61
PT 0.83 0.82 0.81 0.80
BD 0.55 0.52 0.51 0.50
AR 0.60 0.57 0.56 0.55

Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User, PH- Patch, BD- Bug-delay, AR-

App-rating

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 98

In summary, We establish that the noisy area does contain some useful informa-
tion. Further, we observe only a maximum performance drop of 11% across 7 datasets
for all of the studied classifiers (with less than 6% performance drop for RFCM, LR and
CART) with the addition of as much as 300% of data from the noisy area, where at least
more than 67% of the dataset is noisy. This suggests that a classifier is able to capture
the information in the data in spite of the noise, thereby explaining why the exclusion
of data points from the noisy area sometimes impacts the performance of a classifier.
In addition, the likelihood of rank shift for the top 3 most important features is 0 for
all the classifiers, signifying that the discretization noise even in such high quantities

does not impact the interpretation of the classifiers.

5.5.2 Why does inclusion of discretization noise sometimes nega-

tively impacts the performance of a classifier?

Contrary to Section 6.5.1, in this section, we seek to understand why the inclusion
of discretization noise negatively impacts the performance of some classifiers. From
Table 5.3 we observe that for all the studied classifiers, the inclusion of discretization
noise sometimes negatively impacts the performance of a classifier even though Sec-
tion 6.5.1 shows that data in the noisy area has useful information and classifiers are
capable of leveraging it. From Table 5.3 we also observe that for all the studied clas-
sifiers and datasets, at least one of the performance measure is negatively impacted.
We hypothesize that such a negative impact could be due to the high complexity (less
discriminative power) of the noisy points around the discretization threshold, despite

containing useful information. We arrive at such a hypothesis as prior studies show

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT

FEATURE 99
F1 L2
o | Q]
I3 -
«© |
0 _| o
-
@
a
- o _| o~
w —
< -
o
© 7 o
S -
= o
o — . -]
T T T T T e T T T T T
1 2 3 4 5 1 2 3 4 5
Quanta Quanta
N2 N4
o o
—] - —]
o 0
o] _ I—
. —_—
S
2 2 3
< e —— Stack Overflow
o] —— Mathematics
[Te] Ask Ubuntu
N ? 7 Super User
o Patch
° —— Bug-delay
o | . —— App-rating
i
e T T T T T I T T T T T
1 2 3 4 5 1 2 3 4 5

Quanta Quanta

Figure 5.4: Data complexity across quantum for the studied datasets.
that it is difficult for the classifiers to perform well if the complexity of the data is high,
irrespective of the contained information (Alm et al., 2005; Ho and Basu, 2002). Thus,
we are interested in exploring if the negative impact in the performance of a classifier
due to the inclusion of discretization noise is because of the high complexity of the
data points around the discretization threshold (noisy area).
Ho and Basu (2002) provide complexity metrics to measure the complexity of data.

We use these complexity metrics to measure the complexity of different regions of our

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 100

data. From the multiple methods that are proposed by Ho and Basu (2002), we choose
Fisher’s discriminantratio (F1), linear separability (L2), mixture identifiability (N2) and
nonlinearity (N4) as they are simple to explain and easy to interpret. We briefly explain
the metrics that we choose in the Table B.6 of Appendix. See the study by Ho and Basu
(2002) for more details about the computation of these metrics.

We use the abovementioned measures to compute how the complexity of the
dataset changes across data points as we move from the extremes to the noisy areas.
We first discretize the data into “class 1”7 and “class 2” classes as outlined in Sec-
tion 5.3.2. We then transform the continuous dependent feature using the Box-Cox
transformation (Sakia, 1992) to alleviate the skew and increase the spread of the
distribution of the dependent feature. We then split the data into 5 quanta for each
class using the bin function in R. We do so to compartmentalize the data in relation
to the continuous dependent feature and analyze the changes to the complexity of
the data points as we move closer to the discretization threshold (we choose MT)
for our case study. We would not be able to observe how the complexity changes in
different areas of the data without such compartmentalization of the data. The choice
of using 5 quanta is so that the compartmentalization is neither too granular nor too
encompassing. The 1%'quantum contains most of the data from extremes and the 5%
quantum contains most of the data from the noisy area, whereas 2™ to 4" quantum
roughly contain an equivalent amount of data points in between. Finally, we compute
the above-mentioned data complexity metrics for the data points in each of these
quantum and plot the results. (See Figure B.3 of Appendix explaining the overall

experimental setup)

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 101

From Figure 5.4, we observe that as we move from the extremes (1% quantum) to-
wards the noisy area (5" quantum), we see a steady increase in data complexity across
all complexity measures for all the datasets except for the Bug-delay dataset. We see
that all four complexity measures (i.e., Fischer’s discriminant ratio, linear separability,
mixture identifiability, and nonlinearity) are very high for the data points in the noisy
area compared to the data points in the extremes, and the inclusion of such complex
data makes it very hard for the classifiers to perform well. The steady increase in data
complexity as we move across the quantum can be attributed to the steady increase
of the discretization noise in the dataset as we move from the 1% quantum to the 5%
quantum (the extremes to the noisy area). Therefore, when the discretization noise
(the data points in the noisy area with high complexity) is discarded, the performance
of some of the classifiers increases.

The lower complexity in the 2" quantum for the Bug-delay dataset does not impact
our findings. It is due to the way the dataset is split, the BoxCox transformation aims
to spread the dependent feature sufficiently so that the class-wise binning yields data
in all quantum. But for the Bug-delay dataset, when we split the data into quantum,
we observe that the 2" quantum has data points that only belong to “class 2” and not
“class 1” because the quantum 2 for the Bug-delay dataset contains only data points
belonging to “class 2”, its complexity is very low, which is reflected in Figure 5.4. But
this phenomenon has no bearing on our findings that the quantum containing high
volumes of discretization noise (q5) is more complex than the quantum containing
extremes data (q1) and thereby discarding them sometimes improves the performance

of the classifiers.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 102

Hence, the presence of a high volume of discretization noise in the noisy area in-
creases the data complexity, which in turn results in the decreased performance of a
classifier that is trained with discretization noise, despite containing useful informa-
tion. Therefore, in some cases, the performance of a classifier benefits from discarding

the data points with from the noisy area.

5.6 Guidelines for Using Our Framework

We explain in detail our framework in Section 5.3 and demonstrate how it is used to
study the impact of discretization noise on the performance and interpretation of a
classifier in Section 6.4. Furthermore this section, we provide practical guidelines on
how to use our framework and the best practices to follow.

Figure 5.5 shows the involved steps, step-wise outputs, user considerations at each
step and the overall workflow of our framework. A user can follow the steps one by one

when they are given a dataset to study.

5.6.1 Performance impact estimation

A classifier constructed with increasing amounts of discretization noise being removed
is constantly compared against the classifier constructed on the whole dataset with a
Wilcoxon signed-rank test and a Cohen’s effect size test as outlined in Section 5.4.1. If
for the chosen performance measure, the impact is statistically significant with non-
negligible effect size, then the amount of noisy points to be discarded and the magni-
tude of the performance impact due to the discretization noise is reported to the user.

If the discretization noise does not impact the chosen performance measure then our

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT

Magnitude of performance L ;
impact and x% of noiseto Likelihood of a rank shift for
discard the top n features
A A
100-out-of-sample-bootstrap until x
reaches limit (in increments of step size)
T Classifier P<0.05 and Effect P<0.05 and Effect
! Extremes | constructed on size!= Negligible size!= Negligible
;’" dataset with x%
data removed Evaluate Evaluate
: statistical tatistical
Workflow Cleaned : Classifier obustnes obustnes
dataset -»constructed on the P>Q.05 and_E_ffecl > Use whole
whole dataset size= Negligible dataset
| | i .
Dataset without 1. Threshold, 1. Magnitude of 1. leelllhood of Infgrences as
performance rank shift (top x validated over
. correlated and extremes and Constructed .
Step-wise ¥ o impact features) 100 out-of-
redundant noisy area classifiers 2. #noi int 2.0 I I
outputs features 2. Class labels - #noisy points - Jvera samp'e
. to be discarded impact bootstrap
- Correlation and Classifier Performance Feature Validation with
redundancy > Discretization |—» construction > evaluation —> importance —>{ 100 out-of-
Dataset analysis calculation sample bootstrap
Step 1 Step Step 3 Step 4 Step 5 Step 6
1“ s[r):?;g;?;g: ; Choose the Choose the Choose the | iDecide if (and how |
User threshold 1 1 classifier to be required required feature ; | much) data from !
considerations > Estimate limit for! tested for performance importance noisy area should
[f i 1 discretization evaluation evaluation i 1 be discarded from :
:defining noisy area: I B !
H noise's impact measure(s) measure(s) the dataset

:3. Define extremes | !

Figure 5.5: User considerations and workflow that are associated with each of the steps
of our framework.

framework would output 0 (suggesting no data needs to discarded) and recommend
the use of the whole dataset as outlined in the workflow of Figure 5.5.

However, the choice of the performance measure to focus on and how much of
an improvement/impact that one should consider actionable depends entirely on the
context. For instance, in a dataset of 100 data points, if 90 data points belong to “class
1” and 10 data points belong to “class 2”, then accuracy (w.r.t “class 1”) would be 90%
even if the classifier always predicts “class 1” for all the 100 data points. Therefore,

other balanced performance measures like AUC might be required.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 104

5.6.2 Interpretation impact estimation

The computed feature importance ranks of the classifiers constructed on datasets with
varying amounts of discretization noise being removed is computed. These computed
ranks are compared to see if the computed feature importance ranks change between
the classifiers that are constructed on the whole dataset and the ones that are con-
structed on the dataset without discretization noise (please see Section 5.4.2 and Fig-
ure 5.5). Our framework then checks if the differences of the computed feature impor-
tance ranks between the classifiers that are trained on the dataset with and without the
discretization noise are statistically significant. If they are, our framework also calcu-
lates the likelihood of rank shifts for the top n features (between the classifier trained
on the whole dataset and the data with the framework recommended amount of data
from noisy area removed). In summary, our framework reports if there is an impact of
discretization noise on the overall interpretation and the likelihood of rank shifts in for

the top n features to the user.

5.6.3 Best practices

In this section, we recommend the key best practices for others to follow when they are
discretizing the data using an artificial threshold. From Section 5.4.1 we note that per-
formance of all the classifiers is impacted across all performance measures differently
and that class-specific performance measures (e.g., Precision and Recall) are more sen-
sitive to discretization noise than others. Therefore, we recommend the following best

practices for the researchers and practitioners:

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 105

1. Irrespective of the choice of a classifier, if one intends to discretize the continuous
dependent feature into artificial classes, one should use our framework to analyze

if they should use the whole dataset or discard the discretization noise.

2. Class-specific performance measures are more sensitive to discretization noise.
Therefore, instead of discarding a fixed amount of data like some of the previous
studies (Wang et al., 2018; Tian et al., 2015; Hassan et al., 2018), we recommend the
use of our framework to estimate how much discretization noise that one should
discard to avoid any negative impacts on their performance measure of choice.

Hence, one could avoid the unwanted loss of data.

3. If our framework reports a high likelihood of a rank shift for one of the top n fea-
tures, we recommend not to trust the feature importance rank for that particular
feature and seek the opinion of the domain expert. However, if our framework de-
tects any impact in the overall interpretation along with the performance, then we

recommend the use of the interpretation of the best performing model.

5.7 Threats to Validity

External Validity Many of the prior studies highlight that different classifiers have dif-
ferent performance on the same data (Rajbahadur et al., 2017; Ghotra et al., 2015). So
the choice of classifiers might impact the findings of our study, as we only use four
classifiers (RFCM, LR, CART, and KNN) in our analysis. However, the chosen classi-
fiers represent a diverse range of families: statistical family, nearest neighbor family,
Decision tree family and ensemble family, i.e., 4/6 of the common classifier families

as outlined by Lessmann et al. (2008). We left out representative approaches from the

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 106

neural networks family and the support vector machine family. We did so, as classifiers
from these families typically do not have a default feature importance measure.
Construct Validity Threats to construct validity pertains to the suitability of the mea-
sures that are used in our study. In our study, we study the impact of discretization
noise that is generated in the dataset by using three different discretization thresh-
olds as mentioned in Section 5.3 and the results might vary when another threshold is
used. However, the three chosen discretization threshold computation methods (MT,
CT, RTT) discretize the dependent features differently and represent the most common
ways of unsupervised discretization of the dependent feature. Our framework enables
others to explore other discretization thresholds in a systematic manner.

In this chapter, we only observe the impact of discretization noise on the
performance and interpretation of hyperparameter tuned classifiers. However,
as Tantithamthavorn et al. (2018b) highlight in their study, many prior software
analytics studies do not hyperparameter tune their classifiers. Therefore, the magni-
tude of the impact of discretization noise on the performance and interpretation of
classifiers whose hyperparameters were not tuned remains unknown. We suggest that
future studies should use our framework to investigate the impact of discretization
noise on the classifiers whose hyperparameters are not tuned. Such an investigation
could shed light on which of the insights from the prior studies that use an artificial
threshold to discretize the continuous dependent feature needs to be revisited.

Another construct validity in our study is the choice of the /imit parameter for
deciding the size of the noisy area in each dataset. We used the limit values that are

generated by our automated noisy area estimation algorithm as given in Section 5.3.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 107

Though such an algorithm estimates the noisy area quantitatively based on a com-
plexity measure, it might not consider the inherent dataset characteristics and bias.
We acknowledge that it could be a potential threat and we urge researchers to explore
various limits, or with limits that are established by domain experts and ratify our find-
ings. Future studies should use our framework to test different values for the limit.

The other construct validities of our study pertains to the statistical tests that we use
in our study. In our study, though we conduct multiple statistical tests after removing
different amounts of noisy data points to ascertain the impact of discretization noise,
we do not perform any p-value correction. We acknowledge that our statistical pro-
cedure (without any p-value correction) might produce falsely inflated results and is
in turn a potential threat to the validity of our findings. To mitigate such a threat we
use the effect size to quantify the magnitude of the observed impact of discretization
noise. Nevertheless, future studies that use our framework to decide the amount of
noisy data points to discard could benefit from correcting the p-values using a proce-
dure such as Bonferroni correction (Bonferroni, 1936). Also, we use Cohen’s d effect
size test, which is a parametric test that assumes the groups it tests to be normally dis-
tributed. However, we do not ensure if the obtained performance scores are normally
distributed before using the Cohen’s d effect size test. We acknowledge that this is a
threat and future studies should revisit our findings by using a non-parametric effect
size test.

Finally, in this section, we wish to reiterate to the readers that our framework en-
ables the researchers and practitioners to fiddle with any components and try a vari-
ety of combinations. We only define the needed analysis that is to be done, so that the

drawn observations are valid.

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 108

5.8 Chapter Summary

In this Chapter, we propose a framework to systematically and rigorously analyze the
impact of discretization noise on the performance and interpretation of a classifier
within the context of their own domain. We perform a case study on a variety of soft-

ware analytics datasets and we find that:

1. Discretization noise impacts the different performance measures of classifiers
differently across the different datasets. We observe that discretization noise
leads to an up to 139% performance differences across various performance
measures across all the studied classifiers. Hence it is very important for
researchers and practitioners to use our framework to analyze the impact of
discretization noise on the classifier’s for before either including or discarding it

in their analysis.

2. When discretization noise negatively impacts the performance of a classifier, our
framework provides a systematic and statistically robust way to estimate exactly
how much data should be discarded to avoid discretization noise without incur-

ring unwarranted data loss.

3. Though discretization noise impacts the overall computed feature importance
ranks of a classifier, it does not impact the computed feature importance ranks
of the top 3 ranks for our case studies. Our framework provides a case by case

guidance for others who wish to explore its use for their own case studies.

R package and User Guideline: We provide an R package to enable others to use our

framework to analyze the impact of discretization noise. Furthermore, we provide a

CHAPTER 5. MITIGATING THE IMPACT OF DISCRETIZING THE DEPENDENT
FEATURE 109

user guideline, a step-by-step walkthrough and the best practices of using our frame-

work in Section 5.6.

CHAPTER 6

The Impact of Interchangeably Using Feature Importance

Methods

Classifier specific (CS) and classifier agnostic (CA) feature importance methods are widely used
(often interchangeably) by prior studies to derive feature importance ranks from a classifier.
However, different feature importance methods are likely to compute different feature impor-
tance ranks even for the same dataset and classifier. Hence such interchangeable use of fea-
ture importance methods can lead to conclusion instabilities unless there is a strong agree-
ment among different methods. Therefore, in this Chapter, we evaluate the agreement between
the feature importance ranks associated with the studied classifiers through a case study of 18
software projects and six commonly used classifiers. We find that: For a given classifier and
a dataset, 1) the feature importance ranks computed by the CS and CA methods do not al-
ways strongly agree with each other; 2) the feature importance ranks produced among the two
studied CA methods also vary s‘ignificantly. Furthermore, 3) on a given dataset, the more com-
monly used CS methods produce vastly different feature importance ranks, even when con-
sidering the most important feature. In addition, we find that the top-3 features computed by
different feature importance methods (though are different) are similarly discriminative (i.e.,
yielded similar classification capability). We show that such a result could possibly be due to
the feature interaction that exists in the datasets. In light of our findings, we recommend that 1)
When replicating a study, one should use the same feature importance method as the original

110

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 111

study since the use of a different method is likely to lead to different conclusions; 2) one should
specify the exact feature importance method that they use in a study; 3) report the feature in-
teractions along with the feature importance ranks if the dataset exhibits feature interactions.

An earlier version of this chapter is currently under review in Transactions on Software Engi-
neering journal.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 112

6.1 Introduction

s we highlight in Chapter 4, defect classifiers are widely used by many

large software corporations (Lewis et al., 2013; Zimmermann et al.,

2009; Caglayan et al., 2015; Shihab et al., 2012) and researchers (Zhang

et al., 2016; Shihab et al., 2011; Chen et al., 2018). Defect classifiers are commonly

interpreted to uncover insights to improve software quality. Such insights help

practitioners formulate strategies for effective testing, defect avoidance, and quality

assurance (Jiarpakdee et al., 2019; Theisen et al., 2015). Therefore it is pivotal that
these generated insights are reliable.

When interpreting classifiers, prior studies typically employ either as CS or CA
method to compute the feature importance ranks (Jiarpakdee et al., 2019; Herzig
et al., 2016; Guo et al., 2004; Jahanshahi et al., 2019; Mori and Uchihira, 2019) (as we
detailed in Chapter 2). CS methods typically make use of a given classifier’s internals
to measure the degree to which each feature contributes to a classifier’s predictions.
For instance, prior studies use Type 1/2 ANOVA to compute the feature importance
ranks from logistic regression classifiers (Bird et al., 2011, 2009; Nagappan et al., 2006;
Nagappan and Ball, 2005; Zimmermann et al., 2007). Similarly, other studies use
the Gini importance method to derive feature importance ranks from random forest
classifiers (Gousios et al., 2014; Guo et al., 2004; Kamei et al., 2012). We note, however,
that a CS method is not always readily available for a given classifier. For example,
complex classifiers like SVMs and deep neural networks do not have a widely accepted

CS method Chakraborty et al. (2017).

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 113

For cases such as those, or when a universal way of comparing the feature impor-
tance ranks of different classifiers is required (Rajbahadur et al., 2017; Tantithamtha-
vorn et al., 2018a), CA methods are used. Such CA methods measure the contribution
of each feature towards a classifier’s predictions as we explain in Chapter 2. The pri-
mary advantage of CA methods is that they can be used for any classifier (i.e., from
interpretable to black box classifiers).

Despite computing feature importance ranks using different ways, CS and CA
methods are indiscriminately and interchangeably used in software analytics studies
(Table 6.1). For instance, to compute feature importance ranks for a random forest
classifier, Treude and Wagner (2019) and Yu et al. (2019) use CS methods: the Gini
importance and the Breiman’s importance methods respectively. On the other hand,
Mori and Uchihira (2019) and Herzig (2014) use CA methods: Partial Dependence
Plot (PDP) and filterVarImp respectively. Since these methods compute feature
importances differently (see Section 6.3.3), different CS or CA methods are likely to
compute different feature importance ranks for the same classifier. Yet, we observe
that the rationale for choosing a given feature importance method is rarely motivated
by prior studies (Section 6.2).

The interchangeable use of feature importance methods is acceptable only if the
feature importance ranks computed by these methods do not differ from each other.
For instance, consider the study Ghaleb et al. (2019), where they use mixed-effect logis-
tic regression classifier and ANOVA to find that caching, rerunning failed commands
and time of the builds are the most important features that determine the long build
duration in a continuous integration setting. Consider if one replicates the study by

constructing the same mixed-effect logistic regression classifier. However, instead of

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 114

using ANOVA, they interpret the coefficients of the mixed effect logistic regression clas-
sifier and find that caching is not as important anymore. Such insight would be reflec-
tive of how the feature importance method calculates the feature importance ranks
rather than identifying the features that drive the empirical relationship and raises con-
cerns about the stability of conclusion across the replicated study.

Therefore, in order to determine the extent to which the importance ranks com-
puted by different importance methods agree with each other, we conduct a case study
on 18 commonly used software defect datasets using classifiers from six different fam-
ilies. We compute the feature importance ranks using six CS and two CA methods
on these datasets and classifiers. The list of CS methods is summarized in Table 6.4.
The two CA methods are: permutation importance (Permutation) and partial depen-
dence plotimportance (PDP). Finally, we compute Kendall’s Tau, Kendall’s W, and Top-
k (k € {1,3}) overlap to quantify the agreement between the computed feature impor-
tance ranks by the different studied feature importance methods for a given classifier
and dataset. While Kendall’s measures compute differences across the different fea-
ture importance ranks, the Top-K overlap measure focuses on the top-k items of these

rankings (more details in Section 6.3.5). We answer the following research questions:

* RQ1: For a given classifier, how much do the computed feature importance ranks
by CA and CS methods differ across datasets? The computed feature importance ranks
by CA and CS methods do not always strongly agree (i.e., Kendall’s |t| < 0.6 (refer Sec-
tion 6.3.5)) with each other. In particular, even the most important feature tends to

differ for two of the six studied classifiers.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 115

* RQ2: For a given dataset and classifier, how much do the computed feature im-
portance ranks by the different CA methods differ? The two studied CA methods pro-
duce significantly different feature importance ranks. The feature importance ranks
computed by the PDP and Permutation CA methods do not have a large median Top-3

overlap (i.e., top-3 overlap > 0.75 (refer Section 6.3.5)) on any of the 16 studied datasets.

* RQ3: On a given dataset, how much do the computed feature importance ranks
by different CS methods differ? Different CS methods produce vastly different impor-
tance ranks. We observe that on a given dataset, none of the feature importance ranks
produced by the different CS methods strongly agree with each other (i.e., Kendall’s | 7|
<0.6). The top-3 overlap between CS methods is only small (i.e., top-3 overlap < 0.25))

at best and occurs in only three of the studied datasets.

Based on the aforementioned results, we hypothesized whether any specific fea-
ture importance method produces a top-3 feature set that is more discriminative (i.e.,
yielded higher classification capability) than the top-3 features produced by the other
methods. Such aresult would indicate if any of the studied methods consistently com-
puted best top-3 features and is inherently better than the other studied methods.
However, we observed that the top-3 features computed by CA and CS methods are all
equally discriminative (even though each of them compute different top-3 features) for
a given classifier, thereby indicating that none of the studied feature importance meth-
ods are inherently superior or inferior to one another. Therefore to investigate why
different feature important methods compute different top-3 features, that are equally
discriminative, we examined if the independent features of our studied datasets inter-
act. We do so as several prior studies (de Gonzdlez et al., 2007; Freeman, 1985; Fisher

etal., 2018; Devlin etal., 2019; Lundberg et al., 2018) indicate feature interactions might

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 116

impact the feature importance ranks computed by different feature importance meth-
ods. We find that, the presence of feature interactions in the studied datasets, also acts
as a confounder affecting the computed feature importance ranks. Therefore, both the
feature importance methods themselves and the feature interactions play a role in the
computed rankings. Inlight of these findings, we suggest that future research on defect

classification should:

1. When replicating a study in a new context, one should employ the same feature

importance method and learner as the original study.

2. One should always specify the used feature importance method to increase the re-

producibility of their study and the generalizability of its insights.

6.2 Motivation

In this section, we motivate our study based on how prior studies employed feature
importance methods.

We conduct a literature survey of the used feature importance methods in prior
studies. To survey the literature, we searched Google Scholar with the terms “software
engineering", “variable importance", “feature importance” and the name of each clas-
sifier that is studied in this Chapter (Section 6.3.4). We searched the Google Scholar
multiple times, once for each studied classifier. We eliminated all the papers that were
from before the year 2000 to restrict the scope of our survey to recent studies. We read

each paper from the search results in order to check if they employed any feature im-

portance method(s) to generate insights. We consider all the studies presented in the

Table 6.1: Different feature importance methods used for interpreting various classifiers in the software engineering

literature

Classifier Family

Papers using CS

Used CS methods

Papers using CA

Used CA methods

Statistical Tech-
niques

(Subramanyam and Krishnan,
2003)Herbsleb and Mockus
(2003)” (Zimmermann and Na-
gappan, 2008; Angelis et al., 2001;
Mori and Uchihira, 2019; Na-
gappan and Ball, 2005; Morales
et al.,, 2015; Ghaleb et al., 2019;
Kononenko et al., 2015)

Regression coefficients,
ANOVA

(Calefato et al., 2019;
Herzig, 2014; Herzig
et al., 2016; Premraj
and Herzig, 2011)

Boruta™, ﬁlterVarImpJr

Rule-Based Tech- (Gay et al, 2010)Y,(Othmane Interpreting rules, (Calefato et al., 2019) Boruta™
niques etal., 2017) varlmp®
Neural Networks (Santos and Belo, 2013)*% (Ma | MODEMaetal, 2018) (Calefato et al., 2019) | Boruta™
etal., 2018)”
Decision Trees (El-Emam et al., 2001)(Knab | Decision branches, Gini | (Calefato et al., 2019; | Boruta™, ﬁlterVarImp;r

et al., 2006)/(Malgonde and
Chari, 2019)

importance

Herzig, 2014; Herzig
et al., 2016; Premraj
and Herzig, 2011)

Ensemble methods-
Bagging

(Treude and Wagner, 2019;
Yu et al, 2019; Haran et al.,
2007) (Guo et al., 2004)* (Gousios
etal., 2014; Niedermayr and Wag-
ner, 2019) (Martens and Maalej,
2019)* (Fan et al., 2018; Bao et al.,
2019; Jahanshahi et al., 2019) (Dey
and Mockus, 2018)%*

Permutation impor-
tance, Gini importance

(Mori and Uchihira,
2019; Calefato et al.,
2019; Herzig, 2014;
Herzig et al., 2016;
Premraj and Herzig,
2011; Dehghan et al,,
2017; Blincoe et al.,
2019)

Boruta*,
ﬁlterVarImp*,

PDP, Marks
method(MarkS etal., 2011) ,

BestFirst*

Ensemble methods-
Boosting

(Calefato et al., 2019;
Herzig, 2014; Herzig
etal., 2016)

Boruta™, ﬁlterVarImp;r

% - The used method for computing the feature importance ranks is not mentioned
v - Papers in which the rationale for choosing a given feature importance method is specified
* -https://cran.r-project.org/web/packages/Boruta/index.html
t-https://www.rdocumentation.org/packages/caret/versions/6.0-84/topics/filterVarImp
* -https://www.rdocumentation.org/packages/FSelector/versions/0.31/topics/best.first.search
@ -https://www.rdocumentation.org/packages/caret/versions/6.0-84/topics/varImp

SAOH.LIN
HONVIMOdINT H4NIVdd ONISN ATAVAONVHOUAINI 0 LOVAINI HHL "9 H41dVHO

LTI

https://cran.r-project.org/web/packages/Boruta/index.html
https://www.rdocumentation.org/packages/caret/versions/6.0-84/topics/filterVarImp
https://www.rdocumentation.org/packages/FSelector/versions/0.31/topics/best.first.search
https://www.rdocumentation.org/packages/caret/versions/6.0-84/topics/varImp

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 118

google scholar and do not filter based on venues. However, we do not include the pa-
pers in which the either author or the supervisor of the thesis was involved to avoid

potential confirmation bias. A summary of our literature survey is shown in Table 6.1.

We observe that studies rarely specify the reason for choosing their feature impor-
tance method - only four out of the 29 surveyed studies provide a rationale for choos-
ing their used feature importance method. We also note that both CA and CS methods
are widely used. For instance, from Table 6.1, we see that both Gini importance and
filterVarImp have been used to interpret a random forest classifier. Although the spe-
cific reason for choosing a given feature importance method over another is typically
not specified, we observe that CA methods are generally used in studies with multi-
ple classifiers. In turn, CS methods are used in studies with a single classifier or a small
number of classifiers. However, given that feature importance methods are (i) typically
used to generate insights and that different methods (ii) compute the feature impor-
tance using different approaches, such interchangeable usage of methods on a given
classifier in prior studies is troublesome.

For instance, Zimmermann and Nagappan (2008) used an F-Test on the coefficients
of alogistic regression classifier (a CS method) to show that there exists a strong empir-
ical relationship between Social Network Analysis (SNA) metrics and the defect prone-
ness of a file. Later, Premraj and Herzig (2011) used filterVarImp (a CA method) and
logistic regression classifier to show that empirical relationship between SNA metrics
and the defective files are negligible. Given that CS and CA methods can produce dif-
ferent feature importance ranks, it is unclear whether the aforementioned conflicting
result is due to absence of an empirical relationship in the data or simply due to the

differing feature importance methods and as such leads to conclusion instability.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 119

More generally, the interchangeable use of feature importance methods (i.e., CS
and CA methods), when replicating a study, is acceptable only if the computed ranks
correlate reasonably well. That is, if the feature importance methods that are being
interchangeably used, assign similar feature importance ranks to the different features
of a given dataset and not differ greatly. If the different feature importance methods
compute vastly different feature importance ranks on a given dataset, it raises concerns
about the stability of conclusions across the replicated studies. Hence, we investigate

the following research question:

(RQ1) For a given classifier, how much do the computed feature importance ranks

by CA and CS methods differ across datasets?

Similar concerns exist regarding the interchangeable use of different CA methods,
even for the same classifier. From Table 6.1, we observe that, within each classifier fam-
ily, different studies use different CA methods. The rationale for choosing a given CA
method (for instance, filterVarlmp) over another (for instance, PDP) is rarely provided.
For instance, none of the studies using a CA method in Table 6.1 provide reasons for
choosing one CA method over another. Yet, the extent to which these CA agree with
each other is unclear. Such a concern becomes particularly relevant with the recent
rise of complex classifiers for defect prediction (Dam et al., 2018; Chen et al., 2018;
Hihn and Menzies, 2015), as these classifiers do not have a universally agreed-upon or
popular CS method. That is, CA methods are commonly employed to compute feature
importance ranks in those cases. Hence, we investigate the following research ques-

tion:

(RQ2) For a given dataset and classifier, how much do the computed feature impor-

tance ranks by the different CA methods differ?

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 120

A number of general prior studies already note that feature importance ranks differ
vastly between CS methods. For example, Strobl et al. (2007) show that different CS
methods for random forest classifiers yield different feature importance ranks. How-
ever, such a comparison among CS methods pertaining to different classifier (i.e., CS
method associated with a decision tree classifier and a random forest classifier) has
not been studied, in the context of defect prediction and software engineering. Such a
study is extremely important to understand the limits of reproducibility and general-
izability of prior studies.

For instance, Jahanshahi et al. (2019) replicate the study of McIntosh and Kamei
(2017) using random forest (and the CS methods of random forest classifier) as op-
posed to the non-linear logistic regression classifier and its associated CS method as
the original study does. Jahanshahi et al. (2019) observe that their feature importance
ranks differ from those of the original study. They claim that the size feature might not
be as important for just-in-time defect prediction. Unless we know that the feature
importance ranks produced by the different feature importance methods do not differ
greatly, we cannot ascertain which of the two studies produced the correct insight. In
particular, different CS methods are likely to compute feature importances differently
and the difference in insight could be attributed to the used CS method rather than
the underlying phenomena (e.g., just-in-time defect prediction) that is being studied.

Therefore, we study the following research question along with the previous ones:

(RQ3) On a given dataset, how much do the computed feature importance ranks by

different CS methods differ?

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 121

6.3 Case Study Setup

In this section, we describe our case studied datasets (Section 6.3.1), studied classi-
fiers (Section 6.3.2) and feature importance methods (Section 6.3.3). Following which,
we detail our study approach (Section 6.3.4), as well as the evaluation metrics that we

employ (Section 6.3.5).

6.3.1 Studied datasets

We use the software project datasets from the PROMISE repository Sayyad Shirabad
and Menzies (2005). The data set contains the defect data of 101 software projects that
are diverse in nature. Use of such varied software projects in our study helps us suc-
cessfully mitigate the research bias identified by Shepperd et al.Shepperd et al. (2014);
Tantithamthavorn et al. (2016). In addition, similar to the prior study by Tantithamtha-
vorn et al. Tantithamthavorn et al. (2018a), we further filter the datasets to study based
on two criteria mentioned by Tantithamthavorn et al. (2018a). We remove the datasets
with EPV less than 10 and the datasets with defective ratio less than 50. After filter-
ing the 101 datasets from PROMISE with the aforementioned criteria, we end up with
18 datasets similar to Tantithamthavorn et al. (2018a) for our study. Table 6.2 shows

various basic characteristics about each of the studied datasets in this study.

6.3.2 Studied classifiers

We construct classifiers to evaluate our outlined research questions from Section 6.2.
We choose the classifiers based on two criteria. First, the classifiers should be represen-

tative of the eight commonly used machine learning families in Software Engineering

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE

METHODS

122

Table 6.2: Overview of the datasets studied in our case study

Project DR #Files #Fts #FACRA EPV

Poi-3.0 63.5 442 20 12 14.05
Camel-1.2 35.53 608 20 10 10.8
Xalan-2.5 48.19 803 20 11 19.35
Xalan-2.6 46.44 885 20 11 20.55
Eclipse34_debug | 24.69 1065 17 10 15.47
Eclipse34_swt 43.97 1485 17 9 3841
Pde 13.96 1497 15 6 1393
PC5 27.53 1711 38 13 12.39
Mylyn 13.16 1862 15 7 16.33
Eclipse-2.0 14.49 6729 32 9 3047
JM1 2149 7782 21 7 79.62
Eclipse-2.1 10.83 7888 32 9 26.69
Prop-5 15.25 8516 20 12 64.95
Prop-4 9.64 8718 20 12 42
Prop-3 11.49 10274 20 12 59
Eclipse-3.0 14.8 10593 32 9 49
Prop-1 14.82 18471 20 13 136.9
Prop-2 10.56 23014 20 13 121.55

DR: Defective Ratio, FACRA: Features After Correlation and
Redundancy Analysis, Fts: Features

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 123

litterature as given by Ghotra et al. (2015), to foster generalizability and applicability of
our results. Second, the chosen classifiers should have a CS method. We only choose
classifiers with CS method so that we can compare and evaluate the computed feature
importance ranks by the CA methods against the CS feature importance ranks for a
given classifier (RQ1) and the computed feature importance ranks between different
classifiers (RQ3). After the application of these criteria, we eliminate three machine
learning families (clustering based classifiers, support vector machines, and nearest
Neighbour), as the classifiers from those families do not have a CS method. Further-
more, we split the ensemble methods family given by Ghotra et al. (2015) into two cat-
egories to include classifiers belonging to both bagging and boosting families.

Table 6.3 shows the studied classifiers and machine learning families to which they
belong. We choose one representative classifier from each of the machine learning
family from the caret' package in R. Table 6.3 also shows the caret function that was
used to build the classifiers. The selected classifiers have a CS method, that is given by
the varImp() function in the caret package.

Inherently-interpretable classifiers (e.g., fast-and-frugal trees and simple decision
trees) do not benefit as much from feature importance methods. Hence, such classi-
fiers are out of the scope of this study. Nevertheless, we strongly suggest that the future
studies should also explore the reliability of the insights that is derived from simple in-

terpretable classifiers.

6.3.3 Studied feature importance methods

https://cran.r-project.org/web/packages/caret/index.html

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE

METHODS 124
Table 6.3: Studied classifiers and their hyperparameters
Family Classifier Caret method Hyperparameters
Statistical Tech- | Logistic Regres- | glm None
niques sion
Rule-Based C5.0 Rule-Based | C5.0Rules None
Techniques Tree
Neural Networks | Neural Networks | avNNet size, decay, bag
(with model av-
eraging)
Decision Trees Recursive Parti- | rpart K L cp
tioning and Re-
gression Trees
Ensemble Random Forest | rf mtry
methods- Bag-
ging
Ensemble Extreme Gra- | xgbTree nrounds,
methods- Boost- | dient Boosting max_depth,
ing Trees eta, gamma, col-
sample_bytree,
min_child_weight,
subsample

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 125

Classifier Specific feature importance (CS) methods

The CS methods typically make use of a given classifier’s internals to compute the fea-
ture importance scores. These methods are widely used in software analytics to com-
pute feature importance ranks as evidenced from Table 6.1.

We use six CS methods that are associated with the six classifiers that we study.
Table 6.4 provides a brief explanation about the inner working of these CS methods on

a given classifier. For a more detailed explanation we refer the readers to Kuhn (2012).

Classifier Agnostic feature importance (CA) methods

CA methods compute the importance of a feature to the classifications of a given clas-
sifier by treating the classifier as a “black-box”, i.e., without using any classifier specific
details. In this study, we use the permutation feature importance (Permutation) and
Partial Dependence Plots feature importance (PDP) CA methods. We use these two
methods as they are commonly used by prior studies Tantithamthavorn et al. (2018a);
Mori and Uchihira (2019); Avati et al. (2018); Janitza et al. (2013). We use Permuta-
tion CA method instead of the other CA methods highlighted in Table 6.10f the chapter
because, Permutation method is more widely used in both software engineering and

other communities than the other CA methods.

Partial Dependence Plot feature importance (PDP). We use the method outlined by
Greenwell et al.Greenwell et al. (2018). The PDP computes a curve which depicts, how
each feature affects the outcome probability, as each feature varies over its marginal
distribution (over all the values of other features in the dataset) Goldstein et al. (2015);
Greenwell (2017). Greenwell et al. Greenwell et al. (2018) later showed the association

between the flatness of the PDP curve and the importance of the feature. The flatter

Table 6.4: Brief explanation about the working of caret’s CS methods that are used in our study.

CS method

Brief explanation

Logistic Regression FI
(LRFI)

Classifier coefficient’s t-statistic is reported as the feature impor-
tance score

C5.0 Rule-Based Tree
FI (CRFI)

The number of training data points that are covered by the leaf
nodes, created from the split of a feature is given as the feature im-
portance score for that feature. For instance, the feature that is split
in the root node will have a 100% importance as all the training sam-
ples will be covered by the terminal nodes leading from it.

Neural Networks
(with model averag-
ing) FI (NNFI)

The feature importance score is given by combining the absolute
weights used in the neural network

Recursive Partition-
ing and Regression
Trees FI (RFI)

The feature importance score is given by the sum of the reduction
in loss function that is brought about by each feature at each split in
the tree.

Random Forest FI
(RFFI)

Average of difference between the Out-of-Bag (OOB) error for each
tree in the forest where none of the features are permuted and the
OOB error where each of the features is permuted one by one. The
feature permutation’s impact on the overall OOB error is reported as
the feature importance score

Extreme Gradient
Boosting Trees FI
(XGFI)

Feature importance score is given by counting the number of times
a feature is used in all the boosting trees of the xgboost tree.

SAOH.LIN
HONVIMOdINT H4NIVdd ONISN ATAVAONVHOUAINI 0 LOVAINI HHL "9 H41dVHO

9¢1

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 127

Data Pre-Processing &Classmer co"f!t‘.‘?.".?',‘ \ @ture Importance Ranks Computam
! Classifier Hyperparameter tuning

Out-of-sample bootstrap :
z CA importance CS importance
H ranks ranks

' (Feature Importance Score)

_Computation
Computation Scott-Knott ESD
test

Correlation

i

Generate out-of-
sample bootstrap

Redundancy
analysis

Compute CS

. importance score
Performance ; :
Computation Compute AUC ! H
! \ Compute
AN i 8 CA importance
Hyperparameter score
K tuned classifier \ / K
Repeat 100 times

Compute Median
AUC

Figure 6.1: Overview of our case study approach.

the curve is, the lesser the importance of that feature is and vice versa. Therefore, the
PDP feature importance method, ascertains the importance of each feature, on a given
classifier, by computing the flatness of the associated PDP curve. We use the vip? R
package for computing the feature importance scores in our study.

Permutation feature importance (Permutation). We use the same permutation fea-

ture importance method used in Section 4.2.6 of Chapter 4.

6.3.4 Approach

Figure 6.1 provides an overview of our case study approach. We use this approach to

answer all of our aforementioned research questions in Section 6.2.

Data pre-processing

Correlation and redundancy analysis. We perform correlation and redundancy anal-

ysis on the independent features of the studied defect datasets, since the presence of

Zhttps://cran.r-project.org/web/packages/vip/index.html

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 128

correlated or redundant features impacts the interpretation of a classifier and com-
putes unstable feature importance ranks (Jiarpakdee et al., 2019; Tantithamthavorn

and Hassan, 2018; Harrell Jr, 2015)

Classifier construction

Out-of-sample bootstrap. To ensure the statistical validity and robustness of our find-
ings, we use an out-of-sample bootstrap method similar to Section 4.2.7 of Chapter 4
with 100 repetitions to construct the classifiers (Tantithamthavorn et al., 2017; Efron,
1983). More specifically, for each studied dataset, every classifier is trained 100 times
on the 100 resampled train sets, then these classifiers are used for computing the 100
feature importance scores. The performance of these trained classifiers are also eval-

uated on the 100 out-of-sample test sets.

Classifier construction with hyperparameter tuning. Several prior studies (Fu et al.,
2016; Tantithamthavorn et al., 2018a) show that hyperparameter tuning is pivotal to
ensure that the trained classifiers fit the data well. Furthermore, Tantithamthavorn
etal. (2018a) show that feature importance ranks shift between hyperparameter tuned
and untuned classifiers. Therefore, we tune the hyperprarameters for each of the stud-
ied classifiers using random search (Bergstra and Bengio, 2012) in every bootstrap iter-
ation using caret R package (Kuhn et al., 2008). The specific hyperparameters of the

studied classifiers are given in Table 6.3.

Performance computation

Similar to several prior studies (Ghotra et al., 2015; Lessmann et al., 2008; Rajbahadur

etal., 2019), and as advised by Tantithamthavorn and Hassan (2018), we use AUC (Area

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 129

Under the Receiver Operator Characteristic Curve) to measure the performance of our
classifiers. Unlike several prior studies (Tantithamthavorn et al., 2018a; Rajbahadur
et al., 2019), we only use this single performance measure (AUC), as the focus of our
study is to evaluate the interpretation of the defect classifiers rather than their perfor-

manece.

Computation of feature importance scores

We use both the CS and CA methods to computer feature importance scores, as de-
tailed in Section 6.3.3, for all the studied classifiers in each bootstrap iteration. For
CA methods: we use the vip package and the method outlined by Rajbahadur et al.
(2017) to compute the PDP and Permutation CA methods feature importance scores
respectively. For the CS computation, we use the VarImp() function of the caret R

package (Kuhn, 2012).

Computation of feature importance ranks

We use the Scott-Knott Effect Size Difference (SK-ESD) test (v2.0) (Tantithamtha-
vorn, 2016a) to compute the feature importance ranks from the feature importance
scores computed in the previous step, as done by prior studies (Rajbahadur et al.,
2019; Jiarpakdee et al., 2019). For each dataset and studied classifier, three feature
importance scores are computed (one CS score and two CA scores) for each boot-
strap iteration. The SK-ESD test is applied on these scores to compute three feature
importance rank lists (one CS rank list and two CA rank lists) for all the 6 studied
classifiers on each dataset. The process of feature importance rank computation

from the feature importance scores is depicted in the right-hand side of Figure 6.1.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 130

Also, we note that we only compute the feature importance ranks on a dataset, when
each of the 6 studied classifiers have a median AUC greater than 0.70. We do so, as
Chen et al. (2018) and Lipton (2016) argue, a classifier should have a good operational
performance for the computed feature importance ranks to be trusted. Due to this

constraint, the datasets Xalan-2.5 and Camel-1.2 were discarded.

6.3.5 Evaluation metrics

We measure the difference between the different feature importance rank lists by mea-

suring how much they agree with each other.

Kendall’s Tau coefficient (7) (Kendall, 1948) is a widely used non-parametric rank cor-
relation statistic that is used to compute the similarity between fworank lists (Kitchen-
ham et al., 1995; Bachmann and Bernstein, 2010). Kendall’s T ranges between -1 to 1,
where -1 indicates a perfect disagreement and 1 indicates a perfect agreement.

We use the interpretation scheme suggested by Akoglu (2018):

]
weak, if|7]<0.3

Kendall's 7 Agreement = { moderate, if0.3<|7|<0.6

strong if|7]>0.6

Kendall's W coefficient (Kendall, 1948) is typically used to measure the extent of agree-
ment among multiple rank lists given by different raters (CS methods in our case and
raters > 2). The Kendall’s W ranges between 0 to 1, where 1 indicates that all classi-
fiers agree perfectly with each other and 0 indicates perfect disagreement. We use the

Kendall’s W in RQ3 to estimate extent to which the different feature importance ranks

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 131

that are computed by CS methods agree across all the studied classifiers for a given
dataset . We use the same interpretation scheme for Kendall’s W as we use for Kendall’s

Tau.

Top-3 overlap is a simple metric that computes the amount of overlap that exists be-
tween features at the top-3 ranks in relation to the total number of features at the top-3
ranks across n feature importance rank lists. This metric does not consider the ordi-
nality of the features in the top-3 ranks, i.e., order in which a given feature appeared in
the top-3 ranks. Rather, it only checks if a given feature appeared in both of the top-3
rank lists. Top-3 overlap is adapted from the popular Jaccard Index (Jaccard, 1901) for
measuring similarity. We compute the top-3 overlap among n feature importance lists

(for in RQ1 and RQ2, n =2, whereas in RQ3, n = 6) with the equation 6.1 (k = 3).

ﬂ" Features at top k ranks

i>2

Top—koverlap = (6.1)

U?ZzFeatures at top k ranks

We define the interpretation scheme for Top 3 overlap as follows, which aims to

enable easier interpretation of the results:

negligible, if 0.00 < top-3 overlap <0.25

small, if 0.25 < top-3 overlap < 0.50
Top-3 Agreement = «

medium, if 0.50 < top-3 overlap <0.75

large if 0.75 < top-3 overlap < 1.00
\

For example, assume that the top-3 features for CS and CA on a given dataset and
classifierare Impcs(Top 3)={cbo,loc,pre}and Impc,(Top3)={loc,lcom3,dit}

respectively. Then the top-3 overlap corresponds to 1/5=0.2 (as n =2,k =3).

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 132

Top-1 overlap is analogous to the Top-3 overlap metric (Equation 6.1, with k =1). We
define the interpretation scheme for Top-1 overlap as follows: if top-1 overlap is < 0.5

then agreement is low, otherwise agreement is deemed high.

6.4 Case Study Results

In this section, we detail the results of our case study with regards to our research ques-

tions from Section 6.2.

6.4.1 (RQ1) For a given classifier, how much do the computed fea-
ture importance ranks by CA and CS methods differ across

datasets?

Approach: For each of the six constructed classifiers, we compare the feature impor-
tance ranks that are computed by the CA and CS methods across the 16 studied datasets
(where each of the constructed classifiers have an AUC > 0.70). For each classifier, on
a given dataset, we compare the feature importance ranks computed by PDP and Per-
mutation CA methods with the feature importance ranks that are computed by the
studied CS method of a classifier. We quantify the agreement between the two rank
lists in terms of Top-1 overlap, Top-3 overlap and Kendall’s Tau. We compute the Top-
1 and Top-3 overlap in addition to the Kendall’s Tau because some of the prior work
primarily examines the top x important features (Hassan and Holt, 2005; Lewis et al.,
2013; Chen et al., 2018). Finally, we aggregate the comparisons with respect to each

classifier across the studied datasets.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 133

For instance, for the avNNet classifier, we first compare the feature importance
ranks that are computed by PDP (CA method) with those that are computed by the
CS method of avNNet (i.e. NNFI, see Table 6.4) on the eclipse-2.0 dataset. Next,
we determine the agreement between the two lists according to Top-1, Top-3 overlap,
and Kendall’s Tau. We then repeat this step for every dataset and plot the distribution
for each agreement metric. An analogous process is followed in order to compare the

Permutation method with the NNFI method. The goal of this RQ is to determine the

Kendall's Tau Top 1 Overlap Top 3 Overlap
(Weak, Moderate, Strong) (High, Low)

xngree- . M
rpart
rf4
glm-
C5.0RulesH
avNNet

0.0 0.4 0.8 1.2 0 1 0.0 0.5 1.0
Agreement II' PDP vs CS Permutation vs CS

Figure 6.2: A density plot of Top-1 Overlap, Top-3 Overlap, and Kendall’s Tau between
CA and CS methods for each classifier across the studied datasets. The circles and
triangles correspond to individual observations. The dotted lines correspond to the
metric-specific interpretation scheme outlined in Section 6.3.5. The vertical lines in-
side the density plots correspond to the median of the distributions.

extent to which the feature importance ranks that are computed by CA methods differ

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 134

from the more widely used and accepted CS methods for each classifier. If the studied
CA methods consistently have a high agreement with the CS methods for each clas-
sifier and across all the studied datasets, then one can use both CS methods and CA

methods interchangeably.

Agreement between PDP and Permutation methods

Top 3 Overlap
(Negligible, Small, Medium,
Large)

Kendall's Tau Top 1 Overlap
(Weak, Moderate, Strong) (High, Low)

xalan—2.6
prop-5-
prop—4-
prop—3-
prop—2-
prop-1-
poi—3.01
pde-

PC54

mylyn-

JM1+
eclipse34_swt-
eclipse34_debugH
eclipse—-3.01
eclipse-2.1+
eclipse-2.0+ ‘ | ‘ ‘ : ‘ ; : ‘ ‘ : ‘
05 00 05 10 15 0 1 0.0 05 1.0

Classifier avNNet gm ®m rf -+ xgbTree C5.0Rules rpart

Figure 6.3: A density plot over all six Top-1 Overlap, Top-3 Overlap, and Kendall’s Tau
values between the PDP and Permutation CA methods for each of the studied classi-
fiers. The dotted lines correspond to the metric-specific interpretation scheme out-
lined in Section 6.3.5. The vertical lines inside the density plots correspond to the me-
dian of the distributions.

Results: The PDP and Permutation CA methods have a low median top-1 overlap
with the CS methods of two of the six studied classifiers. The leftmost lane in Fig-
ure 6.2 shows the top-1 overlap between the feature importance rank lists that are com-

puted by the CS and CA methods for each classifier and across all the studied datasets.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 135

We observe that the median top-1 overlap between the Permutation method and the
CS method of a classifier is low for two classifiers, namely C5.0Rules and avNNet. In
turn, the median top-1 overlap between PDP method and CS method is low for four of
the six studied classifiers. We also note that both PDP and Permutation CA methods
have a low median top-1 overlap for C5.0Rules and avNNet. In other words, even the
most important feature varies between the rankings that are computed by the CA and

CS methods for two of the studied classifiers.

Both CA methods have a small median top-3 overlap with CS methods on two of the
six studied classifiers. We see from the middle lane of Figure 6.2 that the features that
are reported at the top-3 ranks by the PDP method do not exhibit a large overlap with
the feature importance ranks that are computed by the CS method for any of the stud-
ied classifiers. The situation for the Permutation CA method is better, as the top-3
reported features by the Permutation CA method and the studied CS methods have
a large median overlap on four out of the six studied classifiers. However, from Fig-
ure 6.2, we observe that even on cases where the median overlap is large, the spread
of the density plot is also large (i.e., several datasets exhibit small and even negligible

top-3 overlap).

For half of the studied classifiers, the Kendall’s Tau agreement between CA and CS
methods is only moderate at best. The Kendall’s Tau values between the feature im-
portance ranks that are computed by CA and CS methods for each classifier and across
all the studied datasets are depicted as density distributions in Figure 6.2. When com-

paring the PDP method to the studied CS method of each classifier, we observe that the

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 136

median Kendall’s Tau indicates a strong agreement for only one of the six studied clas-
sifiers, namely xgbTree (note the vertical bars inside the density plots in the right-most
lane).

The feature importance ranks that are computed by the Permutation method have
a strong agreement with those computed by the CS methods of half of the studied clas-
sifiers (rf, glm, xgbTree). For two classifiers (rpart and C5.0Rules), both the PDP and
Permutation CA methods only weakly agree with the CS methods associated with the
studied classifiers. In particular, for completely black-box classifiers like avNNet, we
only observe a weak to a moderate agreement with their CS methods and the CA meth-

ods (i.e., both the PDP and Permutation methods).

In summary, the CA and CS methods do not always exhibit strong agreement for
the computed feature importance ranks across the studied classifiers. Therefore, we
discourage the interchangeable use of CA and CS methods in general and suggest that,
whenever possible, future defect prediction studies should preferably choose the same
feature importance method when replicating or seeking to validate a prior study. If not
possible, then the defect prediction study should acknowledge that the difference in
insights compared to the original study could be due to the choice of feature impor-
tance method (e.g., as a threat to internal validity). Furthermore, in cases such as those,
researchers should specify their reasons for choosing a different feature importance

method over the one that is used in the study that they seek to replicate or validate.

The computed feature importance ranks by CA and CS methods do not always
strongly agree with each other. For two of the six studied classifiers, even the most

important feature varies across CA and CS methods.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 137

6.4.2 (RQ2) For a given dataset and classifier, how much do the com-
puted feature importance ranks by the different CA methods

differ?

Approach: For each of the studied datasets (where all the constructed classifiers have
an AUC > 0.70), we check the extent to which the feature importance ranks computed
by PDP and Permutation CA methods agree with each other for all the six studied clas-
sifiers (see Table 6.3). Similarly to the previous RQ, in order to quantify agreement, we

compute the Top-1 Overlap, Top-3 Overlap, and Kendall’s Tau measures.

Results: Both PDP and Permutation CA methods have a low median Top-1 overlap
for six out of the 16 studied datasets. From Figure 6.3, we observe that even when fo-
cusing on the top feature, PDP and Permutation CA methods do not agree for six out
of 16 datasets. More importantly, for different datasets, different classifiers have a low
Top-1 overlap, indicating that disagreement between the feature importance ranks that
are computed by PDP and Permutation CA methods is not a classifier-specific charac-
teristic, but rather a consequence of how different CA methods capture feature impor-
tance ranks differently. Such a result highlights that the two classifier-agnostic feature
importance methods ascertain feature importance differently and thus cannot be used

interchangeably.

PDP and Permutation CA methods do not have a large median Top-3 overlap on any
of the 16 studied datasets (see Figure 6.3). Furthermore, on 7 of the 16 datasets, the
exhibited median Top-3 overlap is only moderate. On the prop-2 dataset, the Top-3

overlap is negligible. Even if the Top-1 overlap between the CA and CS are low, if the

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 138

Top-3 overlap is high, they could still be interchangeably used, as sometimes practi-
tioners might not care about the ordinality of the influential features (Chen et al., 2018;
Tan and Chan, 2016). However, from Figure 6.3, we see that, even for interpretable and
additive classifiers like glm, the overlap is generally small. Therefore, such small me-
dian Top-3 overlap on the studied datasets further reiterates that CA methods (PDP and
Permutation methods) compute vastly different feature importance ranks and cannot

be used interchangeably.

For 10 out of the 16 studied datasets, the computed feature importance ranks by PDP
and Permutation CA methods only moderately agree at best. From Figure 6.3, we ob-
serve that for 10 out of 16 datasets, the median level of agreement (using Kendall’s Tau)
is moderate at best (note the vertical bars inside the density plots in the left-most and
the middle lane). Such aresult indicates that PDP and Permutation CA methods ascer-
tain different feature importance ranks even on the same dataset across different clas-
sifiers. Furthermore, from Figure 6.3, we see that PDP and Permutation CA methods
do not consistently agree on the feature importances for any studied classifier besides
rpart. In particular, for aviNNet, a complex neural network based classifier for which CA
methods are typically employed (Avati et al., 2018; Putin et al., 2016), PDP and Permu-
tation CA methods only exhibit a weak agreement for 11 out of the 16 studied datasets
(and no strong agreement in any dataset). In turn, for a simple classifier like rpart, the
PDP and Permutation CA methods show a consistently strong agreement for 15 out of

the 16 studied datasets.

The computed feature importance ranks by the studied CA methods rarely ascer-
tain the same feature importance ranks in a dataset for a given classifier, including

the top-1 and the top-3 most important feature(s).

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 139

6.4.3 (RQ3) On a given dataset, how much do the computed feature

importance ranks by different CS methods differ?

Approach: For each of the datasets, we obtain the computed feature importance ranks
by the studied CS methods of each of the six studied classifiers. We then calculate
the Kendall’s W between the six feature importance rank lists that are computed by
the studied CS method of each classifier. Unlike the previous RQs, we compute the
Kendall’s W instead of Kendall’s Tau, as Kendall’'s W is able to measure agreement
among multiple feature importance rank lists (Section 6.3.5). Furthermore, we also
calculate the Top-3 overlap among all the six feature importance rank lists. We do so
for all the studied datasets. A high Kendall’s W and a high Top-3 overlap across all the
studied datasets among the constructed classifiers would indicate high agreement
between the computed feature importance ranks by different classifiers and the

studied CS method of each classifier.

Results: The computed feature importance ranks by different CS methods vary
extensively. Only for the eclipse-3.0 dataset, the classifiers agree on the same
most important feature. Furthermore, the maximum top-3 overlap is only small
and it happens for only three out of 16 datasets. Finally, we also observe that, on a
given dataset, none of the feature importance rank lists computed by the different CS
methods strongly agree with each other. We summarize the Top 1 overlap, the Top-3
overlap and Kendall’s W among the computed feature importance ranks for all the six
studied classifiers across the studied datasets in Table 6.5.

From Table 6.5, we observe that both the Kendall’s W and top-3 overlap among the
feature importance ranks that are computed by studied CS methods associated with

each of the classifier — which are widely used in the software engineering community—

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE

METHODS

140

Table 6.5: Top-1 overlap, Top-3 overlap, and Kendall’s W among the computed feature
importance ranks by the CS method of each classifier. Best results for each metric are

shown in bold.

Dataset Top-1 Top-3 Kendall’s
overlap overlap w

poi-3.0 Low (0) Negligible (0) Weak (0.15)
xalan-2.6 Low (0) | Negligible (0.17) Weak (0.20)
eclipse34_debug Low (0) Negligible (0) Weak (0.20)
eclipse34_swt Low (0) | Negligible (0.22) | Moderate (0.51)
pde Low (0) Small (0.4) | Moderate (0.46)
PC5 Low (0) Negligible (0) Weak (0.07)
mylyn Low (0) Small (0.33) Weak (0.08)
eclipse-2.0 Low (0) Negligible (0) Weak (0.30)
M1 Low (0) | Negligible (0.20) | Moderate (0.31)
eclipse-2.1 Low (0) | Negligible (0.13) Weak (0.26)
prop-5 Low (0) Negligible (0) Weak (0.18)
prop-4 Low (0) | Negligible (0.17) Weak (0.26)
prop-3 Low (0) Negligible (0) Weak (0.27)
eclipse-3.0 High (1) Small (0.4) | Moderate (0.31)
prop-1 Low (0) | Negligible (0.13) Weak (0.27)
prop-2 Low (0) Negligible (0) Weak (0.23)

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 141

100-Out-of-sample - iy

bootstrap o
Classifier built on ; .| CS | PDP |Per i N
all the features Check if Wilcoxon i Classifier| peita| Delta | Deita | !
P-value < 0.05 and - glm 1 2 1 i
Cohens'd magnitude !=] ® f 2 1 1 :
Large 8
built on the top-3 T || xgbTree | 1 | 2 g]
a rpart 3 2 1 i
PDP Permutation C5.0Rules| 2 1 1 :
avNNet | 1 | 1 1] g :
: | — : Palreq Kruskal-
: " " —Tcs | PDP 5 : Wallis H-Test
Performance deltas = performance of classifier Classifier e :
built on all features - performance of classifier Delta| Delta Delta !
ccccceeeeeee.......X_builtontop:3features: .. = glim U 2 1
: -
Port e : o rf 2 1 1
. erformance deltas : £ | [xgbTree | 1 2 3
’ cs ‘ ’ PDP ‘ ’Permutation —> Scott-Knott ESD a rpart 3 2 l
: C5.0Rules| 2 1 1
[|| avNNet 1 1 1
D Method filtering D Method recommendation

Figure 6.4: Experiment setup of our discussion.

is very low. Such a small Top-3 overlap and Top-1 overlap for all the datasets indicates
that computed feature importance ranks by CS methods differ substantially among
themselves. Hence, different classifiers and their associated CS methods cannot be

used interchangeably.

On a given dataset, even the commonly used CS methods yield vastly different fea-

ture importance ranks, including the top-3 and the top-1 most important feature(s).

6.5 Discussion

6.5.1 Howdiscriminative are the top-3 reported features by the stud-

ied CS and CA methods?

Motivation: From RQ1 (Section 6.4.1), we observe that both CA and CS methods yield
significantly different feature importance ranks on a given dataset for different classi-
fiers. While such a result indicates that we cannot use one feature importance method
in lieu of another, we do not know which of these feature importance methods yield

the most discriminative (i.e., the features with the highest predictive capability) feature

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 142

importance ranks. Such knowledge would help us with two things. First, to avoid the
usage of a particular feature importance method that does not identify highly discrim-
inative top-3 features (method filtering). Particularly, if any of the feature importance
methods fail to identify highly discriminative features, we could discourage its usage.
Second, to recommend the feature importance methods that could be more reliably
used by researchers and practitioners (method recommendation). For instance, if one
of the studied feature importance methods (amongst both CA and CS methods) con-
sistently identifies the most discriminative top-3 feature set, we could recommend its

usage over the other methods (even if all of these methods are highly discriminative).

Approach: Part 1 - Method filtering. We present the experiment setup of our Discus-
sion in Figure 6.4. To estimate the discriminative capability of the top-3 computed
features by each feature importance method, we first construct all of the studied clas-
sifiers using all the features of a given dataset as outlined in Section 6.3.4. Next, we
construct classifiers with only using the top-3 features given by the two CA methods, as
well as the CS method of each classifier (please see Table 6.4) for each studied dataset.
We then measure the performance of the classifiers that are constructed using all the
features against the performance of the classifiers that are constructed using the top-3
features. We measure the performance in terms of several performance measures (i.e.,
Accuracy, Precision, Recall, F1 Score, Brier Score and Mathew’s Correlation Coefficient
(MCQ)) instead of using AUC as used in the earlier parts of our study. We do so in order
to avoid the unfair advantage that the Permutation method would likely have, as such
a method evaluates the importance of each feature based on their AUC performance.

Finally, we perform a Wilcoxon signed-rank test (Wilcoxon, 1945) and a Cohen’s d

effect size difference test (Cohen, 1992) to compare the performance in a statistically

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 143

rigorous manner. In the negative case (i.e., if the magnitude < 0.8 (Cohen, 1992)), we
conclude that the performance of both classifiers is similar and thus the feature impor-
tance method is deemed as one that produces highly discriminative top-3 features. We
consider alarge Cohen’s d effect size difference to quantify similarity over other cut-offs
as we wanted to show that the differences in performances are large only if they differ
by a considerable amount. If any of the studied feature importance methods fails to
consistently produce highly discriminative top-3 features across the studied datasets,
then we could discourage its use.

Part-2: Method recommendation. To identify which of the studied feature impor-
tance methods can be recommended, for each dataset, we find the difference in perfor-
mance between the classifiers that are constructed using all the features of the dataset
and the classifiers that constructed only using the top-3 features given by the CA and CS
methods - performance deltas (the smaller the difference, the higher the discriminative
capability). Then to observe if any of the feature importance method consistently pro-
duces more discriminative features than the others, we rank the performance deltas.
We do so on all the studied datasets for each classifier using the Scott-Knott ESD test
(as shown in the first blue part of Figure 6.4). Next, we aggregate the produced ranks
on the performance deltas of the six studied classifiers across the three studied feature
importance methods (2 CA methods and the studied CS method of the classifier) for
all the 16 datasets (please refer the tables in Figure 6.4) for each of the studied perfor-
mance measure. For instance, for the Accuracy performance measure, we will have
three distribution of ranks pertaining to the CS, PDP and Permutation CA methods.
Each distribution will have six values corresponding (as given by the rank of the per-

formance differences of the six studied classifiers) for each dataset (a total of 96 values

Table 6.6: No. of dataset on which classifiers that are constructed using the top 3 features given by the studied feature
importance method has similar discriminative capability (i.e., if the Cohen’s d < 0.8) as that of the classifier that is
constructed using all the features of a dataset.

ACC PRE REC B-S F-M MCC
Classifier | CS PD PF|CS PD PF|CS PD PF|CSPD PECS PD PF| CS PD PF
glm 16 14 16|14 14 14|10 9 109 7 8|10 8 10|14 13 14
rf 5 4 7,6 6 88 7 9|5 4 8| 3 5 9| 4 6 7
xgbTree 0 8 8|11 12 9 4 3 4|4 0 1| 5 3 3|10 9 9
rpart 16 16 16|16 16 1510 12 11 |7 11 9|10 12 10|12 13 13
C5.0Rules 11 14 13} 9 12 12| 4 6 7|8 8 9| 4 9 8|13 14 13
avNNet 14 15 1515 12 13| 9 12 9|7 8 7|10 11 10|14 15 14

K-W (P-Val) 0.12 0.89 0.11 0.65 0.19 0.24

1. Performance Measures: ACC- Accuracy, PRE- Precision, REC- Recall, BS- Brier Score, F-M- F-Measure
2. Feature importance methods: CS- CS, PD- PDP, PF- Permutation
3. K-W - Kruskal-Wallis H-Test P-Value

SAOHLIN

HONVIMOdINT H4NIVdd ONISN ATAVAONVHOUAINI 0 LOVAINI HHL "9 H41dVHO

44!

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 145

per distribution). Each value in the distribution pertaining to a given feature impor-
tance method indicates its rank of discriminative capability in relation to the other fea-
ture importance methods on a given classifier and dataset. Finally, across each of the
performance measure, we perform a paired Kruskal-Wallis H-test (Kruskal and Wallis,
1952). A p-value < 0.05 on the Kruskall-Wallis H-test between the rank distributions
of CS, PDP and Permutation CA methods across all the performance measures would
indicate that one of the feature importance methods consistently yields more discrim-

inative top-3 features than the other methods and we could recommend its usage.

Results: Method filtering: The top-3 most important features ascertained by all the
studied feature importance methods are all highly discriminative. In Table 6.6, we
present the number of datasets on which the classifiers built using the top-3 features
from each of the studied feature importance methods exhibits similar performances
to the classifiers built using all the features. From Table 6.6 we observe that, all the
studied feature importance methods exhibit similar capabilities in identifying the top
3 discriminative features for each of the studied classifiers across all the computed per-
formance measures. For instance, consider the discriminative capability of the top-3
features given by the different methods in terms of Accuracy from Table 6.6. Expect for
the case of random forest and the xgbTree classifier, in at least 11 out of 16 datasets,
the classifiers built using the top 3 features given by all the different feature impor-
tance methods, calculates Accuracy similar to that of the classifier built using all the
features. Similar trends could be observed on all the threshold-dependent metrics like
Precision, Recall, F-Measure and MCC. Each of classifier built using the top-3 features
computed by the different feature importance methods exhibiting similar (high) dis-

criminative capability indicates that each each feature importance method—though

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 146

compute feature importances differently— are a valid way of computing feature im-
portances in their own right.

The number of datasets on which the discriminative capability of the top-3 fea-
tures being equivalent to that of all the features in a given dataset is lower in terms
of the threshold-independent performance measure Brier Score. However, across the
classifiers the different top-3 features computed by the different feature importance

methods exhibit the similar characteristics even on threshold-independent measures.

Method recommendation: No method consistently produces top-3 features with
higher discriminative capability than other methods. Hence, we cannot recom-
mend the use a particular feature importance method. We present the result of
Kruskal-Wallis H-Test between the performance difference rank distributions of CS,
PDP and Permutation CA methods in Table 6.6. From the Table 6.6, we observe that
all the p-values are greater than 0.05. Such a result indicates that, across different
performance measures, there is no one method that is consistently ranked low. Lack
of clear separation in the discriminative capability of the top 3 features computed by
different feature importance methods indicates that we cannot recommend usage of

one of the feature importance method over another.

6.5.2 Why do different feature importance methods produce differ-

ent top-3 features on a given dataset?

Motivation: From the RQs explored in Section 6.4, we observe that different feature
importance methods produce different feature importance ranks (including the top-3
ones) in spite of us having removed the correlated and redundant features from the

datasets in a pre-processing step. While such a result could be attributed to different

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 147

feature importance methods computing feature importances differently, from previ-
ous Section 6.5.1, we find that the different top-3 features produced by CA and CS
methods are all similarly discriminative on a given classifier. In this discussion, we seek
to find out why different feature importance methods produce different top-3 features
that are equally discriminative.

We hypothesize that different feature importance methods produce different but
equally discriminative top-3 feature importance ranks even on the same dataset and
classifier because of feature interactions that are present in the studied datasets. Fea-
ture interactions can be defined as a phenomenon where the effect of the independent
features on a dependent feature is not purely additive (Freeman, 1985; Molnar, 2018)).
We arrive at such a hypothesis as many of the prior studies show that the presence
of feature interactions in a given dataset can affect the different feature importance
methods differently and make them assign different feature importance ranks to fea-
tures with similar discriminative capability (de Gonzalez et al., 2007; Freeman, 1985;
Fisher et al., 2018; Devlin et al., 2019; Lundberg et al., 2018). Therefore, in this sec-
tion, we seek to find out if different feature importance methods (in addition to being
inherently different) yield different feature importance rankings that are similarly dis-
criminative due to the presence of feature interactions in the dataset.

Approach: To test our hypothesis and detect if any of the features present in a
given dataset interact with other features in that dataset, we compute the Friedman
H-Statistic (Friedman et al., 2008) for each feature against all other features in a given
dataset. The Friedman H-statistic works as follows. First, a classifier (any classifier - we
use random forest as it captures interactions well (Wright et al., 2016)) is constructed

using the given dataset. For instance, consider the Eclipse-2.0 dataset and that we wish

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 148

to compute the Friedman H-Statistic between the feature pre and all the other features
in Eclipse-2.0. We first compute the partial dependence between pre and the depen-
dent variable with respect to random forest classifier (PD_pre) for all the data points.
Following which, partial dependence between all the features (as a single block) in
Eclipse-2.0 (except pre) is computed (PD_rest) for all the data points. Now if there
is no feature interaction, between pre and the other features in Eclipse-2.0, the out-
come probability of the constructed classifier can be expressed as asum of PD_pre and
PD_rest. Therefore, the difference between the outcome probability of the classifier
and the sum of PD_pre and PD_rest is computed and the variance of this difference is
reported as the Friedman H-Statistic. We compute the Friedman H-Statistic for all the
studied datasets 10 times as Friedman H-Statistic is known to exhibit fluctuations be-
cause of the internal data sampling (Molnar, 2018). We then consider the median score
of the Friedman H-Statistic for each dataset. We use the R package im1® to compute
the Friedman H-Statistic.

The Friedman H-Statistic is a numeric score that ranges between 0 to 1 (However, it
could sometimes exceed 1 when the higher order interactions are stronger than the in-
dividual features (Molnar, 2018)). A Friedman H-Statistic of 0 or closer to zero indicates
that no interaction exists between the given feature and the rest of the features and a
Friedman H-Statistic of 1 indicates extremely high levels of interaction. For a more the-
oretical and detailed explanation we refer the readers to (Friedman et al., 2008; Molnar,
2018). In this study, we consider a feature to exhibit interactions with other features if
the Friedman H-Statistic is > 0.3. We choose 0.3 as a cut-off, to only indicate the exis-

tence of a feature interaction, but not to qualify the strength of the interaction, because

Shttps://cran.r-project.org/web/packages/iml/index.html

https://cran.r-project.org/web/packages/iml/index.html

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 149

the presence of feature interactions irrespective of the strength could potentially im-
pact feature importance ranks (de Gonzélez et al., 2007; Freeman, 1985; Fisher et al.,
2018; Devlin et al., 2019; Lundberg et al., 2018). In addition we also report the results
for the number of features that exhibit a Friedman H-statistic > 0.5. We choose to re-
port the results on multiple thresholds to present a comprehensive depiction of the
feature interactions and due to the lack of prior empirical guidance on thresholds for
the interpretation of Friedman H-statistic.

Finally, to assert if absence of feature interactions enables the different feature
importance methods to compute the same top-3 features, we simulate a dataset with
no feature interactions. We do so instead of using a real dataset as it is difficult to find
a real-world defect dataset without any feature interactions. We generate a dataset
1,500 data points and 11 independent features of which five features carry the signal
signal = {x1,x2,x3,x4,x5} and six features are just noise i.e., does not exhibit
any relationship to the dependent feature noise = {nl, n2, n3, n4, n5, n6}.
We add noise features to make our simulated dataset similar to that of a real-world
defect datasets. Therefore the independent features of the dataset is comprised of
independent features = {signal,noise}. All the signal features and nl, n5,
n6 are generated by randomly sampling the normal distribution with mean = 0 and
standard deviation = 1. Similarly, we sample the uniform distribution between
0 and 1 to generate the values forn2, n3, n4. We use both normal and the uniform
distribution for the noise features to ensure the presence of different types of noise in
our simulated dataset. Next, to construct our dependant feature for the dataset, we
construct the y;;z,,; with the signal variables as given in Equation 6.2. We assign dif-

ferent weights to the different signal features when constructing the y;;,,,; to ensure

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 150

that we know the true importance of each of the signal feature. We then convert the
Vsigna1 N to @ probability vector y,,,;, with a sigmoid function as given in Equation 6.3.
Finally, we generate the dependant feature by sampling the binomial distribution to

generate the dependent feature Y. enaan: With y,,), as given in Equation 6.4.

Vsignat =20x1+10x2+5x3+2.5x4+0.5x5 (6.2)
_ 1

yprob - 1+ e Ysignal (63)

Yaependant = Binomial(1500, y,.,) (6.4)

We then construct all of the studied classifiers on the simulated dataset with
Vaependen: as the dependent feature. We construct all the classifiers with 100-Out-
of-sample bootstrap on the simulated dataset and compute the feature importance
ranks computed by the CA and CS methods as outlined in Section 6.3.4. For each of
the studied classifier, we calculate the top-1 and top-3 overlap between the feature
importance ranks computed by the CA and CS methods for each of the classifier. We
then check if they exhibit a top-1 and top-3 overlap close to 1 for all the classifiers
among the CS and the CA methods. If they do so, we can then assert that, in addition to
different feature importance methods computing importance differently, the feature
interactions in the dataset affects the top-3 features computed by the different feature

importance methods and vice versa.

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 151

Results: At least two features and as much as eight features interact with the rest of
the features in all of the 16 studied datasets (i.e., Friedman H-Statistic > 0.3). Fur-
thermore, we find that 12 of the 16 datasets have at least two features with a Fried-
man H-Statistic > 0.5. We present the number of features in each dataset with a Fried-
man H-statistic > 0.3 and > 0.5 in Table 6.7. From Table 6.7 we observe that all datasets
contain more than two features that interact with the other features. Though Fried-
man H-Statistic only computes if a given feature interacts with the rest of the features
and excludes other feature interactions like second-order interactions, pairwise inter-
actions and higher-order interactions, it gives us a hint as to the presence or absence
of feature interactions in a dataset.

Table 6.7: No. of features per dataset with Friedman H-Statistic > 0.3 and > 0.5

Dataset #FwithH> 0.3 | #F with H > 0.5
Poi-3.0
Xalan-2.6
Eclipse34_debug
Eclipse34_swt
Pde

PC5

Mylyn
Eclipse-2.0

JM1

Eclipse-2.1
Prop-5

Prop-4

Prop-3
Eclipse-3.0
Prop-1

Prop-2

F - Features

O OO OOl OO 1w W
BN OW Wk WOk O O WwWwo o

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 152

The top-3 and the top-1 overlap between the feature importance ranks computed
by the CS and CA methods on each of the classifier is 1 on our simulated dataset de-
void of feature interactions. Such a result indicates that in the dataset without feature
interactions, all the studied feature importance methods identify the same top-3 fea-
tures. Furthermore, we also observe the all the studied feature importance identify x1,
x2, x3as the top-3 features in the same order of importance. Thus, we assert that the
different feature importance methods are able to assign the feature importance ranks
correctly when independent features’ contribution to the dependant feature is additive
without any interactions.

Hence, we conclude that the presence of feature interactions in the studied de-
fect datasets could be the reason why different top-3 features produced by different
feature importance methods exhibit similar discriminative capability. In addition, we
argue that alongside the fact that different feature importance methods compute fea-
ture importances differently, feature interactions in the datasets could also be one of
the important confounders that affects the computed feature importance ranks by the
studied feature importance methods. However, our inference is exploratory in nature
and thus further research should be conducted to understand the exact impact of fea-

ture interaction on the computed feature importance ranks.

6.6 Implications

In this section, we outline the implications that one can derive from our results, in-
cluding potential pitfalls to avoid and future research opportunities.
Implication 1) During replication or establishment of baselines from prior studies,

one should employ the same feature importance method as in these prior studies to

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 153

compute the feature importance ranks. From Section 6.4, we observe that the com-
puted feature importance ranks by CA and CS methods differ greatly even on the top-
3 most important features across the studied classifiers and datasets. Therefore, it is
essential that replication studies employ the same feature importance method as the
original study. If not possible, the replication should acknowledge that the difference
in feature importance ranks might be due to their choice of feature importance meth-

ods.

Implication 2) The lack of clear specification of the feature importance method
employed in software engineering studies seriously threatens the reproducibility of
these studies and the generalizability of their insights. Few of the prior work (17% of
the studies specified in Table 6.1) do not specify their employed feature importance
method to arrive at their insights. Such lack of specification of the feature importance
method is mostly prevalent for random forest classifiers (3/11 studies) — the classifier
that is widely used in software engineering. This poses a serious threat, as many
random forest implementation across the popular data mining toolboxes come with
many different ways of computing the feature importance. For instance, random
forest implementation in the R package randomForest * has 3 feature importance
methods available and the R package partykit > has 2 implementations of feature
importance methods for random forest. Such a case is true for other classifiers (such as
logistic regression’s classifier specific feature importance method is different between

the caret and rms R packages).

Implication 3) Future studies should use the results of feature importance methods

with caution, especially in the presence of feature interactions. From Section 6.5.2

‘https://cran.r-project.org/web/packages/randomForest/index.html
Shttps://cran.r-project.org/web/packages/partykit/index.html

https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/partykit/index.html

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 154

we observe that all of the studied datasets have at least two features that interact with
the other features in a dataset. Such interactions, in turn, impact the feature impor-
tance ranks computed by both CA and CS methods (de Gonzélez et al., 2007; Freeman,
1985; Fisher et al., 2018; Devlin et al., 2019; Lundberg et al., 2018). Therefore, we sug-
gest researchers and practitioners to analyze if the features in their dataset interact
with each (e.g., by reusing the procedure that we outlined in Section 6.5.2). If features
interact, we then recommend researchers and practitioners to report the feature in-
teractions along with their feature importance ranks and interpret their results with

caution.

Implication 4) Further research must be carried out to develop feature importance
methods that account for feature interactions. In this Chapter, we highlight that
different features importance methods generate feature importance ranks that differ
greatly and therefore they cannot be interchangeably used. However, we cannot
recommend the usage of anyone feature importance method over another, as gener-
ating consistent feature importance ranks across classifiers, especially in the presence
of feature interactions, is still an open area of research. For instance, Kendler and
Gardner (2010) suggest that we can only ever truly interpret main effects and tentative
interpretation of interactions are justified whereas Freeman (1985) suggests modeling
and interpreting them separately. Furthermore, Kendler and Gardner (2010) suggest
using only additive models to avoid getting influenced by interactions. Therefore, we
suggest that future studies should investigate the impact of feature interactions on
the feature importance ranks much more deeply, especially in the context of software
engineering datasets. Furthermore, there is also a need to develop robust feature

importance methods that can compute consistent feature importance ranks across

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 155

classifiers as the interpretation of machine learning classifiers has become pivotal in

software engineering.

6.7 Threats to Validity

In the following, we discuss the threats to the validity of our study.

Internal validity. We choose classifier families who has a CS method. As previous
studies show that different classifiers may have different performance on a given
dataset (Rajbahadur et al., 2017; Ghotra et al., 2015), this could be a potential threat.
However, we choose representative classifiers from 6 of the 8 commonly used classifier

families as outlined by Ghotra et al. (2015).

Construct validity. In our study, we choose datasets where all the classifiers achieved
an AUC above 0.70. According to Muller et al. (2005), an AUC score above 0.70 indicates
the fair discriminative capability of a classifier. Furthermore, these datasets have been
used in many of the studies as outlined in Table 6.1. Furthermore, in Section 6.5.1,
we use Cohen’s d effect size test, which is a parametric test that assumes the groups
it tests to be normally distributed. However, we do not ensure if the obtained perfor-
mance scores are normally distributed before using the Cohen’s d effect size test. We
acknowledge that this is a threat and future studies should revisit our findings by using

anon-parametric effect size test.

External validity. In this study, we choose 18 datasets that represent software projects
across several corpora (e.g., NASA and PROMISE) and domains (both proprietary
and open-source). However, our results likely do not generalize to all software defect

datasets. Nevertheless, the datasets that we use in our study are extensively used in the

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 156

field of software defect prediction (Zimmermann and Nagappan, 2008; Zimmermann
et al., 2009; Jiarpakdee et al., 2019; Tantithamthavorn et al., 2017; Rajbahadur et al.,
2017; Premraj and Herzig, 2011) and is representative of several corpora and domains.
Therefore we argue that our results will still hold. However, future replication across
different datasets using our developed methodology might be fruitful.

Secondly, we only consider one defect prediction context in our study (i.e., within-
project defect prediction). Yet, there are multiple defect prediction contexts such as
Just-In-Time defect prediction (Hoanget al., 2019; Kamei et al., 2012) and cross-project
defect prediction (Zimmermann et al., 2009). Hence future studies are needed to ex-
plore these richer contexts.

Finally, we study a limited number of CS and CA methods and therefore, our results
might not readily generalize to other feature importance methods. For instance, there
are recent developments like SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al.,
2016) that have been proposed in the machine learning community for generating fea-
ture importance ranks. Nevertheless, the approach and the metrics that we use in our
study are applicable to any feature importance method. Therefore, we invite future
studies to use our approach to re-examine our findings on other (current and future)

feature importance methods.

6.8 Chapter Summary

Classifiers are increasingly used to derive insights from data. Typically, insights are

generated from the feature importance ranks that are computed by either CS or CA

CHAPTER 6. THE IMPACT OF INTERCHANGEABLY USING FEATURE IMPORTANCE
METHODS 157

methods. However, the choice between the CS and CA methods to derive those in-
sights remains arbitrary, even for the same classifier. In addition, the choice of the ex-
act feature important method is seldom justified. In other words, several prior studies
use feature importance methods interchangeably without any specific rationale, even
though different methods compute the feature importance ranks differently. There-
fore, in this study, we set out to estimate the extent to which feature importance ranks
that are computed by CS and CA methods differ.

By means of a case study on 18 defect datasets and 6 defect classifiers, we observe
that the computed feature importance ranks by CA and CS methods do not always
agree. Even the feature that is reported as the most important feature differs for many
of the studied classifiers— raising concerns about the stability of conclusions across
replicated studies. We end our study by providing several guidance for future stud-
ies. Therefore, we strongly recommend against the interchangeable usage of feature
importance methods in the software analytics studies to compute feature importance
ranks of a classifier.

Future research is needed to develop robust feature importance methods that ac-
count for feature interactions and that can compute ranks that are consistent across

classifiers at least on the most important features.

CHAPTER 7/

Conclusion and Future Work

ACHINE learning classifiers are extensively used in software analytics
pipelines. Constructing these software analytics pipelines requires
practitioners to make several experimental design choices. These

experimental design choices critically impact the generated insights of a classifier.
While the impact of a few experimental design choices on the generated insights of a
classifier have been explored by the prior studies, the impact of many experimental
design choices still remains unexplored. It is pivotal to gain a deeper understanding
of how experimental design choices impact

In this thesis, we explore the impact of a number of experimental design choices
on the generated insights of a classifier. More specifically we first explore the impact

of discretization of the dependent feature. We find that discretizing the dependent

158

CHAPTER 7. CONCLUSION AND FUTURE WORK 159

features indeed impact the generated insights of a classifier. Therefore, we propose
strategies to mitigate and avoid the discretization of the dependent feature. Second,
we study the impact of interchangeably using the feature importance methods on the
generated insights of a classifier in software analytics. We find that different feature im-
portance methods generate significantly different feature importance ranks for a given
classifier. Based on our findings we provide recommendations for future software an-
alytics studies. We believe that deepening our understanding of how different exper-
imental design choices impact the generated insights can help improve the reliability

and trustworthiness of those insights.

7.1 Thesis Contributions

We highlight the main findings of our thesis and its implications as follows:

7.1.1 Avoiding the discretization of the dependent feature by using

regression-based classifiers

Finding 1: We observe that in contrast to current practices in our field, the dis-
cretization of the dependent feature should be avoided in many cases (especially

when the defective ratio is <15%).

Implication: Future studies should consider building regression-based classi-
fiers and avoid discretizing the dependent feature (in particular when the defec-

tive ratio of the modelled dataset is low).

Finding 2: The most influential features vary between the different approaches

to build classifiers.

CHAPTER 7. CONCLUSION AND FUTURE WORK 160

Implication: Hence future studies should examine the influential factors using
the best performing classifier (i.e., discretized or regression-based) instead of

simply using discretized classifiers

7.1.2 Mitigating the impact of discretizing the dependent feature

(Chapter 5)

Finding 3: Discretization noise impacts the different performance measures of
classifiers differently across the different datasets. We observe that discretiza-
tion noise leads to an up to 139% performance differences across various perfor-

mance measures across all the studied classifiers.

Implication: Researchers and practitioners should use our framework to analyze
the impact of discretization noise on a classifier for before either including or

discarding discretization noise in their analysis.

Finding 4: Discretization noise impacts the overall computed feature impor-
tance ranks of a classifier. However, it does not impact the computed feature

importance ranks of the top 3 ranks for our case studies.

Implication: Researchers and practitioners should use our framework to get a
case by case guidance for their case. They should verify if the discretization noise
impacts the derived feature importance ranks on their dataset, classifier and cho-

sen discretization threshold.

CHAPTER 7. CONCLUSION AND FUTURE WORK 161

7.1.3 The impact of interchangeably using feature importance

methods

Finding 5: The computed feature importance ranks by CA and CS methods do
not always strongly agree. Even the feature reported as the most important fea-

ture differs for many of the studied classifiers.

Implication: Same feature importance computation method must be used when
replicating a prior study in order to avoid conclusion instabilities. In addition,
we provide more guidelines for future software analytics studies to follow in Sec-

tion 6.6 of Chapter 6.

Finding 6: The presence of feature interactions in the studied defect datasets
impact the computed feature importance ranks of a classifier. That is to say, the
presence of feature interactions in a dataset is one of the reasons why different
feature importance methods produce vastly different feature importance ranks,

even on the same dataset and classifier.

Implication: We then recommend researchers and practitioners to report the
feature interactions along with their feature importance ranks and interpret their

results with caution.

7.2 Future Research Directions

In light of the findings that we present in our thesis, we outline the following future

research directions.

CHAPTER 7. CONCLUSION AND FUTURE WORK 162

7.2.1 Developing new approaches to avoid the discretizing the de-

pendent feature when the defective ratio is greater than 15%

We observe from Chapter 4 that the discretization of the dependent feature could be
avoided only in cases where the defective ratio of the dataset is less than 15% (or in
other words, when the class imbalance is high). However, from Chapter 5 we know
that even when the class imbalance is low, the discretization of the dependent feature
could impact the results of classifier. Therefore, future research needs to investigate

more approaches that can avoid the discretization of the dependent feature.

7.2.2 Extending our proposed framework to support n-ary dis-

cretization of the dependent feature

Our proposed framework in Chapter 5 enables researchers and practitioners to inves-
tigate the impact of the generated discretization noise due to discretizing the depen-
dent feature into two classes. But in many software analytics problems the continuous
dependent feature maybe discretized into more than two classes. Therefore, future re-
search should focus on extending our framework to support the investigation of the
impact of the generated discretization noise due to discretizing the dependent feature

into multiple classes.

CHAPTER 7. CONCLUSION AND FUTURE WORK 163

7.2.3 Developing feature importance methods that can account for

feature interactions in the dataset

In Chapter 6, we highlight that different features importance methods generate fea-
ture importance ranks that differ greatly and therefore they cannot be interchange-
ably used. However, we cannot recommend the usage of any one feature importance
method over another, as none of the studied feature importance methods generate
consistent feature importance ranks across classifiers. We observe that it is the pres-
ence feature interactions that cause the feature importance methods to compute vastly
different feature importance ranks for a given classifier. We further observed that on a
simulated dataset without any feature interactions, all the studied feature importance
methods reported the same features in the top-3 ranks. Therefore there is an urgent
need to develop robust feature importance methods that account for the feature inter-
actions in the dataset automatically. Such methods should focus on computing consis-
tent feature importance ranks across classifiers as the interpretation of machine learn-

ing classifiers has become pivotal in software analytics.

Bibliography

Abdelmoez, W., Kholief, M., and Elsalmy, E M. (2012). Bug fix-time prediction model
using naive bayes classifier. In Proceedings of the International Conference on Com-

puter Theory and Applications (ICCTA), pages 167-172. IEEE.

Abdelwahab, M. and Busso, C. (2015). Supervised domain adaptation for emotion
recognition from speech. In Proceedings of the International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 5058-5062. IEEE.

Abebe, S. L., Ali, N., and Hassan, A. E. (2016). An empirical study of software release

notes. Empirical Software Engineering (EMSE), 21(3):1107-1142.

Agrawal, A., Fu, W, Chen, D., Shen, X., and Menzies, T. (2019). How to “dodge" complex

software analytics. IEEE Transactions on Software Engineering (TSE), pp(99):1-1.

164

BIBLIOGRAPHY 165

Agrawal, A., Menzies, T., Minku, L. L., Wagner, M., and Yu, Z. (2020). Better software
analytics via" duo": Data mining algorithms using/used-by optimizers. Empirical

Software Engineering (EMSE), 25(3):2099-2136.

Aha, D. W. and Kibler, D. E (1989). Noise-tolerant instance-based learning algorithms.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAD),

pages 794-799. Citeseer.

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish journal of emergency

medicine, 18(3):91-93.

Alm, C. O,, Roth, D., and Sproat, R. (2005). Emotions from text: Machine learning
for text-based emotion prediction. In Proceedings of of the InteConference on Hu-
man Language Technology and Empirical Methods in Natural Language Processing

(HLT/EMNLP), pages 579-586. Association for Computational Linguistics.

Altman, D. G. and Royston, P. (2006). The cost of dichotomising continuous variables.

British medical journal (BM]J), 332(7549):1080.

Altmann, A., Tolosi, L., Sander, O., and Lengauer, T. (2010). Permutation importance:

a corrected feature importance measure. Bioinformatics, 26(10):1340-1347.

Angelis, L., Stamelos, 1., and Morisio, M. (2001). Building a software cost estimation
model based on categorical data. In Proceedings Seventh International Software Met-

rics Symposium, pages 4-15. IEEE.

Arar, O. E and Ayan, K. (2015). Software defect prediction using cost-sensitive neural

network. Applied Soft Computing, 33:263-277.

BIBLIOGRAPHY 166

Arisholm, E., Briand, L. C., and Fuglerud, M. (2007). Data mining techniques for build-
ing fault-proneness models in telecom java software. In Proceedings of the Interna-

tional Symposium on Software Reliability (ISSRE), pages 215-224. IEEE.

Austin, P. C. and Brunner, L. J. (2004). Inflation of the type i error rate when a continu-
ous confounding variable is categorized in logistic regression analyses. Statistics in

medicine, 23(7):1159-1178.

Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., and Shah, N. H. (2018). Improving
palliative care with deep learning. BMC medical informatics and decision making,

18(4):122.

Bachmann, A. and Bernstein, A. (2010). When process data quality affects the number
of bugs: Correlations in software engineering datasets. In Proceedings of Working

Conference on Mining Software Repositories (MSR 2010), pages 62-71. IEEE.

Bachmann, A., Bird, C., Rahman, E, Devanbu, P, and Bernstein, A. (2010). The miss-
inglinks: bugs and bug-fix commits. In Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-

gineering (FSE/ESEC), pages 97-106. ACM.

Bao, L., Xia, X., Lo, D., and Murphy, G. C. (2019). A large scale study of long-time con-
tributor prediction for github projects. IEEE Transactions on Software Engineering

(TSE), PP(99):1-1.

Bao, L., Xing, Z., Xia, X., Lo, D., and Li, S. (2017). Who will leave the company?: a

large-scale industry study of developer turnover by mining monthly work report. In

BIBLIOGRAPHY 167

Proceedings of the International Conference on Mining Software Repositories (MSR),

pages 170-181. IEEE.

Bavota, G., Linares-Vasquez, M., Bernal-Cardenas, C. E., Di Penta, M., Oliveto, R., and
Poshyvanyk, D. (2014). The impact of api change-and fault-proneness on the user
ratings of android apps. IEEE Transactions on Software Engineering (TSE), 41(4):384—
407.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization.

Journal of Machine Learning Research (JMLR), 13(Feb):281-305.

Binkley, D., Lawrie, D., and Morrell, C. (2018). The need for software specific natural

language techniques. Empirical Software Engineering (EMSE), 23(4):2398-2425.

Bird, C., Nagappan, N., Devanbu, P, Gall, H., and Murphy, B. (2009). Does distributed
development affect software quality? an empirical case study of windows vista. In

Proceedings of the International conference on software engineering (ICSE), pages

518-528. ACM/IEEE.

Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu, P. (2011). Don’t touch my
code!: examining the effects of ownership on software quality. In Proceedings of the
Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (FSE/ESEC), pages 4-14. ACM.

Biswas, E., Vijay-Shanker, K., and Pollock, L. (2019). Exploring word embedding tech-
niques to improve sentiment analysis of software engineering texts. In Proceedings
of the International Conference on Mining Software Repositories (MSR), pages 68-78.

IEEE.

BIBLIOGRAPHY 168

Blincoe, K., Dehghan, A., Salaou, A.-D., Neal, A., Linaker, J., and Damian, D. (2019).
High-level software requirements and iteration changes: a predictive model. Em-

pirical Software Engineering (EMSE), 24(3):1610-1648.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilita. Pub-
blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze,

8:3-62.

Boslaugh, S. and Watters, P. (2008). Statistics in a Nutshell: A Desktop Quick Reference.

In a Nutshell (O’Reilly). O’Reilly Media.

Boughorbel, S., Jarray, E, and El-Anbari, M. (2017). Optimal classifier for imbalanced

data using matthews correlation coefficient metric. PloS one, 12(6):e0177678.
Breiman, L. (2017). Classification and regression trees. Routledge.

Briand, L. C., Daly, J., Porter, V., and Wust, J. (1998). Predicting fault-prone classes
with design measures in object-oriented systems. In Proceedings Ninth International

Symposium on Software Reliability Engineering, pages 334-343. IEEE.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthey

Weather Review, 78(1):1-3.

Buse, R. P and Zimmermann, T. (2012). Information needs for software development
analytics. In Proceedings of the International Conference on Software Engineering

(ICSE), pages 987-996. ACM/IEEE.

Caglayan, B., Turhan, B., Bener, A., Habayeb, M., Miransky, A., and Cialini, E. (2015).

Merits of organizational metrics in defect prediction: an industrial replication. In

BIBLIOGRAPHY 169

Proceedings of the International Conference on Software Engineering (ICSE), pages

89-98. ACM/IEEE.

Calefato, E, Lanubile, E, and Novielli, N. (2019). An empirical assessment of best-
answer prediction models in technical q&a sites. Empirical Software Engineering

(EMSE), 24(2):854-901.

Calle, M. L. and Urrea, V. (2011). Letter to the editor: stability of random forest impor-

tance measures. Briefings in bioinformatics, 12(1):86-89.

Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. (2009). Software dependen-
cies, work dependencies, and their impact on failures. IEEE Transactions on Software

Engineering (TSE), 35(6):864-878.

Ceylan, E., Kutlubay, E O., and Bener, A. B. (2006). Software defect identification us-
ing machine learning techniques. In Proceedings of the EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), pages 240-247. IEEE.

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne, D., Alzantot, M., Cerutti, E,
Srivastava, M., Preece, A., Julier, S., Rao, R. M., et al. (2017). Interpretability of deep
learning models: a survey of results. In Proceedings of the SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and Smart City

Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 1-6. IEEE.

Chen, C,, Liaw, A., Breiman, L., et al. (2004). Using random forest to learn imbalanced

data. University of California, Berkeley, 110(1-12):24.

BIBLIOGRAPHY 170

Chen, D., Fu, W, Krishna, R., and Menzies, T. (2018). Applications of psychological
science for actionable analytics. In Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-

gineering (FSE/ESEC), pages 456-467. ACM.

Cohen, J. (1983). The cost of dichotomization. Applied psychological measurement,

7(3):249-253.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences . Hilsdale, vol-

ume 2. Hillsdale, N.]J. : L. Erlbaum Associates.
Cohen, J. (1992). A power primer. Psychological bulletin, 112(1):155.

Dam, H. K., Tran, T., and Ghose, A. (2018). Explainable software analytics. In Proceed-
ings of the International Conference on Software Engineering (ICSE): New Ideas and

Emerging Results, pages 53-56. ACM/IEEE.

D’Ambros, M., Lanza, M., and Robbes, R. (2010). An extensive comparison of bug pre-
diction approaches. In Proceedings of the Working Conference on Mining Software

Repositories (MSR), pages 31-41. IEEE.

Dawson, N. V. and Weiss, R. (2012). Dichotomizing continuous variables in statistical

analysis a practice to avoid. Medical Decision Making, 32(2):225-226.

de Almeida, M. A., Lounis, H., and Melo, W. L. (1998). An investigation on the use
of machine learned models for estimating correction costs. In Proceedings of the

International conference on Software engineering (ICSE), pages 473-476. ACM/IEEE.

de Gonzidlez, A. B., Cox, D. R,, et al. (2007). Interpretation of interaction: A review. The

Annals of Applied Statistics, 1(2):371-385.

BIBLIOGRAPHY 171

DeCoster, J., Iselin, A.-M. R., and Gallucci, M. (2009). A conceptual and empirical ex-

amination of justifications for dichotomization. Psychological methods, 14(4):349.

Dehghan, A., Neal, A,, Blincoe, K., Linaker, J., and Damian, D. (2017). Predicting like-
lihood of requirement implementation within the planned iteration: an empirical
study at ibm. In Proceedings of the International Conference on Mining Software

Repositories (MSR), pages 124-134. IEEE.

Devlin, S., Singh, C., Murdoch, W.J., and Yu, B. (2019). Disentangled attribution curves

for interpreting random forests and boosted trees. arXiv preprint arXiv:1905.07631.

Dey, T. and Mockus, A. (2018). Are software dependency supply chain metrics useful
in predicting change of popularity of npm packages? In Proceedings of the Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering,

pages 66-69. ACM.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-

validation. Journal of the American statistical association, 78(382):316-331.

El-Emam, K., Goldenson, D., McCurley,]., and Herbsleb, J. (2001). Modelling the like-
lihood of software process improvement: An exploratory study. Empirical Software

Engineering (EMSE), 6(3):207-229.

Fagan, M. E. (1999). Design and code inspections to reduce errors in program devel-

opment. IBM Systems Journal, 38(2-3):258-287.

Fan, Y, Xia, X,, Lo, D., and Li, S. (2018). Early prediction of merged code changes to

prioritize reviewing tasks. Empirical Software Engineering (EMSE), 23(6):3346-3393.

BIBLIOGRAPHY 172

Ferri, C., Herndndez-Orallo, J., and Modroiu, R. (2009). An experimental comparison

of performance measures for classification. Pattern Recognition Letters, 30(1):27-38.

Fisher, A., Rudin, C., and Dominici, E (2018). All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models

simultaneously. arXiv preprint arXiv:1801.01489.

Fisher, D., DeLine, R., Czerwinski, M., and Drucker, S. (2012). Interactions with big data

analytics. interactions, 19(3):50-59.

Flach, P. A. (2003). The geometry of roc space: understanding machine learning met-
rics through roc isometrics. In Proceedings of the 20th International Conference on

Machine Learning (ICML), pages 194-201. AAAL

Folleco, A., Khoshgoftaar, T. M., Van Hulse, J., and Bullard, L. (2008). Software quality
modeling: The impact of class noise on the random forest classifier. In Proceedings

of the Congress on Evolutionary Computation (CEC), pages 3853-3859. IEEE.

Freeman, G. (1985). The analysis and interpretation of interactions. Journal of Applied

Statistics, 12(1):3-10.

Friedman, J. H., Popescu, B. E., et al. (2008). Predictive learning via rule ensembles.

The Annals of Applied Statistics, 2(3):916-954.

Fu, W,, Menzies, T., and Shen, X. (2016). Tuning for software analytics: Is it really nec-

essary? Information and Software Technology (IST), 76:135-146.

Garcia, S., Luengo, J., Saez, J. A., Lopez, V., and Herrera, E (2013). A survey of discretiza-
tion techniques: Taxonomy and empirical analysis in supervised learning. IEEE

Transactions on Knowledge and Data Engineering, 25(4):734-750.

BIBLIOGRAPHY 173

Gay, G., Menzies, T., Davies, M., and Gundy-Burlet, K. (2010). Automatically finding
the control variables for complex system behavior. Automated Software Engineering

(ASE), 17(4):439-468.

Ghaleb, T. A., da Costa, D. A,, and Zou, Y. (2019). An empirical study of the long du-
ration of continuous integration builds. Empirical Software Engineering (EMSE),

24(4):2102-2139.

Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the impact of classification
techniques on the performance of defect prediction models. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 789-800. ACM/IEEE.

Ghotra, B., McIntosh, S., and Hassan, A. E. (2017). A large-scale study of the impact
of feature selection techniques on defect classification models. In Proceedings of
the International Conference on Mining Software Repositories (MSR), pages 146-157.

IEEE.

Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015). Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation.

Journal of Computational and Graphical Statistics, 24(1):44-65.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An exploratory study of the pull-
based software development model. In Proceedings of the International Conference

on Software Engineering (ICSE), pages 345-355. ACM/IEEE.

Greenwell, B. M. (2017). pdp: an r package for constructing partial dependence plots.

The R Journal, 9(1):421-436.

BIBLIOGRAPHY 174

Greenwell, B. M., Boehmke, B. C., and McCarthy, A. J. (2018). A simple and effective

model-based variable importance measure. arXiv preprint arXiv:1805.04755.

Gromping, U. (2009). Variable importance assessment in regression: linear regression

versus random forest. The American Statistician, 63(4):308-319.

Guo, L., Ma, Y., Cukic, B., and Singh, H. (2004). Robust prediction of fault-proneness by
random forests. In Proceedings of the International symposium on software reliability

engineering, pages 417-428. IEEE.

Guo, P J., Zimmermann, T., Nagappan, N., and Murphy, B. (2010). Characterizing and
predicting which bugs get fixed: an empirical study of microsoft windows. In Pro-
ceedings of the International Conference on Software Engineering (ICSE), pages 495—

504. ACM/IEEE.

Hall, M. A. and Holmes, G. (2003). Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions on Knowledge and Data engineering,

15(6):1437-1447.

Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2011). A systematic litera-
ture review on fault prediction performance in software engineering. IEEE Transac-

tions on Software Engineering (TSE), 38(6):1276-1304.

Haran, M., Karr, A., Last, M., Orso, A., Porter, A. A., Sanil, A., and Fouche, S. (2007).
Techniques for classifying executions of deployed software to support software en-

gineering tasks. IEEE Transactions on Software Engineering (TSE), 33(5):287-304.

Harrell Jr, E E. (2015). Regression modeling strategies: with applications to linear mod-

els, logistic and ordinal regression, and survival analysis. Springer.

BIBLIOGRAPHY 175

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In Pro-
ceedings of the International Conference on Software Engineering (ICSE), pages 78—

88. ACM/IEEE.

Hassan, A. E. and Holt, R. C. (2005). The top ten list: Dynamic fault prediction. In
Proceedings of the International Conference on Software Maintenance (ICSM), pages

263-272. IEEE.

Hassan, S., Bezemer, C.-P, and Hassan, A. E. (2018). Studying bad updates of top free-
to-download apps in the google play store. IEEE Transactions on Software Engineer-

ing (TSE), 46(7):773-793.

Herbsleb, J. D. and Mockus, A. (2003). An empirical study of speed and communica-
tion in globally distributed software development. IEEE Transactions on software

engineering (TSE), 29(6):481-494.

Herzig, K. (2014). Using pre-release test failures to build early post-release defect pre-
diction models. In Proceedings of the International Symposium on Software Reliabil-

ity Engineering, pages 300-311. IEEE.

Herzig, K., Just, S., and Zeller, A. (2016). The impact of tangled code changes on defect

prediction models. Empirical Software Engineering (EMSE), 21(2):303-336.

Hihn, J. and Menzies, T. (2015). Data mining methods and cost estimation models:
Why is it so hard to infuse new ideas? In Proceedings of the International Conference

on Automated Software Engineering Workshop (ASEW), pages 5-9. IEEE.

Ho, T. K. and Basu, M. (2002). Complexity measures of supervised classification prob-

lems. IEEE Transactions on pattern analysis and machine intelligence, 24(3):289-300.

BIBLIOGRAPHY 176

Hoang, T., Dam, H. K., Kamei, Y., Lo, D., and Ubayashi, N. (2019). Deepjit: an end-
to-end deep learning framework for just-in-time defect prediction. In Proceedings
of the International Conference on Mining Software Repositories (MSR), pages 34-45.

IEEE.

Hoekstra, A. and Duin, R. P. (1996). On the nonlinearity of pattern classifiers. In Pro-
ceedings of the International Conference on Pattern Recognition (ICPR), pages 271-

275. IEEE.

Hou, C., Nie, E, Yi, D., and Wu, Y. (2013). Efficient image classification via multiple rank

regression. IEEE Transactions on Image Processing, 22(1):340-352.

Huang, J., Keung, J. W,, Sarro, E, Li, Y.-E, Yu, Y.-T., Chan, W,, and Sun, H. (2017). Cross-
validation based k nearest neighbor imputation for software quality datasets: An em-

pirical study. Journal of Systems and Software (JSS), 132:226-252.

Huang, J. and Ling, C. X. (2005). Using auc and accuracy in evaluating learning algo-

rithms. [EEE Transactions on knowledge and Data Engineering, 17(3):299-310.

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des

alpes et des jura. Bull Soc Vaudoise Sci Nat, 37:547-579.

Jahanshahi, H., Jothimani, D., Basar, A., and Cevik, M. (2019). Does chronology matter
in jit defect prediction?: A partial replication study. In Proceedings of the Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering,

pages 90-99. ACM.

BIBLIOGRAPHY 177

Jalali, O., Menzies, T., and Feather, M. (2008). Optimizing requirements decisions with
keys. In Proceedings of the International workshop on Predictor models in software

engineering, pages 79-86. ACM.

Janitza, S., Strobl, C., and Boulesteix, A.-L. (2013). An auc-based permutation variable

importance measure for random forests. BMC bioinformatics, 14(1):119.

Jiang, Y., Adams, B., and German, D. M. (2013). Will my patch make it? and how fast?
case study on the linux kernel. In Proceedings of the Working Conference on Mining

Software Repositories (MSR), pages 101-110. IEEE.

Jiang, Y., Cukic, B., and Menzies, T. (2008). Can data transformation help in the de-
tection of fault-prone modules? In Proceedings of the Workshop on Defects in large

software systems, pages 16-20. ACM.

Jiang, Y., Lin, J., Cukic, B., and Menzies, T. (2009). Variance analysis in software fault
prediction models. In Proceedings of the International Symposium on Software Reli-

ability Engineering (ISSRE), pages 99-108. IEEE.

Jiarpakdee, J., Tantithamthavorn, C., Dam, H. K., and Grundy, J. (2020). An empirical
study of model-agnostic techniques for defect prediction models. IEEE Transactions

on Software Engineering (TSE), PP(99):1-1.

Jiarpakdee, J., Tantithamthavorn, C., and Hassan, A. E. (2019). The impact of corre-
lated metrics on the interpretation of defect models. IEEE Transactions on Software

Engineering, PP(99):1-1.

BIBLIOGRAPHY 178

Jiarpakdee, J., Tantithamthavorn, C., and Treude, C. (2018). Autospearman: Automat-
ically mitigating correlated software metrics for interpreting defect models. In Pro-
ceedings of the International Conference on Software Maintenance and Evolution (IC-

SME), pages 92-103. IEEE.

Jimenez, M., Maxime, C., Le Traon, Y., and Papadakis, M. (2018). On the impact of tok-
enizer and parameters on n-gram based code analysis. In Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pages 437-448.

IEEE.

Jing, X.-Y., Wu, E, Dong, X., and Xu, B. (2016). An improved sda based defect predic-
tion framework for both within-project and cross-project class-imbalance problems.

IEEE Transactions on Software Engineering (TSE), 43(4):321-339.

Judd, T., Ehinger, K., Durand, E, and Torralba, A. (2009). Learning to predict where
humans look. In Proceedings of the International conference on Computer Vision,

pages 2106-2113. IEEE.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A, Sinha, A., and Ubayashi, N.
(2012). A large-scale empirical study of just-in-time quality assurance. IEEE Trans-

actions on Software Engineering (TSE), 39(6):757-773.

Kang, H.]J., Bissyandé, T. E, and Lo, D. (2019). Assessing the generalizability of code2vec
token embeddings. In Proceedings of the International Conference on Automated

Software Engineering (ASE), pages 1-12. IEEE.

Kendall, M. G. (1948). Rank correlation methods. Griffin.

BIBLIOGRAPHY 179

Kendler, K. S. and Gardner, C. O. (2010). Interpretation of interactions: guide for the

perplexed. The British Journal of Psychiatry, 197(3):170-171.

Kim, S., Zhang, H., Wu, R., and Gong, L. (2011). Dealing with noise in defect prediction.
In Proceedings of the International Conference on Software Engineering (ICSE), pages

481-490. ACM/IEEE.

Kim, S., Zimmermann, T., Whitehead Jr, E. J., and Zeller, A. (2007). Predicting faults
from cached history. In Proceedings of the International Conference on Software En-

gineering (ICSE), pages 489-498. ACM/IEEE.

Kitchenham, B., Pfleeger, S. L., and Fenton, N. (1995). Towards a framework for soft-
ware measurement validation. [EEE Transactions on software Engineering (TSE),

21(12):929-944.

Knab, P, Pinzger, M., and Bernstein, A. (2006). Predicting defect densities in source
code files with decision tree learners. In Proceedings of the International workshop

on Mining software repositories (MSR), pages 119-125. ACM.

Kondo, M., Bezemer, C.-P, Kamei, Y., Hassan, A. E., and Mizuno, O. (2019). The impact
of feature reduction techniques on defect prediction models. Empirical Software

Engineering (EMSE), 24(4):1925-1963.

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., and Godfrey, M. W. (2015). Investi-
gating code review quality: Do people and participation matter? In Proceedings of
the International conference on software maintenance and evolution (ICSME), pages

111-120. IEEE.

BIBLIOGRAPHY 180

Krishna, R., Menzies, T., and Layman, L. (2017). Less is more: Minimizing code reor-

ganization using xtree. Information and Software Technology (IST), 88:53-66.

Krstajic, D., Buturovic, L. J., Leahy, D. E., and Thomas, S. (2014). Cross-validation pit-
falls when selecting and assessing regression and classification models. Journal of

cheminformatics, 6(1):10.

Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.

Journal of the American statistical Association, 47(260):583-621.

Kuhn, M. (2012). Variable importance using the caret package. Journal of Statistical

Software.

Kuhn, M. et al. (2008). Building predictive models in r using the caret package. Journal

of statistical software, 28(5):1-26.

Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. (2008). Benchmarking classifica-
tion models for software defect prediction: A proposed framework and novel find-

ings. IEEE Transactions on Software Engineering (TSE), 34(4):485-496.

Lewis, C., Lin, Z., Sadowski, C., Zhu, X,, Ou, R., and Whitehead, E. J. (2013). Does bug
prediction support human developers? findings from a google case study. In Pro-
ceedings of the International Conference on Software Engineering (ICSE), pages 372—

381. ACM/IEEE.

Li, H., Shang, W,, Zou, Y., and Hassan, A. E. (2017). Towards just-in-time suggestions

for log changes. Empirical Software Engineering (EMSE), 22(4):1831-1865.

Li, Y, Jiang, Z. M., Li, H., Hassan, A. E., He, C., Huang, R., Zeng, Z., Wang, M., and

Chen, P. (2020). Predicting node failures in an ultra-large-scale cloud computing

BIBLIOGRAPHY 181

platform: an aiops solution. ACM Transactions on Software Engineering and Method-

ology (TOSEM), 29(2):1-24.

Lipton, Z. C. (2016). The mythos of model interpretability. arXiv preprint

arXiv:1606.03490.

Lundberg, S. M., Erion, G. G, and Lee, S.-1. (2018). Consistent individualized feature

attribution for tree ensembles. arXiv preprint arXiv:1802.03888.

Lundberg, S. M. and Lee, S.-1. (2017). A unified approach to interpreting model predic-

tions. In Advances in Neural Information Processing Systems, pages 4765-4774.

Ma, S., Liu, Y., Lee, W.-C., Zhang, X., and Grama, A. (2018). Mode: automated neu-
ral network model debugging via state differential analysis and input selection. In
Proceedings of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE/ESEC), pages 175-186.
ACM.

Ma, Y, Luo, G., Zeng, X., and Chen, A. (2012). Transfer learning for cross-company
software defect prediction. Information and Software Technology (IST), 54(3):248-

256.

MacCallum, R. C., Zhang, S., Preacher, K. J., and Rucker, D. D. (2002). On the practice

of dichotomization of quantitative variables. Psychological methods, 7(1):19.

Malgonde, O. and Chari, K. (2019). An ensemble-based model for predicting agile soft-

ware development effort. Empirical Software Engineering (EMSE), 24(2):1017-1055.

Malhotra, R. and Khanna, M. (2017). An empirical study for software change prediction

using imbalanced data. Empirical Software Engineering (EMSE), 22(6):2806-2851.

BIBLIOGRAPHY 182

Marks, L., Zou, Y., and Hassan, A. E. (2011). Studying the fix-time for bugs in large open
source projects. In Proceedings of the International Conference on Predictive Models

in Software Engineering, pages 1-8. ACM.

Martens, D. and Maalej, W. (2019). Towards understanding and detecting fake reviews

in app stores. Empirical Software Engineering (EMSE), 24(6):3316-3355.

Mclntosh, S. and Kamei, Y. (2017). Are fix-inducing changes a moving target? a longi-
tudinal case study of just-in-time defect prediction. IEEE Transactions on Software

Engineering (TSE), 44(5):412-428.

MclIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2014). The impact of code review
coverage and code review participation on software quality: A case study of the qt,
vtk, and itk projects. In Proceedings of the Working Conference on Mining Software

Repositories (MSR), pages 192-201. ACM.

Mclntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2016). An empirical study of
the impact of modern code review practices on software quality. Empirical Software

Engineering (EMSE), 21(5):2146-2189.

Medin, D. L. and Schwanenflugel, P.J. (1981). Linear separability in classification learn-

ing. Journal of Experimental Psychology: Human Learning and Memory, 7(5):355.

Mende, T. (2010). Replication of defect prediction studies: problems, pitfalls and rec-
ommendations. In Proceedings of the International Conference on Predictive Models

in Software Engineering, pages 1-10. ACM.

Menzies, T. (2019). The five laws of se for ai. IEEE Software, 37(1):81-85.

BIBLIOGRAPHY 183

Menzies, T., Bird, C., Zimmermann, T., Schulte, W., and Kocaganeli, E. (2011). The
inductive software engineering manifesto: principles for industrial data mining. In
Proceedings of the International Workshop on Machine Learning Technologies in Soft-

ware Engineering, pages 19-26. ACM.

Menzies, T., Dekhtyar, A., Distefano, J., and Greenwald, J. (2007a). Problems with preci-
sion: A response to “comments on'data mining static code attributes to learn defect

predictors’". IEEE Transactions on Software Engineering (TSE), 33(9):637-640.

Menzies, T., Greenwald, J., and Frank, A. (2006). Data mining static code attributes to

learn defect predictors. IEEE Transactions on software engineering (TSE), 33(1):2-13.

Menzies, T., Owen, D., and Richardson, J. (2007b). The strangest thing about software.

Computer, 40(1).

Menzies, T. and Zimmermann, T. (2013). Software analytics: so what? IEEE Software,

30(4):31-37.

Mockus, A. (2010). Organizational volatility and its effects on software defects. In
Proceedings of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE/ESEC), pages 117-126.
ACM.

Molnar, C. (2018). Interpretable machine learning. A Guide for Making Black Box Mod-

els Explainable, 7.

BIBLIOGRAPHY 184

Morales, R., McIntosh, S., and Khombh, E (2015). Do code review practices impact de-
sign quality? a case study of the qt, vtk, and itk projects. In Proceedings of the In-
ternational Conference on Software Analysis, Evolution, and Reengineering (SANER),

pages 171-180. IEEE.

Mori, T. and Uchihira, N. (2019). Balancing the trade-off between accuracy and inter-
pretability in software defect prediction. Empirical Software Engineering (EMSE),

24(2):779-825.

Moser, R., Pedrycz, W., and Succi, G. (2008). A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In Proceedings of the

International Conference on Software Engineering (ICSE), pages 181-190. ACM/IEEE.

Mossman, D. (1994). Assessing predictions of violence: being accurate about accuracy.

Journal of consulting and clinical psychology, 62(4):783.

Mullen, R. E. and Gokhale, S. S. (2005). Software defect rediscoveries: a discrete log-
normal model. In Proceedings of the International Symposium on Software Reliability

Engineering (ISSRE), pages 10pp-212. IEEE.

Muller, M. P, Tomlinson, G., Marrie, T. J., Tang, P, McGeer, A., Low, D. E., Detsky, A. S.,
and Gold, W. L. (2005). Can routine laboratory tests discriminate between severe
acute respiratory syndrome and other causes of community-acquired pneumonia?

Clinical infectious diseases, 40(8):1079-1086.

Muthukumaran, K., Rallapalli, A., and Murthy, N. B. (2015). Impact of feature selection
techniques on bug prediction models. In Proceedings of the India Software Engineer-

ing Conference, pages 120-129. ACM.

BIBLIOGRAPHY 185

Nagappan, N. and Ball, T. (2005). Use of relative code churn measures to predict system
defect density. In Proceedings of the International conference on Software engineering

(ICSE), pages 284-292. ACM/IEEE.

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict component fail-
ures. In Proceedings of the International conference on Software engineering (ICSE),

pages 452-461. ACM/IEEE.

Nam, J., Fu, W,, Kim, S., Menzies, T., and Tan, L. (2018). Heterogeneous defect predic-

tion. IEEE Transactions on Software Engineering (TSE), 44(09):874-896.

Nam, J. and Kim, S. (2015). Clami: Defect prediction on unlabeled datasets (t). In Pro-
ceedings of the International Conference on Automated Software Engineering (ASE),

pages 452-463. IEEE.

Nicodemus, K. K. (2011). Letter to the editor: On the stability and ranking of predic-
tors from random forest variable importance measures. Briefings in bioinformatics,

12(4):369-373.

Niedermayr, R. and Wagner, S. (2019). Is the stack distance between test case and
method correlated with test effectiveness? In Proceedings of the Evaluation and As-

sessment on Software Engineering, pages 189-198. ACM.

Othmane, L. B., Chehrazi, G., Bodden, E., Tsalovski, P, and Brucker, A. D. (2017). Time
for addressing software security issues: Prediction models and impacting factors.

Data Science and Engineering, 2(2):107-124.

BIBLIOGRAPHY 186

Panichella, A., Oliveto, R., and De Lucia, A. (2014). Cross-project defect predic-
tion models: L'union fait la force. In Proceedings of the Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering

(CSMR-WCRE), pages 164-173. IEEE.

Peduzzi, P, Concato, J., Kemper, E., Holford, T. R., and Feinstein, A. R. (1996). A simula-
tion study of the number of events per variable in logistic regression analysis. Journal

of clinical epidemiology, 49(12):1373-1379.

Pelayo, L. and Dick, S. (2012). Evaluating stratification alternatives to improve software

defect prediction. IEEE Transactions on reliability (TRE), 61(2):516-525.

Peters, E, Menzies, T., Gong, L., and Zhang, H. (2013). Balancing privacy and utility in
cross-company defect prediction. IEEE Transactions on Software Engineering (TSE),

39(8):1054-1068.

Peters, E, Tun, T., Yu, Y., and Nuseibeh, B. (2017). Text filtering and ranking for security
bug report prediction. IEEE Transactions on Software Engineering (TSE), 45(6):615—

631.

Premraj, R. and Herzig, K. (2011). Network versus code metrics to predict defects: A
replication study. In Proceedings of the International Symposium on Empirical Soft-

ware Engineering and Measurement, pages 215-224. IEEE.

Putin, E., Mamoshina, P, Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., Ostrovskiy,
A, Cantor, C,, Vijg, J., and Zhavoronkov, A. (2016). Deep biomarkers of human aging:
application of deep neural networks to biomarker development. Aging (Albany NY),

8(5):1021.

BIBLIOGRAPHY 187

Rajbahadur, G. K., Wang, S., Kamei, Y., and Hassan, A. E. (2017). The impact of us-
ing regression models to build defect classifiers. In Proceedings of the International

Conference on Mining Software Repositories (MSR), pages 135-145. IEEE.

Rajbahadur, G. K., Wang, S., Kamei, Y., and Hassan, A. E. (2019). Impact of discretiza-
tion noise of the dependent variable on machine learning classifiers in software en-

gineering. IEEE Transactions on Software Engineering (TSE), PP(99):1-1.

Ray, B., Hellendoorn, V,, Godhane, S., Tu, Z., Bacchelli, A., and Devanbu, P. (2016). On
the “naturalness" of buggy code. In Proceedings of the International Conference on

Software Engineering (ICSE), pages 428-439. ACM/IEEE.

Ribeiro, M. T,, Singh, S., and Guestrin, C. (2016). Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of the international conference on

knowledge discovery and data mining, pages 1135-1144. ACM.

Royston, P, Altman, D. G., and Sauerbrei, W. (2006). Dichotomizing continuous pre-

dictors in multiple regression: a bad idea. Statistics in medicine, 25(1):127-141.

Rucker, D. D., McShane, B. B., and Preacher, K. J. (2015). A researcher’s guide to regres-
sion, discretization, and median splits of continuous variables. Journal of Consumer

Psychology, 25(4):666—678.

Sakia, R. (1992). The box-cox transformation technique: a review. The statistician,

41(2):169-178.

Santos, J. and Belo, O. (2013). Estimating risk management in software engineering
projects. In Proceedings of the Industrial Conference on Data Mining, pages 85-98.

Springer.

BIBLIOGRAPHY 188

Sayyad Shirabad, J. and Menzies, T. (2005). The PROMISE Repository of Software Engi-
neering Databases. School of Information Technology and Engineering, University

of Ottawa, Canada.

Schumann, J., Gundy-Burlet, K., Pasareanu, C., Menzies, T., and Barrett, T. (2009). Soft-
ware v&v support by parametric analysis of large software simulation systems. In

Proceedings of the IEEE Aerospace Conference, pages 1-8. IEEE.

Seiffert, C., Khoshgoftaar, T. M., and Van Hulse, J. (2009). Improving software-quality
predictions with data sampling and boosting. IEEE Transactions on Systems, Man,

and Cybernetics-Part A: Systems and Humans, 39(6):1283-1294.

Shepperd, M., Bowes, D., and Hall, T. (2014). Researcher bias: The use of machine
learning in software defect prediction. IEEE Transactions on Software Engineering

(TSE), 40(6):603-616.

Shihab, E., Hassan, A. E., Adams, B., and Jiang, Z. M. (2012). An industrial study on the
risk of software changes. In Proceedings of the Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(FSE/ESEC), page 62. ACM.

Shihab, E., Ihara, A., Kamei, Y., Ibrahim, W. M., Ohira, M., Adams, B., Hassan, A. E., and
Matsumoto, K.-i. (2013). Studying re-opened bugs in open source software. Empir-

ical Software Engineering (EMSE), 18(5):1005-1042.

Shihab, E., Mockus, A., Kamei, Y., Adams, B., and Hassan, A. E. (2011). High-impact

defects: a study of breakage and surprise defects. In Proceedings of the Joint Meeting

BIBLIOGRAPHY 189

on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (FSE/ESEC), pages 300-310. ACM.

Shimagaki, J., Kamei, Y., McIntosh, S., Hassan, A. E., and Ubayashi, N. (2016). A study
of the quality-impacting practices of modern code review at sony mobile. In Pro-
ceedings of the International Conference on Software Engineering (ICSE) Companion,

pages 212-221. ACM/IEEE.

Shull, E, Basili, V., Boehm, B., Brown, A. W,, Costa, P, Lindvall, M., Port, D., Rus, L.,
Tesoriero, R., and Zelkowitz, M. (2002). What we have learned about fighting defects.
In Proceedings of the International Symposium on Software Metrics (METRICS), pages

249-258.
Singh, R., Jaakkola, T., and Mohammad, A. (2006). 6.867 machine learning. fall 2006.

Sokolova, M., Japkowicz, N., and Szpakowicz, S. (2006). Beyond accuracy, f-score and
roc: a family of discriminant measures for performance evaluation. In Proceedings of

the Australasian joint conference on artificial intelligence, pages 1015-1021. Springer.

Song, Q., Guo, Y., and Shepperd, M. (2018). A comprehensive investigation of the role of
imbalanced learning for software defect prediction. IEEE Transactions on Software

Engineering (TSE), 45(12):1253-1269.

Song, Q., Jia, Z., Shepperd, M., Ying, S., and Liu, J. (2010). A general software defect-
proneness prediction framework. IEEE transactions on software engineering (TSE),

37(3):356-370.

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A. (2008). Conditional

variable importance for random forests. BMC bioinformatics, 9(1):307.

BIBLIOGRAPHY 190

Strobl, C., Boulesteix, A.-L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest
variable importance measures: Illustrations, sources and a solution. BMC bioinfor-

matics, 8(1):25.

Subramanyam, R. and Krishnan, M. S. (2003). Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects. IEEE Trans-

actions on software engineering (TSE), 29(4):297-310.

Tan, S.-Y. and Chan, T. (2016). Defining and conceptualizing actionable insight: a con-

ceptual framework for decision-centric analytics. arXiv preprint arXiv:1606.03510.

Tantithamthavorn, C. (2016a). Scottknottesd: The scott-knott effect size difference

(esd) test. R package version, 2.

Tantithamthavorn, C. (2016b). Towards a Better Understanding of the Impact of Ex-
perimental Components on Defect Prediction Models. PhD thesis, Nara Institute of

Science and Technology.

Tantithamthavorn, C. and Hassan, A. E. (2018). An experience report on defect mod-
elling in practice: Pitfalls and challenges. In Proceedings of the International Con-
ference on Software Engineering (ICSE): Software Engineering in Practice, pages 286—

295. ACM/IEEE.

Tantithamthavorn, C., Hassan, A. E., and Matsumoto, K. (2018a). The impact of class
rebalancing techniques on the performance and interpretation of defect prediction

models. IEEE Transactions on Software Engineering (TSE), PP(99):1-1.

BIBLIOGRAPHY 191

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., Ihara, A., and Matsumoto, K. (2015).
The impact of mislabelling on the performance and interpretation of defect predic-

tion models. In Proceedings of the International Conference on Software Engineering,

volume 1, pages 812-823. ACM/IEEE.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2016). Com-
ments on “researcher bias: the use of machine learning in software defect predic-

tion”. IEEE Transactions on Software Engineering (TSE), 42(11):1092-1094.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2017). An
empirical comparison of model validation techniques for defect prediction models.

IEEE Transactions on Software Engineering (TSE), 43(1):1-18.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2018b). The
impact of automated parameter optimization on defect prediction models. IEEE

Transactions on Software Engineering (TSE), 45(7):683-711.

Thakkar, D., Jiang, Z. M., Hassan, A. E., Hamann, G., and Flora, P. (2008). Retrieving
relevant reports from a customer engagement repository. In Proceedings of the In-

ternational Conference on Software Maintenance (ICSM), pages 117-126. IEEE.

Theisen, C., Herzig, K., Morrison, P, Murphy, B., and Williams, L. (2015). Approximat-
ing attack surfaces with stack traces. In Proceedings of the International Conference

on Software Engineering (ICSE), pages 199-208. ACM/IEEE.

BIBLIOGRAPHY 192

Thongtanunam, P, McIntosh, S., Hassan, A. E., and lida, H. (2016). Revisiting code
ownership and its relationship with software quality in the scope of modern code re-
view. In Proceedings of the International Conference on Software Engineering (ICSE),

pages 1039-1050. ACM/IEEE.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the characteristics
of high-rated apps? a case study on free android applications. In Proceedings of
the International Conference on Software Maintenance and Evolution (ICSME), pages

301-310. IEEE.

Treude, C. and Wagner, M. (2019). Predicting good configurations for github and stack
overflow topic models. In Proceedings of the International Conference on Mining

Software Repositories (MSR), pages 84-95. IEEE.
Tu, H. and Nair, V. (2018). While tuning is good, no tuner is best. FSE SWAN.

Turhan, B. (2012). On the dataset shift problem in software engineering prediction

models. Empirical Software Engineering (EMSE), 17(1-2):62-74.

Wang, H. and Song, M. (2011). Ckmeans. 1d. dp: optimal k-means clustering in one

dimension by dynamic programming. The R journal, 3(2):29.

Wang, S., Chen, T.-H., and Hassan, A. E. (2018). Understanding the factors for
fast answers in technical q&a websites. Empirical Software Engineering (EMSE),

23(3):1552-1593.

Wang, S. and Yao, X. (2013). Using class imbalance learning for software defect predic-

tion. IEEE Transactions on Reliability (TRE), 62(2):434-443.

BIBLIOGRAPHY 193

Wilcoxon, E (1945). Individual comparisons by ranking methods. Biometrics bulletin,

1(6):80-83.

Wright, M. N., Ziegler, A., and Konig, 1. R. (2016). Do little interactions get lost in dark

random forests? BMC bioinformatics, 17(1):145.

Xiang, S., Nie, E, and Zhang, C. (2010). Semi-supervised classification via local
spline regression. IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(11):2039-2053.

Xu, Z., Liu, J., Yang, Z., An, G., and Jia, X. (2016). The impact of feature selection on
defect prediction performance: An empirical comparison. In Proceedings of the In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages 309-320.
IEEE.

Yu, L. and Liu, H. (2004). Efficient feature selection via analysis of relevance and re-

dundancy. Journal of machine learning research (JMLR), 5(0Oct):1205-1224.

Yu, T., Wen, W,, Han, X., and Hayes, J. (2019). Conpredictor: Concurrency defect pre-
diction in real-world applications. IEEE Transactions on Software Engineering (TSE),

45(6):558-575.

Zhang, E, Hassan, A. E., McIntosh, S., and Zou, Y. (2016). The use of summation to ag-
gregate software metrics hinders the performance of defect prediction models. IEEE

Transactions on Software Engineering (TSE), 43(5):476-491.

Zhang, E, Keivanloo, 1., and Zou, Y. (2017). Data transformation in cross-project defect

prediction. Empirical Software Engineering (EMSE), 22(6):3186-3218.

BIBLIOGRAPHY 194

Zhang, E, Khomh, E, Zou, Y., and Hassan, A. E. (2012). An empirical study on factors
impacting bug fixing time. In Proceedings of the Working Conference on Reverse En-

gineering (WCRE), pages 225-234. IEEE.

Zhang, E, Mockus, A., Keivanloo, 1., and Zou, Y. (2014). Towards building a universal
defect prediction model. In Proceedings of the Working Conference on Mining Soft-

ware Repositories (MSR), pages 182-191. ACM.

Zimmermann, T. and Nagappan, N. (2008). Predicting defects using network analysis
on dependency graphs. In Proceedings of the International Conference on Software

Engineering (ICSE), pages 531-540. ACM/IEEE.

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., and Murphy, B. (2009). Cross-
project defect prediction: a large scale experiment on data vs. domain vs. process. In
Proceedings of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE/ESEC), pages 91-100.
ACM.

Zimmermann, T., Nagappan, N., Guo, P.]., and Murphy, B. (2012). Characterizing and
predicting which bugs get reopened. In Proceedings of the International Conference

on Software Engineering (ICSE), pages 1074-1083. ACM/IEEE.

Zimmermann, T., Premraj, R., and Zeller, A. (2007). Predicting defects for eclipse. In
Proceedings of the International Workshop on Predictor Models in Software Engineer-

ing (PROMISE’07: ICSE Workshops 2007), pages 9-9. ACM/IEEE.

Appendices

A A running example for our framework

We provide additional details for each step of our framework. In addition, we provide

arunning example outlining how each step could be applied for a dataset.

Step 1: Correlation and Redundancy Analysis

We take the Stack Overflow dataset and perform a correlation and redundancy analysis
on the 65 independent features of the Stack Overflow dataset and arrive at 28 features.
Redundant variables are detected by fitting preliminary models that explain each pre-
dictor using other predictors. The R? value of the preliminary models that are con-
structed is used as a measure to observe how well each predictor is explained using

other predictors.

195

Appendix 196

Step 2: Discretization

For the Stack Overflow dataset, when the median (21.38 mins) of the dependent vari-
able is used as the discretization threshold to discretize the data points into “class 1”
and “class 2” classes. The noisy area for the dataset is defined by choosing a limit value.
We estimate the limit value with our Algorithm 1 that is presented in our paper. To es-
timate the limit value, we need to choose the value of step_size for our automated limit
estimation algorithm. We choose step_size = 2. We input the chosen step_size and the
threshold to our algorithm. Lets consider if our algorithm reports 0.50 as the limit, then
we choose limit =0.50 and use the formula cutpoint+limitxcutpoint to cal-
culate the noisy area, as 21.38 —(21.38 % 0.50) to 21.38 —(21.38 % 0.50) which is 10.70 to

32.10 mins.

Step 3: Classifier construction

In this step, we construct a classifier on the independent features that we obtained
from step 1 and dependent variable which we obtained from step 2. Firstly, we con-
struct a classifier on the whole dataset and next we construct a classifier on the dataset
with the noisy area of the Stack Overflow dataset (i.e., data points within the range 10.70

to 32.10 mins) is removed incrementally as presented in the Section 5.

Step 4: Performance evaluation

We evaluate the performance of the RECMs that are constructed on the Stack Overflow
dataset (both on the whole dataset and the dataset without noisy area) by computing
their performance measures (Accuracy, Precision, Recall, AUC, Brier score). These per-

formance measures are then compared to analyse the impact of discretization noise

Appendix 197

on the performance of the classifiers. For instance, if a one decides to observe the per-
formance impact of discretization noise in terms of AUC, then if the AUC if the of an
RFCM that is constructed on the whole Stack Overflow dataset is 0.85 and the AUC
of an RFCM classifier that is constructed on the Stack Overflow dataset without noisy
area (i.e., data points within the range 10.70 to 32.10 mins) is 0.90. Then we estimate
that the discretization noise impacts the performance. If the discretization noise does
impact the performance as it is in our example, our framework reports the percentage
of data from the noisy area, that when dropped, starts statistically impacting the given
performance measure. In our example if the impact starts occuring from 10%, then we
only need to drop the data points within the range of 19.24 mins to 23.51 mins and not

the whole noisy area to avoid impacting the AUC of the constructed RFCM classifier.

Step 5: Feature importance calculation

Similar to step 4, we evaluate the feature importance of the RFCMs that are con-
structed on the Stack Overflow dataset (both on the whole dataset and on the dataset
without the noisy area) by computing their derived feature importance ranks. For
instance, if an RFCM that is constructed on the whole Stack Overflow dataset has
A_median_time_answer_sofar, total_upVote, title_length features as its top features.
Whereas an RFCM that is constructed on the Stack Overflow dataset without the
noisy area (i.e., data points within the range 10.70 to 32.10 mins) also has the same
features as its top features. Then, we say that the interpretation of the classifier is not
impacted by the discretization noise. If the generated top features had changed, then
we interpret that as a sign that the discretization noise impacts the feature importance

of the studied classifiers.

Appendix 198

Step 6: Inference validation

We repeat step 3 to step 5 100 times using the out-of-sample bootstrap method out-
lined above for the classifiers that are constructed on the Stack Overflow dataset (both
on the whole dataset and the dataset without noisy area). The generated results for all

100 iterations are taken together for consideration to draw an inference.

B Supplementary figures and tables

B.1 Understanding the impact of discretization noise on the perfor-

mance and interpretation of a classifier - experiment setup

Figure B.1 depicts the experimental setup for the incremental performance and
feature analysis. We also present the results for impact of discretization noise that is
generated by the Median based discretization threshold (MT), univariate clustering
based threshold (CT) Wang and Song (2011) and CART based discretization thresh-
old (RTT) on the performance and interpretation of the studied classifiers. More

details about the thresholds are available in the Section 5.3.2 of our paper.

B.2 Studying the impact of discretization noise on the performance

of a classifier - additional result tables

Table B.1 and B.2 present the impact of the discretization noise that is generated by the
univariate clustering based threshold (CT) and CART based discretization threshold
(RTT) on various performance measures for all the four classifiers. We observe perfor-

mance impacts similar to the results presented in our paper.

Appendix

199

Step 3 (Classifier Construction)

Training
data

Generate out-
of-sample
bootstrap

sample

Dataset
(after step1
and step2)

Testing

Remove x% noise in
increments of y until
noisy area is
removed

data

No noise is removed

Interpretation
(Feature
importance)

Perfomance
(AUC)

Figure B.1: Detailed overview of the classifier construction step for Section 4.

Table B.1: Percentage of improvement in median performance of various classifiers with noisy area (generated with
CT) removed over classifiers with no data removed across various performance measures (The x value for which the
performance impact first occurs for the given measure is also provided).

ACC (%) PRC (%) RCL (%) BS (%) AUC (%) F-M (%) MCC (%)
Classifier | Dataset Mag x Mag x Mag x Mag X | Mag | x Mag x Mag | x
SO 277 | 65 451 | 30 | -10.47 | 30 | -1.65 5 1.2 | 70 -2.62 | 45 9.16 | 25
MA -42 | 55 5.49 | 20 | -14.63 | 20 | -2.21 5 | 1.22% | 70 -4.01 | 40 7.01 | 20
AU | -1045 | 75 6.45 | 60 | -26.97 | 50 7.09 5 1.37 | 80 -8.77 | 70 | 21.88 | 45
RF SU -18.9 | 65 6.86 | 45 | -40.37 | 30 6.54 5 1.39 | 65 | -14.65 | 60 | 15.69 | 40
PH -1.01 | 10 092 | 30 | -10.51 | 10 | -1.43 5| -1.04 | 25 -5.32 | 10 | -5.22 | 10
BF * * * * * * * * * * * * * *
AR | -0.44% 0| -4.07 2 10.17 2| -238 | 05 0 3 511 | 7.5 -1.25 0
SO -1.42 | 75 3.98 | 40 -8.44 | 25 0.8 5 0 0 -1.69 | 55 | 24.68 | 40
MA -2.81 | 65 4.46 | 25 -11.7 | 15 | -0.29 5| 1.32% | 85 -291 | 45 | 16.51 | 25
AU | -10.01 | 75 3.83 | 80 | -21.75 | 50 | 10.57 5 | 0.76" | 95 -7.57 | 70 | 40.06 | 75
IR SU | -13.79 | 75 382 | 70 | -26.15 | 30 | 13.61 5 | 1.56% | 90 -9.93 | 65 | 32.47 | 55
PH | -0.24% | 40 39 | 20 71 15 -1.9 5 0% 0 -2.07 | 30 | -1.48 | 35
BF * * * * * * * * * * * * * *
AR | -0.68* | 10 | -8.66 | 7.5 | 41.03 5| -5.19 | 05 0 0| 27.95 5 | 10.69 5
SO -1.6 | 20 418 | 30 835 | 45 | -6.02 [45 1.37 [70 .19 | 20 | 17.25 | 20
MA -2.81 | 20 498 | 25 | -11.92 | 35 -8.8 | 50 1.32 | 65 -3.11 | 25 16.2 | 20
AU | -10.31 | 30 434 | 65 232 | 75 -0.34 0| 4.48 | 9 -8.77 | 80 | 23.23 | 40
CART SU | -17.04 | 50 561 | 55 | -35.14 | 65 | -3.86" | 50 | 4.48 | 95 | -13.93 | 70 31.1 | 20
PH -0.93 | 10 | 0978 0 -9.7 | 10 | -2.42* | 25 | -6.98 | 10 -4.59 | 10 | -4.96 | 10
BF * * * * * * * * * * * * * *
AR | -0.927 10 | -1.95* 10 7.77 8 | -3.08% 0 0.82 0 4.217 8 1.85 0
SO -1.83 | 10 275 [50 -7.06 5 1.24 5| 423 | 35 -1.88 | 10 | 22.56 | 30
MA -3.07 | 10 3.61 | 30 | -10.66 5| 0.12* 5 58 | 15 -3.3 5| 2294 | 15
AU | -12.32 | 20 237 | 80 | -22.94 | 15 7.4 | 10 | 5.08 | 60 -9.96 | 15 | 39.16 | 65
KNN SU | -17.17 | 15 305 | 75 | -31.05 | 10 7.77 5| 656 | 60 | -13.36 | 10 | 28.07 | 55
PH 0.68 | 20 3.39 | 25 -9.05 | 10 -1.4 | 10 | -2.67 | 15 -3.65 | 20 | -2.35% | 40
BF * * * * * * * * * * * * * *
AR 0.02 | 1.5 0.34 4 -021 | 1.5 | -1.36 1 0 0 -0.1 2 0.22 0

1. Performance Measures: ACC- Accuracy, PRC- Precision, RCL- Recall, BS- Brier Score, F-M- F-Measure

2. Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User, PH- Patch, BF- Bug-fix, AR- App-rating

3. Mag- Magnitude of the performance impact |x- % of data of the noisy area when dropped starts statistically impacting the given perfor-
mance measure

4. Cohen’s d effect size: Negligible - No formatting, Small -, Medium -#, Large - bold

5. ’—‘indicates performance measure decreases due to removal of noisy area; '+‘ indicates performance measure increases due to removal
of noisy area

6. All the values with small, medium or large effect size are statistically significant with p <0.05

7. * Noisy area was not demarcated for Bug-fix dataset as given in Table 5.2 of our Chapter 5

8. ’—‘in cases of Brier score indicates an actual increase in the Brier score and '+ a decrease in Brier score (Lower the Brier score, the lesser
the error)

xipuaddy

00¢

Table B.2: Percentage of improvement in median performance of various classifiers with noisy area (generated with
RTT) removed over classifiers with no data removed across various performance measures (The x value for which
the performance impact first occurs for the given measure is also provided).

ACC (%) PRC (%) RCL (%) BS (%) AUC (%) F-M (%) MCC (%)
Classifier | Dataset [~ Mag x Mag X Mag x Mag x Mag x Mag | x Mag X

SO | -10.76 | 65 6.9 | 30 | -24.63 20 1.8 5 oS 85 | -8.13 | 55 10.01 25

MA | -6.46 | 65 452 | 35 | -14.26 30 2.02 5 0 85 | -4.36 | 55 18.86 | 35

AU -9.96 | 80 6.27 | 60 | -25.31 50 7.28 | 10 1.37 80 | -8.17 | 70 2258 | 50

RF SU | -12.15 | 75 5.07 | 50 | -24.01 35 8.33 5 1.37 70 | -8.46 | 70 20.81 45
PH -5.59 | 10 0.2 15 -7.29 5 -3.36 5| -4.76 10 | -3.38 | 10 | -31.29 10

BF 017 | 95 0.15 | 95 0 70 | -0.73% | 10 0% | 100 0.08 | 90 212 | 95

AR | -0.84 | 25 | -6.09 1 4.08 | 25 -3.67 | 05 | -1.47 | 115 | 1.49% 3 -5.9 2

SO -8.38 | 70 5.92 | 45 | -20.68 30 5.62 5 0 0| -6.35 | 60 3278 | 45

MA | -3.86 | 70 2.92 | 55 -8.82 40 3.08 5 o* 90 | -2.57 | 60 29.93 | 45

AU -9.35 | 75 3.69 | 80 | -20.19 50 | 10.65 | 10 | 1.52% 95 | -6.98 | 70 40.12 | 75

LR SU -6.19 | 75 2.46 | 75 | -11.83 45 | 12.96 5 o* 90 41 | 75 36.84 | 60
PH -2.95 | 25 0.87 | 20 -4.95 20 -3.77 5 0% 20 | -1.85 | 25 | -14.48 | 30

BF -6.99 | 90 2.44 | 95 | -13.51 60 6.5 | 10 0 0| -487 | 85 31.14 | 85

AR 0.07 | 85 | -2.99° 4 75.2 | 35 -6.91 | 05 0 0 | 68.13 | 35 51.24 | 35

SO -8.94 | 20 5.99 | 35 | -20.63 55 -4.06 | 35 2.56 85 | -6.99 | 20 20.25 | 20

MA 5.9 | 25 3.81 30 | -12.55 65 | -3.19% | 35 | 1.32% 0| -411 | 30 25.89 15

AU -9.81 | 25 442 | 65 | -21.85 75 | -3.38% 0 4.48 90 | -8.26 | 80 2267 | 35

CART SU -11.2 | 75 3.61 65 | -20.65 70 | -3.328 | 55 | 1.52% 95 8| 75 27.22 | 55
PH -477 | 15 0.4* 60 -6.42 20 | -3.82% | 45 | -7.43 35 | -2.97 | 15 | -18.89 10

BF -14.1 | 90 1.99 | 100 | -21.65 25 55 | 25 | 1.61° 0| -9.58 | 90 -1.48 0

AR | -1.04%5 | 55 | -2475 | 55 4535 | 135 | -12.71 7| -1.67° 0| 2435 | 13 -2.61 2

SO 837 | 20 4.46 | 60 | -18.22 10 5.4 5 5.56 45 6.3 | 15 32.63 | 45

MA | -4.85 | 10 2.66 | 55 -9.54 5 2.31 5 7.25 50 | -3.33 | 10 37.1 15

AU | -11.98 | 20 2.23 | 80 | -22.12 15 7.43 10 5.08 60 | -9.45 | 20 36.63 | 65

KNN SU | -10.49 | 10 1.91 70 | -17.05 10 7.16 5 6.56 45 | 719 | 10 32.1 25
PH -2.41 | 30 | 0.06° 0 -3.16 30 -3.2 5 | -1.41 10 | -1.48 | 30 | -10.53 | 30

BF 837 | 35 1.14 | 100 | -13.16 20 7.03 | 10 5.17 | 100 | -5.64 | 35 38.8 | 100

AR 023 | 25 | -0.28° 0 -7.64 15 -2.01 1| -088" | 135 | -4.64 3 | -10.65" 15

1. Performance Measures: ACC- Accuracy, PRC- Precision, RCL- Recall, BS- Brier Score, F-M- F-Measure

2. Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User, PH- Patch, BF- Bug-fix, AR- App-rating

3. Mag- Magnitude of the performance impact |x- % of data of the noisy area when dropped starts statistically impacting the given performance
measure

4. Cohen’s d effect size: Negligible - No formatting, Small -5, Medium -#, Large - bold

5. '—‘indicates performance measure decreases due to removal of noisy area; +‘ indicates performance measure increases due to removal of noisy
area

6. All the values with small, medium or large effect size are statistically significant with p <0.05

7. '—'in cases of Brier score indicates an actual increase in the Brier score and '+ a decrease in Brier score (Lower the Brier score, the lesser the
erTor)

xipuaddy

10¢

Appendix 202

B.3 Studyingtheimpact of discretization noise on the interpretation

of a classifier - additional result tables
Table B.3, B.4 and B.5 presents the impact of discretization noise that is generated by
the Median based discretization threshold (MT), univariate clustering based thresh-
old (CT) and CART based discretization threshold (RTT) on the interpretation of all
the four classifiers. We observe that the impact on interpretation for all the studied

classifiers on all the discretization thresholds follow the same trend. Furthermore, the

presented results are similar to the results and inferences presented in our paper.

B.4 Experiment setup of Section 5.5.1

Figure B.2 shows the overview of the experiment setup for answering why are the clas-

sifiers that are trained on the noisy area able to perform well on extremes.

B.5 An overview of the complexity metrics that are used in Sec-

tion 5.5.2

Table B.6 gives a brief description of the complexity metrics used in Section 5.5.2

B.6 Experimental setup of Section 5.5.2

Figure B.3 gives a detailed overview of the experiment setup for answering why are the
classifiers that are trained on the noisy area are unable to perform well on the noisy

area.

Appendix 203

Table B.3: The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a classifier that is
trained on the whole dataset (Rank;,) and a classifier that is trained on the dataset
with the noisy area (with MT) removed (Ranky) (column B).

. Rank shift likelihood (A) Rankyy, vs. Rankyr (B)
Classifier | Dataset Rank1l | Rank2 | Rank3 | p-value | Cohen’sd
SO 0 0 0 0 -1.29 (L)
MA 0 0 0 0 -2.15 (L)
AU 0 0 0 0 -2.28 (L)
RFCM SU 0 0 0 0.02 -0.74 (M)
PH 0 0 0 0.04 -0.62 (M)
BF 0 0 0 0 -1.4 (L)
AR 0 0 0 1 -0.31 (S)
SO 0 0 0 0 -1.95 (L)
MA 0 0 0 0 -1.19 (L)
AU 0 0 0.02 0 -3.04 (L)
LR SU 0 0 0 0 -1.82 (L)
PH 0 0 0 0 -1.85 (L)
BF 0 0 0 0 -1.5 (L)
AR 0 0 0 0 -2.13 (L)
SO 0 0 0 0 -2.29 (L)
MA 0 0 0 0 -2.08 (L)
AU 0 0 0 0 -1.43 (L)
CART SU 0 0 0 0 -1.06 (L)
PH 0 0 0 0 -1.07 (L)
BF 0 0 0 0 -3.03 (L)
AR 0 0 0 0.01 -1.01 (L)
SO 0 0 0 0 -1.68 (L)
MA 0 0 0 0 -1.72 (L)
AU 0 0 0 0 -3.12 (L)
KNN SU 0 0 0 0.01 -0.92 (L)
PH 0 0 0.16 0 -2.14 (L)
BF 0 0 0 0 -2.39 (L)
AR 0 0 0 0 -1.41 (L)

Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User,
PH- Patch, BF- Bug-fix, AR- App-rating

Appendix 204

Table B.4: The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a classifier that is
trained on the whole dataset (Rank;,) and a classifier that is trained on the dataset
with the noisy area (with CT) removed (Ranky) (column B).

. Rank shift likelihood (A) Rankyy, vs. Rankyr (B)
Classifier | Dataset Rank1 | Rank2 | Rank3 | p-value | Cohen’sd
SO 0 0 0 0 -2.7(L)
MA 0 0 0 0 -2.56 (L)
AU 0 0 0 0 -2.44 (L)
RFCM SU 0 0 0 0 -1.99 (L)
PH 0 0 0 0 -1.81 (L)
BF * * * * *
AR 0 0 0 0 -2.21 (L)
SO 0 0 0 0 -1.14 (L)
MA 0 0 0 0 -2.01 (L)
AU 0 0 0 0 -2 (L)
LR SU 0 0 0 0 -2.25 (L)
PH 0 0 0 0 -1.41 (L)
BF * * * * *
AR 0 0 0 0 -1.41 (L)
SO 0 0 0 0 -1.49 (L)
MA 0 0 0 0 -1.15 (L)
AU 0 0 0.01 0 -3.16 (L)
CART SU 0 0 0 0 -3.12 (L)
PH 0 0 0 0 -1.07 (L)
BF * * * * *
AR 0 0 0 0 -1.85 (L)
SO 0 0 0 0 -1.80 (L)
MA 0 0 0 0 -1.00 (L)
AU 0 0 0 0 -1.38 (L)
KNN SU 0 0 0 0 -1.53 (L)
PH 0 0 0 0 -1.99 (L)
BF * * * * *
AR 0 0 0 0 -2.32 (L)

1. Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User,
PH- Patch, BF- Bug-fix, AR- App-rating

2. * Noisy area was not demarcated for Bug-fix dataset as given in Table 5.2 of our
Chapter 5

Appendix 205

Table B.5: The likelihood of rank shifts in the top 3 most important ranks (column
A) and the comparison of the derived feature importance ranks of a classifier that is
trained on the whole dataset (Rank;,) and a classifier that is trained on the dataset
with the noisy area (with RTT) removed (Ranky) (column B).

. Rank shift likelihood (A) Rankyy, vs. Rankyr (B)
Classifier | Dataset Rank1l | Rank2 | Rank3 | p-value | Cohen’sd
SO 0 0 0 0 -2.31 (L)
MA 0 0 0 0 -2.72 (L)
AU 0 0 0 0 -1.64 (L)
RFCM SU 0 0 0 0 -2.68 (L)
PH 0 0 0 0 -1.1(L)
BF 0 0 0 0 -1.81 (L)
AR 0 0 0 0 -2.45 (L)
SO 0 0 0 0 -1.36 (L)
MA 0 0 0 0 -1.75 (L)
AU 0 0 0 0 -1.59 (L)
LR SU 0 0 0 0 -2.63 (L)
PH 0 0 0 0 -1.29 (L)
BF 0 0 0 0 -1.84 (L)
AR 0 0 0 0 -1.43 (L)
SO 0 0 0 0 -1.73 (L)
MA 0 0 0 0 -4.06 (L)
AU 0 0 0.01 0 -1.75 (L)
CART SU 0 0 0 0 -2.76 (L)
PH 0 0 0 0.15 -0.52 (M)
BF 0 0 0.01 0 -1.6 (L)
AR 0 0 0 0 -1.57 (L)
SO 0 0 0 0 -1.76 (L)
MA 0 0 0 0.14 -0.50 (M)
AU 0 0 0 0 -1.70 (L)
KNN SU 0 0 0 0 -1.39 (L)
PH 0 0 0 0 -2.13 (M)
BF 0 0 0 0 -2.45(L)
AR 0 0 0 0 -1.87 (L)

Datasets: SO- Stack Overflow, MA- Mathematics, AU- Ask Ubuntu, SU- Super User,
PH- Patch, BF- Bug-fix, AR- App-rating

Appendix 206

100-out-sample bootstrap (i.e., repeat 100 times)
Y

d oo/ﬂ
\noisy area

i 7 Generate) Y
Generate (3
—> bootstrap over |—> 100%

sample by 100% w Auc
—Gamaratin) Y
- Generate D
| | —>| bootstrap over | —> 200%
Dataset sample by 200% w
e) Y
Generate (3

—>| bootstrap over |—> 300%
sample by 300% w

Y
()
- Generate Traigilsandat
bootstrap \laining daty
sample P
()

Testing data

Figure B.2: Overall experimental setup for Discussion 1 explaining why classifiers that
are trained on the noisy area performs well on extremes.

Appendix 207

Split into 5 f

Dataset quantums : 5
= 1 > e

OX- OX 1 1

Sort on . ' :
transformation on : Q1 Q2 | a3 |

depe_ndent dependent ! :
variable . . .
variable ! :

Discretize Class 1 Class 1

data data Complexity
analysis

Figure B.3: Transformation of the data for the complexity analysis.

Table B.6: Data complexity metrics that are used in our analysis.

Metric

Explanation

Interpretation

Fisher’s Discriminant Ratio (F1)

It is an overlap measure that calculates
the amount of overlap that exists be-
tween the independent values of the
data points that belong to “class 1” and
“class 2”. The amount of overlap be-
tween each feature of the data points
that belongs to both the classes is com-
puted and the maximum score over all
the features is used as F1.

A higher F1 score means
that there is less overlap and
it is easy for a classifier to
discriminate between data
points in different classes
and vice versa.

Linear Separability (L2)

It is the degree of separability between
data points belonging to two classes. In
our case, it is a measure of how easy
it is for a classifier to discriminate be-
tween a data point belonging to “class
1”7 and “class2” Medin and Schwanen-
flugel (1981) amounts to linear separa-
bility. We measure this separability by
taking into account the outliers and the
error.

A high 12 score indicates
that the separability is low
and harder for a classifier to
classify data points, whereas
a low L2 score means the
classifier can classify data
points easily.

Mixture identifiability (N2)

It aims at capturing how identifiable is
one class from another with respect to
the independent feature. The ratio be-
tween the average Euclidean distances
between all intra-class nearest neigh-
bors and all inter-class nearest neigh-
bors is used as the measure.

A higher N2 score indicates
that it is hard to identify the
classes correctly, whereas a
lower score means that class
loyalty of the data points is
easy to identify.

Nonlinearity (N4)

It measures the nonlinearity of the
data, we measure it using the tech-
nique that was proposed by Hoekstra
and Duin Hoekstra and Duin (1996).

The higher the nonlinearity,
the harder it is for a classifier
to perform well.

xipuaddy

80¢

	Abstract
	Acknowledgments
	Dedication
	Co-authorship
	Statement of Originality
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Thesis Overview
	Thesis Contribution

	Background and Motivation
	Discretization Of The Dependent Feature
	Feature Importance Methods

	Literature survey
	Literature Selection
	Data Pre-processing Step
	Classifier Construction Step
	Classifier Evaluation Step
	Classifier Validation Step

	Avoiding the Discretization of the Dependent Feature by Using Regression-based Classifiers
	Introduction
	Experiment Setup
	Preliminary Study
	Case Study Results
	Discussion
	Threats to Validity
	Chapter Summary

	Mitigating the Impact of Discretizing the Dependent Feature
	Introduction
	Data Collection
	Framework for Understanding the Impact of Discretization Noise
	Understanding the Impact of Discretization Noise on the Performance and Interpretation of a Classifier
	Discussion
	Guidelines for Using Our Framework
	Threats to Validity
	Chapter Summary

	The Impact of Interchangeably Using Feature Importance Methods
	Introduction
	Motivation
	Case Study Setup
	Case Study Results
	Discussion
	Implications
	Threats to Validity
	Chapter Summary

	Conclusion and Future Work
	Thesis Contributions
	Future Research Directions

	Appendices
	A running example for our framework
	Supplementary figures and tables

