
Pitfalls Analyzer: Quality Control for
Model-Driven Data Science Pipelines

Gopi Krishnan Rajbahadur
Queen’s University
Kingston, Canada

krishnan@cs.queensu.ca

Gustavo Ansaldi Oliva
Queen’s University
Kingston, Canada

gustavo@cs.queensu.ca

Ahmed E. Hassan
Queen’s University
Kingston, Canada

ahmed@cs.queensu.ca

Juergen Dingel
Queen’s University
Kingston, Canada

dingel@cs.queensu.ca

Abstract—Data science pipelines are a sequence of data pro-
cessing steps that aim to derive knowledge and insights from raw
data. Data science pipeline tools simplify the creation and au-
tomation of data science pipelines by providing reusable building
blocks that users can drag and drop into their pipelines. Such
a graphical, model-driven approach enables users with limited
data science expertise to create complex pipelines. However,
recent studies show that there exist several data science pitfalls
that can yield spurious results and, consequently, misleading
insights. Yet, none of the popular pipeline tools have built-in
quality control measures to detect these pitfalls. Therefore, in
this paper, we propose an approach called Pitfalls Analyzer to
detect common pitfalls in data science pipelines. As a proof-of-
concept, we implemented a prototype of the Pitfalls Analyzer
for KNIME, which is one of the most popular data science
pipeline tools. Our prototype is model-driven, since the detection
of pitfalls is accomplished using pipelines that were created with
KNIME building blocks. To showcase the effectiveness of our
approach, we run our prototype on 11 pipelines that were created
by KNIME experts for 3 Internet-of-Things (IoT) projects. The
results indicate that our prototype flags all and only those
instances of the pitfalls that we were able to flag while manually
inspecting the pipelines.

Index Terms—Data science pipelines, model-driven engineer-
ing, quality control, data science pitfalls

I. INTRODUCTION

Data science is the science of extracting knowledge and
insights from the data. Data science pipelines are sequences of
processing and analytic steps that are applied on data to extract
such knowledge and insights. These data science pipelines are
being widely used in various industries [1, 2, 3, 4] towards
diverse use-cases. For instance, GE [5], SAP [6], Bosch [2],
and Siemens [7] use a variety of data science pipelines to ad-
dress problems related to the Internet-of-Things (IoT), Cyber-
Physical Systems (CPS) and industrial automation. Particularly
in the manufacturing industry, “Industry 4.0” has become a
driving force that seeks to unite manufacturing, automation,
and rich data sources. These efforts hold data science at their
heart to foster better development and automation of IoT and
CPS [8, 9]. Rüßmann et al. [9] predict such efforts would be
worth close to 39 billion euros in the next 10 years.

However, data science requires deep expertise [10] to be
effectively galvanized for real-world applications. Such a
requirement have led industries and open source communities
to come up with various data science pipeline tools, which
support the creation and automation of pipelines. Examples of

tools include Microsoft Azure Machine Learning Studio [11],
IBM ThingWorx [12], Verizon ThingSpace [13], KNIME [14],
Weka [15], and RapidMiner Studio [16]. Such pipeline tools
leverage domain-specific graphical modeling languages (DSL)
to enable the specification of data science pipelines. From
a practical perspective, users specify pipelines by intercon-
necting building-blocks using graphical components that are
provided by the tool. An example of a data science pipeline
that is designed in KNIME is shown in Figure 3. Once
the specification of the pipeline is completed, the pipeline
tool automatically generates the low-level code that enables
the execution of the pipeline. In other words, pipeline tools
transform a user-specified data science pipeline into executable
code (Figure 1). Ultimately, these tools enable users with
limited data science and programming expertise to implement
their data science pipelines with ease [17].

Users Data Science
Pipeline Low-level code Executed

Creates with
graphical DSL Generates

Fig. 1. Code generation in data science pipeline tools.

Unfortunately, data science pipeline tools encapsulate a seri-
ous problem. While they enable users with limited knowledge
to create and automate pipelines easily, these tools do not
offer ways to ensure the quality of the created pipelines and
the generated results. Yet, prior research has shown that users
with limited knowledge in data science tend to create pipelines
that commonly lead to invalid results [17, 18]. Consider an
example where a data science pipeline is being created by
a non-expert user for forecasting and preventing failure of a
pacemaker from associated sensor data. In such a pipeline, if
the user fails to deal with correlated metrics in the data, it
becomes impossible to ascertain which sensor truly indicates
the presence of a problem, as correlation in the data yield
spurious interpretations [17, 19]. Therefore, acting based on
results of the pipeline could mean fixing the wrong aspect of
the pacemaker, which in turn could have serious implications.
In fact, similar problems have been encountered in practice by
several industries. For instance, Google failed to predict the

flu trends correctly, because they did not account for common
data science pitfalls [20].

Hence, it is pivotal for expert and non-expert industry
practitioners alike to avoid data science pitfalls. Mello et al.
[21], Tantithamthavorn and Hassan [17] and Menzies and
Shepperd [22] describe various pitfalls that non-expert practi-
tioners stumble into when constructing data science pipelines.
However, automating the detection of these pitfalls in data
science pipelines is still an open research challenge.

Therefore, inspired by prior studies from the MDE com-
munity [23, 24, 25], we propose a novel approach called
Pitfalls Analyzer that automates the detection of the pitfalls
described by [17]. Our approach is model-driven and operates
within the context of the domain-specific graphical modelling
language employed by the pipeline tools. In this paper, we also
describe the implementation details of our proposed approach
in KNIME, which is one of the most popular pipeline tools
[26]. Finally, we evaluate our implementation and showcase
its effectiveness on 11 pipelines that were written by KNIME
experts as part of 3 IoT projects.
Paper organization: The remainder of this paper is organized
as follows. Section II provides a background on quality
control in data science and discusses related work. Section
III outlines our proposed approach to detected these pitfalls.
Section IV describes the proof-of-concept implementation of
our proposed approach in KNIME. Section V evaluates our
prototype. Section VI discusses the limitations of both our
approach and implementation. Finally, Section VII concludes
our study and discusses future work opportunities.

II. BACKGROUND AND RELATED WORK

A. Quality control in data science

Learners are at the heart of data science pipelines. A learner
is a statistical or machine learning technique that forms a
mathematical representation of the data it analyzes. This rep-
resentation can be used to perform a variety of analytic tasks.
Examples of popular learners include: Linear Regression,
Logistic Regression, Decision Trees, and Random Forests.
There are various factors that could impact the integrity of
the result generated by the learner, which in turn impact the
integrity of the results produced by a data science pipeline. For
instance, prior research efforts have identified various issues
on ensuring the quality of the data that is used in the data
science process. For example [27, 28, 29] detail the perils of
using data with poor quality as a part of a data science pipeline
and focus on ensuring the quality of the collected data. Also,
Hall [19] notes that correlated metrics that are present in a
datasets could led to spurious learner interpretation. In turn,
Cawley and Talbot [30] and Shepperd et al. [31] demonstrate
the need for avoiding bias in the learners that are used in the
data science pipelines.

While the aforementioned studies focus on individual as-
pects of the data science pipeline, Mello et al. [21], Menzies
and Shepperd [22] and Tantithamthavorn and Hassan [17]
describe data science pitfalls, i.e., incorrect ways of using
data science processes and techniques. In this paper, we

conceive an approach called Pitfalls Analyzer to detect the
8 pitfalls described by Tantithamthavorn and Hassan [17].
In the following, we briefly introduce these pitfalls. For a
more thorough explanation (including examples and avoidance
strategies), please refer to the original paper.

Pitfall P1 – Absence of control variables: Control variables
are confounding variables that may affect the outcome of a
data science pipeline or the interpretation of such an outcome.
For example, it has been shown that large software modules
are more likely to have more defects. Therefore, a learner
(e.g., Logistic Regression) that aims to predict defects in future
versions of a module should include the size of the module as
a control variable.

Pitfall P2 – Not accounting for the impact of correlated
variables on learner interpretation: Prior studies show
that not accounting for correlated variables when building a
learner can yield misleading insights (e.g., regarding variable
importance) [19, 32, 33]. Hence, correlated variables should be
accounted for (e.g., removed) from the data prior to building
the learner.

Pitfall P3 – Not accounting for the impact of data re-
balancing techniques on learner interpretation: Classifier
learners (e.g., Decision Trees) tend to perform poorly when
the number of data points belonging to each class differ sub-
stantially (i.e., when there is class imbalance). In this scenario,
practitioners may use a family of techniques known as data
rebalancing, which aims to bring the number of observations
in each class closer together (e.g., by creating artificial data
for the minority class). While such data rebalancing tends
to improve classification performance, Turhan [34] observed
that it can also induce a side-effect: bias in learned concepts
(i.e., concept drift). In other words, the rebalanced dataset can
have different statistical properties compared to the original
one, thus possibly yielding misleading insights (e.g., regarding
variable importance).

Pitfall P4 – Not experimenting with different learners
or using default parameter settings for learners: Trying
different learners for the same problem is a recommended
practice, since there is no silver bullet learner, i.e., one that
always works best in all possible situations [35]. Moreover,
learners have hyper-parameters that need to be tuned in order
to maximize their prediction performance [36]. Hence, not ex-
perimenting with different learners or using default parameters
might lead to suboptimal prediction performance.

Pitfall P5 – Using threshold-dependent performance mea-
sures to measure the performance of a learner: The perfor-
mance of a learner can be measured using threshold-dependent
(e.g., F-measure) and threshold-independent (e.g., Area Under
the receiving operating characteristic Curve (AUC)) perfor-
mance measures. The former typically depend on a confusion
matrix to be calculated, which in turn depend on a probability
threshold to be generated. A threshold-dependent measure can
be tricky to interpret, since its value might differ substantially
depending on which specific threshold is used. To avoid spuri-

2

ous interpretation, threshold-independent measures should be
favoured over threshold-dependent in most situations.
Pitfall P6 – Using 10-fold cross-validation to estimate the
performance of a learner: Validation techniques estimate
how accurately a learner will perform in practice. 10-fold cross
validation is a popular validation technique in which the origi-
nal data is randomly partitioned into k equal sized subsamples
(folds). Of the k subsamples, a single one is retained as the
validation data for testing the model, and the remaining k− 1
subsamples are merged together and used as training data.
The cross-validation process is then repeated k times, with
each of the k subsamples used exactly once as the validation
data. Despite the popularity of 10-fold cross validation and
its simplicity, there exist other validation techniques that are
more accurate and stable (e.g., out-of-sample bootstrap) [37].
Hence, usage of 10-fold cross-validation in a pipeline should
be dropped in favour of more powerful validation techniques.
Pitfall P7 – Using ANOVA Type-1 when interpreting a
learner: The Analysis of Variance (ANOVA) is a statistical
test that examines the importance of two or more variables on
the outcome of a learner (e.g., defect-proneness). However,
ANOVA Type-1 has a generally undesirable characteristic: it
is sensitive to the ordering of the variables in the learner
specification (e.g., logistic regression model). As a result,
interpretation becomes coupled to the learner specification.
Therefore, usage of ANOVA Type-1 should be dropped in
favour of a more robust test that is insensitive to variable
ordering (e.g., ANOVA Type-2).
Pitfall P8 – Interpreting a regression learner using the
coefficients of its variables: In a regression learner (e.g.,
Linear Regression), each dependent variable typically has a
coefficient attached to it. It is not uncommon for these vari-
ables to be on different scales or assume different ranges. For
instance, while total lines of code is usually in the thousands
(e.g., 50k), the proportion of highly-active developers ranges
from 0 to 1. Big differences such as these often impact the
coefficients of a regression learner. Hence, assuming that the
coefficients of a regression learner represent the importance of
each dependent variable is always prone to yield misleading
conclusions.

B. Quality control in data science pipeline tools

Data science pipeline tools support the creation and automa-
tion of data science pipelines in a graphical, model-driven
fashion. However, to the best of our knowledge, none of
these tools implement any automated mechanism to ensure
quality control of the pipelines produced. The closest effort
we could identify has been from the KNIME community,
which has provided a document [38] with “best-practices for
the development, documentation and deployment of KNIME
nodes, plug-ins and features.” However, such a document does
not address data science pitfalls.

C. Code verification

Use of static defect finder tools have been a fundamental
part of software quality research [39]. These tools typically

traverse program paths extracted from the code in order to
find pre-specified problem patterns [39, 40, 41, 42]. A few
other research efforts have focused on finding potentially
problematic patterns in the source code (a.k.a., code smells)
[43, 44].

Furthemore, there have been several efforts in the MDE
community to provide error detection and quality control in
model-driven solutions, though not catered towards pipeline
tools or data science in general. The efforts that are closest to
our work are the ones that demonstrate the use and applicabil-
ity of static analysis for DSLs. Towards that end, Ruiz-Rube
et al. [23] propose a model-driven interoperability method that
enables standard static analyzer tools to be used to analyze
systems that were written using DSLs. Their interoperability
method produce several model transformations, to map be-
tween the grammar of the DSL and the static analyzer tool’s
target language. In turn, Heinze et al. [24] take a formalism-
based approach to analyze DSLs. They proposed a method
that takes a business process and generates a petri-net, which
is later used to verify the correctness of the process and flag
problems. Saad and Bauer [25] proposed a way to perform
static analysis of model-driven DSLs through adoption of data
flow-analysis. Their primary goal was to help the designers of
the model-driven DSLs add static analysis capabilities to their
DSLs. Several other studies [45, 46] also explore methods
of enabling static analysis for DSLs. In summary, all these
studies transform the model to a common form and check for
a problem-causing pattern in the original model-driven DSL.
Inspired by these approaches, we propose a novel, graphical,
model-driven approach for identifying common data science
pitfalls. In the next section, we describe such an approach.

III. PITFALLS ANALYZER - APPROACH

In this section, we detail our approach called Pitfalls Ana-
lyzer, which aims to detect pitfalls in data science pipelines.
Our approach focuses on the pitfalls described by Tan-
tithamthavorn and Hassan [17], which were introduced in
Section II-A. An overview of our approach is shown in Figure
2. In summary, we first extract the DAG (Directed Acyclic
Graph) of the pipeline, which represents the control-flow of
the pipeline. Next, we identify all the learners present in the
DAG. Subsequently, we extract the execution sub-graph of
each learner, which is made up of all paths leading to and
from such a learner. Finally, we determine if any of the pitfalls
occur in the execution sub-graph generated for each of the
learners by searching for the presence of anti-patterns. Finally,
we inform users about the presence/absence of pitfalls.

As depicted in Figure 2, our approach comprises four
key steps, namely: DAG extraction, Execution sub-graph ex-
traction, Pitfalls identification, and Pitfalls reporting. In the
following sections, we explain each of these steps in more
detail. We use the pipeline shown in Figure 3 as a running
example to support the explanation of our approach.

3

Extract DAG

Identify the learners
in the DAG

Extract the
execution sub-graph

of each learner

Check for anti-
pattern in the
relevant slice

Pitfall detection (Step 3)

Execution
sub-graph

extraction (Step 2)

DAG extraction (Step 1)

Target Pipeline

Report no warnings

Present?Report pitfalls

Pitfalls
reporting (Step 4)

Present?

Yes

Yes

No

Report no warnings

No

Fig. 2. An overview of our approach.

A. DAG Extraction (Step 1)

A data science pipeline contains nodes and connections.
Nodes represent the activities to be performed, while the
connections between them dictate the flow of execution.
Hence, a pipeline can be seen as a Directed Acyclic Graph
(DAG) [47], where vertices represent nodes and edges rep-
resent connections. In this step, we extract the DAG from
the target pipeline. In practice, most tools encode pipelines
in metadata files. Therefore, DAG extraction can often be
accomplished by parsing such a file. We highlight, however,
that the metadata file is tool-specific and its format may vary
(e.g., XML, JSON).
Running example: In the example depicted in Figure 3, the
extracted DAG would contain all the 19 nodes of the pipeline
along with their various interconnections.

B. Execution sub-graph extraction (Step 2)

Once the DAG of the pipeline is extracted, we extract the
execution sub-graph of each learner node. This is done in two
sub-steps as follows:

Identify the learners in the DAG: We identify all learner
nodes in the extracted DAG. We do so because all of the
pitfalls discussed in Section II are only meaningful if a learner
is present in the pipeline. We stop our approach if none exists
(check “Report no warnings” at the top right of Figure 2).
Running example: Our example pipeline depicted in Figure 3
contains 3 learner nodes, namely: Decision Tree Learner,
Random Forest Learner, and Logistic Regression Learner.

Extract the execution sub-graph of each learner For each
learner node, we need to extract its execution sub-graph. We

define the execution sub-graph of a learner node as the sub-
graph that contains all possible execution paths in the DAG
leading from and to such a node. To obtain the execution paths
leading from the learner node, we simply run a Depth-First
Search (DFS) starting from the learner node. We call the sub-
graph induced by the visited vertices a forward slice of the
execution sub-graph. Similarly, to compute the execution paths
leading to the learner node, we simply reverse all edges of the
DAG and rerun DFS starting from the learner node. In this
case, we call the sub-graph induced by the visited vertices a
backward slice of the execution sub-graph.

The backward slice of a learner contains the nodes that
regard learner preparation, since they are always executed
before the learner is built. Analogously, the forward slice of a
learner contains the nodes that regard learner interpretation,
since they are executed after the learner is built.

Running example: In Figure 4, we show the backward slice of
the execution sub-graph of the three learners (Random Forest,
Decision Tree, and Logistic Regression) from the example
pipeline depicted in Figure 3.

Backward slice of the execution sub-graph of the logistic regression learner

Backward slice of the execution sub-graph of the decision tree learner

Backward slice of the execution sub-graph of the random forest learner

Node 12

Node 29Node 30Class creationRead the Eclipse2.0 File

Read the Eclipse2.0 File Class creation Node 35

Node 36

Node 37Node 38

Node 39

Node 40

Node 41Class creationRead the Eclipse2.0 File

Node 44

Logistic
Regression Learner

Decision Tree
Predictor

Decision
Tree Learner

X-Partitioner

Normalizer (PMML)PartitioningNumeric BinnerFile Reader

File Reader Numeric Binner Partitioning

Normalizer (PMML)

Random Forest
LearnerCorrelation Filter

Rank Correlation

Normalizer (PMML)

PartitioningNumeric BinnerFile Reader

Parameter Optimization
Loop Start

Backward slice of the execution sub-graph of the logistic regression learner

Backward slice of the execution sub-graph of the decision tree learner

Backward slice of the execution sub-graph of the random forest learner

Node 12

Node 29Node 30Class creationRead the Eclipse2.0 File

Read the Eclipse2.0 File Class creation Node 35

Node 36

Node 37Node 38

Node 39

Node 40

Node 41Class creationRead the Eclipse2.0 File

Node 44

Logistic
Regression Learner

Decision Tree
Predictor

Decision
Tree Learner

X-Partitioner

Normalizer (PMML)PartitioningNumeric BinnerFile Reader

File Reader Numeric Binner Partitioning

Normalizer (PMML)

Random Forest
LearnerCorrelation Filter

Rank Correlation

Normalizer (PMML)

PartitioningNumeric BinnerFile Reader

Parameter Optimization
Loop Start

Fig. 4. Backward slices of the execution sub-graph of all the three learners
from the example pipeline shown in Figure 3.

C. Pitfall detection (Step 3)

We detect pitfalls by searching for anti-patterns in the
execution sub-graph of each learner node. Table I lists all
the anti-patterns that we search for. If a pitfall should be
avoided during learner preparation, we search for the anti-
pattern in the backward slice of the learner. For instance, in
order to avoid pitfall P2 (“not accounting for the impact of

4

Read the Eclipse2.0 File Class creation Node 3

Node 4

Node 5

Node 6

Node 7

Node 12

Node 13

Node 17

Node 20

Node 21 Node 27

Node 28

Node 29

File Reader Numeric Binner
Random Forest

Learner

Random Forest
Predictor

Partitioning

Scorer

Scorer

Logistic
Regression Learner

Normalizer (PMML)

Decision Tree
Predictor

Decision
Tree Learner

One-way ANOVA

Correlation Filter

Rank Correlation

X-AggregatorX-Partitioner

Parameter Optimization
Loop Start Parameter

Optimization Loop End

Logistic Regression
Predictor

Read the Eclipse2.0 File Class creation Node 3

Node 4

Node 5

Node 6

Node 7

Node 12

Node 13

Node 17

Node 20

Node 21 Node 27

Node 28

Node 29

File Reader Numeric Binner
Random Forest

Learner

Random Forest
Predictor

Partitioning

Scorer

Scorer

Logistic
Regression Learner

Normalizer (PMML)

Decision Tree
Predictor

Decision
Tree Learner

One-way ANOVA

Correlation Filter

Rank Correlation

X-AggregatorX-Partitioner

Parameter Optimization
Loop Start Parameter

Optimization Loop End

Logistic Regression
Predictor

Fig. 3. An example pipeline with several pitfalls (learner nodes are highlighted).

correlated variables on learner interpretation”), the pipeline
should contain a node that mitigates (e.g., removes) correlated
variables before the learner is built. Hence, the anti-pattern for
P2 is tested on the backward slice of learners. Analogously,
if a pitfall should be avoided during learner interpretation, we
search for the anti-pattern in the forward slice of the learner. In
certain cases, searching for an anti-pattern requires inspecting
both the backward and the forward slice of a learner (e.g.,
pitfall P3).

The anti-patterns presented in Table I are defined in terms
of the presence or absence of specific nodes. We call them
anti-pattern nodes. We search for specific anti-pattern nodes
because, unlike traditional programming, in model-driven data
science pipelines, tasks are accomplished by using readily
available relevant nodes supported by the pipeline tool. In
addition, we note that the exact anti-pattern nodes depend on
the pipeline tool, as different tools may use different nodes or
even different constructs. For instance, in KNIME [14], corre-
lated variables are removed with a “Correlation Filter” node,
whereas in RapidMiner [16], the same task is accomplished
using a “Remove Correlated Variables” node.
Running example: For instance, to check if the example
pipeline shown in Figure 3 runs into the correlation pitfall
(P2), we search for a correlation filter node in the backward
slice of each learner node. The backward slices are depicted in
Figure 4. We can observe that the correlation pitfall is being
avoided for the Random Forest learner. However, this pitfall is
not being avoided for the Logistic Regression and the Decision
Tree learners, since they do not have a correlation filter in the
backward slice of their execution sub-graph. Therefore, we
report the existence of the correlation pitfall (P2) for these
two learners.

D. Pitfalls reporting

Once we identify the pitfalls, we issue a suitable warning
alerting the pipeline creator about such pitfalls. To facilitate

pipeline maintenance, we also identify which specific learner
of the pipeline ran into the pitfall.

IV. PITFALLS ANALYZER - PROTOTYPE

We use KNIME as our tool of choice to carry out the model-
driven implementation of our proposed approach. The reason
is twofold. First, KNIME is extensively used in both industry
and academia [26, 48, 49]. Second, KNIME supports a wide
variety of functionalities and provide several building blocks
for creating pipelines. These two characteristics facilitate the
translation of our approach to a concrete implementation.
Indeed, our implementation leverages the MDE approach
inherent to KNIME, thereby utilizing the domain-specific
modeling and pipeline creation capabilities of KNIME.

Node 20

Node 146

Node 147

Node 151

Node 156

XML Reader

Correlation_filter_detector

Class_Rebalance_Detector

Threshold_metric_validator

Type_1_ANOVA_Checker

Cross_Validation_Checker

WrappedNode Input

WrappedNode Output

file_path_extractor

Coefficients_interpretation_detector

String Input

Control_metrics_detector

Parameter_optimization_analyzer

Node 20

Node 146

Node 147

Node 151

Node 156

XML Reader

Correlation_filter_detector

Class_Rebalance_Detector

Threshold_metric_validator

Type_1_ANOVA_Checker

Cross_Validation_Checker

WrappedNode Input

WrappedNode Output

file_path_extractor

Coefficients_interpretation_detector

String Input

Control_metrics_detector

Parameter_optimization_analyzer

Fig. 6. Our prototype is implemented as a pipeline in KNIME with MDE.

Our prototype is a collection of KNIME pipelines. In Fig-
ure 6, we show the main pipeline of our prototype. Each pitfall
shown in Table I is detected using a sub-pipeline . The main
pipeline invokes these sub-pipelines via wrapped metanodes,

5

TABLE I
ANTI-PATTERNS THAT ARE SEARCHED FOR IN ORDER TO DETECT THE DATA SCIENCE PITFALLS DESCRIBED BY TANTITHAMTHAVORN AND HASSAN [17]

Pitfall Anti-pattern Anti-pattern nodes in KNIME Tested Slice
P1 Absence of control metrics in the dataset used Reader nodes Backward
P2 Absence of nodes to removing correlated variables Correlation Filter nodes Backward
P3 Presence of class rebalancer nodes and subsequent use of threshold

dependent measure computation nodes
SMOTE, Equal Size Sampling Both

P4 Absence of parameter optimization nodes Parameter Optimization Loop Start, Pa-
rameter Optimization Loop End

Both

P5 Absence of threshold independent performance measure nodes and
presence of threshold dependent performance measure computation
nodes

ROC Curve, Scorer Forward

P6 Presence of cross validation nodes and absence of bootstrap validation
nodes

X-Partitioner, X-Aggregator Both

P7 Presence of Type-1 ANOVA computation nodes being fed by the
learner’s coefficients

One-way ANOVA Forward

P8 Extraction of coefficients of a learner node Regression Learners with an active co-
efficients port

Forward

Node names extractor and Learner detector Execution sub-graph
generator and pitfalls
identifier

Pitfalls reporter

Node 125

Node 128

Node 129

Node 131

Node 132

Node 133

Node 134

Node 135
Node 136

Node 137

Node 138

Node 139

Node 140

Node 141

Node 142

Node names
extractor

Check for learner

Empty_write_output

anti pattern
node variables

Row Filter

Empty Table Switch

Rule Engine

Column Filter

Empty write output

Execution sub-graph extraction
and pitfalls identifcation

Empty write output

Constant
Value Column

Write output

WrappedNode Input

WrappedNode Output

Node names extractor and Learner detector Execution sub-graph
generator and pitfalls
identifier

Pitfalls reporter

Node 125

Node 128

Node 129

Node 131

Node 132

Node 133

Node 134

Node 135
Node 136

Node 137

Node 138

Node 139

Node 140

Node 141

Node 142

Node names
extractor

Check for learner

Empty_write_output

anti pattern
node variables

Row Filter

Empty Table Switch

Rule Engine

Column Filter

Empty write output

Execution sub-graph extraction
and pitfalls identifcation

Empty write output

Constant
Value Column

Write output

WrappedNode Input

WrappedNode Output

Fig. 5. Our implementation of the correlation pitfall (P2) detector.

which are represented in Figure 6 as grey rectangles (e.g.,
Control_metrics_detector).

As an illustrative example, Figure 5 shows our pipeline
for the detection of the correlation pitfall (P2). This pipeline
comprises several KNIME base nodes, such as “Rule engine”
and “Row filter”. We also use several wrapped nodes, which
are made up of base nodes.

These wrapped nodes are different from the wrapped metan-
odes nodes (as seen in Figure 6). Wrapped nodes are typically
meant for hiding parts of the pipeline to enhance comprehen-
sibility, whereas wrapped metanodes are meant to promote
reusability.

In the remainder of this section, we explain how we imple-
mented each step of our approach. We rely on our correlation
pitfall (P2) detector pipeline to support the explanation of our
prototype.

A. DAG Extraction (Step 1)

For every pipeline created in KNIME, an associated XML
file named workflow.knime is created in the working

directory of the pipeline, which stores metadata of the
pipeline. In particular, this file stores all details about the
various nodes of the pipeline, the annotations, and the asso-
ciated connections between the nodes. Therefore, we parse
the workflow.knime to extract the DAG of the target
pipeline (i.e., the pipeline to be analyzed for pitfalls). The
file_path_extractor metanode and the XML Reader
node shown in Figure 6 perform the DAG extraction.

B. Execution sub-graph extraction (Step 2)

The first two big yellow blocks of Figure 5 implement the
execution sub-graph extraction step of our approach. This step
contains two sub-steps: identifying the learners in the DAG and
extracting the execution sub-graph of each learner (Figure 2).
In the following, we describe these sub-steps.
Identifying the learners in the DAG (sub-step 1): The first
sub-step is implemented via the node names extractor
and the check for learner metanodes (Figure 5). Fig-
ure 7 shows the expansion of the node names extractor
metanode. In this pipeline, we identify the various node names,

6

unique ids, and node types from the target pipeline using
XPath and other base nodes. Once the node names and their
respective types are obtained, we check whether any of these
nodes are learners. We accomplish this task with the check
for learner pipeline (Figure 8).

Node 21 Node 22 Node 23 Node 24Node 56

XPath Ungroup XPath String ReplacerString Manipulation

Node 21 Node 22 Node 23 Node 24Node 56

XPath Ungroup XPath String ReplacerString Manipulation

Fig. 7. Expansion of the node names extractor metanode from Figure
5.

Node 65 Node 66

Node 77

Rule Engine Row Filter

Empty Table Switch

Node 65 Node 66

Node 77

Rule Engine Row Filter

Empty Table Switch

Fig. 8. Expansion of the Check for learner metanode from Figure 5.

Extracting the execution sub-graph of each learner
(sub-step 2): The execution sub-graph is extracted as
part of the Execution sub-graph extraction and
pitfalls identification metanode from Figure 5.
The expansion of this metanode is shown in Figure 9. We
iteratively query the DAG of the target pipeline using XPath
in order to extract the backward and forward slices of the exe-
cution sub-graph of each learner. This mechanism is coded in
R, inside the “Table to R” node. We highlight that determining
the backward and forward slices of each execution sub-graph
is computationally costly. Hence, we only compute these slices
when they are actually needed. To accomplish this goal, we
determine which anti-pattern nodes have been found by the
node names extractor metanode. If the presence (or
absence) of an anti-pattern node denotes an anti-pattern (as
given by Table I), we compute the slice.

C. Pitfall detection (Step 3)

Pitfall detection happens as part of the Execution
sub-graph extraction and pitfalls
identification metanode, which is expanded in
Figure 9. To detect pitfalls, we loop through the anti-pattern
nodes to check for their presence/absence (as given by
Table I) in the execution path of the learner. For example,
in our correlation pitfall detector pipeline, we search for

Pitfalls identifer

Execution sub-graph extractor

Node 63

Node 75

Node 76

Node 89 Node 93 Node 100

Table to R

Loop End

R to Table

Table Row To
Variable Loop Start Row Filter Empty Table Switch

Pitfalls identifer

Execution sub-graph extractor

Node 63

Node 75

Node 76

Node 89 Node 93 Node 100

Table to R

Loop End

R to Table

Table Row To
Variable Loop Start Row Filter Empty Table Switch

Fig. 9. Expansion of the Execution sub-graph extraction and
pitfalls identification metanode from Figure 5.

the existence of the correlation filter node in the
backward slice of the execution sub-graph of all the learners
in the target pipeline. The “Table to Row Variable Loop
start” and the “Loop End” node loops through the anti-pattern
nodes to be checked for in the relevant slice of the execution
sub-graph.

D. Pitfalls reporting (Step 4)

In this step, we report which pitfalls were detected. We also
attach the id of the associated learner. We currently issue this
report via a log message. The nodes that implement this report
are shown in the right-most yellow block of Figure 5.

V. EVALUATION

We evaluate the effectiveness of our Pitfalls Analyzer proto-
type by using it to analyze existing KNIME IoT data science
pipelines. The KNIME website lists three IoT use cases,
with several projects for each of them1 created by KNIME
experts. We choose one project from each use case, namely:
Electricity Consumption Prediction, Rotor Failure Detection,
and Bikeshare Predictive Analytics. Each project is comprises
multiple data science pipelines, which are used to address the
various tasks of the project.

We test our Pitfalls Analyzer on the aforementioned data
science projects. Two of the four authors manually analyze
each of the chosen projects (and all the pipelines that they
contain) carefully with our experience to see how many of the
pitfalls mentioned in Section II-A each project contains. Next,
we run our Pitfalls Analyzer on these projects to evaluate if
our pitfall analyzer is able to successfully identify all of the
manually identified pitfalls. We finally discuss the implications
of our results. We note that we do not check if the studied
pipelines exhibits control metrics pitfall (P1), as it requires
prior knowledge of what the control metrics pertaining to
a specific project should be (as mentioned in Section II-A).
Hence, our prototype does not flag any of the pipelines for
the control metric pitfall.

1https://www.knime.com/white-papers

7

Our Pitfalls Analyzer
node that has been
dragged and dropped
into the pipeline

Node 147 Node 154Node 156

Node 157

Node 158

threshold =
0.8 * mean(cluster)

Node 160Node 161 MSE on peaks
only rebuild

original cluster
rebuild

cluster prediction
Node 175 original

vs.
predicted

input data
in [0,1] cluster - PredClass

RowID to datetime datetime as
datetime type

Denormalizer
applies only to

columns seen in
Normalizer node,

that is only to "cluster"

Node 203

read clustered
time series

rename
PredClass
into cluster

rename
cluster

into PredClass

Node 207

7*24h seasonality
correction

x(t) = x(t) - x(t-7*24)

x(t) and x(t-7*24)

from x(t) to:
 x(t), x(t-1), x(t-2), ..., x(t-lag)

Denormalizer
applies only to

columns seen in
Normalizer node,

that is only to "cluster"

by ascending
datetime

select
time series

with
intersection
of columns

Node 219

Pitfalls_Analyzer

Partitioning
RProp MLP Learner

(deprecated)Column Filter

Joiner

MultiLayerPerceptron
Predictor

Math Formula Row FilterRule Engine Numeric Scorer
Math Formula Math Formula Column Filter Line Plot

Normalizer
Column Splitter

RowID
String to Date/Time

(legacy)

Denormalizer

Joiner

File Reader

Column Rename
Column Rename

Numeric Scorer

Math FormulaLag Column

Lag Column

Denormalizer
Sorter

Column Filter QuickForm
(legacy) (deprecated)

Concatenate
Column Rename

(Regex)

Our Pitfalls Analyzer
node that has been
dragged and dropped
into the pipeline

Node 147 Node 154Node 156

Node 157

Node 158

threshold =
0.8 * mean(cluster)

Node 160Node 161 MSE on peaks
only rebuild

original cluster
rebuild

cluster prediction
Node 175 original

vs.
predicted

input data
in [0,1] cluster - PredClass

RowID to datetime datetime as
datetime type

Denormalizer
applies only to

columns seen in
Normalizer node,

that is only to "cluster"

Node 203

read clustered
time series

rename
PredClass
into cluster

rename
cluster

into PredClass

Node 207

7*24h seasonality
correction

x(t) = x(t) - x(t-7*24)

x(t) and x(t-7*24)

from x(t) to:
 x(t), x(t-1), x(t-2), ..., x(t-lag)

Denormalizer
applies only to

columns seen in
Normalizer node,

that is only to "cluster"

by ascending
datetime

select
time series

with
intersection
of columns

Node 219

Pitfalls_Analyzer

Partitioning
RProp MLP Learner

(deprecated)Column Filter

Joiner

MultiLayerPerceptron
Predictor

Math Formula Row FilterRule Engine Numeric Scorer
Math Formula Math Formula Column Filter Line Plot

Normalizer
Column Splitter

RowID
String to Date/Time

(legacy)

Denormalizer

Joiner

File Reader

Column Rename
Column Rename

Numeric Scorer

Math FormulaLag Column

Lag Column

Denormalizer
Sorter

Column Filter QuickForm
(legacy) (deprecated)

Concatenate
Column Rename

(Regex)

Fig. 10. A pipeline that is a part of the Electricity Consumption Prediction project. Our Pitfalls Analyzer node has been dragged and dropped into the pipeline
(yellow rectangle).

A. Projects

Table II shows a summary of the characteristics of the
projects that we evaluated. In the following, we briefly in-
troduce each project.

TABLE II
CHARACTERISTICS OF THE PROJECTS USED FOR EVALUATION

Project #Pipelines Nodes #Pitfalls Pitfalls present
ECP 7 490 4 P2, P4, P5, P8
RFD 3 126 4 P2, P4, P5, P8
BPA 1 29 4 P2, P3, P4, P5

RFD- Rotor Failure Detection, ECP - Electricity Consumption Prediction,
BPA - Bikeshare Predictive Analytics. Pitfalls detected via manual analysis.

Electricity Consumption Prediction (ECP) is the largest
project that we use for evaluation. It is made up of 7 pipelines
and a total of 490 nodes. ECP is a project that uses KNIME to
classify the electric usage behaviour of Irish consumers [50].
The electric consumption behavior of various participating
customers were collected through smart meters that are in-
stalled in the home and businesses of these participating
consumers. The smart meter data of over 5,000 customers
were collected over 2 years. In this project, consumer usage
behaviors are first clustered using K-Means clustering [51]
to identify common clusters. Then, Silipo and Winters [50]
identify the behavior of each consumer as belonging to one of
these aforementioned clusters using several learners.

Figure 10 shows one of the pipelines that make up the
project. From the figure, we observe that the pipeline exhibits
several pitfalls. For instance, the pipeline uses a “scorer”
node to compute threshold-dependent performance measures

from a learner in the pipeline. Furthermore, it lacks a node
for the computation of a threshold-independent performance
metric, thereby exhibiting a threshold-dependent metric pitfall
(P5). Similarly, we can observe that the pipeline also exhibits
a correlation pitfall (P2), an optimization pitfall (P4) and
threshold-dependent metric pitfall (P5).
Rotor Failure Detection (RFD) is a project for predicting
the failure likelihood of a rotor ahead of time using anomaly
detection [52]. Rotors have sensors associated with them. In
this project, along with the the time series data associated
with 28 sensors that are attached to 8 different positions of
a rotor. The signals are collected over approximately 2 years
and leverages pipeline analysis.

Bikeshare Predictive Analytics (BPA) is a project to predict
how to best restock the bike stations for a bike sharing
business2 [53]. The sensor data from each bike is feed into
a decision tree learner to determine when to restock a biking
station so that the biking station does not run out of bikes.

B. Results and Implications

Results: Our Pitfalls Analyzer successfully identifies all the
pitfalls that we manually identified. We run our prototype on
all the data science pipelines in each of three studied projects
and we aggregate the detected pitfalls in each project and
present them in Table III. As we can observe from Table III,
all the pitfalls that were manually identified in each of the
projects (as given in Table II) have been marked with a 5.
These results showcase the usefulness and effectiveness of our

2https://www.capitalbikeshare.com/

8

Pitfalls Analyzer. We also observe that the same pitfalls occur
repeatedly across multiple pipelines, which further reinforces
the need for our Pitfalls Analyzer.

TABLE III
PITFALLS DETECTED IN THE EVALUATED PROJECTS

Project P1 P2 P3 P4 P5 P6 P7 P8 Total
ECP 5 5 5 5 4
RFD 5 5 5 5 4
BPA 5 5 5 5 4

RFD- Rotor Failure Detection, ECP - Electricity Consumption Prediction, BPA -
Bikeshare Predictive Analytics

Implications: Pitfalls Analyzer is considerably more scal-
able than manual inspection.

The 11 pipelines across the 3 projects comprise a total
of 645 nodes, which we were able to analyze for pitfalls in
under a minute with our Pitfalls Analyzer. The same task took
approximately 1 hour to be accomplished manually by 2 of
the 4 authors. Furthermore, if the pipelines are modified in the
future, they would have to be inspected manually, which could
be very inefficient, cumbersome, and error-prone. Therefore,
an automated solution like our prototype is considerably more
scalable than manual inspection. Furthermore, our approach
could identify the pitfalls described in Section II for any type
of learner (e.g, deep neural networks etc.,) within the ambit of
the platform within which our pitfalls analyzer is implemented.

Pitfalls Analyzer is extensible. In addition to analyzing the
common data science pitfalls, one could extend our Pitfalls
Analyzer to support more general pipeline analyses with our
approach. Essentially, our approach allows for static analysis
of the graphical data science pipelines. One could extend our
approach to ensure for pipeline best practices and pipeline
efficiency. For instance, usage of short node names, flagging
usage of deprecated nodes, enforcing annotations for nodes,
and more could be enforced by extending our approach.
Consider the pipeline that is part of the ECP project that is
shown in Figure 10, which has a deprecated node as a part
of it. Extending our approach, one could flag and recommend
the user to remove such a node. In other words, one could
create tools similar to LINT [54] or coverity [55] for pipeline
analysis.

The KNIME implementation of our Pitfalls Analyzer, even
while being just a prototype, successfully identifies all the
pitfalls that we were manually able to identify in 3 openly
available KNIME projects for IoT predictive analytics.

VI. LIMITATIONS

Our anti-patterns do not capture all manifestations of
the pitfall. Our approach detects the presence of pitfalls in
a pipeline using the anti-patterns shown in Table I. However,
there are other ways in which these pitfalls could be com-
mitted in a pipeline construction. For instance, the presence
of a parameter optimization loop node in KNIME does not
necessarily indicate that all (relevant) learner parameters have

been fine-tuned (pitfall P4). Similarly, the presence of a
correlation filter node does not ensure a proper threshold for
the elimination of correlated metrics was chosen.
Our approach cannot find pitfalls committed as a part
of the code written using code snippet nodes. Many of
the data science pipeline creation tools support code snippet
nodes. These nodes allow scripts written in other programming
languages to be natively executed as part of the pipeline. For
instance, KNIME has an “R Source” node which supports
native execution of nodes with scripts written in R as a part
of the pipeline. Similarly, Rapidminer has “Execute Python”
process which allows for scripts that are written in Python to
be a part of the pipeline, were the pitfalls could be committed.
Currently, our approach does not support these nodes, which
would require programming-language specific static analysis
tools.
Our approach could potentially fall prey to false positives
and false negatives: Though we were able to successfully
identify all the pitfalls in our evaluation, our approach can
potentially report the existence of a pitfall when none exists
and vice-versa. For instance, if the parameter optimization
of a learner was achieved through general looping nodes,
our approach will not be able to identify that parameter
optimization is being performed (as we look for a specific
anti-pattern). Similarly, a dataset in which rebalancing of the
data was already performed elsewhere could be fed into the
pipeline. Our approach would not be able to identify such a
pitfall and would not report it to the user.
Our approach suffers from the limitations of static analy-
sis. We cannot guarantee that pitfalls connected to the absence
of anti-pattern nodes (e.g., Pitfall P2) would be avoided if an
anti-pattern node is simply present in the execution sub-graph.
For instance, if a Correlation Filter node is positioned after a
decision construct (e.g., if-then-else constructs), it is possible
that this filter will not be executed during runtime.
There are justified cases of anti-patterns pertaining to
a pitfall that could be used in a data science pipeline.
As Menzies and Shepperd [22] outline, while the pitfalls that
we identify are general data science bad practices, there are
instances where their use could be justified. For instance, when
users are not planning to use learners to make decisions, they
could choose not to remove correlated variables for improved
performance of their learners. Another case is that some of our
pitfalls (P1, P2, P3, P7, and P8) apply only when the learner is
being used for interpretation rather than simple prediction i.e.,
When the learner in the pipeline is being used to understand
the underlying root cause rather than for simple prediction
tasks. However, our Pitfalls Analyzer reports the warnings
irrespecitive of the focus. In that case, acting upon the pitfalls
is at the discretion of the user.
We only focus on the checking of the pitfalls described
by Tantithamthavorn and Hassan [17]. As we described
in Section II-A, Menzies and Shepperd [22] and Mello et al.
[21] also identify several data science pitfalls. Our rationale for
choosing to detect the pitfalls described by Tantithamthavorn

9

and Hassan [17] in lieu of others are as follows. First, these pit-
falls are more quantitative in nature and thus lend themselves
to automation more straightforwardly. Second, these pitfalls
are deal with core aspects of data science, whereas the other
studies also investigate pitfalls that are more domain-specific.

In summary, our approach and prototype cannot capture
all manifestations of the pitfalls and has the aforementioned
limitations. However, our goal was to create a proof-of-concept
and help pipeline creators avoid common data science pitfalls
in their pipelines. More generally, we hope our fledgling efforts
could prove to be a fertile ground for a plethora of future
studies to improve upon our approach.

VII. CONCLUSION AND FUTURE WORK

Data science has become very prevalent in various indus-
tries. Limited availability of data science experts and the
availability of easy data science pipeline creation and automa-
tion tools enable non-expert users to apply advanced data
science approaches with limited prior experience. However,
prior research shows that they could be potentially making
mistakes that invalidate the findings of their data science
pipelines. Therefore, in this paper we propose, a novel MDE
approach to detect the various data science pitfalls elucidated
by Tantithamthavorn and Hassan [17].

We hope that our approach will enable users to detect
potential pitfalls in the data science pipelines that they create.
In addition, we provide a prototype implementation of our
approach in a common and popularly used pipeline tool called
KNIME. We also evaluate the effectiveness of our prototype
by evaluating it on 3 openly available KNIME IoT predictive
analytics projects. As part of future work, we foresee the
following research opportunities:
Implementing our approach in other tools: Though in this
paper we only showcase the implementation of our approach
in KNIME, our approach could be generalized to other data
science pipeline creation tools that support nodes (units that
accomplish a specified function) similar to KNIME. On the
one hand, our approach would be hard to replicate in tools
like WEKA [15], as they do not support the wide variety of
nodes that KNIME supports. For instance, our implementation
makes extensive use of looping, code snippet nodes, and XPath
nodes. However, WEKA does not support similar nodes, as it
supports the creation of simpler pipelines. It would be hard to
implement our approach in such constrained tools.

On the other hand, there are plenty of other widely used
tools that encompass capabilities similar to those of KNIME,
including RapidMiner Studio [16] and Microsoft Azure Ma-
chine Learning Studio [11]. Hence, by extracting the metadata
of the created pipeline and finding nodes that behave similarly
to those of KNIME, one could bootstrap the implementation
our approach in these other pipeline tools.

REFERENCES
[1] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Sid-

diqa, and I. Yaqoob, “Big iot data analytics: architecture, opportunities,
and open research challenges,” IEEE Access, vol. 5, pp. 5247–5261,
2017.

[2] C. Gröger, “Building an industry 4.0 analytics platform,” Datenbank-
Spektrum, vol. 18, no. 1, pp. 5–14, 2018.

[3] J. Lee, H.-A. Kao, and S. Yang, “Service innovation and smart analytics
for industry 4.0 and big data environment,” Procedia Cirp, vol. 16, pp.
3–8, 2014.

[4] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr,
“Does bug prediction support human developers? findings from a google
case study,” in Proceedings of the 2013 international conference on
Software Engineering. IEEE Press, 2013, pp. 372–381.

[5] N. Dedić and C. Stanier, “Towards differentiating business intelligence,
big data, data analytics and knowledge discovery,” in International
Conference on Enterprise Resource Planning Systems. Springer, 2016,
pp. 114–122.

[6] M. Gualtieri, A. Rowan Curran, K. TaKeaways, and M. To, “The
forrester wave(tm): Big data predictive analytics solutions, q1 2013,”
Forrester research, 2013.

[7] J. Ekström, “Outcome based business model siemens osakeyhtiö,” 2018.
[8] H. Karre, M. Hammer, M. Kleindienst, and C. Ramsauer, “Transition

towards an industry 4.0 state of the leanlab at graz university of
technology,” Procedia manufacturing, vol. 9, pp. 206–213, 2017.

[9] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel,
and M. Harnisch, “Industry 4.0: The future of productivity and growth
in manufacturing industries,” Boston Consulting Group, vol. 9, no. 1,
pp. 54–89, 2015.

[10] T. H. Davenport and D. Patil, “Data scientist,” Harvard business review,
vol. 90, no. 5, pp. 70–76, 2012.

[11] R. Barga, V. Fontama, W. H. Tok, and L. Cabrera-Cordon, Predictive
analytics with Microsoft Azure machine learning. Springer, 2015.

[12] P. Solutions, “Platform technology: Thingworx. 2016,” URL:
https://www. thingworx. com/(cited on page 25).

[13] M. E. Anderson, “Technical trade-offs of iot platforms,” in Autonomous
Systems: Sensors, Vehicles, Security, and the Internet of Everything,
vol. 10643. International Society for Optics and Photonics, 2018, p.
1064316.

[14] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, K. Thiel, and B. Wiswedel, “Knime-the konstanz information
miner: version 2.0 and beyond,” AcM SIGKDD explorations Newsletter,
vol. 11, no. 1, pp. 26–31, 2009.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[16] M. Hofmann and R. Klinkenberg, RapidMiner: Data mining use cases
and business analytics applications. CRC Press, 2013.

[17] C. Tantithamthavorn and A. E. Hassan, “An experience report on
defect modelling in practice: Pitfalls and challenges,” in Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice. ACM, 2018, pp. 286–295.

[18] B. Kitchenham and E. Mendes, “Why comparative effort prediction stud-
ies may be invalid,” in Proceedings of the 5th international Conference
on Predictor Models in Software Engineering. ACM, 2009, p. 4.

[19] M. A. Hall, “Correlation-based feature selection for machine learning,”
1999.

[20] D. Lazer, R. Kennedy, G. King, and A. Vespignani, “The parable of
google flu: traps in big data analysis,” Science, vol. 343, no. 6176, pp.
1203–1205, 2014.

[21] M. M. Mello, J. K. Francer, M. Wilenzick, P. Teden, B. E. Bierer, and
M. Barnes, “Preparing for responsible sharing of clinical trial data,”
2013.

[22] T. Menzies and M. Shepperd, “bad smells in software analytics papers,”
Information and Software Technology, 2019.

[23] I. Ruiz-Rube, T. Person, J. M. Dodero, J. M. Mota, and J. M. Sánchez-
Jara, “Applying static code analysis for domain-specific languages,”
Software & Systems Modeling, pp. 1–16, 2019.

[24] T. S. Heinze, W. Amme, and S. Moser, “Static analysis and process
model transformation for an advanced business process to petri net
mapping,” Software: Practice and Experience, vol. 48, no. 1, pp. 161–
195, 2018.

[25] C. Saad and B. Bauer, “Data-flow based model analysis and its applica-
tions,” in Proceedings of the 16th International Conference on Model-
Driven Engineering Languages and Systems - Volume 8107, 2013, pp.
707–723.

[26] C. Idoine, P. Krensky, A. Linden, and E. Brethenoux, “Magic quadrant
for data science and machine learning platforms (id: G00354456),”
Gartner Research, Tech. Rep., January 2019. [Online]. Available:
https://www.gartner.com/en/documents/3899464

10

https://www.gartner.com/en/documents/3899464

[27] M. Lease, “On quality control and machine learning in crowdsourcing,”
in Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, 2011.

[28] N. Wickramage, “Quality assurance for data science: Making data
science more scientific through engaging scientific method,” in 2016
Future Technologies Conference (FTC). IEEE, 2016, pp. 307–309.

[29] D. Jensen, J. Neville, and M. Hay, “Avoiding bias when aggregating
relational data with degree disparity,” in Proceedings of the 20th
International Conference on Machine Learning (ICML-03), 2003, pp.
274–281.

[30] G. C. Cawley and N. L. Talbot, “On over-fitting in model selection
and subsequent selection bias in performance evaluation,” Journal of
Machine Learning Research, vol. 11, no. Jul, pp. 2079–2107, 2010.

[31] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Transactions on
Software Engineering, vol. 40, no. 6, pp. 603–616, 2014.

[32] J. Jiarpakdee, C. Tantithamthavorn, and A. E. Hassan, “The impact of
correlated metrics on the interpretation of defect models,” 2019.

[33] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189,
2016.

[34] B. Turhan, “On the dataset shift problem in software engineering
prediction models,” Empirical Software Engineering, vol. 17, no. 1-2,
pp. 62–74, 2012.

[35] D. H. Wolpert, W. G. Macready et al., “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67–82, 1997.

[36] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“The impact of automated parameter optimization on defect prediction
models,” IEEE Transactions on Software Engineering, 2018.

[37] ——, “An empirical comparison of model validation techniques for
defect prediction models,” IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 1–18, 2017.

[38] KNIME, “Knime noding guidelines,” KNIME, 2015. [Online]. Avail-
able: https://www.knime.com/sites/default/files/inline-images/noding
guidelines.pdf

[39] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[40] Y. Xie and A. Aiken, “Context-and path-sensitive memory leak detec-
tion,” in ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5.
ACM, 2005, pp. 115–125.

[41] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for find-
ing dynamic programming errors,” Software: Practice and Experience,
vol. 30, no. 7, pp. 775–802, 2000.

[42] M. Das, S. Lerner, and M. Seigle, “Esp: Path-sensitive program veri-
fication in polynomial time,” in ACM Sigplan Notices, vol. 37, no. 5.

ACM, 2002, pp. 57–68.
[43] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol, “An empirical study

of code smells in javascript projects,” in 2017 IEEE 24th international
conference on software analysis, evolution and reengineering (SANER).
IEEE, 2017, pp. 294–305.

[44] Z. Soh, A. Yamashita, F. Khomh, and Y.-G. Guéhéneuc, “Do code smells
impact the effort of different maintenance programming activities?”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 393–
402.

[45] H. Prhofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger,
“Opportunities and challenges of static code analysis of iec 61131-3
programs,” in Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies & Factory Automation (ETFA 2012), 2012,
pp. 1–8.

[46] A. Mandal, D. Mohan, R. Jetley, S. Nair, and M. D’Souza, “A generic
static analysis framework for domain-specific languages,” in 2018 IEEE
23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), 2018, pp. 27–34.

[47] K. Thulasiraman and M. N. Swamy, Graphs: theory and algorithms.
Wiley Online Library, 1992.

[48] M. O. Gokalp, K. Kayabay, M. A. Akyol, P. E. Eren, and A. Koçyiğit,
“Big data for industry 4.0: A conceptual framework,” in 2016 In-
ternational Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, 2016, pp. 431–434.

[49] C. Dietz and M. R. Berthold, “Knime for open-source bioimage analysis:
a tutorial,” in Focus on Bio-Image Informatics. Springer, 2016, pp.
179–197.

[50] R. Silipo and P. Winters, “Time series prediction
of smart energy data,” Knime Whitepaper, 2013. [On-
line]. Available: https://files.knime.com/sites/default/files/inline-images/
knime bigdata energy timeseries whitepaper.pdf

[51] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[52] A. I. Silipo, Rosaria and P. Winters, “Time series
prediction of smart energy data,” Knime Whitepaper, 2018.
[Online]. Available: https://files.knime.com/sites/default/files/181212
Whitepaper Anomaly Detection Predictive Maintenance KNIME.pdf

[53] R. Silipo and P. Winters, “Predicitve analytics on
bike share data,” Knime Whitepaper, 2018. [On-
line]. Available: https://files.knime.com/sites/default/files/181212
Whitepaper Anomaly Detection Predictive Maintenance KNIME.pdf

[54] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE software, vol. 25, no. 5, pp.
22–29, 2008.

[55] P. Louridas, “Static code analysis,” IEEE Software, vol. 23, no. 4, pp.
58–61, 2006.

11

https://www.knime.com/sites/default/files/inline-images/noding_guidelines.pdf
https://www.knime.com/sites/default/files/inline-images/noding_guidelines.pdf
https://files.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf
https://files.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf
https://files.knime.com/sites/default/files/181212_Whitepaper_Anomaly_Detection_Predictive_Maintenance_KNIME.pdf
https://files.knime.com/sites/default/files/181212_Whitepaper_Anomaly_Detection_Predictive_Maintenance_KNIME.pdf
https://files.knime.com/sites/default/files/181212_Whitepaper_Anomaly_Detection_Predictive_Maintenance_KNIME.pdf
https://files.knime.com/sites/default/files/181212_Whitepaper_Anomaly_Detection_Predictive_Maintenance_KNIME.pdf

	Introduction
	Background and Related Work
	Quality control in data science
	Quality control in data science pipeline tools
	Code verification

	Pitfalls Analyzer - Approach
	DAG Extraction (Step 1)
	Execution sub-graph extraction (Step 2)
	Pitfall detection (Step 3)
	Pitfalls reporting

	Pitfalls Analyzer - Prototype
	DAG Extraction (Step 1)
	Execution sub-graph extraction (Step 2)
	Pitfall detection (Step 3)
	Pitfalls reporting (Step 4)

	Evaluation
	Projects
	Results and Implications

	Limitations
	Conclusion and Future work

