Should I contribute to this discussion?

Walid M. Ibrahim, Nicolas Bettenburg, Emad Shihab, Bram Adams, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
{walid, nicbet, emads, bram, ahmed} @cs.queensu.ca

Abstract—Development mailing lists play a central role in facil-
itating communication in open source projects. Since these lists
frequently host design and project discussions, knowledgeable
contribution to these discussion threads is essential to avoid mis-
communication that might slow-down the progress of a project.
However, given the sheer volume of emails on these lists, it is easy
to miss important discussions. To find out how developers are able
to deal with mailing list discussions, we study the main factors
that encourage developers to contribute to the development
mailing lists. We develop personalized models to automatically
identify discussion threads that a developer would contribute
to based on his previous contribution behavior. Case studies on
development mailing lists of three open source projects (Apache,
PostgreSQL and Python) show that the average accuracy of our
models is 89-85% and that the models vary significantly between
different developers.

I. INTRODUCTION

The popularity of Open Source Software (OSS) projects
keeps on growing rapidly. This popularity has been driven by
the voluntary efforts of thousands of developers in different
locations and time zones across the globe. Many projects
use mailing lists and Internet Relay Chat (IRC) channels to
effectively communicate and plan their development work
[1]. Messages on development mailing lists discuss impor-
tant issues such as current development plans, maintenance
requests, user support, bugs, design decisions and development
schedules. Such information forms the basis for knowledge
transfer to new developers in a project. In general, the devel-
opment mailing list is where the development team lives and
communicates [2].

Timely contributions help steer important development dis-
cussions in the right direction. Such timely contributions
provide needed information and shed light into undocumented
design issues or misunderstood requirements. However, de-
velopers of large open source projects are constantly flooded
by emails on a daily basis (for example, 1,150 messages
per month for the PostgreSQL project). Over-strained project
members must wade through this flood of emails to decide
which emails require their participation and contribution. To
cope with all these emails, developers might skim emails
quickly or even completely ignore them if the subject line
does not catch their attention. Thus, developers are likely to
miss contributing to relevant discussion threads.

In this paper, we are interested in understanding the factors
that influence developers to contributing to mailing list discus-
sion threads. For example, contributors in mailing list might
reply to short messages and threads, or threads posted by the
people they know. Developers typically also have particular

moments during the day when they check their emails, and
periods during the week when they are not available. Of
course, the actual content of a message provides a definitive
answer to the question whether one should contribute to a
thread. Using these factors, we want to identify what motivates
developers to contribute to threads in highly active mailing
lists.

Based on the developers’ history of thread contributions,
we develop for each developer a personalized model that can
identify, based on her previous contribution to a mailing list
which threads require developer contribution. This model helps
to understand the factors that influence the contribution of a
developer. Through a case study based on the mailing lists of
three open source projects (Apache, PostgreSQL and Python),
we use our model to answer two research questions:

Q1 Can we build a high accuracy model of developer
contribution to a thread?

For each developer, we build a composite model
based on Naive Bayesian and Decision Tree classi-
fiers that determines with high accuracy the contribu-
tion of developers to a thread based on her previous
contribution behavior.

What are the most important factors that influ-
ence a developer to contribute to a thread?
Based on our composite model, we find that message
content, the current length of a discussion thread and
recent activity of a developer are the most important
factors. We also find that the important factors vary
between developers.

Q2

Our composite model combines the strengths of Naive
Bayesian and Decision tree classifiers to improve the overall
performance. We use a Naive Bayesian classifier to deal with
the body and subject of a thread, as selecting important threads
for a developer to contribute to is similar to detecting emails
that are not spam. We use a Decision Tree classifier to explain
the contribution behavior of a developer based on the output
of the Naive Bayesian classifier along with other factors.

Organization of the Paper. Section II explains the method-
ology we used to build our composite model. Section III
presents our data collection and thread reconstruction process.
Section IV answers the two research questions using a case
study. Section V discusses our findings. Section VI presents
threats to validity. Section VII discusses related work. Finally,
Section VIII concludes the paper.

Training Corpus H Testing Corpus

T
Content Dimension

Naive
Bayesian Content Dimension
Thread Dimension, -
Social Dimension, Classifier Thread Dimension,

Time Dimension . Social Dimension,
| Apply Tralnedgﬂ Time Dimension

Model on
Naive
. b
Y Add—| Bayesian Naive
i Score Bayesian
Bayesian Score, L y Add—
Thread Dimension, Score

Social Dimension,
Time Dimension

Decision Bayesian Score,
TreAe‘ Thread Dimension,
Classifier Social Dimension,

Time Dimension

Results

Our composite model building approach.

Decision
Tree
Model

Classify

Fig. 1.

II. METHODOLOGY
Our goal is to determine the main factors that drive develop-

ers to contribute to a particular discussion thread in practice.
To identify these main factors, we build a composite model
that determines which discussion threads a developer would
contribute to based on her previous contribution. If the model
returns “do not contribute” for a developer and a given thread,
this means that the developer decided not to contribute to the
thread (although he might have read the thread). The decision
to contribute or not might depend on various factors. The
developer might not have the knowledge needed to help him
to move the discussion forward, or it could be that another
developer has already contributed the right information to
the discussion. Our model could be considered as a type of
spam filter, except that our model flags interesting threads that
need developer contribution, instead of flagging threads that a
developer should not read as spam messages.

We use a data mining approach to build a composite model
that explains, given a corpus of historical thread discussions:
Can we determine whether or not a developer should con-
tribute to a given thread? In this section, we present the data
mining elements that we need to build such a model:

1) The possible factors that can influence the decision of a

developer to contribute to a given thread.

2) The composite data mining approach that we use.

3) The metrics to evaluate the accuracy of our model.

A. Contribution Factors

A developer decides to contribute to a given discussion
based on various factors. Table I shows the different factors
used in our approach. These factors span the following four
different dimensions:

1) The Thread dimension consists of factors that mea-

sure the characteristics of a discussion thread. The

<=1

ﬁthreadlength —l

<=0.9 0.9 L
Contribute

li Naive_Bayesian_score >—l
Contribute JLZOO (:ontributionactivity&l

> 7175 <=7175

word_count Contribute
Y
ﬁ known_poster L‘ Not Contribute
Not Contribute Contribute

Fig. 2. A Decision Tree for Thomas Lockhart.

factors that we consider are the length of the discussion
(thread_length) and the size of the thread (word_count).
This dimension measures the necessity for a developer
to contribute to a discussion thread.

2) The Social dimension consists of factors that capture
the communication activity between developers. The
factors that we use are whether the person who started
the discussion is well known (one of the top 20 develop-
ers) by others (known_starter), whether the person who
last posted to the discussion is well known (one of the
top 20 developers) by others (known_poster), or whether
the developer has been active recently on the mailing
list (contribution_activity). This dimension measures the
impact of inter-personal relations such as friendship on
mailing list contribution.

3) The Time dimension consists of factors that indicate
when the message in a thread was posted. The factors we
use are the message time (msg_time), day (msg_day),
and month (msg_month). This dimension measures the
availability of the developer to contribute to threads.

4) The Content dimension consists of factors that are
related to the content of a thread. Examples of such
factors are the words in the thread subject or content.
This dimension captures the expertise of a developer on
the topics that are discussed.

B. Composite Data Mining Approach

We use a composite model based on the different contribu-
tion factors. The composite model combines two data mining
approaches (Figure 1). First, we apply a Naive Bayesian
classifier (as used by spam filters) [3] on the message content
(subject and body) to determine how relevant an email is to a
developer. Second, we use Thread, Social and Time dimension
with the output of the Naive Bayesian classifier as the input
to a Decision Tree classifier.

Before discussing in more detail the two classifiers, we
provide an example of a Decision Tree that is produced
from our case studies (Figure 2). The Decision Tree is for
“Thomas Lockhart”, one of the main PostgreSQL developers.
The Decision Tree indicates that Thomas Lockhart will not
contribute if there is more than one message in the thread
(thread_length > 1), the score from the Naive Bayesian
classifier is > 0.9, his contribution activity in the last month is

TABLE I

DIFFERENT CONTRIBUTION FACTORS USED IN OUR APPROACH.

Attribute Name

Dimension | Type

| Explanation

| Rationale

thread_length Thread Numeric | Number of messages that have been posted | Long threads might decrease the interest
in the thread, before the contributing devel- | of a developer in a thread, but also in-
oper decides to contribute to the thread. crease the probability that everything has
been said already in the thread.
word_count Thread Numeric | Number of words in the threads that the | Long messages might decrease the interest
contributing developer has to read before | of a developer in a thread or actually, but
posting a reply to the thread. also increase the probability that every-
thing has been said already in the thread.
known_starter Social Boolean | Check if the developer who is going to | Developers might prefer to take part in
contribute to the thread knows the starter | threads that were started by someone they
of the thread. know.
known_poster Social Boolean | Check if the developer who is going to con- | Developers might prefer to take part in
tribute to the thread knows the developer | threads with the last message coming from
who posted the last reply in the thread. someone they know.
contribution_activity | Social Numeric | The number of threads a developer con- | Inactive developers are less likely to con-
tributed to in the last month. tribute to a thread (e.g., they might be on
vacation or have quit the project).
msg_time Time Numeric | The hour (0-23) when the last message in | A developer might prefer to contribute to
the thread was posted before the developer | the mailing list at set times during a day
decides to post a reply. (e.g., working hours).
msg_day Time Nominal | The day of the week (Mon, Tue, Wed, Thu, | A developer might prefer to contribute to
Fri, Sat or Sun) when the last message | the mailing list on a particular day of the
was posted before the developer decides to | week (e.g., weekends or a working day).
contribute.
msg_month Time Nominal | The month (Jan, Feb, March, April, May, | The developer contribution activity may
June, July, Aug, Sep, Oct, Nov or Dec) | change depending on the month (e.g.,
when the last message was posted before | Christmas period).
the developer decides to contribute.
subject Content String The original subject of a thread. The subject of a thread is the first thing
the developer considers before deciding to
contribute to the thread.
body Content String The aggregated body text of all the mes- | The body contains the actual thread con-
sages in the thread before the developer | tent and is basically the reason why people
decides to post a reply. send emails in the first place.

low (contribution_activity is < 200) and the number of words

in the message is < 7175, or he does not know the poster.
The Naive Bayesian classifier works as follows. In the

training phase, the Naive Bayesian classifier takes the content
dimension from the training corpus and splits it into two
corpora. One corpus contains the subject and the content of the
threads that the developer contributed to (equivalent to non-
spam messages). The other corpus contains the content of the
threads that the developer did not contribute to (equivalent
to spam messages). In the training phase, each message is
divided into tokens (word) and in each corpus we count the
occurrences of each token. We use these counts to determine
the probability of each token to be an indicator of spam threads
(i.e. thread that developers should not contribute to). Finally,
we combine the highest 15 probabilities [4]) together into one
probability, which gives a score (probability) that a developer
will contribute to a given thread. The closer the score is to 1,
the higher the probability that the developer will not contribute

to the thread.
The Decision Tree classifier takes the score from the Naive

Bayesian classifier algorithm as input instead of the message
content dimension, together with the other factors discussed

in the previous subsection. We choose to use a Decision Tree
classifier as a machine learning algorithm, since a Decision
Tree classifier offers an explainable model. Such a model
explicitly shows the major factors that affect a developer’s
decision to contribute, while many of the other machine
learning approaches produce black box models that do not
explain their classification decisions. We choose to replace
the message content by the output score of the Naive Bayesian
classifier, because Decision Trees do not support string factors.

We used the C4.5 algorithm [5] to create our Decision Tree.
This algorithm starts with an empty tree. Then, at each level,
the algorithm calculates the information gain using the value
of each of the factors listed in Table I. The information gain
measures the improvement in classification accuracy for the
training data when using a particular factor at that specific
level. The factor with the highest information gain is added as
a decision node. This process is repeated at each level until
the number of training instances classified in the lowest level
(i.e., leaves) reaches a specified minimum [5].

C. Evaluating the Accuracy of our approach
We use a confusion matrix to evaluate the accuracy of

our approach. The confusion matrix contains the classification

decisions made by the Decision Tree classifier versus the real
classifications in the mailing list data (Contribute and Not-
contribute). Table II shows an example for a confusion matrix.
We measure the following three misclassification rates:

1) Contribute misclassification: This captures the per-
centage of times when a developer did contribute, but
the classifier determined that the developer would not
contribute. This misclassification rate is calculated as:
b/(a+1D).

2) Not-contribute misclassification: This captures the per-
centage of times when a developer did not contribute to
a thread but the classifier determined that the developer
would contribute. This misclassification rate is calcu-
lated as: ¢/(c + d).

3) Overall misclassification: This captures the percentage
of wrong classifications made by the classifier. It is
calculated as: (b+c)/(a+ b+ c+d).

TABLE II
THE CONFUSION MATRIX FOR OUR MODELS.

Classified as

True Class Contribute Not contribute
Contribute a b
Not contribute c d

If the Contribute misclassification rate is high, then devel-
opers are likely to miss contributing to threads that need their
input. If the Not-contribute misclassification rate is high, then
developers might waste time focusing on irrelevant threads.
Model’s accuracy is (1 - overall misclassification rate).

Ideally, we seek a model with minimal misclassification
rates. Our top priority is to minimize the Contribute mis-
classification rate. We believe that it might be better to read
additional discussions than to miss a thread that requires the
contribution of a developer.

We use tenfold cross-validation to estimate the accuracy of
our model. A tenfold cross-validation divides the threads into
two parts: testing corpus—containing one tenth of the contri-
bution factors, and training corpus—containing the rest of the
contribution factors. The training corpus is used to build the
classification model, while the testing corpus is used to test the
accuracy of the model. This process is repeated ten times, each
time shifting the fold that is used for testing. Tenfold cross-
validation gives more accurate results than other validation
approaches, such as Holdout and Bootstrap approaches [6].

III. CASE STUDY SETUP

This section presents our setup approach for extracting the
messages from the mailing list archive, reconstructing the
discussion threads and data preparation.

A. Data Collection
We process each message in a mailing list repository using

a semi-automated approach similar to [7]. We remove attach-
ments, duplicate messages, convert HTML emails to plain text,
and extract the email header information (such as From and

Date). Then, we identify and merge multiple email addresses
that belong to the same person. Such steps are needed to
ensure the correctness of the calculation of the factors listed in
Table 1. For example, Alvaro Herrera, one of the most active
developers in the PostgreSQL mailing list, uses six different
email addresses. We must unify these addresses as a single
person to ensure the correctness of our analysis.

B. Reconstruction of Discussion Threads

Each discussion thread consists of several email messages.
However, email messages are stored in mailing list archives
based on the posting time and date of the message. We must
reconstruct the discussion threads by linking these email mes-
sages together. We use three heuristics to reconstruct threads.
Each heuristic adds new messages to threads generated by the
previous heuristic and creates new threads. The heuristics are:

The “InReplyTo” heuristic. This heuristic uses the in-
reply-to field of a message to find the ID of earlier messages
in a thread.

The “References” heuristic. This heuristic uses the refer-
ences field of a message to find the ID of earlier messages in a
thread. This field contains all the IDs of the previous messages
sent to a thread. We use this heuristic on the remaining mes-
sages that were not classified using the InReplyTo heuristic.

The ‘““‘Subject” heuristic. In many cases, email clients fail
to generate message-ids. Also, old mailing list did not use
message-ids before 1998. In this case, we can still deduce the
thread of a message from its subject field. To avoid merging
messages from two separate discussions that happen to have
the same subject, we use a sliding time window of 6 months.
We used this heuristic on the remaining unthreaded messages.

C. Data Preparation

To prepare our data for the experiment, we create a training
model for each developer. We take all the messages in a
discussion thread up until the contribution of a developer, and
we mark the thread as a contribute thread for that developer.
If the developer did not contribute to a given thread we take
all the messages posted in that thread and mark the thread as
a not-contribute thread.

For instance, if we are building a model for the developer
“Andrew Dunstan” and we have a thread with 10 postings and
“Andrew Dunstan” posted the fifth post, we would generate
one contribute that contains all the aggregate text in the body
of the messages until the fifth post and discard the other
five posts (for this developer). This approach in preparing
our data ensures that our models are more realistic, since our
approach calculates the contribution activity until a developer
contributes to a thread.

IV. CASE STUDY

We mine the developer mailing lists of three open source
systems (Apache, PostgreSQL and Python) from different do-
mains. The aim of this case study is to build a model that helps
to understand the important factors that motivate developers to
contribute to a given thread. Table III summarizes the details
of the studied software systems. A historical archive of all

discussions for each mailing list is publicly available online
as monthly mbox files.

TABLE III
SUMMARY OF THE STUDIED SYSTEMS.

Project Apache PostgreSQL Python
Domain Web Server DBMS Interpreter
of Messages 121,288 162,741 93,919
of Threads 18,838 18,945 10,671

of Contributors 3,137 4,996 2,848
Start date March 1995 Jan. 1997 April 1999
End date Dec. 2009 Sept. 2008 Dec. 2009
% of messages

posted by top 43% 36% 40%

10 developers

We choose to study the performance of our models for the
top ten most active developers. We feel that such developers,
who are flooded with emails, will benefit the most from our
approach over casual developers on the mailing lists. Table IV
shows the activity of the top 10 developers who dominate the
mailing list discussions for the three projects.

Due to space limitations, we only discuss in detail the results
of the PostgreSQL project and we briefly present the results
of the other two projects. We choose to explore and discuss
PostgreSQL in detail, since it has the largest number of threads
and messages among the studied projects. Moreover, Table IV
shows that the PostgreSQL project has the largest variation in
the number of threads the top 10 developers contributed to.
We want to examine closely the performance of our approach
under such high variation.

Q1. Can we build a high accuracy model of developer contri-
bution to a thread?

We use our methodology from section 2 to build a composite
model based on all available mailing list data of each project.
Such a model will enable us to understand the important
factors that motivate developers to contribute to a given thread.

Table V shows the misclassification rates for the top ten
developers for PostgreSQL. Lower misclassification rates are
desired, especially for the Contribute misclassification rate.
We find that the Contribute misclassification rate for Tom
Lane is low (18%), while for the other developers the Con-
tribute misclassification rates are high (29% to 51%). On the
other hand, the Not-contribute misclassification rate for all
the developers is between 0% and 2%, except for Tome Lane
(13%) and Bruce Momjian (5%). The Overall misclassification
rate for all the developers ranges from 2% to 16%. These
results are acceptable if we care about the overall performance,
but we are interested more in the Contribute class. It is
important that developers do not miss contributing to an
important thread, but it is acceptable to read more threads.

The problem is Decision Trees tend to bias their classifica-
tion to the majority class, especially when that class is much
larger than the other classes, as in our case [8]. Table VI shows
the ratio between the “Contribute” class and “Not-Contribute”
class for each developer. If the contribute ratio is near 1, then

TABLE V
MISCLASSIFICATION RATES (IN PERCENTAGES).

Name Contribute Not contribute Overall
Tom Lane 18 13 16
Bruce Momjian 31 5 14
Peter Eisentraut 35 2 6
Thomas Lockhart 41 1 4
Andrew Dunstan 35 1 4
Alvaro Herrera 51 0 4
The Hermit Hacker 38 0 3
Christopher Kings 34 1 3
Hannu Krosing 37 1 2
Jan Wieck 29 0 2
TABLE VI

THE CONTRIBUTION RATIO FOR POSTGRES QL PROJECT.

Name contribution ratio
Tom Lane 1.18
Bruce Momjian 0.52
Peter Eisentraut 0.13
Thomas Lockhart 0.09
Andrew Dunstan 0.09
Alvaro Herrera 0.08
The Hermit Hacker 0.08
Christopher Kings 0.06
Hannu Krosing 0.05
Jan Wieck 0.05

the size of the “Contribute” and “Not-contribute” class are
nearly equal. But if the contribute ratio is less than 1, then the
“Not-contribute” class dominates the “Contribute” class. Table
VI shows that the “Not-contribute” class clearly dominates
the “Contribute” class as the ratios approach zero, except for
Tom Lane and Bruce Momjian. In short, the Decision Tree
simply learns the majority without trying to learn any factors
from the minority training data. This observation appears in
many real-world applications (e.g., in vision recognition [9],
bioinformatics [10], credit card fraud detection [11], cancer
detection [12], bug prediction [13] and bug triage [14]).

To tackle the problem of highly imbalanced classes, we
must increase the minority class (Contribute class) to improve
the Contribute misclassification rate. Re-balancing the training
data is a frequently used technique to address this problem.
There are two approaches for re-balancing the data:

1) By re-weighting the minority class. Re-weighting the
minority class by assigning a higher weight to the
minority class ensures that the Decision Tree would
consider the minority class more prominently.

2) By re-sampling the data. Re-sampling the data can
be done by under-sampling, over-sampling or both [15].
Estabrooks and Japkowicz [15] note that the best ap-
proach is to perform a combined under-sampling and
over-sampling, as under-sampling alone discards useful
data and over-sampling leads to over-fitted models.

We rebuild our models using re-weighting and re-sampling
approaches. We use the AdaBoost algorithm [16] which is part

TABLE IV
THE TOP 10 MAILING LIST DEVELOPERS ORDERED BY THE NUMBER OF THREADS THEY CONTRIBUTED TO.

(a) Apache Project

(b) PostgreSQL Project

(c) Python Project

Name contributed to Name contributed to Name contributed to
Ken Coar 3,267 Tom Lane 10,184 Guido van Rossum 3,597
Jim Jagielski 3,212 Bruce Momjian 6,423 Martin Von Loewis 2,342
William Rowe 3,167 Peter Eisentraut 2,180 Tim Peters 1,974
Rob Hartill 3,112 Thomas Lockhart 1,580 Skip Montanaro 1,303
Dean Gaudet 2,998 Andrew Dunstan 1,521 Barry Warsaw 1,260
Marc Slemko 2,447 Alvaro Herrera 1,403 Greg Ewing 1,126
Brian Behlendorf 2,392 The Hermit Hacker 1,388 M. Lemburg 1,079
Ben Lauri 2,333 Christopher Kings 1,102 Nick Coghlan 1,001
Jeff Trawick 2,149 Hannu Krosing 957 Aahz Maruch 895
Randy Terbush 1,972 Jan Wieck 860 Fredrik Lundh 893

TABLE VII
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE
DATASET. PERFORMANCE DIFFERENCES RELATIVE TO TABLE V ARE
SHOWN BETWEEN PARENTHESES.

Name Contribute Not contribute ~ Overall
Tom Lane 19+ 1) 15+ 2) 17+ 1)
Bruce Momjian 21(-10) 15(+10) 17(+ 3)
Peter Eisentraut 15(-20) 11(+9) 11(+ 5)
Thomas Lockhart 18(-23) 17(+16) 17(+13)
Andrew Dunstan 18(-17) 12(+11) 13(+ 9)
Alvaro Herrera 25(-26) 17(+17) 18(+14)
The Hermit Hacker 18(-20) 14(+14) 15(+12)
Christopher Kings 14(-20) 8+ 7) 8(+ 5)
Hannu Krosing 20(-17) 23(+22) 21(+19)
Jan Wieck 19(-10) T+ 7) T+ 5)

of the WEKA machine learning framework [17] to perform a
combined over- and under-sampling of our training data. We
find that a re-weighting or re-sampling approach outperforms
the original non-balanced approach. However, re-sampling is
better than re-weighting by 1 to 4%, so we will use the re-
sampling approach throughout the rest of the paper.

Table VII shows the misclassification rates using the re-
sampling approach. The Contribute misclassification rates for
all the developers, except for Tom Lane, have dramatically im-
proved by as much as 26%. However, this improvement leads
to a 7% to 17% increase in the Not-contribute misclassification
rate. However, the Overall and Contribute misclassification
rates for Tom Lane change by 1% and the Not-contribute
misclassification rate changes only by 2%. This small decrease
in the performance is expected because the contribute ratio for
Tom Lane was reasonably balanced before re-sampling.

Our new models ensure to build a model with high accuracy
that explains the contribution behavior for the developers. Our
composite model ensures that a developer misses contributing
to a smaller number of relevant discussion threads, while she
will have to look through a larger number of discussion threads
that do not require their contribution.

Our findings hold across all three studied projects (Apache,
PostgreSQL and Python). Table VIII shows the average mis-
classification rates for the three projects. The misclassification
rates are consistent across the three projects with average

TABLE VIII
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG
THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER RE-SAMPLING THE

DATASET.
Project Contribute Not contribute ~ Overall
Apache 12.7 12.5 12.6
PostgreSQL 18.7 13.9 14.4
Python 19.3 9.8 11.0

Overall misclassification rate between 11% and 14.4%.

We can build a developer contribution model with a
high accuracy of 89-895% using data re-sampling.

Q2. What are the most important factors that influence a
developer to contribute to a thread?

We now study which factors have the most influence on the
decision of a developer to contribute. This study helps us to
understand the contribution behavior of developers. In order to
study the most important factors, we examine the top factors in
the ten Decision Trees created by the Tenfold cross validation
for each developer. The most important factor is the root
node of a Decision Tree. The factors gradually become less
important as we go down the tree. If the thread_length factor
would appear as the root node in each of the ten trees created
in each fold, then we would record that thread_length appears
ten times at Level 0. This would mean that thread_length is
the most important factor. This analysis is called Top Node
analysis [18], [19].

Due to space constraints, Table IX only shows the Top Node
analysis results for the most active developer (Tom Lane),
a middle activity developer (Alvaro Herrera), and the least
active developer (Jan Wieck) from the top ten most active
developers. We also show the average Top Node analysis
results across the top ten developers. Looking at the results for
the three developers, we note that each developer has different
contribution behavior. For Tom Lane, our model suggests that
the length of the discussion is the most important factor, as it
appears in the root of every tree. Alvaro Herrera’s contribution
activity is considered to be the most important factor, since
Alvaro’s contribution activity appears in eight out of the ten

TABLE IX

TOP NODES IN DECISION TREES BUILT FOR TABLE VII.

Tom Lane Alvaro Herrera Jan Wieck Average
Level | # [Attribute # [Attribute # [Atribute # | Attribute
0 10 | thread_length 8 | contribution_activity 10 | Naive_Bayesian_score 4 | Naive_Bayesian_score
2 | thread_length 3 | contribution_activity
3 | thread_length
1 10 | Naive_Bayesian_score 6 | Naive_Bayesian_score 8 thread_length 5 | Naive_Bayesian_score
3 | thread_length 2 contribution_activity 4 | thread_length
1 | contribution_activity 1 | word_count
1 | contribution_activity
2 10 | words_count 5 | thread_length 5 contribution_activity 3 | words_count
2 | Naive_Bayesian_score 2 word_count 2 | Naive_Bayesian_score
2 | words_count 2 thread_length 2 | contribution_activity
1 | contribution_activity 1 msg_time 2 | thread_length
1 | msg_time
TABLE X
THE AVERAGE TOP NODES IN DECISION TREES FOR EACH PROJECT.
Apache PostgreSQL Python
Level | # [Attribute # [Attribute # | Attribute
0 5 | Naive_Bayesian_score 4 | Naive_Bayesian_score 7 | Naive_Bayesian_score
4 | thread_length 3 | thread_length 3 | thread_length
1 | contribution_activity 3 | contribution_activity
1 3 | Naive_Bayesian_score 5 | Naive_Bayesian_score 3 | Naive_Bayesian_score
2 | thread_length 4 | thread_length 2 | thread_length
2 | word_count 1 | word_count 2 | contribution_activity
2 | contribution_activity 1 | contribution_activity 1 | word_count
2 2 | words_count 3 | words_count 1 | words_count
2 | contribution_activity 2 | Naive_Bayesian_score 1 | contribution_activity
1 | Naive_Bayesian_score 2 | contribution_activity 1 | Naive_Bayesian_score
1 | thread_length 2 | thread_length 1 | thread_length
1 | known_starter 1 | msg_time

trees. For Jan Wieck, the message content (Naive Bayesian
classifier score) seems to be very important in his contribution
decision, since it appears in all his trees. For the average across
the ten developers, we find that the message content comes
first, followed by contribution activity and the length of the

thread respectively.
We examine the top words that the Naive Bayesian classifier

uses to define if Tom Lane and Jan Wieck are going to
contribute to a thread. Through these words, we can gain
insight into the behavior of developers and their areas of
interest and expertise. For Tom Lane, the classifier uses the
following words: “Linux”, “baseline”, “version”, “package”,
“deadlock_timeout”, “trace”, “structure”, and “debug”. For
Jan Wieck, the classifier uses the words: “format”, “bug”,
“directory”, “libpq”, “reporting”, “compile”, “log_directory”,
“parser”, and “testtable”. The words for Tom match his leading
role in the PostgreSQL project as the words show that he
contributes to threads that talk about releases and overall
structuring issues. For Jan, the words highlight his areas of
expertise, which relate to the libpq library (this is the C
application programmer’s interface to PostgreSQL). Jan tends
to contribute to threads that talk about various problems and
bugs related to this library.

We also perform the Top Node analysis on the Apache and
Python projects. The average top node analysis for each project

is shown in Table X. Although there is no common contribu-
tion behavior for all developers, Table X shows that there are
three main contribution factors that influence developers across
all the studied projects: the Naive Bayesian score (developer’s
expertise), the message length (necessity to contribute) and
the developer activity. The Top Node analysis shows that
social dimension (inter-personal behavior) and time dimension
(availability) do not influence the contribution behavior of the
top 10 developers.

The content of the thread (Naive_Bayesian_score), the
length of a thread (thread_length) and the contribu-
tion activity of a developer (contribution_activity) are
the most important contribution factors.

_ _ V. DISCUSSION
In this section, we closely study the top two factors that

influence the developers to contribute according to our models.
The first factor is the message content, while the second factor
is the length of the thread. We want to understand how these
contribution factors affect our model compared to the other
contribution factors.

A. Message content
In the previous section, we found that message content

is one of the most important factors, as it appears either at

TABLE XI
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER APPLYING NAIVE
BAYESIAN CLASSIFIER ONLY AND RE-SAMPLING THE DATASET.
PERFORMANCE DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN
BETWEEN PARENTHESES.

Name Contribute Not contribute Overall
Tom Lane 6(-13) 87(+72) 35(+18)
Bruce Momjian 28(+07) 57(+42) 50(+33)
Peter Eisentraut 69(+54) 17(+ 6) 22(+11)
Thomas Lockhart 91(+73) 3(-14) 25(+ 8)
Andrew Dunstan 80(+62) 7(- 5) 20(+ 7)
Alvaro Herrera 80(+55) 1(-16) 22(+ 4)
The Hermit Hacker 92(+74) 1(-13) 27(+12)
Christopher Kings 88(+74) 4(- 4) 6(- 2)
Hannu Krosing 94(+74) 7(-16) 10(-11)
Jan Wieck 100(+81) 0-17) 1(- 6)
TABLE XII

MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE
DATASET WITHOUT USING MESSAGE CONTENT. PERFORMANCE
DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN BETWEEN

PARENTHESES.
Name Contribute Not-contribute Overall
Tom Lane 27(+ 8) 11(- 4) 20(+ 3)
Bruce Momjian 41(+20) 12(- 3) 22(+ 5)
Peter Eisentraut 32(+17) 33(+22) 32(+21)
Thomas Lockhart 19(+ 1) 26(+ 9) 26(+ 9)
Andrew Dunstan 21(+ 3) 26(+14) 25(+12)
Alvaro Herrera 23(- 2) 29(+12) 29(+11)
The Hermit Hacker 16(- 2) 21+ 7) 21(+ 6)
Christopher Kings 24(+10) 28(+20) 28(+20)
Hannu Krosing 42(+22) 33(+10) 33(+12)
Jan Wieck 37(+18) 25(+18) 26(+19)

level O or level 1 in the Decision Trees. We want to compare
our model with a model that only uses the Naive Bayesian
classifier to find out if we actually need the other factors.
To explore this question, we redo our experiment twice, once
using only the Naive Bayesian classifier (Table XI), and once
using the Decision Tree without the message content factor
“Naive Bayesian score” (Table XII).

Table XI shows that using only a Naive Bayesian classifier
dramatically increases one of the misclassification rates, either
the not-contribute class as for Tom Lane and Bruce Momjian,
or the contribute class for the other developers. Table XII
shows that ignoring the message content leads to an increase
in the Overall misclassification rates by 3% to 20%. The
Contribute misclassification rate increases by 8% to 22%,
except for Alvaro Herrera and The Hermit Hacker, for whom
it decreases by 2%. The Not-contribute misclassification rate
increased by 7% to 22%, except for Tom Lane and Bruce
Momjian, for whom it decreased by 4% and 3% respectively.

Table XIII shows the average misclassification rate among
the three projects using Naive Bayesian classifier only. The
table shows that the Contribute misclassification rate for
Apache and Python is lower than for PostgreSQL, but still they
are higher than the Contribute misclassification rate using all
contribution factors (Table VIII). The reason of having lower

TABLE XIII
THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG
THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER APPLYING BAYESIAN
CLASSIFIER ONLY AND RE-SAMPLING THE DATASET. PERFORMANCE
DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.
Project Contribute ~ Not contribute Overall
Apache 31.7(+19.0) 11.8(-0.7) 12.5(-0.1)
PostgreSQL ~ 72.8(+54.1) 18.4(+4.5) 21.8(+7.4)
Python 31.1(+11.8) 7.1(-2.7) 9.3(-1.7)
TABLE XIV

THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG
THE TOP 10 DEVELOPER FOR EACH PROJECT AFTER RE-SAMPLING THE
DATASET WITHOUT USING MESSAGE CONTENT. PERFORMANCE
DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.
Project Contribute ~ Not contribute Overall
Apache 21.3(+08.6) 23.6(+11.1) 23.3(+10.7)
PostgreSQL 28.2(+09.5) 24.4(+10.5) 26.2(+11.8)
Python 31.0(+11.7) 22.6(+12.8) 23.9(+12.9)

Contribute misclassification rate for Apache and Python, is
that the Decision Trees for Apache and Python (some even
exclusively) use the Naive Bayesian Score, whereas those for
PostgreSQL use the other factors more. Table XIV shows the
average misclassification rates for each project without using
message content. The table shows that not using message
content increases the Overall misclassification rate by 10.7%
up to 12.9%. This means that using the other factors with the
Naive Bayesian classifier reduces the misclassification rate.

B. Thread Length
The Top Node analysis shows that the length of a discussion

(thread_length) is one of the most important factors for many
of the developers. However, while examining a few of the
Decision Trees, we note that some of the nodes state that the
developer should contribute to a thread when the thread_length
< 1. Figure 2 shows an example of this in the tree generated
for Thomas Lockhart. This pattern is not consistent for all
developers though, as it does not hold for Christopher Kings
and Hannu Krosing. This means that our model suggests that
whenever there is a new thread posted and the developer is
available online, then the developer should contribute to this
new thread. This seems rather strange as developers are not
available online 24 hours a day, seven days a week. However,
by the time they get online, many emails have been answered
already by other developers. Therefore, we do not expect each
developer to reply to every single thread that is started.

To measure the effect of our composite model without using
the thread_length factor, we redo our case study using the re-
sampled training data, excluding the thread_length factor. Ta-
ble XV shows that removing the thread_length factor improves
the Contribution misclassification rate for some developers
and increases it for others. The Not-contribute and Overall
misclassification rates increase for all developers, except for
the last three and Alvaro Herrera (which was expected since

TABLE XV
MISCLASSIFICATION RATES (IN PERCENTAGES) AFTER RE-SAMPLING THE
DATASET WITHOUT USING THREAD_LENGTH. PERFORMANCE
DIFFERENCES RELATIVE TO TABLE VII ARE SHOWN BETWEEN

PARENTHESES.

Name contribute Not-contribute ~ Overall
Tom Lane 20(+1) 24(+ 9) 22(+ 5)
Bruce Momjian 18(-3) 30(+15) 26(+ 9)
Peter Eisentraut 16(+1) 13(+ 2) 13(+ 2)
Thomas Lockhart 22(+4) 24(+ 7) 24+ 7)
Andrew Dunstan 17(-1) 22(+10) 22(+ 9)
Alvaro Herrera 21(-4) 14(- 3) 15(- 3)
The Hermit Hacker 26(+8) 22(+ 8) 23(+ 8)
Christopher Kings 15(+1) 7(- 1) 7- 1)
Hannu Krosing 20(+0) 9(-14) 9(-12)
Jan Wieck 19(+0) 7(+ 0) 7(+ 0)

TABLE XVI

THE AVERAGE MISCLASSIFICATION RATES (IN PERCENTAGES) AMONG
THE TOP 10 DEVELOPERS FOR EACH PROJECT AFTER RE-SAMPLING THE
DATASET WITHOUT USING THREAD_LENGTH. PERFORMANCE
DIFFERENCES RELATIVE TO TABLE VIII ARE SHOWN BETWEEN

PARENTHESES.

Project Contribute ~ Not contribute Overall
Apache 12.3(-0.4) 17.3(+4.8) 16.9(+4.3)
PostgreSQL 19.4(+0.7) 17.2(+3.3) 16.8(+2.4)
Python 20.0(+0.7) 12.9(+3.1) 13.5(+2.5)

our Top Node analysis shows that thread_length is not an
important factor for them).

The average misclassification rates for the three projects
without using thread length are shown in Table XVI. The
table shows that removing thread length increases the Overall
and Not-contribute misclassification rates. Also, thread length
has a small effect on the Contribute misclassification rate as
the performance changes by less than 1% than the original
model (Table VIII). This means that thread length only slightly
improves our composite model, although thread length appears
at the top levels in the Decision Trees.

C. Developer Privacy

When writing this paper, we struggled with a dilemma about
using the real names of the developers to safeguard the privacy
of the developers. Eventually, we decided not to anonymize
their names for two reasons.

o Publicly Accessible Data: We use developer mailing lists
of three open source systems, in which data is publicly
available. Hence, it is hard to hide developer names.
One way to decipher developer names is by ordering
the developer names by the number of threads they
contributed to and compare these names with Table IV.

« Case Study Replication: Researchers normally replicate
a case study to compare it with a new approach. Some
years ago, a researcher had to replicate our case study
[20] and contacted us to decipher the anonymized names.

Eventually, we decided to use the real names of the devel-

opers, to make it easier for researchers to replicate our case
study and improve our results.

VI. THREATS TO VALIDITY

Our case study was performed using the development mail-
ing list of three open source projects with different domain
and size. Additional case studies on commercial projects are
needed to verify the generality of our findings.

In our study, we use the whole history of the mailing list.
Building models per year may result in different findings.
In future work, we plan to study the developer contribution
characteristics on yearly bases.

We use Decision Trees to build our models, but other
techniques such as Support Vector Machines (SVM) should
be studied and compared. Also, our model uses a small set
of contribution factors, but they all perform well. However,
additional factors should be explored, because they might
improve the performance of our model. Prior work by Bird
[21] uses a subset of our factors.

Marking a thread for a given developer as not to contribute
to it, does not mean that the developer did not read the thread,
but rather that it means either he does not have the correct
information to contribute to this thread or someone already
posted the correct contribution. Also, when our model suggests
not to contribute to a given thread, this does not mean that the
developer should not read the message.

VII. RELATED WORK

Our survey of related work focuses on two categories: work
that mines mailing lists and work that mines software archives
to cope with overload.

Using Mailing List Archives: Previous work uses mailing
lists to study the social structure of developers. Bird et al. [22]
created a developer social network and used it to study the evo-
lution of sub-communities within large projects. Weissgerber
et al. [23] used mailing lists to study the likelihood of a patch
getting accepted and Rigby et al. [24] used mailing lists to
study the code review process. We determine the contribution
of developers to developer mailing list threads.

In addition, several studies used mailing lists to study
developer morale, work times and the code review process.
Rigby and Hassan [20] performed a psychometric study to
identify the personality types of open-source software devel-
opers and to gain insight into the phenomena of pre- and post-
release optimism. Tsunoda et al. [25] observed that, every
year, an increasing number of commit messages are being sent
during overtime periods. Our approach studies the factors that
motivate developers to contribute to a given thread.

Other work used mailing lists to identify architectural
changes [26], to accurately identify actors [27] and to study the
time it takes for developers to be invited into the core group of
a project [28]. Bacchelli et. al. [29] create a benchmark that
evaluates the linking between source code and e-mails. The
work closest to ours is the work done by Bird [21]. He applies
neural networks to predict which emails a developer would be
interested in. Our work differs from Bird’s work in that Bird
builds a single model for all the participants of a mailing list,
while we build personalized models for each participant that

has a better performance and presents an explainable model
of the contribution behavior of each developer.

Using Software Archives to cope with overload: Vary
researchers analyze software archives to assist overloaded
people. Anvik et al. [14] applied a supervised machine learning
algorithm on data mined from bug repositories to assist in the
assignment of a bug report to a developer with the appropriate
expertise. This study helps overloaded managers assign bugs
to the right developer. Zimmerman et al. [30] created ROSE,
a tool that uses source code repositories to recommend related
files that may need to be co-changed. Ying et al. [31] created
rule associations for files using information contained in the
source code repository. Using these rules, Ying et al. assist in
the identification of related changes that occur in the future.
Our composite model identifies for overloaded developers
which mailing list threads need their contribution.

VIII. CONCLUSIONS

We build a composite model that explores the contribution
behavior for the top ten developers in mailing lists based on
our factors in 4 dimensions. We applied our composite model
on three open source mailing lists (Apache, PostgreSQL and
Python). Our composite model shows that the contribution
behavior varies between the developers, yet the models are
intuitive and simple to follow. The most important contribution
factors are the message content, developer contribution activity
in the last month and the length of the thread. We are currently
exploring whether our composite model could be used by
the developers in practice to support them to identify which
threads need their contributions from the hundreds of emails
they receive everyday.

REFERENCES
[1] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of developer
irc meetings in open source projects,” in Proc. of 25th IEEE Int. Conf.
on Software Maintenance (ICSM), September 2009, pp. 147-156.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks in postgres,” in Proc. of the int. workshop
on Mining software repositories (MSR), 2006, pp. 137-143.

[3] T. A. Meyer and B. Whateley, “Spambayes: Effective open-source,
bayesian based, email classification system,” in Proc. of the First Conf.
on Email and Anti-Spam (CEAS), 2004.

[4] P. Graham, “A plan for spam,” http://paulgraham.com/spam.html, 2002,
last accessed, March 2010.

[5] J. R. Quinlan, C4.5: Programs for Machine Learning.
Kaufmann, 1993.

[6] R. Kohavi, “A study of cross-validation and bootstrap for accuracy esti-
mation and model selection,” in Int. Joint Conf. on Artificial Intelligence
(IJCAI), 1995, pp. 1137-1145.

[7]1 N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the
risks of using off-the-shelf techniques for processing mailing list data,”
in Proc. of the 25th IEEE Int.Conf. on Software Maintenance (ICSM),
2009, pp. 539-542.

[8] R. Barandela, J. S. Sanchez, V. Garcia, and F. J. Ferri, “Learning from
imbalanced sets through resampling and weighting,” in Proc. of the First
Iberian Conf. on Pattern Recongnition and Image Analysis (IbPRIA),
Mallorca, Spain, June 2003, pp. 80-88.

[9] J. Séanchez, R. Barandela, A. Marqués, and R. Alejo, “Performance
evaluation of prototype selection algorithms for nearest neighbor classifi-

cation,” in proc. of the 14th Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI), 2001, pp. 44-50.

Morgan

[10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

R. Barandela, J. S. Sanchez, V. Garcia, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognition Research
(JPRR), vol. 36, no. 3, pp. 849-851, 2003.

P. K. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform
class and cost distributions: A case study in credit card fraud detection,”
in Con. on Knowledge Discovery and Data Mining (KDD), 1998, pp.
164-168.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Artificial Intelligence Re-
search (JAIR), vol. 16, pp. 321-357, 2002.

J. Shirabad, T. Lethbridge, and S. Matwin, “Supporting software main-
tenance by mining software update records,” in Proc. of the IEEE Int.
Conf. on Software Maintenance (ICSM), 2001, pp. 22-31.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proc. of the 28th Int. Conf. on Software Eng. (ICSE), 2006, pp. 361-370.

A. Estabrooks and N. Japkowicz, “A mixture-of-experts framework for
learning from imbalanced data sets,” in Proc. of the 4th Int.Conf. on
Advances in Intelligent Data Analysis (IDA), 2001, pp. 34-43.

Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Second European Conf.
on Computational Learning Theory (EuroCOLT), 1995, pp. 23-37.

I. H. Witten and E. Frank, “Data mining: practical machine learning
tools and techniques with java implementations,” Special Interest Group
on Management Of Data (SIGMOD), vol. 31, no. 1, pp. 76-77, 2002.

J. Sayyad Shirabad, Ph.D. dissertation.

A. E. Hassan and K. Zhang, “Using decision trees to predict the
certification result of a build,” proc. of the 21st Int. Conf. on Automated
Software Eng. (ASE), pp. 189-198, 2006.

P. C. Rigby and A. E. Hassan, “What Can OSS Mailing Lists Tell Us?
A Preliminary Psychometric Text Analysis of the Apache Developer
Mailing List,” in Proc. of the Fourth Int. Workshop on Mining Software
Repositories (MSR), 2007, pp. 23-31.

C. Bird, “Predicting email response using mined data,”
http://wwwcsif.cs.ucdavis.edu/«~bird/papers/mlpaper.pdf, last accessed,
March 2010.

C. Bird, D. Pattison, R. D’Souza, V. Folkiv, and P. Devanbu, “Latent
Social Structure in Open Source Projects,” in Proc. of the 2008 ACM
SIGSOFT symposium on the Foundations of Software Eng. (FSE), 2008,
pp. 24-35.

P. Weissgerber, D. Neu, and S. Diehl, “Small patches get in!” in Proc.
of the Int. Working Conf. on Mining Software Repositories (MSR). New
York, NY, USA: ACM, 2008, pp. 67-76.

P. C. Rigby, D. M. German, and M.-A. Storey, “Open source software
peer review practices: A case study of the apache server,” in Proc. of
the 30th Int. Conf. on Software Eng. (ICSE). New York, NY, USA:
ACM, 2008, pp. 541-550.

M. Tsunoda, A. Monden, T. Kakimoto, Y. Kamei, and K.-i. Matsumoto,
“Analyzing oss developers’ working time using mailing lists archives,”
in Proc. of the Int. workshop on Mining Software Repositories (MSR),
2006, pp. 181-182.

O. Baysal and A. J. Malton, “Correlating social interactions to release
history during software evolution,” in Proc. of the Fourth Int. Workshop
on Mining Software Repositories (MSR), 2007, p. 7.

G. Robles and J. M. Gonzalez-Barahona, “Developer identification
methods for integrated data from various sources,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pp. 1-5, 2005.

C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu, “Open
borders? immigration in open source projects.” in Proc. of the Fourth
Int. Workshop on Mining Software Repositories (MSR), 2007, p. 6.

A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes, “Benchmarking
lightweight techniques to link e-mails and source code,” in Working
Conf. on Reverse Eng. (WCRE), 2009, pp. 205-214.

T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proc. of the 26th Int. Conf. on
Software Eng. (ICSE), 2004, pp. 563-572.

A. T. T. Ying, R. Ng, and M. C. Chu-Carroll, “Predicting source code
changes by mining change history,” IEEE Trans. Softw. Eng. (TSE),
vol. 30, no. 9, pp. 574-586, 2004.

