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Abstract

EVELOPERS insert logging statements in their source code to trace the run-
time behaviors of software systems. Logging statements print runtime log
messages, which play a critical role in monitoring system status, diagnos-

ing field failures, and bookkeeping user activities. However, developers typically in-
sert logging statements in an ad hoc manner, which usually results in fragile logging
code, i.e., insufficient logging in some code snippets and excessive logging in other
code snippets. Insufficient logging can significantly increase the difficulty of diagnos-
ing field failures, while excessive logging can cause performance overhead and hide
truly important information. The goal of this thesis is to help developers improve their
logging practices and the quality of their logging code. We believe that development
knowledge (i.e., source code, code change history, and issue reports) contains valuable
information that explains developers’ rationale of logging, which can help us under-

stand existing logging practices and provide helpful tooling support for such logging



practices.

Therefore, this thesis proposes to mine different aspects of development knowl-
edge to understand and support software logging practices. We mine issue reports to
understand developers’ logging concerns, i.e., the benefits and costs of logging from
developers’ perspective. Our findings shed lights on future research opportunities for
helping developers leverage the benefits of logging while minimizing logging costs. We
mine source code to learn how developers distribute logging statements in their source
code, and propose an approach to provide automated suggestions about where to log.
We find that the semantic topics of a code snippet provide another dimension to ex-
plain the likelihood of logging a code snippet. We mine code change history to under-
stand how developers develop and maintain their logging code, and propose an auto-
mated approach that can provide developers with log change suggestions when they
change their code. We also mine code change history to understand how developers
choose log levels for their logging statements, and propose an automated approach
that can help developers determine the appropriate log level when they add a new log-
ging statement. This thesis highlights the need for standard logging guidelines and

automated tooling support for logging.
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CHAPTER 1

Introduction

OFTWARE developers insert logging statements in their source code to record
valuable runtime information. A logging statement, when executed at run-
time, prints a time-stamped log message into a pre-specified log file. Log

messages help software practitioners (i.e., developers, testers, and operators) better
understand system behaviors at runtime and assist in quality assurance efforts. For ex-
ample, software developers rely on log messages for debugging field failures (Glerum
et al., 2009; Yuan et al., 2010). Software operators leverage the rich information in log
messages to guide capacity planning efforts (Sharma et al., 2011; Kavulya et al., 2010),
to monitor system health (Bitincka et al., 2010), and to identify abnormal behaviors (Fu
et al., 2009; Xu et al., 2009b; Jiang et al., 2008).

However, developers usually insert logging statements in an ad hoc manner (Yuan



CHAPTER 1. INTRODUCTION 2

et al., 2012b). As a result, software practitioners usually miss important logging state-
ments in a system, which often results in difficulties when debugging a field issue (Yuan
et al,, 2010). Nevertheless, adding logging statements excessively is not a good solu-
tion, since adding unnecessary logging statements can negatively impact system per-
formance (Zenget al., 2015) and mask the truly important information (Fu et al., 2014).
In practice, providing appropriate logging statements (i.e., maximizing the value of the
logged information while minimizing logging overhead) remains a challenge for soft-
ware developers (Fu et al., 2014; Yuan et al., 2012b).

Prior studies proposed approaches to improve logging through proactive logging
(Yuan et al., 2012a, 2011) and learning to log (Zhu et al., 2015; Jia et al., 2018). Proac-
tive logging approaches use static analysis to conservatively add more logged informa-
tion to the existing code (e.g., in exception catch blocks), in order to improve software
failure diagnosis. However, these approaches do not consider developers’ expertise
and significantly increase the amount of logged information (i.e., excessive logging).
Learning to log approaches, on the other hand, learn statistical models from existing
logging code and further leverage the models to provide suggestions for new logging
code. These approaches have four main drawbacks: 1) They focus on specific types of
code snippets (e.g., exception catch blocks or function calls) which together only cover
41% of the logging instances (Fu et al., 2014); 2) They provide logging suggestions as a
post-development process instead of providing logging suggestions during the devel-
opment process, i.e., when developers are changing their code; 3) They do not consider
logging patterns (e.g., loglevels, or stack trace logging) which also play important roles
in determining the overall amount of log information; and 4) They do not consider

developers’ code change history and issue reports that explain the rationale behind
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Figure 1.1: An overview of mining development knowledge to understand and support
software logging practices.

developers’ logging practices.

1.1 Research Hypothesis

This thesis aims to mine development knowledge to understand and support devel-
opers’ logging practices. Development knowledge includes source code, change his-
tory (code changes and commit messages), as well as issue reports (issue descriptions,
comments and patches). Development knowledge records developers’ development
activities and their intention behind these activities. This thesis proposes the following

research hypothesis:

Research hypothesis: Development knowledge (e.g., source code, change history
and issue reports) contains valuable information that can explain developers’ ra-
tionale of logging, which can help us understand current logging practices and de-

velop helpful tools to support such logging practices.

Figure 1.1 shows an overview of this thesis work. Through mining development
knowledge, we find the best logging practices and the existing problems (e.g., excessive

logging) within current logging practices. Based on these findings, we derive general
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logging advice and built automated tools to support current logging practices (i.e., to
help developers solve existing logging problems). Specifically, this thesis mines three
types of repositories: 1) miningissue reports (Chapter 3), 2) mining source code (Chap-

ter 4 and Chapter 7), and 3) mining change history (Chapter 5 and Chapter 6)).

1.2 Thesis Overview

We now give a brief overview of the work presented in this thesis.

1.2.1 Chapter 2: Literature Review

For our literature review, we focus on prior studies that attempt to understand or im-
prove software logging practices. We characterize and compare the surveyed literature

along four categories:

Mining logging code. Prior work empirically studies how developers insert log-

ging statements in their source code and the evolution of their logging code.

* Mining log messages. Prior studies mine the rich source of log messages that are
generated at run time, in order to support various software engineering purposes
(e.g., anomaly detection).

* Automatic log insertion. Based on static code analysis and heuristics, prior
studies automatically add log information in the source code, in order to support
failure diagnosis.

* Learning to log. Prior studies learn statistical models or heuristics from existing

logging code, in order to provide logging suggestions such as where to log.
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From the literature review, we observe that software logging is a pervasive software
engineering process. However, developers usually have difficulties when making their
logging decisions, and they spend much effort maintaining their logging code. Prior
studies propose automated approaches to help developers improve their logging code.
Yet, these studies rarely take developers’ expertise and concerns for logging into con-
sideration. These studies provide logging suggestions as a post-development process
instead of providing logging suggestions during the development process, i.e., when

developers are changing their code.

1.2.2 Chapter 3: Understanding Developers’ Logging Concerns

Modern software development processes use issue reports to manage development
tasks (e.g., new features, feature enhancement, or bug fixes). Issue reports record the
description, rationale, developers’ comments, and related code changes of a develop-
ment task. Mininglogging-related issue reports helps us better understand developers’
logging concerns, i.e., the benefits (e.g., assisting in debugging) and costs (e.g., perfor-
mance overhead) of logging.

Therefore, we perform a qualitative study on the logging-related issue reports from
three large and successful open source projects. We manually investigate these issue
reports and derive high-level concepts about developers’ logging concerns and how
they address their logging concerns. Along with our qualitative study, we also summa-
rize best logging practices and general logging advice that can help developers (and

logging library providers) improve their logging code (and logging libraries).
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1.2.3 Chapter 4: Understanding Software Logging Using Topic Mod-

els

Source code represents the resulting fact of developers’ code change activities. Prior
studies learn statistical models from existing source code and provide logging sugges-
tions about where to log. These studies use the structural information of the source
code (e.g., exception types or method calls) to explain the likelihood that a code snip-
pet needs a logging statement. We believe that the semantic topics of a code snippet
(e.g., “network connection”) also help explain the likelihood of having a logging state-
ment in the code snippet.

Therefore, we study the relationship between the topics of a code snippet and
the likelihood of a code snippet being logged (i.e., to contain a logging statement).
Through a case study on six open source systems, we find that there exists a small
number of “log-intensive” topics that are more likely to be logged than other topics,
and that our topic-based metrics help explain the likelihood of a code snippet being
logged. As a result, leveraging both structural metrics and topic-based metrics can
provide better suggestions about “where to log”. Our findings highlight that topics
contain valuable information that can help guide and drive developers’ logging

decisions.

1.2.4 Chapter 5: Automated Suggestions for Log Changes

Code change history records developers’ code change activities that have been
committed and the associated commit messages. Developers’ logging activities (i.e.,
adding, deleting, or updating logging statements) are also recorded in the code change

history. Such logging activities can help us better understand current software logging



CHAPTER 1. INTRODUCTION 7

practices and the rationale behind these activities.

Therefore, we first empirically study why developers make log changes through
a manual investigation of developers’ logging activities. Based on our findings, we
propose an automated approach to provide developers with log change suggestions
as soon as they commit a code change. Through a case study on four open source
projects, we find that the reasons for log changes can be grouped along four categories:
block change, log improvement, dependence-driven change, and logging issue. We
also find that our automated approach can effectively suggest whether a log change is

needed for a code change.

1.2.5 Chapter 6: Automated Suggestions for Choosing Log Levels

Software practitioners use log levels to disable some verbose log messages while al-
lowing the printing of other important ones. However, prior research observes that
developers often have difficulties when determining the appropriate level for their log-
ging statements. We analyze the development history of four open source projects to
study how developers assign log levels to their logging statements. We also propose
an automated approach to help developers determine the most appropriate log level
when they add a new logging statement. Our automated approach can accurately sug-
gest the levels of logging statements with an AUC (Area Under the Curve) of 0.75 to
0.81. We find that the characteristics of the containing block of a newly-added logging
statement, the existing logging statements in the containing source code file, and the
content of the newly-added logging statement play important roles in determining the

appropriate log level for that logging statement.
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1.2.6 Chapter 7: Automated Suggestions for Logging Stack Traces

Software developers log the stack traces of program exceptions for debugging pur-
poses. However, stack traces can also pollute log files very fast because a stack trace is
usually much longer than a regular log message. We observe that developers have diffi-
culties to decide whether to log the stack trace of an exception. Therefore, we propose
an automated approach to help developers make informed decisions about whether
to print the stack trace of an exception in a logging statement. Our experimental re-
sults on four open source projects show that our automated approach can accurately
suggest whether to print the stack trace of an exception in a logging statement, with
an AUC of 0.85 to 0.94. Our findings also provide developers and researcher insights
into the important factors that drive developers’s decisions of logging exception stack

traces.

1.3 Thesis Contributions

This thesis empirically studies developers’ logging practices and proposes automated
approaches to help developers make informed logging decisions. The results of the
thesis highlight the importance of considering developers’ expertise and concerns
when providing automated approaches for logging improvement. The thesis mainly

makes the following contributions:

* The discussion of developers’ logging concerns (in Chapter 3) sheds light on fu-
ture research opportunities for logging improvement (i.e., helping developers

leverage the benefits of logging while minimizing logging costs).
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* We show that the semantic topics of a code snippet can provide another dimen-

sion to explain the likelihood of logging a code snippet (in Chapter 4).

* We propose an automated approach to provide developers with log change sug-

gestions as soon as they commit a code change (in Chapter 5).

e We propose an automated approach to help developers determine the most ap-
propriate log levels when they add new logging statements in the source code (in

Chapter 6).

* We propose an automated approach to help developers make informed deci-
sions about whether to print an exception stack trace in a logging statement (in

Chapter 7).



CHAPTER 2

Literature Review

Y thesis aims to understand and support software logging practices
through mining development knowledge. Understanding current
logging practices is the first step towards helping developers improve

their logging practices. Two categories of prior studies help software practitioners
and researchers understand the current logging practices in industry and in the
open source community: mining logging code and mining log messages. The for-
mer category studies how logging code are added into software products, while the
latter category studies how runtime log messages are leveraged to support software

engineering processes.

* Mining logging code. Prior work empirically studies how developers insert log-
ging statements in their source code and the evolution of their logging code.

10
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* Mining log messages. Prior studies mine the rich source of log messages that
are generated at run time, in order to support various software engineering pur-

poses, for example, anomaly detection or failure diagnosis.

Prior studies also aim to improve software logging through automatic log insertion
or learning to log. Both categories of studies propose automatic approaches to identify

the code snippets that need to be logged.

* Automatic log insertion. Based on static code analysis and heuristics, prior
studies automatically add (or improve) logging statements in the source code,
in order to support failure diagnosis.

* Learning to log. Prior studies learn statistical models or heuristics from existing

logging code, in order to provide logging suggestions such as where to log.

This chapter first explains the literature selection process, then discuss the existing

studies along the aforementioned four categories.

2.1 Literature selection

There has been a large number of prior studies that focused on log analysis, i.e., lever-
aging runtime logs for various domain-specific purposes (e.g., monitoring system per-
formance). However, this literature review is focused on the papers that aim to under-
stand and support software logging practices (i.e., the software engineering process
that adds logging code to the source code). Therefore, this literature review starts from
papers that are published on major software engineering journals and conferences.
This literature review starts from the venues that are listed in Table 2.1. This liter-

ature review considers the papers that were published in the past 10 years (i.e., from
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Table 2.1: Names of conferences and journals as starting venues of the literature review.

Venue Type Venue Name Abbreviation

Journal IEEE Transactions on Software Engineering TSE

Journal ACM Transactions on Software Engineering and TOSEM
Methodology

Journal Empirical Software Engineering EMSE

Journal Automated Software Engineering ASE

Journal Journals of Systems and Software JSS

Conference ACM SIGSOFT Symposium on the Foundation of Soft- FSE/ESEC
ware Engineering/ European Software Engineering
Conference

Conference International Conference on Software Engineering ICSE

Conference International Conference on Automated Software En- ASE
gineering

Conference International Conference on Software Maintenance ICSME
and Evolution

Conference International Conference on Software Analysis, Evo- SANER
lution, and Reengineering

Conference International Conference on Mining Software Repos- MSR
itories

Conference International Conference on Architectural Support ASPLOS

for Programming Languages and Operating Systems

2008 to 2018). To improve the coverage of this literature review, we also check the cita-

tions of each reviewed paper. Initially, all the reviewed paper fall into the categories of

mining logging code, automatic log insertion and learning to log. We found that many

papers about mining log messages are cited by the other three categories of papers,

thus we included the mining log messages category in this literature review. We detail

each category of papers below.
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2.2 Mining logging code

Characterizing logging practices. Prior work performs empirical studies to charac-
terize current logging practices. Yuan et al. (2012b) make the first attempt to provide
a characteristic study of the current logging practices within four C/C++-based open-
source projects. They quantitatively study the logging code and the change history of
the logging code. They find that software logging is a pervasive practice in software
development, and that developers spend much effort maintaining their logging code
(e.g., modifying log levels).

Chen and Jiang (2017b) replicate the work of Yuan et al. (2012b) on 21 Java-based
open source projects. They also find that logging is a pervasive software logging prac-
tice and that developers spend much effort on logging code maintenance. However,
these two studies conflict with each other in some findings. For example, the former
study (Yuan et al., 2012b) finds that developers spent shorter time fixing reported fail-
ures when log messages are presented in failure reports, while the latter study finds the
opposite (Chen and Jiang, 2017b).

Chen and Jiang (2017a) also characterize the auti-patterns of logging code in open
source projects by learning from how developers fix the defects in their logging code.
They find six different anti-patterns in the logging code, such as wrong log level and
logging nullable objects.

Shang et al. (2015) explore the relationship between logging characteristics and
code quality. Surprisingly, their results show that logging characteristics provide a
strong indicator of post-release defects. They explain that it might be the case that
developers often relay their concerns about a piece of code through logging statement,

thus source code files with high log density are more defect-prone.
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Logging practices in industry. Software logging is a widely adopted practice in
industry. Fu et al. (2014) conduct source code analysis on two industrial software
projects at Microsoft, in order to find out what categories of code snippets are logged
and what factors are considered for logging. They find five categories of logged code
snippets (including return-value-check snippets and exception-catch snippets). In
addition, they discuss the characteristics of the logged exception-catch snippets
versus unlogged exception-catch snippets.

Pecchia et al. (2015) study the industrial logging practices at Selex ES. They find that

logging is a widely adopted practice in a critical industrial domain. They also observe
that the logging behavior is strongly developer dependent and development-team de-
pendent. They highlight the need to establish standard company-wide logging poli-
cies.
Evolution of logging code. Prior research studies the evolution of logging code in soft-
ware projects. They find that logging code changes over time at a high rate. Shang
et al. (2011, 2014a) perform a case study on two open source and one industrial soft-
ware projects, in order to explore the evolution of logging code in these projects. They
find that the logging code changes at a high rate across versions, which might break
the functionality of log processing applications. They also suggest that the majority of
the logging code changes could be avoided.

Kabinna et al. (2016a,b, 2018) study the evolution of logging code in Apache Soft-
ware Foundation (ASF) projects. They find that many ASF projects have undergone
logging library migrations (Kabinna et al., 2016a). However, performance is rarely im-
proved after a migration. They also find that a large amount of logging statements

change throughout their lifetime, and they discuss the factors that impact the stability
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of a logging statement (Kabinna et al., 2016b, 2018).

Prior studies find that software logging is a pervasive practice in software develop-
ment, and that developers spend much effort maintaining their logging code. Most
empirical studies of software logging practices analyze the logging code and its evo-
lution. They focus on developers’ logging behaviors without exploring the rationale

behind developers’ logging decisions.

2.3 Mining log messages

Prior studies have proposed various approaches to mine log messages for different pur-
poses.
Understanding system runtime behaviors. System logs are widely used for system op-
erators to understand system behaviors. With the increasing scale and complexity of
software systems, it has become challenging for system operators to manually analyze
system logs. Fu et al. (2013) propose an approach to help operators understand sys-
tem behaviors by mining execution patterns from system logs. An execution pattern is
reflected by a sequence of system logs. Based on the mined execution patterns, their
approach further learns essential contextual factors that cause a specific code path to
be executed. Their approach helps system operators understand system runtime be-
haviors in various tasks (e.g., system problem diagnosis).

An operation profile captures the common usage scenarios (e.g., sending email) of
a particular system (e.g., an email client) and their occurring rate. Hassan et al. (2008)
propose an approach to customize operational profiles for large deployments. Their
approach can uncover the most repetitive usage scenarios which are usually critical

to system performance. They leverage a textual compression algorithm to compress
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different segments of log files. A high compression ratio indicates highly repetitive se-
quences of log messages and thus representing a common usage scenario.

Shang et al. (2013) mine log messages of big data analytics applications to reduce

developers’ effort to verify the deployment of such applications on Hadoop clouds.
Their approach uncovers the differences between a pseudo-cloud deployment and a
large-scale cloud deployment, and direct developers’ attention to examining such dif-
ferences, thereby reducing the deployment verification effort.
Anomaly detection. Log messages are widely used to monitor the health of software
systems and identify abnormal conditions. Traditionally, software practitioners can
search keywords such as “error” and “failure” to spot the failures of a system execu-
tion. Prior studies also propose more sophisticated approaches to detect more implicit
failures. Xu et al. (2009b,a, 2008) propose a general methodology to mine the rich in-
formation in logs to detect system runtime problems. Based on the assumption that a
problem manifests as a abnormality in the relationships among different types of log
messages, their approaches extract features that capture various correlations among
log messages (e.g., relative frequencies). Then, they use a Principal Component Anal-
ysis based anomaly detection method with the extracted features to identify runtime
problems.

Fuetal. (2009), and Mariani and Pastore (2008) learn a Finite State Automaton (FSA)
from training log sequences to represent the normal work flow for each system com-
ponent. Then, the FSA can automatically detect anomalies in newly input log files.

Jiang et al. (2008) mine load testing logs to learn dominant behavior (i.e., execution
sequences) and flag deviations (i.e., anomalies) from the dominant behavior, in order

to detect problems in load testing tasks.
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Failure diagnosis. Log messages are usually the most important clues for failure di-
agnosis and the only resource for diagnosing field failures. Yuan et al. (2010) propose
SherLog, which leverages runtime log information and source code analysis to infer
the execution paths (i.e., what must or may have happened) during a failed produc-
tion run, in order to assist developers in failure diagnosis. They find that the informa-
tion inferred by SherLog is very useful for developers to diagnose real world software
failures.

Syer et al. (2013) leverage both performance counters and execution logs to diag-
nose memory-related performance issues. They combine the performance counters
and execution events (i.e., abstracted execution logs) by discretizing them into time-
slices. Then, they use statistical techniques to identify the set of execution events that
are associated to a performance issue.

Nagaraj et al. (2012) propose DISTALYZER, which leverages the vast log data avail-
able from large scale systems to support developers in diagnosing performance prob-
lems. DISTALYZER uses machine learning techniques to compare logs with good per-
formance and logs with bad performance, and automatically infer the strongest asso-

ciations between system components and performance.

Quality log messages are critical for understanding system runtime behaviors,
anomaly detection and failure diagnosis. The importance of logging quality mo-
tivates our study to understand current logging practices and assist software devel-

opers in making better logging code.
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2.4 Automatic log insertion

Proactive logging. As the run-time log information is frequently insufficient for de-
tailed failure diagnosis, prior studies propose approaches to automatically insert ad-
ditional log information to the source code. LogEnhancer (Yuan et al., 2011) automati-
cally adds variables into existing logging statements, in order to aid in the diagnosis of
future failures. LogEnhancer conduct static analysis on the source code and automati-
cally identify causally-related variables that if logged, can minimize the uncertainty of
the execution paths during failure diagnosis.

Errlog (Yuan et al., 2012a) proactively adds appropriate logging statements into
source code. Errlog analyzes real-world failures and derives common error sites (e.g.,
system call return errors, exceptions), then automatically inserts missing logging state-
ments into such error sites. Both LogEnhancer and Errlog are reported to significantly
reduce failure diagnosis time.

Zhao et al. (2017b,a) propose Log20, which automatically place logging statements
under a specified threshold of performance overhead. Log20 measures how effective
each logging statement is in disambiguating code paths, and automatically place log-
ging statements so that they can minimize code path ambiguity while satisfying the
given threshold of performance overhead.

Interactive logging. Prior research also explores interactive logging, i.e., inserting log-
ging code when it is needed. AutoLog (Zhang et al., 2011) generates additional infor-
mative logs to help developers discover the root causes when there is a failure. When
developers need more clues to diagnose a system failure, AutoLog performs program
slicing to find the execution paths that might lead to the failure, and incrementally add

logging statements along the execution paths, with the goal to approach the root cause
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quickly with fewer logs, and then execute the program again to generate more logs. The

process ends when developers have enough clues to find the root cause of the failure.

Automatic log insertion tools are helpful when developers need to collect more
clues for failure diagnosis. However, these tools do not consider developers’ exper-
tise and concerns for logging. Therefore, the logging statements that are generated

by these tools are difficult to be integrated into production software.

2.5 Learning to Log

Learning statistical models. Prior studies learn statistical models from common log-
ging practices and leverage the models to provide logging suggestions. Zhu et al. (2015)
propose LogAdvisor, which automatically learn where to log from existing logging code
and provide informative logging guidance to developers. LogAdvisor extracts contex-
tual features of a code snippet (exception-catch snippet or return-value-check snippet),
then learns statistical models to suggest whether a logging statement should be added
to such a code snippet. LogAdvisor is the first step towards “learning to log”. Simi-
larly, LogOpt (Lal and Sureka, 2016) extract contextual features from the source code
and build statistical models to predict whether a logging statement is needed in an
exception-catch block.

Jia et al. (2018) propose an intention-aware log automation tool called SmartLog,
which uses an Intention Description Model (IDM) to explore the intension of existing
logs and mine log rules from such intentions. SmartLog only focuses on logging place-
ment of function call code snippets.

Learning logging heuristics. Prior research also learns logging heuristics from expe-

riences. King et al. (2015) propose empirical heuristics to help developers identify
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mandatory log events (i.e., defined as actions that must be logged to hold the soft-
ware user accountable for performing the actions). They extract 3,513 verb-object
pairs from natural language software artifacts, and manually classify each verb-object
pair as either a mandatory log event or not. Then, then use grounded theory analysis
to derive 12 heuristics that can help determine whether a verb-object pair describes a
mandatory log event or not.

King et al. (2017) also perform a controlled experiment to evaluate whether the
derived heuristics can effectively help developers identify mandatory log events.
However, the heuristics do not help developers more correctly identify mandatory log

events at a statistically significant level.

Prior studies learn common logging practices from the source code; they never con-
sider the code change history nor the issue reports that provide additional dimen-
sions to explain developers’ logging practices. Prior studies provide logging sug-
gestions as a post-development process instead of providing logging suggestions

during the development process, i.e., when developers are changing their code.



CHAPTER 3

Understanding Developers’ Logging Concerns

As we observed in Chapter 2, prior studies aimed to improve logging either by proactively in-
serting logging statements in certain code snippets or by learning where to log from existing
logging code. However, there exists no work that studies developers’ logging concerns, i.e., the
benefits and costs of logging from developers’ perspective. Without understanding develop-
ers’logging concerns, automated approaches for logging improvement are based primarily on
researchers’ intuition and unconvincing to developers. In order to fill this gap, we performed
a qualitative study on 533 logging-related issue reports from three large and successful open
source projects. We manually investigated these issue reports and derived high-level concepts
about developers’ logging concerns and how they address their logging concerns. Along with
our qualitative analysis, we also summarized best logging practices and general logging ad-
vice that can help developers (and logging library providers) improve their logging code (and
logging libraries). Our empirical findings also shed lights on future research opportunities for
helping developers leverage the benefits of logging while minimizing logging costs.

An earlier version of this chapter is under review at the IEEE Transactions on Software Engineer-
ing Journal (TSE).

21
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3.1 Introduction

OFTWARE developers leverage logging statements in the source code to gen-
erate runtime log messages which are crucial for understanding system run-
time behaviors and diagnosing runtime issues. Missing an important piece of

logging information can increase the difficulty of diagnosing a field failure (Yuan et al.,
2011, 2012a). For example, issue report HADOOP-13458! complains that it was hard
to comprehend the meaning of an exception message without logging the stack trace.
On the other hand, adding logging statements excessively is not an optimal solution,
since adding too much logging can significantly increase system overhead (Zeng et al.,
2015; Fu et al., 2014). For example, issue report HADOOP-12903 complains that too
much logging slowed down the speed of servers.

Prior studies have proposed automated approaches to improve logging through
proactive logging (Yuan et al., 2011, 2012a) and learning to log (Zhu et al., 2015; Lal
and Sureka, 2016; Jia et al., 2018). Proactive logging approaches use static analysis to
automatically add more logged information to the existing code, in order to improve
software failure diagnosis. Learning to log approaches, on the other hand, learn statis-
tical models from existing logging practices and further leverage the models to suggest
where to log. All these existing studies aim to ease or improve developers’ logging prac-
tices. Their goal is to help developers address their logging concerns, i.e., by leveraging
the benefits of logging while minimizing its costs.

However, there exists no work that studies developers’ logging concerns, i.e., the

'All the issue reports mentioned in this paper can be accessed though the URL
https://issues.apache.org/jira/browse/<ISSUE-ID>.
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benefits and costs of logging, from the perspectives of developers. Without a clear un-
derstanding of developers’ logging concerns, automated approaches for logging im-
provement are not convincing to developers. On the other hand, developers are also
not fully aware about the benefits and costs of logging , and in some cases raise con-
flicting concerns regarding some logging issues (see RQ1 - Discussion). Therefore, this
chapter aims to understand developers’ logging concerns, and how they address their
logging concerns.

Developers communicate their logging concerns in their logging-related issue re-
ports. For example, issue report HADOOP-13693 raises a concern that logging an error
message for a successful operation is confusing and misleading. Therefore, we per-
formed a qualitative study on 533 logging-related issue reports from three large and
successful open source projects. We used a manual coding approach to derive high-
level concepts from these issue reports, in order to understand developers’ logging
concerns and how they address their logging concerns. Alongwith our qualitative anal-
ysis, we also derived best logging practices and general logging advice which can be
leveraged by software practitioners in their logging practices. In particular, we address

the following two research questions (RQs).

RQ1: What are developers’ logging concerns?

Our goalis not to find the direct causes oflogging issues (e.g., incorrectloglevels),
butrather to go deeper and understand why developers raise such logging issues,
i.e., what are the benefits of logging that they want to leverage, and what are the

costs of logging that they want to avoid.

RQ2: How do developers address their logging concerns?
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Developers address their logging concerns by fixing logging-related issue re-
ports. By examining developers’ issue-fixing processes, we want to understand

how they balance the benefits and costs of logging (e.g., by adjusting log level).

By learning from developers’ logging concerns, we can provide developers with in-
sight on how to leverage the benefits of logging while avoiding too much negative im-
pact. We can also provide suggestions for logging library providers to improve their
logging libraries (e.g., to support different log levels for different parts of a logging
statement). Finally, our empirical findings inspire new research opportunities for log-
gingimprovement (e.g., developing methods and tools to leverage logging benefits and
minimize logging costs).

Chapter organization. The remainder of the chapter is organized as follows. Sec-
tion 3.2 describes our case study setup, covering our subject projects, data prepara-
tion and data analysis approaches. Section 3.3 presents the experimental results for
answering our research questions. Section 3.4 discusses threats to the validity of our
findings. Finally, Section 3.5 draws conclusions and outlines future research opportu-

nities that are inspired by our study.

3.2 Case Study Setup

This section describes our case study subjects, the process that we used to prepare the
data for our case study, and the qualitative analysis approaches that we used to study

developers’ logging concerns.
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Table 3.1: Overview of the studied projects.

. . . N Primary # Logging .
Project Studied History SLOC Language (SLOC) Statements
Hadoop Common 2012.06 - 2017.06 313K Java (226 K) 638
Hive 2012.06 - 2017.06 1,445K Java (1,081 K) 5,503
Kafka 2012.06 - 2017.06 238K Java (149 K) 853

" The SLOC and the number of logging statements are calculated at the end of the
studied period, i.e., June 30th, 2017. The number of logging statements for each
project is calculated for the primary language.

3.2.1 Subject Projects

In order to study developers’ logging concerns, we manually investigated the logging-
related issue reports from three large and successful open source software projects,
namely Hadoop Common?, Hive®, and Kafka'. Hadoop Commonimplements the com-
mon utilities for Hadoop, a distributed computing platform. Hive is a data warehouse
that supports accessing big data sets residing in distributed storage using SQL. Kafka
is a streaming platform for messaging, storing and processing real-time records. All of
these projects are widely used by today’s tech giants, such as Google, Amazon, Face-
book, etc. We select these three subject projects because their logging code is well
maintained, for example, they have many logging-related issue reports that are ded-
icated for maintaining logging code. As the log messages that are generated by these
projects are exposed to the aforementioned tech giants as well as a much wider audi-
ence, the quality of their logging code is critical to their success.

Table 3.1 shows the overall information of the studied projects. Hadoop Common

has 313 K source lines of code (SLOC), and it is primarily implemented in Java. Hivehas

2http://hadoop.apache.org
Shttps://hive.apache.org
‘https://kafka.apache.org
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project in ("Project Name") AND summary ~ "(log || logger || print) NOT
(\"log in\" || \"log out\" || \"blue print\" || \"print command\"~10)"
ORDER BY created DESC

Figure 3.1: The JQL query that we used to search for the logging-related issue reports.

an SLOC of 1,445 K, and its dominant programming language is also Java. Kafkahas an
SLOC value of 238 K, and it is mostly implemented in Java. Hive has the largest number
(i.e., 5,503) of logging statements, while Hadoop Common has the least number (i.e.,
638) oflogging statements. We study the logging-related issue reports that were created
from June 2012 to June 2017. We extracted the logging issue data in December 2017 (at
least six months after the creation of any studied issue report), to ensure that the status

of the studied logging issues are relatively stable after a long time since their creation.

3.2.2 Data Preparation

We extract our logging issues from the Apache JIRA issue tracking system®. Figure 3.2
demonstrates our data extraction process. First, we use the JIRA Query Language (JQL)
to automatically search for the JIRA issues reports that are related to logging (i.e., issue
reports with logging-related keywords in their summaries). We use the JQL query in
Figure 3.1 to search for the logging issue reports of each of the studied projects. The
“Project Name” is replaced by “Hadoop Common”, “Hive”, and “Kafka” for our respec-
tive projects. This JQL query searches for all the issue reports of the specified project
that have “log”, “logger” , “print” , or their variations (e.g., “logging”), but don’t have

“log in”, “log out”, “blue print”, or “print” and “command” together, in its summary,

sorted by their creation time using a reverse-chronological order.

Shttps://issues.apache.org/jira


https://issues.apache.org/jira
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The resultingissue reports from the automated filtering process may falsely include
some non-logging issue reports. For example, issue report HADOOP-14060 has “log”
inits summary butitis about the access control for the “logs” folder instead of alogging
issue. In order to remove these non-logging issue reports, we manually examined all
the resulting issue reports from the automated filtering process. For each issue report,
we first checked its summary to determine if it is a logging issue. If we could not decide
it from the summary, we further checked the description of the issue report. We only
kept those issue reports that dealt with logging issues. We also removed duplicated
logging issue reports and kept only one issue report for each duplication. We ended
up with 533 logging-related issue reports.

Table 3.2 shows the number of issue reports that are resulted from the automated
filtering process and the number of remaining issue reports after the manual filtering
process (i.e., the number oflogging issue reports that are studied in the rest of the chap-
ter). Using our query criterion (i.e., Figure 3.1), we get 193, 395 and 314 issue reports of
Hadoop Common, Hive and Kafka, respectively. 74% and 68% of the JQL-queried issue
reports are concerned with logging for the Hadoop Common and Hive projects, respec-
tively. However, only 39% of the JQL-queried issue reports are concerned with logging
for the Kafka project. As the Kafka project deals with messaging, storing and process-
ing of log messages, it has a large number of issue reports with the keyword “log” (or
its variations) in their summaries but actually they are not necessarily concerned with

the logging aspect of the project.
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Table 3.2: Number of studied logging issue reports per project.

Project #JQL-queried issues # Logging issues
Hadoop Common 193 143 (74%)
Hive 395 268 (68%)
Kafka 314 122 (39%)
Total 902 533 (59%)

3.2.3 Data Analysis

Figure 3.2 also shows our data analysis process. In order to understand developers’
logging concerns (RQ1) and how they address their logging concerns (RQ2), we per-
formed a qualitative analysis on the 533 logging issue reports. We use a manual cod-
ing approach (see details below) to extract high-level concepts (e.g., developers’ log-
ging concerns) from the detailed information of these issue reports (e.g., summaries,
descriptions, and comments). Inspired by our understanding of developers’ logging
concerns, we further derived some best logging practices and general logging advice
that can help developers improve their logging code.

Our manual coding approach. Our manual coding approach follows an open card
sorting approach (Spencer, 2009; Rugg and McGeorge, 2005; Zimmermann, 2016), ex-
cept that we did not print our content (i.e., issue reports) on physical cards. The reason
that we did not print our content on physical cards is that, for each issue report, we
need to investigate the summary, description, comments, patches, code review com-
ments, and commit messages, which cannot fitin a small card. Two researchers includ-
ing the author of this thesis and a collaborator jointly performed our manual coding
process. We first examined 50 issue reports together and jointly assign codes to these

issue reports. For each examined issue report, we compared the new issue report with
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existing codes; if we could not find an appropriate existing code for the new issue re-
port, we created a new code and assign the issue report with the new code. Then, we
divided up the remaining issue reports and individually assigned codes to these is-
sue reports. We kept communicating during the entire coding process. We discussed
whenever someone is not certain about which code an issue report can fit, and we in-
formed the other coder when a new code is created. We group lower-level codes into
higher-level codes when it is appropriate. We also constantly made changes to our ex-
isting coding results whenever appropriate. Another two collaborators reviewed our

coding results and suggested appropriate changes.

3.3 Case Study Results

In this section, we present the results for answering our research questions. For each
research question, we discuss our motivation, our approaches, and the detailed exper-

imental results.

3.3.1 RQI1: What are developers’ logging concerns?
Motivation

Prior studies proposed automated approaches (e.g., statistical models) to help devel-
opers improve their logging practices. Without a clear understanding of developers’
logging concerns, automated approaches for logging improvement may not meet de-
velopers’ real needs. In order to fill the gap, we qualitatively examined 533 issue reports

from three large and successful open source projects, to better understand the logging
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concerns from the perspective of developers. We are not trying to understand the di-
rect causes of these issue reports (e.g., incorrect log levels), but rather to go deeper
and understand why developers raise such logging issues, i.e., what are the benefits
of logging that they want to leverage, and what are the costs of logging that they want
to avoid. Software practitioners can learn from our findings to better understand the
benefits and costs of logging and improve their logging code. Our findings also shed
light on future research opportunities for logging improvement (e.g., helping develop-

ers minimize the costs of logging).

Approach

In order to analyze developers’ logging concerns, we qualitatively examine the issue
summaries, issue descriptions, issue comments, patches, commit messages and code
review comments that are associated with and directly accessible from the studied log-
ging issue reports. We use the manual coding approach discussed in Section 3.2.3 to
derive high-level concepts about developers’ logging concerns from the detailed infor-
mation of these issue reports. Along with our qualitative analysis of developers’ logging
concerns, we also derived best practices and general advice for logging, based on the
fact that developers raise similar logging issues across different issue reports and dif-
ferent projects.

Afew (17) loggingissue reports combine several logging issues together in one issue
report (e.g., HIVE-12713, “Miscellaneous improvements in driver compile and execute
logging”). We treat each of such issue reports as multiple logging issues and analyze
each logging issue separately. We end up with 560 logging issues that are raised in 533

logging issue reports.
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Some issue reports show different (and even opposite) concerns regarding a logging
issue. For example, issue report HADOOP-11180 raises a concern that printing out too
many “warn”’ messages for a successful execution can mislead end users, so the de-
veloper proposes to downgrade the “warn” messages to “debug” messages. However,
another developer raises another concern that downgrading the “warn” messages can
hide fundamental software problems. In such cases, we only consider a primary log-
ging concern for each logging issue. For example, the primary logging concern for the
example issue report (HADOOP-11180) is “misleading end users”. In some cases, we
could not understand developers’ logging concerns from the issue reports. For exam-
ple, issue report HADOOP-14296 proposes to migrate logging APIs to SLF4J° but never

explains the rationale for doing so. We assign an “unknown” label for such cases.

Results

Half of the logging issues are concerned with the benefits of logging, while the other
half are concerned with the costs of logging. Figure 3.3 summarizes the high-level
categories of logging concerns that are derived from our qualitative analysis. Devel-
opers’ logging concerns are grouped into ten high-level categories, among which, five
of them are concerned with logging benefits (i.e., assisting in debugging, exposing run-
time problems, bookkeeping, showing execution progress, and providing runtime per-
formance), and the other five are concerned with logging costs (i.e., excessive log infor-
mation, misleading end users, performance overhead, exposing sensitive information,
and exposing unnecessary details). In total, we investigated 560 logging issues from the

three studied projects (some issue reports discuss multiple logging issues). We could

Shttps://www.slf4j.org
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Figure 3.3: Developers’ logging concerns and the percentage of logging issues in each
project that raise each logging concern.

not conceptualize the logging concerns of 54 (~10%) logging issues (i.e., marked as
“unknown”), because these issue reports never explain the rationale for changing the
logging code. Among the logging issues for which we are able to conceptualize log-
ging concerns, 255 (~50%) of them are concerned with the benefits of logging, and 251
(~50%) of them are concerned with the costs of logging. Detailed discussions about
each of these logging concerns are as follows.

BENEFIT 1: Assisting in debugging. The most commonly concerned benefit of
logging is assisting in debugging. In the studied projects, 26% to 36% of the studied log-
ging issues raise the logging benefit of assisting in debugging of errors that have been

identified by developers or end users. Log messages help developers narrow down the
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try {
Thread.sleep(retryInfo.delay);
} catch (InterruptedException e) {
/* Logging the stack trace by specifying the exception (e) as the last
parameter of a logging statement. */
LOG.debug("Interrupted while waiting to retry", e);

}

Figure 3.4: Example of logging for assisting in debugging.

execution paths of a process and find the root cause of an execution failure (Yuan et al.,
2010). For example, issue report HADOOP-14497 requests to log the lifecycle (i.e., cre-
ation, renewal, cancellation, and expiration) of delegation tokens, in order to identify
the root causes of authentication failures related to delegation tokens. In particular,
logging specific information instead of general information (e.g., HIVE-11163), logging
the causes of an error in addition to the error itself (e.g., KAFKA-4164), and logging the
stack trace of an unexpected exception (e.g., HADOOP-13682) in addition to the excep-
tion message can effectively help developers narrow down the root causes. Modern
logging libraries (e.g., Log4j’ and SLF4J°) usually support convenient ways to log the
stack trace of an exception, e.g., Figure 3.4 shows a code example of logging the stack
trace of an exception for assisting in debugging. Developers also recommend to log
context information (e.g., thread id, session id, query id, user id, etc.) in a multi-task

program (e.g., HIVE-13517, HIVE-11488, KAFKA-3816, HIVE-15631, HIVE-6876).

PRACTICE 1: Log specific information (e.g., detailed error spots) instead of general
information and the context information (e.g., thread ids) of an event to support

better failure diagnosis.

BENEFIT 2: Exposing runtime problems. The second mostly concerned benefit of

"https://logging.apache.org/log4j/2.x/
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catch (IOException ex) {
LOG.warn("Failed to connect to {}:{}", url.getHost(), url.getPort());
}

Figure 3.5: Example of logging for exposing runtime problems.

logging is exposing runtime problems, which can be used to triage, understand and pri-
oritize runtime problems. In the Kafka project, in particular, 15% of the studied logging
issues raise the logging benefit of exposing runtime problems. Log messages can help
developers and users identify the problems or anomalies in a system execution. For
example, issue report HADOOP-12901 requests to log a “warn” message when a client
fails to connect to a server, so that users can easily identify the connection problem and
fix it. Figure 3.5 shows a code example of logging for exposing runtime problems. In
particular, developers need to log unhandled exceptions, otherwise there is nothing to
indicate such exceptions (e.g., HADOOP-12749). Anomaly detection tools (Jiang et al.,
2008; Fu et al., 2009; Xu et al., 2009b) automatically analyze large amounts of log mes-
sages (that are hard for humanbeings to investigate manually) and alert anomalies that
are indicated in the log messages. Missing such alerting log messages can make it hard
to identify runtime problems at an early stage and bring difficulties for locating the
problems (e.g.,, HADOOP-11328). These alerting logs are usually logged at the “warn”
or “error” levels instead of lower log levels. For example, issue reports HADOOP-12887
requests to change the log level of a logging statement from “info” to “warn” so that
one can easily identify a configuration error (e.g., by searching the keyword “warn”).
However, logging normal events or properly handled problems at the “warn” or “error”
levels can spam the log files with “warn” or “error” messages and make it difficult to

identify real problems (e.g., HIVE-8382).
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PRACTICE 2: Log real problems (e.g., unhandled exceptions) at the “warn” or “er-
ror” levels and properly handled problems at lower levels to help in uncovering run-

time problems.

BENEFIT 3: Bookkeeping. Developers can use log messages to record (i.e.,
bookkeep) important transactions or operations in a system execution, such as user
login/logout, database operations, remote queries and requests. Such bookkeeping
log information can be later processed for various analysis activities, such as security
analysis (Oliner et al., 2012), performance analysis (Syer et al., 2013), and capacity
planning (Kavulya et al., 2010). In the Hive project, 10% of the studied logging issues
raise the logging benefit of bookkeeping (e.g., bookkeeping database queries). The
Sarbanes-Oxley Act of 2002 (Sarbanes, 2002) requires all telecommunication and
financial applications to log some mandatory log events, such as user activities,
network activities and database activities®. The logging of the traceable information
of a transaction or operation, such as the hostname (e.g., HIVE-12235) and client IP
(e.g., HIVE-3512) of a query, and the identities of the operated objects (e.g., the ids
of the cancelled queries, HIVE-16286; the names of the created/deleted directories,
HIVE-13058; the ids of the opened/closed sessions, HIVE-14209), is usually required.
Figure 3.6 shows a code example of logging for bookkeeping. Developers also suggest
that bookkeeping logs need to be symmetric. For example, when the creation a
certain object (e.g., a table) is logged, the deletion of the object should also be logged.

Otherwise one could not confirm if the object still exists (e.g., HIVE-13058).

PRACTICE 3: Log traceable information (e.g., object identities or client IPs) when

bookkeeping transactions or operations.

8https://sarbanes-oxley-101.com/sarbanes-oxley-audits.htm
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hdfsSessionPath.getFileSystem(conf) .delete( hdfsSessionPath, true);
LOG.info("Deleted HDFS directory: " + hdfsSessionPath);

Figure 3.6: Example of logging for bookkeeping.

LOG.debug("Waiting to acquire compile lock: " + command) ;
compileLock.lock();
LOG.debug("Acquired the compile lock");

Figure 3.7: Example of logging for showing execution progress.

BENEFIT 4: Showing execution progress. Log messages help in tracking the sta-
tus or progress of an execution, such as the start or end of an event (e.g., HIVE-11314),
a status change (e.g., flip over a flag, HADOOP-10046), an ongoing action (e.g., retry-
ing, HADOOP-10657), or the status of waiting for some resources (e.g., waiting for a
lock, HIVE-14263). Figure 3.7 shows a code example of logging for showing execution
progress. While bookkeeping logging supports post-execution analysis of important
transactions and operations, progress logging can help in determining whether a sys-
tem is progressing as expected or something is going wrong. In particular, printing the
progress information for a process that takes a long time is important for figuring out
what’s going on in the process. For example, issue report KAFKA-5000 requests regu-
lar progress information to be logged for a long process so that one can know whether
the process is progressing or stuck. Concerns are often raised about the symmetry of
progress logging. For example, “waiting for lock” should be followed by “lock acquired”
(HIVE-14263), while “start of process” should be followed by “end of process” (HIVE-
12787).
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perfLogger.PerfLogBegin(CLASS_NAME, method.getName());
doSomething() ;
perfLogger.PerfLogEnd (CLASS_NAME, method.getName());

Figure 3.8: Example of logging for providing runtime performance.

PRACTICE 4: Logging needs to be symmetric, e.g., logging both the creation and
deletion of an object, orlogging both the start and end of a process. Future research

is needed to help developers make symmetric logging.

BENEFIT 5: Providing runtime performance. Logging statements are used to
record the performance information of a system at runtime (a.k.a., performance
logging). Such performance information is usually related to the execution time or
memory usage of a process. For example, issue report HIVE-14922 requests the logging
of the time spent in several performance-critical tasks, and issue report KAFKA-4044
requests the logging of the actually used buffer size. Figure 3.8 shows a code example
of logging for providing runtime performance. Such performance information helps
in understanding system health (e.g., HIVE-8210), in tuning system performance
(e.g., HADOOP-13301), and in adjusting resource allocation (e.g., KAFKA-4044). It is
suggested to log such performance information using standardized perf loggers to
separate performance logging from event logging, for better performance analysis

(e.g., HIVE-11891).

PRACTICE 5: Logging the performance information of critical tasks can help devel-
opers understand system health, tune system performance, and allocate system re-

sources. Standardized perfloggers are preferred over using event logging libraries.
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COST 1: Excessive log information. The most frequently raised logging cost is ex-
cessive log information. In the studied projects, 14% to 24% of the studied logging is-
sues raise the concern of excessive log information. Excessive log information is usually
caused by repeated log messages for a single event type (i.e., log messages produced by
asingle logging statement), such as logging database operations on every row of a table
(e.g., HIVE-8153), logging every entry (e.g., KAFKA-3792), logging every request (e.g.,
KAFKA-3737), or logging every user (e.g., HADOOP-12450). Such excessive log infor-
mation can mask other important information and lead to expensive storage costs (Fu
et al.,, 2014). In particular, repetitive logging of stack traces usually grows the log files
very fast and frustrates the end users. For example, issue report HADOOP-11868 raises
a major concern about the excessive logging of stack traces for invalid user logins. It
is advisable to aggregate such highly repetitive log lines, for example, by logging ag-
gregated information at a higher log level and detailed information at a lower log level
(e.g., HIVE-10214, KAFKA-4829).

Many issue reports suggest, for a single event, to log the normal log text at a higher
level (e.g., “error”) and the stack trace at a lower level (e.g., “debug”), such that the
stack traces are hidden in normal cases and are only printed out when needed (e.g.,
HADOOP-13669). It is also suggested to log the important information of an event at a
higher level, while logging the detailed information of the same event at a lower level
(e.g., KAFKA-1199). Therefore, there is a strong need for supporting logging different
parts (in particular, stack traces) of a logging statement at different log levels, which is
not supported by modern logging libraries. As a workaround, developers usually need
to insert two separate logging statements at different log levels for a single event (e.g.,

HADOOP-11868). Developers also need to be cautious when throwing and logging an



CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 40

exception at the same time®. Because it may lead to duplicated logging as the handler

of the exception may log the exception again (e.g., KAFKA-1591).

ADVICE 1: Repetitive log messages for a single event type can cause excessive log

information, which is suggested to be aggregated.

ADVICE 2: Logging libraries should consider supporting different log levels for dif-

ferent parts (e.g., the error message vs the stack trace) of a logging statement.

ADVICE 3: Developers need to be cautious when logging and throwing an excep-

tion at the same time, since the handler of the exception may also log the exception.

COST 2: Misleading end users. The second most frequently raised logging cost is
misleading end users. In the studied projects, 12% to 25% of the studied logging issues
are concerned with misleading end users. As log messages are directly exposed to end
users, inappropriate log information can be confusing and misleading. In particular,
logging “warn” or “error” messages for successful operations is the most frequent cause
for this concern. For example, HADOOP-13693 complains that a warning in a success-
ful operation confuses end users. Even worse, sometimes inappropriate log messages
can annoy or frustrate end users. For example, HADOOP-13552 complains that there
are too many “scary looking” stack traces being printed out in the log files, but in fact
those exceptions can be handled automatically. Such large amount of repetitive stack

traces can frustrate (e.g., HIVE-11062) or annoy (e.g., HIVE-7737) end users.

ADVICE 4: Developers should avoid logging successful operations at the “warn” or
“error” levels. In particular, logging the stack traces of properly handled exceptions

can unnecessarily alarm end users.

Yhttps://www.loggly.com/blog/logging-exceptions-in-java/
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COST 3: Performance overhead. Performance overhead is considered as a major
cost of logging (Fu et al., 2014; Zhu et al., 2015), as printing a log message into a log
file involves expensive 10 operations, string concatenations, and possible method in-
vocations for producing the log strings. 3% to 8% of the studied logging issues in the
studied projects raise performance concerns. One cause of performance overhead is
overwhelmingly repetitive printing of similar log messages. For example, issue report
HIVE-12312 complains that the compilation of a complex query is significantly slowed
down as a code snippet with a logging statement is called for many thousands of times.
The execution process was speeded up by 20% after disabling the logging statement.
Another cause of performance overhead is the invocation of expensive methods in log-
ging statements. For example, issue report HADOOP-14369 complains that including
some method calls in logging statements is “pretty expensive”. Surprisingly, even dis-
abled lower level logging can cause serious performance overhead, because the pa-
rameters of a logging statement are evaluated before the check for the log level. For
example, issue KAFKA-2992 reports that “trace” logs in tight loops cause significant

performance issues even when “trace” logs are not enabled.

ADVICE 5: Logging overhead might exist even when logging is disabled. Develop-

ers should minimize logging in tight loops and avoid expensive method invocations

in logging. Future research is needed to detect performance-critical logging.

COST 4: Exposing sensitive information. Sensitive information (e.g., usernames
and passwords) should not be printed in log files. Once such sensitive information
is logged, it might be archived for years and cannot be tampered with due to legal
regulations. However, sometimes such sensitive information might end up logged by

mistake. For example, issue reports HIVE-14098 complains that users’ passwords are
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logged in clear text, which is undesirable. In particular, developers have difficulties to
avoid logging sensitive information that is contained in an URL (e.g., URL containing
usernames and passwords, HIVE-13091) or a user configuration field (e.g., cloud stor-
age keys, HADOOP-13494). Developers may log the content of a URL or a configuration
field without noticing the contained sensitive information. In an even more difficult
situation, users may put their sensitive information in an unknown configuration field
(e.g., caused by typo). In such a case, developers are likely to log the unknown configu-
ration field (i.e., to alert the unknown configuration) and unintentionally expose users’

sensitive information (e.g., KAFKA-4056).

ADVICE 6: Developers should not log users’ sensitive information. In particular,
they need to pay extra attention when logging URLs, configuration fields, or other
user inputs. Future research and tooling support is needed to help in preventing

logging sensitive information.

COST 5: Exposing unnecessary details. While excessive log information is con-
cerned with the overall amount of log messages, and exposing sensitive information
is concerned with divulging users’ sensitive data, exposing unnecessary details is con-
cerned with the exposure of the inner structures (e.g., library dependencies) and pro-
cesses (e.g., algorithms) of a software system. Such inner structures and processes
may be used by developers for their debugging purposes. However, sometimes devel-
opers log such inner information at a higher (more user-facing) log level (e.g., “info”)
and unnecessarily expose the inner information to end users. For example, issue re-
port HADOOP-13550 complains that the internal information about disabling threads
when thread count is zero should not be logged at a high level such as “warn”. An-

other issue report, HIVE-7737, argues that printing the whole stack trace for “table not
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found” is unnecessary and misleading because “table not found” is usually caused by
user errors. Developers should avoid exposing such unnecessary and misleading de-

tails of their software systems to end users.

ADVICE 7: Printing detailed structure or algorithm information to end users is un-
necessary and misleading. Such detailed information should be avoided or logged

at lower levels.

Discussion

Conlflicting concerns about log levels. Developers usually have a hard time deciding
the appropriate log levels for their logging statements (Yuan et al., 2012b; Oliner et al.,
2012). In many cases they have conflicting concerns about a log level. For example,
in issue report HADOOP-11180, a developer proposes to change a logging statement
from “warn” to “debug”, as “there are too many such warnings” (i.e., excessive log in-
formation) and it can mislead end users. However, another developer raises a con-
flicting concern and argues that “downgrading the logs is going to hide fundamental
problems” (i.e., not able to expose runtime problems). Developers are mostly confused
about the “debug” and “info” levels (Li et al., 2017a). In some cases, developers tend
to print detailed debugging information at the “info” level (e.g., HIVE-16629). In other
cases, “critical piece of information” was logged at the “debug” level (e.g., HADOOP-
12789). Therefore, we developed an automated approach to help developers choose
the most appropriate log level when they add a logging statement to their source code
(Lietal., 2017a; Chapter 6).

Logging the stack trace of an exception? Logging exceptions is considered a good log-
ging practice (Yuan et al., 2012a; Li et al., 2017b). In particular, logging the stack traces

of exceptions is very helpful for debugging the exceptions (i.e., assisting in debugging).
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However, as a stack trace is usually much longer than a log message, logging the stack
traces can usually cause excessive log information and performance overhead. Logging
unnecessary stack traces to the end users can also expose unnecessary details of a soft-
ware system and mislead end users (e.g., “scary looking” stack traces for successful pro-
cesses, as reported in HADOOP-13552). Developers usually have difficulties to balance
the benefits and costs of logging stack traces. In fact, they raise conflicting concerns
about adding stack traces to exception logging. For example, issue report HADOOP-
10571 proposes to add stack traces to many exception logging statements across mod-
ules. However, other developers raise concerns that stack traces should be avoided for
some of these exception logging statements. As a result, it takes significant efforts (e.g.,
as much as 10 patches) to resolve the conflicting concerns. Future research and tooling
support is needed to help developers make informed decisions about whether to log

the stack trace of an exception.

Developers leverage five categories of logging benefits, including assisting in de-
bugging, exposing runtime problems, bookkeeping, showing execution progress, and
providing runtime performance. However, developers are also concerned about five
categories of logging costs, including excessive log information (size), misleading
end users (accuracy), performance overhead (performance), exposing sensitive in-

formation (safety), and exposing unnecessary details (exposure).

3.3.2 RQ2: How do developers address their logging concerns?
Motivation

In the previous research question, we discuss developers’ logging concerns (i.e., log-

ging benefits and costs) that are communicated in their logging-related issue reports.
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In this research question, we want to understand how developers address their logging
concerns, i.e., how they balance the benefits and costs of logging. Our results can help
software developers understand the maintenance effort of their logging code, which
can help them make better allocation of their limited logging resources. In addition,
developers can learn from others’ logging experiences (e.g., about whether to remove
a costly logging statement or reduce its log level) and apply them in their own logging
practices. Our results also shed light on future research opportunities for addressing

logging concerns automatically.

Approach

Developers usually track their activities of fixing an issue in an issue report (e.g., a JIRA
issue report). A JIRA issue report uses a “Status” field to indicate the status of an issue
in its lifecycle. The “Status” of an issue report can be “Open”, “Patch Available”, “Re-
solved”, and “Closed”, etc. A JIRA issue report also uses a “Resolution” field to indicate
how the issue was resolved (e.g., “Fixed”, “Duplicate”, “Won’t Fix”, etc.), or otherwise
“Unresolved”. As mentioned in Section 3.2.1, we extracted our logging issue data af-
ter a long time (i.e., at least six months) since the creation of the logging issue reports,
so the status of these issue reports tend to be stable at the time of our data extraction
and follow-up analysis. In this RQ, we categorize the status of an issue report into four

types: open, fixed, patched, and rejected.

)

e Open issue reports - the issue reports with an “Open”, “Reopened”, or “In
Progress” status. These issues have not reached a solution yet, and a patch is
not submitted for fixing these issues.

* Rejected issue reports - the issue reports with an “Invalid”, “Not A Problem”, or
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“Won't Fix” resolution. Developers refused to make changes for these issues.

* Fixed issue reports - the issue reports with a “Fixed” resolution (in rare cases the
resolution can be “Done”, “Resolved”, or “Pending Closed”). Developers have
made code changes to address these issue reports.

* Patchedissue reports - the issue reports with a “Patch Available” status. Develop-
ers have made code changes to address these issue reports (i.e., a patch is submit-

ted), but the code changes are not integrated into the central code repositories

(e.g., patch rejected by reviewers).

We continue to use the qualitative approach that we discuss in Section 3.2.3 to an-
alyze how developers address their logging concerns. We focus our analysis on the
fixed issue reports, as developers have not yet reached a solution for other issue re-
ports. We examine the issue summaries, descriptions, comments, patches, commit
messages and code review comments of the studied issue reports, and use the manual
coding approach discussed in Section 3.2.3 to derive high-level concepts that concep-
tualize developers’ resolutions for their logging issues.

We also discuss the resolutions for each of the logging concerns that are discussed
in RQ1. For example, issue report HADOOP-13552 raises a concern about generating
a “scary looking” stack trace as a warning when an exception is automatically handled
by the code (i.e., misleading end users). The developer fixed the issue by reducing the
loglevel from “warn” to “debug”, and thereby addressing the concern of misleading end

users.
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Table 3.3: The status distribution of the studied logging issues.

Status Open Rejected Fixed Patched
# Logging issues 58 (10%) 31 (6%) 422 (75%) 49 (9%)

Results

Developers fixed 75% of the studied logging issues. Table 3.3 shows the distribution
of the status of the studied logging issues. Among the 560 studied loggingissues (as dis-
cussed in RQ1, some issue reports raise multiple logging issues), developers rejected to
fix 6% of the logging issues, and left 10% and 9% of the remaining logging issues as open
and patched, respectively. Figure 3.9 summarizes developers’ resolutions for address-
ing their logging issues, which are derived from our qualitative analysis. In total, we
derived 19 high-level resolutions which fall into four dimensions, namely adding/re-
moving log content, adjusting log level, improving logging configuration, and improving
logging statements. Table 3.4 explains each of the derived resolutions.

Developers constantly balance their log information through adding/removing
log content and adjusting log level. Developers increase their log information through
adding log content, logging stack trace, increasing log level, and lowering logging thresh-
old. In comparison, they reduce their log information through removing log content,
reducing repetitive information, removing stack trace, reducing log level, and raising
logging threshold. As shown in Figure 3.9, developers add log content to address 32%
to 37% of the studied logging issues. In contrast, they only remove log content to ad-
dress 3% to 6% of the studied logging issues. Developers reduce log levels to address
8% to 20% of the studied logging issues, while only increase log levels to address 2%

to 6% of the studied logging issues. In our manual analysis of these issue reports, we
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Table 3.4: Developers’ resolutions for addressing their logging issues.

Dimension Resolution

Description

Example

Adding log con-

Adding new logging statements or more

HADOOP-13854 added a new logging statement

i‘iﬁ:;i/lg tent information to existing logging state- that records the error details of an exception, for
log ments debugging purposes
content Removing log Removinglogging statements or partial HADOOP-10422 removed a redundant logging
content content of logging statements statement
Logging stack Adding stack trace information to exist- HADOOP-13458 added stack trace information to
trace ing logging statements an existing logging statement as it's hard to com-
prehend the meaning of an exception message
without a stack trace
Reducing repeti- Reducing log messages that communi- HADOOP-10756 reduced repetitive log informa-
tive information cate repetitive information tion by consolidating similar log messages
Removing stack Removing stack trace information from HADOOP-13710 removed the stack trace informa-
trace logging statements tion from an exception logging as the exception is
expected in a routine operation
Reducing  log Reducingtheloglevel ofaloggingstate- HADOOP-13850 reduced the log level of a logging
Adjusting  level ment (e.g., changing from “error” to statement from “info” to “debug’, since users don’t
log level “warn”) need to know the logged details
Increasing log Increasing the log level of a logging HADOOP-12789 increased the log level of a log-
level statement (e.g., changing from “info” to  ging statement from “debug” to “info”, since the log
“warn”) information (i.e., a class path) is critical for trou-
bleshooting
Raising logging Raising the logging threshold (i.e., the HIVE-15954 configured the log level of some mod-
threshold enabled log level) of a module, thus al- ules from the default “info” level to “warn” level, in
lowing less logging statements to print order to disable noise information that are logged
log messages at “info” level
Lowering log- Lowering thelogging threshold (i.e.,the HIVE-5599 changed the allowed log level of Hive’s
ging threshold enabled log level) of a module, thus rootlogger from “warn” to “info”, since “Hive logs a
allowing more logging statements to large amount of important information at the info
print log messages level”
Changing log- Changing the environment setting of HADOOP-8552 added usernames to log file names,
Improving ging configura- logging, such asloggingformatandlog- in order to avoid naming conflicts in multi-user
logging tion ging destination scenarios
configurationlmproving Improving the configurability oflogging HADOOP-13098 added support for case-
logging config- (e.g., log level configurability) insensitive log level settings
urability
Turning on log- Enabling logging in a module or to a HIVE-3277 enabled Metastore audit logging for in-
ging destination secure connections
Turning off log- Disabling logging in a module or to a HIVE-14852 disabled “qtest” logging to the console
ging destination
Redirecting log Redirectinglog messages from one des- KAFKA-2633 redirected log information from std-
information tination to another out to stderr
Improving log Improving existing logging statements HADOOP-10126 improved the content of a mis-
Improving content to fix inappropriate or misleading log leading logging statement
logging information
statements Reducing un- Reducing unneeded computing when HADOOP-14369 removed expensive “toString()”

needed comput-
ing

Masking sensi-
tive information

Moving log loca-
tion

Migrating
ging API

log-

the log level of a logging statement
is disabled, in order to reduce perfor-
mance overhead

Removing/masking sensitive informa-
tion (e.g., usernames and passwords)
from log messages

Changing the location of logging state-
ments in the source code

Changing logging APIs from one log-
ging library to another

invocations within logging statements as such in-
vocations are not necessary when “debug” level is
disabled

HIVE-14098 removed passwords from the logging
of environment variables by masking passwords
with certain symbols

HIVE-10167 moved the location of a logging state-
ment since the log was printed too late compared
to the occurring time of the actual logged event
HIVE-12237 migrated from Apache Commons Log-
ging APIs to SLF4]J logging APIs
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