
MINING DEVELOPMENT KNOWLEDGE TO UNDERSTAND AND

SUPPORT SOFTWARE LOGGING PRACTICES

by

HENG LI

A thesis submitted to the Graduate Program in Computing

in conformity with the requirements for the

Degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

December 2018

Copyright © Heng Li, 2018

Abstract

D
EVELOPERS insert logging statements in their source code to trace the run-

time behaviors of software systems. Logging statements print runtime log

messages, which play a critical role in monitoring system status, diagnos-

ing field failures, and bookkeeping user activities. However, developers typically in-

sert logging statements in an ad hoc manner, which usually results in fragile logging

code, i.e., insufficient logging in some code snippets and excessive logging in other

code snippets. Insufficient logging can significantly increase the difficulty of diagnos-

ing field failures, while excessive logging can cause performance overhead and hide

truly important information. The goal of this thesis is to help developers improve their

logging practices and the quality of their logging code. We believe that development

knowledge (i.e., source code, code change history, and issue reports) contains valuable

information that explains developers’ rationale of logging, which can help us under-

stand existing logging practices and provide helpful tooling support for such logging

i

practices.

Therefore, this thesis proposes to mine different aspects of development knowl-

edge to understand and support software logging practices. We mine issue reports to

understand developers’ logging concerns, i.e., the benefits and costs of logging from

developers’ perspective. Our findings shed lights on future research opportunities for

helping developers leverage the benefits of logging while minimizing logging costs. We

mine source code to learn how developers distribute logging statements in their source

code, and propose an approach to provide automated suggestions about where to log.

We find that the semantic topics of a code snippet provide another dimension to ex-

plain the likelihood of logging a code snippet. We mine code change history to under-

stand how developers develop and maintain their logging code, and propose an auto-

mated approach that can provide developers with log change suggestions when they

change their code. We also mine code change history to understand how developers

choose log levels for their logging statements, and propose an automated approach

that can help developers determine the appropriate log level when they add a new log-

ging statement. This thesis highlights the need for standard logging guidelines and

automated tooling support for logging.

ii

Acknowledgments

I would like to thank my supervisor Dr. Ahmed E. Hassan for all his guidance and sup-

port throughout these four years. His academic advising has fostered my enthusiasm

in scientific research and guided me to grow as a researcher. In addition, his valuable

support for my personal life has helped me go through many difficulties in my life. I

feel very grateful and lucky that I had the chance to work under his supervision. I would

like to express my sincere gratitude to Dr. Ahmed E. Hassan, my advisor and my friend.

A sincere appreciation to my supervisory and examination committee members,

Dr. Hossam S. Hassanein, Dr. Mohammad Zulkernine, and Dr. Joshua Dunfield for

their continued critique, support and guidance. Many thanks to my examiners for their

insightful feedback and valuable advice on my work.

I am very lucky to work with some of the brightest researchers during my Ph.D.

research. I would like to thank all of my colleagues and collaborators, including Dr.

Weiyi Shang, Dr. Tse-Hsun (Peter) Chen, Dr. Ying (Jenny) Zou, Dr. Bram Adams, Safwat

iii

Hassan, Filipe Cogo, Dr. Shane McIntosh, Dr. Cor-Paul Bezemer, Dr. Shaowei Wang,

Dr. Mohamed Sami Rakha, Dayi Lin, Dr. Gustavo Oliva, Dr. Muhammad Asaduzzam,

and Suhas Kabinna for all the fruitful discussions and collaborations.

I would like to thank the BlackBerry company and the members of the BlackBerry

Performance Engineering team. In particular, I would like to thank Mohamed Nasser

and Parminder Flora for their continuous support during my internship with Black-

Berry. The industrial environment has encouraged and will continue to encourage my

research that deals with practical challenges in the field.

During these years I have been receiving so much love from many people, including

Dehui Kong, Xubo Miao, Chuansheng Dong, Jiaxing Len, Zhen Zeng, Min Xie, Zhiying

Zhang, Panpan Zhang, Safwat Hassan, Stephen Hung, Hannah Zhang, Nancy Smith,

and Shaowei Wang, and their families. Thank you all for making my Ph.D. life enjoyable

and wonderful.

A special thanks to my family. My gratitude for all your support and sacrifices is

beyond any words. I am so proud of being one of your family member. I dedicate this

thesis to my family.

iv

Co-authorship

The work presented in the thesis is published as listed below:

• Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. 2017. Towards just-in-

time suggestions for log changes. Empirical Software Engineering: An Interna-

tional Journal (EMSE). Volume 22, Issue 4, pages 1831–1865. This work is de-

scribed in Chapter 5.

• Heng Li, Weiyi Shang, and Ahmed E. Hassan. 2017. Which log level should devel-

opers choose for a new logging statement? Empirical Software Engineering: An

International Journal (EMSE). Volume 22, Issue 4, pages 1684–1716. This work is

described in Chapter 6.

• Heng Li, Tse-Hsun (Peter) Chen, Weiyi Shang, and Ahmed E. Hassan. 2018.

Studying software logging using topic models. Empirical Software Engineering:

An International Journal (EMSE). In Press. This work is described in Chapter 4.

v

• Heng Li, Weiyi Shang, Bram Adams, and Ahmed E. Hassan. A qualitative study of

developers’ logging concerns. IEEE Transactions on Software Engineering (TSE).

Under review. This work is described in Chapter 3.

For each of the work, my contributions include proposing the initial research idea,

investigating background knowledge and related work, proposing research methods,

conducting experiments and collecting the data, analyzing the data and verifying the

hypotheses, and writing and polishing the manuscript. My co-contributors supported

me in refining the initial ideas, providing suggestions for potential research methods,

providing feedback on experimental results and earlier manuscript drafts, and provide

advice for polishing the writing.

vi

Table of Contents

Abstract i

Acknowledgments iii

Co-authorship v

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 Research Hypothesis . 3
1.2 Thesis Overview . 4
1.3 Thesis Contributions . 8

2 Literature Review 10
2.1 Literature selection . 11
2.2 Mining logging code . 13
2.3 Mining log messages . 15
2.4 Automatic log insertion . 18
2.5 Learning to Log . 19

3 Understanding Developers’ Logging Concerns 21
3.1 Introduction . 22
3.2 Case Study Setup . 24
3.3 Case Study Results . 30
3.4 Threats to Validity . 54
3.5 Chapter Summary . 55

4 Understanding Software Logging Using Topic Models 56
4.1 Introduction . 57
4.2 Motivation Examples . 60

vii

4.3 Topic Modeling . 61
4.4 Case Study Setup . 64
4.5 Case Study Results . 69
4.6 Threats to Validity . 105
4.7 Related Work . 108
4.8 Chapter Summary . 109

5 Automated Suggestions for Log Changes 111
5.1 Introduction . 112
5.2 Case Study Setup . 117
5.3 Case Study Results . 121
5.4 Discussion . 151
5.5 Threats to Validity . 153
5.6 Chapter Summary . 157

6 Automated Suggestions for Choosing Log Levels 159
6.1 Introduction . 160
6.2 Case Study Setup . 164
6.3 Preliminary Study . 166
6.4 Case Study Results . 174
6.5 Discussion . 196
6.6 Threats to Validity . 199
6.7 Chapter Summary . 201

7 Automated Suggestions for Logging Stack Traces 203
7.1 Introduction . 204
7.2 Methodology . 207
7.3 Experimental Results . 213
7.4 Chapter Summary . 217

8 Conclusions and Future Work 219
8.1 Thesis Contributions . 220
8.2 Limitations . 222
8.3 Future Research . 223

Bibliography 226

viii

List of Tables

2.1 Names of conferences and journals as starting venues of the literature
review. 12

3.1 Overview of the studied projects. 25
3.2 Number of studied logging issue reports per project. 29
3.3 The status distribution of the studied logging issues. 47
3.4 Developers’ resolutions for addressing their logging issues. 48

4.1 Examples of JIRA issues of the Qpid-Java system that are concerned with
the logging of “connections”. 62

4.2 Overview of the studied systems. 66
4.3 The five number summary and the skewness of the LD values of the 500

topics in each of the six studied systems. 72
4.4 The five number summary and the skewness of the CumLD values of

the 500 topics in each of the six studied systems. 72
4.5 Top six log-intensive topics in each system. The listed topics have the

highest LD values and highest CumLD values. A topic label is manually
derived from the top words in each topic and its corresponding source
code methods. We use underscores to concatenate words into bigrams.
A topic label marked with a “∗” symbol or a “†” symbol indicates that
the topic is concerned with communication between machines or in-
teraction between threads, respectively. 74

4.6 The five number summary and the skewness of the LD values of the top-
ics in the Hadoop system. 76

4.7 The five number summary and the skewness of the CumLD values of
the topics in the Hadoop system. 77

4.8 Top six log-intensive topics in the Hadoop system, using different num-
ber of topics. A topic label marked with a “∗” symbol or a “†” symbol
indicates that the topic is concerned with communication between ma-
chines or interaction between threads, respectively. The bold font high-
lights the common topics that appear among the top log-intensive top-
ics when varying the number of topics. 78

ix

4.9 Number of topics that are shared by N ∈ {1, 2, ..., 6} systems. 84
4.10 Common topics between two similar systems: Qpid-Java and ActiveMQ.

The symbols below a correlation value indicate the statistical signifi-
cance of the correlation: *** p < 0.001. 88

4.11 The common topics that are shared by all of the six studied systems:
The six most log-intensive topics and the six least log-intensive topics.
A topic label marked with a “∗” symbol or a “†” symbol indicates that
the topic is concerned with communication between machines or in-
teraction between threads, respectively. 89

4.12 Cross-system topic modeling results when varying the number of top-
ics, using the Hadoop system as an example. 90

4.13 Selected baseline metrics and the rationale behind the choices of these
metrics. 92

4.14 Performance of the LASSO models, evaluated by AUC and BA. 97
4.15 The top ten important metrics for determining the likelihood of a

method being logged and their standardized coefficients. A letter
“T” followed by a parenthesis indicates a topic-based metric and the
manually derived topic label. A topic label followed by a ‡ symbol
indicates that the particular topic is a log-intensive topic as listed in
Table 4.5. 99

4.16 The performance (AUC) of the cross-system models using baseline
metrics. The row names indicate the training systems and the column
names indicate the testing systems. 102

4.17 The performance (AUC) of the cross-system models using both baseline
and topic-based metrics. The row names indicate the training systems
and the column names indicate the testing systems. 102

4.18 Performance (AUC) of the LASSO models that leverage the baseline
metrics and the topics-based metrics derived from different numbers
of topics. 103

4.19 Performance of the LASSO models (without filtering out small meth-
ods), evaluated by AUC and BA. 105

5.1 Overview of the studied systems. 119
5.2 Log-change reasons and the distribution: manual analysis result. 123
5.3 Software measures used to model the drivers for log changes, measured

per each commit. 129
5.4 Confusion matrix for the classification results of a commit. 136
5.5 The BA results for the within-project evaluation. 141
5.6 The TP, FN, TN, FP results for the within-project evaluation. 141
5.7 The BA and AUC results for the cross-project evaluation. 142

x

5.8 The influence mean of the top 10 factors (measures) for the log change
classifier, divided into distinct homogeneous groups by Scott-Knott
clustering. 146

5.9 The influence mean of the top 10 factors (measures) for the log addi-
tion classifier, divided into distinct homogeneous groups by Scott-Knott
clustering. 147

5.10 The influence mean of the top 10 factors (measures) for the log modi-
fication classifier, divided into distinct homogeneous groups by Scott-
Knott clustering. 148

5.11 Number of log-changing-only commits. 153
5.12 L-threshold’s impact on the identification of log modifications (for the

Hadoop project). The values in the brackets are the percentages of dif-
ference when compared with the 0.5 L-threshold. 157

6.1 Overview of the studied projects. 167
6.2 Software metrics used to model log levels. 177
6.3 Comparing the performance of the ordinal regression model with the

random guessing model and the naive model. 188
6.4 Variables’ importance in the ordinal models, represented by the Wald

Chi-square. The percentage following a Wald χ2 value is calculated by
dividing that particular Wald χ2 value by the “TOTAL” Wald χ2 value. . . . 192

6.5 The joint importance of each dimension of metrics in the ordinal mod-
els, calculated using the joint Wald test. The percentage following a
Wald χ2 value is calculated by dividing that particular Wald χ2 value by
the “TOTAL” Wald χ2 value. 193

6.6 The results of the cross-project evaluation. 197
6.7 Summary of the patterns of log level changes in the four studied

projects. Each row represents a original log level and each column
represents a new log level. 198

7.1 Examples of issue reports of the Hadoop project that are concerned with
whether to log the stack trace of an exception. 206

7.2 Overview of the studied projects. 209
7.3 Selected code features that are relevant to the likelihood of logging the

stack trace of an exception in an exception logging statement. 211
7.4 The performance of our Random Forest models for suggesting the like-

lihood of logging a stack trace in an exception logging statement. 214
7.5 The mean importance of the top 10 features for explaining the likeli-

hood of logging a stack trace in an exception logging statement. These
features are divided into distinct homogeneous groups by Scott-Knott
clustering of their importance scores. 216

xi

List of Figures

1.1 An overview of mining development knowledge to understand and sup-
port software logging practices. 3

3.1 The JQL query that we used to search for the logging-related issue reports. 26
3.2 The process of preparing and analyzing logging issue data. 27
3.3 Developers’ logging concerns and the percentage of logging issues in

each project that raise each logging concern. 33
3.4 Example of logging for assisting in debugging. 34
3.5 Example of logging for exposing runtime problems. 35
3.6 Example of logging for bookkeeping. 37
3.7 Example of logging for showing execution progress. 37
3.8 Example of logging for providing runtime performance. 38
3.9 Developers’ resolutions for addressing their logging issues and the per-

centage of logging issues in each project that are addressed by each res-
olution. The resolutions are grouped into four dimensions: adding/re-
moving log content, adjusting log level, improving logging configuration,
and improving logging statements. 49

3.10 Developers’ resolutions for addressing each of the logging concerns.
Each grid in the heat map indicates the percentage of logging issues
that are addressed by each resolution as normalized for each logging
concern. 52

4.1 A logged method that is related to the “connection” topic. 58
4.2 A method that is related to the “string builder” topic. 58
4.3 A code snippet that is part of the fix for issue QPID-4038, showing that

a logging statement was added to a code snippet within the context of
“connections”. 62

4.4 An example result of topic models, where three topics are discovered
from four files. (a) The three discovered topics (z1, z2, z3) are defined
by their top (i.e., highest probable) words. (b) The four original source
code files (f1, f2, f3, f4) are represented by the topic membership vectors
(e.g., {z1 = 0.2, z2 = 0.8, z3 = 0.0} for file f1). 64

xii

4.5 An overview of our data extraction approach. 68
4.6 Pairwise Spearman correlation between cyclomatic complexity (CCN),

topic diversity (TD), and topic-weighted log density (TWLD). The sym-
bols below the correlation values indicate the statistical significance of
the respective correlation: o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. 80

4.7 The cumulative assignment of all the topics in each studied system. The
topics are sorted by their assignments from high to low. 83

4.8 The number of topics that are shared between each pair of systems. The
numbers in the diagonal cells show the number of important topics per
system. The percentage values show the percentage of topics in the sys-
tem indicated by the row name that are shared with the system indi-
cated by the column name. 85

4.9 The Spearman correlation of the log density of the common topics that
are shared between each pair of systems. The values in the diagonal
cells show the average log density correlation between each system and
other systems on the shared topics. The symbols below the correlation
values indicate the statistical significance of the respective correlation:
o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001. 86

5.1 An “svn blame” example showing that a later commit (1240413) added
a logging statement that was missing in an earlier commit (1190122). . . . 114

5.2 An overview of our data extraction and analysis approaches. 119
5.3 An example of log changes with the reason category block change. 124
5.4 An example of log changes with the reason category log improvement. . . 125
5.5 An example of log changes with the reason category dependence-driven

change. 126
5.6 An example of log changes with the reason category logging issue. 127
5.7 An example of a logging guard. 132
5.8 Correlation analysis using Spearman hierarchical clustering (for the

combo data). 134
5.9 The balanced accuracy of the within-project classifiers for Hadoop. 139
5.10 The balanced accuracy of the within-project classifiers for Directory-

Server. 140
5.11 The balanced accuracy of the within-project classifiers for HttpClient. . . 140
5.12 The balanced accuracy of the within-project classifiers for Qpid. 141
5.13 An example of adding a missing logging statement. 152
5.14 An example of removing logging statements due to changed logging re-

quirements. 152

6.1 Patch for JIRA issue HADOOP-10274 (svn commit number: 1561934). . . 162
6.2 Patch for JIRA issue HADOOP-10015 (svn commit number: 1580977). . . 162

xiii

6.3 An overview of our data extraction and analysis approaches. 167
6.4 Log level distribution in the added logging statements. 169
6.5 Log level distribution in the added logging statements in different types

of blocks. 172
6.6 Log level distribution in the added logging statements in different types

of exception-catching blocks (Qpid). 174
6.7 Correlation analysis using Spearman hierarchical clustering (for Direc-

tory Server). The red line indicates the threshold (0.7) that is used to
remove collinear metrics. 181

7.1 Example of logging the stack trace of an exception. 205
7.2 Overview of our approach for providing automated suggestions about

whether to print the stack trace of an exception in an exception logging
statement. 208

xiv

CHAPTER 1

Introduction

S
OFTWARE developers insert logging statements in their source code to record

valuable runtime information. A logging statement, when executed at run-

time, prints a time-stamped log message into a pre-specified log file. Log

messages help software practitioners (i.e., developers, testers, and operators) better

understand system behaviors at runtime and assist in quality assurance efforts. For ex-

ample, software developers rely on log messages for debugging field failures (Glerum

et al., 2009; Yuan et al., 2010). Software operators leverage the rich information in log

messages to guide capacity planning efforts (Sharma et al., 2011; Kavulya et al., 2010),

to monitor system health (Bitincka et al., 2010), and to identify abnormal behaviors (Fu

et al., 2009; Xu et al., 2009b; Jiang et al., 2008).

However, developers usually insert logging statements in an ad hoc manner (Yuan

1

CHAPTER 1. INTRODUCTION 2

et al., 2012b). As a result, software practitioners usually miss important logging state-

ments in a system, which often results in difficulties when debugging a field issue (Yuan

et al., 2010). Nevertheless, adding logging statements excessively is not a good solu-

tion, since adding unnecessary logging statements can negatively impact system per-

formance (Zeng et al., 2015) and mask the truly important information (Fu et al., 2014).

In practice, providing appropriate logging statements (i.e., maximizing the value of the

logged information while minimizing logging overhead) remains a challenge for soft-

ware developers (Fu et al., 2014; Yuan et al., 2012b).

Prior studies proposed approaches to improve logging through proactive logging

(Yuan et al., 2012a, 2011) and learning to log (Zhu et al., 2015; Jia et al., 2018). Proac-

tive logging approaches use static analysis to conservatively add more logged informa-

tion to the existing code (e.g., in exception catch blocks), in order to improve software

failure diagnosis. However, these approaches do not consider developers’ expertise

and significantly increase the amount of logged information (i.e., excessive logging).

Learning to log approaches, on the other hand, learn statistical models from existing

logging code and further leverage the models to provide suggestions for new logging

code. These approaches have four main drawbacks: 1) They focus on specific types of

code snippets (e.g., exception catch blocks or function calls) which together only cover

41% of the logging instances (Fu et al., 2014); 2) They provide logging suggestions as a

post-development process instead of providing logging suggestions during the devel-

opment process, i.e., when developers are changing their code; 3) They do not consider

logging patterns (e.g., log levels, or stack trace logging) which also play important roles

in determining the overall amount of log information; and 4) They do not consider

developers’ code change history and issue reports that explain the rationale behind

CHAPTER 1. INTRODUCTION 3

Change historySource code Issue reports

Development knowledge

Best practices &
existing problems

General
logging
advice

Logging
suggestion

tooling

Figure 1.1: An overview of mining development knowledge to understand and support
software logging practices.

developers’ logging practices.

1.1 Research Hypothesis

This thesis aims to mine development knowledge to understand and support devel-

opers’ logging practices. Development knowledge includes source code, change his-

tory (code changes and commit messages), as well as issue reports (issue descriptions,

comments and patches). Development knowledge records developers’ development

activities and their intention behind these activities. This thesis proposes the following

research hypothesis:

Research hypothesis: Development knowledge (e.g., source code, change history

and issue reports) contains valuable information that can explain developers’ ra-

tionale of logging, which can help us understand current logging practices and de-

velop helpful tools to support such logging practices.

Figure 1.1 shows an overview of this thesis work. Through mining development

knowledge, we find the best logging practices and the existing problems (e.g., excessive

logging) within current logging practices. Based on these findings, we derive general

CHAPTER 1. INTRODUCTION 4

logging advice and built automated tools to support current logging practices (i.e., to

help developers solve existing logging problems). Specifically, this thesis mines three

types of repositories: 1) mining issue reports (Chapter 3), 2) mining source code (Chap-

ter 4 and Chapter 7), and 3) mining change history (Chapter 5 and Chapter 6)).

1.2 Thesis Overview

We now give a brief overview of the work presented in this thesis.

1.2.1 Chapter 2: Literature Review

For our literature review, we focus on prior studies that attempt to understand or im-

prove software logging practices. We characterize and compare the surveyed literature

along four categories:

• Mining logging code. Prior work empirically studies how developers insert log-

ging statements in their source code and the evolution of their logging code.

• Mining log messages. Prior studies mine the rich source of log messages that are

generated at run time, in order to support various software engineering purposes

(e.g., anomaly detection).

• Automatic log insertion. Based on static code analysis and heuristics, prior

studies automatically add log information in the source code, in order to support

failure diagnosis.

• Learning to log. Prior studies learn statistical models or heuristics from existing

logging code, in order to provide logging suggestions such as where to log.

CHAPTER 1. INTRODUCTION 5

From the literature review, we observe that software logging is a pervasive software

engineering process. However, developers usually have difficulties when making their

logging decisions, and they spend much effort maintaining their logging code. Prior

studies propose automated approaches to help developers improve their logging code.

Yet, these studies rarely take developers’ expertise and concerns for logging into con-

sideration. These studies provide logging suggestions as a post-development process

instead of providing logging suggestions during the development process, i.e., when

developers are changing their code.

1.2.2 Chapter 3: Understanding Developers’ Logging Concerns

Modern software development processes use issue reports to manage development

tasks (e.g., new features, feature enhancement, or bug fixes). Issue reports record the

description, rationale, developers’ comments, and related code changes of a develop-

ment task. Mining logging-related issue reports helps us better understand developers’

logging concerns, i.e., the benefits (e.g., assisting in debugging) and costs (e.g., perfor-

mance overhead) of logging.

Therefore, we perform a qualitative study on the logging-related issue reports from

three large and successful open source projects. We manually investigate these issue

reports and derive high-level concepts about developers’ logging concerns and how

they address their logging concerns. Along with our qualitative study, we also summa-

rize best logging practices and general logging advice that can help developers (and

logging library providers) improve their logging code (and logging libraries).

CHAPTER 1. INTRODUCTION 6

1.2.3 Chapter 4: Understanding Software Logging Using Topic Mod-

els

Source code represents the resulting fact of developers’ code change activities. Prior

studies learn statistical models from existing source code and provide logging sugges-

tions about where to log. These studies use the structural information of the source

code (e.g., exception types or method calls) to explain the likelihood that a code snip-

pet needs a logging statement. We believe that the semantic topics of a code snippet

(e.g., “network connection”) also help explain the likelihood of having a logging state-

ment in the code snippet.

Therefore, we study the relationship between the topics of a code snippet and

the likelihood of a code snippet being logged (i.e., to contain a logging statement).

Through a case study on six open source systems, we find that there exists a small

number of “log-intensive” topics that are more likely to be logged than other topics,

and that our topic-based metrics help explain the likelihood of a code snippet being

logged. As a result, leveraging both structural metrics and topic-based metrics can

provide better suggestions about “where to log”. Our findings highlight that topics

contain valuable information that can help guide and drive developers’ logging

decisions.

1.2.4 Chapter 5: Automated Suggestions for Log Changes

Code change history records developers’ code change activities that have been

committed and the associated commit messages. Developers’ logging activities (i.e.,

adding, deleting, or updating logging statements) are also recorded in the code change

history. Such logging activities can help us better understand current software logging

CHAPTER 1. INTRODUCTION 7

practices and the rationale behind these activities.

Therefore, we first empirically study why developers make log changes through

a manual investigation of developers’ logging activities. Based on our findings, we

propose an automated approach to provide developers with log change suggestions

as soon as they commit a code change. Through a case study on four open source

projects, we find that the reasons for log changes can be grouped along four categories:

block change, log improvement, dependence-driven change, and logging issue. We

also find that our automated approach can effectively suggest whether a log change is

needed for a code change.

1.2.5 Chapter 6: Automated Suggestions for Choosing Log Levels

Software practitioners use log levels to disable some verbose log messages while al-

lowing the printing of other important ones. However, prior research observes that

developers often have difficulties when determining the appropriate level for their log-

ging statements. We analyze the development history of four open source projects to

study how developers assign log levels to their logging statements. We also propose

an automated approach to help developers determine the most appropriate log level

when they add a new logging statement. Our automated approach can accurately sug-

gest the levels of logging statements with an AUC (Area Under the Curve) of 0.75 to

0.81. We find that the characteristics of the containing block of a newly-added logging

statement, the existing logging statements in the containing source code file, and the

content of the newly-added logging statement play important roles in determining the

appropriate log level for that logging statement.

CHAPTER 1. INTRODUCTION 8

1.2.6 Chapter 7: Automated Suggestions for Logging Stack Traces

Software developers log the stack traces of program exceptions for debugging pur-

poses. However, stack traces can also pollute log files very fast because a stack trace is

usually much longer than a regular log message. We observe that developers have diffi-

culties to decide whether to log the stack trace of an exception. Therefore, we propose

an automated approach to help developers make informed decisions about whether

to print the stack trace of an exception in a logging statement. Our experimental re-

sults on four open source projects show that our automated approach can accurately

suggest whether to print the stack trace of an exception in a logging statement, with

an AUC of 0.85 to 0.94. Our findings also provide developers and researcher insights

into the important factors that drive developers’s decisions of logging exception stack

traces.

1.3 Thesis Contributions

This thesis empirically studies developers’ logging practices and proposes automated

approaches to help developers make informed logging decisions. The results of the

thesis highlight the importance of considering developers’ expertise and concerns

when providing automated approaches for logging improvement. The thesis mainly

makes the following contributions:

• The discussion of developers’ logging concerns (in Chapter 3) sheds light on fu-

ture research opportunities for logging improvement (i.e., helping developers

leverage the benefits of logging while minimizing logging costs).

CHAPTER 1. INTRODUCTION 9

• We show that the semantic topics of a code snippet can provide another dimen-

sion to explain the likelihood of logging a code snippet (in Chapter 4).

• We propose an automated approach to provide developers with log change sug-

gestions as soon as they commit a code change (in Chapter 5).

• We propose an automated approach to help developers determine the most ap-

propriate log levels when they add new logging statements in the source code (in

Chapter 6).

• We propose an automated approach to help developers make informed deci-

sions about whether to print an exception stack trace in a logging statement (in

Chapter 7).

CHAPTER 2

Literature Review

M
Y thesis aims to understand and support software logging practices

through mining development knowledge. Understanding current

logging practices is the first step towards helping developers improve

their logging practices. Two categories of prior studies help software practitioners

and researchers understand the current logging practices in industry and in the

open source community: mining logging code and mining log messages. The for-

mer category studies how logging code are added into software products, while the

latter category studies how runtime log messages are leveraged to support software

engineering processes.

• Mining logging code. Prior work empirically studies how developers insert log-

ging statements in their source code and the evolution of their logging code.

10

CHAPTER 2. LITERATURE REVIEW 11

• Mining log messages. Prior studies mine the rich source of log messages that

are generated at run time, in order to support various software engineering pur-

poses, for example, anomaly detection or failure diagnosis.

Prior studies also aim to improve software logging through automatic log insertion

or learning to log. Both categories of studies propose automatic approaches to identify

the code snippets that need to be logged.

• Automatic log insertion. Based on static code analysis and heuristics, prior

studies automatically add (or improve) logging statements in the source code,

in order to support failure diagnosis.

• Learning to log. Prior studies learn statistical models or heuristics from existing

logging code, in order to provide logging suggestions such as where to log.

This chapter first explains the literature selection process, then discuss the existing

studies along the aforementioned four categories.

2.1 Literature selection

There has been a large number of prior studies that focused on log analysis, i.e., lever-

aging runtime logs for various domain-specific purposes (e.g., monitoring system per-

formance). However, this literature review is focused on the papers that aim to under-

stand and support software logging practices (i.e., the software engineering process

that adds logging code to the source code). Therefore, this literature review starts from

papers that are published on major software engineering journals and conferences.

This literature review starts from the venues that are listed in Table 2.1. This liter-

ature review considers the papers that were published in the past 10 years (i.e., from

CHAPTER 2. LITERATURE REVIEW 12

Table 2.1: Names of conferences and journals as starting venues of the literature review.

Venue Type Venue Name Abbreviation

Journal IEEE Transactions on Software Engineering TSE
Journal ACM Transactions on Software Engineering and

Methodology
TOSEM

Journal Empirical Software Engineering EMSE
Journal Automated Software Engineering ASE
Journal Journals of Systems and Software JSS
Conference ACM SIGSOFT Symposium on the Foundation of Soft-

ware Engineering/ European Software Engineering
Conference

FSE/ESEC

Conference International Conference on Software Engineering ICSE
Conference International Conference on Automated Software En-

gineering
ASE

Conference International Conference on Software Maintenance
and Evolution

ICSME

Conference International Conference on Software Analysis, Evo-
lution, and Reengineering

SANER

Conference International Conference on Mining Software Repos-
itories

MSR

Conference International Conference on Architectural Support
for Programming Languages and Operating Systems

ASPLOS

2008 to 2018). To improve the coverage of this literature review, we also check the cita-

tions of each reviewed paper. Initially, all the reviewed paper fall into the categories of

mining logging code, automatic log insertion and learning to log. We found that many

papers about mining log messages are cited by the other three categories of papers,

thus we included the mining log messages category in this literature review. We detail

each category of papers below.

CHAPTER 2. LITERATURE REVIEW 13

2.2 Mining logging code

Characterizing logging practices. Prior work performs empirical studies to charac-

terize current logging practices. Yuan et al. (2012b) make the first attempt to provide

a characteristic study of the current logging practices within four C/C++-based open-

source projects. They quantitatively study the logging code and the change history of

the logging code. They find that software logging is a pervasive practice in software

development, and that developers spend much effort maintaining their logging code

(e.g., modifying log levels).

Chen and Jiang (2017b) replicate the work of Yuan et al. (2012b) on 21 Java-based

open source projects. They also find that logging is a pervasive software logging prac-

tice and that developers spend much effort on logging code maintenance. However,

these two studies conflict with each other in some findings. For example, the former

study (Yuan et al., 2012b) finds that developers spent shorter time fixing reported fail-

ures when log messages are presented in failure reports, while the latter study finds the

opposite (Chen and Jiang, 2017b).

Chen and Jiang (2017a) also characterize the auti-patterns of logging code in open

source projects by learning from how developers fix the defects in their logging code.

They find six different anti-patterns in the logging code, such as wrong log level and

logging nullable objects.

Shang et al. (2015) explore the relationship between logging characteristics and

code quality. Surprisingly, their results show that logging characteristics provide a

strong indicator of post-release defects. They explain that it might be the case that

developers often relay their concerns about a piece of code through logging statement,

thus source code files with high log density are more defect-prone.

CHAPTER 2. LITERATURE REVIEW 14

Logging practices in industry. Software logging is a widely adopted practice in

industry. Fu et al. (2014) conduct source code analysis on two industrial software

projects at Microsoft, in order to find out what categories of code snippets are logged

and what factors are considered for logging. They find five categories of logged code

snippets (including return-value-check snippets and exception-catch snippets). In

addition, they discuss the characteristics of the logged exception-catch snippets

versus unlogged exception-catch snippets.

Pecchia et al. (2015) study the industrial logging practices at Selex ES. They find that

logging is a widely adopted practice in a critical industrial domain. They also observe

that the logging behavior is strongly developer dependent and development-team de-

pendent. They highlight the need to establish standard company-wide logging poli-

cies.

Evolution of logging code. Prior research studies the evolution of logging code in soft-

ware projects. They find that logging code changes over time at a high rate. Shang

et al. (2011, 2014a) perform a case study on two open source and one industrial soft-

ware projects, in order to explore the evolution of logging code in these projects. They

find that the logging code changes at a high rate across versions, which might break

the functionality of log processing applications. They also suggest that the majority of

the logging code changes could be avoided.

Kabinna et al. (2016a,b, 2018) study the evolution of logging code in Apache Soft-

ware Foundation (ASF) projects. They find that many ASF projects have undergone

logging library migrations (Kabinna et al., 2016a). However, performance is rarely im-

proved after a migration. They also find that a large amount of logging statements

change throughout their lifetime, and they discuss the factors that impact the stability

CHAPTER 2. LITERATURE REVIEW 15

of a logging statement (Kabinna et al., 2016b, 2018).

Prior studies find that software logging is a pervasive practice in software develop-

ment, and that developers spend much effort maintaining their logging code. Most

empirical studies of software logging practices analyze the logging code and its evo-

lution. They focus on developers’ logging behaviors without exploring the rationale

behind developers’ logging decisions.

2.3 Mining log messages

Prior studies have proposed various approaches to mine log messages for different pur-

poses.

Understanding system runtime behaviors. System logs are widely used for system op-

erators to understand system behaviors. With the increasing scale and complexity of

software systems, it has become challenging for system operators to manually analyze

system logs. Fu et al. (2013) propose an approach to help operators understand sys-

tem behaviors by mining execution patterns from system logs. An execution pattern is

reflected by a sequence of system logs. Based on the mined execution patterns, their

approach further learns essential contextual factors that cause a specific code path to

be executed. Their approach helps system operators understand system runtime be-

haviors in various tasks (e.g., system problem diagnosis).

An operation profile captures the common usage scenarios (e.g., sending email) of

a particular system (e.g., an email client) and their occurring rate. Hassan et al. (2008)

propose an approach to customize operational profiles for large deployments. Their

approach can uncover the most repetitive usage scenarios which are usually critical

to system performance. They leverage a textual compression algorithm to compress

CHAPTER 2. LITERATURE REVIEW 16

different segments of log files. A high compression ratio indicates highly repetitive se-

quences of log messages and thus representing a common usage scenario.

Shang et al. (2013) mine log messages of big data analytics applications to reduce

developers’ effort to verify the deployment of such applications on Hadoop clouds.

Their approach uncovers the differences between a pseudo-cloud deployment and a

large-scale cloud deployment, and direct developers’ attention to examining such dif-

ferences, thereby reducing the deployment verification effort.

Anomaly detection. Log messages are widely used to monitor the health of software

systems and identify abnormal conditions. Traditionally, software practitioners can

search keywords such as “error” and “failure” to spot the failures of a system execu-

tion. Prior studies also propose more sophisticated approaches to detect more implicit

failures. Xu et al. (2009b,a, 2008) propose a general methodology to mine the rich in-

formation in logs to detect system runtime problems. Based on the assumption that a

problem manifests as a abnormality in the relationships among different types of log

messages, their approaches extract features that capture various correlations among

log messages (e.g., relative frequencies). Then, they use a Principal Component Anal-

ysis based anomaly detection method with the extracted features to identify runtime

problems.

Fu et al. (2009), and Mariani and Pastore (2008) learn a Finite State Automaton (FSA)

from training log sequences to represent the normal work flow for each system com-

ponent. Then, the FSA can automatically detect anomalies in newly input log files.

Jiang et al. (2008) mine load testing logs to learn dominant behavior (i.e., execution

sequences) and flag deviations (i.e., anomalies) from the dominant behavior, in order

to detect problems in load testing tasks.

CHAPTER 2. LITERATURE REVIEW 17

Failure diagnosis. Log messages are usually the most important clues for failure di-

agnosis and the only resource for diagnosing field failures. Yuan et al. (2010) propose

SherLog, which leverages runtime log information and source code analysis to infer

the execution paths (i.e., what must or may have happened) during a failed produc-

tion run, in order to assist developers in failure diagnosis. They find that the informa-

tion inferred by SherLog is very useful for developers to diagnose real world software

failures.

Syer et al. (2013) leverage both performance counters and execution logs to diag-

nose memory-related performance issues. They combine the performance counters

and execution events (i.e., abstracted execution logs) by discretizing them into time-

slices. Then, they use statistical techniques to identify the set of execution events that

are associated to a performance issue.

Nagaraj et al. (2012) propose DISTALYZER, which leverages the vast log data avail-

able from large scale systems to support developers in diagnosing performance prob-

lems. DISTALYZER uses machine learning techniques to compare logs with good per-

formance and logs with bad performance, and automatically infer the strongest asso-

ciations between system components and performance.

Quality log messages are critical for understanding system runtime behaviors,

anomaly detection and failure diagnosis. The importance of logging quality mo-

tivates our study to understand current logging practices and assist software devel-

opers in making better logging code.

CHAPTER 2. LITERATURE REVIEW 18

2.4 Automatic log insertion

Proactive logging. As the run-time log information is frequently insufficient for de-

tailed failure diagnosis, prior studies propose approaches to automatically insert ad-

ditional log information to the source code. LogEnhancer (Yuan et al., 2011) automati-

cally adds variables into existing logging statements, in order to aid in the diagnosis of

future failures. LogEnhancer conduct static analysis on the source code and automati-

cally identify causally-related variables that if logged, can minimize the uncertainty of

the execution paths during failure diagnosis.

Errlog (Yuan et al., 2012a) proactively adds appropriate logging statements into

source code. Errlog analyzes real-world failures and derives common error sites (e.g.,

system call return errors, exceptions), then automatically inserts missing logging state-

ments into such error sites. Both LogEnhancer and Errlog are reported to significantly

reduce failure diagnosis time.

Zhao et al. (2017b,a) propose Log20, which automatically place logging statements

under a specified threshold of performance overhead. Log20 measures how effective

each logging statement is in disambiguating code paths, and automatically place log-

ging statements so that they can minimize code path ambiguity while satisfying the

given threshold of performance overhead.

Interactive logging. Prior research also explores interactive logging, i.e., inserting log-

ging code when it is needed. AutoLog (Zhang et al., 2011) generates additional infor-

mative logs to help developers discover the root causes when there is a failure. When

developers need more clues to diagnose a system failure, AutoLog performs program

slicing to find the execution paths that might lead to the failure, and incrementally add

logging statements along the execution paths, with the goal to approach the root cause

CHAPTER 2. LITERATURE REVIEW 19

quickly with fewer logs, and then execute the program again to generate more logs. The

process ends when developers have enough clues to find the root cause of the failure.

Automatic log insertion tools are helpful when developers need to collect more

clues for failure diagnosis. However, these tools do not consider developers’ exper-

tise and concerns for logging. Therefore, the logging statements that are generated

by these tools are difficult to be integrated into production software.

2.5 Learning to Log

Learning statistical models. Prior studies learn statistical models from common log-

ging practices and leverage the models to provide logging suggestions. Zhu et al. (2015)

propose LogAdvisor, which automatically learn where to log from existing logging code

and provide informative logging guidance to developers. LogAdvisor extracts contex-

tual features of a code snippet (exception-catch snippet or return-value-check snippet),

then learns statistical models to suggest whether a logging statement should be added

to such a code snippet. LogAdvisor is the first step towards “learning to log”. Simi-

larly, LogOpt (Lal and Sureka, 2016) extract contextual features from the source code

and build statistical models to predict whether a logging statement is needed in an

exception-catch block.

Jia et al. (2018) propose an intention-aware log automation tool called SmartLog,

which uses an Intention Description Model (IDM) to explore the intension of existing

logs and mine log rules from such intentions. SmartLog only focuses on logging place-

ment of function call code snippets.

Learning logging heuristics. Prior research also learns logging heuristics from expe-

riences. King et al. (2015) propose empirical heuristics to help developers identify

CHAPTER 2. LITERATURE REVIEW 20

mandatory log events (i.e., defined as actions that must be logged to hold the soft-

ware user accountable for performing the actions). They extract 3,513 verb-object

pairs from natural language software artifacts, and manually classify each verb-object

pair as either a mandatory log event or not. Then, then use grounded theory analysis

to derive 12 heuristics that can help determine whether a verb-object pair describes a

mandatory log event or not.

King et al. (2017) also perform a controlled experiment to evaluate whether the

derived heuristics can effectively help developers identify mandatory log events.

However, the heuristics do not help developers more correctly identify mandatory log

events at a statistically significant level.

Prior studies learn common logging practices from the source code; they never con-

sider the code change history nor the issue reports that provide additional dimen-

sions to explain developers’ logging practices. Prior studies provide logging sug-

gestions as a post-development process instead of providing logging suggestions

during the development process, i.e., when developers are changing their code.

CHAPTER 3

Understanding Developers’ Logging Concerns

As we observed in Chapter 2, prior studies aimed to improve logging either by proactively in-
serting logging statements in certain code snippets or by learning where to log from existing
logging code. However, there exists no work that studies developers’ logging concerns, i.e., the
benefits and costs of logging from developers’ perspective. Without understanding develop-
ers’ logging concerns, automated approaches for logging improvement are based primarily on
researchers’ intuition and unconvincing to developers. In order to fill this gap, we performed
a qualitative study on 533 logging-related issue reports from three large and successful open
source projects. We manually investigated these issue reports and derived high-level concepts
about developers’ logging concerns and how they address their logging concerns. Along with
our qualitative analysis, we also summarized best logging practices and general logging ad-
vice that can help developers (and logging library providers) improve their logging code (and
logging libraries). Our empirical findings also shed lights on future research opportunities for
helping developers leverage the benefits of logging while minimizing logging costs.

An earlier version of this chapter is under review at the IEEE Transactions on Software Engineer-
ing Journal (TSE).

21

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 22

3.1 Introduction

S
OFTWARE developers leverage logging statements in the source code to gen-

erate runtime log messages which are crucial for understanding system run-

time behaviors and diagnosing runtime issues. Missing an important piece of

logging information can increase the difficulty of diagnosing a field failure (Yuan et al.,

2011, 2012a). For example, issue report HADOOP-134581 complains that it was hard

to comprehend the meaning of an exception message without logging the stack trace.

On the other hand, adding logging statements excessively is not an optimal solution,

since adding too much logging can significantly increase system overhead (Zeng et al.,

2015; Fu et al., 2014). For example, issue report HADOOP-12903 complains that too

much logging slowed down the speed of servers.

Prior studies have proposed automated approaches to improve logging through

proactive logging (Yuan et al., 2011, 2012a) and learning to log (Zhu et al., 2015; Lal

and Sureka, 2016; Jia et al., 2018). Proactive logging approaches use static analysis to

automatically add more logged information to the existing code, in order to improve

software failure diagnosis. Learning to log approaches, on the other hand, learn statis-

tical models from existing logging practices and further leverage the models to suggest

where to log. All these existing studies aim to ease or improve developers’ logging prac-

tices. Their goal is to help developers address their logging concerns, i.e., by leveraging

the benefits of logging while minimizing its costs.

However, there exists no work that studies developers’ logging concerns, i.e., the

1All the issue reports mentioned in this paper can be accessed though the URL
https://issues.apache.org/jira/browse/<ISSUE-ID>.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 23

benefits and costs of logging, from the perspectives of developers. Without a clear un-

derstanding of developers’ logging concerns, automated approaches for logging im-

provement are not convincing to developers. On the other hand, developers are also

not fully aware about the benefits and costs of logging , and in some cases raise con-

flicting concerns regarding some logging issues (see RQ1 - Discussion). Therefore, this

chapter aims to understand developers’ logging concerns, and how they address their

logging concerns.

Developers communicate their logging concerns in their logging-related issue re-

ports. For example, issue report HADOOP-13693 raises a concern that logging an error

message for a successful operation is confusing and misleading. Therefore, we per-

formed a qualitative study on 533 logging-related issue reports from three large and

successful open source projects. We used a manual coding approach to derive high-

level concepts from these issue reports, in order to understand developers’ logging

concerns and how they address their logging concerns. Along with our qualitative anal-

ysis, we also derived best logging practices and general logging advice which can be

leveraged by software practitioners in their logging practices. In particular, we address

the following two research questions (RQs).

RQ1: What are developers’ logging concerns?

Our goal is not to find the direct causes of logging issues (e.g., incorrect log levels),

but rather to go deeper and understand why developers raise such logging issues,

i.e., what are the benefits of logging that they want to leverage, and what are the

costs of logging that they want to avoid.

RQ2: How do developers address their logging concerns?

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 24

Developers address their logging concerns by fixing logging-related issue re-

ports. By examining developers’ issue-fixing processes, we want to understand

how they balance the benefits and costs of logging (e.g., by adjusting log level).

By learning from developers’ logging concerns, we can provide developers with in-

sight on how to leverage the benefits of logging while avoiding too much negative im-

pact. We can also provide suggestions for logging library providers to improve their

logging libraries (e.g., to support different log levels for different parts of a logging

statement). Finally, our empirical findings inspire new research opportunities for log-

ging improvement (e.g., developing methods and tools to leverage logging benefits and

minimize logging costs).

Chapter organization. The remainder of the chapter is organized as follows. Sec-

tion 3.2 describes our case study setup, covering our subject projects, data prepara-

tion and data analysis approaches. Section 3.3 presents the experimental results for

answering our research questions. Section 3.4 discusses threats to the validity of our

findings. Finally, Section 3.5 draws conclusions and outlines future research opportu-

nities that are inspired by our study.

3.2 Case Study Setup

This section describes our case study subjects, the process that we used to prepare the

data for our case study, and the qualitative analysis approaches that we used to study

developers’ logging concerns.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 25

Table 3.1: Overview of the studied projects.

Project Studied History SLOC* Primary
Language (SLOC)

Logging
Statements

*

Hadoop Common 2012.06 - 2017.06 313 K Java (226 K) 638
Hive 2012.06 - 2017.06 1,445 K Java (1,081 K) 5,503
Kafka 2012.06 - 2017.06 238 K Java (149 K) 853

* The SLOC and the number of logging statements are calculated at the end of the
studied period, i.e., June 30th, 2017. The number of logging statements for each
project is calculated for the primary language.

3.2.1 Subject Projects

In order to study developers’ logging concerns, we manually investigated the logging-

related issue reports from three large and successful open source software projects,

namely Hadoop Common2, Hive3, and Kafka4. Hadoop Common implements the com-

mon utilities for Hadoop, a distributed computing platform. Hive is a data warehouse

that supports accessing big data sets residing in distributed storage using SQL. Kafka

is a streaming platform for messaging, storing and processing real-time records. All of

these projects are widely used by today’s tech giants, such as Google, Amazon, Face-

book, etc. We select these three subject projects because their logging code is well

maintained, for example, they have many logging-related issue reports that are ded-

icated for maintaining logging code. As the log messages that are generated by these

projects are exposed to the aforementioned tech giants as well as a much wider audi-

ence, the quality of their logging code is critical to their success.

Table 3.1 shows the overall information of the studied projects. Hadoop Common

has 313 K source lines of code (SLOC), and it is primarily implemented in Java. Hive has

2http://hadoop.apache.org
3https://hive.apache.org
4https://kafka.apache.org

http://hadoop.apache.org
https://hive.apache.org
https://kafka.apache.org

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 26

project in ("Project Name") AND summary ~ "(log || logger || print) NOT
(\"log in\" || \"log out\" || \"blue print\" || \"print command\"~10)"
ORDER BY created DESC

Figure 3.1: The JQL query that we used to search for the logging-related issue reports.

an SLOC of 1,445 K, and its dominant programming language is also Java. Kafka has an

SLOC value of 238 K, and it is mostly implemented in Java. Hive has the largest number

(i.e., 5,503) of logging statements, while Hadoop Common has the least number (i.e.,

638) of logging statements. We study the logging-related issue reports that were created

from June 2012 to June 2017. We extracted the logging issue data in December 2017 (at

least six months after the creation of any studied issue report), to ensure that the status

of the studied logging issues are relatively stable after a long time since their creation.

3.2.2 Data Preparation

We extract our logging issues from the Apache JIRA issue tracking system5. Figure 3.2

demonstrates our data extraction process. First, we use the JIRA Query Language (JQL)

to automatically search for the JIRA issues reports that are related to logging (i.e., issue

reports with logging-related keywords in their summaries). We use the JQL query in

Figure 3.1 to search for the logging issue reports of each of the studied projects. The

“Project Name” is replaced by “Hadoop Common”, “Hive”, and “Kafka” for our respec-

tive projects. This JQL query searches for all the issue reports of the specified project

that have “log”, “logger” , “print” , or their variations (e.g., “logging”), but don’t have

“log in”, “log out”, “blue print”, or “print” and “command” together, in its summary,

sorted by their creation time using a reverse-chronological order.

5https://issues.apache.org/jira

https://issues.apache.org/jira

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 27

Is
su

e
tr

ac
ki

ng

sy
st

em

D
at

a
Pr

ep
ar

at
io

n
D

at
a

A
na

ly
si

s

Is
su

e
re

po
rt

s
w

ith
 lo

gg
in

g
ke

yw
or

ds

Is
su

e
re

po
rt

s
w

/o
 lo

gg
in

g
ke

yw
or

ds

Au
to

m
at

ed

fil
te

rin
g

(JQ
L)

M
an

ua
l

fil
te

rin
g

Lo
gg

in
g

re
la

te
d

iss
ue

s

N
on

-lo
gg

in
g

iss
ue

s

RQ
1:

 w
ha

t a
re

de

ve
lo

pe
rs

’
lo

gg
in

g
co

nc
er

ns
?

RQ
2:

 h
ow

 d
o

de
ve

lo
pe

rs

ad
dr

es
s

th
ei

r
lo

gg
in

g
co

nc
er

ns
?

M
an

ua
l

co
di

ng
H

ig
h-

le
ve

l
co

nc
ep

ts

Q
ua

lit
at

iv
e

an
al

ys
is

Lo
gg

in
g

ad
vi

ce
Be

st
 p

ra
ct

ic
es

F
ig

u
re

3.
2:

T
h

e
p

ro
ce

ss
o

fp
re

p
ar

in
g

an
d

an
al

yz
in

g
lo

gg
in

g
is

su
e

d
at

a.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 28

The resulting issue reports from the automated filtering process may falsely include

some non-logging issue reports. For example, issue report HADOOP-14060 has “log”

in its summary but it is about the access control for the “logs” folder instead of a logging

issue. In order to remove these non-logging issue reports, we manually examined all

the resulting issue reports from the automated filtering process. For each issue report,

we first checked its summary to determine if it is a logging issue. If we could not decide

it from the summary, we further checked the description of the issue report. We only

kept those issue reports that dealt with logging issues. We also removed duplicated

logging issue reports and kept only one issue report for each duplication. We ended

up with 533 logging-related issue reports.

Table 3.2 shows the number of issue reports that are resulted from the automated

filtering process and the number of remaining issue reports after the manual filtering

process (i.e., the number of logging issue reports that are studied in the rest of the chap-

ter). Using our query criterion (i.e., Figure 3.1), we get 193, 395 and 314 issue reports of

Hadoop Common, Hive and Kafka, respectively. 74% and 68% of the JQL-queried issue

reports are concerned with logging for the Hadoop Common and Hive projects, respec-

tively. However, only 39% of the JQL-queried issue reports are concerned with logging

for the Kafka project. As the Kafka project deals with messaging, storing and process-

ing of log messages, it has a large number of issue reports with the keyword “log” (or

its variations) in their summaries but actually they are not necessarily concerned with

the logging aspect of the project.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 29

Table 3.2: Number of studied logging issue reports per project.

Project # JQL-queried issues # Logging issues

Hadoop Common 193 143 (74%)
Hive 395 268 (68%)
Kafka 314 122 (39%)

Total 902 533 (59%)

3.2.3 Data Analysis

Figure 3.2 also shows our data analysis process. In order to understand developers’

logging concerns (RQ1) and how they address their logging concerns (RQ2), we per-

formed a qualitative analysis on the 533 logging issue reports. We use a manual cod-

ing approach (see details below) to extract high-level concepts (e.g., developers’ log-

ging concerns) from the detailed information of these issue reports (e.g., summaries,

descriptions, and comments). Inspired by our understanding of developers’ logging

concerns, we further derived some best logging practices and general logging advice

that can help developers improve their logging code.

Our manual coding approach. Our manual coding approach follows an open card

sorting approach (Spencer, 2009; Rugg and McGeorge, 2005; Zimmermann, 2016), ex-

cept that we did not print our content (i.e., issue reports) on physical cards. The reason

that we did not print our content on physical cards is that, for each issue report, we

need to investigate the summary, description, comments, patches, code review com-

ments, and commit messages, which cannot fit in a small card. Two researchers includ-

ing the author of this thesis and a collaborator jointly performed our manual coding

process. We first examined 50 issue reports together and jointly assign codes to these

issue reports. For each examined issue report, we compared the new issue report with

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 30

existing codes; if we could not find an appropriate existing code for the new issue re-

port, we created a new code and assign the issue report with the new code. Then, we

divided up the remaining issue reports and individually assigned codes to these is-

sue reports. We kept communicating during the entire coding process. We discussed

whenever someone is not certain about which code an issue report can fit, and we in-

formed the other coder when a new code is created. We group lower-level codes into

higher-level codes when it is appropriate. We also constantly made changes to our ex-

isting coding results whenever appropriate. Another two collaborators reviewed our

coding results and suggested appropriate changes.

3.3 Case Study Results

In this section, we present the results for answering our research questions. For each

research question, we discuss our motivation, our approaches, and the detailed exper-

imental results.

3.3.1 RQ1: What are developers’ logging concerns?

Motivation

Prior studies proposed automated approaches (e.g., statistical models) to help devel-

opers improve their logging practices. Without a clear understanding of developers’

logging concerns, automated approaches for logging improvement may not meet de-

velopers’ real needs. In order to fill the gap, we qualitatively examined 533 issue reports

from three large and successful open source projects, to better understand the logging

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 31

concerns from the perspective of developers. We are not trying to understand the di-

rect causes of these issue reports (e.g., incorrect log levels), but rather to go deeper

and understand why developers raise such logging issues, i.e., what are the benefits

of logging that they want to leverage, and what are the costs of logging that they want

to avoid. Software practitioners can learn from our findings to better understand the

benefits and costs of logging and improve their logging code. Our findings also shed

light on future research opportunities for logging improvement (e.g., helping develop-

ers minimize the costs of logging).

Approach

In order to analyze developers’ logging concerns, we qualitatively examine the issue

summaries, issue descriptions, issue comments, patches, commit messages and code

review comments that are associated with and directly accessible from the studied log-

ging issue reports. We use the manual coding approach discussed in Section 3.2.3 to

derive high-level concepts about developers’ logging concerns from the detailed infor-

mation of these issue reports. Along with our qualitative analysis of developers’ logging

concerns, we also derived best practices and general advice for logging, based on the

fact that developers raise similar logging issues across different issue reports and dif-

ferent projects.

A few (17) logging issue reports combine several logging issues together in one issue

report (e.g., HIVE-12713, “Miscellaneous improvements in driver compile and execute

logging”). We treat each of such issue reports as multiple logging issues and analyze

each logging issue separately. We end up with 560 logging issues that are raised in 533

logging issue reports.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 32

Some issue reports show different (and even opposite) concerns regarding a logging

issue. For example, issue report HADOOP-11180 raises a concern that printing out too

many “warn” messages for a successful execution can mislead end users, so the de-

veloper proposes to downgrade the “warn” messages to “debug” messages. However,

another developer raises another concern that downgrading the “warn” messages can

hide fundamental software problems. In such cases, we only consider a primary log-

ging concern for each logging issue. For example, the primary logging concern for the

example issue report (HADOOP-11180) is “misleading end users”. In some cases, we

could not understand developers’ logging concerns from the issue reports. For exam-

ple, issue report HADOOP-14296 proposes to migrate logging APIs to SLF4J6 but never

explains the rationale for doing so. We assign an “unknown” label for such cases.

Results

Half of the logging issues are concerned with the benefits of logging, while the other

half are concerned with the costs of logging. Figure 3.3 summarizes the high-level

categories of logging concerns that are derived from our qualitative analysis. Devel-

opers’ logging concerns are grouped into ten high-level categories, among which, five

of them are concerned with logging benefits (i.e., assisting in debugging, exposing run-

time problems, bookkeeping, showing execution progress, and providing runtime per-

formance), and the other five are concerned with logging costs (i.e., excessive log infor-

mation, misleading end users, performance overhead, exposing sensitive information,

and exposing unnecessary details). In total, we investigated 560 logging issues from the

three studied projects (some issue reports discuss multiple logging issues). We could

6https://www.slf4j.org

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 33

26%
(32)

29%
(73)

36%
(47)

15%
(19)

5%
(13)

6%
(8)

0%
(0)

10%
(26)

2%
(3)

2%
(3)

6%
(16)

2%
(3) 1%

(1)

4%
(10)

1%
(1)

24%
(30)

20%
(51)

14%
(19)

23%
(28)

12%
(30)

25%
(33)

3%
(4)

6%
(15)

8%
(10)

5%
(6)3%

(8)2%
(2) 0%

(0)

4%
(9)

5%
(6)

Logging benefits (50%) Logging costs (50%)

Ass
ist

ing
 in

de
bu

gg
ing

Exp
os

ing
 ru

nt
im

e

pr
ob

lem
s

Boo
kk

ee
pin

g

Sho
wing

 ex
ec

ut
ion

pr
og

re
ss

Pro
vid

ing
 ru

nt
im

e

pe
rfo

rm
an

ce

Exc
es

siv
e

log

inf
or

m
at

ion

M
isl

ea
din

g
en

d

us
er

s

Per
for

m
an

ce

ov
er

he
ad

Exp
os

ing
 se

ns
itiv

e

inf
or

m
at

ion

Exp
os

ing

un
ne

ce
ss

ar
y d

et
ail

s

0.0

0.1

0.2

0.3

Logging concerns

%
 L

og
gi

ng
 is

su
es

Project Hadoop Common Hive Kafka

Figure 3.3: Developers’ logging concerns and the percentage of logging issues in each
project that raise each logging concern.

not conceptualize the logging concerns of 54 (∼10%) logging issues (i.e., marked as

“unknown”), because these issue reports never explain the rationale for changing the

logging code. Among the logging issues for which we are able to conceptualize log-

ging concerns, 255 (∼50%) of them are concerned with the benefits of logging, and 251

(∼50%) of them are concerned with the costs of logging. Detailed discussions about

each of these logging concerns are as follows.

BENEFIT 1: Assisting in debugging. The most commonly concerned benefit of

logging is assisting in debugging. In the studied projects, 26% to 36% of the studied log-

ging issues raise the logging benefit of assisting in debugging of errors that have been

identified by developers or end users. Log messages help developers narrow down the

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 34

try {
Thread.sleep(retryInfo.delay);

} catch (InterruptedException e) {
/* Logging the stack trace by specifying the exception (e) as the last

parameter of a logging statement. */
LOG.debug("Interrupted while waiting to retry", e);

}

Figure 3.4: Example of logging for assisting in debugging.

execution paths of a process and find the root cause of an execution failure (Yuan et al.,

2010). For example, issue report HADOOP-14497 requests to log the lifecycle (i.e., cre-

ation, renewal, cancellation, and expiration) of delegation tokens, in order to identify

the root causes of authentication failures related to delegation tokens. In particular,

logging specific information instead of general information (e.g., HIVE-11163), logging

the causes of an error in addition to the error itself (e.g., KAFKA-4164), and logging the

stack trace of an unexpected exception (e.g., HADOOP-13682) in addition to the excep-

tion message can effectively help developers narrow down the root causes. Modern

logging libraries (e.g., Log4j7 and SLF4J6) usually support convenient ways to log the

stack trace of an exception, e.g., Figure 3.4 shows a code example of logging the stack

trace of an exception for assisting in debugging. Developers also recommend to log

context information (e.g., thread id, session id, query id, user id, etc.) in a multi-task

program (e.g., HIVE-13517, HIVE-11488, KAFKA-3816, HIVE-15631, HIVE-6876).�

�

�

�

PRACTICE 1: Log specific information (e.g., detailed error spots) instead of general

information and the context information (e.g., thread ids) of an event to support

better failure diagnosis.

BENEFIT 2: Exposing runtime problems. The second mostly concerned benefit of

7https://logging.apache.org/log4j/2.x/

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 35

catch (IOException ex) {
LOG.warn("Failed to connect to {}:{}", url.getHost(), url.getPort());

}

Figure 3.5: Example of logging for exposing runtime problems.

logging is exposing runtime problems, which can be used to triage, understand and pri-

oritize runtime problems. In the Kafka project, in particular, 15% of the studied logging

issues raise the logging benefit of exposing runtime problems. Log messages can help

developers and users identify the problems or anomalies in a system execution. For

example, issue report HADOOP-12901 requests to log a “warn” message when a client

fails to connect to a server, so that users can easily identify the connection problem and

fix it. Figure 3.5 shows a code example of logging for exposing runtime problems. In

particular, developers need to log unhandled exceptions, otherwise there is nothing to

indicate such exceptions (e.g., HADOOP-12749). Anomaly detection tools (Jiang et al.,

2008; Fu et al., 2009; Xu et al., 2009b) automatically analyze large amounts of log mes-

sages (that are hard for humanbeings to investigate manually) and alert anomalies that

are indicated in the log messages. Missing such alerting log messages can make it hard

to identify runtime problems at an early stage and bring difficulties for locating the

problems (e.g., HADOOP-11328). These alerting logs are usually logged at the “warn”

or “error” levels instead of lower log levels. For example, issue reports HADOOP-12887

requests to change the log level of a logging statement from “info” to “warn” so that

one can easily identify a configuration error (e.g., by searching the keyword “warn”).

However, logging normal events or properly handled problems at the “warn” or “error”

levels can spam the log files with “warn” or “error” messages and make it difficult to

identify real problems (e.g., HIVE-8382).

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 36

�

�

�

�

PRACTICE 2: Log real problems (e.g., unhandled exceptions) at the “warn” or “er-

ror” levels and properly handled problems at lower levels to help in uncovering run-

time problems.

BENEFIT 3: Bookkeeping. Developers can use log messages to record (i.e.,

bookkeep) important transactions or operations in a system execution, such as user

login/logout, database operations, remote queries and requests. Such bookkeeping

log information can be later processed for various analysis activities, such as security

analysis (Oliner et al., 2012), performance analysis (Syer et al., 2013), and capacity

planning (Kavulya et al., 2010). In the Hive project, 10% of the studied logging issues

raise the logging benefit of bookkeeping (e.g., bookkeeping database queries). The

Sarbanes-Oxley Act of 2002 (Sarbanes, 2002) requires all telecommunication and

financial applications to log some mandatory log events, such as user activities,

network activities and database activities8. The logging of the traceable information

of a transaction or operation, such as the hostname (e.g., HIVE-12235) and client IP

(e.g., HIVE-3512) of a query, and the identities of the operated objects (e.g., the ids

of the cancelled queries, HIVE-16286; the names of the created/deleted directories,

HIVE-13058; the ids of the opened/closed sessions, HIVE-14209), is usually required.

Figure 3.6 shows a code example of logging for bookkeeping. Developers also suggest

that bookkeeping logs need to be symmetric. For example, when the creation a

certain object (e.g., a table) is logged, the deletion of the object should also be logged.

Otherwise one could not confirm if the object still exists (e.g., HIVE-13058).�
�

�
�

PRACTICE 3: Log traceable information (e.g., object identities or client IPs) when

bookkeeping transactions or operations.

8https://sarbanes-oxley-101.com/sarbanes-oxley-audits.htm

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 37

hdfsSessionPath.getFileSystem(conf).delete(hdfsSessionPath, true);
LOG.info("Deleted HDFS directory: " + hdfsSessionPath);

Figure 3.6: Example of logging for bookkeeping.

LOG.debug("Waiting to acquire compile lock: " + command);
compileLock.lock();
LOG.debug("Acquired the compile lock");

Figure 3.7: Example of logging for showing execution progress.

BENEFIT 4: Showing execution progress. Log messages help in tracking the sta-

tus or progress of an execution, such as the start or end of an event (e.g., HIVE-11314),

a status change (e.g., flip over a flag, HADOOP-10046), an ongoing action (e.g., retry-

ing, HADOOP-10657), or the status of waiting for some resources (e.g., waiting for a

lock, HIVE-14263). Figure 3.7 shows a code example of logging for showing execution

progress. While bookkeeping logging supports post-execution analysis of important

transactions and operations, progress logging can help in determining whether a sys-

tem is progressing as expected or something is going wrong. In particular, printing the

progress information for a process that takes a long time is important for figuring out

what’s going on in the process. For example, issue report KAFKA-5000 requests regu-

lar progress information to be logged for a long process so that one can know whether

the process is progressing or stuck. Concerns are often raised about the symmetry of

progress logging. For example, “waiting for lock” should be followed by “lock acquired”

(HIVE-14263), while “start of process” should be followed by “end of process” (HIVE-

12787).

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 38

perfLogger.PerfLogBegin(CLASS_NAME, method.getName());
doSomething();
perfLogger.PerfLogEnd(CLASS_NAME, method.getName());

Figure 3.8: Example of logging for providing runtime performance.

�

�

�

�

PRACTICE 4: Logging needs to be symmetric, e.g., logging both the creation and

deletion of an object, or logging both the start and end of a process. Future research

is needed to help developers make symmetric logging.

BENEFIT 5: Providing runtime performance. Logging statements are used to

record the performance information of a system at runtime (a.k.a., performance

logging). Such performance information is usually related to the execution time or

memory usage of a process. For example, issue report HIVE-14922 requests the logging

of the time spent in several performance-critical tasks, and issue report KAFKA-4044

requests the logging of the actually used buffer size. Figure 3.8 shows a code example

of logging for providing runtime performance. Such performance information helps

in understanding system health (e.g., HIVE-8210), in tuning system performance

(e.g., HADOOP-13301), and in adjusting resource allocation (e.g., KAFKA-4044). It is

suggested to log such performance information using standardized perf loggers to

separate performance logging from event logging, for better performance analysis

(e.g., HIVE-11891).�

�

�

�

PRACTICE 5: Logging the performance information of critical tasks can help devel-

opers understand system health, tune system performance, and allocate system re-

sources. Standardized perf loggers are preferred over using event logging libraries.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 39

COST 1: Excessive log information. The most frequently raised logging cost is ex-

cessive log information. In the studied projects, 14% to 24% of the studied logging is-

sues raise the concern of excessive log information. Excessive log information is usually

caused by repeated log messages for a single event type (i.e., log messages produced by

a single logging statement), such as logging database operations on every row of a table

(e.g., HIVE-8153), logging every entry (e.g., KAFKA-3792), logging every request (e.g.,

KAFKA-3737), or logging every user (e.g., HADOOP-12450). Such excessive log infor-

mation can mask other important information and lead to expensive storage costs (Fu

et al., 2014). In particular, repetitive logging of stack traces usually grows the log files

very fast and frustrates the end users. For example, issue report HADOOP-11868 raises

a major concern about the excessive logging of stack traces for invalid user logins. It

is advisable to aggregate such highly repetitive log lines, for example, by logging ag-

gregated information at a higher log level and detailed information at a lower log level

(e.g., HIVE-10214, KAFKA-4829).

Many issue reports suggest, for a single event, to log the normal log text at a higher

level (e.g., “error”) and the stack trace at a lower level (e.g., “debug”), such that the

stack traces are hidden in normal cases and are only printed out when needed (e.g.,

HADOOP-13669). It is also suggested to log the important information of an event at a

higher level, while logging the detailed information of the same event at a lower level

(e.g., KAFKA-1199). Therefore, there is a strong need for supporting logging different

parts (in particular, stack traces) of a logging statement at different log levels, which is

not supported by modern logging libraries. As a workaround, developers usually need

to insert two separate logging statements at different log levels for a single event (e.g.,

HADOOP-11868). Developers also need to be cautious when throwing and logging an

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 40

exception at the same time9. Because it may lead to duplicated logging as the handler

of the exception may log the exception again (e.g., KAFKA-1591).�
�

�
�

ADVICE 1: Repetitive log messages for a single event type can cause excessive log

information, which is suggested to be aggregated.

�
�

�
�

ADVICE 2: Logging libraries should consider supporting different log levels for dif-

ferent parts (e.g., the error message vs the stack trace) of a logging statement.

�
�

�
�

ADVICE 3: Developers need to be cautious when logging and throwing an excep-

tion at the same time, since the handler of the exception may also log the exception.

COST 2: Misleading end users. The second most frequently raised logging cost is

misleading end users. In the studied projects, 12% to 25% of the studied logging issues

are concerned with misleading end users. As log messages are directly exposed to end

users, inappropriate log information can be confusing and misleading. In particular,

logging “warn” or “error” messages for successful operations is the most frequent cause

for this concern. For example, HADOOP-13693 complains that a warning in a success-

ful operation confuses end users. Even worse, sometimes inappropriate log messages

can annoy or frustrate end users. For example, HADOOP-13552 complains that there

are too many “scary looking” stack traces being printed out in the log files, but in fact

those exceptions can be handled automatically. Such large amount of repetitive stack

traces can frustrate (e.g., HIVE-11062) or annoy (e.g., HIVE-7737) end users.�

�

�

�

ADVICE 4: Developers should avoid logging successful operations at the “warn” or

“error” levels. In particular, logging the stack traces of properly handled exceptions

can unnecessarily alarm end users.

9https://www.loggly.com/blog/logging-exceptions-in-java/

https://www.loggly.com/blog/logging-exceptions-in-java/

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 41

COST 3: Performance overhead. Performance overhead is considered as a major

cost of logging (Fu et al., 2014; Zhu et al., 2015), as printing a log message into a log

file involves expensive IO operations, string concatenations, and possible method in-

vocations for producing the log strings. 3% to 8% of the studied logging issues in the

studied projects raise performance concerns. One cause of performance overhead is

overwhelmingly repetitive printing of similar log messages. For example, issue report

HIVE-12312 complains that the compilation of a complex query is significantly slowed

down as a code snippet with a logging statement is called for many thousands of times.

The execution process was speeded up by 20% after disabling the logging statement.

Another cause of performance overhead is the invocation of expensive methods in log-

ging statements. For example, issue report HADOOP-14369 complains that including

some method calls in logging statements is “pretty expensive”. Surprisingly, even dis-

abled lower level logging can cause serious performance overhead, because the pa-

rameters of a logging statement are evaluated before the check for the log level. For

example, issue KAFKA-2992 reports that “trace” logs in tight loops cause significant

performance issues even when “trace” logs are not enabled.�

�

�

�

ADVICE 5: Logging overhead might exist even when logging is disabled. Develop-

ers should minimize logging in tight loops and avoid expensive method invocations

in logging. Future research is needed to detect performance-critical logging.

COST 4: Exposing sensitive information. Sensitive information (e.g., usernames

and passwords) should not be printed in log files. Once such sensitive information

is logged, it might be archived for years and cannot be tampered with due to legal

regulations. However, sometimes such sensitive information might end up logged by

mistake. For example, issue reports HIVE-14098 complains that users’ passwords are

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 42

logged in clear text, which is undesirable. In particular, developers have difficulties to

avoid logging sensitive information that is contained in an URL (e.g., URL containing

usernames and passwords, HIVE-13091) or a user configuration field (e.g., cloud stor-

age keys, HADOOP-13494). Developers may log the content of a URL or a configuration

field without noticing the contained sensitive information. In an even more difficult

situation, users may put their sensitive information in an unknown configuration field

(e.g., caused by typo). In such a case, developers are likely to log the unknown configu-

ration field (i.e., to alert the unknown configuration) and unintentionally expose users’

sensitive information (e.g., KAFKA-4056).�

�

�

�

ADVICE 6: Developers should not log users’ sensitive information. In particular,

they need to pay extra attention when logging URLs, configuration fields, or other

user inputs. Future research and tooling support is needed to help in preventing

logging sensitive information.

COST 5: Exposing unnecessary details. While excessive log information is con-

cerned with the overall amount of log messages, and exposing sensitive information

is concerned with divulging users’ sensitive data, exposing unnecessary details is con-

cerned with the exposure of the inner structures (e.g., library dependencies) and pro-

cesses (e.g., algorithms) of a software system. Such inner structures and processes

may be used by developers for their debugging purposes. However, sometimes devel-

opers log such inner information at a higher (more user-facing) log level (e.g., “info”)

and unnecessarily expose the inner information to end users. For example, issue re-

port HADOOP-13550 complains that the internal information about disabling threads

when thread count is zero should not be logged at a high level such as “warn”. An-

other issue report, HIVE-7737, argues that printing the whole stack trace for “table not

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 43

found” is unnecessary and misleading because “table not found” is usually caused by

user errors. Developers should avoid exposing such unnecessary and misleading de-

tails of their software systems to end users.�

�

�

�

ADVICE 7: Printing detailed structure or algorithm information to end users is un-

necessary and misleading. Such detailed information should be avoided or logged

at lower levels.

Discussion

Conflicting concerns about log levels. Developers usually have a hard time deciding

the appropriate log levels for their logging statements (Yuan et al., 2012b; Oliner et al.,

2012). In many cases they have conflicting concerns about a log level. For example,

in issue report HADOOP-11180, a developer proposes to change a logging statement

from “warn” to “debug”, as “there are too many such warnings” (i.e., excessive log in-

formation) and it can mislead end users. However, another developer raises a con-

flicting concern and argues that “downgrading the logs is going to hide fundamental

problems” (i.e., not able to expose runtime problems). Developers are mostly confused

about the “debug” and “info” levels (Li et al., 2017a). In some cases, developers tend

to print detailed debugging information at the “info” level (e.g., HIVE-16629). In other

cases, “critical piece of information” was logged at the “debug” level (e.g., HADOOP-

12789). Therefore, we developed an automated approach to help developers choose

the most appropriate log level when they add a logging statement to their source code

(Li et al., 2017a; Chapter 6).

Logging the stack trace of an exception? Logging exceptions is considered a good log-

ging practice (Yuan et al., 2012a; Li et al., 2017b). In particular, logging the stack traces

of exceptions is very helpful for debugging the exceptions (i.e., assisting in debugging).

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 44

However, as a stack trace is usually much longer than a log message, logging the stack

traces can usually cause excessive log information and performance overhead. Logging

unnecessary stack traces to the end users can also expose unnecessary details of a soft-

ware system and mislead end users (e.g., “scary looking” stack traces for successful pro-

cesses, as reported in HADOOP-13552). Developers usually have difficulties to balance

the benefits and costs of logging stack traces. In fact, they raise conflicting concerns

about adding stack traces to exception logging. For example, issue report HADOOP-

10571 proposes to add stack traces to many exception logging statements across mod-

ules. However, other developers raise concerns that stack traces should be avoided for

some of these exception logging statements. As a result, it takes significant efforts (e.g.,

as much as 10 patches) to resolve the conflicting concerns. Future research and tooling

support is needed to help developers make informed decisions about whether to log

the stack trace of an exception.

Developers leverage five categories of logging benefits, including assisting in de-

bugging, exposing runtime problems, bookkeeping, showing execution progress, and

providing runtime performance. However, developers are also concerned about five

categories of logging costs, including excessive log information (size), misleading

end users (accuracy), performance overhead (performance), exposing sensitive in-

formation (safety), and exposing unnecessary details (exposure).

3.3.2 RQ2: How do developers address their logging concerns?

Motivation

In the previous research question, we discuss developers’ logging concerns (i.e., log-

ging benefits and costs) that are communicated in their logging-related issue reports.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 45

In this research question, we want to understand how developers address their logging

concerns, i.e., how they balance the benefits and costs of logging. Our results can help

software developers understand the maintenance effort of their logging code, which

can help them make better allocation of their limited logging resources. In addition,

developers can learn from others’ logging experiences (e.g., about whether to remove

a costly logging statement or reduce its log level) and apply them in their own logging

practices. Our results also shed light on future research opportunities for addressing

logging concerns automatically.

Approach

Developers usually track their activities of fixing an issue in an issue report (e.g., a JIRA

issue report). A JIRA issue report uses a “Status” field to indicate the status of an issue

in its lifecycle. The “Status” of an issue report can be “Open”, “Patch Available”, “Re-

solved”, and “Closed”, etc. A JIRA issue report also uses a “Resolution” field to indicate

how the issue was resolved (e.g., “Fixed”, “Duplicate”, “Won’t Fix”, etc.), or otherwise

“Unresolved”. As mentioned in Section 3.2.1, we extracted our logging issue data af-

ter a long time (i.e., at least six months) since the creation of the logging issue reports,

so the status of these issue reports tend to be stable at the time of our data extraction

and follow-up analysis. In this RQ, we categorize the status of an issue report into four

types: open, fixed, patched, and rejected.

• Open issue reports - the issue reports with an “Open”, “Reopened”, or “In

Progress” status. These issues have not reached a solution yet, and a patch is

not submitted for fixing these issues.

• Rejected issue reports - the issue reports with an “Invalid”, “Not A Problem”, or

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 46

“Won’t Fix” resolution. Developers refused to make changes for these issues.

• Fixed issue reports - the issue reports with a “Fixed” resolution (in rare cases the

resolution can be “Done”, “Resolved”, or “Pending Closed”). Developers have

made code changes to address these issue reports.

• Patched issue reports - the issue reports with a “Patch Available” status. Develop-

ers have made code changes to address these issue reports (i.e., a patch is submit-

ted), but the code changes are not integrated into the central code repositories

(e.g., patch rejected by reviewers).

We continue to use the qualitative approach that we discuss in Section 3.2.3 to an-

alyze how developers address their logging concerns. We focus our analysis on the

fixed issue reports, as developers have not yet reached a solution for other issue re-

ports. We examine the issue summaries, descriptions, comments, patches, commit

messages and code review comments of the studied issue reports, and use the manual

coding approach discussed in Section 3.2.3 to derive high-level concepts that concep-

tualize developers’ resolutions for their logging issues.

We also discuss the resolutions for each of the logging concerns that are discussed

in RQ1. For example, issue report HADOOP-13552 raises a concern about generating

a “scary looking” stack trace as a warning when an exception is automatically handled

by the code (i.e., misleading end users). The developer fixed the issue by reducing the

log level from “warn” to “debug”, and thereby addressing the concern of misleading end

users.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 47

Table 3.3: The status distribution of the studied logging issues.

Status Open Rejected Fixed Patched

Logging issues 58 (10%) 31 (6%) 422 (75%) 49 (9%)

Results

Developers fixed 75% of the studied logging issues. Table 3.3 shows the distribution

of the status of the studied logging issues. Among the 560 studied logging issues (as dis-

cussed in RQ1, some issue reports raise multiple logging issues), developers rejected to

fix 6% of the logging issues, and left 10% and 9% of the remaining logging issues as open

and patched, respectively. Figure 3.9 summarizes developers’ resolutions for address-

ing their logging issues, which are derived from our qualitative analysis. In total, we

derived 19 high-level resolutions which fall into four dimensions, namely adding/re-

moving log content, adjusting log level, improving logging configuration, and improving

logging statements. Table 3.4 explains each of the derived resolutions.

Developers constantly balance their log information through adding/removing

log content and adjusting log level. Developers increase their log information through

adding log content, logging stack trace, increasing log level, and lowering logging thresh-

old. In comparison, they reduce their log information through removing log content,

reducing repetitive information, removing stack trace, reducing log level, and raising

logging threshold. As shown in Figure 3.9, developers add log content to address 32%

to 37% of the studied logging issues. In contrast, they only remove log content to ad-

dress 3% to 6% of the studied logging issues. Developers reduce log levels to address

8% to 20% of the studied logging issues, while only increase log levels to address 2%

to 6% of the studied logging issues. In our manual analysis of these issue reports, we

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 48

Table 3.4: Developers’ resolutions for addressing their logging issues.

Dimension Resolution Description Example

Adding/
removing
log
content

Adding log con-
tent

Adding new logging statements or more
information to existing logging state-
ments

HADOOP-13854 added a new logging statement
that records the error details of an exception, for
debugging purposes

Removing log
content

Removing logging statements or partial
content of logging statements

HADOOP-10422 removed a redundant logging
statement

Logging stack
trace

Adding stack trace information to exist-
ing logging statements

HADOOP-13458 added stack trace information to
an existing logging statement as it’s hard to com-
prehend the meaning of an exception message
without a stack trace

Reducing repeti-
tive information

Reducing log messages that communi-
cate repetitive information

HADOOP-10756 reduced repetitive log informa-
tion by consolidating similar log messages

Removing stack
trace

Removing stack trace information from
logging statements

HADOOP-13710 removed the stack trace informa-
tion from an exception logging as the exception is
expected in a routine operation

Adjusting
log level

Reducing log
level

Reducing the log level of a logging state-
ment (e.g., changing from “error” to
“warn”)

HADOOP-13850 reduced the log level of a logging
statement from “info” to “debug”, since users don’t
need to know the logged details

Increasing log
level

Increasing the log level of a logging
statement (e.g., changing from “info” to
“warn”)

HADOOP-12789 increased the log level of a log-
ging statement from “debug” to “info”, since the log
information (i.e., a class path) is critical for trou-
bleshooting

Raising logging
threshold

Raising the logging threshold (i.e., the
enabled log level) of a module, thus al-
lowing less logging statements to print
log messages

HIVE-15954 configured the log level of some mod-
ules from the default “info” level to “warn” level, in
order to disable noise information that are logged
at “info” level

Lowering log-
ging threshold

Lowering the logging threshold (i.e., the
enabled log level) of a module, thus
allowing more logging statements to
print log messages

HIVE-5599 changed the allowed log level of Hive’s
root logger from “warn” to “info”, since “Hive logs a
large amount of important information at the info
level”

Improving
logging
configuration

Changing log-
ging configura-
tion

Changing the environment setting of
logging, such as logging format and log-
ging destination

HADOOP-8552 added usernames to log file names,
in order to avoid naming conflicts in multi-user
scenarios

Improving
logging config-
urability

Improving the configurability of logging
(e.g., log level configurability)

HADOOP-13098 added support for case-
insensitive log level settings

Turning on log-
ging

Enabling logging in a module or to a
destination

HIVE-3277 enabled Metastore audit logging for in-
secure connections

Turning off log-
ging

Disabling logging in a module or to a
destination

HIVE-14852 disabled “qtest” logging to the console

Redirecting log
information

Redirecting log messages from one des-
tination to another

KAFKA-2633 redirected log information from std-
out to stderr

Improving
logging
statements

Improving log
content

Improving existing logging statements
to fix inappropriate or misleading log
information

HADOOP-10126 improved the content of a mis-
leading logging statement

Reducing un-
needed comput-
ing

Reducing unneeded computing when
the log level of a logging statement
is disabled, in order to reduce perfor-
mance overhead

HADOOP-14369 removed expensive “toString()”
invocations within logging statements as such in-
vocations are not necessary when “debug” level is
disabled

Masking sensi-
tive information

Removing/masking sensitive informa-
tion (e.g., usernames and passwords)
from log messages

HIVE-14098 removed passwords from the logging
of environment variables by masking passwords
with certain symbols

Moving log loca-
tion

Changing the location of logging state-
ments in the source code

HIVE-10167 moved the location of a logging state-
ment since the log was printed too late compared
to the occurring time of the actual logged event

Migrating log-
ging API

Changing logging APIs from one log-
ging library to another

HIVE-12237 migrated from Apache Commons Log-
ging APIs to SLF4J logging APIs

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 49

32
%

(3
1)

37
%

(8
1)

32
%

(3
4)

3% (3
)

6% (1
4)

5% (5
)

5% (5
)

3% (7
)

1% (1
)

3% (3
)

1% (3
)

5% (5
)

3% (3
)

2% (4
)

4% (4
)

8% (8
)

11
%

(2
5)

20
%

(2
1)

6% (6
)

2% (4
)

2% (2
)

2% (2
)

1% (3
)

2% (2
)

0% (0
)

1% (2
)

0% (0
)

5% (5
)

11
%

(2
4)

3% (3
)

5% (5
)

6% (1
3)

4% (4
)

0% (0
)

3% (7
)

2% (2
)

2% (2
)

1% (2
)

1% (1
)

1% (1
)

2% (4
)

0% (0
)

13
%

(1
3)

5% (1
1)

12
%

(1
3)

6% (6
)

2% (5
)

2% (2
)

3% (3
)

2% (5
)

4% (4
)

0% (0
)

1% (2
)

3% (3
)

1% (1
)

1% (3
)

0% (0
)

A
dd

in
g/

re
m

ov
in

g
lo

g
co

nt
en

t
(4

8%
)

A
dj

us
tin

g
lo

g
le

ve
l

(1
8%

)

Im
pr

ov
in

g
lo

gg
in

g
co

nf
ig

ur
at

io
n

(1
7%

)

Im
pr

ov
in

g
lo

gg
in

g
st

at
em

en
ts

(1
7%

)

Add
ing

 lo
g

co
nt

en
t Rem

ov
ing

 lo
g

co
nt

en
t

Red
uc

ing
 re

pe
titi

ve log
s

Lo
gg

ing
 st

ac
k t

ra
ce Rem

ov
ing

 st
ac

k tra
ce

Red
uc

ing
 lo

g
lev

el In
cr

ea
sin

g
log lev
el

Rais
ing

 lo
gg

ing

th
re

sh
old

Lo
wer

ing
 lo

gg
ing

th
re

sh
old Cha

ng
ing

 lo
gg

ing

co
nf

igu
ra

tio
n

Im
pr

ov
ing

 lo
gg

ing

co
nf

igu
ra

bil
ity

Tu
rn

ing
 o

n
log

gin
g

Red
ire

cti
ng

 lo
g

inf
or

m
at

ion

Tu
rn

ing
 o

ff
log

gin
g

Im
pr

ov
ing

 lo
g

co
nt

en
t

M
as

kin
g

se
ns

itiv
e

inf
or

m
at

ion

Red
uc

ing
 u

nn
ee

de
d

co
m

pu
tin

g

M
igr

at
ing

 lo
gg

ing
ap

i

M
ov

ing
 lo

g
loc

at
ion

0.
0

0.
1

0.
2

0.
3

0.
4

R
es

ol
ut

io
ns

% Logging issues

P
ro

je
ct

H
ad

oo
p

C
om

m
on

H
iv

e
K

af
ka

F
ig

u
re

3.
9:

D
ev

el
o

p
er

s’
re

so
lu

ti
o

n
s

fo
r

ad
d

re
ss

in
g

th
ei

r
lo

gg
in

g
is

su
es

an
d

th
e

p
er

ce
n

ta
ge

o
f

lo
gg

in
g

is
su

es
in

ea
ch

p
ro

je
ct

th
at

ar
e

ad
d

re
ss

ed
b

y
ea

ch
re

so
lu

ti
o

n
.

T
h

e
re

so
lu

ti
o

n
s

ar
e

gr
o

u
p

ed
in

to
fo

u
r

d
im

en
si

o
n

s:
ad

d
in

g/
re

m
ov

in
g

lo
g

co
n

te
n

t,
ad

ju
st

in
g

lo
g

le
ve

l,
im

p
ro

vi
n

g
lo

gg
in

g
co

n
fi

gu
ra

ti
on

,a
n

d
im

p
ro

vi
n

g
lo

gg
in

g
st

at
em

en
ts

.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 50

find that developers tend to use a higher log level when they initially add a logging

statement and later on reduce the log level. Such a behavior could bring unnecessary

logging costs at the first place and increase the effort for maintaining the logging code.

Developers need to pay extra attention to examine the log levels of their newly added

logging statements (Li et al., 2017a; Chapter 6).

Developers’ primary approach of addressing their concerns of logging benefits

is adding log content, while their primary approach of addressing their concerns of

logging costs is reducing log level. Figure 3.10 summarizes developers’ resolutions for

addressing each of their logging concerns. Developers add log content to address 67%

to 82% of the logging issues that are concerned with each of the logging benefits. In

addition, developers increase log levels to address 21% of the logging issues that are

concerned with the logging benefit of exposing runtime problems. As we highlight in

PRACTICE 2, higher log levels such as “warn” and “error” are needed to expose runtime

problems.

The primary resolution for addressing the concerns of excessive log information

(i.e., in 37% of the cases) and exposing unnecessary details (i.e., in 55% of the cases)

is reducing log level. Developers also reduce log levels to address 24% of the logging

issues that are concerned with misleading end users. In general, developers are more

likely to reduce the level of a costly logging statement rather than removing the log-

ging statement. Reducing the log level of a costly logging statement is safer than re-

moving the logging statement, as the logging statement might still be useful in some

scenarios (e.g., for debugging). However, developers are more likely to remove logging

statements (i.e., in 13% of the cases) than reducing log levels (i.e., in 9% of the cases) to

address the logging cost of performance overhead. This phenomenon can be explained

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 51

by the fact that even disabled low-level logging statements can still cause performance

overhead (see ADVICE 5).

Developers improve logging configuration to address 17% of the studied logging

issues. Logging is usually highly configurable in a software system. Besides log level

configuration (which we include in the adjusting log level dimension), developers also

configure logging format, logging destinations, log rotation, and logging synchroniza-

tion, etc. As shown in Figure 3.9, developers frequently change logging configuration

(i.e., in 3% to 11% of the studied logging issues) or improve logging configurability (i.e.,

in 4% to 6% of the studied logging issues) to meet users’ growing needs. Therefore, it is

advisable to carefully examine the potential usage scenarios of the logging code when

designing the configurability of logging.

Developers improve logging statements to address 17% of the studied logging is-

sues. Logging statements produce log messages that are directly exposed to end users.

Therefore, logging statements need to be accurate and should not expose inappropri-

ate information (e.g., sensitive information). In practices, however, developers usually

insert logging statements in an ad hoc manner. As a result, they usually need to im-

prove their logging statements as after-thoughts (Yuan et al., 2012b). As shown in Fig-

ure 3.10, developers improve log content to address the logging cost of misleading end

users, and mask sensitive information to address the logging cost of exposing sensitive

information. Developers’ primary resolutions for addressing the logging cost of perfor-

mance overhead are reducing unneeded computing and migrating logging api. Future

research is needed to help developers improve their logging statements automatically

(e.g., by reducing unneeded computing in logging statements).

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 52

77
%

(9
0)

9% (1
1)

69
%

(1
1)

79
%

(2
2)

82
%

(9
)

67
%

(1
4)

16
%

(1
2)

7% (5
)

8% (6
)

27
%

(3
)

18
%

(2
)

1% (1
)

15
%

(1
1)

4% (3
)

13
%

(3
)

3% (3
)

6% (1
)

21
%

(6
)

10
%

(2
)

9% (7
)

37
%

(2
8)

55
%

(6
)

1% (1
)

24
%

(1
8)

9% (2
)

4% (5
)

2% (2
)

4% (5
)

6% (1
)

12
%

(2
)

9% (1
)

9% (1
)

5% (1
)

10
%

(2
)

5% (4
)

5% (4
)

7% (5
)

7% (5
)

4% (3
)

3% (2
)

9% (2
)

1% (1
)

6% (1
)

5% (1
)

5% (1
)

10
0%

(1
3)

44
%

(3
3)

4% (3
)

22
%

(5
)

48
%

(1
1)

A
dd

in
g/

re
m

ov
in

g
lo

g
co

nt
en

t
A

dj
us

tin
g

lo
g

le
ve

l
Im

pr
ov

in
g

lo
gg

in
g

co
nf

ig
ur

at
io

n
Im

pr
ov

in
g

lo
gg

in
g

st
at

em
en

ts

Logging benefits Logging costs

Add
ing

 lo
g

co
nt

en
t

Rem
ov

ing
 lo

g
co

nt
en

t

Red
uc

ing
 re

pe
titi

ve log
s

Lo
gg

ing
 st

ac
k t

ra
ce

Rem
ov

ing
 st

ac
k tra

ce

Red
uc

ing
 lo

g
lev

el
In

cr
ea

sin
g

log lev
el

Rais
ing

 lo
gg

ing

th
re

sh
old

Lo
wer

ing
 lo

gg
ing

th
re

sh
old

Cha
ng

ing
 lo

gg
ing

co
nf

igu
ra

tio
n

Im
pr

ov
ing

 lo
gg

ing

co
nf

igu
ra

bil
ity

Tu
rn

ing
 o

n
log

gin
g

Red
ire

cti
ng

 lo
g

inf
or

m
at

ion

Tu
rn

ing
 o

ff
log

gin
g

Im
pr

ov
ing

 lo
g

co
nt

en
t

M
as

kin
g

se
ns

itiv
e

inf
or

m
at

ion

Red
uc

ing
 u

nn
ee

de
d

co
m

pu
tin

g

M
igr

at
ing

 lo
gg

ing
ap

i

M
ov

ing
 lo

g
loc

at
ion

P
ro

vi
di

ng
 r

un
tim

e
pe

rf
or

m
an

ce

B
oo

kk
ee

pi
ng

S
ho

w
in

g
ex

ec
ut

io
n

pr
og

re
ss

E
xp

os
in

g
ru

nt
im

e
pr

ob
le

m
s

A
ss

is
tin

g
in

de
bu

gg
in

g

E
xp

os
in

g
un

ne
ce

ss
ar

y
de

ta
ils

E
xp

os
in

g
se

ns
iti

ve
in

fo
rm

at
io

n

P
er

fo
rm

an
ce

ov
er

he
ad

M
is

le
ad

in
g

en
d

us
er

s

E
xc

es
si

ve
 lo

g
in

fo
rm

at
io

n

R
es

ol
ut

io
ns

Logging concerns

0%
25

%
50

%
75

%
10

0%

P
er

ce
nt

ag
e

of
 lo

gg
in

g
is

su
es

(n
or

m
al

iz
ed

 fo
r

ea
ch

 lo
gg

in
g

co
nc

er
n)

F
ig

u
re

3.
10

:D
ev

el
o

p
er

s’
re

so
lu

ti
o

n
s

fo
r

ad
d

re
ss

in
g

ea
ch

o
ft

h
e

lo
gg

in
g

co
n

ce
rn

s.
E

ac
h

gr
id

in
th

e
h

ea
tm

ap
in

d
ic

at
es

th
e

p
er

ce
n

ta
ge

o
fl

o
gg

in
g

is
su

es
th

at
ar

e
ad

d
re

ss
ed

b
y

ea
ch

re
so

lu
ti

o
n

as
n

o
rm

al
iz

ed
fo

r
ea

ch
lo

gg
in

g
co

n
ce

rn
.

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 53

Discussion

Increasing/reducing log level versus lowering/raising logging threshold. As dis-

cussed in this RQ, developers usually change their log levels, either by adjusting the

log levels of their individual logging statements (i.e., increasing log level or reducing

log level) or by adjusting the default log level setting of a module (i.e., raising logging

threshold or lowering logging threshold). Changing the log level of an individual

logging statement would only affect the printing of the individual logging statement.

In comparison, changing the default log level setting of a module would affect the

printing of all the logging statement in that module.

Developers usually want the system to print the logging statements that are rele-

vant to themselves, while suppressing other logging statements which could introduce

noise. In some cases, developers play the “log level” trick to have their own logs high-

lighted. Taking issue report HIVE-10291 for example, developers use the “info” level

for debugging purposes (which is not recommended) so that they could avoid con-

figuring the log level setting to “debug” and seeing too much irrelevant “debug” in-

formation: “I thought of dumping at debug level, but it might be quite a pain to sift

through all the debug logs to get at this.” In issue report HIVE-10700, developers also

use “info”/“warn” logs for debugging purposes. Their reason is similar: other irrelevant

“debug” logs could cause too much noise. However, if many developers of a system use

the “info” or higher log levels for their debugging logging statements, the system logs

would be flooded with too much detailed log information. When assigning log levels

for their logging statements, developers need to consider other stakeholders’ logging

needs and the overall logging resources of a system. It is advisable for logging libraries

to provide the ability to detect developers’ logging intentions and spot inappropriate

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 54

usage of log levels. Future research is also needed to collect the log messages that are

relevant to a developer (or a failure) and filter out the irrelevant ones.

Developers balance the benefits and costs of logging through adding/removing log

content, adjusting log level, improving logging configuration, and improving log-

ging statements. Developers’ primary approach of addressing their concerns of log-

ging benefits is adding log content, while their primary approach of addressing their

concerns of logging costs is reducing log level.

3.4 Threats to Validity

External Validity. This chapter studies the logging concerns from the perspectives of

the developers of three open source projects. Developers of other software projects

might be concerned about different aspects of logging. We find that our findings are

general among the three studied projects. We expect that our findings can also stand

for other projects. However, findings from additional case studies on other projects

can benefit our study.

Internal Validity. In this chapter, we study developers’ logging concerns through a

qualitative analysis of logging-related issue reports. However, developers’ logging con-

cerns may also be expressed in other forms, such as requirement specifications or

mailing-lists. Therefore, our findings may not represent all of developers’ logging con-

cerns. In the three studied projects, an issue report is always needed for every code

commit. Thus, we expect that our findings are quite representative for developers’ log-

ging concerns that involve code changes.

Construct Validity. We use a qualitative analysis to study developers’ logging concerns

and how developers address their logging concerns. Like other qualitative studies, our

CHAPTER 3. UNDERSTANDING DEVELOPERS’ LOGGING CONCERNS 55

results are biased by the individuals who conduct the qualitative analysis. In order to

reduce the bias, two researchers including the author of the thesis and a collaborator

jointly perform the qualitative analysis to derive high-level concepts from the issue

reports. Besides, our goal is not to accurately estimate the distribution of the derived

logging concerns. Future quantitative studies are encouraged to validate the statistical

distribution of developers’ logging concerns.

3.5 Chapter Summary

Logging statements are beneficial for developers to understand system runtime behav-

iors and debug field failures. However, logging can also bring negative impact (e.g., per-

formance overhead) to a software system. In order to understand developers’ logging

concerns (i.e., the benefits and costs of logging from developers’ perspective) and how

they address their logging concerns, we performed a qualitative study on 533 logging-

related issue reports from three large and successful open source projects. We con-

ceptualized developers’ logging concerns (and how they address their concerns) into

easy-to-perceive categories. We also derived best logging practices and general logging

advice along with our qualitative analysis, which can help developers improve their

logging code and be aware of some logging traps. Besides, logging library providers

can learn from our advice to improve their logging libraries, e.g., to support different

log levels for different parts of a logging statement. Our empirical findings also shed

lights on future research opportunities for helping developers leverage the benefits of

logging while minimizing logging costs.

CHAPTER 4

Understanding Software Logging Using Topic Models

In Chapter 3, we study developers’ logging concerns and how they address such concerns.
Learning to log approaches aim to help developers address their logging concerns by learning
from existing logging code. These approaches usually consider the structural information of
a code snippet to guide developers’ logging decisions. In our qualitative analysis of logging-
related issue reports (Chapter 3), we find that many issue reports are concerned with the log-
ging of a few topics (e.g., “connections”). Therefore, this chapter studies the relationship be-
tween the semantic topics of a code snippet and the likelihood of a code snippet being logged.
Our driving intuition is that certain topics in the source code are more likely to be logged than
others. To validate our intuition, we conduct a case study on six open source systems, and we
find that i) there exists a small number of “log-intensive” topics that are more likely to be logged
than other topics; ii) each pair of the studied systems share 12% to 62% common topics, and
the likelihood of logging such common topics has a statistically significant correlation of 0.35 to
0.62 among all the studied systems; and iii) our topic-based metrics help explain the likelihood
of a code snippet being logged, providing an improvement of 3% to 13% on AUC and 6% to 16%
on balanced accuracy over a set of baseline metrics that capture the structural information of
a code snippet. Our findings highlight that topics contain valuable information that can help
guide and drive developers’ logging decisions.

An earlier version of this chapter is published in the Empirical Software Engineering Journal
(EMSE) (Li et al., 2018).

56

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 57

4.1 Introduction

D
EVELOPERS depend heavily on logging statements for collecting valuable

runtime information of software systems. Such information can be used

for a variety of software quality assurance tasks, such as debugging and

understanding system usage in production (Oliner et al., 2012; Xu et al., 2009b; Yuan

et al., 2010; Mariani and Pastore, 2008; Syer et al., 2013; Chen et al., 2016a, 2017b). Log-

ging statements are inserted by developers manually in the code to trace the system

execution. As there exists no standard guidelines nor unified policies for software log-

ging, developers usually miss including important logging statements in a system, re-

sulting in blind code spots (i.e., cannot recover system execution paths) when debug-

ging (Yuan et al., 2014, 2011).

However, adding logging statements excessively is not an optimal solution, since

adding unnecessary logging statements can also bring negative impact, such as ex-

cessive log information and performance overhead (Chapter 3). Prior studies pro-

posed approaches to enhance the information that is contained in logging statements

through static analysis (Yuan et al., 2012a, 2011) and statistical models (Zhu et al., 2015;

Lal and Sureka, 2016; Li et al., 2017b,a). These approaches help developers identify

code locations that are in need of additional logging statements, or in need of log en-

hancement (e.g., requiring the logging of additional variables).

However, the aforementioned approaches do not take into account the functional-

ity of a code snippet when making logging suggestions. We believe that code snippets

that implement certain functionalities are more likely to require logging statements

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 58

public QueueConnection createQueueConnection()
throws JMSException
{

QpidRASessionFactoryImpl s = new QpidRASessionFactoryImpl(_mcf, _cm,
QpidRAConnectionFactory.QUEUE_CONNECTION);

if (_log.isTraceEnabled())
_log.trace("Created queue connection: "+s);

return s;
}

Figure 4.1: A logged method that is related to the “connection” topic.

public String toString(String tabs)
{

StringBuilder sb = new StringBuilder();
sb.append(tabs).append("LessEqEvaluator : ").append(

super.toString()).append("\n");
return sb.toString();

}

Figure 4.2: A method that is related to the “string builder” topic.

than others. For example, Figure 4.1 and Figure 4.2 show two code snippets from the

Qpid-Java1 system. These two methods are of similar size and complexity, yet the

method shown in Figure 4.1 has a logging statement to track a connection creation

event, while the method shown in Figure 4.2 has no logging statements. The differ-

ent logging decisions in these two code snippets might be explained by the fact that

these two code snippets are related to different functionalities: the first code snippet is

concerned with “connection”, while the second code snippet is concerned with “string

builder”. In addition, in Section 4.2, we show real-life requirements for adding logging

statements in the context of “connection”.

Prior research (Liu et al., 2009a; Nguyen et al., 2011; Maskeri et al., 2008; Linstead

1https://qpid.apache.org/components/java-broker

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 59

et al., 2008) leverage statistical topic models such as latent Dirichlet allocation (Blei

et al., 2003) to approximate the functionality of a code snippet. Such topic models

create automated topics (using co-occurrences of words in code snippets), and these

topics provide high-level representations of the functionality of code snippets (Baldi

et al., 2008; Thomas et al., 2010; Chen et al., 2016b).

We conjecture that source code that is related to certain topics is more likely to con-

tain logging statements. We also want to determine if there exist common topics that

are similarly logged across software systems. In particular, we performed an empirical

study on the relationship between code topics and logging decisions in six open source

systems: Hadoop, Directory-Server, Qpid-Java, CloudStack, Camel and Airavata. We

focus on the following research questions:

RQ1: Which topics are more likely to be logged?

A small number of topics are more likely to be logged than other topics. Most of

these log-intensive topics capture communication between machines or inter-

action between threads. Furthermore, we observe that the logging information

that is captured by topics is not statistically correlated to code complexity.

RQ2: Are common topics logged similarly across different systems?

Each studied system shares a portion (12% to 62%) of its topics with other sys-

tems, and the likelihood of logging the common topics has a statistically signifi-

cant correlation of 0.35 to 0.62 among these studied systems. Therefore, develop-

ers of a particular system can consult other systems when making their logging

decisions or when developing logging guidelines.

RQ3: Can topics provide additional explanatory power for the likelihood of a code

snippet being logged?

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 60

Our topic-based metrics provide additional explanatory power (i.e., an improve-

ment of 3% to 13% on AUC and an improvement of 6% to 16% on balanced ac-

curacy) to a baseline model that is built using a set of metrics that capture the

structural information of a code snippet, for explaining the likelihood of a code

snippet being logged. Five to seven out of the top ten important metrics for de-

termining the likelihood of a method being logged are our topic-based metrics.

Our chapter is the first work that studies the relationship between topics and

logging decisions. Our findings show that source code related to certain topics is

more likely to contain logging statements. Future log recommendation tools should

consider topic information in order to help researchers and practitioners in deciding

where to add logging statements.

Chapter organization. Section 4.2 uses examples to motivate the study of software

logging using topic models. Section 4.3 provides a brief background about topic mod-

els. Section 4.4 describes our case study setup. Section 4.5 presents the answers to our

research questions. Section 4.6 discusses potential threats to the validity of our study.

Section 4.7 surveys related work. Finally, Section 4.8 concludes the chapter.

4.2 Motivation Examples

In this section, we use several real-life examples to motivate our study of the relation-

ship between code topics and logging. Table 4.1 lists ten JIRA issue reports of the Qpid-

Java system that we fetched from the Apache JIRA issue repository2.

A closer examination of these ten issue reports shows that all these issue reports

2https://issues.apache.org/jira

https://issues.apache.org/jira

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 61

are concerned with logging in the context of “connections”. For example, issue re-

port QPID-40383 proposes to log certain connection details (e.g., local and remote ad-

dresses) after each successful connection, as “it will provide useful information when

trying to match client application behaviour with broker behaviour during incident

analysis”. The developer fixed this issue by adding the required logging information.

Figure 4.3 gives a code snippet that is part of the code fix4 for this issue. The code snip-

pet shows that it is concerned with the topics that are related to “connections” (i.e.,

connection setting, connecting, get user ID, etc.). In fact, in RQ1 we found that “con-

nection management” is one of the most log-intensive topics for the Qpid-Java system.

From these examples, we observed that software practitioners tend to use logs to

record certain functionalities (or topics), for example, “connections”. However, we can-

not manually investigate all the topics that need logging. Therefore, in this chapter, we

propose to use topic modeling to understand the relationship between software log-

ging and code topics in an automated fashion. Specifically, we want to study whether

certain topics are more likely to be logged (RQ1). We also want to study whether there

exist common topics that are similarly logged across systems (RQ2). Finally, we want

to study whether topics can help explain the likelihood of a code snippet being logged

(RQ3).

4.3 Topic Modeling

In this section, we briefly discuss the background of latent Dirichlet allocation (LDA),

which is the topic modeling approach that we used in our study.

3https://issues.apache.org/jira/browse/QPID-4038
4Qpid-Java git commit: d606368b92f3952f57dbabd8553b3b6f426305e1

https://issues.apache.org/jira/browse/QPID-4038

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 62

Table 4.1: Examples of JIRA issues of the Qpid-Java system that are concerned with the
logging of “connections”.

Issue ID1 Issue report summary

QPID-4038 Log the connection number and associated local and remote address after
each successful [re]connection

QPID-7058 Log the current connection state when connection establishment times
out

QPID-7079 Add connection state logging on idle timeout to 0-10 connections
QPID-3740 Add the client version string to the connection establishment logging
QPID-7539 Support connection and user level logging
QPID-2835 Implement connections (CON) operational logging on 0-10
QPID-3816 Add the client version to the connection open log messages
QPID-7542 Add connection and user info to log messages
QPID-5266 The client product is not logged in the connection open message
QPID-5265 The client version is only logged for 0-8/9/9-1 connections if a clientid is

also set

1 For more details about each issue, the readers can refer to its web link which is
“https://issues.apache.org/jira/browse/” followed by the issue ID. For example, the link
for the first issue is “https://issues.apache.org/jira/browse/QPID-4038”.

ConnectionSettings conSettings =
retriveConnectionSettings(brokerDetail);

_qpidConnection.setConnectionDelegate(new
ClientConnectionDelegate(conSettings, _conn.getConnectionURL()));

_qpidConnection.connect(conSettings);
_conn.setConnected(true);
_conn.setUsername(_qpidConnection.getUserID());
_conn.setMaximumChannelCount(_qpidConnection.getChannelMax());
_conn.getFailoverPolicy().attainedConnection();

+ _conn.logConnected(_qpidConnection.getLocalAddress(),
_qpidConnection.getRemoteAddress());

Figure 4.3: A code snippet that is part of the fix for issue QPID-4038, showing that a
logging statement was added to a code snippet within the context of “connections”.

Our goal is to extract the functionality of a code snippet; however, such information

is not readily available. Thus, we used the linguistic data in the source code files (i.e.,

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 63

the identifier names and comments) to extract topics of the code snippet in order to

approximate the functionality in an automated and scalable fashion. We leveraged

topic modeling approaches to derive topics (i.e., co-occurring words). Topic modeling

approaches can automatically discover the underlying relationships among words in a

corpus of documents (e.g., classes or methods in source code files), and group similar

words together as topics. Unlike using words directly, topic models provide a higher-

level overview and interpretable labels of the documents in a corpus (Blei et al., 2003;

Steyvers and Griffiths, 2007).

In this chapter, we used latent Dirichlet allocation (LDA) (Blei et al., 2003) to derive

topics. LDA is a probabilistic topic model that is widely used in Software Engineering

research for modeling topics in software repositories (Chen et al., 2016b). Moreover,

LDA generated topics are less likely to overfit and are easier to interpret, in comparison

to other topic models such as probabilistic latent semantic analysis (PLSA), and latent

semantic analysis (LSA) (Blei et al., 2003).

In LDA, a topic is a collection of frequently co-occurring words in the corpus. Given

a corpus of n documents f1, ..., fn , LDA automatically discovers a set Z of topics, Z =

{z1, ..., zK }, as well as the mapping θ between topics and documents (see Figure 4.4).

The number of topics, K , is an input that controls the granularity of the topics. We use

the notation θi j to describe the topic membership value of topic zi in document f j . In

a nutshell, LDA will generate two matrices – a topic-word matrix and a document-topic

matrix. The topic-word matrix shows the most probable words in each topic, and the

document-topic matrix shows the most probable topics in each document.

Formally, each topic is defined by a probability distribution over all of the unique

words in the corpus (e.g., all source code files). Given two Dirichlet priors (used for

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 64

Top words

z1 thread, sleep, notify, interrupt
z2 network, bandwidth, timeout
z3 view, html, javascript, css

(a) Topics (Z).

z1 z2 z3

f1 0.2 0.8 0.0
f2 0.0 0.8 0.2
f3 0.6 0.0 0.4
f4 1.0 0.0 0.0

(b) Topic member-
ships (θ).

Figure 4.4: An example result of topic models, where three topics are discovered from
four files. (a) The three discovered topics (z1, z2, z3) are defined by their top (i.e., highest
probable) words. (b) The four original source code files (f1, f2, f3, f4) are represented
by the topic membership vectors (e.g., {z1 = 0.2, z2 = 0.8, z3 = 0.0} for file f1).

computing Dirichlet distributions), α and β , LDA will generate a topic distribution,

called θ j , for each file f j based on α, and generate a word distribution, called ϕi , for

each topic zi based on β . We exclude the mathematical details of LDA since they are

out of the scope of this chapter. Interested readers may refer to the original paper on

LDA (Blei et al., 2003) for the details.

4.4 Case Study Setup

This section describes the studied systems and the process that we followed to prepare

the data for our case study5.

4.4.1 Studied Systems

We performed a case study on six open source Java systems: Hadoop, Directory-Server,

Qpid-Java, CloudStack, Camel and Airavata (Table 4.2). The studied systems are large

and successful systems across different domains with years of development. Hadoop is

5Our replication package: http://sailhome.cs.queensu.ca/replication/LoggingTopicModel

http://sailhome.cs.queensu.ca/replication/LoggingTopicModel

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 65

a distributed computing platform; Directory-Server is an embeddable directory server;

Qpid-Java is a message broker; CloudStack is a cloud computing platform; Camel is

a rule-based routing and mediation framework; and Airavata is a framework for ex-

ecuting and managing computational jobs and workflows on distributed computing

resources. The Java source code of these systems uses standard logging libraries such

as Log4j6, SLF4J7, and Commons Logging8. We excluded test files from our analysis,

since we are interested in the logging practices in the main source code files of these

systems, and we expect that logging practices will vary between main and test code.

4.4.2 Data Extraction

Our goal is to study the relationship between logging decisions and the topics of the

source code. We use topics to approximate the functionality of a code snippet. There-

fore, we applied LDA at the granularity level of a source code method, since a method

usually implements a relatively independent functionality. We did not apply LDA at

the class level granularity because a class typically implements a mixture of function-

alities. For example, a calculator class may implement input, internal calculation, and

output functionalities.

Figure 4.5 presents an overview of our data extraction approach. We fetched the

source code files of the studied systems from their Git repositories. We used the Eclipse

Java development tools (JDT9) to analyze the source code and extract all the methods.

Small methods usually implement simple functionalities (e.g., getters and setters, or

initialize fields of a class object). Intuitively, such methods are less likely to have logging

6http://logging.apache.org/log4j
7http://www.slf4j.org
8https://commons.apache.org/logging
9http://www.eclipse.org/jdt

http://logging.apache.org/log4j
http://www.slf4j.org
https://commons.apache.org/logging
http://www.eclipse.org/jdt

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 66

Ta
b

le
4.

2:
O

ve
rv

ie
w

o
ft

h
e

st
u

d
ie

d
sy

st
em

s.

Sy
st

em
R

el
ea

se
LO

C
N

u
m

b
er

o
f

m
et

h
o

d
s

N
u

m
b

er
o

f
lo

gg
ed

m
et

h
o

d
s

N
u

m
b

er
o

f
fi

lt
er

ed
m

et
h

o
d

s

Fi
lt

er
ed

lo
gg

ed
m

et
h

o
d

s

N
u

m
b

er
o

f
re

m
ai

n
in

g
m

et
h

o
d

s

R
em

ai
n

in
g

lo
gg

ed
m

et
h

o
d

s

H
ad

o
o

p
2.

5.
0

1,
19

4K
42

.7
K

2.
9K

(6
.7

%
)

25
.6

K
15

6
(0

.6
%

)
17

.1
K

2.
7K

(1
5.

9%
)

D
ir

ec
to

ry
-S

.
2.

0.
0-

M
20

39
9K

7.
9K

88
3

(1
1.

2%
)

3.
3K

46
(1

.4
%

)
4.

5K
83

7
(1

8.
4%

)
Q

p
id

-J
av

a
6.

0.
0

47
6K

20
.0

K
1.

3K
(6

.6
%

)
13

.1
K

62
(0

.5
%

)
6.

9K
1.

2K
(1

8.
2%

)
C

lo
u

d
St

ac
k

4.
8.

0
82

0K
40

.1
K

4.
4K

(1
0.

9%
)

28
.4

K
25

1
(0

.9
%

)
11

.7
K

4.
1K

(3
5.

1%
)

C
am

el
2.

17
.0

1,
34

2K
41

.1
K

2.
9K

(7
.0

%
)

21
.4

K
12

6
(0

.6
%

)
19

.8
K

2.
7K

(1
3.

8%
)

A
ir

av
at

a
0.

15
44

6K
29

.4
K

1.
8K

(6
.1

%
)

11
.1

K
26

(0
.2

%
)

18
.4

K
1.

8K
(9

.6
%

)

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 67

statements. For example, 95% of the logged methods are among the top 40% (17.1K

out of 42.7K) largest methods, while only 5% of the logged methods in the Hadoop

system are among the rest 60% (25.6K out of 42.7K) of the methods. Moreover, topic

models are known to perform poorly on short documents. Therefore, for each system,

we filtered out the methods that are smaller, in terms of LOC, than a predefined thresh-

old. We defined the threshold for each system as the LOC of the 5% smallest methods

that contain a logging statement. The thresholds are 8, 8, 8, 5, 8 and 4 for Hadoop,

Directory-Server, Qpid-Java, Camel, CloudStack and Airavata, respectively. Table 4.2

also shows the effect of our filtering process, i.e., the number of methods that are fil-

tered and kept, as well as the portions of them being logged, respectively. Section 4.5.3

discusses the effect of such filtering on our modeling results.

In order to study the relationship between logging decisions and the topics of meth-

ods, we removed all the logging statements from the logged methods before we per-

formed the topic modeling. As logging statements contain textual information (e.g.,

“logger”, “info”, “print”) that is related to logging, extracting topics from the source code

without removing logging statements would introduce bias for studying the relation-

ship between logging and code topics. The use of standard logging libraries in these

systems brings uniform formats (e.g., logger.error(message)) to the logging statements,

thus we used a set of regular expressions to identify the logging statements. Finally, we

preprocessed the log-removed methods and applied topic modeling on the prepro-

cessed corpus of methods (see Section 4.4.3 “Source Code Preprocessing and LDA”).

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 68

Source
code files

Extract
methods

Remove small
methods

Remove logging
statements

PreprocessLDA

Filtered
methods

Log-
removed
methods

Methods

Pre-
processed
methods

Topics

Figure 4.5: An overview of our data extraction approach.

4.4.3 Source Code Preprocessing and LDA

In this subsection, we discuss our source code preprocessing approach, and how we

apply LDA on the preprocessed source code.

We extracted the linguistic data (i.e., identifier names, string literals, and com-

ments) from the source code of each method, and tokenized the linguistic data into a

set of words, similar to an approach that was proposed by Kuhn et al. (2007) and used

in many prior studies (Chen et al., 2016b). With the set of words for each method, we

applied common text preprocessing approaches such as removing English stop words

(e.g., “a” and “the”) and stemming (e.g., from “interruption” to “interrupt”). We also

removed programming language keywords (e.g., “catch” and “return”) from the set

of words for each method. An open source implementation by Thomas (2012) eased

our preprocessing of the source code. Finally, we applied LDA on both unigram (i.e.,

single word) and bigram (i.e., pairs of adjacent words) in each method, since including

bigrams helps improve the assignments of words to topics and the creation of more

meaningful topics (Brown et al., 1992).

Running LDA requires specifying a number of parameters such as K , α, and β (as

explained in Section 4.3), as well as the number of Gibbs sampling iterations (I I) for

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 69

computing the Dirichlet distributions (i.e., per-document topic distributions and per-

topic word distributions). These LDA parameters directly affect the quality of the LDA

generated topics. However, choosing the optimal parameters values can be a computa-

tional expensive task (Panichella et al., 2013), and such optimal values may vary across

systems and tasks (Panichella et al., 2013; Wallach et al., 2009; Chang et al., 2009). As

a result, we applied hyper-parameter optimization to automatically find the optimal

α and β when applying LDA using the MALLET tool (McCallum, 2002). A prior study

by Wallach et al. (2009) found that using optimized hyper-parameters can improve the

quality of the derived topics. We also set the number of Gibbs sampling iterations I I to

a relatively large number (10,000) such that LDA can produce more stable topics (Bink-

ley et al., 2014).

We chose our K to be 500 when applying LDA on each studied system. As suggested

by prior studies (Wallach et al., 2009; Chen et al., 2016b) using a larger K does not sig-

nificantly affect the quality of LDA generated topics. The additional topics would have

low topic membership values (i.e., noise topics), and can be filtered out. On the other

hand, choosing a smaller K can be more problematic, since the topics cannot be sepa-

rated precisely. We also tried other values of K in our study. However, we did not notice

any significant differences in our findings (Section 4.6).

4.5 Case Study Results

In this section, we present the results of our research questions. For each research

question, we present the motivation behind the research question, the approach that

we used to answer the research question, and our experimental results.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 70

4.5.1 RQ1: Which topics are more likely to be logged?

Motivation

In this research question, we study the relationship between topics in the source code

and logging decisions. By studying this relationship, we can verify our intuition that the

source code related to certain topics is more likely to contain logging statements. We

are also interested in understanding which topics are more likely to contain logging

statements. Since topics provide a high-level overview of a system, studying which

topics are more likely to contain logging statements may provide insights about the

logging practices in general.

Approach

We applied LDA on each of our studied systems separately to derive the topics for in-

dividual systems. In order to quantitatively measure how likely a topic is to be logged,

we define the log density (LD) for a topic (zi) as

LD(zi) =

∑n
j=1θi j ∗LgN(m j)∑n
j=1θi j ∗LOC(m j)

. (4.1)

where LgN(m j) is the number of logging statements of method m j , LOC(m j) is the

number of lines of code of method m j , n is the total number of source code meth-

ods, and θi j is the topic membership of topic zi in method m j . A topic with a higher

LD value is more likely to be logged.

As the LD metric does not consider the popularity of a topic, i.e., how many times

a topic is logged, we also follow the approach of prior studies (Chen et al., 2012, 2017a)

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 71

and define a cumulative log density (CumLD) for a topic (zi) as

CumLD(zi) =
n∑

j=1

θi j ∗ LgN(m j)

LOC(m j)
, (4.2)

A topic with a higher CumLD value is logged more often than a topic with a lower

CumLD value. While the LD metric indicates the likelihood of a method of a partic-

ular topic being logged, the CumLD metric captures the overall relationship between

a topic and logging. A topic might have a very high LD value, but there might only be

a small number of methods that have a membership of such a topic; in contrast, such

a topic would have a low CumLD value. Therefore, we consider both LD and CumLD

metrics when we determine the top-log-density topics for detailed analysis. We define

a topic as a log-intensive topic if the topic has both a high LD value and a high CumLD

value.

We analyzed the statistical distribution of the log density values for all 500 topics

in each system, to verify the assumption that some topics are more likely to be logged

than other topics. We also manually studied the topics that have the highest log den-

sity values, i.e., the log-intensive topics, to find out which topics are more likely to be

logged. For each log-intensive topic, we not only analyzed the top words in this topic,

but also investigated the methods that have the largest composition (i.e., large θ value)

of the topic, as well as the context of the methods, to understand the meaning and con-

text of that particular topic.

Results

A small number of topics are much more likely to be logged. Table 4.3 shows the five

number summary and the skewness of the log density (LD) values of the 500 topics for

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 72

Table 4.3: The five number summary and the skewness of the LD values of the 500
topics in each of the six studied systems.

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.01 0.01 0.02 0.07 0.98
Directory-S 0.00 0.00 0.01 0.02 0.10 2.10
Qpid-Java 0.00 0.00 0.01 0.01 0.06 1.72
Camel 0.00 0.01 0.01 0.02 0.10 1.61
Cloudstack 0.00 0.02 0.03 0.04 0.14 0.88
Airavata 0.00 0.00 0.01 0.02 0.16 2.32

Table 4.4: The five number summary and the skewness of the CumLD values of the 500
topics in each of the six studied systems.

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.11 0.24 0.44 3.55 2.90
Directory-S 0.00 0.01 0.04 0.10 3.68 9.76
Qpid-Java 0.00 0.01 0.05 0.16 7.58 13.49
Camel 0.00 0.11 0.25 0.57 5.95 3.65
CloudStack 0.00 0.16 0.42 0.82 5.14 2.64
Airavata 0.00 0.01 0.06 0.20 15.69 10.53

each studied system. The LD distribution is always positively skewed in every studied

system. Taking the Hadoop system as an example, the minimal LD value for a topic

is 0.00, the inter-quantile-range (the range from the first quantile to the third quan-

tile) ranges from 0.01 to 0.02, while the maximum LD value for a topic is 0.07. The

LD distribution for the Hadoop system has a skewness of 0.98 (a skewness of 1 is con-

sidered highly skewed (Groeneveld and Meeden, 1984)). Other studied systems have

similar or more skewed distributions of the LD values, i.e., skewness ranges from 0.88

to 2.32. The high positive skewness indicates that a small number of topics are much

more likely to be logged than other topics. Table 4.4 shows the five number summary

and the skewness of the cumulative log density (CumLD) values of the 500 topics for

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 73

each studied system. The CumLD values also present a highly skewed distribution, i.e.,

with a skewness of 2.64 to 13.49. The high skewness of the CumLD values implies that

a small number of topics are logged more often than other topics.

Most of the log-intensive topics in the studied systems can be generalized to top-

ics that are concerned with communication between machines or interaction be-

tween threads. Table 4.5 list the top six log-intensive topics for each system. In order

to ensure that the six topics for each system have both the highest LD and CumLD

values, we used an iterative approach to get these topics. Initially, we chose the inter-

section of the six topics with the highest LD values and the six topics with the highest

CumLD values. If the number of topics in the intersection set is less than six, we chose

the intersection of the seven topics with the highest LD values and the seven topics

with the highest CumLD values. We continued expanding our search scope until we

got the top six log-intensive topics. By manually studying the log-intensive topics in

the studied systems, we labeled the meaning of each of these log-intensive topics in

Table 4.5. 61% (22 out of 36) of the top log-intensive topics capture communication

between machines, while 14% (5 out of 36) of the top log-intensive topics capture in-

teractions between threads. We use a ∗ symbol in Table 4.5 to mark topics that are

concerned with communication between machines, and use a † symbol in Table 4.5 to

mark topics that are concerned with interactions between threads. For instance, the

first log-intensive topic in the Directory-Server system, as well as the third log-intensive

topic in the Qpid-Java system, are concerned with “connection management”. Devel-

opers tend to log the management operations, such as connecting, refreshing, closing,

and information syncing, of a connection between two machines. As the communi-

cation process between two machines cannot be controlled or determined by a single

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 74

Table 4.5: Top six log-intensive topics in each system. The listed topics have the highest
LD values and highest CumLD values. A topic label is manually derived from the top
words in each topic and its corresponding source code methods. We use underscores
to concatenate words into bigrams. A topic label marked with a “∗” symbol or a “†”
symbol indicates that the topic is concerned with communication between machines
or interaction between threads, respectively.

System LD CumLD Top words Topic label

Hadoop

0.07 1.32 attr, file, client, nfsstatu, handl network file system ∗
0.05 3.55 thread, interrupt, except, interrupt_except, sleep thread interruption †
0.05 1.04 write, respons, verifi, repli, channel handling write request ∗
0.04 1.85 deleg, token, deleg_token, number, sequenc delegation tokens ∗
0.04 2.31 event, handl, handler, event_handler, handler_handl event handling †
0.04 1.07 command, shell, exec, executor, execut OS command execution †

Directory-S

0.09 0.48 statu, disconnect, connect, replic_statu, replic connection management ∗
0.08 0.78 target, target_target, mojo, instal, command installer target
0.08 0.84 session, messag, session_session, session_write, write session management ∗
0.08 0.41 ldap, permiss, princip, permiss_except, ldap_permiss LDAP1permission ∗
0.06 2.17 contain, decod_except, except, decod, length decoder exception
0.06 3.68 close, debug, inherit, except, close_except cursor operation

Qpid-Java

0.06 7.58 except, messag, error, except_except, occur message exception ∗
0.06 0.73 activ, spec, endpoint, handler, factori Qpid activation
0.05 1.15 connect, manag, manag_connect, info, qpid connection management ∗
0.05 1.21 resourc, except, resourc_except, resourc_adapt, adapt JCA2 ∗
0.05 0.66 interv, heartbeat, setup_interv, heartbeat_interv, setup heartbeat3 ∗
0.05 0.78 locat, transact_manag, manag, transact, manag_locat transaction management

Camel

0.10 2.63 level, level_level, info, warn, messag customized logging
0.07 2.09 header, event, transact, event_header, presenc_agent event header ∗
0.07 2.41 interrupt, sleep, thread, reconnect, except thread interruption †
0.06 2.52 file, gener, gener_file, except, fail remote file operation ∗
0.06 4.23 channel, close, channel_channel, futur, disconnect channel operation ∗
0.05 2.30 send, messag, send_messag, websocket, messag_send sending message ∗

CloudStack

0.10 1.75 result, router, execut, control, root router operation ∗
0.09 2.68 agent, host, attach, disconnect, transfer agent connection ∗
0.08 1.84 wait, except, timeout, interrupt, thread thread interruption †
0.08 1.92 command, citrix, base, resourc_base, citrix_resourc citrix connection ∗
0.07 2.64 context, context_context, overrid_context, overrid, manag VM context operation
0.07 3.02 host, hyper, hyper_host, context, vmware host command request ∗

Airavata

0.16 9.21 object, overrid, object_object, format, format_object customized logging
0.13 15.69 type, resourc, except, resourc_type, registri resource operation
0.10 2.14 channel, except, queue, connect, exchang channel operation ∗
0.09 1.40 except, client, airavata, airavata_client, except_airavata client connection ∗
0.09 1.85 server, derbi, start, jdbc, except server operation exception ∗
0.08 2.63 server, port, transport, except, server_port server operation ∗

1 Lightweight directory access protocol.
2 Java EE Connector Architecture (JCA) is a solution for connecting application servers and enterprise information sys-
tems.
3 A heartbeat is a periodic signal sent between machines to indicate normal operations.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 75

machine, logging statements provide a way for developers, testers, or users to mon-

itor the communication processes and provide rich information for debugging such

processes. Similarly, the interaction between threads cannot be controlled by a single

thread, thus developers may also use logging statements more often to track such in-

teractions between threads. As an example, the second log-intensive topic in Hadoop

is about “thread interruption”.

Most top log-intensive topics only appear in one individual system, but a few top-

ics emerge across systems. As we applied LDA on each studied system separately, it is

not surprising that we generate mostly different topics for different systems, likewise

for top log-intensive topics. For example, the first log-intensive topic in Hadoop is re-

lated to “network file system” (NFS). Developers use logging statements to track vari-

ous operations on a network file system, such as creation, reading, writing and lookup.

Although we know that such a topic is concerned with communication, the topic it-

self is not a general topic for all systems. Systems that do not use network file systems

would not consider logging such a topic. Another example is the fourth log-intensive

topic “LDAP permission” in Directory-Server. If a party is accessing a directory but it

does not have the permission to access that particular directory, such a behavior would

be logged as an error. Only the systems that use LDAP need to consider logging such

a topic. However, a few topics do emerge across systems. For example, the second

log-intensive topic in Hadoop, the third log-intensive topic in Camel and the third log-

intensive topic in CouldStack are all concerned with “thread interruption”. For another

example, the fifth log-intensive topic in Camel and the third log-intensive topic in Aira-

vata are both related to “channel operation”. The findings motivate us to study how

common topics (i.e., topics shared by multiple systems) are logged across different

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 76

Table 4.6: The five number summary and the skewness of the LD values of the topics
in the Hadoop system.

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.00 0.01 0.01 0.02 0.04 0.71
500 0.00 0.01 0.01 0.02 0.07 0.98
1,000 0.00 0.01 0.01 0.02 0.07 1.29

systems (see RQ2).

Discussion

Impact of choosing a different number of topics. In this RQ, we use LDA to identify

500 topics for each system and study the distribution of log density among these top-

ics. We now explore how the choice of the number of topics impacts our analysis in this

RQ. In this sub-section, we consider the Hadoop system as an example, and vary the

number of topics between 100 and 1,000. Table 4.6 and Table 4.7 summarize the distri-

butions of the LD values and the CumLD values for the Hadoop system when varying

the number of topics. As we increase the number of topics, the skewness of the LD val-

ues and the skewness of the CumLD values both increase. This phenomenon can be

explained by the intuition that using a larger number of topics can better distinguish

log-intensive topics from other topics. However, both the LD values and the CumLD

values still present highly positive-skewed distributions when we vary the number of

topics, which supports our observation that a small number of topics are much more

likely to be logged.

Table 4.8 lists the top six log-intensive topics in the Hadoop system when choos-

ing a different number of topics (i.e., 100, 500, and 1,000). The top log-intensive topics

do not remain the same when we vary the number of topics, because using a different

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 77

Table 4.7: The five number summary and the skewness of the CumLD values of the
topics in the Hadoop system.

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.30 0.87 1.37 2.35 8.66 1.99
500 0.00 0.11 0.24 0.44 3.55 2.90
1,000 0.00 0.02 0.08 0.23 3.56 4.21

number of topics generates topics at different granularity. However, some topics, such

as “thread interruption”, “event handling”, “network file system”, and “OS command

execution”, do appear among the top log-intensive topics when varying the number

of topics. We highlight these common topics in bold font in Table 4.8. Moreover, even

when we vary the number of topics, most of the log-intensive topics are still about com-

munication between machines or interaction between threads. We also have similar

observations in the other studied systems.

Relationship between topics and structural complexity. In this RQ, we found that

a few topics are more likely to be logged than other topics. However, it is possible

that these differences are related to the differences of the code structures. In this sub-

section, we examine the relationship between the topics and the structural complexity

of a method.

We use McCabe’s cyclomatic complexity (McCabe, 1976) (CCN) to measure the

structural complexity of a method. We define two metrics, topic diversity (TD) and

topic-weighted log density (TWLD), to measure the diversity of topics in a method

(i.e., cohesion) and the log density of a method which is inferred from its topics,

respectively. The topic diversity, which is also called topic entropy (Misra et al., 2008;

Hall et al., 2008), of a method is defined as TD(m j) =−∑T
i=0θi j log2θi j , where θi j is the

membership of topic i in method j and T is the total number of topics. A larger topic

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 78

Table 4.8: Top six log-intensive topics in the Hadoop system, using different number of
topics. A topic label marked with a “∗” symbol or a “†” symbol indicates that the topic
is concerned with communication between machines or interaction between threads,
respectively. The bold font highlights the common topics that appear among the top
log-intensive topics when varying the number of topics.

Number
of topics

Top words Topic label

100

thread, except, interrupt, interrupt_except, wait thread interruption †
servic, server, stop, start, handler server operation ∗
event, event_event, handl, event_type, handler event handling †
block, replica, datanod, pool, block_block work node operation ∗
resourc, request, contain, prioriti, node resource allocation ∗
contain, contain_contain, statu, launch, contain_statu container allocation ∗

500

attr, file, client, nfsstatu, handl network file system ∗
thread, interrupt, except, interrupt_except, sleep thread interruption †
write, respons, verifi, repli, channel handling write request ∗
deleg, token, deleg_token, number, sequenc delegation tokens ∗
event, handl, handler, event_handler, handler_handl event handling †
command, shell, exec, executor, execut OS command execution †

1000

attr, file, client, nfsstatu, handl network file system ∗
bean, mbean, info, object, info_bean bean object
node, path, node_path, data, path_node work node operation ∗
thread, interrupt, except, interrupt_except, wait thread interruption †
state, deleg, master, secret_manag, manag delegation tokens ∗
command, shell, exec, exit, exit_code OS command execution †

diversity means that a method is more heterogeneous, while a smaller topic diversity

means that a method is more coherent.

The topic-weighted log density of a method j is defined as TWLD(m j) =∑T
i=0θi j LDi ,− j , where LDi ,− j is the log density of topic i that is calculated from

Equation 4.1 considering all the methods except for the method j . When calculating

the TWLD value of a method, we excluded that particular method from Equation 4.1

to calculate the log density of topics, in order to avoid bias. A large TWLD value means

that a method contains a large proportion of log-intensive topics.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 79

Figure 4.6 shows the pairwise Spearman rank correlation between cyclomatic com-

plexity (CCN), topic diversity (TD), and topic-weighted log density (TWLD) of all the

methods in our studied systems. We use the Spearman rank correlation because it is ro-

bust to non-normally distributed data (Swinscow et al., 2002). In fact, the Shapiro-Wilk

normality test shows that the distributions of these three metrics are all statistically sig-

nificantly different from a normal distribution (i.e., p-value< 0.05). Topic diversity and

cyclomatic complexity have a positive correlation of 0.22 to 0.39 in the studied systems.

In other words, more structurally complex methods tend to have more diverse topics,

which matches prior findings (Liu et al., 2009b). On the other hand, the topic-weighted

log density of a method has a very weak (-0.15 to 0.21) correlation (Swinscow et al.,

2002) with the cyclomatic complexity of a method, which means that the log intensity

of the topics is unlikely to be correlated with the cyclomatic complexity of the code.

Therefore, even though structurally complex methods tend to have diverse topics,

the logging information that is captured by these topics is not correlated with code

complexity.

A small number of topics are more likely to be logged than other topics. Most of

these log-intensive topics in the studied systems correspond to communication

between machines or interaction between threads. Our findings encourage future

work to develop topic-based logging guidelines (i.e., which topics need developers’

further attention for logging).

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 80

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

hadoop

1 0.08

1

0.27

0.24

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

directory−server

1 0.15

1

0.37

0.22

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

qpid−java

1 −0.15

1

0.22

0.29

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

cloudstack

1 0.21

1

0.34

0.16

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

camel

1 0.15

1

0.39

0.19

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CCN TWLD TD

CCN

TWLD

TD

airavata

1 0.09

1

0.31

0.5

1

*** *** ***

*** ***

Figure 4.6: Pairwise Spearman correlation between cyclomatic complexity (CCN),
topic diversity (TD), and topic-weighted log density (TWLD). The symbols below the
correlation values indicate the statistical significance of the respective correlation: o
p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

4.5.2 RQ2: Are common topics logged similarly across different sys-

tems?

Motivation

In RQ1, we applied LDA on each system separately and we got mostly different top

log-intensive topics for different systems. However, we did find a few top log-intensive

topics that emerge across different systems. Therefore, in this research question, we

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 81

quantitatively study how common topics are logged across different systems. If com-

mon topics are similarly logged across different systems, we might be able to provide

general suggestions on what topics should be logged across systems; otherwise, devel-

opers should make logging decisions based on the context of their individual system.

Approach

Cross-system topics. In order to precisely study the logged topics across different sys-

tems, we combined the methods of the studied systems together into one corpus, and

applied LDA using K =3,000. We use 3,000 topics as we hope to identify topics that

have the same granularity as the topics that we identified in RQ1 (i.e., 500 topics ∗ 6

systems). We used the same preprocessing and topic modeling approach as we had

applied to individual systems in RQ1. We refer to the resulting topics as “cross-system

topics”. With the cross-system topics, we firstly need to determine whether a topic

exists in each studied system. If a topic exists in multiple systems, then this topic is

common among multiple systems.

Topic assignment in a system. We use the topic assignment to measure the total

presence of a topic in a system. The assignment of a topic in a system is the sum of

that topic’s memberships in all the methods of that system. A higher topic assignment

means that a larger portion of the methods is related to the topic (Thomas et al., 2014;

Baldi et al., 2008). The assignment of topic zi in system sk is defined as

A(zi , sk) =
Nk∑
j=0

θi j , (4.3)

where Nk is the number of methods in system sk , and θi j is the topic membership of

topic zi in method m j .

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 82

As different systems have different number of methods, it is unfair to compare the

assignment of a topic in different systems. Therefore, we instead use a normalized

definition of assignment:

AN(zi , sk) =
Nk∑
j=0

θi j/Nk , (4.4)

The normalized assignment values of all the topics sum up to 1 for each individual

system. We refer to normalized assignment as “assignment” hereafter.

Common topics shared across systems. Figure 4.7 shows the cumulative assign-

ments of all the topics in each system when sorting the topics by their assignments.

For each system, a small portion of topics (208 to 696 out of 3,000 topics) account for

90% of the total assignment of each system. In other words, only a small portion of

topics are significantly assigned in each system. For each system, we define its impor-

tant topics as its most assigned topics that account for 90% of the total assignment of

that particular system. For example, 696 out of 3,000 topics are important topics in the

Hadoop system.

We define a topic to be a common topic if the topic is important in multiple sys-

tems. For example, if a topic is important in two systems, then this topic is commonly

shared between the two systems. If a topic is important in all the studied systems, then

this topic is commonly shared across all the studied systems.

Log density correlation. In order to study whether common topics are logged sim-

ilarly across different systems, we measured the pairwise correlation of the log density

of the common topics that are shared among different systems. Specifically, for each

pair of systems, we first calculated their respective log density values for their common

topics, so we calculate two sets of log density values for the same set of common topics.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 83

●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●●
●●●

●●●
●●●

●●
●●●

●●
●●●

0.9

6960.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Hadoop

●

●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●
●●

●●
●●

0.9

2990.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Directory−server

●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●●
●●

●●
●●

0.9

4270.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics
C

um
m

ul
at

iv
e

as
si

gn
m

en
t

Qpid−java

●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●●●

●●
●●●

●●
●●●

0.9

5260.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t
Cloudstack

●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●●●

●●
●●●

●●●
●●

●●

0.9

6640.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Camel

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●●

●●●
●●

0.9

2080.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of topics
C

um
m

ul
at

iv
e

as
si

gn
m

en
t

Airavata

Figure 4.7: The cumulative assignment of all the topics in each studied system. The
topics are sorted by their assignments from high to low.

We then calculated the Spearman rank correlation between these two sets of log den-

sity values. A large correlation value indicates that the common topics are logged simi-

larly across these two systems. As discussed in RQ1, the log density values of the topics

have a skewed distribution. In fact, the Shapiro-Wilk test shows that the distributions

of the log density values are statistically significantly different from a normal distribu-

tion (i.e., p-value < 0.05). Therefore, we chose the Spearman rank correlation method

because it is robust to non-normally distributed data (Swinscow et al., 2002). Prior

studies also applied Spearman ranking correlation to measure similarity (e.g. Gosh-

tasby, 2012).

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 84

Table 4.9: Number of topics that are shared by N ∈ {1, 2, ..., 6} systems.

Systems N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Shared
topics

1,359
(45%)

1,130
(38%)

203
(7%)

109
(4%)

77
(3%)

83
(3%)

39
(1%)

Results

All the studied systems share a portion (i.e., 12% to 62%) of their topics with other

systems. Table 4.9 lists the number of topics that are shared by N ∈ {1, 2, ..., 6} systems.

Among all the 3,000 topics, around half (1,641) of them are important in at least one

system, while the rest of them (1,359) are not important in any system. Around one-

sixth (511 topics) of the topics are shared by at least two systems, among which only 39

topics are shared by all the six studies systems. Figure 4.8 lists the numbers of common

topics that are shared between each pair of systems. For each system, Figure 4.8 also

shows the percentage of its topics that are shared with each of the other systems. As

shown in the figure, each studied system shares 12% to 62% of its topics with each of

the other systems. In general, Hadoop and Camel share the most topics with other sys-

tems, possibly because they are platform or framework applications that contain many

modules of various functionalities. In comparison, Airavata share the least topics with

other systems. Specifically, Hadoop and Camel share the most topics (296) between

them, while Directory-server and Airavata share the least topics (51).

The likelihood of logging the common topics has a statistically significant corre-

lation of 0.35 to 0.62 among all the studied systems. Figure 4.9 shows the Spearman

correlation of the log density between each pair of systems on their common topics.

For each pair of systems, their log density values of the common topics have a sta-

tistically significant (i.e., p-value < 0.05) correlation of 0.35 to 0.62. In other words,

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 85

696

169

239

233

296

83

169

299

140

130

164

51

239

140

427

185

266

73

233

130

185

526

227

71

296

164

266

227

664

80

83

51

73

71

80

208

hadoop
directory−serve

r

qpid−java

cloudstack

camel
airavata

hadoop

directory−server

qpid−java

cloudstack

camel

airavata

(24%) (34%) (33%) (43%) (12%)

(57%) (47%) (43%) (55%) (17%)

(56%) (33%) (43%) (62%) (17%)

(44%) (25%) (35%) (43%) (13%)

(45%) (25%) (40%) (34%) (12%)

(40%) (25%) (35%) (34%) (38%)

Figure 4.8: The number of topics that are shared between each pair of systems. The
numbers in the diagonal cells show the number of important topics per system. The
percentage values show the percentage of topics in the system indicated by the row
name that are shared with the system indicated by the column name.

the likelihood of logging the common topics is statistically significantly correlated be-

tween each pair of the studied systems. The Hadoop system and the Cloudstack system

have the largest log density correlation (0.62) on their common topics. As a distributed

computing platform and a cloud computing platform, respectively, these two systems

are likely to share similar logging needs for their common topics. The Qpid-Java sys-

tem and the Airavata system have the smallest log density correlation (0.35) on their

common topics. As a message broker and a framework for managing and executing

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 86

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1hadoop
directory−serve

r

qpid−java

cloudstack

camel
airavata

hadoop

directory−server

qpid−java

cloudstack

camel

airavata

0.5 0.47

0.46

0.51

0.42

0.42

0.62

0.43

0.45

0.48

0.49

0.46

0.39

0.46

0.46

0.42

0.53

0.35

0.43

0.49

0.44

*** *** *** *** ***

*** *** *** ***

*** *** **

*** ***

Figure 4.9: The Spearman correlation of the log density of the common topics that are
shared between each pair of systems. The values in the diagonal cells show the average
log density correlation between each system and other systems on the shared topics.
The symbols below the correlation values indicate the statistical significance of the
respective correlation: o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.

computational jobs, respectively, these two systems are less likely to have similar log-

ging needs.

Discussion

How do similar systems log common topics? In our case study, we chose six systems

from different domains. We found that each system shares a portion (12% to 62%)

of topics with other systems, and that the likelihood of logging the common topics is

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 87

statistically significantly correlated among these systems. It is interesting to discuss

how similar systems log their common topics. Therefore, we analyzed the common

topics that are shared by two similar systems: Qpid-Java and ActiveMQ. Both systems

are popular open source message brokers implemented in Java. Specifically, we added

the ActiveMQ system into our cross-system topic modeling. We still set the number of

topics to be 3,000, as we found that adding the new system into our cross-system topic

modeling does not significantly change the number of important topics of the existing

systems.

Table 4.10 shows the number of common topics between these two systems and

their log density correlation. As shown in the table, ActiveMQ has a wider range of

topics than Qpid-Java. The former has 675 important topics while the later has 432

important topics. The larger number of important topics in ActiveMQ is likely because

ActiveMQ is not only a message broker, but it also supports many other features such as

enterprise integration patterns10. These two systems share 294 common topics. The

Qpid-Java system shares 68% (the largest percentage for each pair of systems) of its

topics with the ActiveMQ system. The respective log density values of these common

topics have a statistically significant correlation of 0.45, which is not the highest cor-

relation value between each pair of systems. In summary, for similar systems such as

Qpid-Java and ActiveMQ, they may share a relatively large portion of common topics;

however, their likelihood of logging such common topics does not necessarily have a

larger correlation than a pair of systems from different domains.

Topics shared by all the studied systems. As shown in Table 4.9, there are only 39

topics that are commonly shared among all the studied systems. We measured each

10http://activemq.apache.org

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 88

Table 4.10: Common topics between two similar systems: Qpid-Java and ActiveMQ.
The symbols below a correlation value indicate the statistical significance of the corre-
lation: *** p < 0.001.

System # Important topics # Common topics Log density correlation

Qpid-Java 432 294 (68%) 0.45
***ActiveMQ 675 294 (44%)

system’s log density for these 39 topics and calculated their pairwise Spearman correla-

tions. The log density values of the studied systems have a statistically significant cor-

relation of 0.38 to 0.70. In other words, the likelihood of logging these common topics is

statistically correlated among all the studied systems. Table 4.11 also lists the six most

log-intensive topics and the six least log-intensive topics among the 39 common topics.

After manual analysis and labeling, we found that these two groups of topics have very

distinguishable patterns. Most of the top-logged topics are concerned with communi-

cation between machines or interactions between threads, such as “stopping server”

and “finding host”. In comparison, most of the least-logged topics are concerned with

low-level data structure operations, such as “hash coding” and “string indexing”.

Impact of choosing a different number of topics. In this RQ, we chose 3,000 topics for

the cross-system topic modeling. We now examine whether our choice of the num-

ber of topics impacts our results. Using the Hadoop system as an example, Table 4.12

shows the cross-system topic modeling results when varying the number of topics from

3,000 to 2,000 and 1,000. As we decrease the number of topics from 3,000 to 1,000, the

number of important topics for the Hadoop system also decreases from 696 to 384, at a

lower decreasing ratio. The median number of common topics that are shared between

Hadoop and other systems also decreases from 233 to 148. However, the percentage of

the common topics increases from 33% to 39%. In other words, as we decrease the

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 89

Table 4.11: The common topics that are shared by all of the six studied systems: The six
most log-intensive topics and the six least log-intensive topics. A topic label marked
with a “∗” symbol or a “†” symbol indicates that the topic is concerned with commu-
nication between machines or interaction between threads, respectively.

Top words Topic label

Most
likely

logged
topics

stop, except, overrid, stop_except, overrid_stop, servic , except_stop, shutdown,
servic_stop, stop_servic

stopping server ∗
except, except_except, error, thrown, except_thrown, param, occur, er-
ror_occur, except_error, thrown_error

throwing exception

host, host_host, list_host, find, host_type, list, host_list, host_find, type_host,
find_host

finding host ∗
connect, connect_connect, except, except_connect, connect_except, close,
connect_close, creat_connect, connect_host, creat

connection management ∗
event, event_event, handl, event_type, type, event_handler, handler, han-
dler_handl, overrid, event_applic

event handling †

messag, messag_messag, except, except_messag, messag_except, mes-
sag_param, param_messag, object_messag, overrid, object

message exception ∗

Least
likely

logged
topics

hash, code, hash_code, overrid, overrid_hash, code_result, prime,
prime_result, result_prime, code_hash

hash coding

equal, object, overrid, equal_object, overrid_equal, result_equal, equal_equal,
object_equal, equal_type, type_equal

equal operation

append, append_append, builder, builder_builder, overrid, builder_append,
overrid_builder, length_append, time_append, type_append

string builder

system, println, system_println, print, usag, except_system, println_system,
exit, println_usag, usag_system

printing

index, index_index, substr, start_index, param, substr_index, length,
length_index, size, list_index

string indexing

node, node_node, node_list, list_node, param_node, type_node, except_node,
node_type, node_param, param

graph node management

number of topics, the topics become more coarse-grained and they are more likely to

be shared by multiple systems. Finally, the log density correlation of the common top-

ics between the Hadoop system and other systems does not change significantly when

we vary the number of topics from 3,000 to 1,000; in fact, the median correlation val-

ues remain around 0.5 and the correlations are always statistically significant while we

vary the number of topics. Similar observations also hold to the other studied systems.

Overall, our results in this research question are not sensitive to the number of topics

that is used in the cross-system topic modeling.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 90

Table 4.12: Cross-system topic modeling results when varying the number of topics,
using the Hadoop system as an example.

System # Topics # Important topics
Common topics

(median)
Log density correlation

(median)

Hadoop
3,000 696 233 (33%) 0.49
2,000 584 213 (36%) 0.45
1,000 384 148 (39%) 0.53

Each studied system shares a portion (12% to 62%) of its topics with other systems.

The likelihood of logging the common topics has a statistically significant correla-

tion of 0.35 to 0.62 among all the studied systems. Developers of a particular system

can consult other systems when making their logging decisions or when developing

logging guidelines.

4.5.3 RQ3: Can topics provide additional explanatory power for the

likelihood of a code snippet being logged?

Motivation

In RQ1, we observed that source code that is related to certain topics is more likely to be

logged. In this RQ, we further studied the statistical relationship between topics and

logging. We are interested in knowing whether our code topics can offer a different

view of logging. Namely, we want to study whether adding topic-based metrics to a

set of baseline metrics can provide additional explanatory power for the likelihood of

a code snippet being logged.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 91

Approach

To answer this research question, we built regression models to study the relation-

ship between the topics in a method and the likelihood of a method being logged.

The response variable of our regression models is a dichotomous variable that indi-

cates whether a method should have a logging statement or not, and the explanatory

variables are represented by a set of baseline metrics and topic-based metrics. The

baseline metrics capture the structural information of a method, while the topic-based

metrics capture the semantic information of a method.

Baseline metrics. We used 14 baseline metrics, as listed in Table 4.13, to capture

the structural information of a method. Prior studies (Yuan et al., 2012a; Fu et al., 2014;

Zhu et al., 2015) found that the structure of a code snippet exhibits a strong relation

with its logging needs. Table 4.13 also briefly explains the rationale behind studying

each of these baseline metrics.

Topic-based metrics. The topic modeling results give us the membership (θ) as-

signed for each of the topics in each method. We consider the membership values

that are assigned to the topics as the topic-based metrics, denoted by T0-T499. Prior

studies also used similar topic-based metrics to predict or understand the relationship

between topics and software defects (Nguyen et al., 2011; Chen et al., 2012). We filtered

out topic membership values that are less than a threshold (we use 0.01 as the thresh-

old) to remove noise topics for each method (Wallach et al., 2009; Chen et al., 2012).

Model construction. We built LASSO (least absolute shrinkage and selection op-

erator (Tibshirani, 1996)) models to study the relationship between the explanatory

metrics of a method and a response variable that indicates whether a method should

have a logging statement or not. We use a LASSO model because it uses regularization

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 92

Table 4.13: Selected baseline metrics and the rationale behind the choices of these
metrics.

Metric Definition (d) | Rationale (r)

LOC
d: Number of lines of code in a method.
r: Large methods are likely to have more logging statements.

CCN
d: McCabe’s cyclomatic complexity (McCabe, 1976) of a method.
r: Complex methods are likely to have more logging statements.

NUM_TRY
d: Number of try statements in a method.
r: A try block indicates developers’ uncertainty about the execution outcome of
code, thus developers tend to use logging statements for monitoring or debug-
ging purposes.

NUM_CATCH
d: Number of catch clauses in a method.
r: Exception catching code is often logged (Yuan et al., 2012a; Fu et al., 2014;
Zhu et al., 2015; Microsoft-MSDN, 2016; Apache-Commons, 2016).

NUM_THROW
d: Number of throw statements in a method.
r: A logging statement is sometimes inserted right before a throw statement (Fu
et al., 2014); developers also sometimes re-throw an exception instead of log-
ging an exception.

NUM_THROWS
d: Number of throws clauses in a method declaration.
r: Methods that throw exceptions are likely to have logging statements.

NUM_IF
d: Number of if statements in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM_ELSE
d: Number of else clauses in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM_SWITCH
d: Number of switch statements in a method.
r: Developers tend to log logic-branch points for understanding execution
traces (Fu et al., 2014).

NUM_FOR
d: Number of for statements in a method.
r: Logging statements inside loops usually record the execution path or status
of the loops.

NUM_WHILE
d: Number of while statements in a method.
r: Logging statements inside loops usually record the execution path or status
of the loops.

NUM_RETURN
d: Number of return statements in a method.
r: More return statements indicates a more complex method (i.e., more possible
execution outcomes); such a method is more likely to be logged for monitoring
or debugging purposes.

NUM_METHOD
d: Number of method invocations in a method.
r: Developers tend to check and log a return value from a method invocation (Fu
et al., 2014).

FANIN
d: The number of classes that depend on (i.e., reference) the containing class of
a method.
r: High fan-in classes like libraries might have less logging statements to avoid
the generation of too much logging.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 93

to penalize a complex model that leads to over-fitting and it conducts feature selec-

tion simultaneously (Tibshirani, 1996; Kuhn and Johnson, 2013). An over-fitted model

performs very well on the data on which the model was built, but usually has poor ac-

curacy on a new data sample (Kuhn and Johnson, 2013). It is generally true that more

complex models are more likely to lead to over-fitting (Kuhn and Johnson, 2013). The

LASSO model uses a λ parameter to penalize the complexity of a model: the larger the

λ value, the simpler the model (Tibshirani, 1996). Among the 500 topic-based metrics,

many of them have little or no contribution for determining the logging likelihood of

a method. A LASSO model, with a proper setting of the λ parameter, enables us to sig-

nificantly reduce the number of variables in the model and reduce the possibility of

over-fitting (Tibshirani, 1996).

We used the stratified random sampling method (Witten and Frank, 2005; Kuhn

and Johnson, 2013) to split the dataset of a system into 80% of training dataset and

20% of testing dataset, such that the distributions of logged methods and unlogged

methods are properly reflected in both the training and testing datasets. We used the

80% training dataset to construct the model and tune theλparameter, and left the 20%

testing dataset only for testing purpose using the already tuned λ parameter. Similar

“80%:20%” splitting approaches were also used by prior studies (Martin et al., 2012;

Kuhn and Johnson, 2013). Splitting the dataset into distinct sets for model construc-

tion (including parameter tuning) and model evaluation ensures that we avoid over-

fitting and that we provide an unbiased sense of model performance (Kuhn and John-

son, 2013).

We used 10-fold cross validations to tune the λ value in a LASSO model, using only

the training dataset. For each λ value, we used a 10-fold cross validation to measure

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 94

the performance of the model (represented by AUC) using theλ value, and repeated for

different λ values until we find a λ value with the best model performance. In this way,

we got a LASSO model with the best cross-validated performance and we can avoid

over-fitting. We used the “cv.glmnet” function in the “glmnet” R package (Friedman

et al., 2010; Simon et al., 2011) to implement our model tuning process.

Model evaluation. We used balanced accuracy (BA) as proposed by a prior

study (Zhu et al., 2015) to evaluate the performance of our LASSO models. BA averages

the probability of correctly identifying a logged method and the probability of correctly

identifying a non-logged method. BA is widely used to evaluate the modeling results

on imbalanced data (Zhu et al., 2015; Cohen et al., 2004; Zhang et al., 2005), since it

avoids over optimism on imbalanced data sets. BA is calculated by Equation (4.5):

B A =
1

2
× T P

T P + F N
+

1

2
× T N

F P +T N
(4.5)

where TP, FP, FN and TN represent true positive, false positive, false negative and true

negative, respectively.

We also used the area under the ROC (receiver operating characteristic) curve

(AUC) to evaluate the performance of the LASSO models. While the BA provides

a balanced measure on our models’ accuracy in classifying logged methods and

non-logged methods, the AUC evaluates our models’ ability of discrimination, i.e.,

how likely a model is able to correctly classify an actual logged method as a logged

method, rather than classify an actual unlogged method as a logged method. The AUC

is the area under the ROC curve which plots the true positive rate (T P /(T P + F N))

against false positive rate (F P /(F P +T N)). The AUC ranges between 0 and 1. A high

value for the AUC indicates a classifier with a high discriminative ability; an AUC of

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 95

0.5 indicates a performance that is no better than random guessing.

Evaluating the effect of the metrics on the model output. We evaluated the ef-

fect of the metrics (i.e., the explanatory variables) on the model output, i.e., the like-

lihood of a method being logged, by comparing the metrics’ standardized regression

coefficients in the LASSO models. Standardized regression coefficients describe the

expected change in the response variable (in standard deviation units) for a standard

deviation change in a explanatory variable, while keeping the other explanatory vari-

ables fixed (Kabacoff, 2011; Bring, 1994). A positive coefficient means that a high value

of that particular variable is associated with a higher probability of a method being

logged, while a negative coefficient means that a high value of that particular vari-

able is associated with a lower probability of a method being logged. For example,

a topic-based metric with a positive coefficient means that a method with a greater

membership of that particular topic has a higher chance to be logged. The standard-

ized regression coefficients are not biased by the different scale of different variables in

the model. In this work, we calculate the standardized regression coefficients by stan-

dardizing each of the explanatory variables to a mean of 0 and a standard deviation of

1, before feeding the data to the LASSO models.

Results

Table 4.14 shows the performance of the models that are built using the baseline met-

rics, and the models that are built using both the baseline and topic-based metrics. A

high AUC indicates that our LASSO models are able to discriminate logged methods

versus not-logged methods. A high BA implies that our LASSO models are able to pro-

vide accurate classification for the likelihood of a method being logged. The results

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 96

highlight that developers are able to leverage a model to aid their logging decisions.

Adding topic-based metrics to the baseline models gives a 3% to 13% improve-

ment on AUC and a 6% to 16% improvement on BA for the LASSO models. In order

to evaluate the statistical significance of adding the topic-based metrics to our base-

line models, we used a Wilcoxon signed-rank test to compare the performance of the

models that only use the baseline metrics and the performance of the models that use

both the baseline and topic-based metrics. The Wilcoxon signed-rank test is the non-

parametric analogue to the paired t-test. We use the Wilcoxon signed-rank test in-

stead of the paired t-test because the former does not assume a normal distribution

of the compared data. We use a p-value that is below 0.05 to indicate that the alter-

native hypothesis (i.e., the performance change is statistically significant) is true. The

test on the AUC values and the test on the BA values both result in a p-value of 0.02,

which means that adding the topic-based metrics statistically significantly improves

the performance of our LASSO models. We also computed Cliff’s δ effect size (Mac-

beth et al., 2011) to compare the performance of the models that only use the base-

line metrics versus the performance of the models that use both the baseline metrics

and the topic-based metrics. Cliff’s δ also has no assumption on the normality of the

compared data. The magnitude of Cliff’s δ is assessed using the thresholds that are

provided by Romano et al. (2006), i.e., δ < 0.147 “negligible”, δ < 0.33 “small”, δ < 0.474

“medium”, and δ >= 0.474 “large”. As shown in Table 4.14, the effect size of the AUC

improvement is 0.72 (large), and the effect size of the BA improvement is 0.69 (large).

Therefore, topic-related metrics provide additional explanatory power to the models

that are built using the structural baseline metrics. In other words, topics can provide

additional explanatory power for the likelihood of a method being logged.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 97

Table 4.14: Performance of the LASSO models, evaluated by AUC and BA.

Project
Baseline metrics Baseline + Topics
AUC BA AUC BA

Hadoop 0.82 0.72 0.87 (+6%) 0.78 (+7%)
Directory-Server 0.86 0.75 0.94 (+9%) 0.86 (+16%)
Qpid-Java 0.80 0.74 0.90 (+13%) 0.82 (+10%)
Camel 0.86 0.78 0.90 (+4%) 0.82 (+6%)
CloudStack 0.83 0.76 0.88 (+6%) 0.80 (+6%)
Airavata 0.96 0.88 0.99 (+3%) 0.95 (+8%)
Cliff’s δ - - 0.72 (large) 0.69 (large)
P-value (Wilcoxon) - - 0.02 (sig.) 0.02 (sig.)

Both our baseline and topic-based metrics play important roles in determining the

likelihood of a method being logged. Table 4.15 shows the top ten metrics for each

LASSO model that uses both the baseline metrics and the topic-based metrics. These

metrics are ordered by the absolute value of their corresponding standardized coeffi-

cients in the models. In each model, five to seven of the top ten important metrics for

determining the likelihood of a method being logged are our topic-based metrics.

The baseline metrics NUM_TRY, NUM_METHOD, and NUM_CATCH have a strong

relationship with the likelihood of a method being logged. Each of these three metrics

appears at least four times in the top ten metrics and has a positive coefficient in the

LASSO models for all studied systems. Developers tend to log try blocks as they are

concerned about the uncertainty during the execution of try blocks; developers log

method invocations as developers usually need to check and record the return values

of such method invocations; developers log catch blocks as a mean to handle excep-

tions for debugging purposes (Microsoft-MSDN, 2016; Apache-Commons, 2016). The

baseline metrics NUM_THROW, NUM_THROWS and FANIN each appears twice in the

top ten metrics. The NUM_THROW metric has a negative coefficient in both of these

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 98

two occurrences, indicating that developers tend not to throw an exception and log it

at the same time; instead, they tend to log when they are catching an exception. In

contrast, the NUM_THROWS metric has a positive coefficient, showing that develop-

ers tend to add logging statements in methods that specify potential exceptions that

might be thrown in that particular method or callee methods (with the latter case being

more usual). The FANIN metric has a negative coefficient, indicating that high fan-in

code tends to be associated with less logging statements, possibly for reducing logging

overheads when called by other methods. Both the LOC and CNN metrics appear only

once in the top ten metrics. The LOC metric has a positive coefficient, which is obvi-

ous as larger methods are more likely to require logging statements. The CCN metric

also has a positive coefficient, indicating that developers tend to log complex methods

which may need future debugging (Shang et al., 2015).

The topic-based metrics play important roles in the LASSO models; in particular,

the log-intensive topics have a strong and positive relationship with the likelihood

of a method being logged. As shown in Table 4.15, we manually derived the topic la-

bel for each topic-based metric, by investigating the top words in the topic, the meth-

ods that have the largest membership of the topic, and the containing classes of these

methods. We use a ‡ symbol to mark the log-intensive metrics that we uncovered in

RQ1. The metrics based on the log-intensive topics that are labeled as “cursor opera-

tion”, “decoder exception”, “message exception”, “session management”, “connection

management”, “event handling”, “resource operation” and “customized logging”, have

positive coefficients in the LASSO models, indicating that these topics have a positive

relationship with the likelihood of a method being logged.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 99

Table 4.15: The top ten important metrics for determining the likelihood of a method
being logged and their standardized coefficients. A letter “T” followed by a parenthesis
indicates a topic-based metric and the manually derived topic label. A topic label fol-
lowed by a ‡ symbol indicates that the particular topic is a log-intensive topic as listed
in Table 4.5.

Hadoop Directory-Server Qpid-Java

Metric Coef Metric Coef Metric Coef
NUM_METHOD 0.72 NUM_METHOD 0.73 T (message exception) ‡ 0.77
NUM_CATCH 0.42 NUM_TRY 0.58 LOC 0.62
T (prototype builder) -0.31 T (cursor operation ‡) 0.43 NUM_RETURN -0.54
CCN 0.28 T (decoder exception ‡) 0.31 T (list iteration) -0.49
T (server protocal) -0.26 T (cursor exception) -0.28 NUM_IF -0.26
NUM_TRY 0.25 T (string builder) -0.24 T (connection management ‡) 0.25
NUM_THROW -0.22 T (naming exception) -0.22 NUM_CATCH 0.25
T (client protocal) -0.21 FANIN -0.18 T (object attribute) -0.20
T (equal operation) -0.15 T (state transition) -0.18 T (write flag) -0.19
T (string builder) -0.14 T (tree operation) 0.15 T (session management) ‡ 0.17

Camel CloudStack Airavata

Metric Coef Metric Coef Metric Coef
NUM_METHOD 1.13 NUM_TRY 0.80 NUM_TRY 2.09
NUM_TRY 0.29 NUM_METHOD 0.62 FANIN -0.83
NUM_THROWS 0.28 NUM_CATCH 0.44 T (Thrift code - object reader) -0.69
T (JSON schema) -0.22 T (search parameter) -0.25 T (Thrift code - object writer) -0.69
NUM_CATCH 0.22 T (search entity) -0.25 NUM_THROWS 0.39
NUM_THROW -0.17 T (server response) -0.20 NUM_METHOD 0.37
T (string builder) -0.16 T (legacy transaction) -0.16 T (result validation) -0.33
T (model description) -0.15 T (search criteria) -0.15 T (resource operation) ‡ 0.31
T (REST configuration) -0.13 NUM_RETURN 0.14 T (customized logging) ‡ 0.23
T (event handling) ‡ 0.11 T (equal operation) -0.14 T (result transfer) 0.17

In particular, the topic labeled as “message exception” has the strongest relation-

ship with the likelihood of a method being logged in the Qpid-Java system. The topics

that are labeled as “cursor operation” and “decoder exception”, also play the most im-

portant roles in determining the likelihood of a method being logged in the Directory-

Server system. The “tree operation” topic in the Directory-Server system and the “result

transfer” topic in the Airavata system also have a positive relationship with the likeli-

hood of a method being logged. We found that the “tree operation” topic has an LD

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 100

value of 0.03; and the “result transfer” topic has an LD value of 0.07. These two topics

are also considered as log-intensive topics. Other topics that are listed in Table 4.15

have a negative relationship with the likelihood of a method being logged. These top-

ics have an LD value of 0.00 to 0.01, which are much smaller than the log density values

of the log-intensive topics (i.e., methods related to these topics most likely do not have

any logging statements).

Discussion

Cross-system evaluation. In this research question, we evaluated the performance of

our log recommendation models in a within-system setting. It is also interesting to

study the performance of the models in a cross-system evaluation, i.e., train a model

using one system (i.e., the training system) then use the trained model to predict the

likelihood of logging a method in another system (i.e., the testing system). Like what

we did in RQ2, we applied cross-system topic modeling on a combined corpus of the

six studied systems and set the number of topics to be 3,000. Then we derived topic-

based metrics that are used as explanatory variables in our LASSO models.

As discussed in RQ2, however, different systems have different sets of important

topics. This issue poses a challenge to our cross-system evaluation, i.e., the training

system and the testing system have different variable settings, which results in the poor

performance of the cross-system models that leverage topic-based metrics.

Even though we cannot fully overcome the fact that different systems have different

sets of important topics which leads to the poor performance of cross-system models,

we took two strategies to alleviate the issue:

• When training a LASSO model, we used the common topics between the training

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 101

system and the testing system as our topic-based topics. We used the method

mentioned in RQ2 to get the common topics of each pair of systems.

• When training the LASSO model, we assigned more weight to the methods in

the training system that have a larger membership of the important topics in the

testing system. Specifically, for each method in the training system, we gave it

a weight that is its total membership of all the important topics in the testing

system.

Tables 4.16 and 4.17 list the performance (AUC) of the cross-system models that

use the baseline metrics and the performance (AUC) of the cross-system models that

use both the baseline and topic-based metrics, respectively. For each system, we also

calculated the average performance (AUC) of the models that were trained using other

systems and tested on that particular system. The average AUC values increase by 1%

to 7% when topic-based metrics are added to the baseline models. We also used a

Wilcoxon singed-rank test and computed Cliff’s δ effect size to compare the average

AUC values when using baseline metrics and when using both the baseline and topic-

based metrics. The Wilcoxon signed-rank test got a p-value of 0.02, which indicates

that the topic-based metrics bring statistically significant improvement to the baseline

models. The Cliff’s δ effect size is 0.44, which means that the improvement is consid-

ered as “medium”.

The effect of choosing a different number of topics. In this chapter, we derived 500

topics from the source code of a software system and leveraged these topics to study

the relationship between the topics of a method and the likelihood of a method being

logged. In order to evaluate the impact of the choice of number of topics on our find-

ings, we conducted a sensitivity analysis to quantitatively measure how the different

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 102

Table 4.16: The performance (AUC) of the cross-system models using baseline met-
rics. The row names indicate the training systems and the column names indicate the
testing systems.

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata
Hadoop - 0.80 0.66 0.82 0.86 0.88

Directory-Server 0.74 - 0.61 0.74 0.78 0.91
Qpid-Java 0.60 0.69 - 0.53 0.43 0.61

CloudStack 0.78 0.80 0.61 - 0.84 0.93
Camel 0.80 0.81 0.65 0.82 - 0.90

Airavata 0.74 0.81 0.61 0.80 0.78 -
Average 0.73 0.78 0.63 0.74 0.74 0.85

Table 4.17: The performance (AUC) of the cross-system models using both baseline
and topic-based metrics. The row names indicate the training systems and the column
names indicate the testing systems.

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata
Hadoop - 0.82 0.67 0.83 0.86 0.90

Directory-Server 0.78 - 0.63 0.79 0.81 0.92
Qpid-Java 0.74 0.69 - 0.71 0.67 0.82

CloudStack 0.79 0.80 0.70 - 0.84 0.90
Camel 0.82 0.82 0.69 0.82 - 0.90

Airavata 0.74 0.81 0.67 0.80 0.80 -
Average 0.77 0.79 0.67 0.79 0.79 0.89

(+5%) (+1%) (+6%) (+7%) (+7%) (+5%)

number of topics influence the topic model’s ability to explain the likelihood of a code

snippet being logged. Specifically, we changed the number of topics that we used in

RQ3 from 500 to various numbers (i.e., from 20 to 3,000), and built LASSO models that

leverage both the baseline metrics and the topic-based metrics. Table 4.18 shows the

performance (evaluated using AUC) of these LASSO models that leverage the baseline

metrics and the topic-based metrics that are derived from different number of topics.

As we increase the number of topics from 20 to 3,000, the AUC values of the LASSO

models increase until they reach a plateau. The AUC values of the LASSO models stay

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 103

Table 4.18: Performance (AUC) of the LASSO models that leverage the baseline metrics
and the topics-based metrics derived from different numbers of topics.

Project Baseline
Baseline + 20–3,000 topics

20 50 100 300 500 800 1,000 1,500 2,000 2,500 3,000
Hadoop 0.82 0.83 0.84 0.84 0.86 0.87 0.88 0.88 0.86 0.86 0.87 0.86
Directory-S. 0.86 0.88 0.87 0.90 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.93
Qpid-Java 0.80 0.83 0.85 0.88 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89
Camel 0.86 0.87 0.88 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90
Cloudstack 0.83 0.85 0.86 0.86 0.89 0.88 0.88 0.88 0.88 0.87 0.88 0.88
Airavata 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99
Cliff’s δ1 - 0.33M 0.44M 0.56L 0.67L 0.72L 0.72L 0.72L 0.67L 0.67L 0.72L 0.67L

1 The superscripts S, M, and L represent small, medium, and large effect sizes, respectively.

at or slightly fluctuate around the maximum point as we continue to increase the num-

ber of topics. Taking the Directory Server system for example, the AUC values of the

LASSO models increase from 0.88 to 0.94 as we increase the number of topics from 20

to 500. However, as we continue to increase the number of topics, the AUC values stay

around 0.94. As observed by Wallach et al. (2009), the reason may be that as the num-

ber of topics increases, the additional topics are rarely used in the topic assignment

process. Thus, these additional topics are removed by the LASSO models.

The AUC values reach their maximum points (highlighted in bold) when using 50

to 800 topics for the studied systems. In particular, four out of the six systems reach

their maximum AUC values when using 300 topics or less. The LASSO models that

leverage both the baseline metrics and topic-based metrics that are derived from 300

topics achieve an 3% to 13% improvement of AUC over the LASSO models that only

leverage the baseline metrics.

Table 4.18 also shows the Cliff’s δ effect sizes of comparing the performance of the

models that only use the baseline metrics versus the performance of the models that

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 104

use both the baseline metrics and the topic-based metrics. Using 20 or 50 topics im-

proves the AUC of the baseline models with a medium effect size; using 100 or more

topics improves the AUC of the baseline models with a large effect size.

The impact of filtering out small methods. In this chapter, we filtered out small meth-

ods for each studied system (Section 4.4.2), as intuitively small methods usually imple-

ment simple functionalities (e.g., getters and setters) and are less likely to need logging

statements. We now examine the effect of filtering out small methods on our mod-

els. Table 4.19 shows the performance of the LASSO models without the filtering pro-

cess. Without filtering out small methods, both the models that leverage baseline met-

rics and the models that leverage baseline and topic-based metrics have better per-

formance in terms of AUC and BA. Yet the topic-based metrics still bring a 1% to 7%

improvement on AUC and a 4% to 14% improvement on BA, over the baseline metrics,

for the LASSO models. The AUC improvement has an effect size of 0.53 (large) and

the BA improvement has an effect size of 0.72 (large), both of which are statistically

significant.

However, the additional explanatory power (i.e., 1% to 7% improvement on AUC

and 4% to 14% improvement on BA) is smaller than it is when a filtering process is

applied (i.e., 3% to 13% improvement on AUC and 6% to 16% improvement on BA).

These results can be explained by the fact that the filtered small methods are much less

likely to have logging statements. Taking the Hadoop system for example, the filtered

small methods make up 60% of all the methods, but they only contain 5% of all the

logged methods. The structural metrics (e.g., LOC) can simply be used to predict such

small methods as being not logged. In other words, topic-based metrics are less likely

to bring additional explanatory power to the small methods. However, such methods

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 105

Table 4.19: Performance of the LASSO models (without filtering out small methods),
evaluated by AUC and BA.

Project
Baseline metrics Baseline + Topics
AUC BA AUC BA

Hadoop 0.92 0.81 0.94 (+2%) 0.84 (+4%)
Directory-Server 0.89 0.78 0.95 (+7%) 0.89 (+14%)
Qpid-Java 0.89 0.79 0.93 (+4%) 0.84 (+6%)
Camel 0.92 0.83 0.93 (+1%) 0.86 (+4%)
CloudStack 0.95 0.82 0.96 (+1%) 0.89 (+9%)
Airavata 0.97 0.92 0.99 (+2%) 0.97 (+5%)
Cliff’s δ - - 0.53 (large) 0.72 (large)
P-value (Wilcoxon) - - 0.02 (sig.) 0.02 (sig.)

are far less likely to be logged.

Our LASSO models that combine baseline metrics and topic-based metrics achieve

an AUC of 0.87 to 0.99 and a BA of 0.78 to 0.95. The topic-based metrics provide an

AUC improvement of 3% to 13% and a BA improvement of 6% to 16%, over the base-

line metrics. The topics-based metrics play important roles in the LASSO models;

in particular, the log-intensive topics have a strong and positive relationship with

the likelihood of a method being logged.

4.6 Threats to Validity

External Validity. Different systems are concerned with different topics. The discus-

sions on the specific topics in this chapter may not be generalized to other systems.

Findings from additional case studies on other systems can benefit our study. How-

ever, through a case study on six systems that are of different domains and sizes, we

expect that our general findings (i.e., the answers to the research questions) can stand

for other systems. We believe that developers can leverage the specific topics in their

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 106

own systems to help understand and guide their logging decisions.

Our study focused on the source code (i.e., production code) of the studied systems

and excluded the testing code. We are more interested in the production code because

the logging in the source code directly impacts the customer’s experience about the

performance and diagnosability of a system. On the other hand, testing code is mainly

used for in-house diagnosis, and the impact of logging is usually less of a concern.

However, it is interesting to study the differences between the logging statements in

the production code and the testing code. We expect future studies to explore the dif-

ferences between production code logging and testing code logging.

Internal Validity. The regression modeling results present the relation between the

likelihood of a method being logged and a set of software metrics. The relation does

not represent the casual effects of these metrics on the likelihood of a method being

logged.

In RQ3, we used 14 structural metrics to form the baseline of our models. The se-

lected metrics do not necessarily represent all the structural information of a method.

However, we used both the general information (e.g., LOC and CCN) and the detailed

information (e.g., the number of if-statements and the number of catch blocks), trying

to cover a large spectrum of structural information about a method.

In this chapter, we studied the relationship between logging decisions and the un-

derlying topics in the software systems. Our study was based on the assumption that

the logging practices of these projects are appropriate. However, the logging practices

of these projects may not always be appropriate. In order to avoid learning bad prac-

tices, we chose several successful and widely-used open source systems.

Construct Validity. Interpreting LDA-generated topics may not always be an easy

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 107

task (Hindle et al., 2015), and the interpretation may be subjective. Thus, the author

of the thesis tried to first understand the topics and derive topic labels, and another

researcher (i.e., a collaborator) validated the labels. In case a topic that is hard to

interpret, we study the source code (i.e., both classes and methods) that are related to

the topic.

As suggested by prior studies (Wallach et al., 2009; Chen et al., 2016b), we chose 500

topics for the topic modeling of individual systems in RQ1. However, determining the

appropriate number of topics to be used in topic modeling is a subjective process. As

our primary purpose of using topic models is for interpretation, the appropriateness

of a choice of topic number should be determined by how one plans to leverage the

resulting topics for interpreting the meaning of the source code. We found that using

500 topics for each studied system provides reasonable and tractable results for us to

interpret the generated topics. Besides, we discuss how the different numbers of topics

influence the observations of each RQ.

When running LDA, we applied MALLET’s hyper-parameter optimization to auto-

matically find the optimal α and β values. However, the optimization heuristics are

designed for natural language documents instead of source code files. As the source

code is different from natural language, we may not get the optimal topics. Future in-

depth studies are needed to explore this wide-ranging concern across the multitude of

uses of LDA on software data (Chen et al., 2016b).

Topic models create automated topics that capture the co-occurrences of words in

methods. However, one may be concerned about the rationale of studying the logging

practices using topics instead of simply using the words that exist in a method. We use

topics instead of words for two reasons: 1) topic models provide a higher-level overview

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 108

and interpretable labels of a code snippet (Blei et al., 2003; Steyvers and Griffiths, 2007);

2) and using words in a code snippet to model the likelihood of a code snippet be-

ing logged is very computationally expensive and the resulting model is more likely to

over-fit. Our experiments show that there are 2,117 to 5,474 different words (exclud-

ing English stop words and programming language keywords) in our studied systems,

hence one would need to build a very expensive model (2,117 to 5,474 metrics) using

these words. Our experiments also show that using 2,117 to 5,474 words as explana-

tory variables provides 3% to 10% (with a median of 4%) additional explanatory power

(in terms of AUC) to the baseline models. In comparison, using only 300 topics as ex-

planatory variables provides 3% to 13% (with a median of 6%) additional explanatory

power to the baseline models.

4.7 Related Work

4.7.1 Applying Topic Models on Software Engineering Tasks

Topic models are widely used in the Software Engineering research for various

tasks (Chen et al., 2016b; Sun et al., 2016), such as concept location (Cleary et al.,

2008; Poshyvanyk et al., 2007; Rao and Kak, 2011), traceability linking (Asuncion

et al., 2010), understanding software evolution (Thomas et al., 2011; Hu et al., 2015),

code search (Tian et al., 2009), software refactoring (Bavota et al., 2014), and software

maintenance (Sun et al., 2015a,b). Recent studies explored how to effectively leverage

topic models in software engineering tasks (Panichella et al., 2013, 2016). However,

there is no study of software logging using topic models (Chen et al., 2016b). Some

prior studies (Chen et al., 2012; Nguyen et al., 2011) successfully show that topics in

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 109

source code are correlated to some source code metrics (e.g., quality). Thus in this

chapter, we followed up on that intuition and we studied the relationship between

code topics and logging decisions.

Prior studies (De Lucia et al., 2012, 2014) also found that most LDA-generated top-

ics are easy for developers to understand, and these topics can be useful for developers

to get a high-level overview of a system (Thomas et al., 2011). In this chapter, we also

conducted a manual study on the topics, and our study provides a high-level overview

of which topics are more likely to need logging statements in our studied systems.

4.8 Chapter Summary

Inserting logging statements in the source code appropriately is a challenging task, as

both logging too much and logging too little are undesirable. We believe that the code

snippets of different topics have different logging requirements. In this chapter, we

used LDA to extract the underlying topics from the source code, and studied the re-

lationship between the logging decisions and the recovered topics. We found that a

small number of topics, in particular, the topics that can be generalized to commu-

nication between machines or interaction between threads, are much more likely to

be logged than other topics. We also found that the likelihood of logging the common

topics has a significant correlation across all the studied systems, thus developers of

a particular system can consult other systems when making their logging decisions or

developing logging guidelines. Finally, we leveraged the recovered topics in regression

models to provide additional explanatory power for the likelihood of a method being

logged. Our case study on six open source software systems suggests that topics can

statistically help explain the likelihood of a method being logged.

CHAPTER 4. UNDERSTANDING SOFTWARE LOGGING USING TOPIC MODELS 110

As code topics contain valuable information that is correlated with logging deci-

sions, topic information should be considered in the logging practices of practition-

ers when they wish to allocate limited logging resources (e.g., by allocating more log-

ging resources to log-intensive topics). Future work on logging recommendation tools

should also consider topic information in order to help software practitioners make

more informed logging decisions. Furthermore, our findings encourage future work to

develop topic-influenced logging guidelines (e.g., which topics need further logging),

in addition to the best practices and logging advice that are derived in Chapter 3.

CHAPTER 5

Automated Suggestions for Log Changes

As we find in Chapter 2, prior approaches automatically enhance logging statements as a post-
implementation process. Such automated approaches do not take into account developers’
domain knowledge and concerns that we discuss in Chapter 3; nevertheless, developers usually
need to carefully design the logging statements since logs are a rich source about the field oper-
ation of a software system. This chapter empirically studies why developers make log changes
and proposes an automated approach to provide developers with log change suggestions as
soon as they commit a code change. In particular, we derive a set of measures based on man-
ually examining the reasons for log changes and our experiences. We use these measures as
explanatory variables in random forest classifiers to model whether a code commit requires
log changes. We perform a case study on four open source projects, and we find that: (i) The
reasons for log changes can be grouped along four categories: block change, log improvement,
dependence-driven change, and logging issue; (ii) our random forest classifiers can effectively
suggest whether a log change is needed: the classifiers that are trained from within-project
data achieve a balanced accuracy of 0.76 to 0.82, and the classifiers that are trained from cross-
project data achieve a balanced accuracy of 0.76 to 0.80; (iii) the characteristics of code changes
in a particular commit and the current snapshot of the source code are the most influential fac-
tors for determining the likelihood of a log change in a commit.

An earlier version of this chapter is published in the Empirical Software Engineering Journal
(EMSE) (Li et al., 2017b).

111

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 112

5.1 Introduction

L
OGS are generated at runtime from logging statements in the source code.

Logs record valuable run-time information. A logging statement, as shown

below, typically specifies a verbosity level (e.g., debug/info/warn/error/fa-

tal), a static text and one or more variables (Fu et al., 2014; Yuan et al., 2012b; Gülcü

and Stark, 2003).

logger.error(“static text” + variable);

Logs help software practitioners better understand the behaviors of large scale soft-

ware systems and assist in improving the quality of the systems (Fu et al., 2013; Shang

et al., 2014b). Software operators leverage the rich information in logs to guide ca-

pacity planning efforts (Sharma et al., 2011; Kavulya et al., 2010), to monitor system

health (Bitincka et al., 2010), and to identify abnormal behaviors (Fu et al., 2009; Syer

et al., 2013; Xu et al., 2009b). Besides, software developers rely on logs for debugging

field failures (Glerum et al., 2009; Yuan et al., 2010). In recent years, the broad usage

of logs led to the emergence a new market of Log Processing Applications (LPAs) (e.g.,

Splunk1 (Bitincka et al., 2010), XpoLog2, and Logstash3), which support the collection,

storage, search, and analysis of large amounts of log data.

However, appropriate logging is difficult to reach in practice. Both logging too little

and logging too much is undesirable (Fu et al., 2014; Chapter 3). Logging too little may

result in the lack of runtime information that is crucial for understanding and diagnos-

ing software systems (Yuan et al., 2010; Chapter 3); while logging too much may lead

to runtime overhead and costly log maintenance efforts (Fu et al., 2014; Chapter 3).

1Splunk. http://www.splunk.com/
2XpoLog. http://www.xpolog.com/
3Logstash. http://logstash.net/

http://www.splunk.com/
http://www.xpolog.com/
http://logstash.net/

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 113

Prior work shows that developers spend a large amount of effort for maintaining log-

ging statements, and 33% of the log changes are introduced as after-thoughts (i.e., as

follow-up changes instead of being done when the actual surrounding code is being

changed) (Yuan et al., 2012b).

Figure 5.1 shows a code snippet that is taken from Hadoop revision 1240413. We

use “svn blame”4 to show the contributing commit of each code line. The code snippet

shows that the commit 1190122 added a try-catch statement, and an if statement in the

catch clause. In a later commit 1240413, which contributed to a bug fix, the developer

added an error logging statement to record important runtime information, in order

to help fix bug MAPREDUCE-37115. The information that is recorded by the logging

statement even helps understand the execution of the system when fixing bugs in the

future (e.g., MAPREDUCE-55016 and MAPREDUCE-63177). Suppose that the devel-

oper was suggested to add the logging statement in the earlier commit (1190122) with

the try-catch statement, the logged information would help developers and operators

understand the system’s behavior when they are fixing bug MAPREDUCE-3711. In this

chapter, we propose an approach that can automatically provide developers with such

suggestions for log changes when they commit new code changes.

Log enhancement approaches, such as Errlog (Yuan et al., 2012a) and LogEnhancer

(Yuan et al., 2011), aim to improve software failure diagnosis by automatically adding

4svn blame. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.blame.html
5https://issues.apache.org/jira/browse/MAPREDUCE-3711
6https://issues.apache.org/jira/browse/MAPREDUCE-5501
7https://issues.apache.org/jira/browse/MAPREDUCE-6317

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.blame.html
https://issues.apache.org/jira/browse/MAPREDUCE-3711
https://issues.apache.org/jira/browse/MAPREDUCE-5501
https://issues.apache.org/jira/browse/MAPREDUCE-6317

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 114

/* A code snippet taken from Hadoop revision 1240413, in file:
* hadoop-mapreduce-project/hadoop-mapreduce-client/

hadoop-mapreduce-client-app/src/main/java/org/apache/
hadoop/mapreduce/v2/app/rm/RMContainerAllocator.java

* Commit 1240413 is part of a patch to fix a bug with JIRA issue ID
MAPREDUCE-3711

*/
1190122 try {
1190122 response = makeRemoteRequest();
1190122 retrystartTime = System.currentTimeMillis();
1190122 } catch (Exception e) {
1190122 if (System.currentTimeMillis() - retrystartTime >=

retryInterval) {
1240413 LOG.error("Could not contact RM after " + retryInterval +
1240413 " milliseconds.");
1190122 eventHandler.handle(new JobEvent(this.getJob().getID(),
1190122 JobEventType.INTERNAL_ERROR));
1190122 throw new YarnException("Could not contact RM after " +
1190122 retryInterval + " milliseconds.");
1190122 }
1190122 throw e;
1190122 }

Figure 5.1: An “svn blame” example showing that a later commit (1240413) added a
logging statement that was missing in an earlier commit (1190122).

more logged information to the existing code, as a post-implementation process. How-

ever, these automatic log enhancement approaches never take into account develop-

ers’ domain knowledge and concerns that we discuss in Chapter 3. In practice, devel-

opers need to carefully design logging statements since logs contain valuable informa-

tion for both software developers and operators (Yuan et al., 2012b).

Recent studies investigate where developers insert logging statements (Fu et al.,

2014) and automatically suggest locations in need of logging statements (Zhu et al.,

2015). In particular, the authors conducted source code analysis to investigate the

types of code snippets (e.g., catch block) in which developers often insert logging

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 115

statements. The study provides post-coding guidelines for inserting logging state-

ments into the source code. However to the best of our knowledge, there exists no

studies to guide developers during coding, i.e., providing guidance about whether to

change (add, delete or modify) logging statements when developers are committing

code changes.

In this chapter, we propose an approach that can provide just-in-time suggestions

as to whether a log change is needed when a code change occurs. The term “just-in-

time” is based on prior research by Kamei et al. (2013) that advocates the benefits of

providing suggestions to developers at commit time. Follow-up studies (Kamei et al.,

2016; Tourani and Adams, 2016; Fukushima et al., 2014) also use the term “just-in-time”

to describe commit-time suggestions or alerts. In this chapter, we leverage prior com-

mits to build classifiers in order to suggest whether log changes are needed for a new

commit. We perform a case study on four open source systems (Hadoop, Directory

Server, Commons HttpClient, and Qpid), to answer the following three research ques-

tions:

RQ1: What are the reasons for changing logging statements?

Through a manual analysis of a statistically representative sample of logging

statements, we find that the reasons for log changes can be grouped along four

categories: block change, log improvement, dependence-driven change, and

logging issue.

RQ2: How well can we provide just-in-time log change suggestions?

We build random forest classifiers using software measures that are derived from

our manual study in RQ1, and from our experience, in order to model the drivers

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 116

for log changes in a code commit. We evaluate our classifiers in both a within-

project and a cross-project evaluation. For our within-project evaluation, we

build a random forest classifier for every code commit using all previous code

commits as training data, in order to suggest whether a log change is needed

for the current commit. The random forest classifiers that are built from histor-

ical data from the same project achieve a balanced accuracy of 0.76 to 0.82. For

our cross-project evaluation, we build random forest classifiers that are trained

from three out of four studied projects and suggest log changes in the remaining

project. We repeat the process for each of the studied projects. The classifiers

reach a balanced accuracy of 0.76 to 0.80 and an AUC of 0.84 to 0.88.

RQ3: What are the influential factors that explain log changes?

Factors which capture characteristics about the changes to the non-logging code

in a commit (i.e., change measures, such as the number of changed control flow

statements) and factors that capture characteristics of the current snapshot of

the source code (i.e., product measures, such as the number of existing logging

statements) are the most influential factors for explaining log changes in a com-

mit. In particular, change measures are the most influential explanatory factors

for log additions, while product measures are the most influential explanatory

factors for log modifications.

Chapter organization. The remainder of the chapter is organized as follows. Section

5.2 describes the studied systems and our experimental setup. Section 5.3 explains the

approaches that we used to answer the research questions and presents the results of

our case study. Section 5.4 discusses the characteristics of commits that only change

logging statements without changing the non-logging code. Section 5.5 discusses the

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 117

threats of validity. Finally, Section 5.6 draws conclusions based on our presented find-

ings.

5.2 Case Study Setup

This section describes the subject systems and the process that we used to prepare the

data for our case study.

5.2.1 Subject Systems

This chapter studies the reasons for log changes and explores the feasibility of pro-

viding accurate just-in-time suggestions for log changes through a case study on four

open source projects: Hadoop, Directory Server, Commons HttpClient, and Qpid. All

the four projects are mature Java projects with years of development history and from

different domains. Table 5.1 shows the studied development history for each project.

We use the “svn log”8 command to retrieve the development history for each project

(i.e., the svn commit records). We analyze the development history of the main branch

(trunk) of each project, and focus on Java source code (excluding Java test code). Some

commits import a large number of atomic commits from a branch into the trunk

(a.k.a. merge commits), which usually contain a large amount of code changes and

log changes. Such merge commits would introduce noise in our study (Zimmermann

et al., 2004; Hassan and Holt, 2004; Hassan, 2008) of log changes in a commit. We

unroll each merge commit into the various commits of which it is composed (using

the “use-merge-history” option of the “svn log” command).

8svn log. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 118

Table 5.1 also presents an overview of the studied systems. The source lines of code

(SLOC) of each project is measured at the end of the studied development history. The

Hadoop project is the largest project. It has 458K lines of source code, while HttpClient

is the smallest project, with an SLOC of 18K. We study 5,401, 4,968, 949 and 3,538 com-

mits for Hadoop, DirectoryServer, HttpClient and Qpid, respectively. These commits

include all the commits in the studied development history that change at least one

Java source code file. Table 5.1 also shows the numbers and percentages of commits

that change (i.e., add, modify, or delete) logging statements, for each project. 30.0%

(1,621 out of 5,401) of Hadoop’s commits are accompanied with log changes, while the

percentage of commits that change logging statement ranges from 22.7% to 26.6% for

Directory Server, HttpClient, and Qpid. The last column of Table 5.1 lists the number

of log changes (a log change is an occurrence of either adding, deleting, or modifying a

logging statement) that occurred during the studied development history. The Direc-

toryServer project has the most log changes within the studied history. We provide our

dataset9 for all four studied projects for better replication.

5.2.2 Data Extraction

Figure 5.2 presents an overview of our data extraction and data analysis approaches.

From the version control repositories of each subject system, we analyze the code

changes in each commit and identify the commits that contain changes to logging

statements. As a result, we are able to create a log-change database (i.e., a collection of

log changes) and label each commit as to whether it contains log changes or not. The

log-change database is used in our manual analysis (RQ1), and the labeled commit

9http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/dataset.zip

http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/dataset.zip

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 119

Ta
b

le
5.

1:
O

ve
rv

ie
w

o
ft

h
e

st
u

d
ie

d
sy

st
em

s.

P
ro

je
ct

#S
LO

C
St

u
d

ie
d

h
is

to
ry

#C
o

m
m

it
s

#L
o

g-
ch

an
gi

n
g

co
m

m
it

s
#L

o
g

ch
an

ge
s

H
ad

o
o

p
45

8
K

20
09

-0
5-

19
to

20
14

-0
7-

02
5,

40
1

1,
62

1
(3

0.
0%

)
9,

50
3

D
ir

ec
to

ry
Se

rv
er

11
9

K
20

06
-0

1-
03

to
20

14
-0

6-
30

4,
96

8
1,

13
0

(2
2.

7%
)

11
,8

83

H
tt

p
-

C
li

en
t

18
K

20
01

-0
4-

25
to

20
12

-1
2-

16
94

9
25

2
(2

6.
6%

)
2,

33
3

Q
p

id
27

1
K

20
06

-0
9-

19
to

20
14

-0
7-

01
3,

53
8

90
8

(2
5.

7%
)

8,
76

1

V
er

si
o

n
 c

o
n

tr
o

l
re

p
o

si
to

ri
es

Lo
g

ch
an

ge

id
en

ti
fi

ca
ti

o
n

Lo
g

ch
an

ge
s

La
b

el
le

d
 c

o
m

m
it

s

R
an

d
o

m
 f

o
re

st

cl
as

si
fi

ca
ti

o
n

St
at

is
ti

ca
lly

re

p
re

se
n

ta
ti

ve

ra
n

d
o

m

sa
m

p
lin

g

M
an

u
al

an

al
ys

is

M
o

d
el

 a
n

al
ys

is

R
at

io
n

al
e

 f
o

r
lo

g
ch

an
ge

s

D
at

a
Ex

tr
ac

ti
o

n

M
an

u
al

 a
n

al
ys

is
 (

R
Q

1
)

M
o

d
e

lin
g

an
al

ys
is

 (
R

Q
2

, R
Q

3
)

Su
b

se
t

o
f

lo
g

ch
an

ge
s

C
o

d
e

ch
an

ge
 in

ea

ch
 c

o
m

m
it

So
u

rc
e

co
d

e
at

ea

ch
 c

o
m

m
it

C
o

m
m

it

re
co

rd
s

So
ft

w
ar

e
m

ea
su

re
s

M
o

d
el

 e
va

lu
at

io
n

In
fl

u
en

ti
al

fa

ct
o

rs
 f

o
r

lo
g

ch
an

ge
s

M
o

d
el

p

er
fo

rm
an

ce

(R
Q

1
)

(R
Q

2
)

(R
Q

3
)

F
ig

u
re

5.
2:

A
n

ov
er

vi
ew

o
fo

u
r

d
at

a
ex

tr
ac

ti
o

n
an

d
an

al
ys

is
ap

p
ro

ac
h

es
.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 120

data is employed in our modeling analysis (RQ2 and RQ3).

Within the commits that change logging statements, there are only 1.2% to 4.2% of

them that do not change other source code (i.e., log-changing-only commits). Since

our models aim to provide developers with just-in-time suggestions for log changes

when they are changing other source code, we exclude these log-changing-only com-

mits in our modeling analysis. We revisit the characteristics of the log-changing-only

commits at the end of the chapter, in Section 5.4.

5.2.3 Log Change Identification

In order to represent the term log change more accurately, we define the following four

terms:

• Log addition, measures the new logging statements that are added in a commit.

• Log deletion, measures the obsolete logging statements that are deleted in a

commit.

• Log modification, measures the existing logging statements that are modified in

a commit.

• Log change, measures any kind of change (addition, deletion, and modification)

that is made to logging statements in a commit.

The studied projects leverage standard logging libraries (e.g., Apache Commons

Logging10, Log4j11 and SLF4J12) for logging. The usage of the standard libraries brings

uniform formats (e.g., logger.error(message)) to the logging statements, thus we can

accurately identify the logging statements.

10http://commons.apache.org/proper/commons-logging
11http://logging.apache.org/log4j/2.x
12http://www.slf4j.org

http://commons.apache.org/proper/commons-logging
http://logging.apache.org/log4j/2.x
http://www.slf4j.org

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 121

We use regular expressions to identify the added and deleted logging statements

across commits (see on-line replication package for the used regular expressions13).

If a pair of an added logging statement and a deleted one are within the same code

snippet and they are textually similar to each other, the pair of logging statements are

considered as a log modification. Otherwise they are considered as one log addition

and one log deletion. We measure the textual similarity between two logging state-

ments by calculating the Levenshtein distance ratio (Levenshtein, 1966) between their

concatenation of static text and variable names. Two logging statements are consid-

ered similar if the Levenshtein distance ratio between them is larger than a specified

threshold for which we choose 0.5 in this chapter (see Section 5.5 for a sensitivity anal-

ysis of the impact of this threshold on the identification of log modifications).

5.3 Case Study Results

In this section, we present the results of our research questions. For each research

question, we present the motivation of the research question, the approach that we

used to address the research question, and our experimental results.

5.3.1 RQ1: What are the reasons for changing logging statements?

Motivation

Before proposing an approach that can provide just-in-time suggestions for log

changes, we first conduct a manual study in order to investigate the reasons for

changing logging statements. Our manual observation will assist us in defining

13http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/log_change_regex.
zip

http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/log_change_regex.zip
http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/log_change_regex.zip

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 122

appropriate measures that we can use later on to build models to provide just-in-time

suggestions for log changes when developers commit code changes.

Approach

There is a total of 32,480 logging statement changes in the studied commits of the four

studied projects (9,503 for Hadoop, 11,883 for DirectoryServer, 2,333 for HttpClient and

8,761 for Qpid). Each commit may contain multiple logging statement changes. We

randomly selected a statistically representative sample (95% confidence level with a

±5% confidence interval) of 380 log changes. Among the 380 log changes, there are

204 log additions, 91 log modifications, and 85 log deletions. We manually examine the

possible reasons for these log changes. For each log change, we check the log change

itself, the co-changed code, the commit message, and the associated issue report if

an issue id is noted in the commit message. Certain log change reasons (e.g., a typo)

can be detected by only looking at the log change itself. Examining the co-changed

code can help us determine the log change reasons such as “a logging statement is

changed because the logged variables are changed”. The commit message and the is-

sue report directly communicate the intention of the developer and the issue owner

for a log change. Two researchers including the author of the thesis and a collaborator

work together by manually examining all log changes from the random sample. We

examine the log change, code change, commit message and the associated issue re-

port to understand the reason of a log change. If the reason is new, we add it to the

list of identified reasons. If there is a disagreement during the process, the two authors

discuss and reach a consensus.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 123

Table 5.2: Log-change reasons and the distribution: manual analysis result.

Reason
Category

Log Change Reason
Log Change

Number
Log Change

Type

Total Log
Change

Number

block
change

adding/deleting try-catch block 80 add,delete

260
adding/deleting method 69 add,delete
adding/deleting branch 52 add,delete
adding/deleting if-null branch 49 add,delete
adding/deleting loop 10 add,delete

log
improvement

improving debugging capability 19 add,modify

63

improving readability 13 add,modify
leveraging message translation 11 modify
improving runtime information 9 add,modify
redundant log information 6 delete
log library migration 4 modify
security issue 1 delete

dependence-
driven
change

logger change 20 modify

39
variable change 14 modify
method change 2 modify
class change 2 modify
dependence removal 1 modify

logging
issue

inappropriate log level 13 modify
18inappropriate log text 4 modify

incorrect message translation 1 modify

Results

We find 20 reasons for log changes across four categories: changing context code,

improving logging, dependency-driven changes and fixing logging issues. Table 5.2

summarizes the log change reasons. We present below the four categories of reasons

for log changes.

Block change. Logging statements are added (or deleted) as a result of the change

of the surrounding code blocks. According to our manual analysis, logging statements

are added (or deleted) when developers are adding (or deleting) try-catch blocks,

adding (or deleting) methods, adding (or deleting) branches (if branches and switch

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 124

/* Project: DirectoryServer; Commit: 664015
* File: directory/apacheds/branches/bigbang/core-integ/src/main/java/

org/apache/directory/server/core/integ/state/NonExistentState.java
*/

+ try
+ {
+ create(settings);
+ }
+ catch (NamingException ne)
+ {
+ LOG.error("Failed to create and start new server instance: " + ne);
+ notifier.testAborted(settings.getDescription(), ne);
+ return;
+ }

Figure 5.3: An example of log changes with the reason category block change.

branches), adding (or deleting) if-null branches (if branches checking an abnormal

condition), and adding (or deleting) loops (for loops and while loops). For example,

the code snippet shown in Figure 5.3 indicates that a logging statement is added to

record the error information as part of the newly added try-catch block. (Note: the

plus sign (+) or minus sign (-) leading a code line indicates that the code line is added

or deleted in that particular commit.)

Log improvement. Logging statements are added, deleted or modified to achieve

a better logging practice. Developers change logging statements (e.g., by adding a log-

ging statement which tracks the value of a variable) to improve the debugging capa-

bility of the logged information. They also change a logging statement to improve the

readability of the logged information; for example, they rephrase a logging statement

such that the log message would be easier to understand. Some logging statements

are changed to leverage log message translation method (i.e., using predefined code

such as “I18n.ERR_115” to represent a log message). Developers also change logging

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 125

/* Project: HttpClient; Commit: 159615
* File: /jakarta/commons/proper/httpclient/trunk/src/java/

org/apache/commons/httpclient/HttpMethodDirector.java
* Commit message: "Some extra debug log entries for the authenticaton

process".
*/
private Credentials promptForProxyCredentials(

final AuthScheme authScheme,
final HttpParams params,
final AuthScope authscope)

{
+ LOG.debug("Proxy credentials required");

/* other operations */
}

Figure 5.4: An example of log changes with the reason category log improvement.

statements, for example, by adding a logging statement to record the occurrence of

an event, to improve the logged runtime information. Removing redundant log infor-

mation is another way to improve the logging of a system; the redundant log infor-

mation includes duplicated log information and unnecessary log information. Devel-

opers sometimes improve their logging by migrating from an old logging style (e.g.,

“System.out”) to a more advanced logging library (e.g., Log4j) (i.e., log library migra-

tion (Kabinna et al., 2016a)). Finally, we also find that a logging statement is removed

because of a security issue that is mentioned in the associated issue report. Figure 5.4

shows that a logging statement is added to a method in order to enhance the debugging

capability. The commit message states that the developer added “some extra debug log

entries for the authentication process”.

Dependence-driven change. Logging statements are changed because they de-

pend on other code elements (e.g., variables) that are changed by developers. A log

change might be driven by the change of a logger (i.e., an class object that is used to

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 126

/* Project: Hadoop; Commit: 1308205
* File: hadoop/common/trunk/hadoop-hdfs-project/hadoop-hdfs/src/main/java/

org/apache/hadoop/hdfs/DFSClient.java
* Commit message: "HDFS-3144. Refactor DatanodeID#getName by use".
* Issure report (HDFS-3144): "DataNodeID#getName is no longer available.

The following are introduced so each context in which we use the
"name" has it’s own method: toString - for logging".

*/
- LOG.debug("write to " + datanodes[j].getName() + ": "
+ LOG.debug("write to " + datanodes[j] + ": "

+ Op.BLOCK_CHECKSUM + ", block=" + block);

Figure 5.5: An example of log changes with the reason category dependence-driven
change.

invoke a logging method), a variable, a method or a class. We also find that a logging

statement is changed to remove its dependence to a different module to remove the

coupling between modules. The example in Figure 5.5 shows that a logging statement

is modified because the method (“DatanodeID:getName”) that it depended on has

been replaced by a new method (“toString”). The reason of the log changes is recorded

in the commit message and the associated issue report14.

Logging issue. Logging statements are modified because issues (e.g., defects) are

discovered in the existing logging statements. Some logging statements are modified

due to an inappropriate log level. Some logging statements are modified because the

old logging statement has an inappropriate log text (e.g., a typo). We also find a log

change which is caused by an incorrect log message translation. In the example shown

in Figure 5.6, the level of a logging statement is downgraded from info to debug because

the info level caused too much noise, as noted in the commit message.

The manually identified reasons for log changes assist us in defining measures

14https://issues.apache.org/jira/browse/HDFS-3144

https://issues.apache.org/jira/browse/HDFS-3144

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 127

/* Project: Qpid; Commit: 1298555
* File: qpid/trunk/qpid/java/client/src/main/java/

org/apache/qpid/client/BasicMessageConsumer.java
* Commit message: "it reduces noise by downgrading most log messages from
info to debug".
*/

public void close(boolean sendClose) throws JMSException
{

- if (_logger.isInfoEnabled())
+ if (_logger.isDebugEnabled())

{
- _logger.info("Closing consumer:" + debugIdentity());
+ _logger.debug("Closing consumer:" + debugIdentity());

}
/* other operations */

}

Figure 5.6: An example of log changes with the reason category logging issue.

to model the drivers for log changes. The log change reasons in the block change

category motivate us to consider measures that capture the changes in the commit

itself. These measures may include the number of changed method declarations, try-

catch, if/if-null, and for/while statements in a commit. The log change reasons from

the dependence-driven change category also suggest us to consider measures that cap-

ture the changes in the commit itself, since the code elements that a logging statement

depends on might get changed in the commit. The log change reasons from the cate-

gories of log improvement and logging issue suggest that we should consider measures

that capture the current snapshot of the source code, such as log density, number of

logs, average log length, average log level, average number of log variables and com-

plexity measures. The log change reasons from the dependence-driven change category

also motivate us to consider measures that capture the current snapshot of the source

code, as logging statements with higher dependence on other source code (e.g., more

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 128

log variables) are more likely to be changed.

We find four categories of log change reasons: block change, log improvement,

dependence-driven change, and logging issue. The log change reasons give us valu-

able insight for defining measures to model the drivers for log changes.

5.3.2 RQ2: How well can we provide just-in-time log change sugges-

tions?

Motivation

We want to provide developers with just-in-time suggestions on whether a log change

(log addition, log deletion, or log modification) is needed when they are changing the

code. We need a classifier that can tell whether a code commit should contain log

changes. By evaluating the accuracy of the classifier, we can understand whether de-

velopers can depend in practice on the suggestions that can be provided by our ap-

proach.

Approach

We use random forest classifiers to provide just-in-time suggestions for log changes. A

random forest classifier models a binary response variable which measures the likeli-

hood of a log change occurring in a particular code commit.

In order to model the drivers for log changes, we extract and calculate a set of mea-

sures from three dimensions: change measures, historical measures, and product mea-

sures. Table 5.3 presents a list of measures that we collect for each dimension. Table 5.3

also describes our proposed measures and explains our motivation behind each mea-

sure. We build classifiers at the granularity of a code commit, thus we calculate all of

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 129

Table 5.3: Software measures used to model the drivers for log changes, measured per
each commit.

Dimension Measures Definition (d) | Rationale (r)

Change
measures

class declaration
d: Number of changed class declarations in the commit.
r: Developers might add logging statements in a new class so that they can bet-
ter observe the behavior of the class.

method declaration
d: Number of changed method declarations in the commit.
r: Developers might add logging statements in a new method so that they can
better observe the behavior of the method.

try statement
d: Number of changed try statements in the commit.
r: Logging statements often reside inside try blocks; hence logging statements
are likely to co-change with try statements.

catch clause
d: Number of changed catch clauses in the commit.
r: Exception catching code is often logged (Yuan et al., 2012b; Fu et al., 2014;
Zhu et al., 2015); hence logging statements are likely to co-change with catch
clauses.

throw statement
d: Number of changed throw statements in the commit.
r: A logging statement is often inserted right before a throw statement (Fu et al.,
2014); hence developers changing a throw statement are likely to change the
corresponding logging statement.

throws clause
d: Number of method definitions with throws clauses (which declare that a
method can throw exceptions) changed in the commit.
r: Methods that throw exceptions are likely to have logging statements; thus
logging statements might co-change with throws clauses.

if statement
d: Number of changed if statements in the commit.
r: Logging statements are usually inside if branches (Fu et al., 2014; Zhu et al.,
2015); thus logging statements are likely to co-change with if statements.

if-null
statement

d: Number of changed if-null statements (if statements with null condition,
e.g., “if (outcome ==NULL)”) in the commit.
r: if-null branches are usually corner-case execution paths which are likely to
be logged (Fu et al., 2014; Zhu et al., 2015); thus logging statements might co-
change with if-null blocks.

else clause
d: Number of changed else clauses in the commit.
r: Logging statements are usually inside if-else branches (Fu et al., 2014; Zhu
et al., 2015); thus logging statements are likely to co-change with else clauses.

for statement
d: Number of changed for statements in the commit.
r: Logging statements inside for loops usually record the execution path or sta-
tus of the for loops; hence these logging statements are likely to co-change with
the for statements.

while statement
d: Number of changed while statements in the commit.
r: Logging statements inside while loops usually record the execution path or
status of the while loops; hence these logging statements are likely to co-change
with the while statements.

commit type
d: Change type of the commit: Bug/Improvement/New Feature/Task/Sub-
task/Test.
r: Change type characterized the context of a code change, thus it might affect
developers’ logging behavior.

Historical
measures

log churn
in history

d: Number of changed logs in the development history of the involved files.
r: Files experiencing frequent log changes in the past might expect frequent log
changes in the future.

log churn ratio
in history

d: Ratio of the number of changed logging statements to the number of changed
lines of code in the development history of the involved files.
r: Files experiencing frequent log changes in the past are likely to exhibit fre-
quent log changes in the future.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 130

Dimension Measures Definition (d) | Rationale (r)

Historical
measures

log-changing
commits
in history

d: Number of commits involving log changes in the development history of the
involved files.
r: Files experiencing frequent log changes in the past are likely to exhibit fre-
quent log changes in the future.

code churn
in history

d: Number of changed lines of code in the development history of the involved
files.
r: Frequently changed code are problem-prone thus are more likely to be
logged.

commits
in history

d: Number of commits in the development history of the involved files.
r: Frequently changed code are problem-prone thus are more likely to be
logged.

Product
measures

log number
d: The number of logging statements in the files that are involved in the commit.
r: Code snippets with more logging statements are more likely to require fre-
quent log changes.

log density
d: The density of logging statements in the files that are involved in the commit,
calculated by dividing the total number of logging statements by the lines of
source code across all the involved files.
r: Issues with the existing logging statements might cause log changes. Thus
code snippets with denser logging statements are more likely to require log
changes.

average
log length

d: Average length of the existing logging statements in the changed files.
r: Longer logging statements are more likely to require continuous mainte-
nance.

average
log level

d: Average level of the existing logging statements in the changed files. Obtained
by quantifying the log levels into integers and calculating the average.
r: Logs with a lower verbosity level might get changed more often since they are
more likely to be used for debugging.

average
log variables

d: Average number of variables in the existing logging statements in the
changed files.
r: Logs with more variables are likely more coupled with the code, hence they
may be changed more often.

SLOC
d: Number of source lines of code in the changed files.
r: Large source files are likely to have more logging statements, thus they get
more chances for log changes.

McCabe
complexity

d: McCabe’s cyclomatic complexity of the changed files.
r: Complex source files are likely to have more logging points, thus they are more
likely to exhibit log changes.

fan-in
d: The number of classes that depend on (i.e., reference) the changed code.
r: Classes with a high fan-in, such as library classes, tend to have less logging
statements.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 131

our proposed measures for very commit during the studied development history. We

describe below each dimension of measures:

• Change measures capture the changes in the commit itself, represented by the

changes of control flow statements (e.g., try statement, if statement), and the type

of a commit (commit type, Bug/Improvement/New Feature/Task/Subtask/Test).

We choose the change measures according to our manual analysis results. As

shown in the results of RQ1, most log changes are accompanied with contex-

tual code changes (i.e., block change and dependence-drive change). For exam-

ple, adding/deleting try-catch block is one of the most frequent reasons for a log

change. The commit type captures the context or purpose of the code change;

we use the “type” field of the JIRA issue report that is linked to the commit.

• Historical measures capture the code changes throughout the development his-

tory (before the considered commit) of the changed files. Based on our intu-

ition, source code files undergoing frequent log changes in the past may have

log changes in the future. Besides, prior research shows that files with high churn

rate are more defect-prone (Nagappan et al., 2006; Nagappan and Ball, 2007), and

developers are likely to add more logs in defect-prone source code files (Shang

et al., 2015).

• Product measures capture the current snapshot of the source code, represented

by the status of logging statements and other source code, of the software sys-

tem just before the considered commit. For example, log number and log den-

sity capture the log-intensiveness of the changed code. Our manual analysis in

RQ1 shows that many log changes are committed to improve existing logging

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 132

if (LOGGER.isDebugEnabled()) {
LOGGER.debug("This is a debug message ");

}

Figure 5.7: An example of a logging guard.

(i.e., the log improvement reasons) or fix logging issues (i.e., the logging issue rea-

sons). Thus the code changes on log-intensive code are more likely to involve

log changes. In addition, based on our intuition, the appropriateness of logging

statements should be related to their contextual source code. Therefore, we also

calculate several product measures that capture the contextual source code of

logging statements (i.e., SLOC, McCabe complexity and fan-in).

For the if statement measure from the dimension of change measures, we do not

consider if statements that act as logging guards. An example of such if statements is

shown in Figure 5.7.

Correlation analysis. Prior to constructing the classifiers for log changes, we check

the pairwise correlation between our proposed measures using the Spearman rank cor-

relation test (ρ). Specifically, we use the “varclus” function in the “Hmisc” R package to

cluster measures based on their Spearman rank correlation. We choose the Spearman

rank correlation method because it is robust to non-normally distributed data (McIn-

tosh et al., 2014). In this work, we choose the correlation value 0.8 as the threshold to

remove collinearity. In other words, if the correlation between a pair of measures is

greater than 0.8 (|ρ| > 0.8), we keep one of the two measures in the classifier. We find

that the measures that are listed in Table 5.3 present similar patterns of correlation

across all four studied projects, thus we drop (i.e., do not consider in the classifier) the

same measures for all the studied projects. Dropping the same set of measures for the

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 133

projects enables us to build cross-project classifiers as discussed in the “Cross-project

Evaluation” part that follows. We combine the data of the four projects together and

perform correlation analysis on the combo data. Figure 5.8 shows the result of the cor-

relation analysis on the combo data, where the horizontal bridge between each pair

of measures indicates the correlation, and the red dotted line represents the thresh-

old value (0.8 in this case). The results of our correlation analysis on each individual

project can be downloaded at a public link15. To ease the interpretation of the classi-

fier, we try to keep the one that is easier to understand and calculate from each pair of

highly-correlated measures. For example, the SLOC and McCabe complexity measures

have a correlation higher than 0.8, we keep the SLOC measure and drop the McCabe

complexity measure. Based on the result shown in Figure 5.8, we drop the following

measures: log churn in history, log-changing commits in history, McCabe complexity,

commits in history, log churn ratio in history, try statement and if-null statement, as

they are highly correlated with other measures.

Modeling technique. We build random forest classifiers to model the drivers for log

changes. A random forest is a classifier consisting of a collection of decision tree clas-

sifiers and each tree casts a vote for the most popular class for a given input (Breiman,

2001). Random forests construct each tree using a different bootstrap sample (i.e., if

the number of instances in the training set is N , randomly sample N instances with

replacement) of the input data as the training set. The random forest classifier uses a

bootstrap approach internally to get an unbiased evaluation of the performance of a

classifier (Breiman, 2001). In addition, unlike standard decision trees where each de-

cision node is split using the best split among all variables, random forests split each

node using the best among a randomly chosen subset of variables from each of the

15http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/correlation.zip

http://sailhome.cs.queensu.ca/replication/JITLogSuggestions/correlation.zip

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 134

th
ro

w
s

cl
au

se
w

hi
le

 s
ta

te
m

en
t

th
ro

w
 s

ta
te

m
en

t
ca

tc
h

cl
au

se
tr

y
st

at
em

en
t

cl
as

s
de

cl
ar

at
io

n
m

et
ho

d
de

cl
ar

at
io

n
fo

r
st

at
em

en
t

el
se

 c
la

us
e

if
st

at
em

en
t

if−
nu

ll
st

at
em

en
t

av
er

ag
e

lo
g

le
ng

th
lo

g
ch

ur
n

ra
tio

 in
 h

is
to

ry
lo

g
de

ns
ity

av
er

ag
e

lo
g

va
ria

bl
es

av
er

ag
e

lo
g

le
ve

l
fa

n−
in

lo
g

nu
m

be
r

lo
g

ch
ur

n
in

 h
is

to
ry

lo
g−

ch
an

gi
ng

 c
om

m
its

 in
 h

is
to

ry
S

LO
C

M
cC

ab
e

co
m

pl
ex

ity
co

m
m

its
 in

 h
is

to
ry

co
de

 c
hu

rn
 in

 h
is

to
ry

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
pe

ar
m

an
 ρ

Figure 5.8: Correlation analysis using Spearman hierarchical clustering (for the combo
data).

constructed trees (Liaw and Wiener, 2002). Random forests are naturally robust against

overfitting, and they perform very well in terms of accuracy (Breiman, 2001). Random

forest provides us a way to do sensitivity analysis on the measures so that we can under-

stand the most influential factors in our classifiers (Breiman, 2002; Liaw and Wiener,

2002). Besides, a recent study (Ghotra et al., 2015) compares 31 classifiers in software

defects prediction and suggests that Random Forest outperforms other classifiers.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 135

Within-project Evaluation. We build a random forest classifier to determine the

likelihood of a log change for each commit based on the development history prior to

that particular commit. Specifically, for each commit, we build a random forest clas-

sifier using all the prior commits as training data, and use the classifier to determine

whether a log change is needed for that particular commit. A classification result can

be “true” (i.e., the likelihood of a log change is higher than 0.5) or “false” (i.e., the likeli-

hood of a log change is lower than 0.5). A “true” classification result suggests the need

of log changes in that code commit, while a “false” classification result suggests that

no log change is needed for that commit. Then, we update the classifier with the new

commit and use the updated classifier to determine the likelihood of a log change for

the following commit, and so on. Evaluating the classification result for a commit can

have one of four outcomes: TP - true positive, FP - false positive, FN - false negative,

and TN - true negative. The outcomes are illustrated in the confusion matrix that is

shown in Table 5.4.

We use balanced accuracy (BA) as prior research (Zhu et al., 2015) to evaluate the

performance of our within-project evaluation. BA averages the probability of correctly

identifying a log-changing commit and the probability of correctly identifying a non-

log-changing commit. BA is widely used to evaluate the modeling results on imbal-

anced data (Zhu et al., 2015; Cohen et al., 2004; Zhang et al., 2005), because it avoids

over-optimism on imbalanced data. BA is calculated by Equation (5.1):

B A =
1

2
× T P

T P + F N
+

1

2
× T N

F P +T N
(5.1)

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 136

We determine the likelihood of a log change for each commit throughout the life-

time of a project, using a random forest classifier that is trained from all the prior com-

mits of the same project, and get an outcome that is represented by one of TP, FP, FN

and TN. We train the first classifier for each project when there are 50 commits in the

development history; in other words, we evaluate our first classifier on the 51st com-

mit. For each project, we sum up the TP, FP, FN and TN for all commits (except for

the first 50 commits) and apply Equation 5.1 to calculate the overall performance of

our just-in-time suggestions that is represented by a BA. Moreover, in order to observe

the evolution of our classifier’s performance over the lifetime of each project, we use

a “sliding window” technique to calculate the BA for each commit. Specifically, the

“sliding window” of a particular commit contains 101 consecutive commits, including

50 preceding commits, the commit itself, and 50 following commits. In order to get

the BA for the particular commit, we sum up the TP, FN, TN and FP in the “sliding win-

dow” and then calculate the averaged BA using Equation (5.1). Each time we move the

sliding window forward by one commit to calculate the BA for the next commit. The

BA for each commit that is calculated from the “sliding window” enables us to exam-

ine the stability of the performance of our just-in-time suggestions, and whether the

suggestions are accurate when there are only a small number of commits available to

train a classifier at the start of a project.

Table 5.4: Confusion matrix for the classification results of a commit.

Actual
Logging Non-logging

Classified
Logging TP FP
Non-logging FN TN

Cross-project Evaluation. Since small projects or new projects might not have

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 137

enough history data for log change classification, we also evaluate our classifiers’ per-

formance in cross-project classification. We train a classifier using a combo data of

N − 1 projects (i.e., the training projects), and use the classifier to determine the like-

lihood of a log change for each of the commits of the remaining one project (i.e., the

testing project).

We evaluate the BA of the cross-project classifiers. For each testing project, we sum

up the TP, FN, TN and FP that are computed from determining the likelihood of a log

change of all the commits of the project, and apply Equation (5.1) to calculate the BA.

We also use the area under the ROC curve (AUC) to evaluate the performance of

the cross-project classifiers. While the BA measures our classifiers’ accuracy in log

change classification, the AUC evaluates how well our classifiers can discriminate log-

changing commits and non-log-changing commits. The AUC is the area under the

ROC curve which plots the true positive rate (T P /(T P+F N)) against false positive rate

(F P /(F P +T N)). The AUC ranges between 0 and 1. A high value for the AUC indicates

a high discriminative ability of the classifiers; an AUC of 0.5 indicates a performance

that is no better than random guessing.

To avoid the unbalanced number of commits for each project in the training data,

we leverage up-sampling to balance the training data such that each project has the

same number of entries in the training data. Specifically, we keep unchanged the

largest training project in the training data; while we randomly up-sample the entries

of the other training projects with replacement to match the number of entries of

the largest training project. In order to reduce the non-determinism caused by the

random sampling, we repeat the “up-sampling - training - testing” process for 100

times and calculate the average BA and AUC values.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 138

Results

Our random forest classifiers can effectively provide just-in-time suggestions for log

changes using historical data from the same project. The overall BA values when

considering all commits in Hadoop, DirectoryServer, HttpClient, and Qpid are 0.76,

0.83, 0.77, 0.77, respectively (see Table 5.5). Figure 5.9, Figure 5.10, Figure 5.11 and

Figure 5.12 illustrate the within-project classification results using the “sliding win-

dow” technique for Hadoop, DirectoryServer, HttpClient, and Qpid, respectively. For

each figure, the horizontal axis denotes the commit index while the vertical axis shows

the BA value. The black solid curve plots the BA value at each commit, and the red

dashed line indicates an average BA over all the commits of the project. These figures

show that our random forest classifiers achieve an average BA of 0.76 to 0.82. In other

words, given a commit, our classifiers can tell whether this commit should change log-

ging statements or not, with an average accuracy of 0.76 to 0.82. Table 5.6 presents the

detailed TP, FN, TN, and FP numbers that are used to calculate the overall BAs using

Equation 5.1. Taking the Hadoop project for example, among the 1,541 actual logging

commits (TP + FN), 76% (1,166) of them are correctly classified as logging commits,

and 24% (375) of them are incorrectly classified as non-logging commits; among the

3,718 actual non-logging commits (TN + FP), 76% (2,822) of them are correctly classi-

fied as non-logging commits, and 24% (896) of them are incorrectly classified as log-

ging commits. On average, training such a random forest classifier for a large system

like Hadoop on a workstation (Intel i7 CPU, 8G RAM) takes about 2 seconds, and clas-

sifying the log changes for a particular commit takes about 0.02 seconds. For each

commit, we would only need to perform the classification step in real-time, while the

training can be done offline. These results indicate that our within-project classifiers

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 139

Commit number: 209

 Average BA: 0.76

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Commit number

B
A

Figure 5.9: The balanced accuracy of the within-project classifiers for Hadoop.

can effectively provide just-in-time suggestions for log changes.

Our classifiers achieve the average balanced accuracy with a small number of

commits as training data. We measure when a project accumulates sufficient commit

data to train a classifier that reaches the average performance in terms of BA. In Fig-

ure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12, we have marked the commit number

where each classifier reaches its average BA for the first time. We find that the within-

project classifiers for Hadoop, DirectoryServer, HttpClient, and Qpid reach their aver-

age BAs when the projects got 209, 193, 211 and 155 commits, respectively. The results

indicate that the classifiers can learn an average classification power after a relatively

small number of commits.

The performance of our classifiers fluctuates over time. As shown in Figure 5.9

through 5.12, the performance (in terms of the BA) of the within-project classifiers

fluctuates over time, and the fluctuation does not follow any clear trend. These results

might be explained by the assumption that developers follow different logging prac-

tices at different development stages. For example, developers might be less focused

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 140

Commit number: 193

 Average BA: 0.82

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Commit number

B
A

Figure 5.10: The balanced accuracy of the within-project classifiers for DirectoryServer.

Commit number: 211

 Average BA: 0.77

0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400 500 600 700 800 900
Commit number

B
A

Figure 5.11: The balanced accuracy of the within-project classifiers for HttpClient.

on logging at the beginning of a release cycle and might pay more attention on logging

when a product is approaching its release (and final testing is being performed on it).

Table 5.5 shows the average BA, 5 percentile BA and 95 percentile BA for the within-

project classifiers over time. Only 5% of the commits get a BA smaller than 0.68, 0.71,

0.66 and 0.68 for Hadoop, DirectoryServer, HttpClient, and Qpid, respectively. And 5%

commits get a BA bigger than 0.82, 0.92, 0.83 and 0.88, respectively.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 141

Commit number: 155

 Average BA: 0.77

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500
Commit number

B
A

Figure 5.12: The balanced accuracy of the within-project classifiers for Qpid.

Table 5.5: The BA results for the within-project evaluation.

Project
Sliding window

Overall BA
Average BA 5% BA 95% BA

Hadoop 0.76 0.68 0.82 0.76
DirectoryServer 0.82 0.71 0.92 0.83
HttpClient 0.77 0.66 0.83 0.77
Qpid 0.77 0.68 0.88 0.77

Table 5.6: The TP, FN, TN, FP results for the within-project evaluation.

Project TP FN TN FP

Hadoop 1,166 375 2,822 896
DirectoryServer 907 167 2,998 721
HttpClient 193 50 490 161
Qpid 664 196 2,006 575

Our random forest classifiers can effectively provide just-in-time suggestions for

log changes using the development history of other projects. Table 5.7 lists the per-

formance of the cross-project classifiers, expressed by the BA and the AUC measures.

Each row of the table shows the performance of the classifier that uses the specified

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 142

Table 5.7: The BA and AUC results for the cross-project evaluation.

Project BA AUC

Hadoop 0.76 0.84
DirectoryServer 0.80 0.88
HttpClient 0.79 0.87
Qpid 0.78 0.86

project as testing data and all the other projects as training data. The cross-project

classifiers reach a BA of 0.76 to 0.80, indicating that the cross-project classifiers can

effectively determine the likelihood of a log change for each commit of a project with

little development history.

Our random forest classifiers can effectively discriminate log-changing commits

and non-log-changing commits. As shown in Table 5.7, the cross-project classifiers

achieve an AUC of 0.84 to 0.88. The high AUC values indicate that the classifiers per-

form much better than random guessing in discriminating the log-changing commits

and non-log-changing commits.

Cross-project classification and within-project classification achieve similar

performance. The within-project classifiers achieve an average BA of 0.76, 0.82,

0.77, 0.77 for Hadoop, DirectoryServer, HttpClient, and Qpid, respectively; while the

cross-project classifiers reach a BA of 0.76, 0.80, 0.79 and 0.78 for these four projects,

respectively. These results show that developers of a new software project that do not

have a large amount of development history can leverage classifiers that are built from

other projects to provide just-in-time log change suggestions.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 143

Our random forest classifiers can effectively provide just-in-time suggestions for

log changes, with a balanced accuracy of 0.76 to 0.82 in a within-project evaluation

and a balanced accuracy of 0.76 to 0.80 in a cross-project evaluation. Developers

of the studied systems can leverage such classifiers to guide their log changes in

practice.

5.3.3 RQ3: What are the influential factors that explain log changes?

Motivation

In order to quantitatively understand the reasons for log changes, we analyze the ran-

dom forest classifiers to find out the most influential factors that are associated with

log changes. There are three types of log changes: log additions, log deletions, and log

modifications. The influential factors for log changes, log additions, log deletions and

log modifications may be different. Therefore, we analyze the influence of factors for

log changes, log additions, log deletions, and log modifications, separately. From our

manual analysis in RQ1, we find that the occurrences of deleting a logging statement

is usually associated with deleting the enclosing code block (see Table 5.2). Therefore,

we do not analyze the factors that influence log deletions.

Approach

Bootstrap analysis. In order to study the influential factors that affect log changes, we

use the bootstrap method to repeatedly sample training data and build a large num-

ber of random forest classifiers, so as to statistically analyze the influence of the factors.

Bootstrap (Efron, 1979) is a general approach to infer the relationship between a sam-

ple data and the overall population, by resampling the sample data with replacement

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 144

and analyzing the relationship between the resample data and the sample data. The

bootstrap analysis is implemented in the following steps:

• Step 1. From the original dataset with N instances, we choose a random boot-

strap sample of N instances with replacement.

• Step 2. We build a random forest classifier using the bootstrap sample.

• Step 3. We collect the influence of each factor in the classifier.

• Step 4. We repeat the above steps 1,000 times.

By repeatedly using the bootstrap samples to analyze the influence of the factors, we

can avoid the bias that might be caused by a single round of modeling analysis.

Variable influence in Random Forest. The random forest classifier evaluates the

influence of each factor by permuting the values of the corresponding measure of that

factor while keeping the values of the other factors unchanged in the testing data (the

so-called “OOB” data) (Breiman, 2001). The classifier measures the impact of such a

permutation on the classification error rate (Breiman, 2002; Liaw and Wiener, 2002). In

each round of the 1,000 bootstraps, we use the “importance” function in the R package

“randomForest” to evaluate the influence of the factors.

Scott-Knott clustering. In this step, we compare the average influence of the fac-

tors from the 1,000 bootstrap iterations. However, the differences among the influence

of some factors might actually be due to random variability. Thus we need to partition

all the factors into statistically homogeneous groups so that the influence means of the

factors within the same group are not significantly different (i.e, p-value ≥ 0.05). The

Scott-Knott (SK) algorithm is a hierarchical clustering approach that can partition the

results into distinct homogeneous groups by comparing their means (Scott and Knott,

1974; Jelihovschi et al., 2014). The SK algorithm hierarchically divides the factors into

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 145

groups and uses the likelihood ratio test to judge the significance of difference among

the groups. The SK method generates statistically distinct groups of factors, i.e., each

two groups of factors have a p-value < 0.05 in a likelihood ratio test of their influence

values.

In this work, we use an enhanced SK approach (Tantithamthavorn et al., 2017),

which considers the effect size in addition to the statistical significance of the differ-

ence between groups, to divide the factors into distinct groups according to their in-

fluence in the random forest classifiers.

We repeat our approach (bootstrap analysis, variable influence and Scott-Knott

clustering) for the log addition classifier and the log modification classifier to study

the most influential factors for log additions and log modifications respectively.

We also compare the influential factors with the log change reasons that we ob-

served in our manual analysis step in RQ1. The connections between the two outcomes

help us better understand the reasons behind developers’ decision of changing logs.

Results

Change measures and product measures are the most influential factors for log

changes. Table 5.8, Table 5.9 and Table 5.10 present the influence values of the 10

most influential predictor variables for the log change classifier, the log addition

classifier and the log modification classifier, respectively. For each studied project,

we measure the mean value of each factor’s influence. The factors are divided into

statistically distinct groups by a Scott-Knott test on the influence values. Overall, the

most influential factors in these classifiers include the if statement (with a median

group ranking of 2), catch clause (with a median group ranking of 3) and method

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 146

Table 5.8: The influence mean of the top 10 factors (measures) for the log change clas-
sifier, divided into distinct homogeneous groups by Scott-Knott clustering.

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean
1 log density 0.149 1 catch clause 0.169
2 if statement 0.135 if statement 0.169
3 catch clause 0.122 2 log density 0.134
4 log number 0.107 3 throw statement 0.125
5 method declaration 0.072 4 method declaration 0.085
6 average log length 0.069 5 log number 0.080
7 average log variables 0.068 6 average log variables 0.076
8 average log level 0.066 7 SLOC 0.072
9 SLOC 0.062 8 else clause 0.068
10 else clause 0.061 9 average log length 0.065

HttpClient Qpid

Group Factor Influence Mean Group Factor Influence Mean
1 if statement 0.119 1 log density 0.155
2 log density 0.081 2 catch clause 0.125

log number 0.080 3 method declaration 0.095
3 average log length 0.074 log number 0.095
4 average log level 0.072 4 if statement 0.094
5 average log variables 0.066 5 average log level 0.082
6 method declaration 0.060 6 average log variables 0.073
7 catch clause 0.057 7 else clause 0.069
8 code churn in history 0.052 8 average log length 0.064

SLOC 0.051 9 SLOC 0.057

declaration (with a median group ranking of 5) measures from the dimension of

change measures, as well as the log density (with a median group ranking of 2), log

number (with a median group ranking of 3.5), average log variables (with a median

group ranking of 6), average log length (with a median group ranking of 6.5) and

average log level (with a median group ranking of 6.5) measures from the dimension

of product measures.

The strong influence of the measures from the change measures dimension

indicates that log changes are highly associated with other code changes, and this

is in accordance with the fact that the block change reasons are the most frequent

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 147

Table 5.9: The influence mean of the top 10 factors (measures) for the log addition
classifier, divided into distinct homogeneous groups by Scott-Knott clustering.

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean
1 catch clause 0.152 1 catch clause 0.204
2 if statement 0.145 2 if statement 0.182
3 log density 0.141 3 throw statement 0.130
4 log number 0.102 4 log density 0.124
5 else clause 0.092 5 SLOC 0.096
6 average log level 0.079 6 else clause 0.087
7 method declaration 0.070 7 method declaration 0.086
8 SLOC 0.067 8 average log length 0.081
9 average log length 0.065 9 log number 0.070
10 fan-in 0.064 10 fan-in 0.066

HttpClient Qpid

Group Factor Influence Mean Group Factor Influence Mean
1 if statement 0.121 1 catch clause 0.162
2 log density 0.091 2 log density 0.145
3 catch clause 0.085 3 if statement 0.103
4 throw statement 0.081 4 method declaration 0.091

log number 0.080 5 log number 0.088
5 average log level 0.071 6 average log variables 0.082
6 average log variables 0.066 7 average log level 0.073

average log length 0.064 8 else clause 0.071
7 throws clause 0.059 9 fan-in 0.065
8 method declaration 0.055 10 class declaration 0.064

reasons that we observed in our manual analysis. In particular, the influence of the

catch clause measure suggests a strong association between exception handling and

logging, and this matches with the adding/deleting try-catch block reason that is ob-

served in our manual analysis. This result also quantitatively supports best practices

recommendation that exception-handling code should log the information that is

associated with the exception being handled (Apache-Commons, 2016; Microsoft-

MSDN, 2016). The strong influence of the if statement and if-null statement measures

(if-null statement has a high correlation with if statement) shows that developers tend

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 148

Table 5.10: The influence mean of the top 10 factors (measures) for the log modification
classifier, divided into distinct homogeneous groups by Scott-Knott clustering.

Hadoop Directory Server

Group Factor Influence Mean Group Factor Influence Mean
1 log density 0.191 1 log number 0.177
2 log number 0.160 2 log density 0.168
3 if statement 0.142 3 average log length 0.155
4 average log variables 0.106 4 if statement 0.117
5 method declaration 0.100 5 method declaration 0.109
6 average log length 0.097 6 average log variables 0.098
7 average log level 0.089 7 SLOC 0.092

fan-in 0.088 8 average log level 0.076
8 SLOC 0.084 9 fan-in 0.071
9 code churn in history 0.071 10 throw statement 0.063

HttpClient Qpid

Group Factor Influence Mean Group Factor Influence Mean
1 log number 0.140 1 log density 0.184
2 if statement 0.110 2 log number 0.165
3 log density 0.096 3 if statement 0.106

average log variables 0.096 4 average log variables 0.101
4 method declaration 0.093 catch clause 0.101
5 average log level 0.091 5 average log level 0.095
6 SLOC 0.076 6 average log length 0.090
7 average log length 0.068 7 method declaration 0.087
8 code churn in history 0.058 8 SLOC 0.070
9 fan-in 0.047 9 fan-in 0.068

to change logging statements while changing conditional branches, and this corre-

sponds to the adding/deleting branch and adding/deleting if-null branch reasons that

we observed in RQ1. As another influential factor from the change measures family,

the method declaration measure suggests that the change of a method declaration is

strong indicator for log changes. Again, this result consents with manually detected

reason adding/deleting method.

The great influence of the measures from the product measures dimension implies

that the current snapshot of the source code impacts the logging decisions of devel-

opers. Specifically, the log density and log number measures being influential factors

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 149

indicates that log changes occur more in code snippets with higher log density, and

this agrees with our manually-observed log improvement and logging issue reason cat-

egories; the influence of the average log level, average log length and average log vari-

ables measures shows that the characteristics of the existing logging statements impact

developers’ decision on whether to change logs in a commit, which also corresponds

to the manually detected reason categories log improvement and logging issue.

Change measures are the most influential measures for the log addition classifier,

while product measures are the most influential ones for the log modification clas-

sifier. Developers tend to add logging statements when adding contextual code. The

current snapshot of the source code is the best indicator for log modifications. This

result agrees with the observations from our manual analysis that the most frequent

reasons for log additions are from the block change category, while the reasons for log

modifications are from the log improvement, dependence-drive change and the logging

issue categories. The catch clause (with a median group ranking of 1 in the log addition

classifier) and if statement (with a median group ranking of 2 in the log addition clas-

sifier) measures from the change measures dimension play the most influential roles

in the log addition classifier. Developers tend to add logging statements when they are

adding exception catching block (catch) or dealing with a conditional branch. The log

density and log number measures (both with a median group ranking of 1.5 in the log

modification classifier) from the product measures dimension are the most influential

measures for the log modification classifier, which means that log modifications occur

more often in code snippets with high log density.

Different projects present different log change practices. The catch clause mea-

sure is one of the most influential indicators for a log change in the Hadoop, Directory

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 150

Server, and Qpid projects, with a group ranking of 3, 1, and 2, respectively; however,

the catch clause measure is a less influential indicator for log changes in the HttpClient

project (with a group ranking of 7). This might imply that developers for the HttpClient

project are less likely to log exception-handling blocks; or it maybe because that there

are significantly less changes of catch clauses for the HttpClient project compared to

other three projects. However, the latter inference is unlikely since 18.5% of the com-

mits for the HttpClient project contain changes to catch clauses, while that propor-

tions are 21.0%, 20.3% and 27.5% for the Hadoop, Directory Server, and Qpid projects,

respectively.

For the log addition classifier, the throw statement measure shows much stronger

explanatory power in the Directory Server and HttpClient projects (with a group

ranking of 3 and 4, respectively) than that in the other two projects. This difference

might indicate that developers for the Directory Server and HttpClient projects are

more likely to add logging statements when they throw an exception; or it maybe

due to the rareness of changes of throw statement in the Hadoop and Qpid projects.

Again, the latter inference is not likely since the proportions of commits that contain

changes to throw statement are 26.5% and 28.6% for the Hadoop and Qpid projects,

respectively, and these proportions for the Directory Server and HttpClient projects

are 25.8% and 22.8% respectively.

Code changes in a commit and the current snapshot of the source code are the

most influential indicators for a log change in a commit. Change measures are the

most influential factors for the log addition classifier, while product measures are

the most influential factors for the log modification classifier.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 151

5.4 Discussion

Discussion regarding log-changing-only commits. Our random forest classifiers aim

to provide developers with just-in-time log change suggestions when they commit

code changes. However, developers sometimes also change logging statements

without affecting other source code (we call such commits as log-changing-only

commits). In such cases, our approach cannot provide just-in-time log change

suggestions. As shown in Table 5.11, the log-changing-only commits take up 1.2%

to 4.2% of all the commits that change logging statements. By manually examining

all these log-changing-only commits, we find that a log-changing-only commit

occurs when either 1) the developers have not correctly implemented the needed

logging statements in the first place, or 2) the requirements of logging have changed

afterwards. The example in Figure 5.13 shows that a logging statement was missing in

an exception handling code, which increased the difficulty of finding the root cause

of a reported bug (i.e., QPID-135216). A log-changing-only commit (704187) added a

logging statement in the exception handling block so that “hopefully the next time it

shows up we have a bit more info”.

The commit shown in Figure 5.14, in contrast, removes two logging statements

which were previously inserted for debugging purposes, because the requirement of

logging has changed: they don’t need the debug message anymore.

Table 5.11 presents the number of log-changing-only commits that add, delete and

modify logging statements, respectively. 88 out of 129 (68.2%) log-changing-only com-

mits modify existing logging statements, while 38 (29.5%) of them add new logging

statements. Developers are least likely to delete a logging statement without changing

16https://issues.apache.org/jira/browse/QPID-1352

https://issues.apache.org/jira/browse/QPID-1352

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 152

/* Project: Qpid; Commit:704187
* File: /incubator/qpid/trunk/qpid/java/client/src/main/java/

org/apache/qpid/client/AMQConnection.java
* Commit message: "log the original exception so we don’t lose the stack

trace"
* JIRA issue report: "I’ve committed a change to log the original error.

I can’t reproduce this on my system, so hopefully the next time it
shows up we have a bit more info."

*/
catch (AMQException e)
{

+ _logger.error("error:", e);
JMSException jmse = new JMSException("Error closing connection: " + e);
jmse.setLinkedException(e);
throw jmse;

}

Figure 5.13: An example of adding a missing logging statement.

/* Project: Qpid; Commit: 1230013
* File: /qpid/trunk/qpid/java/broker/src/main/java/

org/apache/qpid/server/subscription/DefinedGroupMessageGroupManager.java
* Commit message: "Remove debugging log statements"
*/
if(newState == QueueEntry.State.ACQUIRED)
{

- _logger.debug("Adding to " + _group);
_group.add();

}
else if(oldState == QueueEntry.State.ACQUIRED)
{

- _logger.debug("Subtracting from " + _group);
_group.subtract();

}

Figure 5.14: An example of removing logging statements due to changed logging re-
quirements.

other source code: only 24 (18.6%) of the log-changing-only commits delete logging

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 153

Table 5.11: Number of log-changing-only commits.

Project Log-changing commits
Log-changing-only commits

Change logs Add logs Del. logs Mod. logs

Hadoop 1621 68 (4.2%) 20 9 49
Directory S. 1130 32 (2.8%) 7 6 24
HttpClient 252 3 (1.2%) 0 2 1
Qpid 908 26 (2.9%) 11 7 14
Total 3911 129 (3.3%) 38 24 88

statements. If developers forget to add, delete or modify a logging statement, lead-

ing to a log-changing-only commits afterwards, our approach would help developers

avoid forgetting to change logs in the first place. If current logging statements need to

be fixed or improved, our approach cannot provide such suggestion without the con-

text of other code changes. In the studied projects, however, the log-changing-only

commits represent 1.2% to 4.2% of the commits that change logging statements.

5.5 Threats to Validity

5.5.1 External Validity

The external threat to validity is concerned with the generalization of the results. In

our work, we investigated four open source projects that are of different domains and

sizes. However, since other software systems may follow different logging practices,

the results may not generalize to other systems. Further, we only analyze Java source

code in this study, thus the results may not generalize to systems that are developed in

non-Java languages.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 154

5.5.2 Internal Validity

The manual analysis for log change reasons is subjective by definition, and it is very

difficult, if not impossible, to ensure the correctness of all the inferred log change rea-

sons. We classified the log change reasons into four categories; however, there may

be different categorizations. Nevertheless, there is a strong agreement between the

results of our manual and automated analysis.

The random forest modeling results present the relation between log changes and

a set of software measures. The relation does not represent the casual effects of these

measures on log changes. In order to learn log change reasons from the modeling re-

sults, we link the influential factors in the random forest classifiers back to the manu-

ally detected reasons while analyzing the importance factors in these classifiers. Future

studies should conduct longitudinal developer studies or interviews to further under-

stand the rationale for log changes.

In this study we only analyze Java source code. However, the project Qpid is devel-

oped in multiple languages including Java, C++, C#, Perl, Python and Ruby. Although

a large percent of Qpid code (2,995 Java files out of totally 4,757 source code files) is

developed in Java, the results still can not fully represent its log change practices.

In this chapter we learn developers’ logging practices in the past and leverage the

learned knowledge to provide suggestions for future log changes. Our study is based

on the assumption that these projects’ logging practices are appropriate and are good

practices that future changes should follow. However, the logging practices in these

projects may not be always appropriate. In order to avoid learning the bad practices,

we choose several successful open source projects which follow a strict code review

process.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 155

In this chapter we study the development of logging statements in the source code.

However, we don’t consider whether these logging statements would actually output

log messages during the system execution (i.e., the dynamic impact). Whether a log-

ging statement can output log messages depends on various dynamic information

such as: 1) whether the path of the logging statement is executed; 2) whether the level

of the logging statement is turned on to print messages. Extending our chapter by

leveraging dynamic information is a promising avenue for future work.

In the results of RQ3, we analyze the influential factors that impact the log changes.

The explanations are inferred based on the modeling results and our manual explo-

ration of log change reasons. However, they are not necessarily the actual causes that

lead to log changes, instead they are just possible explanations to the logging practices

of the studied projects.

5.5.3 Construct Validity

The construct threat is concerned with how we identify log changes. We identify log

changes using a set of predefined regular expressions. The regular expressions may

not identify all the log changes. For example, developers may define their own logging

functions which are difficult to track. However, our approach can detect all the logging

statements that leverage the standard logging libraries with a precision of 100%. Fu-

ture studies might consider using a static analysis approach. Nevertheless, a manual

verification of the non-standard (i.e., defined by developers themselves) logging func-

tions will always be needed since it is impossible to automatically determine whether

a function is a logging wrapper function.

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 156

We identify a log modification by calculating the Levenshtein distance ratio be-

tween a pair of added and deleted logging statements. Two logging statements are

considered similar if the Levenshtein distance ratio between them is larger than a spec-

ified threshold (L-threshold). In this chapter, we choose an L-threshold value of 0.5 to

identify a log modification. However, this approach is not guaranteed to identify all

log modifications. In order to address this threat, we perform a sensitivity analysis to

measure the impact of the L-threshold value on the identification of log modifications

for all the log changes in the Hadoop project. Specifically, we change the L-threshold

to 0.4 and 0.6 and examine the difference of the identification results for these two

thresholds. Table 5.12 shows summary statistics of the identification results using the

0.4, 0.5 and 0.6 L-thresholds. We identify 1,861 log modifications using the 0.5 thresh-

old; while we identify 1,932 (+3.8%) and 1,788 (−3.9%) modifications for the 0.4 and

0.6 L-thresholds, respectively. The results show that using a different L-threshold does

not lead to a large change in the number of identified log modifications.

We examine the amount of added logging statements that are classified differently

(i.e., classified as a log addition or a part of a log modification) when using different

L-thresholds. We find that there are only 248 out of 7,215 (3.4%) added logging state-

ments that are classified differently using different L-thresholds. We manually examine

these 248 added logging statements that are classified differently and identify which L-

threshold can accurately classify the added logging statements. We find that using 0.5

as a threshold has the highest accuracy. In particular, 106 out of the 248 (42.7%) added

logging statements that are classified differently are correctly classified by using the

0.4 threshold; 162 (65.3%) of the added logging statements are correctly classified us-

ing the 0.5 threshold; and 149 (60.1%) of the added logging statements are correctly

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 157

Table 5.12: L-threshold’s impact on the identification of log modifications (for the
Hadoop project). The values in the brackets are the percentages of difference when
compared with the 0.5 L-threshold.

L-threshold log addition log deletion log modification

0.4 5,283 (−1.3%) 2,217 (−3.1%) 1,932 (+3.8%)
0.5 5,354 2,288 1,861
0.6 5,427 (+1.4%) 2,361 (+3.2%) 1,788 (−3.9%)

classified using the 0.6 threshold.

In this chapter we choose 25 software measures (as listed in Table 5.3) based on our

manual analysis results and our intuition. However, there may be other measures, such

as OO measures (D’Ambros et al., 2012), that can assist in suggesting log changes. Some

feature learning techniques may also help improve the performance of our classifiers.

As a first step of suggesting proper log changing practices, we aim to show the benefit

of leveraging historical information for providing log change suggestions in the future.

We expect more measures or feature learning techniques to be proposed in follow-up

research in order to provide more accurate classifiers to suggest log changes.

This chapter proposes an approach that can provide developers with suggestions

on whether to change a logging statement when they commit code changes. Future

work may include real developers’ feedback to better evaluate and further improve the

usefulness of our approach.

5.6 Chapter Summary

In this work, we leverage machine learning classifiers to provide just-in-time sugges-

tions for changing logs when developers commit code changes. We firstly manually

investigate a statistically representative random sample of log changes from four open

CHAPTER 5. AUTOMATED SUGGESTIONS FOR LOG CHANGES 158

source projects Hadoop, Directory Server, Commons HttpClient, and Qpid, in order to

understand the reasons behind log changes. Based on the results of our manual anal-

ysis and our experiences, we derive measures as input into random forest classifiers to

model the drivers for log changes. Our experimental results show that the random for-

est classifiers can accurately provide just-in-time log change suggestions using a within

and across projects evaluation. Finally, we study which measures play influential roles

in the models and thereby influence log changing practices the most. Some of the key

findings of our study are as follows:

• Log change reasons can be grouped along four categories: block change, log im-

provement, dependence-driven change, and logging issue.

• Our random forest classifiers can provide accurate just-in-time suggestions for

log changes. The classifiers trained from historical data of the same project

achieve a balanced accuracy of 0.76 to 0.82; the classifiers trained from other

projects reach a balanced accuracy of 0.76 to 0.80 and an AUC of 0.84 to 0.88.

• Code changes in a commit and the current snapshot of the source code are the

most influential factors for determining the likelihood of a log change in a com-

mit.

Our work provides insights about the reasons why developers change (add, modify

or delete) logging statements in their code. These reasons together with the logging

concerns derived in Chapter 3 can help developers and researchers better understand

the current logging practices. Developers can also leverage our automated approach

to guide their log changing practices.

CHAPTER 6

Automated Suggestions for Choosing Log Levels

In Chapter 4 and Chapter 5, we propose automated approaches to provide developers with sug-
gestions for where to log and log changes. As we observe in Chapter 3, developers often have
difficulties when determining the appropriate levels for their logging statements. In this chap-
ter, we propose an approach to help developers determine the appropriate log level when they
add a new logging statement. We analyze the development history of four open source projects,
and leverage ordinal regression models to automatically suggest the most appropriate level for
each newly-added logging statement. First, we find that our ordinal regression model can ac-
curately suggest the levels of logging statements with an AUC (area under the curve; the higher
the better) of 0.75 to 0.81 and a Brier score (the lower the better) of 0.44 to 0.66, which is better
than randomly guessing the appropriate log level (with an AUC of 0.50 and a Brier score of 0.80
to 0.83) or naively guessing the log level based on the proportional distribution of each log level
(with an AUC of 0.50 and a Brier score of 0.65 to 0.76). Second, we find that the characteristics
of the containing block of a newly-added logging statement, the existing logging statements
in the containing source code file, and the content of the newly-added logging statement play
important roles in determining the appropriate log level for that logging statement.

An earlier version of this chapter is published in the Empirical Software Engineering Journal
(EMSE) (Li et al., 2017a).

159

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 160

6.1 Introduction

L
OGS are widely used by software developers to record valuable run-time in-

formation about software systems. Logs are produced by logging statements

that developers insert into the source code. A logging statement, as shown

below, typically specifies a log level (e.g., debug/info/warn/error/fatal), a static text

and one or more variables.

logger.error(“static text” + variable);

However, appropriate logging is difficult to reach in practice. Both logging too lit-

tle and logging too much is undesirable (Fu et al., 2014; Chapter 3). Logging too little

may result in the lack of runtime information that is crucial for understanding software

systems and diagnosing field issues (Yuan et al., 2010; Chapter 3). On the other hand,

logging too much may lead to system runtime overhead and cost software practition-

ers’ effort to maintain these logging statements (Fu et al., 2014; Chapter 3). Too many

logs may contain noisy information that becomes a burden for developers during fail-

ure diagnosis (Chapter 3).

The mechanism of “log levels” allows developers and users to specify the appropri-

ate amount of logs to print during the execution of the software. Using log levels, de-

velopers and users can enable the printing of logs for critical events (e.g., errors), while

suppressing logs for less critical events (e.g., bookkeeping events) (Gülcü and Stark,

2003). Log levels are beneficial for both developers and users to trade-off the rich in-

formation in logs with their associated overhead. Common logging libraries such as

Apache Log4j1, Apache Commons Logging2 and SLF4J3 typically support six log levels,

1http://logging.apache.org/log4j/2.x
2http://commons.apache.org/proper/commons-logging
3http://www.slf4j.org

http://logging.apache.org/log4j/2.x
http://commons.apache.org/proper/commons-logging
http://www.slf4j.org

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 161

including trace, debug, info, warn, error, and fatal. The log levels are ordered by the ver-

bosity level of a logged event: “trace” is the most verbose level and “fatal” is the least

verbose level. Users can control the verbosity level of logging statements to be printed

out during execution. For example, if a user sets the verbosity level to be printed at the

“warn” level, it means that only the logging statements with the “warn” level or with a

log level that is less verbose than “warn” (“error” and “fatal”) would be printed out.

As we observe in Chapter 3, developers often have difficulties when determining

the appropriate levels for their logging statements. Prior work also finds that develop-

ers spend much effort on adjusting the levels of their logging statements (Yuan et al.,

2012b). Oliner et al. (2012) explains this issue by arguing that developers rarely have

complete knowledge of how the code will ultimately be used. For example, JIRA issues

HADOOP-102744 and HADOOP-100155 are both about an inappropriate choice of log

level. The logging statement was initially added with an error level. However, the log

level of the logging statement was later changed to the warn level (see code patch in

Figure 6.1), as it was argued that “the error may not really be an error if client code can

handle it” (HADOOP-10274); the log level of the same logging statement was finally

changed to the debug level (see patch in Figure 6.2) after active discussions among

the stakeholders (Hadoop-10015). The discussion involved eight people to decide on

the most appropriate log level of the logging statement and to make the code changes.

Besides, as detailed in the “Discussion” section (see Section 6.5), we observe 491 log-

ging statements in the studied projects that experienced at least a subsequent log level

change after their initial commits. These observations indicate that developers do

maintain and update log levels over the lifetime of a project.

4https://issues.apache.org/jira/browse/HADOOP-10274
5https://issues.apache.org/jira/browse/HADOOP-10015

https://issues.apache.org/jira/browse/HADOOP-10274
https://issues.apache.org/jira/browse/HADOOP-10015

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 162

} catch (PrivilegedActionException pae) {
Throwable cause = pae.getCause();

- LOG.error("PriviledgedActionException as:"+this+" cause:"+cause);
+ LOG.warn("PriviledgedActionException as:"+this+" cause:"+cause);

Figure 6.1: Patch for JIRA issue HADOOP-10274 (svn commit number: 1561934).

} catch (PrivilegedActionException pae) {
Throwable cause = pae.getCause();

- LOG.warn("PriviledgedActionException as:"+this+" cause:"+cause);
+ if (LOG.isDebugEnabled()) {
+ LOG.debug("PrivilegedActionException as:" + this + " cause:" + cause);
+ }

Figure 6.2: Patch for JIRA issue HADOOP-10015 (svn commit number: 1580977).

To the best of our knowledge, there exists no prior research regarding log level

guidelines. Yuan et al. (2012b) build a simple log level checker to detect inconsistent

log levels. Their checker is based on the assumption that if the logging code within

two similar code snippets have inconsistent log levels, at least one of them is likely to

be incorrect. In other words, the checker only detects inconsistent levels but does not

suggest the most appropriate log levels.

In this chapter, we propose an automated approach to help developers determine

the most appropriate log level when adding a logging statement. Admittedly, it is hard,

if not impossible, to evaluate whether the log level of a logging statement is correct,

because different projects would have different logging requirements. However, we

believe that it is a good practice for a single project to follow a consistent approach

for setting the log level for its logging statements. In this chapter, we assume that in

most cases developers of a project can keep consistent logging practices, and we define

“appropriateness” of a log level as whether the log level is consistent with the common

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 163

practice of choosing a log level within a project.

Our preliminary study shows that logging statements have a different distribution

of log levels across the different containing code blocks, and particularly, in different

types of exception handling blocks. Based on our preliminary study and our intuition,

we choose a set of software metrics and build ordinal regression models to automati-

cally suggest the most appropriate level for a newly-added logging statement. We lever-

age ordinal regression models in automated log level prediction because log level has

a small number (e.g., six) of categorical values and the relative ordering among these

categorical values is important, hence neither a logistic regression model nor a clas-

sification model is as appropriate as an ordinal regression model. We also carefully

analyze our models to find the important factors for determining the most appropri-

ate log level for a newly-added logging statement. In particular, we aim to address the

following two research questions.

RQ1: How well can we model the log levels of logging statements?

Our ordinal regression models for log levels achieve an AUC (the higher the bet-

ter) of 0.75 to 0.81 and a Brier score (the lower the better) of 0.44 to 0.66, which is

better than randomly guessing the appropriate log level (with an AUC of 0.50 and

a Brier score of 0.80 to 0.83) or naively guessing the log level based on the pro-

portion of each log level (with an AUC of 0.50 and a Brier score of 0.65 to 0.76).

RQ2: What are the important factors for determining the log level of a logging state-

ment?

We find that the characteristics of the containing block of a newly-added logging

statement, the existing logging statements in the containing file, and the content

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 164

of the newly-added logging statement play important roles in determining the

appropriate log level for that particular logging statement.

This is the first work to support developers in making informed decisions when

determining the appropriate log level for a logging statement. Developers can lever-

age our models to receive automatic suggestions on the choices of log levels for their

newly-added logging statements. Our results also provide an insight on the factors that

influence developers when determining the appropriate log level for a newly-added

logging statement.

Chapter organization. The remainder of the chapter is organized as follows.

Section 6.2 describes the studied software projects and our experimental setup.

Section 6.3 performs an empirical study on the log level distribution in the studied

projects. Section 6.4 explains the approaches that we used to answer the research

questions and presents the results of our case study. Section 6.5 discusses the topics

about cross-project evaluation and the log level changes. Section 6.6 discusses threats

to the validity of our findings. Finally, section 6.7 draws conclusions.

6.2 Case Study Setup

This section describes the subject projects and the process that we used to prepare the

data for our case study.

6.2.1 Subject Projects

We study how to determine the appropriate log level of a logging statement through a

case study on four open source projects: Hadoop, Directory Server, Hama, and Qpid.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 165

We choose these projects as case study projects for the following reasons: 1) All four

projects are successful and mature projects with more than six years of development

history. 2) They represent different domains, which ensures that our findings are not

limited to a particular domain. Hadoop is a distributed computing platform, devel-

oped in Java; Directory Server is an embeddable directory server written in Java; Qpid

is an instant message tool, developed in Java, C++, C#, Perl, Python and Ruby; Hama is

a general-purpose computing engine for speeding up computing-intensive jobs, writ-

ten in Java. 3) The Java source code of these projects makes extensive use of standard

Java logging libraries such as Apache Log4j, SLF4J and Apache Commons Logging li-

braries, which support six log levels, i.e., from trace (the most verbose) to fatal(the least

verbose).

We analyze the log levels of the newly-added logging statements during the devel-

opment history of the studied projects, considering only the Java source code (exclud-

ing the Java test code). We focus our study on the development history of the main

branch (trunk) of each project. We use the “svn log”6 command to retrieve the devel-

opment history for each project (i.e., the svn commit records). Some revisions import

a large number of atomic revisions from a branch into the trunk (a.k.a. merge revi-

sions), which usually contain a large amount of code changes and log changes. Such

merge revisions would introduce noise (Zimmermann et al., 2004; Hassan and Holt,

2004; Hassan, 2008) in our study of log level in a newly-added logging statement. We

unroll each merge revisions into the various revisions of which it is composed (using

the “use-merge-history” option of the “svn log” command).

Table 6.1 presents the size of these projects in terms of source lines of code (SLOC),

6svn log. http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

http://svnbook.red-bean.com/en/1.7/svn.ref.svn.c.log.html

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 166

the studied development history, the number of added logging statements in the his-

tory, and the number of added logging statements that experience a log level change

afterwards. The Hadoop project is the largest project with 458K of SLOC, while Hama is

the smallest project, with an SLOC of 39K. In the studied history, the number of added

logging statements within these projects ranges from 1,683 (for Hama) to 5,388 (for

Hadoop); 1.2% to 4.6% of the added logging statements experience a log level change

eventually.

6.2.2 Data Extraction

Figure 6.3 presents an overview of our data extraction and model analysis approaches.

From the version control repository of each subject project, we collect all the revisions

during the development history of the subject project. For each revision, we use the

“svn diff” command to obtain the code changes in that revision. Then, we use a regular

expression to identify the newly-added logging statements in each revision and extract

the log level of each logging statement. The regular expression is derived from the for-

mat of the logging statements as specified by the used logging libraries. To achieve an

accurate model, we remove all newly-added logging statements that experience a log

level change afterwards, because the levels of these changed logging statements may

have been inappropriate in the first place.

6.3 Preliminary Study

We first perform an empirical study on the usage of log levels in the four studied open

source projects.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 167

Ta
b

le
6.

1:
O

ve
rv

ie
w

o
ft

h
e

st
u

d
ie

d
p

ro
je

ct
s.

P
ro

je
ct

SL
O

C
St

u
d

ie
d

d
ev

el
o

p
m

en
t

h
is

to
ry

A
d

d
ed

lo
gg

in
g

st
at

em
en

ts
L

o
g

le
ve

l
ch

an
ge

s1

H
ad

o
o

p
45

8
K

20
09

-0
5

to
20

14
-0

7
5,

38
8

16
3

(3
.0

%
)

D
ir

ec
to

ry
Se

rv
er

11
9

K
20

06
-0

1
to

20
14

-0
6

5,
03

5
58

(1
.2

%
)

H
am

a
39

K
20

08
-0

6
to

20
14

-0
7

1,
68

3
54

(3
.2

%
)

Q
p

id
27

1
K

20
06

-0
9

to
20

14
-0

7
4,

71
2

21
6

(4
.6

%
)

T
O

TA
L

88
7

K
-

16
,8

18
49

1
(2

.9
%

)

1
T

h
e

n
u

m
b

er
o

fa
d

d
ed

lo
gg

in
g

st
at

em
en

ts
th

at
ex

p
er

ie
n

ce
a

m
o

d
ifi

ca
ti

o
n

o
ft

h
ei

r
lo

g
le

ve
la

ft
er

th
ei

r
in

tr
o

d
u

ct
io

n

Lo
g

ch
an

ge

id
en

ti
fi

ca
ti

o
n

A
d

d
ed

 lo
gg

in
g

st
at

em
e

n
ts

O
rd

in
al

R

eg
re

ss
io

n

M
o

d
el

in
g

Lo
g

le
ve

ls

R
Q

2
:W

h
at

 a
re

 t
h

e
im

p
o

rt
an

t
fa

ct
o

rs

fo
r

d
et

er
m

in
in

g
th

e
lo

g
le

ve
l o

f
a

lo
gg

in
g

st
at

em
e

n
t?

D
at

a
ex

tr
ac

ti
o

n

M
et

ri
cs

R
Q

1
:H

o
w

 w
el

l c
an

w

e
m

o
d

el
 t

h
e

lo
g

le
ve

ls
 o

f
lo

gg
in

g
st

at
em

e
n

ts
?

M
o

d
e

l A
n

al
ys

is

C
o

d
e

re
vi

si
o

n
s

fr
o

m

th
e

ve
rs

io
n

 c
o

n
tr

o
l

re
p

o
si

to
ry

 o
f

th
e

st
u

d
ie

d
 p

ro
je

ct

F
ig

u
re

6.
3:

A
n

ov
er

vi
ew

o
fo

u
r

d
at

a
ex

tr
ac

ti
o

n
an

d
an

al
ys

is
ap

p
ro

ac
h

es
.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 168

6.3.1 Log level distribution in the studied projects

No single log level dominates all other log levels. As shown in Figure 6.4, developers

tend to use a variety of log levels. Compared to trace and fatal, the four middle lev-

els (debug, info, warn, and error) are used more frequently. For the Directory Server,

Hadoop and Hama projects, more than 95% of the logging statements use one of the

four middle levels. For the Qpid project, 86% of the logging statements use one of the

four middle levels. As the least verbose log level, the fatal level is the least frequently

used level (less than 2%) in the four projects. The reason may be that fatal issues are

unlikely to appear in these projects. As the most verbose log level, the trace level is

only used in less than 4% of the logging statements in the Directory Server, Hadoop

and Hama projects. The low usage of the trace level may be due to developers not typ-

ically using logs to trace their software, but rather they might use existing tracing tools

such as JProfiler7. However, the trace level is used in 14% of the logging statements in

the Qpid project.

Each project exhibits a varying distribution of log levels. Three of the four studied

projects leverage all six log levels (trace, debug, info, warn, error, and fatal), while Direc-

tory Server uses only five log levels (no fatal). Directory Server shows frequent usages of

the debug and error levels, while the logging statements that are inserted in the Hadoop

project are more likely to use the info, debug and warn levels. For both Hama and Qpid,

the debug, info and error levels are most frequently used in their logging statements.

On the one hand, the different distributions can be explained by different usage of logs

in these open source projects that are from different domains. For example, if logs are

used mainly for bookkeeping purposes, there might be more info logs; debug logs are

7http://www.ej-technologies.com/products/jprofiler/overview.html

http://www.ej-technologies.com/products/jprofiler/overview.html

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 169

13(0%)

2330(47%)

549(11%) 430(9%)

1655(33%)

185(4%)

1257(24%)

1839(35%)

1149(22%)

722(14%)

73(1%)

2(0%)

477(29%)
541(33%)

169(10%)

408(25%)

32(2%)

648(14%)

1603(36%)

985(22%)

459(10%)
799(18%)

2(0%)

0

1000

2000

0

500

1000

1500

2000

0

200

400

600

0

500

1000

1500

D
irectoryS

erver
H

adoop
H

am
a

Q
pid

trace debug info warn error fatal
Log level

N
um

be
r

of
 lo

gs

Figure 6.4: Log level distribution in the added logging statements.

widely used for debugging purposes; if developers use logs for monitoring, there might

be more warn and error logs. On the other hand, such differences might be the results

of a lack of standard guidelines for determining log levels, which motivates our work to

assist developers in determining the most appropriate log level for their logging state-

ments. Our preliminary analysis highlights that each studied project appears to follow

a different pattern for its use of log levels. Hence, we believe that our choice of projects

ensure a heterogeneity in our studied subjects.

6.3.2 Log level distribution in different blocks

Logging statements have different distribution of log levels across the different con-

taining blocks. In this chapter, a “block” (or “code block”) refers to a block of source

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 170

code which is treated as a programming unit. For example, a catch block is a block of

source code which completes a catch clause. The “containing block” of a logging state-

ment is the smallest (or innermost) block that contains the logging statement. In other

words, there is no intermediate block that is contained in the particular block and that

contains the particular logging statement. Similarly, when we say a logging statement

is “directly inserted into a block, we mean that there is no other intermediate block that

contains the particular logging statement. We use an abstract syntax tree (AST) parser

provided by the Eclipse JDT8 to identify the containing block of each logging statement.

We consider seven types of containing blocks that cover more than 99% of all the log-

ging statements inserted in the studied projects: try blocks, catch blocks, if-else (or if

for short) blocks, switch-case-default (or switch for short) blocks, for blocks, while or

do-while (using while for short) blocks, and methods. We do not consider other types

of blocks (e.g., finally blocks) because very few logging statements are inserted in the

other types of blocks (less than 1% in total). Figure 6.5 shows the distributions of log

levels for the logging statements that are inserted directly in the seven types of blocks.

The percentage numbers marked on the stacked bars describe the distribution of log

levels that are used in the logging statements that are inserted in each type of block;

the number above each stack shows the total number of logging statements that are

inserted in each type of block. We find that the top two most-frequently used log levels

for each type of block are used in more than 60% of the logging statements that are

inserted in that particular type of block. In the Directory Server project, for example,

more than 79% of the logging statements that are inserted in each type of block use

the top two most-frequently used log levels. However, our findings highlight that the

8https://eclipse.org/jdt/

https://eclipse.org/jdt/

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 171

choice of log level is not a simple one that can be easily determined by simply check-

ing the containing block of a logging statement. Instead determining the appropriate

log level requires a more elaborated model and such a model is likely to vary across

projects.

Logging statements that are directly inserted in catch blocks tend to use less ver-

bose log levels, while logging statements in try blocks are more likely to use more

verbose log levels. 77% to 91% of the logging statements that are inserted in catch

blocks use the warn, error and even fatal log levels. In contrast, 96% to 100% of the

logging statements inserted in try blocks adopt more verbose log levels (i.e., info, de-

bug and trace). Logging statements in try blocks are triggered during the normal execu-

tion of an application, thus they usually print the normal run-time information of the

application using the more verbose log levels; while logging statements in catch blocks

are only triggered when exceptions occur, hence they often log abnormal conditions

using the less verbose log levels.

Logging statements that are directly inserted in loop blocks (i.e., for and while

blocks) and methods are usually associated with more verbose log levels. 87% to 97%

of the logging statements that are directly inserted in while blocks, 94% to 100% of the

logging statements in for blocks and 86% to 97% of the logging statements in methods

choose more verbose log levels (i.e., info, debug and trace). The logging statements in

loop blocks might be executed a large number of times, but they may not print logs

in field execution when the verbosity level is set at a less verbose level (e.g., warn); in

other words, these logging statements will take effect only when the verbosity level is

set at a more verbose level (e.g., debug), i.e., when application users need the detailed

information from logs. The logging statements directly inserted in methods typically

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 172

74%

26%
1%

5%
4%

17%

74%

0%

49%

12%
9%

30%

63%

13%

23%

70%

17%
13%

50%

50%

0%

76%

10%
3%

11%
196 1073 2448 30 30 72 1093

6%

38%

55%

0%0%1%

1%7%
13%

40%

37%
3%

4%

22%

33%

29%

11%
1%

20%

49%

12%
18%

1%

14%

32%

49%

4%2%

8%

49%

37%

3%3%

5%

36%

51%

5%2%1%
235 1238 1957 97 57 150 1467

43%

53%

4%

3%
9%

18%

66%

4%

0%

33%

35%

17%
12%

3%

100%
24%

63%

9%
4%

49%

51%

0%

49%

48%

1%1%0%
70 534 358 1 54 47 564

20%

52%

24%
0%3%

2%
13%

8%

22%

55%

0%

4%

40%

28%

16%
12%

34%

38%

8%
20%

5%

54%

38%

3%

4%

63%

27%
4%1%

29%

41%

25%
2%3%

363 1049 1153 50 37 92 1732

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

D
irectoryS

erver
H

adoop
H

am
a

Q
pid

try catch if switch while for method
Innermost containing block

P
ro

po
rt

io
n

of
 e

ac
h

lo
g

le
ve

l
level fatal error warn info debug trace

Figure 6.5: Log level distribution in the added logging statements in different types of
blocks.

record some expected runtime events, such as startup or shutdown, thus they usually

use more verbose log levels such as info or debug. Figure 6.5 also shows that different

projects log loops and methods at different log levels. For example, Hadoop tends to

log methods at the info level, while DirectoryServer uses more debug level logging state-

ments in the method blocks. Again, this might be explained by different usage of logs

in these open source projects from different domains.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 173

6.3.3 Log level distribution in catch blocks

A common best practice for exception-handling is to log the information associated

with the exception (Microsoft-MSDN, 2016). Logging libraries like Log4j even provide

special methods for logging exceptions. In our preliminary study, we also find that

logging statements present much higher density in catch blocks than any other blocks.

However, experts argue that “not all exceptions are errors” (Eberhardt, 2014), and that

exceptions are sometimes anticipated or even expected (Zhu et al., 2015). Therefore,

blindly assigning the same log level for all logging statements that are within catch

blocks may result in inappropriate log levels.

Logging statements that are directly inserted into catch blocks present different

distribution of log levels for different types of handled exceptions. Figure 6.6 illus-

trates the log level distribution of the logging statements inserted in the top 12 types

of exception-catching blocks that contain the most logging statements, for the Qpid

project. For some types of exception-handling blocks, such as the catch blocks that

handle the DatabaseException and the OpenDataException, all the inserted logging

statements use the error or warn levels, indicating that these exceptions lead to prob-

lems and the developers or users may need to take care of the abnormal condition. On

the other hand, 89% of the logging statements inserted in catch blocks dealing with

the QpidException choose the debug log level, which implies that the exception is not

a serious one and that the code can itself handle the condition; or that the exception

is simply used by developers for debugging purpose. For each exception type, the top

two most-frequently used log levels cover more than 60% of the logging statements

that are inserted in the particular exception handling blocks.

Not all the exceptions are logged as warn, error or fatal, which matches with

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 174

experts’ knowledge that “not all exceptions are errors” (Zhu et al., 2015; Eberhardt,

2014). For most types of exceptions (10 out of 12 as shown in Figure 6.6), there are

at least a small portion of logging statements inserted in the handling catch blocks

to choose more verbose log levels (i.e., info, debug or trace). Therefore, developers

should be careful when they insert the warn or less verbose level logging statements

into exception-handling blocks.

0%
7%
5%

20%

68%

1%

10%

14%

21%

13%

43%

4%
8%

19%

69%

8%
4%

24%

64%

89%

11%

20%

80%

22%

17%

14%

47%

21%

18%

32%

29%

5%
5%

90%

15%

85%

7%

14%

79%

46%

54%

320 101 84 72 64 46 36 34 20 20 14 13

0%

20%

40%

60%

80%

100%

Q
pid

Exc
ep

tio
n

JM
SExc

ep
tio

n

AM
QExc

ep
tio

n

IO
Exc

ep
tio

n

Qpid
Exc

ep
tio

n

Dat
ab

as
eE

xc
ep

tio
n

Thr
ow

ab
le

In
te

rru
pt

ed
Exc

ep
tio

n

JM
Exc

ep
tio

n

Run
tim

eE
xc

ep
tio

n

SQLE
xc

ep
tio

n

Ope
nD

at
aE

xc
ep

tio
n

Type of logged exception

P
ro

po
rt

io
n

of
 e

ac
h

lo
g

le
ve

l

level fatal error warn info debug trace

Figure 6.6: Log level distribution in the added logging statements in different types of
exception-catching blocks (Qpid).

6.4 Case Study Results

In this section, we present the results of our research questions. For each research

question, we present the motivation of the research question, the approach that we

used to address the research question, and our experimental results.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 175

6.4.1 RQ1: How well can we model the log levels of logging state-

ments?

Motivation

In order to help developers select the appropriate log level for a newly-added logging

statement, we build a regression model to predict the appropriate log level using a set of

software metrics. Developers can leverage such a model to receive suggestions on the

most appropriate log level for a newly-added logging statement or to receive warnings

on an inappropriately selected log level.

Approach

In order to model the log levels of the newly-added logging statements, we extract and

calculate five dimensions of metrics: logging statement metrics, file metrics, change

metrics, historical metrics, and containing block metrics.

• Logging statement metrics measure the characteristics of the newly-added log-

ging statement itself. It is intuitive that the level of a logging statement is highly

influenced by the content of the logging statement itself, e.g., the static text.

• Containing block metrics characterize the blocks that contain the newly-added

logging statements. The containing block determines the condition under which

a logging statement would be triggered, thus it is reasonable to consider the con-

taining block when choosing the log level for a logging statement.

• File metrics measure the characteristics of the file in which the logging statement

is added. Logging statements in the same file may share the same purpose of

logging or log the same feature. Hence information derived from the containing

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 176

file may influence the choice of the appropriate log level.

• Change metrics measure information about the actual code changes associated

with the newly-added logging statement. The characteristics of the code changes

in a revision might indicate developers’ purpose of adding logging statements in

that revision thereby affecting the choice of log levels.

• Historical metrics record the code changes in the containing file in the devel-

opment history. Stable code might no longer need detailed logging, hence the

newly-added logging statements in stable code are more likely to use less verbose

log levels (e.g., error, warn). The source code undergoing frequent changes might

contain logging statements with more verbose log levels for debugging purposes.

Table 6.2 presents a list of all the metrics that we collected along the five dimen-

sions. Table 6.2 describes the definition of each metric and explains our motivation

behind the choice of each metric.

Re-encoding categorical metrics. In order to integrate the containing block type

metric (with categorical values) as an independent variable in our regression analysis,

we need to convert the categorical metric to a quantitative variable. A categorical vari-

able of k categories can be coded into k −1 dummy variables, which contain the com-

plete information of the categorical variable. In this chapter we use the weighted effect

coding method, since it is most appropriate when the values of a categorical variable

have a substantially unbalanced distribution (e.g., the unbalanced distribution of the

containing blocks of logging statements, as shown in Figure 6.5) (Aguinis, 2004; Cohen

et al., 2013). We use the weighted effect coding method to convert the categorical vari-

able containing block type (with seven categories) into six dummy variables: try block,

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 177

Table 6.2: Software metrics used to model log levels.

Dimension Metric name Definition (d) | Rationale (r)
Logging

statement
metrics

Text length
d: The length of the static text of the logging statement.
r: Longer logging statements are desirable for debugging purposes where detailed log in-
formation is needed; however, a too long logging statement might cause noise in scenarios
like event monitoring where only less verbose log information is needed.

Variable
number

d: The number of variables in the logging statement.
r: Logging more variables is desirable for debugging purposes while too many logged vari-
ables might cause noise in scenarios in need of only less verbose log information.

Log tokens1 d: The tokens that compose the content (static text and variables) of the logging statement,
represented by the frequency of each token in the logging statement.
r: The content of a logging statement communicates the logging purpose thereby affecting
the log level.

Containing
block

metrics

Containing
block SLOC

d: Number of source lines of code in the containing block.
r: The length of code in the containing block of the logging statement indicates the amount
of effort that is spent on handling the logged event, which might be associated with the
seriousness (i.e., verbosity) level of the logged event.

Containing
block type

(Categorical)2

d: The type of the containing block of the logging statement, including seven categories:
try block, catch block, if block, switch block, for block, while block and method block.
r: Different types of blocks tend to be logged with different log levels. For example, catch
blocks are more likely to be logged with less verbose log levels; logging statements inside
try blocks are more likely to have more verbose log levels; and logging statements inside a
loop are more likely to have more verbose log levels.

Exception
type

d: The exception type of the containing catch block, represented by the average level of
other logging statements that are inserted in the catch blocks that handle the same type of
exception. This metric is only valid when a logging statement is enclosed in a catch block.
r: Different types of exceptions are logged using different log levels.

File
metrics

Log density
d: The number of logging statements divided by the number of lines of code in the con-
taining file.
r: Source code with denser logs tends to record detailed run-time information and have
more verbose logging statements.

Log number
d: The number of logging statements in the containing file.
r: Source code with more logs tend to record detailed run-time information and have more
verbose logging statements.

Average
log length

d: Average length of the static text of the logging statements in the containing file.
r: The average log length in a file might indicate the overall logging purpose in the file, e.g.,
having shorter and simpler log text is more likely to be associated with debugging purpose.
The overall logging purpose affects the choice of log level for individual logging statements.

Average
log level

d: Average level of other logging statements in the containing file, obtained by quantifying
the log levels into integers and calculating the average.
r: The level of the added logging statement is likely to be similar with other existing ones in
the same file.

Average
log variables

d: Average number of variables in the logging statements in the containing file.
r: The average number of log variables in a file might indicate the overall logging purpose
in the file, e.g., having more and detailed log variables is more likely to be associated with
debugging purpose. The overall logging purpose affects the choice of log level for individual
logging statements.

SLOC
d: Number of source lines of code in the containing file.
r: Large source code files are often bug-prone (Shihab et al., 2010; D’Ambros et al., 2012),
thus they are likely to have more verbose logging statements for debugging purposes.

McCabe
complexity

d: McCabe’s cyclomatic complexity of the containing file.
r: Complex source code files are often bug-prone (Shihab et al., 2010; D’Ambros et al., 2012),
thus they are likely to have more verbose logging statements for debugging purposes.

Fan in
d: The number of classes that depend on (i.e., reference) the containing class of the logging
statement.
r: Classes with a high fan in, such as library classes, are likely to use less verbose logging
statements; otherwise these logging statements will generate noise in the dependent code.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 178

Dimension Metric name Definition (d) | Rationale (r)

Change
metrics

Code churn
d: Number of changed source lines of code in the revision.
r: When developers change a large amount of code, they might add more-verbose log in-
formation (i.e., for tracing or debugging purposes).

Log churn
d: Number of changed logging statements in the revision.
r: When many logging statements are added in a revision, these loggings statements tend
to record detailed run-time information and have more verbose levels. For example, de-
velopers are more likely to add a large number of debugging or tracing logging statements
rather than a large number of logging statements that record error information.

Log churn
ratio

d: Ratio of the number of changed logging statements to the number of changed lines of
code.
r: A lower log churn ratio indicates that developers only use logging statements for more
important events (i.e., using less verbose log levels), while a high log churn ratio indicates
that developers also use logging statements for less important events (i.e., using more ver-
bose log levels).

Historical
metrics

Revisions
in history

d: Number of revisions in the development history of the containing file.
r: Frequently-changed code is often bug-prone (Graves et al., 2000; Hassan, 2009;
D’Ambros et al., 2012). Such code tends to have more more-verbose level logging state-
ments for debugging purpose.

Code churn
in history

d: The total number of lines of code changed in the development history of the containing
file.
r: Source code that experienced large code churn in history is often bug-prone (Graves
et al., 2000; Hassan, 2009; D’Ambros et al., 2012). Such code tends to have more more-
verbose level logging statements for debugging prupose.

Log churn
in history

d: The total number of logs changed in the development history of the containing file.
r: The log churn in history might reflect the overall logging purposes thereby affecting the
choices of log levels. For example, frequently-changed logging statements are more likely
to be used by developers for debugging or tracing purposes, and the logging statements
that generate less verbose information are expected to be stable.

Log churn
ratio in
history

d: Ratio of the number of changed logging statements to the number of changed lines of
code in the development history of the containing file.
r: The log churn ratio in history might reflect the overall logging purposes thereby affecting
the choices of log levels. For example, a high log churn ratio in history might indicate that
logging statements are used to record detailed events thus more verbose log levels should
be used.

Log-changing
revisions
in history

d: Number of revisions involving log changes in the development history of the containing
file.
r: The number of log-changing revisions in history might reflect the overall logging pur-
poses thereby affecting the choices of log levels. For example, a file that experienced many
log-changing revisions might indicate that the functionalities in the file is not stable, thus
more detailed logging statements might be used for debugging or tracing purposes.

1 Each token actually represents an independent variable (i.e., taken-based variable) in the ordinal regression model, and
the value of a token-based variable is the frequency of the token in the logging statements, or zero if the token does not exist
in the logging statement. The vast majority of these token-based variables are filtered out in the “backward (step-down)
variable selection” step.
2 The metric is re-encoded into several dummy variables to be used int the ordinal regression model. This section has a
detailed description about the re-encoding approach.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 179

catch block, if block, switch block, for block, and while block, where each of them repre-

sents whether a logging statement is directly inside the corresponding code block; and

we use the “method block” value of the containing block type metric as a “reference

group” (Aguinis, 2004; Cohen et al., 2013). For example, if the value of the containing

block type metric is “try block”, we code the six dummy variables as 1, 0, 0, 0, 0, and

0, respectively; if the value of the containing block type metric is “method block”, we

code the six variables as −nt /nm , −nc /nm , −ni/nm , −ns/nm , −n f /nm and −nw /nm ,

respectively, where nm , nt , nc , ni , ns , n f and nw represent the number of instances of

the containing block type metric that have the value of method block, try block, catch

block, if block, switch block, for block and while block, respectively.

Interaction between metrics. The excecption type metric is only valid when a log-

ging statement is enclosed in a catch block. Therefore, there is a significant interaction

between the exception type metric and the encoded variable catch block. We use the

interaction (i.e., the product) between these two variables in our modeling analysis,

and ignore the two individual variables. We hereafter use the term “catch block” to

represent the interaction.

Correlation analysis. Before constructing our ordinal regression models, we cal-

culate the pairwise correlation between our collected metrics using the Pearson cor-

relation test (r). Specifically, we use the varclus function (from the R package Hmisc

(Harrell et al., 2014)) to cluster metrics based on their Pearson correlation. In this work,

we follow prior work (McIntosh et al., 2014) and choose the correlation value of 0.7 as

the threshold to remove collinear metrics; Kuhn and Johnson (2013) also suggests a

similar choice of the threshold value (0.75). If the correlation between a pair of met-

rics is greater than 0.7 (|r | > 0.7), we only keep one of the two metrics in the model.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 180

Figure 6.7 shows the result of the correlation analysis for the Directory Server project,

where the horizontal bridge between each pair of metrics indicates the correlation, and

the red line represents the threshold value (0.7 in our case). To make the model easy to

interpret, from each group of highly-correlated metrics, we try to keep the one metric

that is more directly associated with logs. For example, the log churn and code churn

metrics have a correlation higher than 0.7, thus we keep the log churn metric and drop

(i.e., do not consider in the model) the code churn metric. Based on the result shown in

Figure 6.7, we drop the following metrics: code churn, SLOC, McCabe complexity, code

churn in history, log-changing revisions in history and revisions in history, due to the

high correlation between them and other metrics. We find that our selected metrics

present similar patterns of correlation across all four studied projects, thus we drop

the same metrics for all the studied projects. Dropping the same set of metrics for the

projects enables us to compare the metric importance of different projects (in “RQ2”)

and perform cross-project evaluation (in the “Discussion” section).

Ordinal regression modeling. We build ordinal regression models (McKelvey and

Zavoina, 1975; McCullagh, 1980), to suggest the most appropriate log level for a given

logging statement. The ordinal regression model is an extension of the logistic regres-

sion model; instead of predicting the dichotomous values as what the logistic regres-

sion does, the ordinal regression model is used to predict an ordinal dependent vari-

able, i.e., a variable with categorical values where the relative ordering between differ-

ent values is important. In our case, the ordinal response variable (log level) has six

values, i.e., trace, debug, info, warn, error and fatal, from more verbose levels to less

verbose levels. We use the “orm” function from the R package “rms” (Harrell, 2015b).

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 181

lo
g

ch
ur

n
ra

tio
 in

 h
is

to
ry

lo
g

ch
ur

n
co

de
 c

hu
rn

av
er

ag
e

lo
g

le
ve

l
lo

g
de

ns
ity

lo
g

ch
ur

n
ra

tio
fa

n
in

lo
g

nu
m

be
r

S
LO

C
M

cC
ab

e
co

m
pl

ex
ity

lo
g

ch
ur

n
in

 h
is

to
ry

co
de

 c
hu

rn
 in

 h
is

to
ry

re
vi

si
on

s
in

 h
is

to
ry

lo
g−

ch
an

gi
ng

 r
ev

is
io

ns
 in

 h
is

to
ry

va
ria

bl
e

nu
m

be
r

av
er

ag
e

lo
g

va
ria

bl
es

te
xt

 le
ng

th
av

er
ag

e
lo

g
le

ng
th

fo
r

bl
oc

k
if

bl
oc

k
co

nt
ai

ni
ng

 b
lo

ck
 S

LO
C

ca
tc

h
bl

oc
k

w
hi

le
 b

lo
ck

tr
y

bl
oc

k
sw

itc
h

bl
oc

k

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

P
ea

rs
on

 r

Figure 6.7: Correlation analysis using Spearman hierarchical clustering (for Directory
Server). The red line indicates the threshold (0.7) that is used to remove collinear met-
rics.

The outcome of an ordinal regression model is the cumulative probabilities of each or-

dinal value9. Specifically, in this case the ordinal regression model generates the cumu-

lative probability of each log level, including P [l e v e l ≥ d e b ug], P [l e v e l ≥ i n f o],

P [l e v e l ≥w a r n], [l e v e l ≥ e r r o r] and P [l e v e l ≥ f a t a l]. The list does not include

P [l e v e l ≥ t r a c e] because the probability of log levels greater than or equal to trace

is always 1.

9http://www.inside-r.org/packages/cran/rms/docs/orm

http://www.inside-r.org/packages/cran/rms/docs/orm

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 182

We calculate the predicted probability of each log level by subtracting between the

cumulative probabilities:

• P [l e v e l = t r a c e] = 1−P [l e v e l ≥ d e b ug]

• P [l e v e l = d e b ug] = P [l e v e l ≥ d e b ug]−P [l e v e l ≥ i n f o]

• P [l e v e l = i n f o] = P [l e v e l ≥ i n f o]−P [l e v e l ≥w a r n]

• P [l e v e l =w a r n] = P [l e v e l ≥w a r n]−P [l e v e l ≥ e r r o r]

• P [l e v e l = e r r o r] = P [l e v e l ≥ e r r o r]−P [l e v e l ≥ f a t a l]

• P [l e v e l = f a t a l] = P [l e v e l ≥ f a t a l]

We then select the log level with the highest probability as the predicted log level.

Backward (step-down) variable selection. We use the metrics defined in Table 6.2

as the independent (predictor) variables to build the ordinal regression models. How-

ever, not all the independent variables are statistically significant in our models. There-

fore, we use the backward (step-down) variable selection method (Lawless and Singhal,

1978) to determine the statistically significant variables that are included in our final

regression models. The backward selection process starts with using all the variables

as predictor variables in the model. At each step, we remove the variable that is the

least significant in the model. This process continues until all the remaining variables

are significant (i.e., p < 0.05). We choose the backward selection method since prior

research shows that backward selection method usually performs better than the for-

ward selection approach (i.e., adding one statistically significant variable to the model

at a time) (Mantel, 1970). We use the fastbw (Fast Backward Variable Selection) func-

tion from the R package rms (Harrell, 2015b) to perform the backward variable selec-

tion process.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 183

Evaluation technique. We measure the performance of our ordinal regression

models using the multi-class Brier score and AUC metrics.

Brier score (BS) is commonly used to measure the accuracy of probabilistic predic-

tions. It is essentially the mean squared error of the probability forecasts (Wilks, 2011).

The Brier score was defined by Brier (1950) to evaluate multi-category prediction. It is

calculated by

BS =
1

N

N∑
i=1

R∑
j=1

(fi j −oi j)
2 (6.1)

where N is the number of prediction events (or number of added logging statements in

our case), R is the number of predicted classes (i.e., or number of log levels in the level

modeling case), fi j is the predicted probability that the outcome of event i falls into

class j, and oi j takes the value 1 or 0 according to whether the event i actually occurred

in class j or not. The Brier score ranges from 0 to 2 (Brier, 1950). The lower the Brier

score, the better the performance of the model.

AUC (area under the curve) is used to evaluate the degree of discrimination that is

achieved by a model. The AUC is the area under the ROC (receiver operating charac-

teristic) curve that plots the true positive rate against the false positive rate. The AUC

value ranges between 0 and 1. A high value for the AUC indicates a high discrimina-

tive ability of a model; an AUC of 0.5 indicates a performance that is no better than

random guessing. In this chapter, we use an R implementation (Cullmann, 2015) of a

multiple-class version of the AUC, as defined by Hand and Till (2001).

The Brier score measures the error between the predicted probabilities and the ac-

tual observations, i.e., how likely the predicted log level is equal to the actual log level.

A probabilistic prediction may assign an extremely high possibility (e.g., 100%) to the

correct log level, or assign a probability to the correct category that is only slightly

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 184

higher than the probability of an incorrect log level. The Brier score evaluation favors

the former case to measure the model’s ability to predict the correct category accu-

rately.

The AUC give us an insight on how well the model can discriminate the log levels,

e.g., how likely a model is able to predict an actual error level as error correctly, rather

than predict an actual info level as error with false positive. In particular, the AUC pro-

vides a good performance measure when the distribution of the predicted categories is

balanced (Kuhn and Johnson, 2013). Figure 6.4 shows that some log levels are less fre-

quently used in the studied projects, hence harder to predict. A higher AUC ensures the

model’s performance when predicting such log levels. A prior study (Mant et al., 2009)

also uses a combination of AUC and Brier score to get a more complete evaluation of

the performance of a model.

Bootstrapping and optimism. The Brier score and AUC provide us an insight on

how well the models fit the observed dataset, but they might overestimate the per-

formance of the models when applied to future observations (Efron, 1986; McIntosh

et al., 2016). Bootstrapping (Efron, 1979) is a general approach to infer the relationship

between sample data and the population, by resampling the sample data with replace-

ment and analyzing the relationship between the resample data and the sample data.

In order to avoid overestimation (or optimism), we subtract the bootstrap-averaged op-

timism (Efron, 1986) from the original performance measurement (i.e., Brier score and

AUC). The optimism values of the Brier score and AUC are calculated by the following

steps, similar to prior research (McIntosh et al., 2016):

• Step 1. From the original dataset with N logging statements (i.e., instances), we

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 185

randomly select a bootstrap sample of N instances with replacement. On aver-

age, 63.2% of the logging statements in the original dataset are included in the

bootstrap sample for at least once (Kuhn and Johnson, 2013).

• Step 2. We build an ordinal regression model using the bootstrap sample (which

contains averagely 63.2% of the logging statements in the original dataset).

• Step 3. We test the model (built from bootstrap sample) on the bootstrap and

original datasets separately, and calculate the Brier score and AUC on both

datasets.

• Step 4. We measure the optimism by calculating the difference between the

model’s performance (Brier score and AUC) on the bootstrap sample and on the

original dataset.

The steps are repeated for 1,000 times to ensure that our random sampling is not

biased (Harrell, 2015a). We calculate the average optimism values of the Brier score

and AUC, and then obtain the optimism-reduced Brier score and AUC by subtracting

the optimism from the original values. The optimism-reduced Brier score and AUC

values give us an indication of how well we can expect the model to fit to the entire

dataset (but not just the sample or the observed data).

Baseline models. We compare the performance of our ordinal regression models

with two baseline models: a random guessing model, and a naive model based on the

proportional distribution of log levels. The random guessing model predicts the log

level of a logging statement to be each candidate level with a identical probability of

1/R , where R is the number of candidate levels. The intuition of the naive model is

that when a developer does not know the appropriate log level, a default log level of

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 186

the project may be chosen for the logging statement. However, we do not know the de-

fault log level of each project. Therefore, for each project we calculate the proportion of

each log level used in the logging statements, and use the proportion as the predicted

probability of that particular level. In other words, the naive model allocates the pre-

dicted probability of the candidate log levels according to the proportional distribution

of the log levels in that particular project.

Results

The ordinal regression model achieves an optimism-reduced Brier score of 0.44 to

0.66 and an optimism-reduced AUC of 0.75 to 0.81. An AUC of 0.75 to 0.81 indicates

that the ordinal regression model performs well in discriminating the six log levels, and

that the model can accurately suggest log levels for newly-added logging statements.

As shown in Table 6.3, the original Brier score for the ordinal regression model, which

measures the model’s performance when both of the training data and the testing data

is the whole data, ranges from 0.43 to 0.65. The optimism-reduced Brier score of the

ordinal regression model, which measures the model’s performance when the model is

trained on a subset (bootstrapped resample) of the data while tested on the whole data,

ranges from 0.44 to 0.66, with only a difference between 0 and 0.01. The difference be-

tween the original AUC and the optimism-reduced AUC is also very small, ranging from

0 to 0.01. The negligible difference between the original and the optimism-reduced

performance values indicates that the model is not over-fitted to the training data. In-

stead the model can also be effectively applied to a new data set. In other words, the

performance of our models, when applied on new data in practice, would only exhibit

very minimal degradation.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 187

We also measure the computational cost for determining the appropriate log level

for a newly-added logging statement. On average, training an ordinal regression model

for a large project like Hadoop on a workstation (Intel i7 CPU, 8G RAM) takes less than

0.3 seconds, and predicting the log level for a newly-added logging statement takes less

than 0.01 seconds. For each commit, we would only need to perform the prediction

step in real-time, while the training can be done offline. Our approach can provide

suggestions for log levels in an interactive real-time manner.

The performance of the ordinal regression model outperforms that of the naive

model and the random guessing model. For all the four studied projects, as presented

in Table 6.3, the ordinal regression model achieves a higher AUC than the baseline

models (the random guessing model and the naive model), by 0.25 to 0.31. The sig-

nificantly higher AUC of the ordinal regression model indicates that it outperforms the

baseline models in discriminating the six log levels. For three out of the four studied

projects, Directory Server, Hama and Qpid, the Brier score of the ordinal regression

model is better than that of the baseline models. The Brier score of the ordinal regres-

sion model outperforms the random guessing model by 0.28 to 0.36. The Brier score

of the ordinal regression model outperforms the naive model by 0.21 to 0.22.

For the Hadoop project, the Brier score of the ordinal regression model is less sig-

nificantly higher than that of the baseline models: the ordinal regression model gets a

Brier score of 0.66, while the naive model and the random guessing model get a Brier

score of 0.75 and 0.83, respectively. A possible reason for the ordinal regression model’s

performance degradation in the Hadoop project is that the Hadoop project presents a

more variant usage of log levels in each type of block. As shown in Figure 6.5, for the

Hadoop project, the most-frequently used log level in each type of block only covers

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 188

Table 6.3: Comparing the performance of the ordinal regression model with the ran-
dom guessing model and the naive model.

Project
Ordinal model Naive model Random guess

Brier Score1 AUC2 Brier Score AUC Brier Score AUC

D. Server 0.44 (0.43) 0.78(0.78) 0.65 0.50 0.80 0.50
Hadoop 0.66 (0.65) 0.76(0.76) 0.75 0.50 0.83 0.50

Hama 0.51 (0.50) 0.75(0.76) 0.73 0.50 0.83 0.50
Qpid 0.55 (0.55) 0.81(0.82) 0.76 0.50 0.83 0.50

1 The value outside the parenthesis is the optimism-reduced Brier score, and
the value inside the parenthesis is the original Brier score.
2 The value outside the parenthesis is the optimism-reduced AUC, and the
value inside the parenthesis is the original AUC.

33% to 55% of the logging statements that are inserted in that particular type of block.

However, the proportions of the most-frequently used log level in each type of block

are more dominating in other studied projects, ranging 49% - 76%, 35% - 66%, and 38%

- 63% for the Directory Server, Hamma and Qpid projects, respectively. For the Hadoop

project, the top two most-frequently used log levels in each type of block are used in

62% to 93% of the logging statements that are inserted in that particular type of block.

The top two most-frequently used log levels in each type of block cover 79% to 100%,

68% to 100%, and 68% to 92% of the logging statements for the Directory Server, Hama,

and Qpid projects, respectively. The variant usage of log levels in each type of block

makes it hard for a model to achieve an accurate probabilistic prediction. However,

a high AUC of 0.76 still indicates that the ordinal regression model performs well in

discriminating the six log levels for the logging statements in the Hadoop project.

The ordinal regression models can effectively suggest log levels with an AUC of 0.75

to 0.81 and a Brier score of 0.44 to 0.66, which outperforms the performance of the

naive model based on the log level distribution and a random guessing model.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 189

6.4.2 RQ2: What are the important factors for determining the log

level of a logging statement?

Motivation

In order to understand which factors (metrics) play important roles in determining

the appropriate log levels, we analyze the ordinal regression models to get the relative

importance of each variable. Understanding the important factors can provide soft-

ware practitioners insight regarding the selection of the most appropriate log level for

a newly-added logging statement.

Approach

Wald Chi-Square (χ2) test. We use the Wald statistic in a Wald χ2 maximum likeli-

hood test to measure the importance of a particular variable (i.e., calculated metric)

on model fit. The Wald test tests the significance of a particular variable against the

null hypothesis that the corresponding coefficient of that variable is equal to zero (i.e.,

H0 : θ = 0) (Harrell, 2015a). The Wald statistic about a variable is essentially the square

of the coefficient mean (θ̂) divided by the variance (v a r (θ)) of the coefficient (i.e.,

W = θ̂ 2

v a r (θ)). A larger Wald statistic indicates that an explanatory variable has a larger

impact on the model’s performance, i.e., model fit. The Wald statistic can be compared

against a chi-square (χ2) distribution to get a p -value that indicates the significance

level of the coefficient. We use the term “Wald χ2” to represent the Wald statistic here-

after. Prior research has leveraged Wald χ2 test in measuring the importance of vari-

ables (McIntosh et al., 2016; Sommer and Huggins, 1996). We perform the Waldχ2 test

using the anova function provided by the rms package (Harrell, 2015b) of R.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 190

Joint Wald Chi-Square (χ2) test. In order to control for the effect of multiple met-

rics in each dimension, we use a joint Wald χ2 test (a.k.a, “chunk test”) (Harrell, 2015a)

to measure the joint importance of each dimension of metrics. For example, we test

the joint importance of the text length, variable number and log tokens metrics, and

get a single Wald χ2 value to represent the joint importance of the logging statement

metrics dimension. The Wald χ2 value resulted form a joint Wald test on a group of

metrics is not simply the sum of the Wald χ2 values that are resulted from testing the

importance of the corresponding individual metrics; instead, the Wald test measures

the joint importance of a group of metrics by testing the null hypothesis that all met-

rics in the group have a coefficient of zero (i.e., H0 : θ0 = θ1 = ...θk−1 = 0, where k is

the number of metrics in the group for joint Wald test) (Harrell, 2015a). The larger the

Wald χ2 value, the larger the joint impact that a group of metrics have on the model’s

performance. We also use the anova function from the R package rms (Harrell, 2015b)

to perform the joint Wald χ2 test.

Results

The containing block metrics, which characterize the surrounding block of a log-

ging statement, play the most important roles in the ordinal regression models for

log levels. Table 6.4 shows the Wald χ2 test results for all the individual metrics that

are used in our final ordinal regression models. As listed in the “Sig.” columns, all

the final metrics that we used in our ordinal regression models are statistically signif-

icant in our models (i.e., p < 0.05), since we used the backward variable selection ap-

proach to remove those insignificant metrics. Table 6.5 shows the joint Wald χ2 test

results for each dimension of metrics. The dimension of containing block metrics is

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 191

the most important one (i.e., with the highest χ2) in the models for the Haodop and

the Hama projects; and it is the second most important dimension of metrics in the

models for the Directory Server and the Qpid projects. Specifically, both the contain-

ing block type and the containning block SLOC metrics are statistically significant in

the models for all four studied projects. Moreover, the containing block type metric as

a individual metric plays the most important role in the models for the Hama project;

and it is the second most important metric for the models for the other three projects.

The containing block SLOC metric is the fourth important metric in the models for the

Hadoop and Hama projects, while it plays less important roles in the models for the

other two projects. Developers need to consider the characteristics of the surround-

ing block (e.g., block type) of a newly-added logging statement to determine the most

appropriate log level for the particular logging statement.

The file metrics, which capture the overall logging practices in the containing

files, are also important factors for predicting the log level of a newly-added logging

statement. As shown in Table 6.5, the file metrics is the most important dimension

in the ordinal regression models for the Qpid project, the second most important for

the Hadoop project, and the third most important for the Directory Server and Hama

projects. As shown in Table 6.4, in particular, the average log level metric is the most

important individual metric for determining the log levels for the Hadoop and Qpid

projects; and it is the third and fourth important one in the Hama and Directory Server

projects, respectively. Such a result suggests that the logging statements that are in-

serted in the same file are likely to use similar log levels; this might be explained by the

intuition that these logging statements share the same purposes of logging and they

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 192

Table 6.4: Variables’ importance in the ordinal models, represented by the Wald Chi-
square. The percentage following a Wald χ2 value is calculated by dividing that partic-
ular Wald χ2 value by the “TOTAL” Wald χ2 value.

Directory Server Qpid

Variable name Wald χ2 Sig.1 Variable name Wald χ2 Sig.
Log tokens 555 (29.3%) *** Average log level 937 (34.8%) ***
Containing block type 507 (26.8%) *** Containing block type 460 (17.1%) ***
Variable number 217 (11.4%) *** Log number 238 (8.8%) ***
Average log level 200 (10.6%) *** Log tokens 207 (7.7%) ***
Text length 123 (6.5%) *** Log churn 78 (2.9%) ***
Average log variable 46 (2.4%) *** Average log variable 37 (1.4%) ***
Average log length 24 (1.3%) *** Containing block SLOC 27 (1.0%) ***
Log number 23 (1.2%) *** Fan in 20 (0.7%) ***
Log density 23 (1.2%) *** Log density 11 (0.4%) **
Containing block SLOC 8 (0.4%) ** Text length 9 (0.3%) **
Fan in 5 (0.3%) * TOTAL 2692 (100.0%) ***
Log churn ratio 5 (0.3%) *
TOTAL 1894 (100.0%) ***

Hadoop Hama

Variable name Wald χ2 Sig. Variable name Wald χ2 Sig.
Average log level 494 (23.1%) *** Containing block type 257 (29.4%) ***
Containing block type 385 (18.1%) *** Log tokens 96 (10.9%) ***
Log tokens 171 (8.0%) *** Average log level 88 (10.1%) ***
Containing block SLOC 136 (6.4%) *** Containing block SLOC 37 (4.2%) ***
Log number 76 (3.6%) *** Log number 20 (2.2%) ***
Log churn in history 42 (2.0%) *** TOTAL 876 (100.0%) ***
Text length 29 (1.4%) ***
Average log variable 20 (0.9%) ***
Log churn ratio in hist. 14 (0.6%) ***
TOTAL 2134 (100.0%) ***

1 Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:
o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

log the same or closely-connected features. Other metrics in the file metrics dimen-

sion - the log number, log density, average log variables, average log length and fan in

metrics - are also statistically significant in the log level models. These metrics together

capture the overall characteristics of the logging practices in a source code file. Devel-

opers should always keep in mind the overall logging characteristics (e.g., the log level

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 193

Ta
b

le
6.

5:
T

h
e

jo
in

t
im

p
o

rt
an

ce
o

fe
ac

h
d

im
en

si
o

n
o

fm
et

ri
cs

in
th

e
o

rd
in

al
m

o
d

el
s,

ca
lc

u
la

te
d

u
si

n
g

th
e

jo
in

t
W

al
d

te
st

.T
h

e
p

er
ce

n
ta

ge
fo

llo
w

in
g

a
W

al
d
χ

2
va

lu
e

is
ca

lc
u

la
te

d
b

y
d

iv
id

in
g

th
at

p
ar

ti
cu

la
r

W
al

d
χ

2
va

lu
e

b
y

th
e

“T
O

TA
L”

W
al

d
χ

2
va

lu
e.

D
ir

ec
to

ry
Se

rv
er

H
ad

o
o

p
H

am
a

Q
p

id
M

et
ri

c
d

im
en

si
o

n
W

al
d
χ

2
Si

g.
1

W
al

d
χ

2
Si

g.
W

al
d
χ

2
Si

g.
W

al
d
χ

2
Si

g.
C

o
n

ta
in

in
g

b
lo

ck
m

et
ri

cs
64

0
(3

3.
8%

)
**

*
89

4
(4

1.
9%

)
**

*
57

7
(6

5.
8%

)
**

*
72

3
(2

6.
9%

)
**

*
Fi

le
m

et
ri

cs
25

8
(1

3.
6%

)
**

*
54

9
(2

5.
7%

)
**

*
91

(1
0.

3%
)

**
*

11
34

(4
2.

1%
)

**
*

Lo
gg

in
g

st
at

em
en

t
m

et
ri

cs
88

9
(4

6.
9%

)
**

*
18

9
(8

.9
%

)
**

*
96

(1
0.

9%
)

**
*

22
4

(8
.3

%
)

**
*

C
h

an
ge

m
et

ri
cs

5
(0

.3
%

)
*

0
(0

.0
%

)
o

0
(0

.0
%

)
o

78
(2

.9
%

)
**

*
H

is
to

ri
ca

lm
et

ri
cs

0
(0

.0
%

)
o

67
(3

.1
%

)
**

*
0

(0
.0

%
)

o
0

(0
.0

%
)

o
T

O
TA

L
18

94
(1

00
.0

%
)

**
*

21
34

(1
00

.0
%

)
**

*
87

6
(1

00
.0

%
)

**
*

26
92

(1
00

.0
%

)
**

*
1

St
at

is
ti

ca
ls

ig
n

ifi
ca

n
ce

o
fe

xp
la

n
at

o
ry

p
ow

er
ac

co
rd

in
g

to
W

al
d
χ

2
lik

el
ih

o
o

d
ra

ti
o

te
st

:
o

p
≥0

.0
5;

*
p
<

0.
05

;*
*

p
<

0.
01

;*
**

p
<

0.
00

1

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 194

of the existing logging statements) in the same file when determining the appropriate

log level for a newly-added logging statement.

The logging statement metrics, which measure the content of a logging state-

ment, also play important roles in explaining the log level for a newly-added logging

statement. As shown in Table 6.5, the logging statement metrics is the most important

dimension for explaining the log level for a newly-added logging statement in the Di-

recotory Server project. It is the second most important metric for explaining the log

levels for the Hama project, and the third important metric for explaining the log levels

for the Hadoop and Qpid projects. In particular, the log tokens metric is the most im-

port individual metric for explaining the log levels for the Directory Server project; and

it is the second, third, and forth most important metric for explaining the log levels for

the Hama, Hadoop and Qpid projects, respectively. We investigated why the log tokens

metric is more important for explaining the log levels for the Directory Server project

than other projects. We find that the Directory Server project uses the least variety of

tokens in their logging statements. Specifically, on average each logging statement in

the Directory Server project contributes 0.08 unique tokens, while on average each log-

ging statement contributes 0.12 to 0.21 unique tokens in other studied projects. The

uniqueness of tokens in Directory Server makes it more certain to determine the appro-

priate log levels using such information. Other metrics in the logging statement metrics

dimension - the text length and variable number metrics - are also among the most im-

portant metrics for explaining the log levels for the Directory Server project; however,

these two metrics are less important or even not statistically significant for explaining

the log levels for the other three projects. In order to find the root cause of this dis-

crepancy, we dig into the text length and variable number metrics for the four studied

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 195

projects. We find that the Directory Server project generally uses significantly shorter

text but more variables in the error level logs which are the most popular ones in the

Directory Server project (see Figure 6.4). Therefore, these two metrics have great ex-

planatory power to the levels of the logging statements in the Directory Server project.

However, we do not find similar patterns in the other three projects. In order to deter-

mine the most appropriate log level for a newly-added logging statement, developers

should not only refer to the overall logging characteristics of the containing file and the

containing block, but should also pay attention to the content of the logging statement

itself.

The change metrics and historical metrics are the least important in explaining

the choices of log levels. As shown in Table 6.5, the change metrics and historical met-

rics are the least important dimensions in the ordinal regression models for all studied

projects. The log level of a newly-added logging statement is not significantly impacted

by the characteristics of the code change that introduces the logging statement. The

log level of a newly-added logging statement is also not significantly impacted by the

characteristics of the previous code changes that affect the containing file of the log-

ging statement. The appropriate log level is more likely to be influenced by the static

characteristics of the source code, rather than the change history of the source code.

These results suggest that we should focus our effort on the current snapshot of the

source code, rather than the development history, to determine the appropriate log

level for a newly-added logging statement.

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 196

The characteristics of the containing block, the existing logging statements in the

containing file, and the content of a newly-added logging statement play important

roles in determining the appropriate log level for the newly-added logging state-

ment. The appropriate log level is more likely to be influenced by the current snap-

shot of the source code, rather than the development history of the source code.

6.5 Discussion

Cross-project Evaluation. Since small projects or new projects might not have enough

history data for log level prediction, we also evaluate our model’s performance in cross-

project prediction. We train a model using a combo data of N − 1 projects (i.e., the

training projects), and use the model to predict the log levels of the newly-added log-

ging statements in the remaining one project (i.e., the testing project). We use the AUC

and the Brier score to evaluate the performance of the cross-project prediction models.

To avoid the unbalanced number of newly-added logging statements for each

project in the training data, we leverage up-sampling to balance the training data

such that each project has the same number of newly-added logging statements in

the training data. Specifically, we keep unchanged the largest training project in the

training data; while we randomly up-sample the entries of the other training projects

with replacement to match the number of entries of the largest training project. In

order to reduce the non-determinism caused by the random sampling, we repeat the

“up-sampling - training - testing” process for 100 times and calculate the average AUC

and Brier score values.

Table 6.6 lists the performance of the cross-project models. Each row of the table

shows the performance of the model that uses the specified project as testing data and

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 197

Table 6.6: The results of the cross-project evaluation.

Project Brier score AUC

DirectoryServer 0.67 0.76
Hadoop 0.77 0.72
Hama 0.57 0.71
Qpid 0.70 0.80

all the other projects as training data. The cross-project models reach a Brier score of

0.57 to 0.77 and an AUC of 0.71 to 0.80.

Comparing Table 6.6 and Table 6.3, we find a significant performance degradation

of the ordinal regression model when applied in cross-project prediction. The accu-

racy of probability prediction decreases significantly: the Brier score increases by 0.06

to 0.23. A likely explanation for the performance degradation is about the different

distribution of log levels in different projects, as shown in Figure 6.4. Another expla-

nation might be that the most important factors for the log level models are different

among the studied projects. However, the AUC only decreases by 0.01 to 0.04. The

cross-project models still have the ability to discriminate different log levels for newly-

added logging statements. Overall, our cross-project evaluation results suggest that

one is better off building separate models for each individual project.

Log Level Changes. We have left out all the newly-added logging statements that expe-

rience a later log level change in our study, as the levels of these logging statements may

have been inappropriate in the first place. Developers change the log level of a logging

statement either to fix an inappropriate log level or because the logging requirement

has changed.

As shown in Table 6.1, there are 491 added logging statements that experience a

later log level change in the four studied projects. Table 6.7 summarizes the patterns

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 198

Table 6.7: Summary of the patterns of log level changes in the four studied projects.
Each row represents a original log level and each column represents a new log level.

trace debug info warn error fatal

trace 0 25 2 0 0 0
debug 16 91 41 3 7 1

info 8 211 7 13 4 0
warn 0 23 35 0 16 3
error 0 12 23 23 2 4
fatal 0 1 0 1 1 0

1 Sometimes a log level is eventually changed back to
the same level after some changes.

of log level changes that these 491 logging statements experience. Each row in the ta-

ble represents the original level of an added logging statement, and each column rep-

resents the final level of the logging statements after one or more log level changes.

211 out of the 491 logging statements undergo a log level change from the info level

to the debug level. On the other hand, 41 out of the 491 logging statements have their

log level changed from the debug level to the info level. It seems that developers often

change between the info and debug levels; the changes between info and debug levels

represent 51% of all the log level changes. Other notable level change patterns include:

warn to info, trace to debug, warn to debug, error to info, error to warn, warn to error,

and debug to trace.

We notice that 354 (72%) out of the 491 logging statements have undergone a log

level change from a less verbose level to a more verbose level (e.g., from info to debug);

these changes will cause the software systems to generate lesser log information when

more verbose log levels are not enabled. 119 (24%) out of the 491 logging statements

have their log levels changed from a more verbose log level to a less verbose log level

(e.g., from debug to info); these changes will cause the software systems to generate

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 199

more log information when more verbose log levels are not enabled. 18 (4%) out of the

491 logging statements have their log levels changed to a different level, but eventually

changed back to their initial log levels.

We also find that 385 (78%) out of the 491 logging statements have undergone a log

level change to a log level that is only one level away from the original log level (e.g.,

from debug to info or from error to warn). 470 (96%) out of the 491 logging statements

have their log levels changed to a level that is no more than 2 levels away (e.g., from

warn to debug). Developers are likely to adjust their log levels between adjacent log

levels rather than between log levels that are far apart. In this chapter we study the

log levels of logging statements generally; however, future study should explore the

confusion and distinction between adjacent log levels.

6.6 Threats to Validity

External Validity. The external threat to validity is concerned with the generalization

of our results. In our work, we investigate four open source projects that are of dif-

ferent domains and sizes. However, since other software projects may use different

logging libraries and apply different logging rules, the results may not generalize to

other projects. Further, we only analyze Java source code in this study, thus the re-

sults may not generalize to projects programmed in non-Java languages. For example,

other logging libraries in other programming languages may not support all the six log

levels. Findings from more case studies on other projects, especially those with other

programming languages and other logging libraries, can benefit our study.

Our preliminary study finds that different projects have different distribution of

log levels. The results for RQ2 shows that the most important factors for the log level

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 200

models are different among the studied projects. Besides, our cross-project evaluation

highlights a significant performance degradation when our ordinal regression models

are applied across projects. Therefore, in order to provide the most appropriate sug-

gestion for the log level of a newly-added logging statement, it is recommended to build

separate models for each individual project.

Internal Validity. The ordinal regression modeling results show the relationship be-

tween log levels and a set of software metrics. The relationship does not represent the

casual effects of these metrics on log levels. The choice of log levels can be associated

with many factors other than the metrics that we used to model log level. Future stud-

ies may extend our study by considering other factors.

In this chapter we study the appropriate choice of log level for a newly-added log-

ging statement. We assume that in most cases developers of the studied projects are

able to determine the most appropriate (i.e., consistent) log levels for their logging

statements. However, the choices of log levels in the studied projects might not be

always appropriate. To address this issue, we choose several successful and widely-

used open source projects, and we remove all newly-added logging statements that

experience a log level change later on in their lifetime.

This chapter studies the log level, which is fixed in the code, for a logging statement.

The users of software systems that leverage log levels can configure at which verbosity

level the logging statements should be printed, for different usage scenarios (e.g, de-

bugging). In this chapter we do not capture the usage scenarios of the logging state-

ments of these software systems. We may need to consider different usage scenarios

of the logging statements to better determine the appropriate log levels in future work.

Construct Validity. This chapter proposes an approach that can provide developers

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 201

with suggestions on the most appropriate log level when they add a new logging state-

ment. Future work should conduct user studies with real developers to better evaluate

how well our approach would perform in a real life setting.

We choose five dimensions of software metrics to model the appropriate log level

of a logging statement. However, there might be other metrics, such as the characteris-

tics of the logged variables, that can help improve the performance of our models. We

expect future work to expand this study and consider more relevant software metrics.

6.7 Chapter Summary

Prior studies highlight the challenges that developers face when determining the ap-

propriate log level for a newly-added logging statement. However, there is no standard

or detailed guideline on how to use log levels appropriately; besides, we find that the

usage of log levels varies across projects. We propose to address this issue (i.e., to pro-

vide suggestions on the choices of log levels) by learning from the prior logging prac-

tices of software projects. We first study the development history of four open source

projects (Directory Server, Hadoop, Hama, and Qpid) to discover the distribution of log

levels in various types of code snippets in these projects. Based on the insight from the

preliminary study and our intuition, we propose an automated approach that leverage

ordinal regression models to learn the usage of log levels from the existing logging prac-

tices, and to suggest the appropriate log levels for newly-added logging statements.

Some of the key findings of our study are as follows:

• The distribution of log levels varies across different types of blocks, while the

log levels in the same type of block show similar distributions across different

CHAPTER 6. AUTOMATED SUGGESTIONS FOR CHOOSING LOG LEVELS 202

projects.

• Our automated approach based on ordinal regression models can accurately

suggest the appropriate log level of a newly-added logging statement with an

AUC of 0.76 to 0.81 and a Brier score of 0.44 to 0.66. Such performance outper-

forms the performance of a naive model based on the log level distribution and

a random guessing model.

• The characteristics of the containing block of a newly-added logging statement,

the existing logging statements in the containing source code file, and the con-

tent of the newly-added logging statement play important roles in determining

the appropriate log level for that logging statement.

Making appropriate choices of log levels is critical to balance the benefits and costs of

logging (Chapter 3). Developers can leverage our models to receive automatic sugges-

tions on the choices of log levels or to receive warnings on inappropriate usages of log

levels. Our results also provide an insight on which factors (e.g., the containing block of

a logging statement, the existing logging statements in the containing source code file,

and the content of a logging statement) that developers consider when determining

the appropriate log level for a newly-added logging statement.

CHAPTER 7

Automated Suggestions for Logging Stack Traces

As discussed in Chapter 3, logging the stack trace of an exception is important to assist devel-
opers in failure diagnosis. However, stack traces can grow log files very fast and easily frustrate
the end users of a software system. In Chapter 3, we also observe that developers have diffi-
culties to decide whether to log the stack trace of an exception. Therefore, in this chapter, we
propose an automated approach to help developers make informed decisions about whether
to print the stack trace of an exception in a logging statement. We use static program analysis
to extract the contextual information of a logging statement in a catch block (e.g., exception
type), and construct Random Forest models to suggest whether a logging statement in a catch
block should log the stack trace of an exception. Our experimental results on four open source
projects show that our automated approach can accurately suggest whether to print the stack
trace of an exception in a logging statement, with a precision of 0.81 to 0.87, a recall of 0.81 to
0.89, and an AUC of 0.85 to 0.94. Our findings also provide developers and researchers insights
into the important factors (e.g. exception types) that drive developers’ decisions of logging ex-
ception stack traces.

203

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 204

7.1 Introduction

M
ODERN logging libraries (e.g., Log4j1 and SLF4J2) usually support conve-

nient ways to log the stack trace of an exception in a logging statement.

For example, in the code snippet shown in Figure 7.1, the stack trace

of an exception is logged by specifying the exception object as the last parameter of a

logging statement. In this chapter, we name a logging statement in a catch block as an

exception logging statement. An exception logging statement can either log the stack

trace of an exception or not. Logging the stack traces of exceptions is very important

to assist developers in diagnosing field failures (Han et al., 2012; Schroter et al., 2010;

Chapter 3). However, stack traces can usually grow the log files very fast, lead to perfor-

mance overhead, and easily frustrate the end users of a software system (Chapter 3).

As discussed in Chapter 3, developers usually have difficulties to balance the bene-

fits and costs of logging stack traces and they raise conflicting concerns about whether

to log the stack trace of an exception in a logging statement. For example, issue report

HADOOP-105713 proposes to add stack traces to many exception logging statements

across modules. However, other developers raise concerns that stack traces should be

avoided for some of these exception logging statements. As a result, it takes signifi-

cant efforts (e.g., as much as 10 patches) to resolve the conflicting concerns. Table 7.1

lists ten issue report examples that are concerned with whether to log the stack trace

of an exception. Seven of the issue report examples request to add missing stack traces

in exception logging statements, while the other three issue report examples request

to remove existing stack traces from exception logging statements. These examples

1https://logging.apache.org/log4j/2.x/
2https://www.slf4j.org
3https://issues.apache.org/jira/browse/HADOOP-10571

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 205

try {
Thread.sleep(detectionInterval);

} catch (InterruptedException e) {
/* Logging the stack trace by specifying the exception (e) as the last

parameter of a logging statement. */
LOG.error("Disk Outlier Detection thread interrupted", e);

}

Figure 7.1: Example of logging the stack trace of an exception.

motivate us to develop automated approaches to help developers make appropriate

decisions about whether to log the stack trace of an exception in the first place.

Prior work of “learning to log” learns statistical models from existing logging code

to provide suggestions about where to log (Zhu et al., 2015; Jia et al., 2018; Chapter 4)

and which log level to use (Chapter 6). However, prior work never provides suggestions

about whether to log the stack trace of an exception. We believe that making appro-

priate decisions of logging stack traces is also very important to developers, because

unnecessary stack traces can significantly increase the size of log files (i.e., a stack trace

is usually much longer than a regular log message) and falsely alarm end users (i.e., a

stack trace usually indicate a system problem).

In this work, we propose an automated approach to provide suggestions about

whether to print the stack trace of an exception in an exception logging statement.

We first use static program analysis to extract the contextual information of an excep-

tion logging statement (e.g. the exception type) and whether the exception logging

statement logs the stack trace. Then, we construct Random Forest models to provide

automated suggestions about whether an exception logging statement should log the

stack trace of an exception. We perform a case study on four open source projects,

namely Hadodp, Directory Server, Hive, and Kafka. Our experimental results show that

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 206

Table 7.1: Examples of issue reports of the Hadoop project that are concerned with
whether to log the stack trace of an exception.

Issue ID1 Issue report summary Issue request

HADOOP-14481 Print stack trace when native bzip2 library
does not load

Add stack trace

HADOOP-13711 Supress CachingGetSpaceUsed from logging
interrupted exception stacktrace

Remove stack trace

HADOOP-13682 Log missing stacktrace in catch block Add stack trace
HADOOP-13458 LoadBalancingKMSClientProvider#doOp

should log IOException stacktrace
Add stack trace

HADOOP-12840 UGI to log@ debug stack traces when failing
to find groups for a user

Add stack trace

HADOOP-12795 KMS does not log detailed stack trace for un-
expected errors

Add stack trace

HADOOP-11868 Invalid user logins trigger large backtraces in
server log

Remove stack trace

HADOOP-10571 Use Log.*(Object, Throwable) overload to log
exceptions

Add stack trace

HADOOP-10562 Namenode exits on exception without
printing stack trace in AbstractDelegation-
TokenSecretManager

Add stack trace

HADOOP-8711 Provide an option for IPC server users to
avoid printing stack information for certain
exceptions

Remove stack trace

1 For more details about each issue, one can refer to its web link which is
“https://issues.apache.org/jira/browse/” followed by the issue ID. For example, the link
for the first issue is “https://issues.apache.org/jira/browse/HADOOP-14481”.

our automated approach can accurately suggest whether to log the stack trace of an

exception in an exception logging statement.

Chapter organization. The remainder of the chapter is organized as follows. Sec-

tion 7.2 describes our case study methodology, covering our subject projects, data ex-

traction and data analysis approaches. Section 7.3 presents our experimental results.

Finally, Section 7.4 draws conclusions based on our presented findings.

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 207

7.2 Methodology

7.2.1 Overview

Figure 7.2 shows an overview of our approach for providing automated suggestions

about whether to print the stack trace of an exception in an exception logging state-

ment. From the source code of each studied open source project, we use static program

analysis to search for all the exception logging statements (i.e., the logging statements

within a catch block). We implemented an IntelliJ plugin based on the IntelliJ Platform

SDK 4 to perform our static program analysis. For each exception logging statement,

we then use our IntelliJ plugin to extract a label (i.e., whether a stack trace is logged) and

a set of code features that capture the contextual information of the logging statement.

Based on the extracted label and code features for each exception logging statement,

we construct a Random Forest model to suggest whether an exception logging state-

ment should log the stack trace of an exception. Based on our model, we analyze the

feature importance to understand the important factors that explain the likelihood of

printing an exception stack trace in a logging statement.

7.2.2 Subject Projects

We perform a case study on four open source projects, including Hadoop, Directory

Server, Hive, and Kafka. Table 7.2 lists the overview information about our subject

projects. Hadoop is a distributed computing framework that supports distributed

storage and processing of big data sets. Directory Server is an embeddable directory

server. Hive is a data warehouse that supports accessing distributed data sets using

4https://www.jetbrains.org/intellij/sdk/docs/welcome.html

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 208

Data AnalysisData Extraction

Source
code

Code features
(Context info)

Labels (stack
trace logged?)

Random
Forest Model

Log the stack
trace?

Exception log.
statements

Static program
analysis

Feature
importance

Subject
Projects

Figure 7.2: Overview of our approach for providing automated suggestions about
whether to print the stack trace of an exception in an exception logging statement.

SQL. Kafka supports a streaming platform for messaging, storing and processing

real-time records. Our case study projects are successful and mature projects with

many years of development history. They represent different domains, which ensures

that our findings are not limited to a particular domain.

All of these projects are primarily developed in Java. Table 7.2 shows the SLOC

(Source Lines of Code) and the Java SLOC of the studied projects. In this chapter, we

only consider the Java source code, and we exclude the testing code. The last column

of Table 7.2 shows the number of exception logging statements in each studied project

and the percentage of exception logging statement that print exception stack traces.

Hadoop has the largest SLOC (i.e., 2,906 K) and largest number (i.e., 2,522) of excep-

tion logging statements. Kafka has the smallest number (i.e., 264) of exception logging

statements but the largest percentage (i.e., 76%) of exception logging statements that

print exception stack traces. Directory Server has the smallest SLOC (i.e., 245 K) and

also the smallest percentage (i.e., 47%) of exception logging statements that print ex-

ception stack traces.

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 209

Table 7.2: Overview of the studied projects.

Project
Studied release

(Time of release)
SLOC

Primary
Language (SLOC)

Exception
logging statements*

(% stack traces logged)

Hadoop
3.1.1

(2018.08)
2,906 K Java (1,518 K) 2,522 (61%)

Directory Server
2.0.0.AM25
(2018.08)

245 K Java (232 K) 391 (47%)

Hive
3.1.0

(2018.07)
1,721 K Java (1,256 K) 1,615 (63%)

Kafka
2.0.0

(2018.07)
327 K Java (214 K) 264 (76%)

* The number of exception logging statements for each project is calculated for the primary
language.

7.2.3 Data Extraction

In order to explain the likelihood of logging an exception stack trace in an exception

logging statement, we extract a label that captures whether a stack trace is printed in

the logging statement and a set of code features that capture the contextual informa-

tion of the logging statement. As shown in Figure 7.2, we use static program analysis

(based on the IntelliJ Platform SDK) to search for all the exception logging statements

in the source code, and then extract the label and code features for each exception log-

ging statement. Below, we explain the label and the code features that we extract for

each exception logging statement.

Label (logging an exception stack trace or not): A boolean variable indicating whether

an exception logging statement prints an exception stack trace.

Code features. We extract a number of code features for each exception logging state-

ment to explain the likelihood of logging a stack trace in the logging statement. Ta-

ble 7.3 lists our code features for each exception logging statement and explains our

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 210

rationale for choosing each of these features. These features fall into six dimensions:

• Logging statement features capture the characteristics of an exception logging

statement and its local code context (e.g., whether the logging statement is inside

a loop).

• Exception features capture the characteristics of the exception that is caught by

the containing catch block of an exception logging statement. If there are multi-

ple exceptions caught by the same catch block, we use the first one.

• Catch block features capture the characteristics of the containing catch block of

an exception logging statement.

• Try block features capture the characteristics of the pairing try block of the con-

taining catch block of an exception logging statement.

• Exception-throwing method features capture the characteristics of the method

in the try block that can throw the caught exception (i.e., declared in the throws

clause). If there are multiple methods that can throw the caught exception, we

use the first one.

• Containing code features capture the characteristics of the code structures be-

yond the try-catch scope, such as the fan-in of the containing method.

7.2.4 Data Analysis

Model construction and evaluation. Using these code features as explanatory vari-

ables and the labels as a response variable, we train Random Forest models to suggest

the likelihood of logging an exception stack trace in an exception logging statement.

We use 10-fold cross-validation to estimate the efficacy of our models. The whole data

set is randomly partitioned into 10 sets of roughly equal size. One subset is used as the

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 211

Table 7.3: Selected code features that are relevant to the likelihood of logging the stack
trace of an exception in an exception logging statement.

Dimension feature Definition (d) | Rationale (r)

Logging
statement

features

Log level
d: The verbosity level of the logging statement.
r: Lower log levels (e.g., debug) are more likely to print stack traces for debugging.

Log in loop
d: Is the logging statement contained in a loop?
r: Logging statements in loops are more likely to produce excessive logging.

Log in branch
d: Is the logging statement contained in a branch inside the containing catch block?
r: Logging statements in a branch are less likely to be related to the exception.

Exception
features

Exception type
d: Type of the exception that is caught by the containing catch block.
r: Indicates the severity of a problem. Severe problems are more likely to need stack
traces.

Exception category
d: Category of the caught exception (runtime exception, error, or checked exception).
r: Indicates the severity of the problem at a higher level.

Exception source
d: Source of the exception class (i.e., from the JDK, libraries, or the project).
r: Problems related to different sources might have different level of severity.

Exception package
d: The containing package of the exception class.
r: The exceptions that are defined in the same package might indicate similar prob-
lems.

Catch
block

features

Throw in catch
d: Does the containing catch block contain a throw statement?
r: An exception is less likely to be logged with the stack trace if it is re-thrown.

Return in catch
d: Does the containing catch block contain a return statement?
r: An early return might indicate a severe problem.

LOC before
logging

d: Number of lines of code in the containing catch block that are prior to the logging
statement.
r: Indicates how the logging statement is related to the caught exception.

LOC
after logging

d: Number of lines of code in the containing catch block that are after the logging
statement.
r: Indicates how well the exception is handled. Well-handled exceptions are less likely
to need stack traces for debugging.

Method calls
before logging

d: Number of method calls in the containing catch block that are prior to the logging
statement.
r: Indicates how the logging statement is related to the caught exception.

Method calls
after logging

d: Number of method calls in the containing catch block that are after the logging
statement.
r: Indicates how well the exception is handled.

Try
block

features

Throw in try
d: Does the try block contain a throw statement?
r: Indicates a problem that might need a stack trace to assist in debugging.

Return in try
d: Does the try block contain a return statement?
r: An exception before a return might indicate a severe problem.

Method calls
in try

d: Number of method calls in the try block excluding the logging statement.
r: Indicates if the pairing catch block handles a specific problem or general problems.

Exception-
throwing
method
features

Exception method
d: The method that throws the caught exception, or the containing method if the
exception is thrown by the try block.
r: The exceptions that are triggered by the same method call might be logged in sim-
ilar ways.

Exception
method source

d: The source of the exception-throwing method (i.e., from the JDK, libraries, or the
project).
r: Problems related to different sources might have different level of severity.

Exception
method package

d: The containing package of the method that throws the exception.
r: The exceptions that are triggered by methods from the same package might be
logged in similar ways.

Containing
code

features

Containing
method fan-in

d: Number of usages of the containing method in the entire project.
r: Methods called at many code locations tend to log the stack traces for debugging.

Containing file
d: The containing file of the logging statement.
r: Logging statements in the same file might share similar logging patterns.

Containing package
d: The containing package of the logging statement.
r: Logging statements in the same package might share similar logging patterns.

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 212

testing set (i.e., the held-out set) and the other nine subsets are used as the training

set. We train our models using the training set and evaluate the performance of our

models on the held-out set. The process repeats 10 times until all subsets are used as

testing set once. We repeat the 10-fold cross-validation 10 times (i.e., repeated 10-fold

cross-validation), which means 100 different held-out sets would be used to estimate

the efficacy of our models.

There are some nominal features (e.g., “exception type”) which have many classes.

Directly using these features as model variables would lead to highly sparse feature

vectors. Instead, we use a target coding method to transfer these nominal features into

numerical variables. For example, for each exception type, we calculate the ratio of the

instances that print stack traces against all the instances with the same exception type.

We only use the training set to calculate the ratios.

In each fold of cross-validation, we use precision, recall, and AUC to measure the

performance of our models. Precision measures the ratio of logging statements that are

both predicted and observed to log stack traces against all the logging statements that

are predicted to log stack traces. Recall measures the ratio of logging statements that

are both predicted and observed to log stack traces against all the logging statements

that are observed to log stack traces. AUC measures our models’ ability to discriminate

the logging statements that log stack traces from the logging statements that do not.

Feature importance. The random forest model measures the importance of a feature

by permuting the value of the feature while keeping the values of the other features

unchanged in the testing data (i.e., the so-called “OOB” data) (Breiman, 2001). The

importance score of a feature measures the impact of such a permutation of the feature

on the classification error rate (Breiman, 2002; Liaw and Wiener, 2002). For each of the

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 213

100 folds in our repeated 10-fold cross-validation, we measure the importance score

of each of our features. As a result, we get 100 importance scores for each feature.

Scott-Knott clustering. In order to understand the important factors that explain the

likelihood of logging an exception stack trace in a logging statement, we compare the

average importance of our features. However, the differences among the importance of

some features might actually be due to random variability. Thus we use a Scott-Knott

(SK) algorithm (Scott and Knott, 1974) to partition all the features into statistically ho-

mogeneous groups. The SK algorithm hierarchically cluster the features into groups

and uses the likelihood ratio test to judge the significance of the difference of the im-

portance scores among the feature groups. As a result, the SK algorithm generates sta-

tistically distinct groups of features, i.e., the importance scores of the features in two

different groups are significantly different (i.e., p-value < 0.05), while the importance

scores of the features within the same group are not significantly different (i.e, p-value

≥ 0.05).

7.3 Experimental Results

Our Random Forest models accurately suggest the likelihood of logging a stack trace

in an exception logging statement, providing a precision of 0.81 to 0.87, a recall of

0.81 to 0.89, and an AUC of 0.85 to 0.94. Table 7.4 shows the performance of our Ran-

dom Forest models, for the Hadoop, Directory Server, Hive and Kafka projects. A high

precision value indicates that a high percent of exception logging statements that are

suggested to print stack traces actually need to do so. A high recall value indicates that

our models can detect a high percent of exception logging statements that need to print

stack traces. A high AUC value indicates that our models are very likely to distinguish

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 214

Table 7.4: The performance of our Random Forest models for suggesting the likelihood
of logging a stack trace in an exception logging statement.

Project Precision Recall AUC

Hadoop 0.81 0.81 0.85
Directory Server 0.86 0.88 0.94
Hive 0.86 0.87 0.90
Kafka 0.87 0.89 0.86

exception logging statements that need to print stack traces and those do not.

Table 7.4 shows that our models perform better in the Directory Server, Hive and

Kafka projects than in the Hadoop project. These results might be because the Di-

rectory Server, Hive and Kafka projects follow more consistent logging patterns. In

fact, the Hadoop project implements quite heterogeneous functionalities, such as dis-

tributed storage, distributed computing, and resource management, which might have

different logging needs.

Table 7.4 also shows that our models have a better precision and recall in the Kafka

project than in the Directory Server and Hive projects. On the other hand, our models

have a better AUC in the Directory Server and Hive projects than in the Kafka project.

These results might look contradictory. In fact, the contradiction can be explained by

the class imbalance of the response variable (i.e., “logging an exception stack trace or

not”). As shown in Table 7.2, 76% of exception logging statements in the Kafka project

log stack traces. In contrast, only 47% to 63% of the exception logging statements in

the Directory Server and Hive projects log stack traces. In case of class imbalance, AUC

is likely to produce more meaningful contrasts between models than precision and

recall (Kuhn and Johnson, 2013).

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 215

Our automated approach can accurately suggest the likelihood of logging a stack

trace in an exception logging statement, providing a precision of 0.81 to 0.87, a recall

of 0.81 to 0.89, and an AUC of 0.85 to 0.94.

The containing code features play the most important roles in explaining the

likelihood of logging exception stack traces in two out of the four studied projects.

Table 7.5 lists the top 10 most important features for explaining the likelihood of print-

ing a stack trace in an exception logging statement. The containing code features,

including “containing file” and “containing package”, play the most important roles

(i.e., with an importance rank of the first and the second, respectively) for determin-

ing whether an exception logging statement in the Hadoop and Hive projects need to

print a stack trace. The containing code features are also important (i.e., with an im-

portance rank of the second and the sixth) for explaining the likelihood of logging stack

traces in the Directory Server project. These projects tend to follow consistent logging

practices (i.e., in terms of logging stack traces) within the same files and packages.

The exception features and exception-throwing method features are consis-

tently important in explaining the likelihood of logging exception stack trace in all

the studied projects. In particular, the “exception type” feature is the first, second,

third, and fifth important feature in Directory Server, Kafka, Hive, and Hadoop, re-

spectively. The “exception method package”, which captures the containing package

of an exception-throwing method, ranks as the third, third, fourth, and fifth important

feature in Hadoop, Directory Server, Hive, and Kafka, respectively. Therefore, the type

of an exception and the method that throws the exception are import to determine

the likelihood of logging the stack trace of the exception.

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 216

Table 7.5: The mean importance of the top 10 features for explaining the likelihood of
logging a stack trace in an exception logging statement. These features are divided into
distinct homogeneous groups by Scott-Knott clustering of their importance scores.

Hadoop Directory Server

Group Feature
Mean

Importance
Group Feature

Mean
Importance

1 Containing file 0.067 1 Exception type 0.162
2 Containing package 0.053 2 Containing package 0.120
3 Exception method package 0.052 3 Exception method package 0.108
4 Log level 0.034 4 Exception package 0.076
5 Exception type 0.031 5 Exception method 0.046
6 Exception method 0.020 6 Containing file 0.035
7 Exception package 0.014 LOC after logging 0.035
8 LOC before logging 0.009 7 Exception source 0.026
9 Method calls in try 0.009 8 Exception category 0.022
10 LOC after logging 0.007 9 Log level 0.017

Hive Kafka

Group Feature
Mean

Importance
Group Feature

Mean
Importance

1 Containing file 0.085 1 Log level 0.059
2 Containing package 0.062 2 Exception type 0.044
3 Exception type 0.043 3 Exception package 0.033
4 Exception method package 0.040 4 LOC after logging 0.032
5 Log level 0.027 5 Exception method package 0.029

Exception package 0.026 6 Exception category 0.027
6 Exception method 0.019 7 Return in catch 0.021
7 LOC after logging 0.012 8 Exception method 0.016

Method calls in try 0.011 9 Containing package 0.010
8 Method fan-in 0.008 Containing file 0.010

The log level of a logging statement plays an important role in explaining the like-

lihood of logging a stack trace in the logging statement. In particular, the “log level”

feature is the most important feature for explaining the likelihood of logging exception

stack traces in the Kafka project. The “log level” feature ranks as the fourth and fifth

important feature in Hadoop and Hive, respectively. As discussed in Chapter 3, logging

a stack trace at a high level is likely to bring many logging costs, such as excessive log

information and misleading end users.

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 217

The containing code features, exception features, and exception-throwing method

features play the most important roles in explaining the likelihood of logging the

stack trace of an exception.

7.4 Chapter Summary

Logging the stack trace of an exception can bring both benefits (e.g., assisting in fail-

ure diagnosis) and costs (e.g., growing log files very fast). In Chapter 3, we observe

that developers have difficulties to decide whether to log the stack trace of an excep-

tion. In this chapter, we propose an approach to provide automated suggestions about

whether to print the stack trace of an exception in a logging statement. We first use

static program analysis to extract the code features that capture the contextual infor-

mation of an exception logging statement. We then construct Random Forest models

to suggest whether to print an exception stack trace in an exception logging statement.

Finally, we analyze the resulting models to understand the important factors the ex-

plain the likelihood of printing an exception stack trace in a logging statement. Our

experimental results on four open source projects show that our automated approach

can accurately suggest whether to print the stack trace of an exception in a logging

statement, with a precision of 0.81 to 0.87, a recall of 0.81 to 0.89, and an AUC of 0.85

to 0.94. We find that the features that capture the containing file and package of an ex-

ception catch block, and the features that capture the characteristics of an exception

itself and its exception-throwing method play the most important roles in explaining

the likelihood of logging the stack trace of an exception.

Making appropriate decisions of logging exception stack traces is critical for bal-

ancing the benefits and costs of logging (Chapter 3). Our automated approach can

CHAPTER 7. AUTOMATED SUGGESTIONS FOR LOGGING STACK TRACES 218

help developers make informed decisions about whether to print an exception stack

trace in a logging statement. Our findings also provide developers and researcher in-

sights into the important factors (e.g., exception type) that drive developers’ decisions

of logging exception stack traces.

CHAPTER 8

Conclusions and Future Work

L
OG messages provide valuable information for software practitioners to un-

derstand system runtime behaviors and diagnose field failures. However,

developers typically insert logging statements in an ad hoc manner, which

usually results in insufficient logging in some code snippets and excessive logging in

other code snippets. This Ph.D. thesis aims to understand and support software log-

ging practices through mining development knowledge (i.e., source code, code change

history, and issue reports). We believe that development knowledge contains valuable

information that explains developers’ rationale behind their logging practices, which

can help us better understand existing logging practices and develop helpful tools to

219

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 220

assist developers in their logging practices. To evaluate our hypothesis, we mine dif-

ferent aspects of development knowledge: 1) mining issue reports to understand de-

velopers’ logging concerns; 2) mining source code to understand how developers dis-

tribute their logging statements in the source code; 3) mining code change history to

learn how developers develop and maintain their logging code, and how they choose

log levels for their logging statements. Based on our empirical findings, we also pro-

pose automated approaches to support developers’ logging decisions. Our findings

and approaches make valuable contributions towards improving current logging prac-

tices and the qualify of logging code.

8.1 Thesis Contributions

Below, we highlight the main contributions of the thesis.

• Understanding Developers’ Logging Concerns. We perform a qualitative study

on 533 logging-related issue reports from three large and successful open source

projects. We conceptualize developers’ logging concerns (and how they address

their concerns) into easy-to-perceive categories. We derive best logging prac-

tices and general logging advice along with our qualitative study, which can help

developers improve their logging code and be aware of some logging traps. Be-

sides, logging library providers can learn from our advice to improve their logging

libraries. Our empirical findings also shed lights on future research opportuni-

ties for improving software logging.

• Understanding Software Logging Using Topic Models. We use LDA to extract

the underlying topics from the source code, and study the relationship between

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 221

the logging decisions and the recovered topics. We find that a small number

of topics, in particular, the topics that can be generalized to communication

between machines or interaction between threads, are much more likely to be

logged than other topics. We also find that topics can provide additional explana-

tory power over the structural information of a code snippet for explaining the

likelihood of a code snippet being logged. Our findings suggest that future work

on logging recommendation tools should consider topic information in order to

help software practitioners make more informed logging decisions. Our findings

also encourage future work to develop topic-influenced logging guidelines (e.g.,

which topics need further logging).

• Automated Suggestions for Log Changes. We empirically study why developers

make log changes and propose an automated approach to provide developers

with log change suggestions as soon as they commit a code change (i.e., just-in-

time suggestions). Through a case study on four open source projects, we find

that the reasons for log changes can be grouped along four categories: block

change, log improvement, dependence-driven change, and logging issue. Our

experimental results show that our automated approach can accurately provide

just-in-time log change suggestions using a within and across projects evalua-

tion. Our findings also demonstrate that developers can leverage machine learn-

ing models to guide their log changing practices.

• Automated Suggestions for Choosing Log Levels. We analyze the development

history of four open source projects to study how developers assign log levels to

their logging statements. We find that the distribution of log levels varies across

different types of blocks, while the log levels in the same type of block show

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 222

similar distributions across different projects. We also propose an automated

approach based on ordinal regression models to help developers determine

the most appropriate log level when they add a new logging statement. Our

automated approach can accurately suggest the appropriate log level of a newly-

added logging statement, outperforming the performance of a naive model

based on the log level distribution and a random guessing model. Developers

can leverage our approach to receive automatic suggestions on the choices of

log levels or to receive warnings on inappropriate usages of log levels.

• Automated Suggestions for Logging Stack Traces. We observe that logging

exception stack traces appropriately is crucial for balancing the benefits and

costs of logging. We propose an automated approach that can accurately suggest

whether to print the stack trace of an exception in a logging statement. Our

automated approach can help developers make informed decisions regarding

logging exception stack traces. Our findings based on our automated approach

also provide developers and researchers insights into the important factors (e.g.,

exception types) that explain the likelihood of logging an exception stack trace.

8.2 Limitations

The first limitation is concerned with the generalization of the findings in this thesis. In

order to understand and support software logging practices, we perform case studies

on several open source projects. Although our findings are general among the stud-

ied projects, our findings may not generalize to other open source projects and closed

source projects. For example, the log-intensive topics that we derive in Chapter 4 might

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 223

vary in other software projects from different domains. Findings from additional case

studies on other software projects can benefit our studies. However, the methodologies

proposed in this thesis can apply to other software projects. For example, developers

can apply our proposed approach in Chapter 4 to leverage the specific topics in their

own projects to understand and guide their logging decisions.

The second limitation is that some findings in this thesis may seem obvious. For

example, in Chapter 3, we find that developers are concerned about the logging cost

of excessive log information, which might seem obvious to some software practitioners

and researchers. However, as it is discussed in this thesis, software practitioners till

face challenges to solve such “obvious” problems. Our work uses rigorous methods

to help software practitioners and researchers better understand such problems. Our

work also encourages future work to tackle these “obvious” problems that still concern

software practitioners.

8.3 Future Research

This thesis highlights the need for standard logging guidelines and automated tool-

ing support for software logging practices. Below, we propose some potential research

opportunities that may benefit logging practices in the future.

8.3.1 Studying human aspects of software logging

Existing studies about software logging focus their analysis on the source code. How-

ever, the human aspect (e.g., developers) plays an important role in making logging

decisions. For example, in Chapter 3, we find that different developers usually raise

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 224

conflicting concerns about the same logging code. Therefore, it is very interesting to

study how human aspects impact logging practices and to develop automated logging

tooling that considers such human aspect.

8.3.2 Automated generation of logging code

Existing studies provide automated suggestions about where to log. However, there

is no work yet that can automatically generate logging statements for developers (i.e.,

what to log). It will be a promising avenue to investigate approaches that can automat-

ically generate logging statements based on the context code and the specified logging

purposes.

8.3.3 Categorizing logging by their purposes

As discussed in Chapter 3, developers insert logging statements for different purposes

(or benefits) (e.g., assisting in debugging, exposing runtime problems, and bookkeep-

ing). For many usage scenarios, only one or two logging purposes need to be fulfilled.

Therefore, it is valuable to develop approaches that can automatically categorize log-

ging statements and log messages by their purposes, in order to help practitioners filter

out unneeded log messages.

8.3.4 Detecting performance-critical logging statements

Performance overhead is a major cost for software logging. As discussed in Chapter 3,

developers sometimes are not aware of such a cost and insert logging statements that

significantly slow down their systems. Future studies are needed to help developers

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 225

identify the logging code that brings too much performance overhead, through static

analysis or dynamic analysis.

Bibliography

Aguinis, H. (2004). Regression analysis for categorical moderators. Guilford Press.

Apache-Commons (2016). Apache commons logging user guide - best practices. http:

//commons.apache.org/proper/commons-logging/guide.html. Accessed 25 July

2018.

Asuncion, H. U., Asuncion, A. U., and Taylor, R. N. (2010). Software traceability with

topic modeling. In Proceedings of the 32nd International Conference on Software

Engineering, ICSE ’10, pages 95–104.

Baldi, P. F., Lopes, C. V., Linstead, E. J., and Bajracharya, S. K. (2008). A theory of as-

pects as latent topics. In Proceedings of the 23rd ACM SIGPLAN Conference on Object-

oriented Programming Systems Languages and Applications, OOPSLA ’08, pages 543–

562.

226

http://commons.apache.org/proper/commons-logging/guide.html
http://commons.apache.org/proper/commons-logging/guide.html

BIBLIOGRAPHY 227

Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., and Lucia, A. D. (2014). Method-

book: Recommending move method refactorings via relational topic models. IEEE

Transactions on Software Engineering, 40(7):671–694.

Binkley, D., Heinz, D., Lawrie, D., and Overfelt, J. (2014). Understanding LDA in source

code analysis. In Proceedings of the 22nd International Conference on Program Com-

prehension, ICPC ’14, pages 26–36.

Bitincka, L., Ganapathi, A., Sorkin, S., and Zhang, S. (2010). Optimizing data analysis

with a semi-structured time series database. In Proceedings of the 2010 Workshop

on Managing Systems via Log Analysis and Machine Learning Techniques, SLAML’10,

pages 7–7.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Breiman, L. (2002). Manual on setting up, using, and understanding random forests

v3.1. https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.

1.pdf. Accessed 25 July 2018.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1):1–3.

Bring, J. (1994). How to standardize regression coefficients. The American Statistician,

48(3):209–213.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based

n-gram models of natural language. Computational Linguistics, 18:467–479.

https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_V3.1.pdf

BIBLIOGRAPHY 228

Chang, J., Gerrish, S., Wang, C., Boyd-graber, J. L., and Blei, D. M. (2009). Reading

tea leaves: How humans interpret topic models. In Advances in Neural Information

Processing Systems 22, pages 288–296.

Chen, B. and Jiang, Z. M. (2017a). Characterizing and detecting anti-patterns in the

logging code. In Proceedings of the 39th International Conference on Software Engi-

neering, ICSE ’17, pages 71–81.

Chen, B. and Jiang, Z. M. J. (2017b). Characterizing logging practices in Java-based

open source software projects – a replication study in apache software foundation.

Empirical Software Engineering, 22(1):330–374.

Chen, T.-H., Shang, W., Hassan, A. E., Nasser, M., and Flora, P. (2016a). Cacheoptimizer:

Helping developers configure caching frameworks for hibernate-based database-

centric web applications. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE ’16, pages 666–677.

Chen, T.-H., Shang, W., Nagappan, M., Hassan, A. E., and Thomas, S. W. (2017a). Topic-

based software defect explanation. Journal of Systems and Software, 129:79–106.

Chen, T.-H., Syer, M. D., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., and Flora,

P. (2017b). Analytics-driven load testing: An industrial experience report on load

testing of large-scale systems. In Proceedings of the 39th International Conference on

Software Engineering: Software Engineering in Practice Track, ICSE-SEIP ’17, pages

243–252.

BIBLIOGRAPHY 229

Chen, T.-H., Thomas, S. W., and Hassan, A. E. (2016b). A survey on the use of topic mod-

els when mining software repositories. Empirical Software Engineering, 21(5):1843–

1919.

Chen, T.-H., Thomas, S. W., Nagappan, M., and Hassan, A. (2012). Explaining software

defects using topic models. In Proceedings of the 9th Working Conference on Mining

Software Repositories, MSR ’12, pages 189–198.

Cleary, B., Exton, C., Buckley, J., and English, M. (2008). An empirical analysis of in-

formation retrieval based concept location techniques in software comprehension.

Empirical Software Engineering, 14(1):93–130.

Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., and Chase, J. S. (2004). Correlating

instrumentation data to system states: A building block for automated diagnosis and

control. In Proceedings of the 6th Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6, OSDI’ 04, pages 16–16.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2013). Applied multiple regression/-

correlation analysis for the behavioral sciences. Routledge.

Cullmann, A. D. (2015). HandTill2001: Multiple Class Area under ROC Curve. R package

version 0.2-10.

D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison. Empirical Software Engineer-

ing, 17(4-5):531–577.

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., and Panichella, S. (2012). Using

BIBLIOGRAPHY 230

IR methods for labeling source code artifacts: Is it worthwhile? In Proceedings of the

20th International Conference on Program Comprehension, ICPC ’12, pages 193–202.

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., and Panichella, S. (2014). Label-

ing source code with information retrieval methods: an empirical study. Empirical

Software Engineering, pages 1–38.

Eberhardt, C. (2014). The art of logging. http://www.codeproject.com/Articles/

42354/The-Art-of-Logging. Accessed 25 July 2018.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statis-

tics, 7(1):1–26.

Efron, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of

the American Statistical Association, 81(394):461–470.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Fu, Q., Lou, J.-G., Lin, Q., Ding, R., Zhang, D., and Xie, T. (2013). Contextual analy-

sis of program logs for understanding system behaviors. In Proceedings of the 10th

Working Conference on Mining Software Repositories, MSR ’13, pages 397–400.

Fu, Q., Lou, J.-G., Wang, Y., and Li, J. (2009). Execution anomaly detection in distributed

systems through unstructured log analysis. In Proceedings of the 9th IEEE Interna-

tional Conference on Data Mining, ICDM ’09, pages 149–158.

Fu, Q., Zhu, J., Hu, W., Lou, J.-G., Ding, R., Lin, Q., Zhang, D., and Xie, T. (2014). Where

http://www.codeproject.com/Articles/42354/The-Art-of-Logging
http://www.codeproject.com/Articles/42354/The-Art-of-Logging

BIBLIOGRAPHY 231

do developers log? An empirical study on logging practices in industry. In Compan-

ion Proceedings of the 36th International Conference on Software Engineering, ICSE

Companion ’14, pages 24–33.

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., and Ubayashi, N. (2014). An

empirical study of just-in-time defect prediction using cross-project models. In Pro-

ceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014,

pages 172–181.

Ghotra, B., McIntosh, S., and Hassan, A. E. (2015). Revisiting the impact of classification

techniques on the performance of defect prediction models. In Proceedings of the

37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages

789–800.

Glerum, K., Kinshumann, K., Greenberg, S., Aul, G., Orgovan, V., Nichols, G., Grant, D.,

Loihle, G., and Hunt, G. (2009). Debugging in the (very) large: Ten years of imple-

mentation and experience. In Proceedings of the ACM SIGOPS 22Nd Symposium on

Operating Systems Principles, SOSP ’09, pages 103–116.

Goshtasby, A. A. (2012). Similarity and dissimilarity measures. In Image Registration:

Principles, Tools and Methods, pages 7–66. Springer London, London.

Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering, 26(7):653–661.

Groeneveld, R. A. and Meeden, G. (1984). Measuring Skewness and Kurtosis. Journal

of the Royal Statistical Society. Series D (The Statistician), 33(4).

BIBLIOGRAPHY 232

Gülcü, C. and Stark, S. (2003). The complete log4j manual. Quality Open Software,

Lausanne, Switzerland.

Hall, D., Jurafsky, D., and Manning, C. D. (2008). Studying the history of ideas using

topic models. In Proceedings of the 2008 conference on empirical methods in natural

language processing, EMNLP ’08, pages 363–371.

Han, S., Dang, Y., Ge, S., Zhang, D., and Xie, T. (2012). Performance debugging in the

large via mining millions of stack traces. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages 145–155.

Hand, D. J. and Till, R. J. (2001). A simple generalisation of the area under the ROC

curve for multiple class classification problems. Machine learning, 45(2):171–186.

Harrell, Jr., F. E. (2015a). Regression modeling strategies: with applications to linear

models, logistic and ordinal regression, and survival analysis. Springer.

Harrell, Jr., F. E. (2015b). rms: Regression Modeling Strategies. R package version 4.4-1.

Harrell, Jr., F. E., with contributions from Charles Dupont, and many others. (2014).

Hmisc: Harrell Miscellaneous. R package version 3.14-5.

Hassan, A. E. (2008). The road ahead for mining software repositories. In Frontiers of

Software Maintenance, FoSM ’08, pages 48–57.

Hassan, A. E. (2009). Predicting faults using the complexity of code changes. In

Proceedings of the 31st International Conference on Software Engineering, ICSE ’09,

pages 78–88.

BIBLIOGRAPHY 233

Hassan, A. E. and Holt, R. C. (2004). Predicting change propagation in software systems.

In Proceedings of the 20th IEEE International Conference on Software Maintenance,

ICSM ’04, pages 284–293.

Hassan, A. E., Martin, D. J., Flora, P., Mansfield, P., and Dietz, D. (2008). An industrial

case study of customizing operational profiles using log compression. In Proceedings

of the 30th International Conference on Software Engineering, ICSE ’08, pages 713–

723.

Hindle, A., Bird, C., Zimmermann, T., and Nagappan, N. (2015). Do topics make sense

to managers and developers? Empirical Software Engineering, 20(2):479–515.

Hu, J., Sun, X., Lo, D., and Li, B. (2015). Modeling the evolution of development topics

using dynamic topic models. In Proceedings of the 22nd IEEE International Confer-

ence on Software Analysis, Evolution, and Reengineering, SANER’ 15, pages 3–12.

Jelihovschi, E. G., Faria, J. C., and Allaman, I. B. (2014). Scottknott: A package for per-

forming the scott-knott clustering algorithm in R. Trends in Applied and Computa-

tional Mathematics, 15(1):3–17.

Jia, Z., Li, S., Liu, X., Liao, X., and Liu, Y. (2018). Smartlog: Place error log statement by

deep understanding of log intention. In Proceedings of the 25th IEEE International

Conference on Software Analysis, Evolution and Reengineering, SANER ’18, pages 61–

71.

Jiang, Z. M., Hassan, A. E., Hamann, G., and Flora, P. (2008). Automatic identification

of load testing problems. In Proceedings of the 2008 IEEE International Conference

on Software Maintenance, ICSM ’08, pages 307–316.

BIBLIOGRAPHY 234

Kabacoff, R. (2011). R in Action. Manning Publications Co.

Kabinna, S., Bezemer, C.-P., Shang, W., and Hassan, A. E. (2016a). Logging library mi-

grations: A case study for the Apache Software Foundation projects. In Proceedings

of the 13th International Conference on Mining Software Repositories, MSR ’16, pages

154–164.

Kabinna, S., Bezemer, C.-P., Shang, W., Syer, M. D., and Hassan, A. E. (2018). Examining

the stability of logging statements. Empirical Software Engineering, 23(1):290–333.

Kabinna, S., Shang, W., Bezemer, C. P., and Hassan, A. E. (2016b). Examining the stabil-

ity of logging statements. In Proceedings of the 23rd IEEE International Conference

on Software Analysis, Evolution, and Reengineering, SANER ’16, pages 326–337.

Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., and Hassan, A. E.

(2016). Studying just-in-time defect prediction using cross-project models. Empiri-

cal Software Engineering, 21(5):2072–2106.

Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., and Ubayashi, N.

(2013). A large-scale empirical study of just-in-time quality assurance. IEEE Trans-

actions on Software Engineering, 39(6):757–773.

Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. (2010). An analysis of traces from a

production mapreduce cluster. In Proceedings of the 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pages 94–103.

King, J., Pandita, R., and Williams, L. (2015). Enabling forensics by proposing heuris-

tics to identify mandatory log events. In Proceedings of the 2015 Symposium and

Bootcamp on the Science of Security, HotSoS ’15, pages 6:1–6:11.

BIBLIOGRAPHY 235

King, J., Stallings, J., Riaz, M., and Williams, L. (2017). To log, or not to log: using heuris-

tics to identify mandatory log events – a controlled experiment. Empirical Software

Engineering, 22(5):2684–2717.

Kuhn, A., Ducasse, S., and Gírba, T. (2007). Semantic clustering: Identifying topics in

source code. Information and Software Technology, 49:230–243.

Kuhn, M. and Johnson, K. (2013). Applied predictive modeling. Springer.

Lal, S. and Sureka, A. (2016). Logopt: Static feature extraction from source code for

automated catch block logging prediction. In Proceedings of the 9th India Software

Engineering Conference, ISEC ’16, pages 151–155.

Lawless, J. and Singhal, K. (1978). Efficient screening of nonnormal regression models.

Biometrics, 34(2):318–327.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. Soviet physics doklady, 10(8):707–710.

Li, H., Chen, T.-H. P., Shang, W., and Hassan, A. E. (2018). Studying software logging

using topic models. Empirical Software Engineering.

Li, H., Shang, W., and Hassan, A. E. (2017a). Which log level should developers choose

for a new logging statement? Empirical Software Engineering, 22(4):1684–1716.

Li, H., Shang, W., Zou, Y., and E. Hassan, A. (2017b). Towards just-in-time suggestions

for log changes. Empirical Software Engineering, 22(4):1831–1865.

Liaw, A. and Wiener, M. (2002). Classification and regression by randomforest. R news,

2(3):18–22.

BIBLIOGRAPHY 236

Linstead, E., Lopes, C., and Baldi, P. (2008). An application of latent Dirichlet allocation

to analyzing software evolution. In Proceedings of Seventh International Conference

on Machine Learning and Applications, ICMLA ’12, pages 813–818.

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T., and Chrisochoides, N. (2009a). Mod-

eling class cohesion as mixtures of latent topics. In Proceedings of the 25th Interna-

tional Conference on Software Maintenance, ICSE ’09, pages 233 –242.

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T., and Chrisochoides, N. (2009b). Mod-

eling class cohesion as mixtures of latent topics. In Proceedings of the 25th IEEE

International Conference on Software Maintenance, ICSM ’09, pages 233–242.

Macbeth, G., Razumiejczyk, E., and Ledesma, R. D. (2011). Cliff’s delta calculator: A

non-parametric effect size program for two groups of observations. Universitas Psy-

chologica, 10(2):545–555.

Mant, J., Doust, J., Roalfe, A., Barton, P., Cowie, M. R., Glasziou, P., Mant, D., McManus,

R., Holder, R., Deeks, J., et al. (2009). Systematic review and individual patient data

meta-analysis of diagnosis of heart failure, with modelling of implications of differ-

ent diagnostic strategies in primary care. Health Technol Assess, 13(32):1–207.

Mantel, N. (1970). Why stepdown procedures in variable selection. Technometrics,

12(3):621–625.

Mariani, L. and Pastore, F. (2008). Automated identification of failure causes in sys-

tem logs. In Proceedings of the 19th International Symposium on Software Reliability

Engineering, ISSRE ’08, pages 117–126.

BIBLIOGRAPHY 237

Martin, T. M., Harten, P., Young, D. M., Muratov, E. N., Golbraikh, A., Zhu, H., and Trop-

sha, A. (2012). Does rational selection of training and test sets improve the outcome

of qsar modeling? Journal of chemical information and modeling, 52(10):2570–2578.

Maskeri, G., Sarkar, S., and Heafield, K. (2008). Mining business topics in source code

using latent Dirichlet allocation. In Proceedings of the 1st India Software Engineering

Conference, pages 113–120.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering,

(4):308–320.

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit.

McCullagh, P. (1980). Regression models for ordinal data. Journal of the Royal Statistical

Society. Series B (Methodological), 42(2):109–142.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2014). The impact of code re-

view coverage and code review participation on software quality: A case study of the

qt, vtk, and itk projects. In Proceedings of the 11th Working Conference on Mining

Software Repositories, MSR ’14, pages 192–201.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2016). An empirical study of

the impact of modern code review practices on software quality. Empirical Software

Engineering, 21(5):2146–2189.

McKelvey, R. D. and Zavoina, W. (1975). A statistical model for the analysis of ordinal

level dependent variables. Journal of Mathematical Sociology, 4(1):103–120.

Microsoft-MSDN (2016). Logging an exception. https://msdn.microsoft.com/

en-us/library/ff664711(v=pandp.50).aspx. Accessed 25 July 2018.

https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx
https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx

BIBLIOGRAPHY 238

Misra, H., Cappé, O., and Yvon, F. (2008). Using lda to detect semantically incoherent

documents. In Proceedings of the 12th Conference on Computational Natural Lan-

guage Learning, CoNLL ’08, pages 41–48.

Nagappan, N. and Ball, T. (2007). Using software dependencies and churn metrics to

predict field failures: An empirical case study. In Proceedings of the First Interna-

tional Symposium on Empirical Software Engineering and Measurement, ESEM ’07,

pages 364–373.

Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict component

failures. In Proceedings of the 28th International Conference on Software Engineering,

ICSE ’06, pages 452–461.

Nagaraj, K., Killian, C., and Neville, J. (2012). Structured comparative analysis of sys-

tems logs to diagnose performance problems. In Proceedings of the 9th USENIX Con-

ference on Networked Systems Design and Implementation, NSDI’12, pages 26–26,

Berkeley, CA, USA. USENIX Association.

Nguyen, T. T., Nguyen, T. N., and Phuong, T. M. (2011). Topic-based defect prediction.

In Proceedings of the 33rd International Conference on Software Engineering, ICSE

’11, pages 932–935.

Oliner, A., Ganapathi, A., and Xu, W. (2012). Advances and challenges in log analysis.

Communications of the ACM, 55(2):55–61.

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., and De Lucia, A. (2013).

How to effectively use topic models for software engineering tasks? an approach

BIBLIOGRAPHY 239

based on genetic algorithms. In Proceedings of the 2013 International Conference on

Software Engineering, ICSE ’13, pages 522–531.

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., and De Lucia, A. (2016).

Parameterizing and assembling ir-based solutions for se tasks using genetic algo-

rithms. In Proceedings of the 23rd IEEE International Conference on Software Analy-

sis, Evolution, and Reengineering, SANER ’16, pages 314–325.

Pecchia, A., Cinque, M., Carrozza, G., and Cotroneo, D. (2015). Industry practices and

event logging: Assessment of a critical software development process. In Proceedings

of the 37th International Conference on Software Engineering, ICSE ’15, pages 169–

178.

Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol, G., and Rajlich, V. (2007). Feature

location using probabilistic ranking of methods based on execution scenarios and

information retrieval. IEEE Trans. on Software Engineering, pages 420–432.

Rao, S. and Kak, A. (2011). Retrieval from software libraries for bug localization: A

comparative study of generic and composite text models. In Proceeding of the 8th

Working Conference on Mining Software Repositories, MSR ’11, pages 43–52.

Romano, J., Kromrey, J. D., Coraggio, J., and Skowronek, J. (2006). Appropriate statistics

for ordinal level data: Should we really be using t-test and cohensd for evaluating

group differences on the nsse and other surveys. In annual meeting of the Florida

Association of Institutional Research, pages 1–33.

Rugg, G. and McGeorge, P. (2005). The sorting techniques: a tutorial paper on card

sorts, picture sorts and item sorts. Expert Systems, 22(3):94–107.

BIBLIOGRAPHY 240

Sarbanes, P. (2002). Sarbanes-Oxley Act of 2002. In The Public Company Accounting

Reform and Investor Protection Act.

Schroter, A., Schrter, A., Bettenburg, N., and Premraj, R. (2010). Do stack traces help

developers fix bugs? In Proceedings of the 7th IEEE Working Conference on Mining

Software Repositories, MSR ’10, pages 118–121.

Scott, A. and Knott, M. (1974). A cluster analysis method for grouping means in the

analysis of variance. Biometrics, 30(3):507–512.

Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser, M., and Flora,

P. (2011). An exploratory study of the evolution of communicated information about

the execution of large software systems. In 2011 18th Working Conference on Reverse

Engineering, WCRE ’11, pages 335–344.

Shang, W., Jiang, Z. M., Adams, B., Hassan, A. E., Godfrey, M. W., Nasser, M., and Flora, P.

(2014a). An exploratory study of the evolution of communicated information about

the execution of large software systems. Journal of Software: Evolution and Process,

26(1):3–26.

Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., and Martin, P. (2013).

Assisting developers of big data analytics applications when deploying on hadoop

clouds. In Proceedings of the 2013 International Conference on Software Engineering,

ICSE ’13, pages 402–411.

Shang, W., Nagappan, M., and Hassan, A. E. (2015). Studying the relationship between

logging characteristics and the code quality of platform software. Empirical Software

Engineering, 20(1):1–27.

BIBLIOGRAPHY 241

Shang, W., Nagappan, M., Hassan, A. E., and Jiang, Z. M. (2014b). Understanding log

lines using development knowledge. In Proceedings of the 30th IEEE International

Conference on Software Maintenance and Evolution, ICSME ’14, pages 21–30.

Sharma, B., Chudnovsky, V., Hellerstein, J. L., Rifaat, R., and Das, C. R. (2011). Modeling

and synthesizing task placement constraints in google compute clusters. In Proceed-

ings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, pages 3:1–3:14.

Shihab, E., Jiang, Z. M., Ibrahim, W. M., Adams, B., and Hassan, A. E. (2010). Under-

standing the impact of code and process metrics on post-release defects: A case

study on the Eclipse project. In Proceedings of the 4th ACM-IEEE International Sym-

posium on Empirical Software Engineering and Measurement, ESEM ’10, pages 4:1–

4:10.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for

cox’s proportional hazards model via coordinate descent. Journal of Statistical Soft-

ware, 39(5):1–13.

Sommer, S. and Huggins, R. M. (1996). Variables selection using the Wald test and a

robust CP. Applied statistics, 45(1):15–29.

Spencer, D. (2009). Card sorting: Designing usable categories. Rosenfeld Media.

Steyvers, M. and Griffiths, T. (2007). Probabilistic topic models. Handbook of latent

semantic analysis, 427(7):424–440.

Sun, X., Li, B., Leung, H., Li, B., and Li, Y. (2015a). Msr4sm: Using topic models to

effectively mining software repositories for software maintenance tasks. Information

and Software Technology, 66:1–12.

BIBLIOGRAPHY 242

Sun, X., Li, B., Li, Y., and Chen, Y. (2015b). What information in software historical

repositories do we need to support software maintenance tasks? an approach based

on topic model. In Computer and Information Science, pages 27–37. Springer Inter-

national Publishing, Cham.

Sun, X., Liu, X., Li, B., Duan, Y., Yang, H., and Hu, J. (2016). Exploring topic models in

software engineering data analysis: A survey. In Proceedings of the 17th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing, SNPD’ 16, pages 357–362.

Swinscow, T. D. V., Campbell, M. J., et al. (2002). Statistics at Square One. BMJ, London.

Syer, M. D., Jiang, Z. M., Nagappan, M., Hassan, A. E., Nasser, M., and Flora, P. (2013).

Leveraging performance counters and execution logs to diagnose memory-related

performance issues. In Proceedings of the 29th IEEE International Conference on

Software Maintenance, ICSM ’13, pages 110–119.

Tantithamthavorn, C., McIntosh, S., Hassan, A. E., and Matsumoto, K. (2017). An

empirical comparison of model validation techniques for defect prediction models.

IEEE Transactions on Software Engineering, 43(1):1–18.

Thomas, S., Adams, B., Hassan, A. E., and Blostein, D. (2010). Validating the use of

topic models for software evolution. In Proceedings of the 10th International Working

Conference on Source Code Analysis and Manipulation, SCAM ’10, pages 55–64.

Thomas, S. W. (2012). A lightweight source code preprocesser. https://github.com/

doofuslarge/lscp. Accessed 25 July 2018.

https://github.com/doofuslarge/lscp
https://github.com/doofuslarge/lscp

BIBLIOGRAPHY 243

Thomas, S. W., Adams, B., Hassan, A. E., and Blostein, D. (2011). Modeling the evolution

of topics in source code histories. In Proceedings of the 8th Working Conference on

Mining Software Repositories, pages 173–182.

Thomas, S. W., Adams, B., Hassan, A. E., and Blostein, D. (2014). Studying software

evolution using topic models. Science of Computer Programming, 80:457–479.

Tian, K., Revelle, M., and Poshyvanyk, D. (2009). Using latent Dirichlet allocation for

automatic categorization of software. In Proceedings of the 6th International Working

Conference on Mining Software Repositories, MSR ’09, pages 163–166.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288.

Tourani, P. and Adams, B. (2016). The impact of human discussions on just-in-time

quality assurance: An empirical study on openstack and eclipse. In Proceedings of the

23rd International Conference on Software Analysis, Evolution, and Reengineering,

SANER ’16, pages 189–200.

Wallach, H. M., Mimno, D. M., and McCallum, A. (2009). Rethinking lda: Why priors

matter. In Advances in neural information processing systems, NIPS ’09, pages 1973–

1981.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences, volume 100. Aca-

demic press.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann.

BIBLIOGRAPHY 244

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. (2008). Mining console logs

for large-scale system problem detection. In Proceedings of the Third Conference on

Tackling Computer Systems Problems with Machine Learning Techniques, SysML’08,

pages 4–4.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. (2009a). Online system problem

detection by mining patterns of console logs. In Proceedings of the 2009 Ninth IEEE

International Conference on Data Mining, ICDM ’09, pages 588–597.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. (2009b). Detecting large-scale

system problems by mining console logs. In Proceedings of the ACM SIGOPS 22Nd

Symposium on Operating Systems Principles, SOSP ’09, pages 117–132.

Yuan, D., Luo, Y., Zhuang, X., Rodrigues, G. R., Zhao, X., Zhang, Y., Jain, P. U., and

Stumm, M. (2014). Simple testing can prevent most critical failures: An analysis of

production failures in distributed data-intensive systems. In Proceedings of the 11th

USENIX Conference on Operating Systems Design and Implementation, OSDI’14,

pages 249–265.

Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., and Pasupathy, S. (2010). Sherlog: Er-

ror diagnosis by connecting clues from run-time logs. In Proceedings of the 15th

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’10, pages 143–154.

Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X., Zhou, Y., and Savage, S. (2012a).

Be conservative: Enhancing failure diagnosis with proactive logging. In Proceedings

of the 10th USENIX Conference on Operating Systems Design and Implementation,

OSDI’12, pages 293–306.

BIBLIOGRAPHY 245

Yuan, D., Park, S., and Zhou, Y. (2012b). Characterizing logging practices in open-

source software. In Proceedings of the 34th International Conference on Software

Engineering, ICSE ’12, pages 102–112.

Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. (2011). Improving software diag-

nosability via log enhancement. In Proceedings of the 16th International Conference

on Architectural Support for Programming Languages and Operating Systems, ASP-

LOS ’11, pages 3–14.

Zeng, L., Xiao, Y., and Chen, H. (2015). Linux auditing: Overhead and adaptation.

In Proceedings of 2015 IEEE International Conference on Communications, ICC ’15,

pages 7168–7173.

Zhang, C., Guo, Z., Wu, M., Lu, L., Fan, Y., Zhao, J., and Zhang, Z. (2011). Autolog:

Facing log redundancy and insufficiency. In Proceedings of the Second Asia-Pacific

Workshop on Systems, APSys ’11, pages 10:1–10:5.

Zhang, S., Cohen, I., Symons, J., and Fox, A. (2005). Ensembles of models for automated

diagnosis of system performance problems. In Proceedings of the 2005 International

Conference on Dependable Systems and Networks, DSN ’05, pages 644–653.

Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., and Zhou, Y. (2017a). The game

of twenty questions: Do you know where to log? In Proceedings of the 16th Workshop

on Hot Topics in Operating Systems, HotOS ’17, pages 125–131.

Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D., and Zhou, Y. (2017b). Log20: Fully

automated optimal placement of log printing statements under specified overhead

BIBLIOGRAPHY 246

threshold. In Proceedings of the 26th Symposium on Operating Systems Principles,

SOSP ’17, pages 565–581.

Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang, D. (2015). Learning to log:

Helping developers make informed logging decisions. In Proceedings of the 37th In-

ternational Conference on Software Engineering - Volume 1, ICSE ’15, pages 415–425.

Zimmermann, T. (2016). Card-sorting: From text to themes. In Tim Menzies, L. W.

and Zimmermann, T., editors, Perspectives on Data Science for Software Engineering,

pages 137–141. Morgan Kaufmann, Burlington, Massachusetts.

Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A. (2004). Mining version histo-

ries to guide software changes. In Proceedings of the 26th International Conference

on Software Engineering, ICSE ’04, pages 563–572.

	Abstract
	Acknowledgments
	Co-authorship
	List of Tables
	List of Figures
	Introduction
	Research Hypothesis
	Thesis Overview
	Thesis Contributions

	Literature Review
	Literature selection
	Mining logging code
	Mining log messages
	Automatic log insertion
	Learning to Log

	Understanding Developers' Logging Concerns
	Introduction
	Case Study Setup
	Case Study Results
	Threats to Validity
	Chapter Summary

	Understanding Software Logging Using Topic Models
	Introduction
	Motivation Examples
	Topic Modeling
	Case Study Setup
	Case Study Results
	Threats to Validity
	Related Work
	Chapter Summary

	Automated Suggestions for Log Changes
	Introduction
	Case Study Setup
	Case Study Results
	Discussion
	Threats to Validity
	Chapter Summary

	Automated Suggestions for Choosing Log Levels
	Introduction
	Case Study Setup
	Preliminary Study
	Case Study Results
	Discussion
	Threats to Validity
	Chapter Summary

	Automated Suggestions for Logging Stack Traces
	Introduction
	Methodology
	Experimental Results
	Chapter Summary

	Conclusions and Future Work
	Thesis Contributions
	Limitations
	Future Research

	Bibliography

