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Abstract The rise of large-scale software systems poses many new challenges for
the software performance engineering field. Failures in these systems are often asso-
ciated with performance issues, rather than with feature bugs. Therefore, performance
testing has become essential to ensuring the problem-free operation of these systems.
However, the performance testing process is faced with a major challenge: evolving
field workloads, in terms of evolving feature sets and usage patterns, often lead to
“outdated” tests that are not reflective of the field. Hence performance analysts must
continually validate whether their tests are still reflective of the field. Such validation
may be performed by comparing execution logs from the test and the field. However,
the size and unstructured nature of execution logs makes such a comparison unfeasible
without automated support. In this paper, we propose an automated approach to vali-
date whether a performance test resembles the field workload and, if not, determines
how they differ. Performance analysts can then update their tests to eliminate such dif-
ferences, hence creating more realistic tests. We perform six case studies on two large
systems: one open-source system and one enterprise system. Our approach identifies
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differences between performance tests and the field with a precision of 92 % com-
pared to only 61 % for the state-of-the-practice and 19 % for a conventional statistical
comparison.

Keywords Performance testing - Continuous testing - Workload characterization -
Workload comparison - Execution logs

1 Introduction

The rise of large-scale software systems (e.g., Amazon.com and Google’s GMail)
poses new challenges for the software performance engineering field (Software Engi-
neering Institute 2006). These systems are deployed across thousands of machines,
require near-perfect up-time and support millions of concurrent connections and oper-
ations. Failures in such systems are more often associated with performance issues,
rather than with feature bugs (Weyuker and Vokolos 2000; Dean and Barroso 2013).
These performance issues have led to several high-profile failures, including (1) the
inability to scale during the launch of Apple’s MobileMe (Cheng 2008), the release of
Firefox 3.0 (SiliconBeat 2008) and the United States government’s roll-out of health-
care.gov (Bataille 2013), (2) costly concurrency defects during the NASDAQ’s initial
public offering of shares in Facebook (Benoit 2013) and (3) costly memory leaks in
Amazon Web Services (Williams 2012). Such failures have significant financial and
reputational repercussions (Harris 2011; Coleman 2011; Ausick 2012; Howell and
Dinan 2014).

Performance testing has become essential in ensuring the problem-free operation
of such systems. Performance tests are usually derived from the field (i.e., alpha or
beta testing data or actual production data). The goal of such tests is to examine
how the system behaves under realistic workloads to ensure that the system performs
well in the field. However, ensuring that tests are “realistic” (i.e., that they accurately
reflect the current field workloads) is a major challenge. Field workloads are based
on the behaviour of thousands or millions of users interacting with the system. These
workloads continuously evolve as the user base changes, as features are activated or
disabled and as user feature preferences change. Such evolving field workloads often
lead to tests that are not reflective of the field (Bertolotti and Calzarossa 2001; Voas
2000). Yet the system’s behaviour depends significantly on the field workload (Zhang
et al. 2013; Dean and Barroso 2013).

Performance analysts monitor the impact of field workloads on the system’s per-
formance using performance counters (e.g., response time and memory usage) and
reliability counters (e.g., mean time-to-failure). Performance analysts must determine
the cause of any deviation in the counter values from the specified or expected range
(e.g., response time exceeds the maximum response time permitted by the service level
agreements or memory usage exceeds the average historical memory usage). These
deviations may be caused by changes to the field workloads (Zhang et al. 2013; Dean
and Barroso 2013). Such changes are common and may require performance analysts
to update their tests (Bertolotti and Calzarossa 2001; Voas 2000). This has led to the
emergence of “continuous testing,” where tests are continuously updated and re-run
even after the system’s deployment.
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A major challenge in the continuous testing process is to ensure performance tests
accurately reflect the current field workloads. However, documentation describing the
expected system behaviour is rarely up-to-date (Parnas 1994). Fortunately, execution
logs, which record notable events at runtime, are readily available in most large-
scale systems to support remote issue resolution and legal compliance. Further, these
logs contain developer and operator knowledge (i.e., they are manually inserted by
developers) whereas instrumentation tends to view the system as a black-box (Shang
et al. 2011, 2015). Hence, execution logs are the best data available to describe and
monitor the behaviour of the system under a realistic workload. Therefore, we propose
an automated approach to validate performance tests by comparing system behaviour
across tests and the field. We derive workload signatures from execution logs, then
use statistical techniques to identify differences between the workload signatures of
the performance test and the field.

Such differences can be broadly classified as feature differences (i.e., differences
in the exercised features), intensity differences (i.e., differences in how often each
feature is exercised) and issue differences (i.e., new errors appearing in the field).
These identified differences can help performance analysts improve their tests in the
following two ways. First, performance analysts can tune their performance tests to
more accurately represent current field workloads. For example, the performance test
workloads can be updated to eliminate differences in how often features are exercised
(i.e., to eliminate intensity differences). Second, new field errors, which are not covered
in existing testing, can be identified based on the differences. For example, a machine
failure in a distributed system may raise new errors that are often not tested.

This paper makes three contributions:

1. We develop an automated approach to validate the representativeness of a perfor-
mance test by comparing the system behaviour between tests and the field.

2. Our approach identifies important execution events that best explain the differences
between the system’s behaviour during a performance test and in the field.

3. Through six case studies on two large systems, one open-source system and one
enterprise system, we show that our approach is scalable and can help performance
analysts validate their tests.

This paper extends our previous research comparing the behaviour of a system’s
users, in terms of feature usage expressed by the execution events, between a per-
formance test and the field (Syer et al. 2014). We have improved our approach with
statistical tests to ensure that we only report the execution events that best explain
the differences between a performance test and the field. We have also extended our
approach to compare the aggregate user behaviour in addition to the individual user
behaviour. Finally, we have significantly improved the empirical evaluation of our
approach and the scope of our case studies.

1.1 Organization of the paper
This paper is organized as follows: Sect. 2 provides a motivational example of how our

approach may be used in practice. Section 3 describes our approach in detail. Section 4
presents our case studies. Section 5 discusses the results of our case studies and some
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of the design decisions for our approach. Section 6 outlines the threats to validity and
Sect. 7 presents related work. Finally, Sect. 8 concludes the paper and presents our
future work.

2 Motivational example

Jack, a performance analyst, is responsible for continuously performance testing a
large-scale telecommunications system. Given the continuously evolving field work-
loads, Jack often needs to update his performance tests to ensure that the test workloads
reflect, as much as possible, the field workloads. Jack monitors the field workloads
using performance counters (e.g., response time and memory usage). When one or
more of these counters deviates from the specified or expected range (e.g., response
time exceeds the maximum response time specified in the service level agreements or
memory usage exceeds the average historical memory usage), Jack must investigate
the cause of the deviation. He may then need to update his tests.

Jack monitors the system’s performance in the field and discovers that the system’s
memory usage exceeds the average historical memory usage. Pressured by time (given
the continuously evolving nature of field workloads) and management (who are keen
to boast a high quality system), Jack needs to quickly update his performance tests to
replicate this issue in his test environment. Jack can then determine why the system is
using more memory than expected. Although the performance counters have indicated
that the field workloads have changed (leading to increased memory usage), the only
artifacts that Jack can use to understand how the field workloads have changed, and
hence how his tests should be updated, are execution logs. These logs describe the
system’s behaviour, in terms of important execution events (e.g., starting, queueing or
completing a job), during the test and in the field.

Jack tries to compare the execution logs from the field and the test by looking at how
often important events (e.g., receiving a service request) occur in the field compared
to his test. However, terabytes of execution logs are collected and some events occur
millions of times. Further, Jack’s approach of simply comparing how often each event
occurs does not provide the detail he needs to fully understand the differences between
the field and test workloads. For example, simply comparing how often each event
occurs ignores the use case that generated the events (i.e., the context).

To overcome these challenges, Jack needs an automated, scalable approach to deter-
mine whether his tests are reflective of the field and, if not, determine how his tests
differ so that they can be updated. We present such an approach in the next sec-
tion.

Using this approach, Jack is shown groups of users whose behaviour best explains
the differences between his test workloads and the field. In addition, Jack is also shown
key execution events that best explain the differences between each of these groups of
users. Jack then discovers a group of users who are using the high-definition group chat
feature (i.e., a memory-intensive feature) more strenuously than in the past. Finally,
Jack is able to update his test to better reflect the users’ changing feature preferences
and hence, the system’s behaviour in the field.
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3 Approach

This section outlines our approach for validating performance tests by automatically
deriving workload signatures from execution logs and comparing the signatures from
a test against the signatures from the field. Figure 1 provides an overview of our
approach. First, we group execution events from the test logs and field logs into
workload signatures that describe the workloads. Second, we cluster the workload
signatures into groups where a similar set of execution events have occurred. Finally,
we analyze the clusters to identify the execution events that correspond to meaningful
differences between the performance test and the field. We will describe each phase
in detail and demonstrate our approach with a working example of a hypothetical chat
application.

3.1 Execution logs

Execution logs record notable events at runtime and are used by developers (to debug
a system) and operators (to monitor the operation of a system). They are generated by
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Fig. 1 An overview of our approach
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output statements that developers insert into the source code of the system. These out-
put statements are triggered by specific events (e.g., starting, queueing or completing
a job) and errors within the system. Compared with performance counters, which usu-
ally require explicit monitoring tools (e.g., PerfMon 2014) to be collected, execution
logs are readily available in most large-scale systems to support remote issue resolu-
tion and legal compliance. For example, the Sarbanes-Oxley Act (The Sarbanes-Oxley
Act 2014) requires logging in telecommunication and financial systems.

The second column of Tables 1 and 2 presents the execution logs from our work-
ing example. These execution logs contain both static information (e.g., starts
a chat) and dynamic information (e.g., Alice and Bob) that changes with each
occurrence of an event. Tables 1 and 2 present the execution logs from the field and
the test respectively. The test has been configured with a simple use case (from 00:01
to 00:06) that is continuously repeated.

3.2 Data preparation

Execution logs are difficult to analyze because they are unstructured. Therefore, we
abstract the execution logs to execution events to enable automated statistical analysis.
We then generate workload signatures that represent the behaviour of the system’s
users.

3.2.1 Log abstraction

Execution logs are not typically designed for automated analysis (Jiang et al. 2008a).
Each occurrence of an execution event results in a slightly different log line, because
log lines contain static components as well as dynamic information (which may be
different for each occurrence of a particular execution event). Dynamic information
includes, but it not limited to, user names, IP addresses, URLs, message contents, job
IDs and queue sizes. We must remove this dynamic information from the log lines prior
to our analysis in order to identify similar execution events. We refer to the process
of identifying and removing dynamic information from a log line as “abstracting” the
log line.

Our technique for abstracting log lines recognizes the static and dynamic compo-
nents of each log line using a technique similar to token-based code clone detection
(Jiang et al. 2008a). The dynamic components of each log line are then discarded and
replaced with ____ (to indicate that dynamic information was present in the original
log line). The remaining static components of the log lines (i.e., the abstracted log
line) describe execution events.

In order to verify the correctness of our abstraction, many execution logs and their
corresponding execution events have been manually reviewed by multiple, indepen-
dent system experts.

Tables 1 and 2 present the execution events and execution event IDs (a unique
ID automatically assigned to each unique execution event) for the execution logs
from the field and from the test in our working example. These tables demonstrate
the input (i.e., the log lines) and the output (i.e., the execution events) of the log
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abstraction process. For example, the starts a chat with Boband starts
a chat with Dan log lines are both abstracted to the starts a chat with
execution event.

3.2.2 Signature generation

We generate workload signatures that characterize user behaviour in terms of feature
usage expressed by the execution events. In our approach, a workload signature rep-
resents either (1) the behaviour of one of the system’s users, or (2) the aggregated
behaviour of all of the system’s users at one point in time. We use the term “user”
to describe any type of end user, whether a human or software agent. For example,
the end users of a system such as Amazon.com are both human and software agents
(e.g., “shopping bots” that search multiple websites for the best prices). Workload
signatures are represented as points in an n-dimensional space (where 7 is the number
of unique execution events).

Workload signatures representing individual users are generated for each user
because workloads are driven by the behaviour of the system’s users. We have also
found cases when an execution event only causes errors when over-stressed by an
individual user (i.e., one user executing the event 1,000 times has a different impact
on the system’s behaviour than 100 users each executing the event 10 times) (Syer
et al. 2014). Therefore, it is important to identify users whose behaviour is seen in the
field, but not during the test.

Workload signatures representing individual users are generated in two steps. First,
we identify all of the unique user IDs that appear in the execution logs. Users represent
a logical “unit of work” where a workload is the sum of one or more units of work. In
systems primarily used by human end users (e.g., e-commerce and telecommunications
system), user IDs may include user names, email addresses or device IDs. In systems
primarily used for processing large amounts of data (e.g., distributed data processing
frameworks such as Hadoop), user IDs may include job IDs or thread IDs. The second
column of Table 3 presents all of the unique user IDs identified from the execution
logs of our working example. Second, we generate a signature for each user ID by
counting the number of times that each type of execution event is attributable to each
user ID. For example, from Table 1, we see that Alice starts one chat, sends two
messages and ends one chat. Table 3 shows the signatures generated for each user
using the events in Tables 1 and 2.

Workload signatures representing the aggregated users are generated for short peri-
ods of time (e.g., 1 min) to represent the traditional notion of a “workload” (i.e., the
total number and mix of incoming requests to the system). The system’s resource usage
is highly dependent on these workloads. Unlike the workload signatures representing
individual users, the workload signatures representing aggregated users capture the
“burstiness” (i.e., the changes in the number of request per seconds) of the workload.
Therefore, it is important to identify whether the the aggregated user behaviour that
is seen in the field is also seen during the test.

Workload signatures representing the aggregated users are generated by grouping
the execution logs into time intervals (i.e., grouping the execution logs that occur
between two points in time). Grouping is a two step process. First, we specify the
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Table 3 Workload signatures representing individual users

User ID Execution event ID

1 2 3 4

start chat send message transfer file end chat

Field users Alice 1 2 0 1
Bob 0 1 0 0
Charlie 1 2 0 1
Dan 0 1 2 0
Test users USER1 1 2 0 1
USER2 0 1 0 0
USER3 1 2 0 1
USER4 0 1 0 0
USERS 1 2 0 1
USER6 0 1 0 0
Table 4 Workload signatures representing the aggregated users
Time Execution event ID
1 2 3 4

start chat send message transfer file end chat

Field times 00:01-00:06
00:07-00:12
00:13-00:18

Testtimes 00:01-00:06
00:07-00:12
00:13-00:18

= B P o o N
w W w N PWw
o o o o M o
. =)

length of the time interval. In our previous work, we found that time intervals of 90—
150 s perform well when generating workload signatures that represent the aggregated
user behaviour (Syer et al. 2013). However, these time intervals may vary between sys-
tems. System experts should determine the optimal time interval (i.e., a time interval
that provides the necessary detail without an unnecessary overhead) for their sys-
tems. Alternatively, system experts may specify multiple time intervals and generate
overlapping signatures (e.g., generating signatures representing the aggregated user
behaviour in 1, 3 and 5 min time intervals). Second, we generate a signature for each
time interval by counting the number of times that each type of execution event occurs
in that time interval. For example, from Table 1, we see that one chat is started and
three messages are sent between time 00:01 and 00: 06. Table 4 shows the signa-
tures generated for each 65 time interval using the events in Tables 1 and 2. From
Table 4, we see that all three signatures generated from the test are identical. This is
to be expected because the test was configured with a simple use case (from 00:01 to
00:06) that is continuously repeated.
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Our approach considers the individual user signatures and the aggregate user sig-
natures separately. Therefore, the Clustering and Cluster Analysis phases are applied
once to the individual user signatures and once to the aggregate user signatures. For
brevity, we will demonstrate the remainder of our approach using only the individual
user signatures in Table 3.

3.3 Clustering

The second phase of our approach is to cluster the workload signatures into groups
where a similar set of events have occurred. We can then identify groups of similar,
but not necessary identical, workload signatures.

The clustering phase in our approach consists of three steps. First, we calculate
the dissimilarity (i.e., distance) between every pair of workload signatures. Second,
we use a hierarchical clustering procedure to cluster the workload signatures into
groups where a similar set of events have occurred. Third, we convert the hierarchical
clustering into k partitional clusters (i.e., where each workload signature is a member
in only one cluster). We have automated the clustering phase using scalable statistical
techniques.

3.3.1 Distance calculation

Each workload signature is represented by one point in an n-dimensional space (where
n is the number of unique execution events). Clustering procedures rely on identifying
points that are “close” in this n-dimensional space. Therefore, we must specify how dis-
tance is measured in this space. A larger distance between two points implies a greater
dissimilarity between the workload signatures that these points represent. We calculate
the distance between every pair of workload signatures to produce a distance matrix.

We use the Pearson distance, a transform of the Pearson correlation (Fulekar 2008),
as opposed to the many other distance measures (Fulekar 2008; Cha 2007; Frades and
Matthiesen 2009), as the Pearson distance often produces a clustering that is a closer
match to the manually assigned clusters (Sandhya and Govardhan 2012; Huang 2008).
We find that the Pearson distance performs well when clustering workload signatures
(see Sect. 5.3; Syer et al. 2014).

We first calculate the Pearson correlation (p) between two workload signatures
using Eq. 1. This measure ranges from —1 to +1, where a value of 1 indicates that the
two workload signatures are identical, a value of 0 indicates that there is no relationship
between the signatures and a value of —1 indicates an inverse relationship between the
signatures (i.e., as the occurrence of specific execution events increase in one workload
signature, they decrease in the other).

b= n 20X X yi — 20 xi X 2y 0

SO — (00)) < (n3 57 - (3 0)?)

where x and y are two workload signatures and » is the number of execution events.
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Table 5 Distance matrix

Alice Bob Charlie Dan USER1 USER2 USER3 USER4 USER5 USERG6

Alice 0 0.184 0 0426 0 0.184 0 0.184 0 0.184
Bob 0.184 0 0.184 0.826 0.184 0 0.184 0 0.184 0
Charlie 0 0.184 0 0426 0 0.184 0 0.184 0. 0.184
Dan 0.426  0.826 0.426 0 0426 0.826 0426 0.826 0426 0.826
USER1 0 0.184 0 0426 0 0.184 0 0.184 0 0.184
USER2 0.184 0 0.184 0.826 0.184 0 0.184 0 0.184 0
USER3 0 0.184 0 0426 0 0.184 0 0.184 0 0.184
USER4 0.184 0 0.184 0.826 0.184 0 0.184 0 0.184 0
USER5 0 0.184 0 0426 0 0.184 0 0.184 0 0.184
USER6 0.184 0 0.184 0.826 0.184 0 0.184 0 0.184 0

We then transform the Pearson correlation (p) to the Pearson distance (d,) using
Eq. 2.

1—p for p>0

d, = @

o] for p <0

Table 5 presents the distance matrix produced by calculating the Pearson distance
between every pair of workload signatures in our working example.

3.3.2 Hierarchical clustering

We use an agglomerative, hierarchical clustering procedure (Tan et al. 2005) to cluster
the workload signatures using the distance matrix calculated in the previous step. The
clustering procedure starts with each signature in its own cluster and proceeds to find
and merge the closest pair of clusters (using the distance matrix), until only one cluster
(containing everything) is left. One advantage of hierarchical clustering is that we do
not need to specify the number of clusters prior to performing the clustering. Further,
performance analysts can change the number of clusters (e.g., to produce a larger
number of more cohesive clusters) without having to rerun the clustering phase.

Hierarchical clustering updates the distance matrix based on a specified linkage
criterion. We use the average linkage, as opposed to the many other linkage criteria
(Frades and Matthiesen 2009; Tan et al. 2005), as the average linkage is the de facto
standard (Frades and Matthiesen 2009; Tan et al. 2005). The average linkage criterion
is also the most appropriate when little information about the expected clustering (e.g.,
the relative size of the expected clusters) is available. We find that the average linkage
criterion performs well when clustering workload signatures (see Sect. 5.3; Syer et al.
2014).

When two clusters are merged, the average linkage criterion updates the dis-
tance matrix in two steps. First, the merged clusters are removed from the distance
matrix. Second, a new cluster (containing the merged clusters) is added to the dis-
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Dan
USER5 ——
Charlie
USER2 —

Fig. 2 Sample dendrogram. The dotted horizontal line indicates where the dendrogram was cut into three
clusters (i.e., Cluster A, B and C)

tance matrix by calculating the distance between the new cluster and all existing
clusters. The distance between two clusters is the average distance (as calculated by
the Pearson distance) between the workload signatures of the first cluster and the
workload signatures of the second cluster (Frades and Matthiesen 2009; Tan et al.
2005).

We calculate the distance between two clusters (dy,y) using Eq. 3.

Nx

ny
| _
dey=——— x> > dy(xi,y;)) 3)
Ny X Ny -

1

where d, y is the distance between cluster x and cluster y, n is the number of workload
signatures in cluster x, ny is the number of workload signatures in cluster y and
dy(x;, y;) is the Pearson distance between workload signature i in cluster x and
workload signature j in cluster y.

Figure 2 shows the dendrogram produced by hierarchically clustering the workload
signatures from our working example.

3.3.3 Dendrogram cutting

The result of a hierarchical clustering procedure is a hierarchy of clusters. This hier-
archy is typically visualized using hierarchical cluster dendrograms. Figure 2 is an
example of a hierarchical cluster dendrogram. Such dendrograms are binary tree-like
diagrams that show each stage of the clustering procedure as nested clusters (Tan et al.
2005).

To complete the clustering procedure, the dendrogram must be cut at some height.
This height represents the maximum amount of intra-cluster dissimilarity that will be
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accepted within a cluster before that cluster is further divided. Cutting the dendrogram
results in a clustering where each workload signature is assigned to only one cluster.
Such a cutting of the dendrogram is done either by (1) manual (visual) inspection or
(2) statistical tests (referred to as stopping rules).

Although a visual inspection of the dendrogram is flexible and fast, it is subject
to human bias and may not be reliable. We use the Calinski—Harabasz stopping rule
(Calinski and Harabasz 1974), as opposed to the many other stopping rules (Calinski
and Harabasz 1974; Duda and Hart 1973; Milligan and Cooper 1985; Mojena 1977,
Rousseeuw 1987), as the Calinski—Harabasz stopping rule most often cuts the dendro-
gram into the correct number of clusters (Milligan and Cooper 1985). We find that the
Calinski—Harabasz stopping rule performs well when cutting dendrograms produced
by clustering workload signatures (see Sect. 5.3; Syer et al. 2014).

The Calinski-Harabasz stopping rule is a pseudo-F-statistic, which is a ratio reflect-
ing within-cluster similarity and between-cluster dissimilarity. The optimal clustering
will have high within-cluster similarity (i.e., the workload signatures within a cluster
are similar) and a high between-cluster dissimilarity (i.e., the workload signatures
from two different clusters are dissimilar).

The dotted horizontal line in Fig. 2 shows where the Calinski—-Harabasz stopping
rule cut the hierarchical cluster dendrogram from our working example into three
clusters (i.e., the dotted horizontal line intersects with solid vertical lines at three
points in the dendrogram). Cluster A contains one user (Dan), cluster B contains four
users (Alice, Charlie, USER1 and USER3) and cluster C contains three users (Bob,
USER?2 and USER4).

3.4 Cluster analysis

The third phase in our approach is to identify the execution events that correspond to
the differences between the workload signatures from the performance test and the
field. As execution logs may contain billions of events describing the behaviour of
millions of users, this phase will only identify the most important workload signature
differences. Therefore, our approach helps system experts to update their performance
tests by identifying the most meaningful differences between their performance tests
and the field. Such “filtering” provides performance analysts with a concrete list of
events to investigate.

The cluster analysis phase of our approach consists of two steps. First, we detect
outlying clusters. Outlying clusters contain workload signatures that are not well rep-
resented in the test (i.e., workload signatures that occur in the field significantly more
than in the test). Second, we identify key execution events of the outlying clusters.
We refer to these execution events as “signature differences”. Knowledge of these sig-
nature differences may lead performance analysts to update their performance tests.
“Event A occurs 10% less often in the test relative to the field” is an example of
a signature difference that may lead performance analysts to update a test such that
Event A occurs more frequently. We use scalable statistical techniques to automate
this step.
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3.4.1 Outlying cluster detection

Clusters contain workload signatures from the field and/or the test. When clustering
workload signatures from a field-representative performance test and the field, we
would expect that each cluster would have the same proportion of workload signatures
from the field compared to workload signatures from the test. Clusters with a high
proportion of workload signatures from the field relative to the test would then be
considered “outlying” clusters. These outlying clusters contain workload signatures
that represent behaviour that is seen in the field, but not during the test.

We identify outlying clusters using a one-sample upper-tailed z-test for a popu-
lation proportion. These tests are used to determine whether the observed sample
proportion is significantly larger than the hypothesized population proportion. The
difference between the observed sample proportion and the hypothesized population
proportion is captured by a z-score (Sokal and Rohlf 2011). Higher z-scores indi-
cate an increased probability that the observed sample proportion is greater than the
hypothesized population proportion (i.e., that the cluster contains a greater proportion
of workload signatures from the field). Hence, as the z-score of a particular cluster
increases, the probability that the cluster is an outlying cluster also increases. One-
sample z-tests for a proportion have successfully been used to identify outliers in
software engineering data using these hypotheses (Kremenek and Engler 2003; Jiang
et al. 2008b; Syer et al. 2014).

We construct the following hypotheses to be tested by a one-sample upper-tailed
z-test. Our null hypothesis assumes that the proportion of workload signatures from
the field in a cluster is less than 90 %. Our alternate hypothesis assumes that this
proportion is greater than 90 %.

Equation 4 presents how the z-score of a particular cluster is calculated.

Ny

A 4)
o= |Pox (1 = po) 5)
ny + ny
=22 ©)
o

where n, is the number of workload signatures from the field in the cluster, ny is
the number of workload signatures from the test in the cluster, p is the proportion of
workload signatures from the field in the cluster, o is the standard error of the sampling
distribution of p and py is the hypothesized population proportion (i.e., 90 %, the null
hypothesis).

We then use the z-score to calculate a p-value to determine whether the sample
population proportion is significantly greater than the hypothesized proportion popu-
lation. This p-value accounts for differences in the total number of workload signatures
from the test compared to the field as well as variability in the proportion of workload
signatures from the field across the clusters.

Equation 7 presents how the p-value of a particular cluster is calculated.
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Table 6 Identifying Outlying

Clusters Cluster Size # Signatures from: z-score p-value
Field Test
A 1 1 0 0.333 0.68
B 2 3 —3.737 1.00
C 4 1 3 4333 1.00
) 1 *(X*;E)Z (
Z(X,k,0) = ——F———= X e 2x0 7)
o XA2xTm
p=P(Z>2) (8)

where u is the average proportion of workload signatures in a cluster, o is the standard
deviation of the proportion of workload signatures in a cluster, Z (x, w, o) is the normal
distribution given u and o and p is the p-value of the test.

Table 6 presents the size (i.e., the number of workload signatures in the cluster),
breakdown (i.e., the number of workload signatures from the performance test and the
field), z-score and p-value for each cluster in our working example (i.e., each of the
clusters that were identified when the Calinski-Harabasz stopping rule was used to
cut the dendrogram in Fig. 2).

From Table 6, we find that clusters with a greater proportion of workload signatures
from the field have a larger z-score. For example, the proportion of workload signatures
from the field in Cluster A is 100 % and the z-score is 0.333, whereas the proportion
of workload signatures from the field in Cluster B is 40 % (i.e., 2/5) and the z-score
is -3.737.

From Table 6, we also find that the proportion of workload signatures from the field
in any one cluster is not significantly more than 90 % (i.e., no p-values are less than
0.05). Therefore, no clusters are identified as outliers. However, outliers are extremely
difficult to detect in such small data sets. Therefore, for the purposes of this working
example, we will assume that Cluster A has been identified as an outlier because its
z-score (0.333) is much larger than the z-scores of Cluster B (—3.737) or Cluster C
(—4.333).

3.4.2 Signature difference detection

We identify the differences between workload signatures in outlying clusters and
the average (“normal”) workload signature using statistical measures (i.e., unpaired
two-sample two-tailed Welch’s unequal variances t-tests (Student 1908; Welch 1997)
and Cohen’s d effect size (Cohen 1988)). This analysis quantifies the importance of
each execution event in differentiating a cluster. Knowledge of these events may lead
performance analysts to update their tests.

First, we determine the execution events that differ significantly between the work-
load signatures in the outlying clusters and the average workload signature. For
example, execution events that occur 10 times more often in the workload signa-
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tures of an outlying cluster compared to the average workload signature should likely
be flagged for further analysis by a system expert.

We perform an unpaired two-sample two-tailed Welch’s unequal variances t-test
to determine which execution events differ significantly between the workload signa-
tures in an outlying cluster and the average workload signature. These tests are used
to determine whether the difference between two population means is statistically
significant (Student 1908; Welch 1997). The difference between the two population
means is captured by a f-statistic. Larger absolute -statistics (i.e., the absolute value
of the t-statistic) indicate an increased probability that the two population means differ
(i.e., that the number of times an execution event occurs in the workload signatures
of an outlying cluster compared to the average workload signature differs). Hence,
as the absolute value of the ¢-statistic of a particular execution event and outlying
cluster increases, the probability that the number of times an execution event occurs
in the workload signatures of an outlying cluster compared to the average workload
signature also increases. T-fests are one of the most frequently performed statistical
tests (Elliott 2006).

We construct the following hypotheses to be tested by an unpaired two-sample two-
tailed Welch’s unequal variances t-test. Our null hypothesis assumes that an execution
event occurs the same number of times in the workload signatures of an outlying cluster
compared to the average workload signature. Conversely, our alternate hypothesis
assumes that the execution event does not occur the same number of times in an
outlying cluster compared to the average workload signature.

Equation 9 presents how the #-statistic for a particular execution event and a par-
ticular outlying cluster is calculated.

G:\/(nx—l)xaxz+(ny—l)xa>2,

9

ny+ny+2 ©

tzu (10)
of | a?
-t

where n, is the number of workload signatures in the outlying cluster, ny is the
total number of workload signatures that are not in the outlying cluster, w, is the
average number of times the execution event occurs in the workload signatures
in the outlying cluster, 1y is the average number of times the execution event occurs
in all the workload signatures that are not in the outlying cluster, o, is the variance
of the number of times the execution event occurs in the workload signatures in the
outlying cluster, oy is the variance of the number of times the execution event occurs
in all of the workload signatures that are not in the outlying cluster, o is the pooled
standard deviation of the number of times the execution event occurs in the workload
signatures in the outlying cluster and the number of times the execution event occurs
in all the workload signatures and ¢ is the ¢-statistic.

We then use the t-statistic to calculate a p-value to test whether the difference
between the number of times an execution event occurs in the workload signatures
of an outlying cluster compared to the average workload signature is statistically
significant.
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Table 7 Identifying influential

execution events Execution event ID t-statistic p-value Cohen’s d
1 0.90 0.39 0.95
2 0.90 0.39 0.95
3 —-2.71 0.02 2.85
4 0.90 0.39 0.95

Equation 11 presents how the p-value for a particular execution event and a partic-
ular outlying cluster is calculated.

v=— (11)

2\ 2
%y
Ily

ny—1

o X2\ 2
T_Wn—x1“(§)x(1+7) (12)
p=2xP(T <t) (13)

+

where v is the degree of freedom, I” is the gamma function, T is the t-distribution and
p is the p-value of the test.

Table 7 shows the #-statistic and the associated p-value for each execution event in
the outlying cluster (i.e., Cluster A).

From Table 7, we find that Execution Event ID 3 (i.e., initiate a file transfer) differs
significantly between Cluster A and the average workload signatures (i.e., p < 0.01).
From the workload signatures in Table 3, we see that Execution Event ID 3 occurs
twice in Dan’s workload signature (i.e., the only workload signature in Cluster A), but
never in the other workload signatures.

Second, we determine the most important execution events that differ between
the workload signatures in the outlying clusters and the average workload signature.
For example, if execution events “A” and “B” occur 2 and 10 times more often in
the workload signatures of an outlying cluster compared to the average workload
signature, then execution event “B” should be flagged for further analysis by a system
expert rather than execution event “A.”

We calculate the Cohen’s d effect size to determine the most important execution
events that differ between the workload signatures in the outlying clusters and the
average workload signature. Cohen’s d effect size measures the difference between
two population means (Cohen 1988). Larger Cohen’s d effect sizes indicate a greater
difference between the two population means, regardless of statistical significance.
Hence, as the Cohen’s d effect size of a particular execution event and outlying cluster
increases, the difference between the number of times an execution event occurs in the
workload signatures of an outlying cluster compared to the average workload signature
also increases.
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Equation 14 presents how Cohen’s d is calculated for a particular execution event
and a particular outlying cluster.

6:\/(nx—l)xax2+(ny—l)xoy2
ny +ny+2

(14)

Mx — MKy
o

d = (15)

where ny is the number of workload signatures in the outlying cluster, ny is the total
number of workload signatures that are not in the outlying cluster, u, is the average
number of times the event occurs in the workload signatures in the outlying cluster, 1,
is the average number of times the event occurs in all the workload signatures that are
not in the outlying cluster, o, is the variance in the number of times the event occurs
in the workload signatures in the outlying cluster, oy is the variance in the number of
times the event occurs in all of the workload signatures that are not in the outlying
cluster, o is the pooled standard deviation of the number of times the event occurs
in the workload signatures in the outlying cluster and the number of times the event
occurs in all the workload signatures and d is Cohen’s d.
Cohen’s d effect size is traditionally interpreted as follows:

trivial ford < 0.2
small for0.2 <d <0.5
medium for 0.5 <d <0.8
large ford > 0.8

(16)

However, such an interpretation was originally proposed for the social sciences.
Kampenes et al. (2007) performed a systematic review of 103 software engineering
papers empirically established the following interpretation of Cohen’s d effect size in
software engineering.

trivial ford < 0.17
small for0.17 <d < 0.6

medium for0.6 <d < 1.4

large ford > 1.4

a7)

From Table 7, we find that Execution Event ID 3 (i.e., initiate a file transfer) has a
large (i.e., d > 1.4) effect size indicating that the difference in Execution Event ID 3
between the workload signatures in Cluster A and the average workload signature is
large.

Finally, we identify the influential events as any execution event with a ¢-fest p-
value less than 0.01 and a Cohen’s d greater than 1.4. Table 7 shows the Cohen’s d
for each execution event in the outlying cluster (i.e., Cluster A).

From Table 7, we find that the difference in Execution Event ID 3 between the
workload signatures in Cluster A and the average workload signature is statistically
significant (i.e., p < 0.01) and large (i.e., d > 1.4). Therefore, our approach identifies
one workload signature (i.e., the workload signature representing the user Dan) as a
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key difference between the test and the field of our working example. In particular, we
identify one execution event (i.e., initiate a file transfer) that is not well represented in
the test (in fact it does not occur at all). Performance analysts should then adjust the
workload intensity of the file transfer functionality in the test.

In our simple working example, performance analysts could have examined how
many times each execution event had occurred and identified events that occur much
more frequently in the field compared to the test. However, in practice, data sets are
considerably larger. For example, our enterprise case studies contain over hundreds of
different types of execution events and millions of log lines. Further, some execution
events have a different impact on the system’s behaviour based on the manner in
which the event is executed. For example, our second enterprise case study identifies
an execution event that only causes errors when over-stressed by an individual user
(i.e., one user executing the event 1,000 times has a different impact on the system’s
behaviour than 100 users each executing the event 10 times). Therefore, in practice
performance analysts cannot simply examine occurrence frequencies.

4 Case studies

This section outlines the setup and results of our case studies. First, we present two
case studies using a Hadoop application. We then discuss the results of three case
studies using an enterprise system. Table 8 outlines the systems and data sets used in
our case studies.

Our case studies aim to determine whether our approach can detect workload signa-
ture differences due to feature, intensity and issue differences between a performance
test and the field. Our case studies include systems whose users are either human
(Enterprise System) or software (Hadoop) agents.

We compare our results with our previous approach to comparing workload signa-
tures. We empirically evaluate the improvement in our ability to flag execution events
that best describe the differences between a performance test and the field (Syer et al.
2014).

We also compare our results with the current state-of-the-practice. Currently, per-
formance analysts validate performance tests by comparing the number of times each
execution event has occurred during the test compared to the field and investigating
any differences. Therefore, we rank the events based on the difference in occurrence
between the test and the field. We then investigate the events with the largest differ-
ences. In practice, performance analysts do not know how many of these events should
be investigated. Therefore, we examine the same number of events as our approach
identifies such that the effort required by performance analysts to manually analyze
the events flagged by either (1) our approach or (2) the state of the practice is approx-
imately equal. For example, if our approach flags 10 execution events, we examine
the top 10 events ranked by the state-of-the-practice. We then compare the precision
of our approach to the state-of-the-pratice. We define precision as the percentage of
execution events that our approach identified as meaningful differences between the
system’s behaviour in the field and during the test that multiple, independent system
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experts confirmed are meaningful differences between the system’s behaviour in the
field and during the test.

We also compare our results to the results of a basic statistical comparison of the
execution logs from a test and the field. We use the same statistical measures outlined
in Sect. 3.4.2 (i.e., t-tests and Cohen’s d) to statistically compare the number of times
each execution event has occurred during the test compared to the field. This statistical
comparison is identical to our approach when one workload signature representing the
aggregated user behaviour is generated from the test and another from the field (i.e.,
our approach without clustering). We flag all events with a statistically significant
(i.e., p < 0.01) and large (i.e., d > 1.4) difference between the test and the field. This
comparison demonstrates the value added by our approach, specifically in generating
workload signatures that represent the behaviour of the system’s users, compared to a
simple statistical comparison of the execution logs.

4.1 Hadoop case study
4.1.1 The Hadoop platform

Our first case study system are two applications that are built on the Hadoop plat-
form. Hadoop is an open-source distributed data processing platform that implements
MapReduce (Hadoop 2014; Dean and Ghemawat 2008).

MapReduce is a distributed data processing framework that allows large amounts
of data to be processed in parallel by the nodes of a distributed cluster of machines
(Dean and Ghemawat 2008). The MapReduce framework consists of two steps: a Map
step, where the input data is divided amongst the nodes of the cluster, and a Reduce
step, where the results from each of the nodes is collected and combined.

Operationally, a Hadoop application may contain one or more MapReduce steps
(each step is a “Job”). Jobs are further broken down into “tasks,” where each task is
either a Map task or a Reduce task. Finally, each task may be executed more than once
to support fault tolerance within Hadoop (each execution is an “attempt”).

4.1.2 The WordCount application

The first Hadoop application used in this case study is the WordCount application
(MapReduce Tutorial 2014). The WordCount application is a standard example of a
Hadoop application that is used to demonstrate the Hadoop platform and the MapRe-
duce framework. The WordCount application reads one or more text files (a corpus)
and counts the number of times each unique word occurs within the corpus.

4.1.2.1 Machine failure in the field We monitored the performance of the Hadoop
WordCount application during a performance test. The performance test workload
consisted of 3.69 gigabytes of text files (i.e., the WordCount application counts the
number of times each unique word occurs in these text files). The cluster contains
five machines, each with dual Intel Xeon E5540 (2.53 GHz) quad-core CPUs, 12 GB
memory, a Gigabit network adaptor and SATA hard drives. While this cluster is small
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by industry standards (Chen et al. 2012), recent research has shown that almost all
failures can be reproduced on three machines (Yuan et al. 2014).

We then monitored the performance of the Hadoop WordCount application in the
field and found that the performance was much less than expected based on our perfor-
mance tests. We found that the throughput (completed attempts/s) was much lower than
the throughput achieved during testing and that the average network 1O (bytes/s trans-
fered between the nodes of the cluster) was considerably lower than the average histor-
ical network I0. Therefore, we compare the execution logs from the field and the test
to determine whether our tests accurately represent the current conditions in the field.

We apply our approach to the execution logs collected from the WordCount appli-
cation in the field and during the test. We generate a workload signature for each
attempt because these attempts are the “users” of the Hadoop platform. These work-
load signatures represent the individual user behaviour discussed in Sect. 3.2.2. We
also generate workload signatures for each 1, 3 and 5 min time interval. These work-
load signatures represent the aggregated user behaviour discussed in Sect. 3.2.2. Our
approach identifies 12 workload signature differences (i.e., execution events that best
describe the differences between the field and the test) for analysis by system experts.
We only report a selection of these execution events here for brevity.

INFO org.apache.hadoop.hdfs.DFSClient: Abandoning block blk_id

INFO org.apache.hadoop.hdfs.DFSClient: Exception in
createBlockOutputStream java.io.IOException: Bad connect ack with
firstBadLink ip_address

WARN org.apache.hadoop.hdfs.DFSClient: Could not get block

locations. Source file - Aborting...

INFO org.apache.hadoop.mapred.TaskRunner: Runnning cleanup
for the task

These execution events indicate that the WordCount application (1) cannot retrieve
data from the Hadoop File System (HFS), (2) has a “bad” connection with the node
at ip_address and (3) cannot reconnect to the datanode (datanodes store data in
the HES) at ip_address. The remaining execution events are warning messages
associated with this error. Made aware of this issue, performance analysts could update
their performance tests to test how the system responds to machine failures and propose
redundancy in the field.

The last execution event is a clean-up event (e.g., removing temporary output direc-
tories after the job completes)(OutputCommitter 2014). This execution event occurs
more frequently in the field compared to the test because a clean-up is always run after
an attempt fails (MapReduce Tutorial 2014). However, system experts do not believe
that this is a meaningful difference between the system’s behaviour in the field and
during the test. Hence, we have correctly identified 11 events out of the 12 flagged
events. The precision of our approach is 91.7 %.
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To empirically evaluate the improvement over our previous approach, we use our
previous approach (Syer et al. 2014) to identify the execution events that best explain
the differences between the system’s behaviour during a performance test and in the
field. Our previous approach identifies the following 3 workload signature differences:

INFO org.apache.hadoop.hdfs.DFSClient: Abandoning block blk_id

INFO org.apache.hadoop.hdfs.DFSClient: Exception in
createBlockOutputStream java.io.IOException: Bad connect ack with

firstBadLink ip_address

INFO org.apache.hadoop.ipc.Client: Retrying connect to server:
ip_address. Already tried NUMBER time (s)

All of these workload signature differences describes meaningful differences
between the system’s behaviour in the field and during the test. In addition, most
of these differences are also identified by our new approach. Therefore, the precision
of our previous approach is 100% (i.e., 3/3). However, our previous approach only
identifies 3 differences whereas our new approach correctly identifies 11 differences.
Therefore, the recall of our previous approach is lower than our new approach.

We also use the state-of-the-practice approach (outlined in Sect. 4) to identify the
execution events with the largest occurrence frequency difference between the field
and the test. We examine the top 12 execution events ranked by largest difference in
occurrence in the field compared to the test. We find that 7 of these events describe
important differences between the field and the test (all of these events were found
by our approach). However, 5 of these events do not describe important differences
between the field and the test (e.g., the clean-up or a start up event such as initializing
JVM metrics (Metrics 2.0 2014)). Therefore, the precision of the state-of-the-practice
is 58.3% (i.e., 7/12). We also use a statistical comparison (outlined in Sect. 4) to
identify the execution events that differ between the field and the test. However, no
execution events were flagged using this method.

4.1.2.2 Java heap space error in the field We monitored the performance of the Hadoop
WordCount application during a performance test. The performance test workload
consisted of 15 gigabytes of text files.

We then monitored the Hadoop WordCount application in the field and found that
the throughput (completed attempts/s) was much lower than the throughput achieved
during testing. We also found that the ratio of completed to failed attempts was much
lower (i.e., more failed attempts relative to completed attempts) in the field compared
to our performance test. Therefore, we compare the execution logs from the test and
the field to determine whether our tests accurately represent the current conditions in
the field.

Our approach identifies the following 3 workload signature differences:
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FATAL org.apache.hadoop.mapred.Child: Error running child

java.lang.OutOfMemoryError: Java heap space
at org.apache.hadoop.io.Text.setCapacity (Text.java:240)
at org.apache.hadoop.io.Text.append(Text.java:216)
at org.apache.hadoop.util.LineReader.readLine
(LineReader.java:159)
at org.apache.hadoop.mapred.LineRecordReader .next
(LineRecordReader.java:133)
at org.apache.hadoop.mapred.LineRecordReader .next
(LineRecordReader.java:38)
at org.apache.hadoop.mapred.MapTask$STrackedRecordReader .moveToNext
(MapTask.java:236)
at org.apache.hadoop.mapred.MapTask$TrackedRecordReader .next
(MapTask.java:216)
at org.apache.hadoop.mapred.MapRunner.run (MapRunner.java:48)
at org.apache.hadoop.mapred.MapTask.runOldMapper (MapTask.java:436)
at org.apache.hadoop.mapred.MapTask.run (MapTask.java:372)
at org.apache.hadoop.mapred.Child$4.run(Child.java:255)
at java.security.AccessController.doPrivileged (Native Method)
at javax.security.auth.Subject.doAs (Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs
(UserGroupInformation.java:1121)

at org.apache.hadoop.mapred.Child.main (Child. java:249)

INFO org.apache.hadoop.mapred.Task: Aborting job with runstate : FAILED
INFO org.apache.hadoop.mapred.Task: Cleaning up job

These execution events indicate that the WordCount application (1) suffers a
java.lang.OutOfMemoryError and (2) the java.lang.OutOfMemory
Error causes attempts to fail. When performance analysts consult with the official
Hadoop documentation, they find that input files are split using line-feeds or carriage-
returns (TextInputFormat 2014). Further, when performance analysts examine the
input files that the Hadoop WordCount application fails to process, they find that these
files lack line-feeds or carriage-returns due to a conversion error between DOS and
UNIX. Made aware of this issue, performance analysts could configure a maximum
line size using RecordReader (RecordReader 2014) to prevent this error in the field.

As before, the last execution event is a clean-up event that system experts do not
believe is a meaningful difference between the system’s behaviour in the field and
during the test. Hence, we have correctly identified 2 events out of the 3 flagged
events. Therefore, the precision of our approach is 66.7 %.

We empirically evaluate the improvement over our previous approach by using our
previous approach to identify workload signature differences. Our previous approach
identifies the following 4 workload signature differences:
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FATAL org.apache.hadoop.mapred.Child: Error running child

java
at
at
at

.lang.OutOfMemoryError: Java heap space

org.apache.hadoop.io.Text.setCapacity (Text.java:240)

org.apache.hadoop.io.Text.append (Text.java:216)

org.apache.hadoop.util.LineReader.readLine

(LineReader.java:159)

at org.apache.hadoop.mapred.LineRecordReader .next

(LineRecordReader.java:133)

at org.apache.hadoop.mapred.LineRecordReader .next

(LineRecordReader.java:38)

at org.apache.

(MapTask.java:

at

(MapTask.java:

at
at
at
at
at
at
at

org.apache.

org.apache.
org.apache.
org.apache.

org.apache.

hadoop
236)
hadoop
216)

hadoop.
hadoop.
hadoop.

hadoop

.mapred.MapTasksSTrackedRecordReader .moveToNext

.mapred.MapTaskSTrackedRecordReader .next

mapred.MapRunner.run (MapRunner.java:48)
mapred.MapTask.runOldMapper (MapTask.java:436)
mapred.MapTask.run (MapTask.java:372)
.mapred.Child$4.run(Child. java:255)

java.security.AccessController.doPrivileged (Native Method)

javax.security.auth.Subject.doAs (Subject.java:415)

org.apache.hadoop.security.UserGroupInformation.doAs

(UserGroupInformation.java:1121)

at org.apache.hadoop.mapred.Child.main (Child. java:249)

INFO org.apache.hadoop.mapred.Task: Task attempt_id done

INFO org.apache.hadoop.mapred.MapTask: Starting flush of map output

INFO org.apache.hadoop.mapred.Task: Task:attempt_id is done. And is

in the process of commiting

Only the first workload signature difference describes a meaningful difference
between the system’s behaviour in the field and during the test. Therefore, the precision
of our previous approach is 25 % (i.e., 1/4).

We also use the state-of-the-practice approach to identify execution events with
the largest occurrence frequency difference between the field and the test. We find
that the state-of-the-practice flags the same events as our approach. Therefore, the
precision of the state-of-the-practice 66.7% (i.e., 2/3). We also use a statistical
comparison to identify the execution events that differ between the field and the
test. A statistical comparison of the execution events flags 19 events. These events
describe the lack of successful processing of all input files in the field compared
to the test. For example, the INFO org.apache.hadoop.mapred.Task:
attempt_id is done. And is in the process of commitingeve-
nt occurs much more frequently in the test compared to the field. Therefore, the
precision of the statistical comparison is 0 % because these events do not describe the
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most important differences between the field and the test (i.e., the events related to the
OutOfMemoryError event).

4.1.3 The exotic songs application

The second Hadoop application used in this case study is the Exotic Songs application
(Adam 2012). The Exotic Songs application was developed to leverage the Million
Songs data set (Million Song Dataset 2012). The Million Songs data set contains meta-
data for one million different songs (the data setis 236 GB). The data set was developed
(1) to encourage research on scalable algorithms and (2) to provide a benchmark data
set for evaluating algorithms (Million Song Dataset 2011). The Exotic Songs applica-
tion analyzes the Million Song data set to find “exotic” (i.e., popular songs produced
by artists that live far away from other artists) songs.

4.1.3.1 Compression enabled in the field We monitored the performance of the Hadoop
Exotic Songs application during a performance test. The performance test workload
consisted of the full Millions Songs data set. We followed the following Microsoft
TechNet blog to deploy the underlying Hadoop cluster (Klose 2014). The cluster
contains (1) one DNS server, (2) one master node and (3) ten worker nodes.

We are grateful to Microsoft for (1) providing us access to such a large-scale deploy-
ment and (2) working closely with us to setup and troubleshoot our deployment.

We then monitored the Hadoop Exotic Songs application in the field and found that
the throughput (completed attempts/s) was much lower than the throughput achieved
during testing. We also found that the CPU usage was much higher in the field com-
pared to our performance test. Therefore, we compare the execution logs from the test
and the field to determine whether our tests accurately represent the current conditions
in the field.

Our approach identifies the following two workload signature differences:

INFO com.hadoop.compression.lzo.GPLNativeCodeLoader: Loaded

native gpl library

INFO com.hadoop.compression.lzo.LzoCodec: Successfully loaded

& initialized native-lzo library

These execution events indicate that the Exotic Songs application is loading the
Hadoop LZO compression libraries in the field. LZO is a fast and lossless data compres-
sion algorithm that is widely used in the field. The Hadoop LZO compression libraries
support (1) splitting LZO files for distributed processing and (2) (de)compressing
streaming data (input and output streams) (Hadoop-LZO 2011). Made aware of this
issue, performance analysts could configure compression during performance testing
to better understand the performance of their system. Hence, we have correctly iden-
tified 2 events out of the 2 flagged events. Therefore, the precision of our approach is
100 %.

We empirically evaluate the improvement over our previous approach by using our
previous approach to identify workload signature differences. However, no execution
events were flagged using our previous approach.
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We also use (1) the state-of-the-practice approach and (2) a statistical comparison
to identify execution events with the largest occurrence frequency difference between
the field and the test. We find that these approaches both flag the same events as our
approach. Therefore, the precision of these approaches is 100 % (i.e., 2/2).

4.2 Enterprise system case study

Although our Hadoop case study was promising, we perform three case studies on an
enterprise system to examine the scalability of our approach. We note that these data
sets are much larger than our Hadoop data set (see Table 8).

4.2.1 The enterprise system

Our second system is a large-scale enterprise software system in the telecommuni-
cations domain. For confidentiality reasons, we cannot disclose the specific details
of the system’s architecture, however the system is responsible for simultaneously
processing millions of client requests and has very high performance requirements.

Performance analysts perform continuous performance testing to ensure that the
system continuously meets its performance requirements. Therefore, analysts must
continuously ensure that the performance tests accurately represent the current con-
ditions in the field.

4.2.2 Comparing use-case performance tests to the field

Our first enterprise case study describes how our approach was used to validate a
use-case performance test (i.e., a performance test driven by a workload generator) by
comparing the system behaviour during the test and in the field. A workload generator
was configured to simulate the individual behaviour of thousands of users by con-
currently sending requests to the system based on preset use-cases. The system had
recently added several new clients. To ensure that the existing use-cases accurately
represent the workloads driven by these new clients, we use our approach to compare
a test to the field.

We use our approach to generate workload signatures for each user within the test
and in the field. We also generate workload signatures for each 1, 3 and 5min time
interval. We then compare the workload signatures generated during the test to those
generated in the field. Our approach identifies 28 execution events, that differ between
the workload signatures of the test and the field. These results were then given to
multiple, independent system experts who confirmed:

1. Twenty-four events are under-stressed in the test relative to the field. In general,
these events relate to variations in the intensity (i.e., changes in the number of
events per second) of events in the field compared to the relatively steady-state of
the test.

2. Two events are over-stressed in the test relative to the field.

3. Two events are artifacts of the difference in configuration between the test and
field environments (i.e., these events correspond to communication between the
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system and an external system that only occurs in the field) and are not important
differences between the test and the field.

In summary, our approach correctly identifies 26 execution events (92.9 % preci-
sion) that correspond to important differences between the system’s behaviour during
the test and in the field. Such results can be used to improve the tests in the future (i.e.,
by tuning the use-cases and the workload generator to more accurately reflect the field
conditions).

In contrast, our previous approach has a precision of 80 %. However, only 4 work-
load signature differences were correctly identified (compared to the 26 workload
signature differences correctly identified by our new approach). Further, the state-of-
the-practice approach has a precision of only 42.9 % and a statistical comparison flags
201 events with a precision of only 14.9 %.

4.2.3 Comparing replay performance tests to the field

Our second enterprise case study describes how our approach was used to validate a
performance replay test (i.e., a performance test driven by a replay script) by comparing
the system behaviour across a test and the field.

Replay scripts record the behaviour of real users in the field then play back the
recorded behaviour during a replay test, where heavy instrumentation of the system
is feasible. In theory, replay scripts can be used to perfectly replicate the conditions
in the field during a replay test (Krishnamurthy et al. 2006). However, replay scripts
require complex software to concurrently simulate the millions of users and billions of
requests captured in the field. Therefore, replay scripts do not scale well and use-case
performance tests that are driven by workload generators are still the norm (Meira
et al. 2012).

Performance analysts monitoring the system’s behaviour in the field observed a
spike in memory usage followed by a system crash. We use our approach to understand
the cause of this crash, and why it was not discovered during testing. Our approach
identifies 5 influential execution events that differ between the workload signatures of
the replay test and the field.

These results were given to performance analysts who confirmed that these 5 events
are under-stressed in the replay test relative to the field. In particular, these events cause
errors when over-stressed by an individual user (i.e., one user executing the event 1,000
times has a different impact on the system’s behaviour than 100 users each executing
the event 10 times). This type of behaviour cannot be identified from the occurrence
frequencies or aggregate event counts.

In summary, our approach correctly identifies 5 influential execution events that
correspond to differences between the system’s behaviour during the replay test and
in the field. Using this information, performance analysts update their replay tests.
They then see the same behaviour during testing as in the field. Therefore, our results
provide performance analysts with a very concrete recommendation to help diagnose
the cause of this crash.
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In contrast, our previous approach flags 26 events with a precision of 26.9 %.
Further, the state-of-the-practice approach has a precision of 0% and a statistical
comparison flags 5 events with a precision of 0 %.

4.2.4 Comparing field-representative performance tests and the field

Our third enterprise case study describes how our approach was used to validate a
field-representative performance replay test (i.e., a performance test driven by a replay
script) by comparing the system behaviour across a performance test and the field. This
test is known to be field-representative because it was successfully used to replicate a
performance issue (i.e., a memory leak) in the field.

We use our approach to validate whether this test is truly representative of the
field. Our approach identifies that no execution events differ between the workload
signatures of the replay test and the field. Therefore, our results provide performance
analysts with confidence in this test.

As our approach did not identify any execution events that differ between the
workload signatures of the replay test and the field, we cannot compare our approach
against the state-of-the-practice (i.e., the state-of-the-practice would examine the top 0
events). However, our previous approach flags 74 events. This is because our previous
approach assumes that workload signature differences exist and proceeds to identify
the largest such differences (i.e., our previous approach does not ignore differences
below some threshold value). In addition, a statistical comparison of the execution
events flags 2 events. These two events are artifacts of the test (i.e., these events
correspond to functionality used to setup the tests) and are not important differences
between the test and the field. Therefore, the precision of a statistical comparison is 0 %.

Our approach flags events with an average precision of 90%, outper-
forming our previous approach, the state-of-the-practice approach and the
statistical comparison approach.

5 Discussion
5.1 Comparison to other approaches

Our case studies have shown that our approach performs well (average precision of
90 %) when detecting differences between the execution logs describing the test and
field workloads. In particular, our approach outperforms (1) our previous approach
(average precision of 63.0 %), (2) the state-of-the-practice (average precision 53.6 %)
and (3) a basic statistical comparison of the execution logs from a test and the field
(average precision of 3.0 %).

One reason for this outperformance may be that our approach breaks the workloads
into workload signatures that represent two complementary components of the work-
load (i.e., the individual and aggregated user behaviour). Our approach then clusters the
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workload signatures and detects outlying clusters. Finally, our approach uses unpaired
two-sample two-tailed t-tests to detect workload signature differences and Cohen’s d to
to filter unimportant differences. However, we used the same statistical tests to compare
the workloads without breaking them down into workload signatures. The precision
of our approach (90 %) is considerably greater than these statistical tests alone (3 %).

5.2 Formulations of the workload signature

Our approach also uses two complimentary formulations of the workload signatures
(i.e., workload signatures representing (1) the individual user behaviour and (2) the
aggregated user behaviour). These two formulations are able to detect different types
of workload differences.

Workload signatures that represent the aggregated user behaviour are able to iden-
tify a set of execution events that occur together in the field, but not in the test. In our
two Hadoop case studies, all of the execution events that were flagged were identified
as signature differences between the workload signatures that represent the aggre-
gated user behaviour. (i.e., the workload signatures representing the individual user
behaviour were not able to detect workload differences between the field and the test).
This is not surprising because the cause of the workload differences (i.e., failure of
the Hadoop HDFS datanode in the field and no line-feeds or carriage-returns in any
of the input files in the field) affect all users (i.e., the attempts). Similarly, in our first
enterprise case study, all of the execution events that were flagged were identified as
signature differences between the workload signatures that represent the aggregated
user behaviour. This is also not surprising because most of these differences relate to
variations in the intensity (i.e., changes in the number of events per second) of events
in the field compared to the relatively steady-state of the test.

Workload signatures that represent the individual user behaviour are able to identify
users whose behaviour is seen in the field, but not in the test. In our second enterprise
case study, all of the execution events that were flagged were identified as signature
differences between the workload signatures that represent the individual user behav-
iour. This is not surprising because these differences relate to an event that cause errors
when over-stressed by an individual user.

5.3 Sensitivity analysis

The clustering phase of our approach relies on three different statistical measures: (1)
a distance measure (to determine the distance between each workload signature), (2) a
linkage criterion (to determine which clusters should be merged during the hierarchical
clustering procedure) and (3) a stopping rule (to determine the number of clusters by
cutting the hierarchical cluster dendrogram). We verify that these measures perform
well when clustering workload signatures. Therefore, we determine the distance mea-
sure, linkage criterion and stopping rule that give our approach the highest precision
using our Hadoop case study data (similar results hold for our other case studies).
This analysis also serves to analyze the sensitivity of our results to changes in these
measures.
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Table 9 Determining the

distance measure Distance measure #Events Precision (%)
Pearson distance 12 91.7
Cosine distance 6 333
Euclidean distance 29 72.4
Jaccard distance 26 76.9
Kullback-Leibler divergence 33 72.7
;Ii‘:]l:;eg;(;riggt;rmining the Distance measure #Events Precision (%)
Average 12 91.7
Single 24 79.2
Ward 14 85.7
Complete 0 NA

5.3.1 Determining the distance measure

The agglomerative hierarchical clustering procedure begins with each performance
signature in its own cluster and proceeds to identify and merge clusters that are “close.”
The “closeness” of two clusters is measured by some distance measure. The best known
distance measure will result in a clustering that is closest to the manually assigned
clusters.

We determine the distance measure by comparing the results obtained by our
approach (i.e., the execution events that we flag) when different distance measures
are used. Table 9 presents how the number of flagged events and the precision (the
percentage of correctly flagged events) is impacted by several common distance mea-
sures (Fulekar 2008; Cha 2007; Frades and Matthiesen 2009). From Table 9, we find
that the Pearson distance produces results with higher precision than any other distance
measure.

5.3.2 Determining the linkage criteria

The hierarchical clustering procedure takes a distance matrix and produces a dendro-
gram (i.e., a hierarchy of clusters). The abstraction from a distance matrix to a dendro-
gram results is some loss of information (i.e., the distance matrix contains the distance
between each pair of workload signatures, whereas the dendrogram presents the
distance between each cluster). The best known linkage criterion will enable the hier-
archical clustering procedure to produce a dendrogram with minimal information loss.

We determine the linkage criterion by comparing the results obtained by our
approach (i.e., the execution events that we flag) when different distance measures are
used. Similar to our analysis of the distance measure, Table 10 presents how the num-
ber of flagged events and the precision is impacted by several common linkage criteria
(Frades and Matthiesen 2009; Tan et al. 2005). From Table 10 we find that the average
linkage criterion produces results with higher precision than any other linkage criteria.
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Table 11 Determining the

stopping rule Distance measure #Events Precision (%)

Calinski—-Harabasz 12 91.7
Duda and Hart 0 NA
C-Index 31 71.0
Gamma 29 69.0
Beale 2 50
Cubic clustering criterion 0 NA
Point-Biserial 13 92.3
G(+) 29 69.0
Davies and Bouldin 27 74.1
Stepsize 0 NA

5.3.3 Determining the stopping rule

To complete the clustering procedure, dendrograms must be cut at some height so
that each workload signature is assigned to only one cluster. Too few clusters will
not allow outliers to emerge (i.e., they will remain nested in larger clusters) while too
many clusters will lead to over-fitting and many false positives.

We determine the stopping rule by comparing the results obtained by our approach
(i.e., the execution events that we flag) when different stopping rules are used. Similar
to our analysis of the distance measure, Table 11 presents how the number of flagged
events and the precision is impacted by several common linkage criteria (Milligan and
Cooper 1985).

From Table 11, we find that the Calinski-Harabasz and Point-Biserial stopping
rules have the greatest precision, 92.3 and 91.7 % respectively. We select the Calinski—
Harabasz stopping rule because it is has a slightly higher precision than the Point—
Biserial stopping rule across our other case studies. The Calinski—-Harabasz stopping
rule is also widely accepted as the best known stopping rule and used as the benchmark
stopping rule.

6 Threats to validity
6.1 Threats to construct validity
6.1.1 The sequencing of events

Our approach does not explicitly consider the sequencing of events (although some
of this information is reflected in the workload signatures that represent the aggregate
user behaviour). Therefore, our approach may not be able to detect differences in the
sequencing of events during the test compared to the field. However, event sequencing
requires reliable information regarding the timing of events within the system and tim-
ing information may not be reliable in large-scale distributed systems (Lamport 1978).
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6.1.2 Statistical tests

Our approach relies on two statistical tests. First, we use a one-sample upper-tailed z-
test for a population proportion to identify outlying clusters. We then use an unpaired
two-sample two-tailed Welch’s unequal variances t-test (along with a Cohen’s d effect
size) to identify workload signature differences. These tests were able to identify
meaningful differences between the performance test and the field in our case studies.
However, these tests have assumptions that should be met for their proper application.
Failure to satisfy these assumptions may affect the precision of our approach and
undermine the statistical robustness of our approach.

The one-sample upper-tailed z-test for a population proportion and the unpaired
two-sample two-tailed Welch’s unequal variances t-test assume that:

1. The sampling is independent and random — this assumption is satisfied because our
approach considers (1) all of the execution logs to generate workload signatures,
(2) all of the clusters to identify outlying clusters and (3) all of the unique execution
events to identify signature differences (i.e., selecting one execution log, cluster
or unique execution event has no influence on the selection of another execution
log, cluster or unique execution event). Further, we assume that the test logs are
independently and randomly sampled from the test (i.e., the test can replicated).
We also assume that the field logs are independently and randomly sampled from
the field (see Sect. 6.2.1).

2. The population is normally distributed—this assumption is satisfied by the central
limit theorem (Elliott 2006).

The Welch’s unequal variances t-test, unlike the Student’s t-test, does not assume that
the sample sizes or the population variances are equal.

In addition to the underlying test assumptions, our use of statistical tests poses a
second threat to validity. These tests may fail to correctly identify the most meaningful
differences between a performance test and the field. For example, our thresholds
(i.e., p < 0.01 and d > 1.4) may be too lenient (raising our recall, but lowering our
precision) or too stringent (raising our precision, but lowering our recall). In the future,
we intend to evaluate the impact of these thresholds on the precision and relative recall
of our approach.

6.1.3 Evaluation

We have evaluated our approach by determining the precision with which our approach
flags execution events that differ between the workload signatures of a performance
test and the field. While performance analysts have verified these results, we do not
have a gold standard data set. Further, complete system knowledge would be required
to exhaustively enumerate every difference between a particular test and the field.
Therefore, we cannot calculate the recall of our approach. However, our approach is
intended to help performance analysts identify differences between a test and the field
by flagging execution events for further analysis (i.e., to provide performance analysts
with a starting point). Therefore, our goal is to maximize precision so that analysts
have confidence in our approach. In our experience working with industry experts,
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performance analysts agree with this view (Hassan and Flora 2007; Jiang 2013; Syer
etal. 2011b, 2013, 2014). Additionally, we were able to identify at least one execution
event that differed between the test and the field in all of our case studies (except our
enterprise case study where no differences were expected). Hence we were able to
evaluate the precision of our approach in our case studies.

6.2 Threats to internal validity
6.2.1 Field-representative field logs

Our approach determines whether a performance test is field-representative by com-
paring execution logs from the test and the field. Therefore, our approach assumes that
the execution logs from the field are field-representative. However, these execution
logs describe the field workload over a specific period of time (e.g., a few hours or
a few days). Field workloads may have short-term workload anomalies that are not
considered field-representative. For example, during a 2013 movie premiere, Twit-
ter’s workload spiked to 143,199 tweets per second compared to an average of 5700
tweets per second (Twitter 2013). Such short-term workload anomalies may lead per-
formance analysts to compare their performance test against a field workload that is
not representative of the expected field workloads.

This threat can be mitigated by performance analysts. Performance analysts should
use execution logs that describe the field workload over a period of normal operation.
Performance analysts may also use execution logs that describe the field workload over
longer periods of time (i.e., where short-term workload anomalies are less influential)
because our approach has been designed to scale. However, our approach can be
used to compare performance test workloads to the field despite short-term workload
anomalies. Such comparisons may help performance analysts understand and replicate
field issues (e.g., our Hadoop case studies and our second enterprise case study).

6.2.2 Execution log quality/coverage

Our approach generates workload signatures by characterizing a user’s behaviour in
terms of feature usage expressed by the execution events. However, it is possible that
there are no execution logs to indicate when certain features are used. Therefore, our
approach is incapable of identifying these features in the event that their usage differs
between a test and the field. However, this is true for all execution log based analysis,
including manual analysis.

This threat may be mitigated by using automated instrumentation tools that would
negate the need for developers to manually insert output statements into the source
code. However, we leave this to future work as automated instrumentation imposes a
heavy overhead on the system and is often unfeasible in the field (Cornelissen et al.
2009; Uh et al. 2006; Bernat and Miller 2011; Laurenzano et al. 2015). Further, Shang
et al. report that execution logs are a rich source of information that are used by
developers to convey important information about a system’s behaviour (Shang et al.
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2011). Hence, automated instrumentation tools may not provide as deep an insight
into the system’s behaviour as execution logs.

6.2.3 Defining users for signature generation

In our experience, large-scale systems are typically driven by human agents. However,
users may be difficult to define in systems that are driven by software agents (e.g., web
services (Greenwood et al. 2007)) or when users are allowed to have multiple IDs.
Defining the users of a particular system is a task for the system experts. However, such
a determination only needs to be made the first time our approach is used, afterwards
this may be definition is reused.

6.2.4 Defining the aggregated users for signature generation

Our approach generates workload signatures that represent the aggregated users are
generated by grouping the execution logs into time intervals (i.e., grouping the execu-
tion logs that occur between two points in time). In our case studies, we used multiple
time intervals (i.e., 1, 3 and 5 min time intervals) to generate these workload signatures.
However, these time intervals may not produce the optimal results (e.g., using a 90's
time interval may have resulted in higher precision). We have mitigated this threat by
using multiple time intervals that are known to generate accurate workload signatures
for the particular systems in our case studies (Syer et al. 2013). However, it is possible
that these time intervals are specific to the systems in our case studies.

6.3 Threats to external validity
6.3.1 Generalizing our results

The studied software systems represent a small subset of the total number of large-scale
software systems. Therefore, it is unclear how our results will generalize to additional
software systems, particularly systems from other domains (e.g., e-commerce). How-
ever, our approach does not assume any particular architectural details. Hence, there is
no barrier to our approach being applied to other systems. Further, we have evaluated
our approach on two different systems: (1) an open-source distributed data process-
ing system and (2) an enterprise telecommunications system that is widely used in
practice.

The clustering phase of our approach relies on three different statistical measures:
(1) a distance measure (to determine the distance between each workload signature),
(2) a linkage criterion (to determine which clusters should be merged during the
hierarchical clustering procedure) and (3) a stopping rule (to determine the number of
clusters by cutting the hierarchical cluster dendrogram). We evaluated several possible
distance measures, linkage criterion and stopping rules by determining which ones
gave our approach the highest precision. While the same set of statistical measures
performed well across our five case studies, these measures may not generalize to other
software systems. However, the main contribution of our work is the overall approach
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to comparing performance tests to the field, rather than determining a universal distance
measure, linkage criteria and stopping rule for clustering workload signatures.

Our approach may not perform well on small data sets (where we cannot generate
many workload signatures) or data sets where one set of execution logs (either the test
or field logs) is much larger than the other. However, the statistical measures that we
have chosen are invariant to scale. Further, we have evaluated our approach on small
data sets. In our first Hadoop WordCount case study, the logs from the performance test
only have 3,862 execution events (millions or billions of events are expected in large
Hadoop deployments (Chen et al. 2012)). We have also evaluated our approach on a
data set where one set of execution logs is much larger, on a relative and/or absolute
basis, than the other. In our second Hadoop WordCount case study, the field logs are
6.6 times larger than the test logs and in our first enterprise case study, the field logs
contain 2.5 million more execution events than the test logs.

7 Related work

This paper presented an automated approach to validate performance tests by compar-
ing execution logs from a test and the field. Performance test design and log analysis
are the most closely related areas of research to our work.

7.1 Performance test design

Much of the work in performance testing has focused on the automatic generation
of tests (Avritzer and Weyuker 1995, 1994; Zhang and Cheung 2002; Draheim et al.
2006; Cai et al. 2007). A survey of performance testing (and performance test design)
may be found in (Jiang 2013). Our approach may be used to validate performance
tests by comparing these tests to the field. We intend to explore how the results of our
approach may be used to automatically update performance tests.

7.2 Log analysis

Log analysis has received much attention in recent years (Shang 2014). In particular,
workload characterization using execution logs is related to our work (Barros et al.
2007; Menascé 2002; Hassan et al. 2008; Nagappan et al. 2009; Kavulya et al. 2010;
Draheim et al. 2006; Cai et al. 2007). However, such work has not been extended to
compare performance test workloads to the field.

Shang et al. flag deviations in execution sequences mined from the execution logs
of a test deployment and a field deployment of a large-scale system (Shang et al.
2013). Their approach reports deviations with a comparable precision to traditional
keyword search approaches (23 % precision), but reduces the number of false positives
by 94 %. Our approach does not rely on mining execution sequences. We also do not
require any information regarding the timing of events within the system, which may
be unreliable in distributed systems (Lamport 1978).

Jiang et al. flag performance issues in specific usage scenarios by comparing the
distribution of response times for the scenario against a baseline derived from previ-
ous tests (Jiang et al. 2009). Their approach reports scenarios that have performance
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problems with few false positives (77 % precision). To overcome the need for a base-
line, Jiang et al. mine execution logs to determine the dominant (expected) behaviour
of the system and flag anomalies from the dominant behaviour (Jiang et al. 2008b).
Their approach is able to flag <0.01 % of the execution log lines for closer analysis
by system experts. Our approach is interested in highlighting the differences between
a test and the field, as opposed to just anomalous behaviour. However, our approach
can identify anomalous behaviour if such behaviour occurs primarily in the field (i.e.,
our third Enterprise case study).

In our previous work, we proposed an approach to identify performance deviations
in thread pools using performance counters (Syer et al. 201 1a, b). This approach is able
to identify performance deviations (e.g., memory leaks) with high precision and recall.
However, this approach did not make use of execution logs. Therefore, we could not
identify the underlying cause of these performance deviations. The approach presented
in this paper is concerned with highlighting the differences between a test and the field,
as opposed to just performance issues.

This work builds on our previous research comparing the behaviour of a system’s
users, in terms of feature usage expressed by the execution events, between a perfor-
mance test and the field (Syer et al. 2014). We have added robust statistical tests to
detect outlying clusters (i.e., we use a one-sample upper-tailed z-test for a population
proportion to detect outlying clusteres). We have also added robust statistical tests to
detect workload signature differences (i.e., we use an unpaired two-sample two-tailed
t-test to detect workload signature differences and Cohen’s d to to filter unimportant
differences).

We have also added a new type of workload signature (i.e., the workload signatures
representing the aggregated user behaviour). This workload signature is partly based
on the time-slice profiles introduced in our previous work (Syer et al. 2013). A time-
slice profile is generated for each time-slice (i.e., the time between two successive
samples of the performance counters) by (1) counting the number of times that each
type of execution event occurred during the time-slice and (2) calculating the change in
resource usage between the start and end of the time-slice. However, unlike a time-slice
profile, a workload signature does not contain any information about the performance
counters. Further, unlike our previous work (Syer et al. 2013), this paper compares the
workload signatures from a performance test to the workload signatures from the field,
rather than comparing the time-slice profiles of a single performance test to diagnose
memory-related issues.

8 Conclusions and future work

This paper presents an automated approach to validate performance tests by comparing
workload signatures from tests and the field using execution logs. Such signatures
characterize user behaviour in terms of feature usage expressed in the execution logs.
Our approach identifies differences between a test and the field. Such differences may
be used by performance analysts to update their tests to more accurately reflect the
field workloads.
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We performed six case studies on two systems: one open-source system and one
enterprise system. Our case studies explored how our approach can be used to identify
feature differences, intensity differences and issue differences between performance
tests and the field. Performance analysts and system experts have confirmed that our
approach provides valuable insights that help to validate their tests and to support the
continuous performance testing process.

Although our approach performed well, we intend to explore how well our approach
performs when comparing additional data sets as well as data sets from other systems.
We also intend to assess whether updating a performance test based on our approach
results in the system’s performance during the test becoming more aligned with the
system’s performance in the field. Finally, we intend to extend our approach with an
interactive browser such that performance analysts can examine the results in greater
detail and modify various aspects of our approach (e.g., how outlying clusters or
signature differences are detected).
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