
Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Change impact graphs: Determining the impact of prior code changes

Daniel M. German a,*, Ahmed E. Hassan b, Gregorio Robles c

a Dept. of Computer Science, University of Victoria, Canada
b School of Computing, Queen’s University, Canada
c Dept. de Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Spain
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Change impact graph
Defect detection
Code changes
Software evolution
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.04.018

* Corresponding author.
E-mail addresses: dmg@uvic.ca (D.M. German),

Hassan), gregorio.robles@urjc.es (G. Robles).

Please cite this article in press as: D.M. German e
doi:10.1016/j.infsof.2009.04.018
a b s t r a c t

The source code of a software system is in constant change. The impact of these changes spreads out
across the software system and may lead to the sudden manifestation of failures in unchanged parts.
To help developers fix such failures, we propose a method that, in a pre-processing stage, analyzes prior
code changes to determine what functions have been modified. Next, given a particular period of time in
the past, the functions changed during that period are propagated throughout the rest of the system using
the dependence graph of the system. This information is visualized using Change Impact Graphs (CIGs).
Through a case study based on the Apache Web Server, we demonstrate the benefit of using CIGs to inves-
tigate several real defects.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

All too often when maintaining a large software system, a bug
report is submitted regarding changes in the behavior of an un-
changed functionality. Investigating this type of bug reports is dif-
ficult and tedious, since the fix is frequently in a different location
than where the failure manifests itself, i.e., the location specified in
the bug report. The failing behavior is usually due to the ripple
effect of another change in a different part of the system that
propagates along various dependencies, such as call and data
dependencies, and affects the unchanged code.

The maintainer in charge of fixing such failures starts her inves-
tigation with the location where the failure manifests itself. She
then examines the dependency graph of the reported failing func-
tion in an ad-hoc manner using her knowledge and her experience
about the software system trying to pin-down the actual location
of the bug causing the failure. A maintainer could use slicing tech-
niques [1,2] to determine all the code locations which may affect
the reported location of a failure and are likely the source of the
bug causing the failure. However, slicing techniques are known
to report large slices [3,4] and are often limited to small to medium
software systems [5]. A single slice may contain as much as 30% of
the source code of an application. Maintainers would spend con-
siderable time investigating such large slices for complex real-life
software systems. Approaches, such as dynamic slicing [6,7], have
been proposed in literature to reduce the size of slices and make
them more accurate for large software systems. However most
ll rights reserved.

ahmed@cs.queensu.ca (A.E.

t al., Change impact graphs: De
techniques require additional effort (e.g., execution of tests for dy-
namic slicing) and expensive analyses.

In this paper, we propose a method which determines the im-
pact of historical code changes on a particular code segment (e.g.,
a function). Given the reported location of a failure, a maintainer
wants to know of any recent code changes which could have im-
pacted the functionality of the failing function—specially if that
function was not changed recently. Our method determines all
the changed areas of the software system which affect the reported
location of a failure. The method then annotates these parts by
marking recent code changes and propagating the impact of these
recent changes. It then creates a change impact graph to determine
what areas might have been affected by certain changes to help
maintainers rapidly pinpoint the source of a bug given the reported
location of a failure. The maintainer needs to only examine the
marked up functions instead of going through all the functions
which would be produced by a slicing technique. Our method
should be seen as a time saving complement to slicing techniques,
as it is a way of filtering slices.

We demonstrate the feasibility and possibilities of our method
through an exploratory case study based on several real bug re-
ports from the Apache Web Server. Through the bug reports, we
demonstrate the benefit of using our method to investigate the re-
ported failures and fix the corresponding bugs by non-experts.

1.1. Organization of the paper

The remainder of the paper is organized as follows: the next
section introduces our model for tracking the impact of historical
code changes. Section 3 presents a methodology to analyze histor-
ical code changes and recover their impact on source code entities
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

mailto:dmg@uvic.ca
mailto:ahmed@cs.queensu.ca
mailto:gregorio.robles@urjc.es
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
(i.e., functions). Section 4 presents an exploratory case study in
which we use this methodology to pinpoint the changes that cre-
ated four real bugs from the Apache Web Server. Section 6 dis-
cusses the effectiveness, limitations, and possible improvements
for our method. Section 7 concludes the paper.
Fig. 1. Evolution of the source code of an example system after four different
changes ðC0; . . . C3Þ. The areas affected by each change are shown in bold.

A

Fig. 2. Depiction of the change history for the functions of the example system. The
rows correspond to the functions and the columns to the changes. A;M;D are,
respectively, Added, Modified and Deleted. exit is not included because it is a C
library function, external to the system being maintained.

a

b c d

e

Fig. 3. Dependence graph of að Þ immediately after change C3.
2. A model to track the impact of historical code changes

Historical changes to a function can be modeled as a sequence,
where each element corresponds to the source code of the func-
tion after each particular change. Formally, for a function f we de-
fine its change history sequence as Hf ¼ hf0; . . . ; fmi, where fi is the
ith instance of the function. Each instance of a function, can be
annotated with metadata about the change such as its data, its
purpose and the name of the developer who performed the
change.

The dependence graph of a function f , G(f), is modeled as a di-
rected graph. Its nodes are the functions that are reachable from f
and its edges are the direct calls between any of these functions. If
a function g is called from function f , the dependence graph of f
contains the dependence graph of g. The dependence graph can
be considered a simplified interprocedural dependence graph that
only tracks function invocation and does not track in or out param-
eters nor variables. The dependence graph of f includes any func-
tion that could be called by f . When a developer peruses the
source code of a function f , she is not usually aware of all the con-
tents (or the size) of this dependence graph. She is only aware of
the edges that start in f (the function calls inside f).

The dependence graph of a function f can be created at any time
t (during the life of such a function). The graph is built recursively
as described above, using the latest instance of every one of all the
functions in the graph such that their date of modification is less or
equal to t. In other words, if we want to build the dependency
graph of f on December 31, 2007, then we will use the latest in-
stance of f with a date less or equal to December 31, 2007. If it calls
a function g then we will use the latest instance of g with a date
less or equal to December 31, 2007. This process continues until
the dependence graph is completed.

The dependence graph of a software system is the union of the
dependence graphs of all its functions.

We illustrate our model with a simple example. Assume a C
source file that has had four changes recorded as depicted in
Fig. 1. The change history for its functions is shown in Fig. 2. The
change history tracks when the functions are added, deleted or
modified. Fig. 3 shows the dependence graph of function að Þ imme-
diately after change C3.

2.1. Propagation of prior changes

A typical use-case involves a developer who is perusing the
source code of function f at time t, and who is interested to know
any changes that might have had an impact on the behavior of f
during a particular time window ½tb; te� in the past. We call this
time window the period of interest. The period of interest does
not need to include changes up to time t. For example, the graph
can be created in December using a period of interest that spans
the previous April to May.

To determine the impact of prior changes on a particular func-
tion f , the dependence graph of f is computed at time t and its
nodes are marked according to any changes during the period of
interest ½tb; te� as follows:

1. Mark all nodes in G(f) as unaffected.
2. For each node g in G(f): if it has been added or changed during
½tb; te�, then annotate it as changed.
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
3. Repeat until the dependence graph, being built, stops changing:
� for any node that is still unaffected, mark it as affected if at

least one of its successors is either changed or affected.

CIGs can have cycles (the result of recursive calls). The algo-
rithm is guaranteed to terminate because it processes, for every
pass, each node once; and for each node it would need to check
at most each of its successors. The number of passes will also be
finite (at most equal to the number of nodes in the graph).
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 3

ARTICLE IN PRESS
Each node in the resulting dependence graph, which we call a
Change Impact Graph or CIG, is one of three types:

1. Unaffected. The function nor any of the functions it can poten-
tially call were affected by the changes.

2. Changed. The source code of the function has been changed.
3. Affected. The source code of the function has not changed, but at

least one of the functions it can potentially call has changed.

Fig. 4 shows the CIG for the example of Fig. 1. The GIC has been
computed using the callgraph after change C3, and its period of
interest includes the changes C1 and C2. The change to eð Þ is prop-
agated to bð Þ, and then to að Þ (which is also affected by the change
to dð Þ). The graphs shows that the functionality of both að Þ and bð Þ
might have been affected by these changes, but not the functional-
ity of cð Þ.

2.2. Pruning CIGs

A typical problem of dependence graphs (and as consequence
CIGs) is that they may contain too many nodes. We propose the fol-
lowing methods to prune them. Our goal is to remove nodes that
are not of interest.

2.2.1. Remove unaffected nodes
Once the CIG has been computed, we remove nodes that are not

affected. By reducing the number of nodes the rendering of the CIG
is typically simplified. Fig. 5 shows our sample CIG after it has been
pruned in this manner.

2.2.2. Remove nodes outside the area of interest
Frequently a developer is only interested in a specific area (e.g.,

a particular subsystem) of the codebase, and would like to know
only when this area has been changed, and affected by changes
outside it (this provides awareness that some change outside this
area might have affected the functionality in question).

In other scenario the developer is certain that the defect is lo-
cated in a specific area. In such case she is not interested in know-
a

b c d

e

Fig. 4. Change impact graph of að Þ computed using the source code immediately
after C3 but only showing the propagation of the changes C1 and C2 (the period of
interest includes only these two changes). Red depicts changed functions, light blue
corresponds to affected functions, and white to unaffected (changed will appear
darker than affected in black-and-white versions of these images). (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

a

b d

e

Fig. 5. The CIG of Fig. 4 with only affected and changed nodes.

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
ing any changes outside it, nor any functions that might be affected
by them.

To address these two issues we propose two variants to the
pruning of nodes outside an area of interest:

Prune-Before.The dependence graph is pruned before the
impact of the changes is computed. This method can be sum-
marized as follows: We start by computing the dependence
graph then removing the nodes outside the area of interest.
We compute the CIG using the resulting dependence graph.
The resulting CIG does not show the effect of changes to areas
outside the area of interest. A Prune-Before CIG is exemplified
in Fig. 6. In this case functions að Þ; bð Þ; cð Þ, and dð Þ are the area
of interest; note how the impact of the change to eð Þ is no
longer depicted in the CIG.
Prune-After.The CIG is pruned to remove nodes outside the
area of interest, yet the impact of such nodes will still be
depicted in the GIC. The method to prune the CIG is simple:
We start by computing the CIG, then we remove the nodes out-
side the area of interest. A Pruned-After CIG is exemplified in
Fig. 5. Like Fig. 7 að Þ; bðÞ; cðÞ and dð Þ are the area of interest.
In this case the change to e is propagated to its caller bð Þ before
eðÞ is removed from the graph. This CIG shows that bð Þ has been
affected by a change (even if we do not know what prompted
such change).

Both prune-before and prune-after CIGs can have their unaf-
fected nodes removed, resulting in a CIG that shows only changed
and affected nodes within the area of interest.

2.3. Annotating CIGs

The nodes of the CIGs can be annotated using visual attributes,
such as size, colour, shape, and textual information. These visual
attributes are used to highlight specific properties of the changed
and affected nodes. For example, the brightness of the node can
show how old the change is with paler nodes representing newer
nodes, and brighter nodes representing more recent ones. The size
of the node can correspond to the number of times it has been
changed, or different colours can be used to depict changes by dif-
ferent developers.
a

b c d

Fig. 6. The result of applying ‘‘prune-before” to the CIG of Fig. 4. In this example we
assume that að Þ; bð Þ; cð Þ and dð Þ are the area of interest; e is removed before the CIG
is computed. The resulting CIG does not depict the impact of the change to e.

a

b c d

Fig. 7. The result of applying ‘‘prune-after” to the CIG of Fig. 4. Like Fig. 6, að Þ, bð Þ,
cð Þ and dð Þ are the area of interest. Nodes outside the region of interest (in this case
e) are removed after the CIG has been computed. The effect of the change to eð Þ is
still shown in bð Þ–which appears as affected.

termining the impact of prior code changes, Inform. Softw. Technol. (2009),

Fig. 8. Impact-annotated source code for our example system after change C3 for a
period of interest that includes changes C1 and C2. Dark gray statements were
changed during this period, and light gray ones were affected by these changes. It
can be seen that a was not changed during this period, but its calls to b and d were
affected because of the changes to d and e; meanwhile c was not affected by
changes during this period.

1 http://ctags.sourceforge.net.

4 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
2.4. Quantifying the impact of changes

We define two metrics to quantify the effect of the changes dur-
ing a period of interest: the ratio of changed functions and the ratio
of affected functions in the CIG of a function.

� The ratio of affected functions is the proportion of changed and
affected to the total nodes in a CIG (of a function or a system).
It provides an overview of the area impacted by the changes. If
a set of changes have a large ratio of affected functions, then
such changes have the potential to affect the functionality of a
large proportion of the functions in the software system. Using
our running example shown in Fig. 4, the ratio of affected func-
tions is 4/5.

� The ratio of changed functions is the proportion of changed nodes
to the total nodes in a dependence graph. While the ratio of
affected functions gives the impact that changes have in the
software, the ratio of changed functions provides the number
of functions that may be the origin of the bug. This ratio gives
an overview of the proportion of changed functions. Using our
running example shown in Fig. 4, the ratio of changed functions
is 2/5.

In practice, the higher the ratio of affected functions is, the more
areas a failure-inducing change could affect. By computing the ra-
tio of affected functions of a potential change a developer could as-
sess the criticality of a change.

When a developer computes a CIG, she will want to minimize
the ratio of affected and changed functions. She will usually work
with the current version of the source code, and specify a period of
interest in the past. She will want to narrow potential areas of the
code that would have been affected during such changes. The long-
er the historical period of interest, the higher the ratio of changed
functions, making this method less effective. The major challenge
when using a CIG is finding a suitable period of interest such that
the buggy change which introduced the failure (or any other inter-
esting functionality) is within it, while minimizing the ratio of
nodes (i.e., nodes) in the CIG.

2.5. Annotating source code

Dependence graphs of real systems are usually complex and dif-
ficult to read or visualize. We propose instead to annotate the
source code of any function with the help of CIGs. In its most sim-
ple conception, each line of code will be tagged if it contains a call
to a function that is marked affected or changed. We refer to this
source code view as the impact-annotated source code). Fig. 8 shows
the impact-annotated source code of our running example after
change C3, with the period of interest comprising of changes C1

and C2. Using its corresponding CIG (as depicted in Fig. 4), the calls
from að Þ to bð Þ and dð Þ, and from bð Þ to eð Þ, have been coloured as
affected; two statements are coloured as changed. The colour
scheme is the same as the one used in the CIG: affected statements
are shown in light gray (Gray 71), and changed ones in dark gray
(Gray 41). The colouring of the source code gives awareness to
the developer of what was affected during the period of interest.

Let us assume that a failure was reported in að Þ after C2, and
that this failure did not exist before C1. In other words, the failure
is presumed to have been caused by a bug introduced during
changes C1 or C2 (or both). The developer will probably start by
inspecting function að Þ. The call cð Þ is not likely to be the cause
of the failure (it is not changed nor affected) and could be ignored
(or at least presumed to have a lower probability of being the loca-
tion of the bug). On the other hand, calls bð Þ and dð Þ are marked as
affected, so it is worth exploring both function bð Þ and dð Þ to see if
the change to one of them (or its successors) has introduced the
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
bug. The goal of impact-annotated source code is to guide the
attention of the developer towards the functions that are more
likely to be responsible for a failure.

3. Recovering the impact of function evolution from a version
control system

In this section we present the implementation of the model de-
scribed in Section 2. We assume that the source code history is
stored in a version control system (such as subversion or CVS).
Although we discuss our implementation within the scope of C,
it is applicable to other (procedural) programming languages.

3.1. Recovering the change histories of functions

We use the information recorded in the version control system
to compute the history of each function. Since version control sys-
tems track the evolution of a software system at the line level, we
must perform additional analysis and extraction to recover the his-
tory of code changes at the function and dependency levels. This
process is illustrated in Fig. 9.

From the version control system, we process the code after each
commit. We refer to a commit as a modification record–MR. For
each MR we use the tokenizer of ccfinder [8] to compute and
store a callgraph of the system. We then determine the functions
affected by this MR as follows:

Each MR consists of changes to zero or more source code files,
and results in a new instance (or version) for each of such files.
For each instance of each file in the MR we perform the following
operations;

Remove whitespace, comments and reformat.
Sometimes a change affects only whitespace or comments, and
occasionally it might affect a large number of functions. For
example, PostgreSQL reformats its source code on a regular
basis [9]. We want to skip these edits because these operations
do not change the functionality of the code for most program-
ming languages except for some programming languages such
as Python which are indentation dependent. This processing
ensures that regular reformatting of the source code would
not result in many false positives with the reformatting opera-
tion appearing as changed functionality for those functions that
have been reformatted. The same holds for comments so we
ignore changes to comments as well.
Identify each function in the file.
We use exuberant ctags1 to identify the location where the defini-
tion of a function starts. The end of a function is assumed to be the
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

http://ctags.sourceforge.net

MR changes
tracked at function
and
dependency level

Evolution
History DB

Generate CIG
for function of
interest

Annotate CIGPrune CIG

Pruned and
 Annotated

CIG of function
of Interest

Specifies
function and period
of interest

Specifies
area of interest

Provides
Annotation rules

StudiesReadsBug Report

Fig. 10. Creating and using a CIG to fix a bug report.

Changes tracked
at line level

Map line changes for
each MR to function
level changes

Extract Dependence
Graph for system
at each MR

Version
Control

Recover all
Modification
Records (MRs)

MR1

MR2

MR3

Evolution
History DB

Fig. 9. Process used to create the Evolution History Database.

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 5

ARTICLE IN PRESS
location of the last closing brace before the next definition in the
file. When processing C source code we do not consider macros as
a definition, as macros can appear in the middle of a C function.
Determine the type of operation on the function.
We compare each function against its previous instance. Each
instance of a function is tagged as either: unchanged (it wasn’t
altered), modified (it has changed), added (it did not exist in
the previous instance of the file).
Determine deleted functions.
We tag any function that appears in the previous instance of a
file, and not in the new instance of the file, as deleted during this
MR.
We identify each function instance uniquely by its name, the

filename where it is found, and the MR id (according to the version
control system). This approach permits us to deal with multiply-
defined functions such as C static functions.

One major challenge is the detection of functions that have
been moved and/or refactored. It is interesting and valuable to
have a precise picture of the history of a function, but this analysis
is not required for our method. Our main goal is to provide aware-
ness of changes, i.e., to know that the dependence graph of a func-
tion has changed, not necessarily how it has changed. Our method
could be extended using one of several methods to recover renam-
ing and refactoring, such as the ones described in [10–12]. We dis-
cuss this issue further in Section 6.4.

We store in a historical database, the history of each function
and metadata about each MR such as the list of changed files and
the name of the developer who performed the changes.

In summary, at this point we have retrieved and stored the
change history of each function ever present in the history of the
system: when it is added, when it is modified, and when it is de-
leted. Information on the developers who have performed these ac-
tions can be easily obtained and be stored as well, although we do
not consider it in our method. We have also computed a callgraph of
the system after each commit (MR) to the version control system.

3.2. Creating the change impact graph (CIG)

The process used to create a CIG is described in Fig. 10. In our
method, when a developer is looking for a source of a defect she
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
knows (for instance, from a bug report) the function where it
appears, knows when the defect appeared (time b), and has some
idea of when the defect might have been introduced (time a). The
developer creates the CIG by providing three parameters: the
function of interest f ð Þ (the root of the CIG), the time t when
the dependence should be computed (usually the present), and
a period of interest ½a; b� (the CIG will show the impact of changes
after time a but before time b). The method to create the CIG is as
follows:

1. Retrieve the dependence graph of the system at time t, and from
it compute the dependence graph of f ð Þ.

2. If necessary, prune-before the dependence graph to remove
nodes outside an area of interest (e.g. outside a particular set
of files).

3. Mark and propagate changes to functions in the dependence
graph of f ð Þ during period ½a; b� using the algorithms described
in Section 2. The result is the desired CIG.

4. If necessary, prune-after the CIG to remove nodes outside an
area of interest.

5. If necessary, annotate the CIG. This will facilitate the explora-
tion of the CIG by marking nodes according to the developer
who made the changes.

We envision these four steps as iterative as a developer exper-
iments with different periods of interest, and with different prun-
ing and annotation methods until she finds the source of the
defect.
3.3. A method to create CIGs to fix defects

The creation of a CIG requires four parameters: the root of the
CIG, the date at which it is created, the period of interest and,
optionally, a pruning area. The effectiveness of CIGs will depend
on the good selection of them. The following are guidelines to for
their selection:

1. Find root of CGI. This corresponds to the function that is exhib-
iting the error.
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

0 20 40 60 80 100

0
20

40
60

80
10

0

Number of days elapsed

N
um

be
r c

ha
ng

ed
 fu

nc
tio

ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#1352

Fig. 11. Change Impact Overview of cgi_handler() before November 3, 1997.
The number of changed functions that impact cgi_handler() grows steadily but
the pruned CIG shows a very slow growth.

6 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
2. Determine date at which the CIG is created. This is usually the
present. We believe developers are mostly interested in
inspecting current code (and its dependence graph).

3. Determine a pruning area. Determine, if possible, a likely area
where the bug might exist. Knowing such an area relies on
many factors, such as the description of the defect, and the
experience and intuition of the developer.

4. Determine a period of interest. Sometimes a defect report pro-
vides information that allows us to narrow its appearance to
the days in which the defect was introduced. This narrowing
down process depends largely on the experience and knowl-
edge of the developer. A tool that can be used to assist in the
narrowing down process is the Change Impact Overview. This
is a graph that plots the accumulated number of changed func-
tions per day, given a starting date, as shown in Fig. 11. In other
words, by choosing one date (usually the upper end of the per-
iod of interest) one can observe the days in which functions
are—and are not—changed.

In practice identifying the location of a defect is an iterative pro-
cess. A developer will choose a starting point for the creation of the
first CGI, and change parameters as she narrows down the source
of the defect.

4. Case study

We performed a case study to investigate the possibilities and
limitations of our method. For our study, we used the Apache
Table 1
Latest four problem reports in Apache that were solved with a commit that included the
category and main description come from Apache’s GNATs defect system.

Problem
report

Datereported Category Main

#1352 November 8 1997 mod_cgi A codi
log fil

#3130 October 3 1998 mod_autoindex Direct
#5389 October 29 1999 mod_rewrite mod_r

The bu
if you

#10090, #10185 March 14 2002 mod_rewrite rnd m

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
Web Server version 1.3. We selected Apache for several reasons:
it is a large, complex and well-known software system with a rich
history and a large number of developers. In addition, its defect
tracking database and version control system are publicly
available.

Although version 1.3 is currently in its maintenance phase, it
is still widely in use. It has approximately 86 kSLOCs and is
mostly written in C. It has 8021 commits (with 29,999 file revi-
sions). More information about Apache, its community and its
way of development can be found in [13]. We made a copy of
its subversion repository to avoid overloading Apache’s
servers.

To demonstrate the usefulness of our method, we needed to
identify historical code changes that resulted in the manifesta-
tion of a failure in a different area of the software system.
We searched the source control system for description of
changes (the commit logs) which included the words ‘‘intro-
duced”, ‘‘bug” and ‘‘PR” followed by a number. Changes that
fix a bug in Apache usually include a reference to the bug in
the defect system using the following syntax: PR #hnumberi.
We located seven such changes. We selected the four most re-
cent changes. These changes fixed the following bug reports:
PRs #1352, #3130, #5389, #10090 and #10185. These reports
are depicted in Table 1.

PR #1352. This defect was reported in the cgi module on
November 3, 1997. The person reporting the bug claimed that re-
cent changes in the log system had introduced it. We can summa-
rize the four main steps of our method as follows:

1. Find root of CGI. We use cgi_handler(), the entry point of the
cgi module, where the bug is being reported.

2. Determine date at which the CIG is created. We use November 3,
1997, the day in which the defect was reported.

3. Determine a pruning area. If we assume that this change is
expected to be in the source code of the module—the file
mod_cgi.c—we can prune the CIG to include only functions
in this file.

4. Determine a period of interest. This defect indicated ‘‘that recent
error log changes introduced a bug”. The Change Impact Over-
view of cgi_handler() is presented in Fig. 11. The number
of changed functions in the complete CIG grows steadily over
time. When the graph is pruned the growth is significantly
slower. Looking at the Change Impact Overview, we note that
the most recent change that affects cgi_handler() occurred
on day 27 (2 functions), then the impact of the change grows
again in day 97 (to 3 functions). If we assume that this change
is expected to be inside mod_cgi.c then the defect could not
have been introduced during the last 27 days. Hence, our start-
ing period of interest will be changes made during the last 30
days.
following keywords: log, introduced and PR followed by a number. The date reported,

description

ng issue in the mod_cgi.c module prevents the proper display in the error
e of the filename causing a specific error
ories have size shown as ‘‘0k” instead of ‘‘–” in Fancy Heading
ewrite is *SEVERELY* broken by a one-character bug introduced in version 1.148.
g causes the next-to-last backref substitution to never happen. . .

only have one backref, the $1 disappears without a trace!
ap type balancing broken; ReWriteMap MapType’rnd’ not working

termining the impact of prior code changes, Inform. Softw. Technol. (2009),

is_scriptaliased

log_scripterrorcgi_handler

log_script

Fig. 13. CIG of cgi_handler pruned-after, showing only changes inside mod_c-
gi.c on November 3, 1997, representing the propagated changes during the last 30
days.

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 7

ARTICLE IN PRESS
Fig. 12 shows the CIG of cgi_handler(), computed on
November 3, 1997, and including the changes during the last
30 days. As it can be seen, there have been a significant number
of changes on the entire CIG of cgi_handler() during this per-
iod. Fig. 13 shows the corresponding pruned-after CIG. Only 2
nodes were changed. Examining the two nodes, we find that
one of them was the source of the defect (the function
log_scripterror()).

PR #3130. The PR #3130 documents a failure which affected
the mod_autoindex module. We perform the following steps as
described in our method:

1. Find root of CGI. For this module, its main entry point function is
handle_autoindex(), therefore we use this function as the
root of the CIG.

2. Determine date at which the CIG is created. We compute the CIG
for the date the defect was reported, October 3.

3. Determine a pruning area. The defect (showing size ‘‘0k” instead
‘‘-” for directories when listing the contents of a directory) seems
to be specific to this Apache module; therefore, a good area to
concentrate on is the source code of the module—the file
mod_autoindex.c.
pstrcat

file_walk regexec

fnmatch

no2slash

merge_per_dir_configs

getword_conf

substring_conf

bgets read_with_errors

check_user_id

make_dirstr_prefix

table_add

push_array

get_mime_headers

table_merge

getline

add_common_vars

http2env

table_elts

get_remote_logname

table_set

strcasecmp

sub_canonical_filename

os_canonical_filename

pstrndup

hard_timeout

find_command_in_modules

find_command

count_dirs

make_full_path

table_do

table_unset

set_keepalive

find_token

table_get

find_last_token

create_request_config

terminate_header bgetopt

bputs

some_auth_required

requires

soft_timeout

parse_uri

getword

send_http_header

bsetopt

default_type

basic_http_header

overlay_tables

use_range_x

kill_timeout

pfopen note_cleanups_for_file

ap_slack

rfc1413

find_types

handle_command set_module_config

invoke_cmd

location_walk

setup_client_block

translate_name

spawn_child_err_core

note_subprocess

index_of_response

bcreate

satisfies

can_exec

parse_htaccess

srm_command_loop

pcfg_openfile

create_per_dir_config

get_chunk_size

run_fixups

allow_options

bvputs

pcalloc

escape_html

is_scriptaliased

make_allow

process_request_internal

check_access

check_auth

getparents

finalize_request_protocol

die

unescape_url

send_http_trace

directory_walk

decl_die

invoke_handler

header_parse

scan_script_header_err_buff make_table

next_token

send_error_response

response_code_string

clear_table

log_scripterror server_root_relative

send_header_field

strncasecmp

is_url

rename_original_env

x2c

should_client_block

os_is_path_absolute

blookc

internal_redirect

cgi_handler

log_script

get_client_block

internal_redirect_handler

spawn_child_err_buff

send_fb

reset_timeout

note_cleanups_for_fd

check_symlinks

bread

internal_internal_redirect
run_post_read_request

bpushfd

Fig. 12. CIG of cgi_handler on November 3, 1997, show

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
4. Determine a period of interest. The submitter of the report
claimed that the defect was not present in version 1.2.6 but
occurred in every one of the 1.3.x versions. Version 1.3.0 was
released on June 1, 1998; this date will become the upper limit
of the period of interest (the defect is known to be present at
this date). The lower limit (when the bug is introduced) is more
difficult to determine. Version 1.2.6 was developed in parallel to
1.3.x (1.2 was in maintenance mode while 1.3.x was being
started). This meant that we could not use the date of the
release of 1.2.6 as a starting date for period of interest. This
defect could have been inserted early in the development of
versions 1.3.x The Change Impact Overview of handle_auto-
index() is shown in Fig. 14. There is a remarkable growth in
buff_write sendwithtimeout

palloc

get_module_config

pstrdup

acquire_mutex map_rv

signal

strerror

get_remote_host

ap_snprintf

document_root

note_cleanups_for_socket

cfg_closefile

aplog_error

unblock_alarms

timeout

destroy_pool

child_exit_modules

set_callback_and_alarm

bsetflag

end_chunk

start_chunk

rvputs

bwrite

ap_ecvt
ap_cvt

ap_vsnprintf

syslog

get_time

new_block

release_mutex

debug_verify_filled

block_alarms

gm_timestr_822

clear_pool

free_proc_chain

run_cleanups

free_blocks

get_rfc1413

psocket

pclosesocket

malloc_block

check_alarm

pfclose
kill_cleanup

large_write

bcwrite

write_it_all

write_with_errors
saferead

strx_printv
ap_fcvt

ind

doerror

force_read
log_transaction

str_tolower

do_double_reverse

update_child_status

format_converter

conv_10

conv_fp

ap_gcvt

conv_p2

bclose

waitpid

writev_it_all

hextoint

bflush

put_scoreboard_info force_write

pclosef

sync_scoreboard_image

cfg_getline getstr

get_path_info

check_safe_file

chk_on_blk_list

ing the propagated changes during the last 30 days.

termining the impact of prior code changes, Inform. Softw. Technol. (2009),

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Number of days elapsed

N
um

be
r c

ha
ng

ed
 fu

nc
tio

ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#3130

Fig. 14. Change Impact Overview of handle_autoindex() showing the impact of
changes older than June 1, 1998. As it can be observed, day 50 (April 11, 1998) had a
sharp increase in changed functions (75 functions).

8 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
the number of changed functions on day 50 (an increase of 75
functions). This was surprising. We explored the version logs
to find out why so many functions had been changed and found
the reason: on April 11, 1998 there was a major renaming of
functions and variables in Apache.2 Including this day will result
in a CIG that has most of its nodes marked as changed.

Fig. 15 shows the CIG of handle_autoindex() when the
changed of the last 100 days are considered; 89% of its nodes are
changed. We illustrate the use of annotations with this graph in
Fig. 16. In this CIG, paler nodes depict older changes (this informa-
tion was extracted automatically from the history of changes dur-
ing the creation of the CIG). As it can be seen, most changes show a
pale red (most of them changed during the rename), but many oth-
ers are bright red (modified after the rename).

Hence, to avoid the effect of the rename, we recomputed the
CIG with a period of interest between April 12 and June 1, 1998
(49 days). The corresponding CIG is shown in Fig. 17. There is still
a significant number of changed functions during this period. How-
ever, we pruned-before the graph to include only the impact of
functions inside the source code of this module (file mod_autoin-
dex.c) As it can be seen in Fig. 14, only two functions have been
changed during this period. The CIG for this period is show in
Fig. 18. It shows the two functions inside mod_autoindex.c that
were changed during the period of interest (April 12 to Jun 1,
1998). The change to one of them (make_autoindex_entry)
introduced this defect. We created and pruned four CIGs during
the investigation of this bug. The function that is the source of
the defect is marked in all four CIGs.

PR #5389. As before, we start by estimating the basic parame-
ters for the CIG.

1. Find root of CGI. The module mod_rewrite contains three func-
tions that are entry points to the module. Of them hook_uri2-
file() appears to the only one relevant as the one where the
defect appears. We will use this function as the root of the CIG.

2. Determine date at which the CIG is created. We compute the CIG
for the date the defect was reported, October 29, 1999.
2 We do not currently deal with function renames; we consider the function with
the old name deleted and one added with the new name, and the function that was
modified—usually only a token replace to reflect the change in name of the called
function—changed; this is an area that needs further work.

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
3. Determine a pruning area. This defect appears to affect only the
mod_rewrite module. We will prune the graph to include only
functions in the file that contains it: mod_rewrite.c.

4. Determine a period of interest. The defect report indicated that
the bug was introduced in revision 1.149, which was performed
in October 27, 1999. We will consider only changes until Octo-
ber 27, 1999 (inclusive). The Change Impact Overview of this
CIG, depicted in Fig. 19, shows that on day 7 there were some
changes that affected a large number of functions (an increase
in 13 changed functions that day). On the other hand, during
the first 5 days only functions within the module’s source code
have been changed (i.e., the number of changed functions in the
pruned area is the same as in the complete graph). For the sake
of illustrating CIGs we will consider changes during the period
of October 22 to October 27, 1999 (four functions changed in
mod_rewrite.c plus one changed somewhere else – Fig. 19.

Fig. 20 shows the CIG of hook_uri2file(), computed on
October 29, 1999, and including changes from October 22 to Octo-
ber 27, 1999. As expected, there are only five functions changed in
the system that affect hook_uri2file (which had changed as
well). One of the these functions, ap_write—the red node located
at the right of the graph—propagates through a large proportion of
the graph. Fig. 21 shows the pruned-after CIG of handle_autoin-
dex showing only functions inside its Apache module (mod_auto-
index.c); this CIG shows the impact of the changes to ap_write,
even when its node is no longer present. This defect was found to
be inside one of the functions marked as changed: the function
expand_backref_inbuffer had large sections rewritten on
October 27.

PRs #10090 and #10185. These two bug reports documented a
failure that affected the rewrite module. Again, we follow the steps
of our method to create the CIGs:

1. Find root of CGI. Because the defect appears in the same module
as #5389, and using the same rational, we use the function
hook_uri2file() as the root of the CIG.

2. Determine date at which the CIG is created. The defects were
reported March 14, 2002. This is the date at which the CIG is
created.

3. Determine a pruning area. Like in PR #5389, we prune functions
outside the source code of the module, the file mod_rewrite.c.

4. The submitter of one of these reports claimed that a change
between versions 1.3.22 (October 12, 2001) and 1.3.23 (released
January 24, 2002) had broken the ‘‘rand map type”. These two
dates delimit the period of interest. But inspecting the Change
Impact Overview, depicted in Fig. 22, one can observe that after
day 4 (corresponding to January 20, 2002) the number of chan-
ged functions in the CIG remains constant. This means that any
pruned CIG created with a period of interest that starts any day
between October 12 and January 20, and ends in January 24,
will contain the same changed functions.

Fig. 23 shows the CIG of hook_uri2file(), computed for the
period January 20 to 24, 2002. Only 10 functions are modified dur-
ing this period, but most of them are outside the module’s source
code. Figs. 24 and 25 show the CIGs pruned-after and pruned-be-
fore, respectively, to exclude functions outside the module. The
main difference between both is that the pruned-after CIG shows
the impact of changes outside the pruning area (it shows functions
affected by changes to changed functions not in the module); the
pruned-before, on the other hand, only shows functions affected
by changed functions inside the module. Finally, Fig. 26 shows
the pruned-before CIG with unaffected nodes removed. Removing
unaffected nodes makes the CIG easier to read, and simplifies ren-
dering. Only two functions have been changed, one of them
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

ap_destroy_sub_req

ap_table_mergen

ap_find_pool

table_push

strcasecmp

ap_pstrcat

ap_pool_is_ancestor

ap_register_cleanup

ap_palloc

waitpid

signal

ap_bsetopt

ap_log_error

write_it_all

buff_write

doerror

ap_getword

ap_pstrndup

ap_pstrdup

ebcdic2ascii

conv_p2

ap_push_array
ap_pcalloc

find_item ap_strcmp_match

ap_strcasecmp_match

ap_block_alarms

ap_unblock_alarms

ap_set_callback_and_alarm

ap_pclosef
ap_kill_cleanup

ap_gm_timestr_822
ap_psprintf

start_chunk
bflush_core

readdir

ap_basic_http_header ap_get_server_version

ap_bvputs

ap_index_of_response

ap_bsetflag

ap_table_unset

ap_send_header_field

ap_table_get

ap_default_type

ap_get_module_config

ap_bputs

ap_bwrite

ap_rprintf ap_vbprintf

use_range_x

ap_table_do

ap_log_transaction

closedir

index_directory

ap_psignature

ap_rvputs

ap_popendir

ap_rputs

insert_readme

emit_preamble

ap_send_http_header

ap_kill_timeout

output_directories

ap_hard_timeout

ap_pclosedir

make_autoindex_entry

ap_escape_html

emit_link

handle_autoindex

ap_allow_options

ap_snprintf

ap_vformatter

debug_verify_filled

ap_clear_pool

ap_destroy_pool

free_proc_chain

run_cleanups

free_blocks

ap_release_mutex

ap_acquire_mutex

ap_send_fd

ap_get_server_port

ap_get_server_name

ap_pvsprintf

ap_write

timeout

clean_child_exit

ap_bclose

sendwithtimeout ap_check_alarm

opendir

ap_set_keepalive

ap_find_token

ap_table_setn

ap_find_last_token

large_write

end_chunk

writev_it_all

ap_note_cleanups_for_file

ap_gcvt
ap_ecvt

strncasecmp

terminate_header ap_bgetopt

ap_make_sub_pool

new_block

find_default_icon

ap_overlay_tables
ap_array_cat

copy_array_hdr_core

conv_sockaddr_in
conv_10

conv_in_addr

malloc_block

find_title

ap_pfopen

ap_pfclose

ap_ind

ap_slack

ignore_entry

ap_child_exit_modules

strdup

ap_sub_req_lookup_file

ap_make_full_path

ap_os_escape_path c2x

ap_table_addn

chk_on_blk_list

ap_fcvt
ap_cvt

ap_rputc

ap_send_size

ap_getparents

terminate_description

conv_fp

ap_pclosesocket

ap_bflush

ap_pcloseh

bcwrite

write_with_errors

map_rv

Fig. 15. CIG of handle_autoindex (depicted as a circle) on October 3, 1998 showing the propagated changes for the last 100 days. Almost all nodes have been changed!
Looking at the logs the answer is clear: a commit on April 11, 1998 reads ‘‘THE BIG SYMBOL RENAMING FOR APACHE 1.3”. This illustrates the main limitation of CIGs: if too
many functions change most of the graph is annotated.

ap_destroy_sub_req

ap_table_mergen

ap_find_pool

table_push

strcasecmp

ap_pstrcat

ap_pool_is_ancestor

ap_register_cleanup

ap_palloc

waitpid

signal

ap_bsetopt

ap_log_error

write_it_all

buff_write

doerror

ap_getword

ap_pstrndup

ap_pstrdup

ebcdic2ascii

conv_p2

ap_push_array
ap_pcalloc

find_item ap_strcmp_match

ap_strcasecmp_match

ap_block_alarms

ap_unblock_alarms

ap_set_callback_and_alarm

ap_pclosef
ap_kill_cleanup

ap_gm_timestr_822
ap_psprintf

start_chunk
bflush_core

readdir

ap_basic_http_header ap_get_server_version

ap_bvputs

ap_index_of_response

ap_bsetflag

ap_table_unset

ap_send_header_field

ap_table_get

ap_default_type

ap_get_module_config

ap_bputs

ap_bwrite

ap_rprintf ap_vbprintf

use_range_x

ap_table_do

ap_log_transaction

closedir

index_directory

ap_psignature

ap_rvputs

ap_popendir

ap_rputs

insert_readme

emit_preamble

ap_send_http_header

ap_kill_timeout

output_directories

ap_hard_timeout

ap_pclosedir

make_autoindex_entry

ap_escape_html

emit_link

handle_autoindex

ap_allow_options

ap_snprintf

ap_vformatter

debug_verify_filled

ap_clear_pool

ap_destroy_pool

free_proc_chain

run_cleanups

free_blocks

ap_release_mutex

ap_acquire_mutex

ap_send_fd

ap_get_server_port

ap_get_server_name

ap_pvsprintf

ap_write

timeout

clean_child_exit

ap_bclose

sendwithtimeout ap_check_alarm

opendir

ap_set_keepalive

ap_find_token

ap_table_setn

ap_find_last_token

large_write

end_chunk

writev_it_all

ap_note_cleanups_for_file

ap_gcvt
ap_ecvt

strncasecmp

terminate_header ap_bgetopt

ap_make_sub_pool

new_block

find_default_icon

ap_overlay_tables
ap_array_cat

copy_array_hdr_core

conv_sockaddr_in
conv_10

conv_in_addr

malloc_block

find_title

ap_pfopen

ap_pfclose

ap_ind

ap_slack

ignore_entry

ap_child_exit_modules

strdup

ap_sub_req_lookup_file

ap_make_full_path

ap_os_escape_path c2x

ap_table_addn

chk_on_blk_list

ap_fcvt
ap_cvt

ap_rputc

ap_send_size

ap_getparents

terminate_description

conv_fp

ap_pclosesocket

ap_bflush

ap_pcloseh

bcwrite

write_with_errors

map_rv

Fig. 16. CIG of Fig. 15. It has been annotated to show the age of the last change: paler red nodes were modified less recently.

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
rewrite_rand, where the defect was introduced. This change
took place on January 20, 2002, just 4 days before the release of
1.3.23.

The impact-annotated source code of rewrite_rand for this
period is presented in Fig. 27.3 The error was introduced when a
developer added the typecast (int) to the front of the expression;
the priority of this operator applied the typecast to the first part of
the expression only. The log of this change reads: ‘‘Dispatch 26 com-
piler emits into oblivion. Vetting is desired, please post to the list if
you participate. They are all blindingly obvious, but extra eyes al-
ways help. This eliminates all but the regex emits and MSVC’s bor-
ked misdeclaration of FD_SET.”.

Changes like these are probably riskier than traditional changes
because they are done in mass (26 compiler errors fixed in one
3 We build it manually, from the diffs of the changes in question.

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
change). It is clear that the developer did not fully test this change.
Otherwise the bug would have been discovered almost immedi-
ately; instead, the failure was reported almost three months after
the bug was introduced.

Impact-annotations can be very useful in these situations. Right
after the change is committed, certain developers can be informed
that the code they are responsible for could be affected by such
commit, and they might be more inclined to check it for correct-
ness. Otherwise, as in the case of this bug, nobody reviewed this
line of code (or if it was reviewed, the reviewer failed to catch
the bug).

5. Related research

Change propagation is a central activity during software devel-
opment. As developers modify code to introduce new features or
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

ap_destroy_sub_req

ap_table_mergen

ap_find_pool

table_push

strcasecmp

ap_pstrcat

ap_pool_is_ancestor

ap_register_cleanup

ap_palloc

waitpid

signal

ap_bsetopt

ap_log_error

write_it_all

buff_write

doerror

ap_getword

ap_pstrndup

ap_pstrdup

ebcdic2ascii

conv_p2

ap_push_array
ap_pcalloc

find_item ap_strcmp_match

ap_strcasecmp_match

ap_block_alarms

ap_unblock_alarms

ap_set_callback_and_alarm

ap_pclosef
ap_kill_cleanup

ap_gm_timestr_822
ap_psprintf

start_chunk
bflush_core

readdir

ap_basic_http_header ap_get_server_version

ap_bvputs

ap_index_of_response

ap_bsetflag

ap_table_unset

ap_send_header_field

ap_table_get

ap_default_type

ap_get_module_config

ap_bputs

ap_bwrite

ap_rprintf ap_vbprintf

use_range_x

ap_table_do

ap_log_transaction

closedir

index_directory

ap_psignature

ap_rvputs

ap_popendir

ap_rputs

insert_readme

emit_preamble

ap_send_http_header

ap_kill_timeout

output_directories

ap_hard_timeout

ap_pclosedir

make_autoindex_entry

ap_escape_html

emit_link

handle_autoindex

ap_allow_options

ap_snprintf

ap_vformatter

debug_verify_filled

ap_clear_pool

ap_destroy_pool

free_proc_chain

run_cleanups

free_blocks

ap_release_mutex

ap_acquire_mutex

ap_send_fd

ap_get_server_port

ap_get_server_name

ap_pvsprintf

ap_write

timeout

clean_child_exit

ap_bclose

sendwithtimeout ap_check_alarm

opendir

ap_set_keepalive

ap_find_token

ap_table_setn

ap_find_last_token

large_write

end_chunk

writev_it_all

ap_note_cleanups_for_file

ap_gcvt
ap_ecvt

strncasecmp

terminate_header ap_bgetopt

ap_make_sub_pool

new_block

find_default_icon

ap_overlay_tables
ap_array_cat

copy_array_hdr_core

conv_sockaddr_in
conv_10

conv_in_addr

malloc_block

find_title

ap_pfopen

ap_pfclose

ap_ind

ap_slack

ignore_entry

ap_child_exit_modules

strdup

ap_sub_req_lookup_file

ap_make_full_path

ap_os_escape_path c2x

ap_table_addn

chk_on_blk_list

ap_fcvt
ap_cvt

ap_rputc

ap_send_size

ap_getparents

terminate_description

conv_fp

ap_pclosesocket

ap_bflush

ap_pcloseh

bcwrite

write_with_errors

map_rv

Fig. 17. CIG of handle_autoindex on October 3, 1998 showing the propagated changes from April 12 to Jun 1, 1998.

0 5 10 15 20 25 30

0
5

10
15

Number of days elapsed

N
um

be
r c

ha
ng

ed
 fu

nc
tio

ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#5389

Fig. 19. Change Impact Overview of hook_uri2file() showing the impact of
changes older than October 27, 1999.

find_itemindex_directory

insert_readme

output_directories

make_autoindex_entry

emit_link

handle_autoindex find_default_icon

find_title

ignore_entry

Fig. 18. The pruned-before CIG of handle_autoindex on October 3, 1998 showing
the propagated changes from April 12 to June 1, 1998. The CIG has been pruned to
include only the impact of functions inside mod_autoindex.c (where this Apache
module is implemented). The defect was found in one of the two functions marked
as changed (make_autoindex_entry).

10 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
fix bugs, they must ensure that other parts of the software system
are updated to be consistent with these new changes. For example,
if the interface for a function changes, its callers have to be modi-
fied to reflect the new interface, otherwise the source code won’t
compile nor link.

Many hard to find bugs are introduced by developers who did
not notice dependencies between entities, and failed to propagate
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
changes correctly. Our proposal provides a practical and simple
method that mines historical code changes to help maintainers
in fixing bugs caused by mis-propagation of changes.

Many researchers note the dangers of mis-propagating changes.
For example, Parnas tackled the issue of software aging and
warned of the ill-effects of Ignorant Surgery, code changes done
by developers with limited knowledge of the system [14]. Arnold
and Bohner give an overview of several formal models of change
propagation [15,16]. The models propose several tools and tech-
niques that are based on code dependencies and algorithms such
as slicing and transitive closure [2,1] to assist in code propagation.
Rajlich proposes another formal model for change propagation
[17], given a particular change request Rajlich’s model can be used
to guide developers in propagating the change in a systematic
manner. These models help developers avoid mis-propagating
changes. In contrast, our model helps developers identify possible
mis-propagation of changes when fixing bugs.

Several researchers have proposed the use of historical data re-
lated to a software system to assist maintainers of large software
systems. Cubranic et al. present a tool which uses bug reports,
news articles, and mailing list messages to suggest pertinent soft-
ware development artifacts [18]. Chen et al. attach the comments
associated with source code changes to each code statement and
use these comments to index the code and help in locating the
lines of code associated with a particular feature [19]. Hassan
and Holt propose annotating the dependency graph of a software
system with historical information to assist in understanding the
rationale for the current design [20]. Mockus et al. use historical
code changes to help identify code experts based on prior changes
for a particular code segment [21]. Relative to previous work on the
use of historical information we recognize the importance of his-
torical information and we integrate the historical information into
the commonly used dependency information (i.e., the dependence
graph).

Much of the intuition and driving force behind our work stems
from the following two related works. Graves et al. show that sur-
prisingly most bugs are not due to complex code instead they are
usually due to frequently changing code [22]. Given the location
of a reported bug, our method flags statements which depend di-
rectly or indirectly on changing code. Sliwerski et al. present a pro-
cedure which identifies risky code regions using information from
version history and from the bug tracking system [23]. They
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

free_blocks

ap_release_mutex

ap_acquire_mutex

chk_on_blk_list

lookup_variable

ap_get_server_name

ap_get_remote_host

ap_get_server_port

lookup_header

ap_document_root

ap_get_remote_logname

strcasecmp

strncasecmp

ap_get_server_version

ap_table_get

rewritelog

ap_snprintf

ap_pstrdup

getstr hextoint

ap_log_error

apply_rewrite_list

apply_rewrite_rule

ap_pstrcat

lookup_map_internal

end_chunk ebcdic2ascii

ascii2ebcdic

cache_tlb_replace
cache_tlb_hash

lookup_map_txtfile

ap_pfopen

ap_pfclose

expand_variables
ap_cpystrnstrstr

ap_str_tolower

ap_update_child_status

ap_get_module_config

file_walk

ap_merge_per_dir_configs

ap_regexec

ap_fnmatch

rewritelock_free

fd_unlock

ap_pvsprintf

ap_block_alarms

ap_unblock_alarms

ap_vformatter

ap_check_auth

ap_os_canonical_filename
ap_os_case_canonical_filename

buff_write

ap_write

sendwithtimeout

do_double_reverse

expand_tildepaths getpwnam

ap_palloc

ap_ecvt
ap_cvt

ap_pregsub

ap_pcalloc

ap_cfg_getline

ap_cfg_closefile

debug_verify_filled

new_block

lookup_map_program

rewritelock_alloc

ap_check_alarm

ap_check_access

ap_unparse_uri_components

ap_default_port_for_scheme

ap_note_cleanups_for_file

timeout

clean_child_exit

ap_sub_req_lookup_file

ap_make_dirstr_parent

ap_check_user_id

ap_make_full_path

directory_walk

ap_log_rerror

make_sub_request

ap_satisfies

ap_os_is_path_absolute

ap_set_sub_req_protocol

ap_some_auth_required

ap_create_request_config

ap_allow_options

check_safe_file

ap_find_types

check_symlinks

ap_parse_uri

ap_run_fixups

bflush_core write_with_errors

rangematch

ap_make_table
make_array_core

ap_strcasecmp_match

expand_backref_inbuffer

ap_os_is_filename_valid conv_p2

ap_bsetflag start_chunk

ap_parse_htaccess

ap_getword_conf

ap_pcfg_openfile

ap_create_per_dir_config

ap_srm_command_loop

ap_table_setn

ap_bclose

malloc_block

ap_find_pool

ap_set_config_vectors ap_set_module_config

waitpid

ap_os_kill

ap_make_sub_pool

ap_child_exit_modules

signal

expand_variables_inbuffer

splitout_queryargs

ap_table_merge

ap_table_unset reduce_uri

expand_map_lookups

apply_rewrite_cond

fully_qualify_uri

add_env_variable

ap_matches_request_vhost

matches_aliases

ap_push_array

table_push

force_read

ap_note_cleanups_for_socket

lookup_map_dbmfile

conv_p2_quad

ap_pstrndup

ap_count_dirs

map_rv

ap_copy_table

ap_pool_is_ancestor

strerror

substring_conf

ap_slack

conv_10_quad

conv_10

ap_server_root_relative

ap_sync_scoreboard_image

invoke_cmd

ap_pclosesocket
ap_kill_cleanup

ap_log_transaction

log_error_core

ap_vsnprintf

syslog

ap_get_time

force_write

current_logtime ap_get_gmtoff

ap_no2slash

ap_make_dirstr_prefix

get_path_info
ap_rfc1413

get_rfc1413

ap_psocket

ap_set_callback_and_alarm

hook_uri2file
prefix_stat

ap_destroy_sub_req

ap_parse_hostinfo_components

put_scoreboard_info

conv_sockaddr_in
conv_in_addr

ap_requires

rewrite_rand_init

ap_destroy_pool

ap_clear_pool

ap_find_command_in_modules
ap_find_command

ap_sub_req_lookup_uri

run_cleanups

free_proc_chain

conv_fp
ap_fcvt

retrieve_cache_string

cache_tlb_lookup

ap_os_systemcase_filename

get_cache_string

ap_parse_uri_components

set_cache_string

store_cache_string

ap_gcvt

chdir_for_gprof

lookup_map

ap_make_arrayselect_random_value_part

rewrite_rand

ap_psprintf

ap_handle_command

fd_lock

doerror

compare_lexicography

OnlyDots

ap_table_set

Fig. 20. CIG of hook_uri2file on October 29, 1999 showing the propagated changes for the last 5 days. The changes to the function ap_write (rightmost red node) have
propagated to a large portion of the graph.

lookup_variable lookup_header

rewritelog

apply_rewrite_list apply_rewrite_rule

cache_tlb_replace

lookup_map_txtfile

expand_variables

rewritelock_free
fd_unlock

expand_tildepaths

lookup_map_program

rewritelock_alloc

expand_backref_inbuffer

expand_variables_inbuffer

splitout_queryargs

reduce_uri
expand_map_lookups

apply_rewrite_cond

fully_qualify_uri

add_env_variable

lookup_map_dbmfile

current_logtime

hook_uri2file
prefix_stat

rewrite_rand_init

retrieve_cache_string cache_tlb_lookupget_cache_string

set_cache_string store_cache_string

lookup_map

select_random_value_part rewrite_rand

fd_lock

compare_lexicography

Fig. 21. The pruned-after CIG of hook_uri2file on October 29, 1999 showing the propagated changes for the last 5 days, and only functions in mod_rewrite.c. The failure
described in PR#5389 was found in expand_backref_inbuffer (rightmost red function).

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
present an Eclipse plug-in which informs developers about the
risk of a location on a statement basis. The risk is calculated based
on the number of times a particular statement was part of a change
that was later identified as being a buggy change. Similar to Sliwer-
ski et al., developers could use our method to identify risky parts of
the code. In contrast, our definition of risk is a second-order defini-
tion: instead of identifying risky code, we identify code that de-
pends on risky code by, for example, calling code which tends to
have many buggy changes.

Delta debugging is an algorithm proposed by Zeller and Cleve to
identify the piece of code executed that caused a failure [24,25].
Therefore relevant variables and values involved in the error are
isolated and state differences of a run where the failure occurs
and of a run where the failure does not occur are obtained. The mo-
ment when the piece of code that causes the failure is executed
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
points to the bug which must be fixed. Delta requires the existence
of a test suite, which are not frequently available. In contrast, our
method uses historical code change information to direct the
attention of developers to the most likely change that might have
caused the bug.

6. Discussion

6.1. Limitations

There are three major shortcomings of our method:

� A single commit can result in too many marked nodes in the
dependence graph, becoming impractical—as shown in Fig. 15
where 81.7% of the functions have been changed.
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

0 20 40 60 80 100

0
5

10
15

20
25

Number of days elapsed

N
um

be
r c

ha
ng

ed
 fu

nc
tio

ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#10090

Fig. 22. Change Impact Overview of hook_uri2file() showing the impact of
changes older than January 24; after date 95—October 12, 2002—it is known that
the defect does not exist. Day 4 shows the only jump in the number of changed
functions in the pruned CIG, when two functions are changed.

12 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
� It is sometimes not easy to determine the period of interest for
which the dependence graph should be created. The developer
needs to experiment and apply her experience and insight in
the selection of the period of interest. The Change Impact Over-
view visualization (as shown in Fig. 14), along with the logs of
rewrite_rand_init

cache_tlb_lookup

cache_tlb_hash

a

lookup_variable

ap_get_server_name

ap_get_server_port

ap_document_root

ap_table_get

ap_get_remote_host

strcasecmp

ap_pstrdup

ap_get_server_version

ap_get_remote_logname

lookup_header

rewritelog

strncasecmp

ap_str_tolower

ap_update_child_status

lookup_map

lookup_map_program

select_random_value_part

set_cache_string

lookup_map_txtfile

get_cache_string

lookup_map_internal

lookup_map_dbmfile

ap_log_rerror

ap_default_port_for_scheme

ap_table_merge

table_push

check_safe_file

apply_rewrite_rule

ap_table_setn

ap_table_unset

fully_qualify_uri

ap_pcalloc

splitout_queryargs

is_absolute_uri

ap_regexec

ap_palloc

do_expand_env

reduce_uri

apply_rewrite_cond

do_expand

rewritelock_free

rewritelock_alloc

ap_push_array

ap_pfclose

ap_pool_is_ancestor

ap_find_pool

add_env_variable

ap_table_set

ap_cpystrn

rewrite_rand

directory_walk

fd_lock

store_cache_string

ap_strcasecmp_match

ap_psprintf

ap_matches_request_vhost matches_aliases

find_closing_bracket

put_scoreboard_info force_write

do_double_reverse

ap_pfopen

ap_no

fd_unlock

retrieve_cache_string

cache_tlb_replace

ap_sub_req_lookup_uri

apply_rewrite_list

ap_n

ap_check_auth

rangematch

file_walk

ap_merge_per_dir_configs
ap_fnmatch

ap_pvsprintf

ap_find_types

ap_set_sub_req_protocol
ap_copy_table

ap_make_table

ap_sub_req_lookup_file

ap_check_access

ap_run_fixups

ap_create_request_config ap_some_auth_required

ap_parse_uri

ap_check_user_id

make_sub_request

ap_make_dirstr_parent

check_symlinks

prefix_stat

ap_make_array

ap_unparse_uri_components

ap_parse_hostinfo_components

ap_make_sub_pool

current_logtime

ap_get_gmtoff

ap_parse_uri_components

ap_escape_html

make_array_core

subreq_ok

ap_psocket

hook_uri2file

expand_tildepaths

ap_rfc1413

find_char_in_brackets

getpwnam

compare_lexicography

force_read

ap_pclosesocket

ap_sync_scoreboard_image

Fig. 23. CIG of hook_uri2file() on March 14, 2002, showing

apply_rewrite_rule

fully_qualify_uri

is_absolute_uri

do_expand_env

reduce_uri

apply_rewrite_cond

do_expand

apply_rewrite_list

prefix_stat

subreq_ok

hook_uri2file

expand_tildepaths

compare_lexicograp

Fig. 24. CIG of hook_uri2file() on March 14, 2002, showing the propagated changes
mod_rewrite.c. This CIG shows functions affected by changes outside mod_rewrite.c

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
the changes that affect those functions can be used to narrow
the period. Also, the larger the period of interest, the more likely
that changes that are not relevant are included in the CIG.

� Given the recursive nature of CIGs, the larger the CIG (in terms of
nodes) the higher the probability that it includes a function is
marked as changed that has nothing to do with the defect in
question.

The larger the graph and the number of changed functions in it,
the more difficult it will be for the developer to find the source of
the defect.

Systems with a very good suite of tests will benefit from CIGs. Fail-
ures are likely to be found early, making the period of observation
very small. The automatic annotations will point to the few areas of
the system that are likely to have changed in such a small period.

Another method to deal with changes that affect many func-
tions is to select only a subset of changes based on certain crite-
ria–as described in [26]. For example, ‘‘select all commits during
the period of observation except the one that renamed all sym-
bols”. The risk of using this method is that one might inadvertently
skip the commit that introduced the bug which caused the re-
ported failure. This is not an issue when one is interested only in
being aware of what areas of the system have changed (and which
have been affected). For example, a developer might be interested
to get an idea of what areas have been affected by the changes per-
formed by another developer; in this case the criteria is to select
only the changes authored by the latter author.
ap_block_alarms ap_os_kill

ap_clear_pool

free_proc_chain

p_unblock_alarms

ap_acquire_mutex

free_blocks

run_cleanups

ap_destroy_pool

ap_release_mutex

ap_snprintf

ap_get_module_config

malloc_block

ap_pstrcat

waitpid

ap_vsnprintf ap_vformatter

ap_os_systemcase_filename OnlyDots

ap_os_canonical_filename ap_os_systemcase_canonical_filename

os_canonical_filename

ap_os_case_canonical_filename

conv_10

ap_bclose

ap_cvt

ap_kill_cleanup

ap_pstrndup

ap_check_alarm

conv_p2_quad conv_p2

end_chunk

ebcdic2ascii

ap_set_callback_and_alarm

ap_log_error

ap_make_full_path

new_block

debug_verify_filled

timeout

clean_child_exit
ap_server_root_relative

ap_os_is_path_absolute

te_cleanups_for_socket

ap_ecvt

ote_cleanups_for_file

ap_destroy_sub_req

ap_bsetflag

buff_write ap_sendwithtimeout

ap_write

ap_allow_options

fix_component

ap_fcvt

ap_gcvt

ap_os_is_filename_valid

bslash2slash

ap_satisfies

map_rv

ap_log_transaction

chdir_for_gprof

ap_child_exit_modules

write_with_errors

doerror

chk_on_blk_list

ap_get_time

conv_in_addr

conv_10_quad

conv_sockaddr_inascii2ebcdic

ap_slack

start_chunk
bflush_core

signal

get_rfc1413

conv_fp

log_error_core

strerror

syslog
ap_requires

the propagated changes made from January 20 to 24, 2002.

rewrite_rand_init

cache_tlb_lookup

lookup_variable

lookup_header

rewritelog

lookup_map

lookup_map_program

select_random_value_part

set_cache_string

lookup_map_txtfile

get_cache_string

lookup_map_dbmfile

splitout_queryargs
rewritelock_free

rewritelock_alloc
add_env_variable

rewrite_rand

fd_lock

store_cache_string

fd_unlock

retrieve_cache_string

cache_tlb_replace

current_logtime

hy

made from January 20 to 24, 2002, and pruned-after to include only functions inside
.

termining the impact of prior code changes, Inform. Softw. Technol. (2009),

rewrite_rand_init

cache_tlb_lookup

lookup_variable

lookup_header

rewritelog

lookup_map

lookup_map_program

select_random_value_part

set_cache_string

lookup_map_txtfile

get_cache_string

lookup_map_dbmfile

apply_rewrite_rule

fully_qualify_uri

splitout_queryargs

is_absolute_uri

do_expand_env

reduce_uri

apply_rewrite_cond

do_expand

rewritelock_free

rewritelock_alloc
add_env_variable

rewrite_rand

fd_lock

store_cache_string

fd_unlock

retrieve_cache_string

cache_tlb_replace

apply_rewrite_list

prefix_stat

current_logtime
subreq_ok

hook_uri2file

expand_tildepaths

compare_lexicography

Fig. 25. CIG of hook_uri2file() on March 14, 2002, showing the propagated changes made from January 20 to January 24, 2002, and pruned-before to include only
functions inside mod_rewrite.c.

Fig. 27. Annotated source code of rewrite_rand_init. Its first source code line was not modified nor affected; the second—the cause of the failure– was modified on
January 20, 2002, when the typecast operator (int) was inserted, truncating the first part of the expression instead of the entire result. The log of the change explains:
‘‘Dispatch 26 compiler emits into oblivion. Vetting is desired. . . They are all blindingly obvious, but extra eyes always help. . .”.

lookup_map select_random_value_part
apply_rewrite_rule

do_expand_env

reduce_uri

apply_rewrite_cond do_expand rewrite_rand
apply_rewrite_listhook_uri2file

Fig. 26. Same CIG as Fig. 25 after unaffected functions have been removed. This often simplifies the rendering of the CIG making it more readable. The failure described in PRs
#10090 and #10185 was found in rewrite_rand(), the rightmost node.

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 13

ARTICLE IN PRESS
Developers won’t be able to use our proposed method to re-
solve every reported fault. Instead as we observe in the case
study, our method is most suitable for bugs that appear due to
earlier changes in a software application. This-Worked-Before
bugs are probably the best way to describe the bugs that would
benefit the most of our method. Bugs which are due to unex-
pected usages of an application, or changes to its environment
won’t benefit from our method. Our method is one of the many
tools available for developers who are working on large code
bases, and extends and enhances commonly used basic depen-
dence graphs by incorporating historical information to prune
and highlight the graphs.

6.2. Extraction of the dependence graphs

The effectiveness of CIGs depends heavily on the quality of the
extraction of the dependence graphs from the source code of the
system. In our current implementation we use a simple fact
extractor that does not take into account function pointers nor
polymorphic function calls. Our method to create CIGs, however,
can work with any dependence graph extractor that generates a
graph where functions are represented as nodes, and function
calls as edges.

Extending our extraction and method to object-oriented lan-
guages is yet to be done. Many of the general ideas should follow
to object-oriented systems. However, we still need to explore the
limitations and benefits on a real large scale object-oriented system.
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
6.3. Effectiveness of CIGs

We view CIG as a tool in a larger toolset that developers can use
to locate bugs in an efficient manner. Other tools in the toolset
could be code slicers, debuggers, and basic dependency browsers.

The number of bugs that would benefit from our approach is
highly dependent on the experience of the developer using the
CIG, the application at hand, and the reason for the occurrence of
particular bugs (i.e., did they occur due to prior changes or due
to changes in the usage patterns of the application?). CIGs are
mainly used to fix bugs due to prior changes. Determining such
bugs is an open research problem that continues to be investigated
by others, such as Kim et al. [27].

A user study is needed to study the true effectiveness of CIGs.
For this paper, we chose to perform an exploratory case study by
picking several real-life bugs and showing how non-experts, like
us, could fix these bugs with limited knowledge of Apache. A user
study would require us to either recruit real-life developers work-
ing on such a large system, or to study a much smaller system.
Recruiting such developers is usually very hard and not feasible;
and a smaller case study conducted by students would limit the
scope of our findings.

The examples above are too few and lack the necessary rigor to
be considered a formal evaluation of CIGs. At its most basic form, a
CIG is just a size-reduced dependence graph that can be very rap-
idly calculated. Therefore developers can explore the use of CIGs
without requiring any additional commitment on their behalf.
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

14 D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx

ARTICLE IN PRESS
The CIG method could be integrated as part of commonly available
dependence browsers, e.g., the dependency browser in a IDE.

Our case study examples demonstrate the ability of the a CIG to
narrow the search space for the source of a failure by highlighting
areas of the code that have changed and that might have an impact
on a failing function. We expect that focusing the attention of
developers to specific areas of the code will reduce the time needed
to investigate a bug.

Table 2 shows the ratios of changed and affected functions for
each of the CIGs presented in our case study. Although the CIGs
are relatively large, the ratio of changed nodes is small (as small
as 2.3%) for most of the graphs, and some of them have very few
nodes. Ratios of affected functions shown in Table 2 may in some
cases be larger than the ratio of changed functions because of
pruning.

However even if a graph contains few changed nodes, the num-
ber of affected nodes (functions where a failure can occur) can be
large. In other words, a bug introduced in a function has the poten-
tial to present itself as a failure in many other functions.

6.4. Improving the tracking of a function’s evolution

Some functions are renamed, merged, split or their code cloned.
We believe it will be worthwhile to track this evolution and use the
resulting information in the creation of CIGs.

Similarly, the analysis we present relies on a textual comparison
with comments removed, code re-indented and code renamed. A
more powerful approach would involve comparing the Abstract
Syntax Trees (ASTs) of the function before and after the change
(using methods such as [28]). Did the change affect the AST of
the code? Was it a change to a constant (such as a string to be
printed)? Was it a change to a token (perhaps the result of a re-
name of a function in the same commit). This information could
be used to include and exclude some changes when building a
CIG. However an AST-based approach might limit our ability to
study all historical changes since there some historical snapshots
might contain code that is not compilable.

6.5. CIGs and slicing

A CIG reduces the size of a dependence graph using various
pruning techniques. Dependence graph represent the state of prac-
tice in investigating code changes by developers. On the other
hand, code slicing techniques represent the state of the art with
slices being more precise and supporting various pruning tech-
niques based on data and control flow characteristics.

Code slicing provides a more in-depth analysis of impact of the
changed code. Slices track indirect calls via parameters, and
changes to variables, in contrast to our method which is based only
on tracking function calls. However, the benefits of a slice come at
a high cost—with slicing techniques requiring extensive calculation
Table 2
Effectiveness of the CIGs for the examples presented in our case study. The last
column, LOCs, is the sum of LOCs of the functions that were changed.

PR CIG in
Fig.

Total
nodes

Ratio affected
(%)

Ratio changed
(%)

LOCs

#1352 12 203 30.0 18.2 1647
13 4 0 50 172

#3130 15 142 6.8 81.7 3055
17 142 45.8 16.9 1287
18 10 40.0 20.0 360

#5389 20 206 43.2 2.4 545
21 36 69.4 11.1 526

#10090, 10185 23 191 44.5 5.3 339
26 10 80 20.0 61

Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
time. For instance, Binkley et al. [5] show that a slice in a 150 kLOC
program can take up to 118 hours to calculate. In contrast the CIGs
are not as precise but can be built very quickly requiring millisec-
onds to calculate. The fast calculation speed ensures that we can
integrate CIGs as part of the daily toolset used by developers.
Developers could explore various CIGs with little time commit-
ment. In future work, we would like to explore a more detailed
comparison of CIGs versus slicing. We also want to explore com-
bining CIGs and slicing to build on the strengths of both ap-
proaches: the accuracy of a slice, and the speed of a CIG.

6.6. Improving the automatic annotations

The changed functions in a dependence graph can be further
annotated with a measure of the change, such as the number of
LOCs changed, the difference of the complexity between before
and after, a likelihood that the change is a risky one (based on
the type of change, who made the change, when the change was
performed, etc.). Such information can then be propagated to the
callers.

6.7. Support for automatic annotations during editing/debugging of
source code

The annotated source code could be computed on-demand
within a typical IDE (such as Eclipse) or a debugger. In a prepa-
ration stage, the history of the project is analyzed, and the change
history of each function is created. The latest dependence graph of
the system is computed. At this point it is possible to incrementally
continue updating the change histories of functions and the latest
dependence graph as the version control system detects a new
source control change. When perusing source code, the developer
will select the period of interest (either by time, or by specifying
two different changes). If the code being browsed has not changed
(with respect to the latest version in the source control repository),
the pre-computed CIGs would be used, otherwise a new one will be
computed. The source code will be annotated automatically using
these CIGs. From our experience we know that a CIG can be built
within milliseconds for a very large project, making a CIG an inter-
active and responsive tool that developers can use on a daily basis.

7. Conclusions

All too often developers must investigate failures in functions
and features that have not changed. Investigating such failures is
challenging and time consuming since these failures are occasion-
ally due to bugs introduced by prior code changes. In this paper we
present a method which guides developers in their investigation of
such failures by annotating the dependence graph and the source
code of a function with the impact of prior historical changes.
Using the annotation, developers can quickly pinpoint the changes
which most likely introduced the bug, causing the reported failure.
We demonstrate the feasibility of our method through an explor-
atory case study on the Apache Web Server. Our method permits
developers to considerably prune the size of the investigated
dependence graph. With a smaller number of nodes to investigate,
developers can better focus their attention to the nodes that are
most likely the cause for the failure.
Acknowledgements

We would like to thank our anonymous reviewers for their
helpful comments on an early version of this paper. The work
of D.M. German and A.E. Hassan is funded in part by the Natu-
ral Sciences and Engineering Research Council of Canada. The
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

D.M. German et al. / Information and Software Technology xxx (2009) xxx–xxx 15

ARTICLE IN PRESS
work of G. Robles has been funded in part by the European
Commission, under the FLOSSMETRICS (FP6-IST-5-033547), QUA-
LOSS (FP6-IST-5-033547) and QUALIPSO (FP6-IST-034763) pro-
jects, and by the Spanish CICyT, project SobreSalto (TIN2007-
66172).

References

[1] M. Weiser, Programmers use slices when debugging, Commun. ACM 25 (7)
(1982) 446–452.

[2] M. Weiser, Program slicing, in: Proceedings of the International Conference on
Software Engineering (ICSE 1981), 1981, pp. 439–449.

[3] D. Binkley, M. Harman, A large-scale empirical study of forward and backward
static slice size and context sensitivity, in: ICSM’03: Proceedings of the
International Conference on Software Maintenance, IEEE Computer Society,
Washington, DC, USA, 2003, p. 44.

[4] D. Binkley, N. Gold, M. Harman, An empirical study of static program slice size,
ACM Trans. Softw. Eng. Methodol. 16 (2) (2007) 8. doi:http://doi.acm.org/
10.1145/1217295.1217297.

[5] D. Binkley, M. Harman, J. Krinke, Empirical study of optimization techniques
for massive slicing, ACM Trans. Program. Lang. Syst. 30 (1) (2007) 3. doi:http://
doi.acm.org/10.1145/1290520.1290523.

[6] H. Agrawal, J.R. Horgan, Dynamic program slicing, in: PLDI’90: Proceedings of
the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation, ACM, New York, NY, USA, 1990, pp. 246–256. doi:http://
doi.acm.org/10.1145/93542.93576.

[7] X. Zhang, N. Gupta, R. Gupta, A study of effectiveness of dynamic slicing in
locating real faults, Empirical Softw. Eng. 12 (2) (2007) 143–160. doi:http://
dx.doi.org/10.1007/s10664-006-9007-3.

[8] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code, IEEE Trans. Softw. Eng. 28
(7) (2002) 654–670. doi:http://dx.doi.org/10.1109/TSE.2002.1019480.

[9] D.M. German, A study of the contributors of PostgreSQL, in: 3rd International
Workshop on Mining Software Repositories–MSR Challenge Reports (MSR
2006), 2006.

[10] P. Weißgerber, S. Diehl, Identifying refactorings from source-code changes, in:
21st IEEE/ACM International Conference on Automated Software Engineering,
2006, pp. 231–240.

[11] M. Kim, D. Notkin, D. Grossman, Automatic inference of structural changes for
matching across program versions, in: Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), IEEE Computer Society, 2007,
pp. 333–343.

[12] L. Zou, Using origin analysis to detect merging and splitting of source code
entities, IEEE Trans. Softw. Eng. 31 (2) (2005) 166–181. member-Godfrey,
Michael W. doi:http://dx.doi.org/10.1109/TSE.2005.28.
Please cite this article in press as: D.M. German et al., Change impact graphs: De
doi:10.1016/j.infsof.2009.04.018
[13] A. Mockus, R.T. Fielding, J.D. Herbsleb, Two case studies of Open Source
software development: Apache and Mozilla, ACM Trans. Softw. Eng. Methodol.
11 (3) (2002) 309–346.

[14] D.L. Parnas, Software aging, in: Proceedings of the International
Conference on Software Engineering (ICSE 1994), Sorrento, Italy, 1994,
pp. 279–287.

[15] R. Arnold, S. Bohner, Impact analysis – toward a framework for comparison, in:
IEEE International Conference Software Maintenance (ICSM 1997), MontrTal,
Quebec, Canada, 1993, pp. 292–301.

[16] S. Bohner, R. Arnold, Software Change Impact Analysis, IEEE Computer Society
Press, 1996.

[17] V. Rajlich, A model for change propagation based on graph rewriting, in: IEEE
International Conference Software Maintenance (ICSM 1997), Bari, Italy, 1997,
pp. 84–91. URL: citeseer.nj.nec.com/rajlich97model.html.

[18] D. Cubranic, G.C. Murphy, Hipikat: recommending pertinent software
development artifacts, in: Proceedings of the 25th International Conference
on Software Engineering (ICSE 2000), ACM Press, Portland, Oregon, 2003, pp.
408–419.

[19] A. Chen, E. Chou, J. Wong, A.Y. Yao, Q. Zhang, S. Zhang, A. Michail, CVSSearch:
searching through source code using CVS comments, in: IEEE International
Conference Software Maintenance (ICSM 2001), Florence, Italy, 2001, pp. 364–
374. URL: citeseer.nj.nec.com/436456.html.

[20] A.E. Hassan, R.C. Holt, Using development history sticky notes to understand
software architecture, in: IWPC, 2004, pp. 183–193.

[21] A. Mockus, L.G. Votta, Identifying reasons for software changes using
historic databases, in: Proc. Int. Conf. Softw. Maintenance, 2000, pp. 120–
130.

[22] T.L. Graves, A.F. Karr, J.S. Marron, H.P. Siy, Predicting fault incidence using
software change history, IEEE Trans. Softw. Eng. 26 (7) (2000) 653–661.

[23] J. Sliwerski, T. Zimmermann, A. Zeller, Hatari: raising risk awareness, in: ESEC/
SIGSOFT FSE, 2005, pp. 107–110.

[24] A. Zeller, Isolating cause-effect chains from computer programs, in: SIGSOFT
FSE, 2002, pp. 1–10.

[25] H. Cleve, A. Zeller, Locating causes of program failures, in: 27th International
Conference on Software Engineering (ICSE 2005), 15–21 May 2005, St. Louis,
Missouri, USA.

[26] A. McNair, D.M. German, J. Weber-Jahnke, Visualizing software architecture
evolution using change-sets, in: Proc. 14th Working Conference on Reverse
Engineering, 2007, pp. 140–149.

[27] S. Kim, T. Zimmermann, K. Pan, E.J.J. Whitehead, Automatic identification of
bug-introducing changes, in: ASE ’06: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, IEEE Computer
Society, Washington, DC, USA, 2006, pp. 81–90. doi:http://dx.doi.org/10.1109/
ASE.2006.23.

[28] B. Fluri, M. Wuersch, M. PInzger, H. Gall, Change distilling: Tree differencing
for fine-grained source code change extraction, IEEE Trans. Softw. Eng. 33 (11)
(2007) 725–743. doi:http://dx.doi.org/10.1109/TSE.2007.70731.
termining the impact of prior code changes, Inform. Softw. Technol. (2009),

http://citeseer.nj.nec.com/rajlich97model.html
http://citeseer.nj.nec.com/436456.html

	Change impact graphs: Determining the impact of prior code changes
	Introduction
	Organization of the paper

	A model to track the impact of historical code changes
	Propagation of prior changes
	Pruning CIGs
	Remove unaffected nodes
	Remove nodes outside the area of interest

	Annotating CIGs
	Quantifying the impact of changes
	Annotating source code

	Recovering the impact of function evolution from a version control system
	Recovering the change histories of functions
	Creating the change impact graph (CIG)
	A method to create CIGs to fix defects

	Case study
	Related research
	Discussion
	Limitations
	Extraction of the dependence graphs
	Effectiveness of CIGs
	Improving the tracking of a function’s evolution
	CIGs and slicing
	Improving the automatic annotations
	Support for automatic annotations during editing/debugging of source code

	Conclusions
	Acknowledgements
	References

