
074 0 -74 5 9 /16 / $ 3 3 . 0 0 © 2 016 I E E E MAY/JUNE 2016 | IEEE SOFTWARE 83

FEATURE: GREEN SOFTWARE

feature image here

What Do
Programmers
Know about
Software Energy
Consumption?
Candy Pang and Abram Hindle, University of Alberta

Bram Adams, Polytechnique Montréal

Ahmed E. Hassan, Queen’s University

// A survey revealed that programmers

had limited knowledge of energy ef� ciency,

lacked knowledge of the best practices to

reduce software energy consumption, and

were unsure about how software consumes

energy. These results highlight the need

for training on energy consumption. //

WITH THE rising popularity of mo-
bile computing and the advent of
large-scale cloud deployments, the
nonfunctional requirement of mini-
mizing software energy consumption

has become a concern. For mobile
devices, energy consumption affects
battery life and limits device use.
For datacenters, energy consumption
limits the number of machines that

can be run and cooled. According to
an IDC white paper, “Today, for ev-
ery $1.00 spent on new hardware, an
additional $0.50 is spent on power
and cooling, more than double the
amount of � ve years ago. Datacenters
at their power and cooling thresholds
are unable to support new server de-
ployments, a fact that severely limits
the expansion of IT resources.”1

Unfortunately, the demand for
energy-ef� cient computing isn’t re-
� ected in the education, training,
or knowledge of programmers. Pro-
grammer training often focuses on
methodologies such as object-oriented
programming and nonfunctional re-
quirements such as performance.
Performance optimization is often
considered a substitute for energy
optimization because a faster system
likely consumes less energy. Although
this is a step in the right direction,
it’s insuf� cient and sometimes even
incorrect. For instance, parallel pro-
cessing might improve performance
by reducing calculation time. How-
ever, saving and restoring execution
context, scheduling threads, and los-
ing locality might end up consum-
ing more resources than sequential
processing.2

A previous analysis based on
energy-related questions on Stack-
Over� ow (http://stackover� ow.com)
showed that programmers had many
such questions but rarely got appro-
priate advice.3 To gain more tangi-
ble evidence of and concrete insight
into this problem, we surveyed pro-
grammers to gauge their knowledge
of software energy consumption
and ef� ciency. In particular, we ad-
dressed four questions. Are pro-
grammers aware of software energy
consumption? What do they know
about reducing it? What’s their level
of knowledge about it? What do they
think causes spikes in it?

FEATURE: GREEN SOFTWARE

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: GREEN SOFTWARE

The Survey
An anonymous online survey com-
prised 13 questions in four phases
(full survey details, data, and analy-
sis can be found online4).

Phase 1 involved three questions
regarding respondent demographics:

• How many years of program-
ming experience do you have?

• How would you rank your
programming skill—beginner,
intermediate, or advanced?

• In what programming language
are you most proficient?

Phase 2 involved eight quantitative
questions. The first two evaluated the
respondents’ knowledge of software
energy consumption (using the com-
mon term “power consumption”5):

• For desktop computers, rank the
software power consumption of
the CPU, hard drive, memory,
network, and screen and GPU.

• For mobile devices, rank the
software power consumption of
the CPU, data storage device,
memory, network, and screen
and GPU.

The next six yes/no questions
gathered information about the re-
spondents’ experience with software
energy consumption:

• Do you take power consumption
into account when developing
software?

• Is minimizing power consump-
tion a requirement or a concern
of your software?

• Have users complained
about your software’s power
consumption?

• Have you modified your
software to reduce power
consumption?

• Have you measured your soft-
ware’s power consumption? If
yes, how do you measure it? (If
the respondent answered yes, the
questionnaire provided addi-
tional space for a text response.)

• Would power consumption be
one of your decision factors
when choosing a mobile develop-
ment platform?

Phase 3 involved two qualita-
tive questions, allowing respondents
to further express their knowledge
and experience regarding software’s
power consumption:

• What software functions have
higher power consumption?

• How would you improve your
software’s power efficiency?

Phase 4 involved optional qualita-
tive follow-up interviews.

We posted survey invitations in
numerous programming-related Red-
dit (www.reddit.com) subgroups
(sub reddits) between 20 August and
4 September 2013. We received 122
responses and conducted four follow-
up interviews.

The Results
The survey respondents identified
themselves as programmers. Of the
122 respondents, 37 (30 percent)
used C or C++ and 84 (69 percent)
used C#, Java, JavaScript, Perl,
PHP, Python, or Ruby. According
to the November 2014 TIOBE Index
(www.tiobe.com/index.php/tiobe
_index), these languages accounted
for 54 percent of existing programs
and likely represented more than
half the software running in data-
centers. In addition, Java is the
 primary language for Android and
BlackBerry, whereas C# is the pri-
mary language for Windows Phones.

Programmers Have Limited Awareness
of Software Energy Consumption
Our survey results show that the pro-
grammers rarely addressed energy
efficiency and that users rarely re-
quested it. Only 22 respondents (18
percent) claimed to take energy con-
sumption into account when devel-
oping software. Only 17 respondents
(14 percent) considered minimizing
energy consumption a requirement.
Twenty-six respondents (21 percent)
said they modified software to re-
duce energy consumption.

One interviewee indicated that
clients “care first and foremost about
speed of development, and secondly
about reasonable quality and perfor-
mance.” This suggests that the lack
of attention to software energy con-
sumption is an issue of priorities.

These results show that these pro-
grammers either were unaware of
energy efficiency or weren’t asked
to address it. An interviewee men-
tioned that “1 watt would be a lot
of power for a mobile phone, [but]
it’s absolutely negligible in compari-
son to other household appliances.”
That 1 watt might be negligible on
the personal level, but on the global
level, energy consumed by all mo-
bile devices and datacenters multi-
plies. In 2006, 6,000 US datacen-
ters reportedly consumed 61 billion
kilowatt-hours of energy costing
US$4.5 billion.6

Similarly, software users and cli-
ents were unaware of software en-
ergy consumption. Only 4 respon-
dents (3 percent) reported that their
users complained about their soft-
ware’s energy consumption.

Our results confirmed Hammad
Khalid and his colleagues’ finding
that mobile-application users have
low awareness of resource use.7
Their results showed that resource-
related complaints (application re-

 MAY/JUNE 2016 | IEEE SOFTWARE 85

views), including energy consump-
tion complaints, ranked last out
of 12 types of user complaints in
terms of frequency. Although users
don’t complain frequently about re-
source consumption, Khalid and his
colleagues’ results also show that
resource-related complaints nega-
tively affect users. So, despite the
low frequency of such complaints,
they’re highly troubling. If custom-
ers and clients aren’t asking for
energy-efficient software, program-
mers are less likely to address the en-
ergy efficiency of software. Hence,
appropriate public education and ex-
panded awareness among clients and
programmers about software energy
consumption is needed.

Programmers Lack Knowledge
of Reducing Software Energy
Consumption
To reduce software energy consump-
tion, programmers must start by
measuring the energy consumption
of their software. Only 12 respon-
dents (10 percent) said they did this.
Fifteen respondents (12 percent) in-
dicated that you can measure soft-
ware energy consumption through a
power meter, the battery, the power
supply, resource measurement, soft-
ware tools, and CPU time.

These results show that these pro-
grammers lacked knowledge of how
to accurately measure software en-
ergy consumption. Most of the sug-
gested methods measure the overall
hardware energy consumption, not
the fine-grained energy consumption
of the software. In addition, mobile-
device batteries don’t accurately re-
port the actual energy use.5 Ding Li
and his colleagues also found that
programmers used “typical practices
in energy measurement studies …,
[which] have limitations that could
introduce inaccuracy.”8

Measuring software energy con-
sumption is a challenge. One inter-
viewee stated that “one has to have
a proper understanding of the entire
system [to] make an informed [en-
ergy consumption] analysis.” Pro-

grammers have to understand the
interactions between high-level and
low-level components to really ana-
lyze the root causes of software en-
ergy consumption. The survey and
interviews showed that most of the
respondents had difficulty measur-
ing and optimizing software energy
consumption even when the appro-
priate tools were available.

Another interviewee admitted,
“It’s more often the hardware rather
than the software that we are in-
terested in when we talk about en-
ergy consumption.” Although few
respondents measured the energy
consumption of their software, 79
(65 percent) of them considered en-
ergy consumption as a factor when
choosing a mobile development
platform. Many respondents relied
on choosing the right platform and
hardware to ensure the energy effi-
ciency of their software. However,
they rarely addressed software en-
ergy consumption.

Figure 1 summarizes how the re-
spondents would improve energy
consumption. Nineteen respondents
(16 percent) were aware that better
algorithms lead to better energy ef-
ficiency, which was the most popular
suggestion. Only 11 (9 percent) and
8 (7 percent) of the respondents, re-

spectively, were aware that less com-
putation and reduced polling can
reduce energy consumption. The
results show that the respondents’
ideas about how to best reduce
software energy consumption var-

ied widely. Furthermore, university
courses don’t often teach about the
link between better algorithms and
energy consumption.

Programmers Lack Knowledge
of Software Energy Consumption
Figure 2 summarizes the respon-
dents’ rankings of the software en-
ergy consumption for desktop com-
puter and mobile-device components.

For desktop computer compo-
nents, we expected these rank-
ings (from highest to lowest
consumption):

 1. CPU,
 2. hard drive,
 3. screen and GPU,
 4. network, and
 5. memory.

For mobile-device components, we
expected these rankings:

 1. screen and GPU,
 2. CPU,
 3. network,
 4. hard drive, and
 5. memory.

We based these rankings on current
conventional wisdom, backed up
by experiments we had performed

The demand for energy-efficient computing
isn’t reflected in the education, training, or

knowledge of programmers.

86 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: GREEN SOFTWARE

over the past three years and recent
studies.5,8,9 Because these rankings
weren’t written in stone, they could
differ among speci� c hardware. We
were focusing on the consistency of
rankings across all respondents, in-
dependent of our expected rank-
ing. For desktop computers, only 1
respondent (1 percent) ranked the
components in our expected order.
For mobile devices, 12 respondents
(10 percent) ranked the components
in our expected order.

Using Spearman’s rank correla-
tion, we compared the respondents’
rankings with the expected rank-
ing. Generally, positive correlations
closer to 1 indicate stronger agree-
ment. If two rankings completely
match, their correlation is 1. If
they’re the inverse of each other, the
correlation is –1. If they’re unrelated,
a correlation near 0 is possible.

For desktop computers, the aver-
age correlation between the respon-
dents’ rankings and the expected
ranking was 0.48, indicating a me-
dium level of agreement. For mo-
bile devices, the average correlation
was 0.75, indicating a much stronger
agreement. The correlation’s standard

deviation was 0.25 for desktop com-
puters and 0.20 for mobile devices.

We also used Spearman’s rank
correlation to compare the respon-
dents’ rankings against each other
(interagreement), regardless of the
expected ranking. The correlation
was 0.3 for desktop computers
and 0.6 for mobile devices. So, re-
spondents had less internal agree-
ment on the energy consumption
of desktop computer components
than on the consumption of mobile-
device components. The correla-
tion’s standard deviation was 0.48
for desktop computers and 0.32
for mobile devices. This implies
that respondents agreed less about
the energy consumption of desktop
hardware components and more
about the energy consumption of
mobile-device components.

In other words, considerable dis-
agreement existed on whether a par-
ticular component consumed more
energy than another. One explana-
tion might be that different types of
programmers make different assump-
tions about the energy consumption
of hardware components. For ex-
ample, game programmers interact

mostly with the screen and GPU, so
they’re more likely to identify the
screen and GPU as the most energy-
consuming components. Program-
mers might blame the most obvious
component without understanding
how software consumes energy.

Furthermore, programmers might
focus overly on their users’ on-screen
experience—that is, on what’s observ-
able. The respondents overwhelm-
ingly ranked the screen and GPU as
the highest-energy-consuming com-
ponents: 82 respondents (67 per-
cent) for desktop computers and 95
respondents (78 percent) for mobile
devices. It is true, though, that the
screen and GPU often consume the
most energy on mobile devices.

The overall results show that
programmers lack consistent knowl-
edge regarding the energy consump-
tion relationship between software
and hardware. Nonetheless, pro-
grammers have more consistent
knowledge about software energy
consumption on mobile devices
than on desktop computers. So, it
might be more effective to develop
education and awareness programs
and guidelines for speci� c domains
(for example, mobile devices and
gaming).

Programmers Are
Unaware of Software
Energy Consumption’s Causes
Gustavo Pinto and his colleagues
mined StackOver� ow data to iden-
tify seven causes of unnecessary
software energy consumption:3

• unnecessary resource use,
• faulty GPS behavior,
• background activities,
• excessive synchronization,
• background wallpapers,
• advertisements, and
• high GPU use.

No
 o

f p
ar

tic
ip

an
ts

12
14
16
18
20

10
8
6
4
2
0

Bet
ter

 alg
orit

hm

Les
s co

mput
atio

n

Impro
ve

net
work

 ac
ces

s

Bet
ter

 I/O
 ac

ces
s

Sle
ep

Impro
ve

gra
phi

c h
and

ling

Avo
id p

ull
or

pol
l

Tes
t an

d im
pro

ve

Impro
ve

cac
hin

g

Bet
ter

 ha
rdw

are

Impro
ve

multi
thr

ead
ing

Tas
k b

und
ling

Avo
id s

ens
or

Les
s u

ser
 int

era
ctio

n

Par
alle

lism

Virt
ual

iza
tion

User
 na

tive
 co

de

FIGURE 1. Respondents’ responses regarding ways to improve software energy

ef� ciency. The respondents’ answers varied widely, indicating the need for increased

education on software energy consumption and ef� ciency.

MAY/JUNE 2016 | IEEE SOFTWARE 87

Our results closely matched the
results of Pinto and his colleagues.
Taken as a group, the respondents
identi� ed most of Pinto’s seven
causes. For example, in Figure 3,
“Network” refers to unnecessary re-
source use, “Sensor” refers to faulty
GPS behavior, “Threading” refers
to background activities, “Pulling
or polling” refers to excessive syn-
chronization, and “Graphics” refers
to background wallpapers and high
GPU use. The respondents didn’t
identify advertisements.

However, individually, only 19
respondents (16 percent) identi� ed
network data access as a cause of
high energy consumption. The low
identi� cation rate matches the ob-
servation of Li and his colleagues.8
Six respondents (5 percent) identi-
� ed pulling or polling for excessive
synchronization. Only 4 (3 per-
cent) identi� ed sensor use, which
can leave the GPS turned on for too
long. Thirty-� ve (29 percent) identi-
� ed graphics as a cause of high en-
ergy consumption for functions such
as background wallpapers and ani-
mations. In short, the numbers show
that only a few of the respondents
could identify the causes of high en-
ergy consumption.

Limitations
One limitation was our use of social
media to recruit survey respondents,
instead of directed emails or phone
calls. Nevertheless, through social
media, we were able to reach pro-
grammers in the � eld whom we oth-
erwise couldn’t have reached. More
than half a million users have sub-
scribed to programming-related sub-
reddits, which often have more than
1,000 concurrent users. To avoid
having our survey invitation tagged
as spam and to avoid negative reac-
tions, we posted it to one relevant sub-

(b)

No
. o

f p
ar

tic
ip

an
ts

Rank

60

1st 2nd 3rd 4th 5th

80

100

40

20

0

(a)

No
. o

f p
ar

tic
ip

an
ts

Rank

60

1st 2nd 3rd 4th 5th

80

100

40

20

0

Screen and GPU

CPU

Network

Storage device

Memory

CPU

Hard disk

Network

Screen and GPU

Memory

FIGURE 2. Respondents’ rankings of energy consumption for the components of

(a) desktop computers and (b) mobile devices. Considerable disagreement existed on

whether a particular component consumed more energy than another.

No
. o

f p
ar

tic
ip

an
ts

30
35
40

25
20
15
10
5
0

Gra
phi

cs

Com
put

ati
on

Ne
twork

Medi
a a

cce
ss

Pul
ling

 or
 po

llin
g

Sen
sor

Ba
d a

lgo
rith

m

Mem
ory

Thr
ead

ing

An
tivi

rus

FIGURE 3. Respondents’ responses regarding causes associated with high energy

consumption. Only a few of the respondents could identify those causes.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: GREEN SOFTWARE

reddit at a time. This process signi� -
cantly lengthened the data-gathering
period and limited the number of
respondents.

Another limitation is that we
didn’t control for the development
process that the respondents used.
Many development processes exist.
An enterprise might employ the full
COBIT (Control Objectives for In-
formation and Related Technology;
www.isaca.org/cobit) development
cycle. A mid-size shop might use
agile processes. A one-man startup
might do whatever is necessary. In a
formal process, programmers might
not have the opportunity to specify
the functional or nonfunctional re-
quirements. But surveying a statisti-
cally signi� cant number of program-
mers for each process type would
have been dif� cult. So, we surveyed
a board range of programmers. Fu-
ture studies need to investigate the
energy consumption knowledge of
IT workers in different roles.

A third limitation is that we fo-
cused on programmers’ software
energy consumption knowledge.
Soft ware has many nonfunctional
requirements (for example, memory
use, performance, security, and us-
ability); energy consumption is just
one of them, albeit the least-studied
one. However, although nonfunc-
tional requirements might affect each
other, mixing other criteria into our
study might have blurred the results.

T he programmers in our
study lacked knowledge
and awareness of software

energy-related issues. More than 80
percent of them didn’t take energy
consumption into account when
developing software. Nevertheless,
most of them considered software
energy consumption to be important

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CANDY PANG is a PhD student in computing science at the

University of Alberta. Her research interests are enterprise

application design, implementation, maintenance, and educa-

tion. She was an application architect in multiple Government

of Alberta ministries for more than 13 years. Pang received

her BSc and MSc in computing science from the University

of Alberta. She’s a member of ACM and is an Information

Systems Professional and Information Technology Certi� ed

Professional. Contact her at cspang@ualberta.ca.

ABRAM HINDLE is an assistant professor of computing

science at the University of Alberta. His research focuses

on problems with mining software repositories, improving

software-engineering-oriented information retrieval with

contextual information, and software maintenance’s impact

on software energy consumption. Hindle received a PhD in

computer science from the University of Waterloo. Contact him

at abram.hindle@ualberta.ca; http://softwareprocess.ca.

BRAM ADAMS is an assistant professor at Polytechnique

Montréal, where he heads the Maintenance, Construction, and

Intelligence of Software lab. His research interests include

software release engineering, software integration, software

build systems, software modularity, and software mainte-

nance. Adams received a PhD in computer science engineering

from Ghent University. He is one of the organizers of the Inter-

national Workshop on Release Engineering and is a member of

IEEE. Contact him at bram.adams@polymtl.ca.

AHMED E. HASSAN is the Canada Research Chair in

Software Analytics and the Natural Sciences and Engineering

Research Council of Canada / BlackBerry Software Engineer-

ing Chair at the School of Computing at Queen’s University.

His research interests include mining software repositories,

empirical software engineering, load testing, and log min-

ing. Hassan received a PhD in computer science from the

University of Waterloo. He spearheaded the creation of the

International Conference on Mining Software Repositories and

its research community. Hassan also serves on the editorial

boards of IEEE Transactions on Software Engineering, Empirical
Software Engineering, Computing, and PeerJ Computer Science.

Contact him at ahmed@cs.queensu.ca.

 MAY/JUNE 2016 | IEEE SOFTWARE 89

when choosing a mobile develop-
ment platform.

The fact that only 3 percent of
the respondents received complaints
about software energy consumption
might suggest that users are unaware
of it. As Chenlei Zhang and his col-
leagues argued, the creation of bench-
marks and reporting mechanisms
(similar to Energy Star) that inform
users of software energy efficiency
can significantly increase user aware-
ness.10 Increased user awareness will,
in turn, motivate programmers to
measurably enhance their software’s
energy efficiency. As one Reddit re-
spondent commented, the “survey
has at least made me consider ... pos-
sible costs of doing things.”

Pinto and his colleagues identi-
fied eight strategies to reduce en-
ergy consumption through software
modification:3

• minimizing IO,
• bulk operations,
• avoiding polling,
• hardware coordination,
• concurrent programming,
• lazy initialization,
• race to idle, and
• efficient data structure.

These strategies should be part of
programmers’ education. In addition,
development tools can be created to
identify unnecessary energy consump-
tion and suggest how to reduce it. Ed-
ucators could develop slides, videos,
projects, and assignments as part of
an undergraduate curriculum for en-
ergy efficiency and sustainability.

References
 1. J. Scaramella and M. Eastwood, So-

lutions for the Datacenter’s Thermal

Challenges, white paper, IDC, Jan.

2007; http://ecoinfo.cnrs.fr/IMG

/pdf/idc_WHITE_PAPER

_-_Solutions_for_the_Datacenter

_s_Thermal_Challenges_.pdf.

 2. B. Göetz et al., Java Concurrency in

Practice, Addison-Wesley, 2006.

 3. G. Pinto, F. Castor, and Y.D. Liu,

“Mining Questions about Software

Energy Consumption,” Proc. 11th

Working Conf. Mining Software

Repositories, 2014, pp. 22–31.

 4. C. Pang, “Technical Summary:

What Do Developers Know about

Software Energy Consumption and

Power Use?,” 2013; http://webdocs.cs

.ualberta.ca/~hindle1/2014/green

-programmers.

 5. A. Hindle, “Green Mining: A Meth-

odology of Relating Software Change

to Power Consumption,” Proc. 9th

Working Conf. Mining Software

Repositories (MSR 12), 2012, pp.

78–87.

 6. P. Kurp, “Green Computing,” Comm.

ACM, vol. 51, no. 10, 2008, pp.

11–13.

 7. H. Khalid et al., “What Do Mobile

App Users Complain About?,” IEEE

Software, vol. 32, no. 3, 2015, pp.

70–77.

 8. D. Li et al., “An Empirical Study of

the Energy Consumption of Android

Applications,” Proc. IEEE Int’l Conf.

Software Maintenance and Evolu-

tion, 2014, pp. 121–130.

 9. A. Banerjee et al., “Detecting Energy

Bugs and Hotspots in Mobile Apps,”

Proc. 22nd ACM SIGSOFT Int’l

Symp. Foundations of Software Eng.,

2014, pp. 588–598.

 10. C. Zhang, A. Hindle, and D.M. Ger-

mán, “The Impact of User Choice on

Energy Consumption,” IEEE Soft-

ware, vol. 31, no. 3, 2014, pp. 69–75.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Ju
ly

 •
 A

u
g

u
s

t
2

01
5

IC-19-04-c1 Cover-1 June 8, 2015 5:43 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G

JU
ly • A

U
G

U
sT 2015

CO
N

TIN
U

O
U

s D
IG

ITA
l H

EA
lTH

VO

l. 19, N
O

. 4
w

w
w

.CO
M

PU
TER

.O
RG

/IN
TERN

ET/

Keeping the web searchable
Building Future IoT Apps
The Right to Be Forgotten

n
o

v
em

b
er

 •
 d

ec
em

b
er

 2
01

5

IC-19-06-c1 Cover-1 October 9, 2015 3:26 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G

N
O

VEM
BER • D

ECEM
BER 2015

TH
E IN

TERN
ET O

F yO
U

VO

l. 19, N
O

. 6
w

w
w

.CO
M

PU
TER

.O
RG

/IN
TERN

ET/
se

P
te

m
b

er
 •

 o
c

to
b

er
 2

01
5

IC-19-05-c1 Cover-1 August 11, 2015 3:06 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G

sEPTEM
BER • O

C
TO

BER 2015
sM

A
ll w

EA
R

A
BlE IN

TERN
ET

VO
l. 19, N

O
. 5

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

Mobile-Friendly Matters
Big Data’s Bounds
Future Cybersecurity Solutions

JA
n

u
A

r
y

•
fe

b
r

u
A

r
y

2
01

6

IC-20-01-c1 Cover-1 December 7, 2015 1:45 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G

JA
N

U
A

Ry • FEBRU
A

Ry 2016
IN

TERN
ET ECO

N
O

M
ICs

VO
l. 20, N

O
. 1

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

m
A

r
c

h
 •

 A
P

r
il

 2
01

6

IC-20-02-c1 Cover-1 February 11, 2016 10:30 PM

IEEE IN
TERN

ET CO
M

PU
TIN

G

M
A

RCH
 • A

PRIl 2016
ExPlO

RIN
G

 TO
M

O
RRO

w
’s IN

TERN
ET

VO
l. 20, N

O
. 2

w
w

w
.CO

M
PU

TER
.O

RG
/IN

TERN
ET/

Want more know more about the Internet?
This magazine covers all aspects of Internet computing, from programming and standards to security and networking.

www.computer.org/internet

