
Using Control Charts for Detecting and Understanding Performance Regressions in
Large Software

Thanh H. D. Nguyen
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Kingston, Ontario, Canada
thanhnguyen@cs.queensu.ca

Abstract—Load testing is a very important step in testing of
large-scale software systems. For example, studies found that
users are likely to abandon an online transaction if the web
application fails to response within eight seconds. Performance
load tests ensure that performance counters such as response
time stays in the acceptable range after each change to the code.
Analyzing load tests results to detect performance regression is
very time consuming due to the large amount of performance
counters.

In this thesis, we propose approaches that use control charts,
a statistical process control technique, to assist performance
engineers in identifying test runs with performance regressions,
pinpointing the components which cause the regressions, and
determining the causes of regressions in load tests. Using our
approaches, engineers will save time in analyzing the results
of load tests.

Keywords-load testing; root cause analysis; statistical process
control; control charts

I. INTRODUCTION

Performance is an importance aspect of large software
systems which would have to process thousands of trans-
actions to thousands of users concurrently. Unfortunately, a
large number of field problems are performance related [1].
For example, web users usually lost patience after eight
seconds [2]. They most likely leave the site after a ten
seconds wait. Such a situation has serious implication on
the vitality of a business.

Load testing, which is a type of performance test, ensures
that the performance is satisfactory to the users and that there
is no performance regression. Performance regression means
that a new version performs worse that the previous version
of the software. A performance regression indicates that
the changes to the software degraded its performance. For
example, a change in the database schema might increase
the response time of a query by 10%. This 10% can push
the overall response time of the system over the ten seconds
threshold.

Today, analyzing load tests is a time consuming and
error-prone manual process [3], [4]. Each test run produces
thousands of performance counters such as CPU utilization,
memory usage, disk I/O, or network I/O.

In my thesis, I want to develop an approach that can
automatically identify performance regressions in load test

runs, pinpointing the components which cause the regres-
sions, and determining the root causes of regressions in
load tests. My approaches are based on a statistical process
control technique called control charts. Control charts are
commonly used in manufacturing process to identify prob-
lems with output products. Software systems are very similar
to manufacturing processes. I want to apply control charts
to analyze load tests’ results.

This thesis aims to provide two important contributions
to performance engineering:

• Detection of performance regression: Manually de-
termining if, where, and what performance regression
problems occur during a load test is very time con-
suming. This thesis aims to develop automatic or semi-
automatic approaches that can speed up the process.

• Explanation of the nature of such regression: The
same model used to detect problems can also be used
to explain the nature of performance regression. Such
an explanatory model can help engineers resolve the
regression.

II. LOAD TESTING

The goal of load testing is to ensure that performance
of a software system stays in an acceptable level and is
not worse than the previous version of the software. For
example, the response time of a web server must be less
than ten second. The response time of the latest version is
eight seconds. If the new version’s response time is eleven
then it is unacceptable. If the new version response time is
nine seconds, it is still acceptable but there is a performance
regression that must be explained.

In a performance test run, engineers put the software un-
der a field-like load. During the run, performance counters,
such as response time, throughput, CPU utilization, memory
utilization, or IO access per second, and execution logs are
recorded. After the run finishes, engineers need to analyze
the test results. They compare the counters of the new test
run, called target run, to the counters of past test runs,
called baseline runs, which are known to be satisfactory. If
there is a significant change in the counters, a performance
regression is detected and additional root cause analysis is
performed to understand and possibly resolve the regression.



Execution logs are also examined for errors. However, this
thesis is only focus on performance counters.

III. CHALLENGE IN LOAD TEST ANALYSIS

After a test run, which can take anywhere from a few
hours to several days, engineers need to analyze the perfor-
mance counters to answer the three questions. They typically
compare counters of the new test run (target run) with the
good past runs (baseline runs). This section describes each
of these questions as a problem which I plan to address in
the thesis.

A. Problem 1: Is there a performance regression?

A performance regression means that the software per-
forms worse than before. For example, if the response
time is higher, then there maybe a performance regression.
Comparing the counters is not a trivial problem in large and
complex software systems. For example, it is impossible to
replicate the same load across the test runs. So comparing
the mean response time would not be accurate.

Input: Resource and customer-facing counters of the
target run and the equivalent counters of the baseline runs.

Output: Probability that performance regression occurred
in the target run.

B. Problem 2: Where does performance regression occur?

Large software systems consist of several types of com-
ponent. For example, the Apache Tomcat [5] application
server has six different components (server, service, engine,
host, connector, and context). Each of these components may
have many instances. Assuming that performance regression
is detected, engineers have to pinpoint the instance of a
component where the regression occurs. This is a very
challenging task because there are many counters for each
instance of a component. The total number of performance
counters can be thousands. In practice, engineers usually
have to manual compare each counters of the target run to
the corresponding counters of the baseline runs. This is a
very time consuming process.

Input: Resource counters of the past baseline test runs
and the equivalent counters of the new target run.

Output: Probability for each component which represents
the chance that the performance regression occurs in that
particular component.

C. Problem 3: What causes the regression?

After determining from where the regression comes from,
the engineers will need to determine what caused that re-
gression. There are common types of performance problems.
For example, a high-frequency database query takes longer
because of a change in the indexes. Another example is
that a log print-out was left in the code so the component
produces more log lines which requires much more I/O.
Understanding the kind of problem usually requires static

analysis of source code. Such analysis would require time
and may be out of the expertise of the test engineers.

Input: Resource counters of the past baseline test runs
and the equivalent counters of the new target test.

Output: Probability for each known cause which is likely
the root-cause of the performance regression in the target
test.

IV. THE PROPOSED SOLUTION: AUTOMATIC DETECTION
AND EXPLANATION OF PERFORMANCE REGRESSION

USING CONTROL CHARTS

In this thesis, I propose automatic approaches using con-
trol charts to the problems outlined in the previous section.

A. Control charts.

Control charts were first introduced by Shewhart [6]
at Bell Labs, formerly known as Western Electric, in the
early 1920s. The goal of control charts is to automatically
determine if a deviation in a process is due to common
causes, e.g., input fluctuation, or due to special causes,
e.g., defects. Control charts were originally used to monitor
deviation on telephone switches. Control charts have since
become a common tool to detect problems in manufacturing
processes where raw materials are inputs and the completed
products are outputs.

Figure 1(a) and 1(b) show two example control charts. The
x-axis is time, e.g., minutes. The y-axis is the process output
data. For this example, we are monitoring the response time
of a web server. The two solid lines are the Upper Control
Limits (UCL) and Lower Control Limit (LCL). The dashed
line in the middle is the Centre Line (CL). Figure 1(a) is
an example where the response time is within its control
limits. This should be the normal operation of the web
server. Figure 1(b), on the other hand, is an example where
a process output is out-of-control. In this case, operators
should be alerted for further investigation.

A control chart is typically built using two datasets: a
baseline dataset and a target dataset. In our case, the baseline
dataset is the counter readings from the baseline runs. The
target dataset is the counter readings from target run. The
baseline dataset is used to create the control limits, i.e.,
LCL, CL, and UCL. In the example of Figure 1(a) and 1(b),
the baseline set would be the response time of baseline test
runs. The CL is the median of all samples in the baseline
dataset at particular time. The LCL is the lower limit of
the normal behaviour range. The UCL is the upper limit.
The LCL and the UCL can be defined in several ways. A
common choice is three standard deviations from the CL.
The target dataset is used to score against the control limits
of the baseline dataset. In Figure 1(a) and 1(b), the target
data are the crosses. Those would be the response time of
the new target test.

The result of an analysis using control chart is the
violation ratio. The violation ratio is the percentage of the



x

x

x
x

xx

x

xx
xx

x

xx
x
x

x

x
x
x

xx

x
x
x
xx

xxx

x
x
x

x
xx

x
xxxx

x
xxxx

x
x

xx
x
x

x

x

Time

R
es

po
ns

e 
tim

e x

Baseline LCL,UCL
Baseline CL
Target

(a) Normal operation

xxx
xx

x
x
x
xx

x
xx

x

xx

x
x
x
x

x

x

x
x

x

x

x
x

x
x
x

xx
x

x
x
x
x

xx

x
x
x

x

xx
x

xx

xx

x
x

x

Time

R
es

po
ns

e 
tim

e x

Baseline LCL,UCL
Baseline CL
Target

(b) Out-of-control

Figure 1. Example of control chart which detect deviation in process output.

target dataset that is outside the control limits. The violation
ratio represents the degree to which the current operation is
out-of-control. In Figure 1(a) and 1(b), the violation ratio is
percentage the crosses that are outside the LCL and UCL
lines.

B. Load Test Analysis Using Violation Ratios

Figure 2 shows the conceptual diagram of our proposed
approach. For each counter, e.g., CPU utilization, in the
target test, we will collect the same counter from the baseline
tests. We use the baseline counter readings to determine the
control limits. Then we will score the violation ratio for that
counter. The violation ratios of all the counters of the target
test are the inputs of our load test analysis approach.

To solve the first problem, our approach will use suitable
methods to compare the target counters with the baseline
counters in order to detect performance regression. For
example, if the violation ratio of the response time counter
is greater than 30%, then there is performance regression.

To solve the second and third problem, our approach will
use machine learners, such as decision trees, linear models,
or support vector machines, on the counters’ violation ratio
to determine where and what problem occurs. The training
set of the learner would be a repository of known problems.
For example, if the database index changes, the CPU and
memory utilization of the database component will have high
violation ratios. The testing set of the learner would be the
violation ratios of target test. The learners will match the
violation ratios in the target run with each of the known
problems and output a probability which indicates where
and what regression problem occurred in the run.

V. RELATED WORK

The approaches in this thesis needs to leverage knowledge
from two software and system engineering fields: Load test
analysis, system monitor, and root cause analysis.

Load test analysis. Performance engineering studies tech-
niques that can be used to determine problems during a
performance load test. For example, Foo et al. [4], [7]
detected the change in behaviour among the performance
counters using association rules. If the differences are higher

than a threshold, the run is marked as problematic. Malik [8]
used a factor analysis technique called principle component
analysis to transform all the counters into a small set of more
distinct vectors. Then they compare the pairwise correlations
between the vectors in the target run with those of the
baseline run. These techniques are state of the art in load
test analysis. However, control charts are more intuitive than
associate rules and principal components. Initial feedback
from practitioners has shown that the approach and the
analysis results are easier to comprehend and explain.

System monitor. In system research, there are techniques
to detect problems of production software systems. For
example, Cohen et al. [9] used a learner called Tree-
Augmented Bayesian Networks to identify combinations of
related metrics that are highly correlated with faults. Jiang
et al. [10] used Normalized Mutual Information to cluster
correlated metrics. Then they used Wilcoxon Rank-Sum test
on the metrics to identify faulty components. Cherkasova
et al. [11] developed regression-based transaction models
from the counters to identify software runtime problems.
Although runtime problems are not necessarily performance
related, I hope to apply the learner proposed in these studies
to find solutions for problems two and three.

Root cause analysis. Root cause analysis studies tech-
niques that can be used to determine root causes of software,
hardware, or network failures. For example, Julisch [12]
used clustering algorithm to determine root causes of in-
trusion alarms. They were able to reduce 90% of alarms to
a few dozen causes. Yan et al. [13] used cause and effect
rules on and ISP network to build a decision tree which
can determine the root causes of network problems. Leszak
et al. [14] studied the root cause of software defects using
historical modification requests. They were able to group
defects into meaningful causes that can be avoid in future
development. Agarwal and Madduri [15] studied the root
causes of performance in software system. They were able
to accurately identify the changes that cause the performance
failures.

Problems two and three are essentially a root-cause anal-
ysis problems. So I also hope to leverage the findings of



Repository of 
load test 
results

Counters 
violation 

ratios

Run new 
target test

Target test
Counters

Baseline test 1
counters

Baseline test 2
counters

Where?

Regression 
Analysis

What?

1 2 3 4 5 6 7 8

� �
� �

�
�

�

�

1 2 3 4 5 6 7 81 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Time periods

P
er

fo
rm

an
ce

 C
o

u
n

te
r

1 2 3 4 5 6 7 8

�

Baseline LCL
Baseline CL
Baseline UCL
Target

Regression?Control limits

Repository 
of known 
problems

Figure 2. A conceptual diagram of our approach to performance regression analysis using control charts.

these studies to find suitable solutions.

VI. PROGRESS AND EVALUATION APPROACH

Progress has been made on the first problem. We proposed
an approach [16] which uses control chart on customer-
facing counters to detect performance regression in test runs.

To evaluate our approach, we used a large enterprise
software system and the open-source Dell DVD store1.
We introduced performance regressions into both systems
and performed controlled test runs. We then checked if
our approach could distinguish these problematic runs with
normal runs of the unmodified software. The approach was
able to distinguish between normal and problematic runs
with high accuracy.

For future studies, we are planning to evaluate our solution
to problem one with test runs that contains real field prob-
lems. We are also setting up more control runs to explore
solutions to the other two problems.

VII. CONCLUSION
This thesis aims to derive control-chart based approach

for load testing analysis. The feedback we received so
far from the enterprise system’s engineers for our first
approach [16] have been positive. The engineers especially
like the simplicity of the control charts. The analysis results
are easy to explain to their peers. Thus, we believe our
approach has high potential to be adopted in industry.

REFERENCES

[1] E. J. Weyuker and F. I. Vokolos, “Experience with per-
formance testing of software systems: issues, an approach,
and case study,” IEEE Transactions on Software Engineering
(TSE), vol. 26, no. 12, pp. 1147–1156, 2000.

[2] J. Palmer, “Designing for web site usability,” Computer,
vol. 35, no. 7, pp. 102–103, 2002.

[3] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Auto-
matic identification of load testing problems,” in International
Conference on Software Maintenance (ICSM), 2008, pp. 307–
316.

[4] K. C. Foo, J. Zhen Ming, B. Adams, A. E. Hassan, Z. Ying,
and P. Flora, “Mining performance regression testing repos-
itories for automated performance analysis,” in International
Conference on Quality Software (QSIC), 2010, pp. 32–41.

[5] The Apache Software Foundation, “Tomcat,” 2010, ver. 5.5.

1http://linux.dell.com/dvdstore

[6] W. Shewhart, Economic control of quality of manufactured
product. Van Nostrand, NY: American Society for Quality
Control, 1931.

[7] K. C. Foo, “Automated discovery of performance regressions
in enterprise applications,” Master’s thesis, School of Com-
puting, Queen’s University, 2011.

[8] H. Malik, “A methodology to support load test analysis,” in
International Conference on Software Engineering (ICSE).
Cape Town, South Africa: ACM, 2010, pp. 421–424.

[9] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. S.
Chase, “Correlating instrumentation data to system states:
a building block for automated diagnosis and control,” in
Symposium on Opearting Systems Design Implementation.
San Francisco, CA: USENIX Association, 2004, pp. 231–
244.

[10] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. S.
Ward, “Automatic fault detection and diagnosis in complex
software systems by information-theoretic monitoring,” in
International Conference on Dependable Systems Networks
(DSN), 2009, pp. 285–294.

[11] L. Cherkasova, K. Ozonat, M. Ningfang, J. Symons, and
E. Smirni, “Anomaly? application change? or workload
change? towards automated detection of application perfor-
mance anomaly and change,” in International Conference on
Dependable Systems and Networks (DSN), 2008, pp. 452–
461.

[12] K. Julisch, “Clustering intrusion detection alarms to support
root cause analysis,” ACM Trans. Inf. Syst. Secur., vol. 6,
no. 4, pp. 443–471, 2003.

[13] H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates,
“G-rca: a generic root cause analysis platform for service
quality management in large ip networks,” in International
COnference (CoNEXT). Philadelphia, Pennsylvania: ACM,
2010, pp. 1–12.

[14] M. Leszak, D. E. Perry, and D. Stoll, “A case study in
root cause defect analysis,” in International Conference on
Software Engineering, 2000, pp. 428–437.

[15] M. K. Agarwal and V. R. Madduri, “Correlating failures with
asynchronous changes for root cause analysis in enterprise
environments,” in Dependable Systems and Networks (DSN),
2010, pp. 517–526.

[16] T. H. D. Nguyen, B. Adams, Z. Jiang, A. E. Hassan,
M. Nasser, and P. Flora, “Automated verification of load tests
using control charts,” in Asia-Pacific Software Engineering
Conference, 2011.


