What Are the Characteristics of High-Rated Apps?
A Case Study on Free Android Applications

Yuan Tian*, Meiyappan Nagappan®, David Lo*, and Ahmed E. Hassan*
*Singapore Management University, Singapore
{yuan.tian.2012,davidlo} @smu.edu.sg
TRochester Institute of Technology, Rochester, USA
mei@se.rit.edu
iQueen’s University, Kingston, Canada
ahmed @cs.queensu.ca

Abstract—The tremendous rate of growth in the mobile app
market over the past few years has attracted many developers to
build mobile apps. However, while there is no shortage of stories
of how lone developers have made great fortunes from their apps,
the majority of developers are struggling to break even. For those
struggling developers, knowing the “DNA” (i.e., characteristics)
of high-rated apps is the first step towards successful development
and evolution of their apps.

In this paper, we investigate 28 factors along eight dimensions
to understand how high-rated apps are different from low-rated
apps. We also investigate what are the most influential factors by
applying a random-forest classifier to identify high-rated apps.
Through a case study on 1,492 high-rated and low-rated free
apps mined from the Google Play store, we find that high-rated
apps are statistically significantly different in 17 out of the 28
factors that we considered. Our experiment also shows that the
size of an app, the number of promotional images that the app
displays on its web store page, and the target SDK version of an
app are the most influential factors.

I. INTRODUCTION

In recent years, the “mobile app economy”, which refers to
the economy that has been created around the development
and delivery of software applications for smartphones and
tablets [9], has been growing rapidly. According to a 2013
repor the global app economy was worth $53 billion in
2012, and is expected to rise to $143 billion in 2016. The
fast growing mobile app market continues to attract more and
more developers with more than 2.3 million developers already
having their own apps published on app storesE] However,
while few developers have made great fortunes from their app,
the majority of the app developers are still struggling to break
even [40]]. Similar to a DNA that determines an organism’s
structure, there might be a specific “DNA” associated with
a successful application. Therefore, for those struggling de-
velopers, knowing the “DNA” (i.e., characteristics) of existing
successful apps can be one of the initial steps towards building
successful apps.

Measuring the success of a software system is difficult as
there is neither a universal metric nor a ranking scheme [12].

Uhttp://www.developereconomics.com/reports/
app-economy-forecasts-2013-2016/

“http://www.forbes.com/sites/tristanlouis/2013/08/10/
how-much-do-average-apps-make/

Similarly, for a mobile app, various values could be regarded
as indicators of app success. In this study, same as previous
studies [2], [14], [L7], [23], [43l], we choose app rating
as proxy for app success. There are other possibilities; for
example, one could consider using number of downloads to
identify successful apps. However, many users may download
an app without using it. Furthermore, in the Google Play store,
for each app, the number of downloads is shown as a range
(e.g., from 100,000 to 500,000), instead of an actual number,
making it hard to differentiate apps that fall in the same range.
Another possibility is to analyze comments that users may post
while rating an app. However, many users rate without giving
comments, and accurate automated identification of sentiments
from comments is still beyond the reach of state-of-the-art
natural language processing tools, c.f., [44].

Recent papers on analyzing factors relevant to app rating
find that there are relationships between app rating and factors
such as change and fault proneness of adopted Android APIs,
complexity of user interface, and application churn [2f], [14],
[L7], [23], [43]]. Although these prior studies give some initial
hints about the characteristics of high-rated apps, a slew of
additional factors can be considered. For instance, code com-
plexity is claimed to be significantly associated with defects
in software [37]]. Thus code complexity of a mobile app could
potentially impact the rating of an app because more defects
might lead to poor rating. Besides code complexity, many other
characteristics could be investigated by mining app store. In
addition, given the fact that app rating is affected by multiple
factors, how these factors integrate together to impact app
rating is still unknown. To fill the gaps in current research,
in this study, we aim to examine much more factors that are
potentially associated to app rating and investigate what are
the most influential factors for identifying high-rated apps.

We focus on factors that developers can control and strive to
improve or change. For example, high-rated apps might have
larger volume of downloads, however number of downloads
is not considered as a factor in this work because it can
not be controlled by the developers. Our 28 factors (c.f.,
Section [l) are mined from information recovered from an
app’s binary, i.e., its Android Application package (APK),
and its Google Play store page. Our factors are grouped

http://www.developereconomics.com/reports/app-economy-forecasts-2013-2016/
http://www.developereconomics.com/reports/app-economy-forecasts-2013-2016/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/
http://www.forbes.com/sites/tristanlouis/2013/08/10/how-much-do-average-apps-make/

along eight dimensions: 1) size of app, 2) complexity of
code, 3) dependence on libraries, 4) quality of library code,
5) complexity of user interface, 6) requirements on users, 7)
marketing effort, and 8) category of app. We crawled 1,492
apps from the Play store and used our factors to explore the
following two research questions:

o RQI1: Is there a relationship between each factor and

app rating?
We collect 746 high-rated apps and 746 low-rated free
apps from the Google Play store and calculate the values
of the 28 factors for each app. For each factor, we apply
the Mann-Whitney U test to examine whether high-rated
apps are statistically significantly different from low-rated
ones. We also compute the effect size of the differences.
We find that in 17 out of the 28 factors, high-rated
apps are statistically significantly different from low-
rated ones. Generally, high-rated apps have larger sizes,
more complex code, more requirements on users, more
marketing efforts, more dependence on libraries, and
adopt higher quality Android APIs.

e RQ2: What are the important factors that could

indicate, with high probability, that an app will be
high-rated?
To compare the importance of the factors, we learn a
random-forest classifier using the factors as input features
to identify whether an app will be high-rated or not.
Correlation and redundancy analyses are applied to better
model the integrated impact of the factors on app rating.
We find that the install size of an app (from the size
dimension), the number of promotional images (from the
marketing effort dimension), and the target SDK version
(from the requirements on user dimension) are the top 3
most influential factors.

The structure of this paper is as follows. In Section
we present the factors that might impact the likelihood of an
app being a high-rated app. We describe our factor extraction
methodology and data processing steps in Section We
present and analyze the results for RQ1 and RQ2 in Sec-
tion We discuss additional points in Section [V] Related
work is described in Section We finally conclude and
briefly mention future directions in Section

II. FACTORS POTENTIALLY AFFECTING APP RATINGS

In this study, we consider 28 factors along eight dimensions,
that might be correlated with app rating. We describe the
meaning and rationale of each factor in Table

Size of App includes factors that capture the size of an app
in various ways. Larger apps might contain more features
or better functionality. Thus they might have higher ratings.
However, larger volume of code imply higher probability to
contain a bug [48], and hence might lead to lower ratings. Note
that, in Android, an APK file contains the code of an app, as
well as the resources (e.g., images or other media files) that
an app needs, thus install size captures additional information
rather than simply the size of the code.

Complexity of Code includes factors that represent the com-
plexity of an app code in various ways. Typically, high com-
plexity code has a higher chance to contain more bugs [37].
More bugs might cause more crashes while users are using
the app which can result in lower ratings. In this dimension,
we use six well-known Chidamber and Kemerer’s object-
oriented complexity metrics (CK metrics) [6], along with two
other metrics, average afferent coupling of classes (CA) [25],
and number of public methods (NPM) [1]] to capture code
complexity.

Dependence on Libraries includes factors that represents
mobile app’s dependence on library code. Compared with
traditional software, Android apps are reported to be heavily
dependent on libraries including the Android base libraries,
and other third-party libraries [41]. However, too much de-
pendence on the APIs might lock an app into the platform
or third party libraries, which might impact the quality of the
code [42]. For example, the rapid evolution of Android APIs
makes it hard for app developers to keep their app working
on newer API versions, leading to defects and inconsistencies
that impact the end user, which might lead to poor rating.

Quality of Library Code includes factors that are related to
change and fault proneness of library code used by an app.
They are reported to be related with app rating, i.e., high-rated
apps depend on more stable and reliable libraries [2], [23].

Complexity of UI includes factors that are related to the user
interface of an app. Inappropriate use of input and output
elements in a mobile screen of limited size might make an
app less user-friendly, which might lead to low ratings. For
instance, a user might feel frustrated, if too many input fields
need to be filled to complete a task or overwhelmed if too
many output elements are shown at the same time.

Requirements on Users includes factors related to require-
ments that a user must meet before they can use an app.
They are related to the specification and settings of the user’s
device. They might impact app rating in various ways. Larger
minimum sdk version and more required device features might
suggest that the app has provided more complex features.
Larger target sdk version might suggest that developers have
updated their app towards latest sdk version. Number of per-
mission might indicate the risk of causing privacy problems,
thus it might impact app rating.

Marketing Effort includes factors related to app-specific
information that is shown on the application store to entice
users to download the app. They are shown to users before they
install the app, and thus give the first impression to users. For
this dimension, we consider app description and promotional
images.

Category of App is a categorical variable to group a set of
related apps together. The category of an app might impact
how other factors affect ratings and might influence user’s
expectation of an app (e.g., users might be more forgiving for
a bug in a game app versus a financial app).

TABLE I: Factors potentially affecting the rating of an app.

Dimension Factor (Name) Explanation Rationale
Install size (installSize). i“gay) size of the APK file (measured Larger install size, number of classes, number
- - - of project classes might indicate more features
. Total number of classes (including . . R X
Size of App Total classes (num_class). library code) or better functionality. Activities and services
A5 classes y : are specific components of Android apps: an
(nIl)JIr)n rojectClass) Total number of app specific classes. activity provides a screen for users to interact,
_proj ey — - whereas a service is used to support
Number of activities Total number of activities defined in . . . L
.. . . long-running operations and interaction in the
(num_activity). the AndroidManifest.xml file.
- - - background. All of them suggest more elaborate
Number of services Total number of services defined in functionalit
(num_service). the AndroidManifest.xml file. Y.
Weighted methods per Mean of the number of methods in
class (wmc_mean). each class. . N .
Depth of inheritance tree Mean of the length of the inheritance Chldamb.er and Kemerer s obgect orlented.
. .) complexity metrics (CK metrics), along with
(dit_mean). chain of each class. .
- - - - CA and NPM, are metrics to measure code
. Number of children Mean of the number of immediate .
Complexity complexity [36]. They are also reported to be
(noc_mean). sub-classes of each class. :
- - - relevant to code quality, more complex code
Coupling between object Mean of the number of classes with
of Code B . tends to have more bugs [37].
classes (cbo_mean). which each class is coupled.
Mean of the number of different
Response for a class methods that can be executed when an
(rfc_mean). object of each class receives a
message.
Lack of cohesion in Mean of .the number of pairs of
methods (Icom_mean) methods in each class that do not
—) share at least one field.
Afferent coupling Mean of the number of other classes
(ca_mean). that depend upon each class.
Number of public Mean of the number of public
methods (npm_mean). methods in each class.
Total er@der_lcy on Total number of calls to libraries that . . .
Android libraries U S Library code might bring more elaborate
. . start with “android.”. e
Dependence (dep_android). functionality. However, too much dependence
Total dependency on Total number of calls to third part on the APIs might impact the quality of the
on Library third-party libraries oo party code [42].
(dep_third) libraries.
Percgntage dependency o
on Android libraries Percentage of calls to libraries that Similar with dep_android and dep_third, but
P P
. start with “android.”. . :
(dep_per_android). these two factors consider proportion.
Percep tage dep g]der}cy Percentage of calls to third party
on third-party libraries libraries
(dep_per_third). ’
Change of used Android Mean number of methods changed in . .
Quality of | API (api_change). the used Android API — see [2], [23). | Shange and defect-proneness of adopted
. —— > — Android APIs might represent quality of the
Library Faultiness of used Mean number of bugs in the used .
Code Android API (api_bug). Android API — see [2], [23]. used Android APIs [2], [23].
Complexit, Eﬁ?ui;etetl)nents per fayout f:esgtnumber of input elements per Complexity of user interface (in terms of input
P y _Inpub). youl. elements, and output elements) might impact
Output elements per Mean number of output elements per . LS
of UL . the success of an Android application [43].
layout (ui_ouput). layout.
High minimum SDK version suggests that apps
Minimum SDK version The minimum SDK version required are frequently updated to exploit the latest
(minSDK). for the app to run. features provided by the newest versions of the
Requirements SDK.
q . The SDK version that the app targets. A high target SDK version suggests that
Target SDK version . N .
on Users If not set, the default value equals to developers have tested their app on recent
(targetSDK). minSDK SDKs
Required device features Number of required features from Required device features might indicate the
(device_feature). user’s device (e.g., camera). functional complexity of the app.
Required user permission | Number of permissions needed from Some user might be sensitive to the number of
(user_permission). user. permissions, due to privacy concerns [5].
Length of description gluml‘aer' of W.Ords appearng mn the
. .. escription of the app on its Play store | Users might prefer clear function presentation
Marketing (lenDescription). page and more features
Effort Promotional images Number of images shown on the app’s

(num_img).

store page.

Category of
App

App category
(appCategory)

Category of the app.

Users might have differing expectations of apps
based on their category.

Extract Factors:
Marketing

Extract Factor: Category, Size
Rating, Rating Count

Meta Data

i

H
Analysis &
Prediction

\

ApkTool

Android API Change |}

AndroidManifest and Bug Logs

Files, Resource

'| Extract Factors:iSize

| Extract Factors: Code Complexity, Library
‘\| Dependence, Quality of Library Code

Extract Factors:
‘\ Requirements on Users, Ul |;

Fig. 1: Overall framework to calculate factor values. Information on Google
Play (app’s APK and store page), Android APIs’ change history and bug-fix
logs are the inputs to the whole process.

Facebook

Social s | 2) Category

[*] Add to wishlist

C

Description Reviews
11,502,394

Keeping up with friends is faster than ever. I
*5
4 O * 4 3272373

» See what friends are up to
*3 1973423

+ Share updates, photos and videos
» Get notified when friends like and comment on your post
« Text, chat and have group conversations
* &k kK *2 986969

Fig. 2: A sample Google Play store’s page of an app.

III. FACTOR EXTRACTION AND DATA COLLECTION

In this section, we first describe our methodology to extract
the factors that we defined in Section[[l We then describe how
the dataset that we use to answer the two research questions
is collected.

A. Factor Extraction

As shown in Figure [I] the overall process of our approach
contains three major steps:

Step 1: Process app’s store page. We crawl an app’s page in
Google Play and extract information in it. Figure 2] shows
a sample store page of an app. Category, install size, and
rating information can be directly read from the crawled page.
Factors in the marketing effort dimension are also easy to
extract by processing the app’s description and images in the
page. The APK of an app could be downloaded from the store.

Step 2: Process app’s AndroidManifest.xml file and resources.
We extract an app’s AndroidManifest.xml files and the re-
sources that the app uses by processing the APK file using
“apktool’ﬂ AndroidManifest.xml file is a special file that every

3https://code.google.com/p/android-apktool/

Android app must have in its root directory. Factors in the
requirements on users dimension and some of the size factors
(i.e., num_activity and num_service) can be easily collected
from the AndroidManifest.xml file. For instance, required user
permissions are defined in elements named “uses-permission”
in the xml file. The root directory also contains a “resource”
folder which contains resources, such as images and strings,
that the app uses. We use the contents of the “resource”
folder to extract Ul related factors. The “resource” folder has
a subfolder named “layout” which contains XML files that
define the layout of the app’s UL. We extract input and output
fields from these XML files following the process described
by Taba et al. [43]]. We then count the average number of input
and output components per layout.

Step 3: Process app’s class files and libraries. Factors in the
code complexity, library dependence and quality of library
code dimensions, and some factors in the size dimension (i.e,
num_class and num_projectClass) require code analysis.

To compute code complexity factors, we first extract byte-
code files (i.e., .class files) from the app’s APK file using
the dex2jar2 tooﬂ Next, we use a tool named “ckjm” [33]
to collect values of the eight code complexity metrics. In
the computation of the complexity metrics at the class level,
both project classes and library classes are considered. To
heuristically identify whether a class belongs to the project,
we check whether the package name is the same as the one
defined in the AndroidManifest.xml file. The same process is
also used by Linares-Vasquez et al. [24].

To compute library factors, we need to extract dependencies
between project files and libraries. To capture these depen-
dencies, we analyze Java bytecode files using the Apache
Commons BCEL Java libraryﬂ The BCEL library transforms
the bytecode files into readable JVM instructions, which can
be analyzed to identify method invocations indicating depen-
dencies. To differentiate dependencies to Android libraries and
other third-party libraries, we use the following heuristic: we
regard a library dependency as an Android library dependency
if the package of the called method starts with “android.”, we
regard other dependencies as third-party library dependencies.
To compute change and fault-proneness of Android libraries,
we make use of the publicly available data provided by
Linares-Vdsquez et alﬂ

B. Data Collection and Filtering

We randomly selected 10,000 apps from the list of apps
that were crawled by Dienst and Berger in 2011 [10]. These
apps cover all the categories in Google Play store and they
have a wide range of ratings (i.e., 1.3 to 5 stars). For each
of them, we perform the factor extraction steps described in
Section [[TI-A] ApkTool and dex2jar fail for 14 out of these
10,000 application, and thus we omit them in our study. For

4https://code.google.com/p/dex2jar/
Shttp://commons.apache.org/proper/commons-bcel/
Shttp://www.cs.wm.edu/semeru/data/fse-android-api/

https://code.google.com/p/android-apktool/
https://code.google.com/p/dex2jar/
http://commons.apache.org/proper/commons-bcel/
http://www.cs.wm.edu/semeru/data/fse-android-api/

the remaining apps, we further filter them if they satisfy one
of the criteria shown below:

1) They have less than 10 ratings. We use this criteria to
make sure that the average user-rating that each app has
is reliable [30]].

2) Their project code does not exist in the package
specified in the AndroidManifest.xml file or they have
obfuscated code in their project package. We use
this criteria because hidden and obfuscated code have
impact on the reliability of the computation of the code
complexity factors [24]. We use the same heuristic as
Linares-Vasquez et al. [24] to detect obfuscated code:
search for a file named “a.class” under the package that
contains project code.

Based on the above filtering criteria, we end up with 7,365
applications across 30 store categories. We list a summary of
the number of apps and range of ratings for each of the 30
categories in Table [T}

Next, we sorted apps based on their ratings, and then
consider the top 10% apps with at least 100 ratings as high-
rated apps and bottom 10% apps as low-rated apps. In the end,
we get 746 high-rated apps and 746 low-rated apps. These
apps form the data set for our case study. We present the
distribution of ratings and number of downloads of the two
groups of high-rated and low-rated apps in Figure 3] Note
that as the number of downloads is stored as a range in the
Play store, we use the minimum boundary to roughly represent
the number of downloads. The median rating of the high-rated
apps is 4.571, whereas that of the low-rated apps is 2.867. The
median number of downloads for high-rated apps is 100,000,
whereas that of low-rated apps is 10,000.

5 1e+07+
$ %)
[=)] ke]
£ g
A <

5 3 1e+05-
g e}
P 3 5
g 8

E = 1e+03-
<2 2

Highf‘rated Low-rated High;rated Low-rated

Fig. 3: Boxplot of average user ratings (left side) and number of downloads
(right side) for the selected high-rated and low-rated apps.

IV. CASE STUDY RESULTS

In this section, we present and discuss the answer to the
two research questions we set out to examine in Section [I]

A. (RQI) Is there a relationship between each factor and app
rating?

Motivation: Prior work has examined the relationship between
factors such as change and fault-proneness of used Android
APIs [2], [23], user interface complexity [43] and rating.
However, there are many other factors that also might impact
the rating of an app, such as size, design, or marketing of the

TABLE II: Characteristics of the remaining 7,365 apps after filtering.

Category #Apps (%) (mirﬁ?r:;r)l(g)
Tools 752 (10.21%) 1.831-4.902
Entertainment 610 (8.28%) 1.787-4.826
Personalization 487 (6.61%) 3.000-4.851
Casual 477 (6.48%) 1.662-4.592
Lifestyle 411 (5.58%) 1.939-4.974
Brain 391 (5.31%) 1.643-4.860
Arcade 374 (5.08%) 1.727-4.682
Education 325 (4.41%) 2.013-4.939
Productivity 264 (3.58%) 1.967-4.737
Books and reference 259 (3.52%) 1.743-4.941
News and magazines 248 (3.37%) 1.593-4.889
Communication 233 (3.16%) 2.537-4.870
Health and fitness 231 (3.14%) 1.468-4.773
Travel and Local 231 (3.14%) 1.780-4.882
Photography 225 (3.05%) 1.759-4.742
Music and audio 221 (3.00%) 2.314-4.876
Finance 209 (2.84%) 1.414-4.769
Social 196 (2.66%) 1.843-4.942
Sports 192 (2.61%) 2.517-4.958
Media and video 161 (2.19%) 1.759-4.950
Cards 145 (1.97%) 2.000-4.626
Shopping 128 (1,74%) 1.676-4.725
Business 119 (1.62%) 2.259-4.682
Transportation 108 (1.47%) 2.255-4.700
Comics 77 (1.04%) 1.944-4.790
Sports games 72 (0.98%) 2.572-4.581
Medial 63 (0.86%) 2.863-4.852
Libraries and demo 52 (0.71%) 1.771-4.976
Racing 52 (0.71%) 2.531-4.545
Weather 52 (0.71%) 2.895-4.610

app. In this research question, we are interested in investigating
how each factor presented in Section [lI| is related with the
rating. App developers, app store owners and researchers,
could use the results of this question to understand how high-
rated apps differ from low-rated apps.

Approach: We compare the values of each factor between
selected high-rated apps and low-rated apps. We first analyze
the statistical significance of the difference between the two
groups of apps, i.e., high-rated apps and low-rated apps, by
applying the Mann-Whitney U test at p—value = 0.01 [7]]. To
show the effect size of the difference between the two groups,
we compute Cliff’s Delta (or d), which is a non-parametric
effect size measure [13]]. We use the effsize package in R[Z] to
compute Cliff’s d. Following the guidelines in [13]], [23], we
interpret the effect size values as small for 0.147 < d < 0.33,
medium for 0.33 < d < 0.474, and large for d > 0.474.

Results: Table [l1I] shows the factors that have p — value <
0.01, and d > 0.147 (i.e., statistically significant difference
with at least a small effect size). We find that the selected
high-rated and low-rated apps have statistically significant
differences with at least a small effect size in 17 out of the 28
factors. The effect sizes are small for most of the 17 factors,
except for install size, number of images, and target SDK
version, which have medium effect sizes.

Now we investigate each dimension one by one. For size

7http://softeng.polito.it/software/effsize/

http://softeng.polito.it/software/effsize/

TABLE III: Relationship between each factor and rating. Dim. = dimension.
Rel. = relationship. “+” = high-rated apps have significantly higher value on

this factor. = low-rated apps have significantly higher value on this factor.
Factors with medium d-value are highlighted in bold.

Dim. Factor Name Rel. d-value

Size installSize + 0.363 (Medium)

num_class + 0.260 (Small)

num_projectClass + 0.243 (Small)

num_activity + 0.239 (Small)

Code wmc_mean + 0.173 (Small)

Complexity cbo_mean + 0.191 (Small)

rfc_mean + 0.198 (Small)

Icom_mean + 0.162 (Small)

ca_mean + 0.174 (Small)

Library dep_android + 0.244 (Small)

Dependence | dep_third + 0.191 (Small)

Library api_change - 0.181 (Small)

Quality api_bug - 0.187 (Small)

User Re- minSDK + 0.158 (Small)
quirement targetSDK + 0.354 (Medium)

Marketing lenDescription + 0.271 (Small)
num_img + 0.421 (Medium)

dimension, four out of the five factors can differentiate high-
rated apps from low-rated apps, except for the number of
services. Typically, when an app gets larger in size, it becomes
more difficult to maintain the app and there is a greater chance
for field failures. However, we observe that high-rated apps
are usually significantly larger then small apps. Similarly,
high complexity is usually related with fault proneness [37].
However, from the results of the code complexity dimension,
we observe that high-rated apps tend to have more complex
project code than low-rated apps. One possible reason could
be that high-rated apps are feature rich in comparison to low-
rated apps, and the implementation of these features causes
larger size and additional complexity.

For the quality of library code dimension, low-rated apps
tend to use APIs from the Android libraries that have higher
change and fault proneness. This result is consistent with
the findings by Linares-Véasquez et al. [2], [23]. For the
requirement on users dimension, high-rated apps have a higher
minimum and target SDK requirement. This suggests that
compared with low-rated apps, high-rated apps usually are
more frequently updated to exploit the latest features provided
by the newest versions of the SDK. For the marketing effort
dimension, we observe that developers of high-rated apps, tend
to use significantly more text in the app description and more
images to advertise their apps.

High-rated apps are statistically significantly different from
low-rated apps in 17 out of the 28 factors. Generally,
high-rated apps are larger with more complex code, more
preconditions, more marketing efforts, more dependence
on libraries, and they make use of higher quality Android
libraries.

B. (RQ2) What are the important factors that could indicate,
with high probability, that an app will be high-rated?

Motivation: In reality, app rating is impacted by multiple fac-
tors rather than one. Among these, some factors might be more
influential on app rating than others, for which developers
would need to pay more attention. Therefore, in this research
question we are interested in finding these important factors.
In order to compare the importance of multiple factors on app
rating, we build a random-forest classifier to predict whether
an app will be high-rated, given the values of the various
factors. The factors that contribute more to the classifier are
more important.

Evaluation: The effectiveness of the classifier in correctly
predicting high-rated apps represents the prediction power of
the factors. In this study, we use F-measure and AUC to
measure the effectiveness of the classifier. These metrics are
commonly used in classification tasks [8], [46]]. F-measure
is the harmonic means of precision and recall. Precision
measures the correctness of the classifier in predicting whether
an app is a high-rated app. Recall measures the completeness
of the classifier in predicting high-rated apps. AUC is another
commonly-used measure for binary classification problems.
AUC refers to the area under the Receiver Operating Char-
acteristic (ROC) curve [16]].

Approach: To identify whether an app is a high-rated app
or not, we process the factors using the random-forest clas-
sifier [4]. We choose the random-forest classifier because it
is known to have several advantages, such as being robust
to noise and outliers, which means that some non-typical
high-rated or low-rated apps in the training data are likely
to have little impact on the learned model in our case. Also, it
can handle a mixture of categorical and continuous predictor
variables. In addition, the classification power of the random-
forest classifier has been demonstrated by its application to
automate many software engineering tasks [8], [L5], [22]], [32].
We use the implementation of the random-forest classifier in
the bigrf R package{ﬂ and set the number of trees as 100.

Before we build a model, we need to perform variable
selection because correlated variables might lead to poor
models (classifiers) which are hard to interpret [28]]. The
overall approach contains four main stages:

Stage 1: Correlation analysis. We use a variable clustering
analysis, implemented in a R package named Hmiscﬂ to
construct a hierarchical overview of the correlations among the
factors. For sub-hierarchies of factors with correlations larger
than 0.7, we select only one variable from the sub-hierarchy
for inclusion in our models. In particular, out of 28 factors,
there are four pairs of variables that have correlations larger
than 0.7: 1) api_change and api_bug; 2) num_projectClass and
dep_android; 3) wmc_mean and npm_mean; 4) wmc_mean
and rfc_mean. We remove api_change, num_projectClass,

8http://cran.r-project.org/web/packages/bigrf/bigrf.pdf
9http://cran.r-project.org/web/packages/Hmisc/index.html

http://cran.r-project.org/web/packages/bigrf/bigrf.pdf

o
2 -
-
24
o~
S 5 ©
I cc2 =]
S 7 c © O T o)
550 Q25 Q@ N
o <~ _|gaa3s EEC | c oW
e o ce0ac | 1® o =
g =378 =20 | O c SE®
g 185 58 | e8s5185¢8
E w322 e o SL.9e o 1o
g °© 5@ E =% Q>» S ec
& o > I M CPelxx 25T 30
g £ o nEQOOQO WS &
<]] IsnnAa =k
Q EQcwc C ©
~do =l e TO.. S R-R=RIN-N Q-
S oS S22 3EST
cc©og cE EoEo]
FEEE == O © <=
T E [l an = =
QOc o= S
EE‘UI R <
18 oG
oL
QEO &
[C=] S

Fig. 4: Clustered factors after correlation analysis.

npm_mean, and wmc_mean. The final hierarchical overview
is presented in Figure

Stage 2: Redundancy analysis. Correlation analysis reduces
collinearity among the factors, but it may not detect all of
the redundant factors, i.e., factors that do not have a unique
signal relative to the other factors. Redundant factors in an
explanatory model will interfere with one another, distorting
the modeled relationship between the factors and predictors.
We remove redundant factors by using the implementation
provided by the redun function in the rms R package. In
particular, from the leftover 24 variables from the previous
step, we remove rfc_mean and dep_per_third because they can
be represented using other factors.

Stage 3: Building a random-forest classifier and testing it. Af-
ter the two stages of removing redundant variables, we have 22
remaining factors: api_change, num_projectClass, npm_mean,
wmc_mean, rfc_mean and dep_per_third are removed. We use
10-fold cross validation [[11] to evaluate the effectiveness of
our model. We randomly separate our data into ten folds and
perform ten rounds of experiments. For each round, we select
nine folds to train the random-forest classifier, and then apply
the learned classifier on the remaining fold. We repeat this
process ten times and aggregate the results to measure the
overall performance for the whole data.

Stage 4: Calculating factor importance through multiple runs.
To identify the most influential factors in our random forest
model, we use the varimp function in bigrf package. This
function computes the influence of a factor in the training
process, based on out of the bag (OOB) estimates, an internal
error estimate of a random forest classifier [47]]. The underly-
ing idea is to permute each factor randomly one by one and
see whether the OOB estimates will be reduced significantly
or not.

For each run of the 10-fold cross validation we get a variable
importance value for each factor. In order to determine the
factors that are most influential for the whole dataset, we take
the values from all 10 runs and apply the Scott-Knott testPE]
This test takes as input a set of distributions (one for each

10http://cran.r-project.org/web/packages/ScottKnott/ScottKnott.pdf

TABLE IV: Scott-Knott test results when comparing the mean rank of feature
importance, divided into distinct groups that have a statistically significant
difference in the mean (p — value < 0.05).

Mean Highest Lowest
Group | Factor Name Rank Rank Rank

Gl | installSize 1.0 1 1
G2 | num_img 2.4 2 3
targetSDK 2.6 2 3

G3 | appCategory 4.3 4 6
G4 | api_bug 5.8 4 7
num_class 6.2 5 8
dep_android 6.3 4 8

G5 | lenDescription 7.8 5 10
G6 | cbo_mean 9.5 8 11

G7 | ca_mean 11.2 8 13

dep_third 12.3 9 16

Icom_mean 12.5 9 18

G8 | user_permission 12.9 11 16

num_activity 13.6 9 17

minSDK 13.9 10 17

G9 | ui_output 16.2 12 19

dit_mean 16.6 12 19

dep_per_android 17.4 15 19

ui_input 17.6 14 20

G10 | num_service 20.2 19 21
noc_mean 20.7 20 21

Gl11 device_feature 22.0 22 22

variable) and identifies groups of variables that are statistically
significantly different from one another.

Results: The 10-fold cross validation shows that the model can
successfully infer high-rated apps leveraging multiple factors
with an F-measure of 0.74, and an AUC of 0.81. This result
confirms the impact of our proposed factors on app rating
because an AUC beyond 0.7 is generally considered reason-
ably good [18]. Additionally, in the Software Engineering
domain, many accepted predictors have AUC values between
0.7-0.8 [8l, [22], [45].

Table shows the factors ranked by their importance,
as determined by the Scott-Knott test. Different groups of
variables whose variable importance values are statistically
significantly different from other groups of variables are shown
in Table The results show that the install size, the number
of images on an app’s store page, and the target SDK version
are the top three most important factors that influence our
random forest model. Recall that in the results of RQ1 (see
Section [[V-A)), install size, number of images, and target SDK
version are the top three factors that are significantly different
between high-rated and low-rated apps. Thus, the results of
RQ1 and RQ2 are consistent with each other.

Larger install size means bigger app which is likely to
translate to richer features. More number of promotional
images in the app’s page in the Google Play store implies
that users’ first impression is important. Moreover, developers
usually use images to show various functionalities of an app.
More images might translate to more functionalities. Larger
target SDK version implies more recent version of the Android
SDK. These results suggests that apps in our dataset that are

http://cran.r-project.org/web/packages/ScottKnott/ScottKnott.pdf

larger, with more images and targeted to a newer SDK are
more likely to have higher ratings. These factors helped most
in discriminating high-rated apps from low-rated ones.

The size of an app, the number of promotional images on its
store page, and the target SDK are the three most influential
factors in determining the likelihood of an app being a
high-rated app.

V. DISCUSSION

Comparisons with Past Findings: Our study revisits some of
the previous findings on the correlation between some factors
(i.e., api_bug, ui_input, ui_output, user_permission) with app
rating. Linares-Vasquez et al. find that low-rated apps have
method calls to APIs that are more change or fault prone [2],
[23]. Our findings agree with theirs; fault proneness of the used
APIs is relevant to app rating, as seen in Table However,
it is not the most important factor (i.e., it is ranked fifth as
shown in Table . Moreover, the fault proneness of the used
APIs is highly correlated with the number of changes of the
used APIs (c.f.,, Stage 1 of RQ2), which suggests that these
two factors capture similar information for identifying high-
rated apps. Taba et al. find that generally low-rated apps have
more complex UI [43]], however in our dataset, Ul complexity
(ui_input and ui_output) is not significantly related with app
rating. Chia et al. find that the number of required permissions
(user_permission) is only weakly positively correlated with
app’s popularity [S]. Our results support Chia et al.’s finding;
user_permission ranks in the middle (i.e., thirteenth) among
the 28 factors.

Compared with previous work, the top three important
factors that we find, i.e., install size of an app, number
of promotional images, and target SDK version are never
mentioned in previous studies. Besides, the experiment result
shows that the category of an app, which is used to control
the impact of other factors on app rating, is an important
factor (i.e., fourth). The associations between these factors
and app rating are strong and we recommend to include them
as variables in models that can be used to determine high-
rated apps (similar to how LOC is used in defect prediction
models [22]).

Beside the above mentioned factors, we examine factors
from additional dimensions, e.g., code complexity dimension
and library dependence dimension, that are reported to be pos-
itively related to number of defects inside software [37], [42].
Our initial thought is these factors are negatively associated
to app rating, however, we observe the opposite: high-rated
apps usually have more complex code and depend more on
libraries.

The Power of Considering Multiple Factors: Table [V|shows
the prediction results using only factors from one dimension.
We observe that factors from the size dimension performs
the best however its performance is still poorer than using
factors from all dimensions. A model built using all factors
from the eight dimensions can outperform models built using

factors from only one dimension by 9.7% (size dimension)
- 82.2% (category dimension), and 8.9% (size dimension)
- 166.2% (category dimension), in terms of F-measure and
AUC, respectively. This result reconfirms our assumption that
app rating is impacted by multiple factors.

TABLE V: Prediction results.

Dimension Recall Precision F-measure | AUC
All 0.744 0.728 0.736 0.812

Size 0.663 0.678 0.671 0.746
Code Comp. 0.638 0.630 0.634 0.704
Dependence 0.627 0.628 0.628 0.684
Library Quality | 0.574 0.575 0.574 0.612
UI Comp. 0.524 0.572 0.547 0.614
Req. on Users 0.572 0.666 0.616 0.700
Marketing 0.594 0.640 0.616 0.695
Category 0.438 0.374 0.404 0.305

Manual Analysis of Wrongly Identified Cases: We manually
examined the reviews of apps that had a good rating, but
our approach could not identify them as high-rated apps to
understand the reason for the incorrect predictions. We found
that often such apps are extremely small, like in the case of
com.acdcwallpaper.bogmix. Even though these apps are small,
they work smoothly without any crashes or hangs. For example
a user of the app com.acdcwallpaper.bogmix commented that
‘Nothing to it really... The photos are great and the app works
so 5 stars for it’. The fact that there were wrongly predicted
apps, implies that a one-size-fits-all global model might not be
sufficient. It will be interesting to investigate a composition of
local and global models — similar to the approaches presented
by Bettenburg et al. [3] and Menzies et al. [26].

Association vs. Causation: The purpose of our study is
to examine whether there are factors that are associated to
app rating, and how they jointly impact app rating. Note
that association does not imply causation. Furthermore, since
we only consider factors that can be collected by mining
the binary of apps and their profile pages, we do not have
a complete picture. This limitation is shared by previous
studies that analyze relationships between app characteristics
and success (or popularity) by mining code and software
repositories [2], [14], [23], [29], [43]. Still, these studies along
with ours are the first steps towards a better understanding
of the “DNA” of successful apps. They suggest factors that
developers need to take note of while developing and evolving
their apps. Future studies may take the reported findings and
go beyond mining code and software repositories, e.g., by
interviewing a large number of developers and users, to more
rigorously validate the findings. Additionally, more advanced
statistical analysis, e.g., causality analysis [33], can also be
employed.

Threats to Validity: Threats to internal validity relate to the
conditions under which experiments are performed. To build
the random forest classifier, we set the number of trees to
100, which is similar to the setting used by a prior work
where random forest was also used [8]. Another threat to
internal validity relates to the way the high-rated and low-
rated apps considered in this work are selected. Firstly, some

apps may have high ratings due to fake ratings (e.g., ratings
made by paid raters, ratings by the app developers themselves,
etc.). To address this issue, assuming that the number of fake
ratings are not too many, we filter high-rated apps with less
than 100 ratings. Secondly, to not bias our findings to a
particular category, we pick high and low-rated apps across
many categories.

Threats to external validity relate to the generalizability of
our findings. In this work, we only consider free apps, since we
can get access to their APKs for free. It is unclear whether the
same observations still hold for paid apps. However in 2013,
it was estimated that 80% of all apps were free apps and 91%
of all downloads in the Google Play store were downloads of
free appsE] Our study is performed on a data set composed
of 1,492 Android apps. Our results might not generalize to
all apps on the Android platform (or other mobile platforms).
Regarding the factors that we have considered, there might be
additional factors that could be more relevant to app rating.
Still, the results of our prediction experiment shows the power
of the 28 factors considered in this work. In the future, to
further reduce these threats, we plan to investigate additional
apps and consider more factors.

VI. RELATED WORK

A few studies have examined the relationship between the
rating of an app and a particular feature of an app [2], [5],
171, 23], [29], [43]. Harman et al. examine the correlations
between application’s description, download count, and aver-
age user rating among thousands of BlackBerry apps [17]].
Ruiz et al. investigate the relationship between the number
of integrated ad libraries and rating, and find that there is no
relationship between them [29]]. Guerrouj et al. analyze 154
free apps to study the impact of app churn on the app rating
and find that high app churn leads to lower user ratings [14]].
For other related work [2]], [5], [23l], [43], we revisit their
observations on our dataset and provide a detailed comparison
in Section [V] Our study is similar to the above studies in
that we too are examining the relationships between different
factors of an app and its rating. However, we consider a slew of
other factors that have not been investigated before, and ignore
some factors (e.g., number of ad libraries [29]]) that have been
shown to have no relationship with ratings. Also, we are the
first to compare these factors and rank them according to the
strength of their impact on the rating of an app.

There have been several studies that have analyzed reviews
of Android apps [19], [20], [21], [31]. Different from these
studies, we only analyze the ratings of apps, and consider a
different goal, i.e., to identify factors that characterize high-
rated apps.

There are a number of other studies on Android apps.
Shabtai et al. apply machine learning techniques to features
extracted from Android apps in order to classify Android
apps as either tools and games [34]. Syer et al. compare
the source code of open source mobile apps for the Android

Whttp://www.gartner.com/newsroom/id/2592315

and BlackBerry platforms [41]. Minelli et al. analyze the
source code of 20 Android apps and find that Android apps
are smaller than traditional software systems [27]. Linares-
Viésquez et al. investigate two threats that affect the validity
of studies analyzing APK files: code obfuscation and library
usages [24]. They find that removing neither obfuscated code
nor library code cause a big difference in Android code reuse
study results.

VII. CONCLUSION AND FUTURE WORK

A number of past studies have investigated a few factors
that are related to app ratings. However, there exist a slew of
other factors that have not been investigated yet. Moreover,
how these factors integrate together to impact the likelihood
of an app being a high-rated app is still unknown. To fill the
gaps in current research, we consider 28 factors along eight
dimensions that could potentially be associated to app ratings.
We analyze more than a thousand Android apps and investigate
the differences between high-rated and low-rated apps. We find
that high-rated apps are statistically significantly different from
low-rated apps in 17 out of these 28 factors. These differences
are significant enough such that a random forest classifier built
on these factors can differentiate high-rated from low-rated
apps with fairly good result (i.e., an F-measure of 0.74 and an
AUC of 0.81). Thus there is initial evidence to suggest that a
DNA of high-rated apps exists. Among the 28 factors, three
of them, which have not been investigated in prior studies, are
related the most to app ratings: install size of an app, number
of promotional images, and target SDK version.

In the future, we would like to explore additional factors
that can potentially impact app rating, e.g., app developer
characteristics (c.f., [39], [38]]), etc. We also plan to extend the
study to contrast characteristics of successful and unsuccessful
apps within each app category. Moreover, while we have only
investigated high and low rated apps in this work, in the
future, we plan to investigate borderline ones and build suitable
classification or regression models to capture relationships
between various factors and ratings of apps from a whole range
of ratings. We have also only analyzed app ratings and ignored
reviews given to these apps; in the future, we plan to analyze
the reviews too. We also would like to collect a large number
of versions of these apps to apply causality analysis. It would
also be interesting to investigate how the app stakeholders’
opinions match with the mined data, and thus we plan to
survey Android app developers and users for their thoughts
on factors that are associated with app success.

ACKNOWLEDGEMENT

We would like to thank Linares-Véisquez, Bavota, Bernal-
Cérdenas, Di Penta, Oliveto, and Poshyvanyk, for making the
Android API’s change and bug dataset used in their work [23]]
publicly available. We would also like to thank Khalid from the
Software Analysis and Intelligence Lab at Queen’s University
for crawling the apps used in our case study.

http://www.gartner.com/newsroom/id/2592315

[1]
[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

J. Bansiya and C. G. Davis. A hierarchical model for object-oriented
design quality assessment. [EEE Trans. Software Eng., 28(1):4-17, 2002.
G. Bavota, M. L. Viasquez, C. E. Bernal-Cardenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk. The impact of API change- and fault-
proneness on the user ratings of android apps. IEEE Trans. Software
Eng., 41(4):384-407, 2015.

N. Bettenburg, M. Nagappan, and A. Hassan. Think locally, act globally:
Improving defect and effort prediction models. In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on, pages 60—
69, June 2012.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

P. H. Chia, Y. Yamamoto, and N. Asokan. Is this app safe?: a large
scale study on application permissions and risk signals. In Proceedings
of the 21st international conference on World Wide Web, pages 311-320.
ACM, 2012.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. Software Engineering, IEEE Transactions on, 20(6):476-493,
1994.

W. J. Conover and W. Conover. Practical nonparametric statistics, 3rd
edition. 1998.

D. A. da Costa, S. L. Abebe, S. McIntosh, U. Kulesza, and A. E. Hassan.
An empirical study of delays in the integration of addressed issues. In
ICSME, 2014.

J. den Haan. |http://www.theenterprisearchitect.eu/blog/2012/06/27/
7-ways-a-platform- can-fuel-the-app-economy/.

S. Dienst and T. Berger. Static analysis of app dependencies in android
bytecode. http://www.informatik.uni-leipzig.de/berger/tr/2012-dienst.
pdf, 2012.

B. Efron. Estimating the error rate of a prediction rule: improvement
on cross-validation. Journal of the American Statistical Association,
78(382):316-331, 1983.

D. M. German. Using software distributions to understand the relation-
ship among free and open source software projects. In Mining Software
Repositories, 2007. ICSE Workshops MSR’07. Fourth International
Workshop on, pages 24-24. IEEE, 2007.

R. J. Grissom and J. J. Kim. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

L. Guerrouj, S. Azad, and P. C. Rigby. The influence of app churn on
app success and stackoverflow discussions. In SANER. IEEE, 2015.

L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-
proneness by random forests. In Software Reliability Engineering, 2004.
ISSRE 2004. 15th International Symposium on, pages 417-428. IEEE,
2004.

J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, 2011.

M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: Msr
for app stores. In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 108-111. IEEE, 2012.

D. W. Hosmer Jr and S. Lemeshow. Applied logistic regression. John
Wiley & Sons, 2004.

C. Jacob and R. Harrison. Retrieving and analyzing mobile apps feature
requests from online reviews. In Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on, pages 41-44. IEEE, 2013.

C. Iacob, V. Veerappa, and R. Harrison. What are you complaining
about?: a study of online reviews of mobile applications. In Proceedings
of the 27th International BCS Human Computer Interaction Conference,
page 29. British Computer Society, 2013.

H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the
devices to test your app on: A case study of android game apps. In
FSE, 2014.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings. Software Engineering, IEEE Transactions on,
34(4):485-496, 2008.

M. Linares-Vdsquez, G. Bavota, C. Bernal-Cirdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: A
threat to the success of android apps. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 477-487.
ACM, 2013.

M. Linares-Vasquez, A. Holtzhauer, C. Bernal-Céardenas, and D. Poshy-

vanyk. Revisiting android reuse studies in the context of code obfusca-
tion and library usages. In Proceedings of the 11th Working Conference

on Mining Software Repositories, pages 242-251. ACM, 2014.

[25]

[26]

[27]

(28]

[29]

(30]
[31]

[32]

[35]
[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. Martin. OO design quality metrics - an analysis of dependencies. In
Workshop on Pragmatic and Theoretical Directions in Object-Oriented
Software Metrics @ OOPSLA, 1994.

T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann. Local versus global lessons for
defect prediction and effort estimation. Software Engineering, IEEE
Transactions on, 39(6):822-834, June 2013.

R. Minelli and M. Lanza. Software analytics for mobile applications—
insights and lessons learned. In Software Maintenance and Reengineer-
ing (CSMR), 2013 17th European Conference on, pages 144-153. IEEE,
2013.

A. Mockus, M. Nagappan, and A. E. Hassan. Best practices and pitfalls
for statistical analysis of se data. In ICSE, 2014.

I. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan. On the relationship between the number of ad libraries in
an android app and its rating. Software, IEEE, PP(99):1-1, 2014.

I. J. Mojica Ruiz. Large-scale empirical studies of mobile apps. 2013.
D. Pagano and W. Maalej. User feedback in the appstore: An empirical
study. In Requirements Engineering Conference (RE), 2013 21st IEEE
International, pages 125-134. IEEE, 2013.

F. Peters, T. Menzies, and A. Marcus. Better cross company defect
prediction. In Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on, pages 409—418. IEEE, 2013.

R. D. Retherford and M. K. Choe. Statistical models for causal analysis.
John Wiley & Sons, 2011.

A. Shabtai, Y. Fledel, and Y. Elovici. Automated static code analysis
for classifying android applications using machine learning. In Compu-
tational Intelligence and Security (CIS), 2010 International Conference
on, pages 329-333, Dec 2010.

D. Spinellis. Tool writing: a forgotten art?(software tools). Software,
IEEE, 22(4):9-11, 2005.

D. Spinellis. Code quality: the open source perspective. Adobe Press,
2006.

R. Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects.
Software Engineering, IEEE Transactions on, 29(4):297-310, 2003.

D. Surian, N. Liu, D. Lo, H. Tong, E. Lim, and C. Faloutsos. Recom-
mending people in developers’ collaboration network. In /8th Working
Conference on Reverse Engineering, WCRE 2011, Limerick, Ireland,
October 17-20, 2011, pages 379-388, 2011.

D. Surian, D. Lo, and E. Lim. Mining collaboration patterns from a large
developer network. In 77th Working Conference on Reverse Engineering,
WCRE 2010, 13-16 October 2010, Beverly, MA, USA, pages 269-273,
2010.

A. P. D. Survey. http://app-promo.com/wp-content/uploads/2013/06/
SlowSteady- AppPromo- WhitePaper2013.pdf.

M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan. Exploring the
development of micro-apps: A case study on the blackberry and android
platforms. In Source Code Analysis and Manipulation (SCAM), 2011
11th IEEE International Working Conference on, pages 55-64. IEEE,
2011.

M. D. Syer, M. Nagappan, B. Adams, and A. E. Hassan. Studying
the relationship between source code quality and mobile platform
dependence. Software Quality Journal, pages 1-24, 2014.

S. E. S. Taba, 1. Keivanloo, Y. Zou, J. Ng, and T. Ng. An exploratory
study on the relation between user interface complexity and the per-
ceived quality of android applications. In ICWE, 2014.

M. Thelwall, K. Buckley, and G. Paltoglou. Sentiment strength detection
for the social web. Journal of the American Society for Information
Science and Technology, 63(1):163-173, 2012.

F. Thung, D. Lo, and L. Jiang. Automatic defect categorization. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages
205-214. IEEE, 2012.

Y. Tian, D. Lo, X. Xia, and C. Sun. Automated prediction of bug report
priority using multi-factor analysis. Empirical Software Engineering,
pages 1-30, 2014.

D. H. Wolpert and W. G. Macready. An efficient method to estimate
bagging’s generalization error. Machine Learning, 35(1):41-55, 1999.

T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects
for eclipse. In Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on, pages
9-9. IEEE, 2007.

http://www.theenterprisearchitect.eu/blog/2012/06/27/7-ways-a-platform-can-fuel-the-app-economy/
http://www.theenterprisearchitect.eu/blog/2012/06/27/7-ways-a-platform-can-fuel-the-app-economy/
http://www.informatik.uni-leipzig.de/berger/tr/2012-dienst.pdf
http://www.informatik.uni-leipzig.de/berger/tr/2012-dienst.pdf
http://app-promo.com/wp-content/uploads/2013/06/SlowSteady-AppPromo-WhitePaper2013.pdf
http://app-promo.com/wp-content/uploads/2013/06/SlowSteady-AppPromo-WhitePaper2013.pdf

	Introduction
	Factors Potentially Affecting App Ratings
	Factor Extraction and Data Collection
	Factor Extraction
	Data Collection and Filtering

	Case Study Results
	(RQ1) Is there a relationship between each factor and app rating?
	(RQ2) What are the important factors that could indicate, with high probability, that an app will be high-rated?

	Discussion
	Related Work
	Conclusion and Future Work
	References

