
An Empirical Study of Delays in the Integration of
Addressed Issues

Daniel Alencar da Costa∗, Surafel Lemma Abebe†, Shane McIntosh†, Uirá Kulesza∗ and Ahmed E. Hassan†
∗Department of Informatics and Applied Mathematics (DIMAp)

Federal University of Rio Grande do Norte - UFRN, Brazil

danielcosta@ppgsc.ufrn.br, uira@dimap.ufrn.br
†Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s Univeristy, Canada

{surafel,mcintosh,ahmed}@cs.queensu.ca

Abstract—Predicting the time required to address an issue
(i.e., a feature, bug fix, or enhancement) has long been the goal
of many software engineering researchers. However, after an
issue has been addressed, it must be integrated into an official
release to become visible to users. In theory, issues should be
integrated into releases soon after they are addressed. Yet in
practice, the integration of an addressed issue might be delayed.
For instance, an addressed issue might be delayed in order to
assess the impact that it may have on the system as a whole.
While one can often speculate, it is not always clear why some
addressed issues are integrated immediately, while others are
delayed. In this paper, we empirically study the integration of
20,995 addressed issues from the ArgoUML, Eclipse, and Firefox
projects. Our results indicate that: (i) despite being addressed
well before the release date, the integration of 34% to 60% of
addressed issues in systems with traditional release cycle, and
98% of addressed issues in systems with rapid release cycle were
delayed by one or more releases; (ii) using information derived
from the addressed issues, we are able to accurately predict the
release in which an addressed issue will be integrated, achieving
a Receiver Operator Curve (ROC) area of above 0.74; and (iii)
the workload of integrators is the most influential factor in our
integration delay models. Our results indicate that integration
can introduce non-negligible delays that prevent addressed issues
from being delivered to users. Thus, solely focusing on the time
to address an issue is not enough to truly assess how long it takes
for users to see that the issue has been addressed in the software
system.

I. INTRODUCTION

Prior studies have explored several approaches to help

developers to estimate the time needed to address issues

(features, enhancements, and bug fixes) [1–7]. Such studies are

useful for project managers who need to allocate development

resources effectively in order to deliver releases on time

without exceeding budgets.

On the other hand, users and contributors care most about

when an official release of a software system will include an

addressed issue. Although an issue may have been addressed,

it may not be integrated into an official release for some time.

Jiang et al. find that after a change has taken 1-3 months

to complete the code review process, it takes an additional

1-3 months for that change to be integrated into the Linux

kernel [8]. In this paper, we refer to the time between when

an issue is addressed and when it is integrated into an official

release as integration delay.

Although one can often speculate, it is not always clear why

an addressed issue would not be integrated into an upcoming

release. When the reasons for these integration delays are

unclear, users and contributors may become frustrated. For

example, on a recent Firefox issue, a stakeholder asked: “So
when does this stuff get added? Will it be applied to the next
FF23 beta? A 22.01 release? Otherwise?” [9].

To investigate why the integration of some addressed issues

is delayed, we perform an empirical study of 20,995 issues

collected from the ArgoUML, Eclipse, and Firefox projects.

We investigate how much delay addressed issues typically

have before integration. Furthermore, we investigate how often

addressed issues are integrated into the next upcoming release

and how often they are delayed. We then build prediction

models with two goals: (1) to accurately predict the integration

delay of an addressed issue, and (2) to understand the reasons

of the delayed integration of addressed issues. We address the

following three research questions:

RQ1: How long are addressed issues typically delayed by the
integration process?

The integration of 34% to 60% of addressed issues in the
studied systems with traditional release cycles (ArgoUML
and Eclipse) was delayed by at least one release, despite
being addressed well before of the official release date.
Furthermore, 98% of the addressed issues were delayed
by at least one release in the rapidly released Firefox
system.

RQ2: Can we accurately predict when an addressed issue
will be integrated?

Yes, our models achieve a weighted average precision of
0.59 to 0.88 and a recall of 0.62 to 0.88, with Receiver
Operator Curve (ROC) areas above 0.74.

RQ3: What are the most influential attributes for estimating
integration delay?

Our models derived more of their explanatory power
from attributes that estimate the workload of the integra-
tion team at the time when an issue was addressed, rather
than from attributes such as the priority or severity of the
addressed issues.

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.50

281

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.50

281

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.50

281

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.50

281

TABLE I: The dates and versions of the first and last releases

considered in the study, along with the total number of

addressed issues and releases.

System First release Last release No. of No. of
Date version Date Version issues releases

ArgoUML 18-08-2003 0.14 15-12-2011 0.34 3121 17
Eclipse (JDT) 03-11-2003 2.1.2 12-02-2007 3.2.2 3344 11

Firefox 05-06-2012 13 04-02-2014 27 14530 15

Paper organization. The remainder of the paper is organized

as follows. Section II describes the issue lifecycle. Section III

presents our empirical study by describing the studied systems,

research questions, and results. Section IV discusses the threats

to the validity of our conclusions. Section V positions our work

with respect to previous studies. Section VI draws conclusions

and proposes avenues for future work.

II. BACKGROUND & DEFINITIONS

One of the main factors that drives software evolution

are the issues that is filed by users, developers, and quality

assurance personnel. Below we describe what issues are and

the major steps involved in addressing and integrating them.

We use the term issue to broadly refer to bug reports,

enhancements, and feature requests. Issues can be filed by

users, developers, or quality assurance personnel. To track

development progress, software teams use an Issue Tracking

System, such as Bugzilla or JIRA to describe the status of

issues.

Each issue in an ITS has a unique identifier, a brief

description of the nature of the issue, and a variety of other

metadata. Large software projects receive a plenty of issue

reports everyday. For example, Mozilla and Eclipse received

an average of 170 and 120 new issue reports daily from

January to July 2009, respectively [10]. The number of filed

issues is usually greater than the size of the development

team. After an issue has been filed, project managers and team

leaders triage them, i.e., assign them to developers, denoting

the urgency of the issue using priority and severity fields [11].

After being triaged, issues are then addressed, i.e., solutions

to the described issues are provided by developers. Generally

speaking, an issue may be in an open or closed status.

An issue is marked as open when a solution has not yet

been found. We consider UNCONFIRMED, CONFIRMED

and IN PROGRESS as open statuses. An issue is considered

closed when a solution has been found. Usually, a resolution is

provided with a closed issue. For instance, if a developer made

code changes to address an issue, the status and resolution

combination should be RESOLVED-FIXED. However, if the

developer was not able to reproduce the bug, then the status

and resolution may be RESOLVED-WORKSFORME [12].

The lifecycle of the issues is available on the Bugzilla website

[13].

Finally, addressed issues must be integrated into an official

release in order to make them available to users. The releases

that contain such addressed issues could be made available

every few weeks or months, depending on the project release

Fig. 1: Database construction overview. First, the issue IDs and

releases information are extracted from release notes. Then,

the issues are extracted from ITSs. The extracted issues and

releases are matched, and the respective information are stored

into a relational database.

policy. Releasing every few weeks is typically referred to as

a rapid release cycle, while releasing monthly or yearly is

typically referred to as a traditional release cycle [14].

III. EMPIRICAL STUDY

In this section, we describe the studied systems, explain how

the data was collected, and present the results of our empirical

study with respect to our three research questions.

A. Studied Systems

To study when addressed issues are integrated into re-

leases, we analyze one rapidly-releasing (Firefox) and two

traditionally-releasing open source systems (ArgoUML and

Eclipse). ArgoUML [15] is a UML modeling tool that includes

support for all standard UML 1.4 diagrams. Eclipse [16] is a

popular open-source IDE, of which we study the JDT core

subsystem. Firefox is a popular web browser [17].

Table I shows the total number of collected issues and the

considered releases in our empirical study. We focus our study

on the releases for which we could recover a list of issue

IDs from the release notes. We collected a total of 20,995

issue reports from the three studied systems. Each issue report

corresponds to an issue that was addressed and could be

mapped directly to a release.

In addition, we wish to compare a rapidly-releasing system

to traditionally-releasing systems. Hence, we study Firefox,

which has followed a rapid, 6-week release cycle since March

2011. Although ArgoUML and Eclipse both follow traditional

release cycles, there is a longer interval between ArgoUML

releases (median of 26 weeks) than Eclipse releases (median

of 16 weeks).

B. Database Construction

Figure 1 provides an overview of our database construction

approach. We create a relational database describing the inte-

gration of addressed issues in the studied systems. To do so,

we collect data from two sources. We briefly describe each

source, and the data that we collect from it below.

282282282282

Fig. 2: Distribution of issues for each project

Release notes. In order to identify the release that an ad-

dressed issue was integrated into, we first analyze the release

notes of the studied systems. A release note is a document that

describes the content of a release. For instance, a release note

might provide information about the improvements included in

a release (with respect to prior releases), the fixed issues, and

the known problems. Eclipse, ArgoUML, and Firefox publish

their release notes on their respective websites [18–20].

Unfortunately, release notes may not mention all of the

addressed issues that have been integrated into a release.

This limitation hinders the investigation of issues that were

addressed but have not been integrated, because we cannot

claim that, an issue not listed in a release note, was not

integrated. However, the issues that are listed in a release note

have certainly been integrated. Thus, we chose to use release

notes despite their incompleteness to identify integrated issues

in order to reduce the noise in our dataset, i.e., the release

where we claim an issue has been integrated, is almost

certainly correct.

To retrieve the list of addressed issues that have been

integrated into Eclipse and Firefox, we wrote a script to extract

the listed issue IDs from the release notes and insert them into

our database. The retrieved issue IDs are then used to collect

issue reports from the corresponding ITSs. In our database,

we also stored the dates and versions of the releases.

Issue Tracking Systems. Not all release notes from ArgoUML

list the issues that were addressed in that official release, and

when they do, only a few issues are listed (e.g., 1-4) [21].

Hence, we rely on the ITS in order to map addressed issues

to releases. We used the milestone field indicated in the issue

reports to approximate the release that an issue was integrated

into. Development milestones are counted towards the next

official releases. For instance, the development milestones

0.33.7 [22] is counted towards the official release 0.34 [18].

Integration delay classification. In our study, we divide the

collected issue reports into four classes: next, after-1, after-
2, and after-3-or-more. The next class contains addressed

issues that are integrated immediately. The after-1, after-2,

and after-3-or-more classes contain addressed issues whose

integration was delayed by one, two, or three or more releases,

respectively. Figure 2 shows the distributions of the addressed

issues among the classes for each studied system. Figure 2

shows that ArgoUML has the highest percentage of addressed

issues that fall into the next class (71%), whereas next ac-

counts for only 2% and 38% of addressed issues in Firefox

and Eclipse, respectively. We chose the last change to the

RESOLVED-FIXED status of an issue as the moment when

the issue was addressed. For instance, in case an issue changed

from RESOLVED-FIXED to REOPENED, and changed to the

RESOLVED-FIXED status again, we say that the issue was

addressed at the last change to the RESOLVED-FIXED status.

Also, we use the RESOLVED-FIXED status rather than the

VERIFIED-FIXED status because we found that all of the

issues that are mapped to releases went through RESOLVED-

FIXED before being integrated, while only a small percentage

went through VERIFIED-FIXED. For instance, only 17% of

addressed issues in Firefox went through the VERIFIED-

FIXED status. We focus on issues that were resolved as

FIXED because they involve changes to the source and/or test

code [12].

C. Results

RQ1: How long are addressed issues typically delayed by the
integration process?
Motivation. Users and contributors care most about when an

addressed issue will be integrated in an official release rather

than when it is initially addressed. We observed that some

addressed issues are integrated in the next release, while others

are delayed. It is not clear why some addressed issues take

more time to be integrated than others. In RQ1, we investigate

the delay between when an issue is addressed and when it is

integrated. In order to better understand integration delays in

each studied system, we also investigate if the delays differ

between rapid and traditional release cycles. The analysis of

RQ1 is our first step toward understanding why integration

delays differs among addressed issues.

Approach. We compute the integration delay of an addressed

issue as shown in Figure 3. We first collect the time when the

resolution status of each issue changed to RESOLVED-FIXED
from the ITS. To determine the moment of integration, we

analyze the release notes of each project. Finally, we count

the number of releases that occurred between the time when

an issue status changed to the RESOLVED-FIXED and the

release that it was integrated into.

Results. Addressed issues are usually delayed in a rapid
release cycle. Figure 4 shows the difference between the

studied systems regarding the time interval between their

releases. The median time in days for Firefox (42 days) is

approximately 1
4 that of ArgoUML (180 days) and 1

3 that

of Eclipse (112 days). Unlike for Eclipse and Firefox, the

distribution for ArgoUML is skewed. In addition, Figure 2

shows that the vast majority of addressed issues for Firefox are

integrated after-2 releases, whereas for Eclipse and ArgoUML,

the majority are integrated in the next release. The reason for

the difference may be the release policies followed in each

283283283283

Fig. 3: Integration delay is computed by counting the re-

leases that occur between when an issue status changes to

RESOLVED-FIXED and the the date of the release note that

lists that issue.

Fig. 4: Delays in days between releases of ArgoUML, Eclipse,

and Firefox. The number shown over each boxplot is the

median interval

project. For example, Figure 4, shows that Firefox releases

consistently every 42 days (six weeks), whereas the times

between ArgoUML releases vary from 50 to 220 days. The

consistency of Firefox releases may lead to more delayed

issues, since they rigidly adhere to a six-week release schedule

despite accumulating issues that could not be integrated.

34% to 60% of addressed issues in the traditional
release cycle systems were delayed by one or more releases.
Figure 2 shows that 98% of the addressed issues in Firefox

are delayed by one or more releases. Firefox is expected to

have delayed issues due its rapid release cycles. However,

98% is still a considerably large percentage. Furthermore, even

for the systems that adopt a more traditional release cycle,

34% (ArgoUML) to 60% (Eclipse) of the addressed issues are

delayed by one or more releases. This result indicates that even

though an issue is addressed, integration could be delayed by

one or more releases.

Many delayed issues were addressed well before releases
from which they were omitted. Addressed issues could be

delayed from integration because they were addressed late

in the release cycle, e.g., one day or one week before the

upcoming release date. In order to compare the rapid and

traditional release cycles regarding whether delayed issues

are addressed late in the release schedule, we computed the

Fig. 5: Distribution of days between when an issue was

addressed and the next missed release divided by the release

window time.

Addressing Stage metric (AS) for each issue. The AS metric

is calculated using the following equation: days to next release
release window ,

where days to next release is the number of days when an issue

is addressed before the next release (e.g., the time between t3
to t4 in Figure 3), and the release window is the time in days

between the next upcoming release and the respective previous

release (e.g., t4 to t2). An AS value close to 1 means that an

issue was addressed too close to the next release, whereas a

value close to 0 means that an issue was addressed at the

beginning of a release cycle. Figure 5 shows the distribution

of the AS metric for each project. The smallest AS median

is observed for Eclipse, which is 0.45. For ArgoUML and

Firefox, the median is 0.52 and 0.53, respectively. The AS
medians are roughly in the middle of the release. Moreover,

the boxes extend to cover between 0.25 and 0.75. The result

suggests that, in the studied projects, delayed issues are usually

addressed 1
4 to 3

4 of the way through a release. Hence, it is

unlikely that most addressed issues miss the next release solely

because they were addressed too close to an upcoming release

date.

The integration of 34% to 60% of the addressed issues
in the traditionally releasing systems and 98% in the
rapidly releasing system were delayed by one or more
releases. Furthermore, we find that many delayed issues
were addressed well before releases from which they were
omitted from.

RQ2: Can we accurately predict when an addressed issue
will be integrated?
Motivation. Several studies proposed approaches to inves-

tigate the time required to address an issue [2–7]. These

studies could help to estimate when an issue will be addressed.

However, we find that integration delays when an addressed

issue will be delivered to users. Even though several issues are

addressed well before the next release date, their integration is

delayed. For users and contributors, however, knowing the re-

lease in which an addressed issue will be integrated is of great

284284284284

TABLE II: Attributes used to predict the integrated release of an addressed

Dimension Attributes Value Definition (d)|Rationale (r)

Reporter Experience Numeric
d: Experience in filing reports for the project. It is measured by the number of
previously reported issues of a reporter.
r: An issue reported by an experienced reporter might be integrated quickly.

Delay of
previously
addressed issues

Numeric

d: Measured by the median of the integration delays of previous issues that were
reported.
r: If previously addressed issues were integrated quickly for a reporter, future issues
reported by the same reporter may also be integrated quickly.

Issue Component Nominal
d: The component specified in the issue report.
r: Issues related to a given component (e.g., authentication) might be more important,
and thus, might be integrated prior to issues in less important components.

Platform Nominal
d: The platform specified in the issue report.
r: Issues regarding one platform (e.g., MS Windows) might be integrated prior to
issues in less important platforms.

Severity Nominal

d: The severity of the issue.
r: Issues with higher severity levels (e.g., blocking) might be integrated faster than
other issues. Panjer observed that the severity of an issue has a large effect on its
lifetime for Eclipse project [23].

Priority Nominal
d: The priority of the issue.
r: Higher priority issues will likely be integrated before lower priority issues.

Description Size Numeric
d: Description of the issue measured by the number of the words.
r: Issues that are well-described might be more easy to integrate than issues that are
difficult to understand.

Project Integration
Workload

Numeric

d: The number of issues in the RESOLVED-FIXED state at a given time.
r: Having a large number of addressed issues at a given time might create a high
workload on integrators, and may affect the number of addressed issues that are
integrated.

Process Number of Im-
pacted Files

Numeric
d: The number of files linked to an issue report.
r: An integration delay might be related to a high number of impacted files because
more effort would be required to properly integrate the modifications [8].

Number of Activ-
ities

Numeric
d: An activity is an entry in the issue’s history.
r: A high number of activities might indicate that much work was necessary to
address the issue, which can impact the integration of the issue into a release. [8].

Number of Com-
ments

Numeric
d: The number of comments of an issue report.
r: A large number of comments might indicate the importance of an issue or the
difficulty to understand an it [3], which might impact the integration delay. [8].

Number of
Tosses

Numeric

d: The number of times the assignee has changed.
r: The number of changes in the issue assignee might indicate a complex issue to
address or a difficulty in understanding the issue, which can impact the integration
delay. One of the reasons for changing the assigned developer is because additional
expertise may be required to address the issue [8, 24].

Comment Inter-
val

Numeric

d: The sum of all of the time intervals between comments (measured in hours) divided
by the total number of comments.
r: A short comment time interval indicates that an active discussion took place, which
suggests that the issue is important. [8].

Churn Numeric

d: The sum of the added lines and removed lines in the code repository.
r: A higher churn suggests that a great amount of work was required to address the
issue, and hence, verifying the impact of integrating the modifications may also be
difficult [8, 25].

interest. In RQ2, we investigate if we can accurately predict

the release in which an addressed issue will be integrated. The

prediction could estimate for users and contributors when an

addressed issue will likely be integrated.

Approach. In order to predict when an addressed issue will

be integrated, we collected information from both ITSs and

VCSs of the studied systems. We build models using metrics

from four dimensions: reporter, issue, project, and history. We

briefly describe each dimension below.

• Reporter dimension refers to information related to the

reputation of an issue reporter. Issues reported by a

reporter who is known to report important issues may

receive more attention from the integration team.

• Issue dimension refers to the information provided about

reported issues. Project team use this information to

triage, address, and integrate issues. For example, inte-

grators may not be able to properly assess the importance

and impact of poorly described issues, which may, in turn,

lead to integration delays.

• Project dimension refers to the status of the project

when a specific issue is addressed. If the project team

has a heavy integration workload i.e., many addressed

issues waiting to be integrated, the integration of newly

addressed issues may be delayed.

• Process dimension refers to information related to the

process of addressing an issue. An addressed issue that

involved a complex process (e.g., long comment threads,

large code changes) could be difficult to understand and

integrate.

Table II describes the information that we collected in each

285285285285

dimension. Henceforth, we refer to the collected information

as attributes. For each attribute, Table II presents the type and

the rationale behind its use in our models.

Prediction technique. We train our models using the random
forest technique [26], which is known to have a good overall

prediction accuracy and to be robust to outliers as well as noisy

data. Model robustness is important for our study because the

data in the ITSs are filed with subjective criteria and tend

to be noisy [27]. In our study, we use the random forest
implementation provided by the bigrf R package [28]. To build

and test the prediction model, we use a 10-fold cross-validation

and 100 trees in each forest.

Evaluation metrics. We use precision, recall, F-measure, and

ROC area to evaluate our models. We describe each metric

below.

Precision (P) measures the correctness of our models in

predicting the release delay of an addressed issue. A prediction

is considered correct if the predicted integration delay is

the same as the actual integration delay it had. Precision is

computed as the proportion of correctly predicted integration

delays for each class (e.g., next, after-1).

Recall (R) measures the completeness of a model. A model

is considered complete if all of the addressed issues that were

integrated in a given release r are predicted to appear in r.

Recall is computed as the proportion of issues that actually

appear in a release r that were correctly predicted as such.

F-measure (F) is the harmonic mean of precision and

recall, i.e., (2×P×R
P+R). F-measure combines the inversely related

precision and recall values into a single descriptive statistic.

ROC area is used to evaluate the degree of discrimination

achieved by the model. The ROC area is the area below the

curve plotting the true positive rate against false positive rate.

The value of ROC area ranges between 0 (worst) and 1 (best).

An area greater than 0.5 indicates that the prediction model

outperforms a random predictor. We computed the ROC area

for a given class c (e.g., next) on a binary basis. In other words,

the probabilities of the instances were analyzed as pertaining

to a given class c or not for each class. Therefore, each class

has its own ROC area value.

Results. Our prediction models achieve a weighted average
precision between 0.59 to 0.88 and a recall between 0.62
to 0.88, with ROC areas of above 0.74. Figure 6 shows the

precision, recall, F-measure, and ROC area of the prediction

models. The boxplots represent the distributions of the 10 folds

that were run for each class. Note that the highest precisions

for ArgoUML and Eclipse were for next class (median of

0.97 and 0.69 respectively), whereas after-2 had the highest

precision in Firefox (median of 0.99). The classes with the

highest precision values are also the ones with the majority

of instances. In Firefox, the vast majority of the instances are

in the after-2 class, which may explain the low precisions for

the other classes. On the other hand, recall values are higher

for classes whose instances are a minority. For example, the

highest medians for recall in ArgoUML are for after-2 and

after-3-or-more, whereas in Firefox the highest medians are for

next and after-3-or-more. Eclipse models also have a relatively

high recall for next (0.66). ROC area weighted averages are

above 0.74 in all of the studied systems, which indicate that

our model predictions are better than random guessing (ROC

of 0.5). In summary, the models obtained a weighted average

precision of 0.59 to 0.88 and a recall of 0.62 to 0.88. Although

there is a room for improvement, our models provide a sound

starting point for predicting the release that an addressed issue

will be integrated into.

Our models achieve better F-measure values than Zero-
R. We compared our models to Zero-R models as a baseline.

For all test instances, Zero-R selects the class that contains

the majority of the instances. Hence, the recall for the class

containing the majority of instances is 1.0. We compared the F-

measure of our models to the F-measure of Zero-R models. We

chose to compare to the F-measure values because precision

and recall are very skewed for Zero-R. For Firefox, Zero-R has

an F-measure of 0.95 for the class after-2, which was equal

to our model. For Eclipse, Zero-R always selects next and

achieves an F-measure of 0.58 while our model achieves 0.68.

Finally, for ArgoUML, Zero-R selects always next with 0.84,

whereas our model achieves 0.91. The results show that our

models yield better F-measure values than naive techniques

like Zero-R or random prediction (ROC = 0.5) in the majority

of cases.

Our models outperform naive techniques such as Zero-
R and random prediction, achieving an ROC area of at
least 0.74.

RQ3: What are the most influential attributes for estimating
integration delay?
Motivation. In RQ2, we found that our models can accurately

predict the integration delay of addressed issues. To build the

models, we use attributes collected from ITSs and VCSs. As

described in Table II, the attributes measure different dimen-

sions related to the addressed issues. In RQ3, we investigate

which attributes are influential in determining whether the

integration of an addressed issue will be delayed.

Approach. To identify the most influential attributes that

estimate integration delay of an addressed issue, we compute

variable importance for each attribute in our models. The

variable importance implementation we use in our study is

from the bigrf package available in R [28]. This implemen-

tation computes the importance of an attribute based on Out

Of the Bag (OOB) estimates. Each attribute of the dataset is

randomly permuted in the OOB data. Then, the average a of

the differences between the votes for the correct class in the

permuted OOB and the original OOB is computed. The result

of a is the importance of an attribute. The final output of the

variable importance is a rank of the attributes indicating their

importance for the model. Hence, if a specific attribute has the

highest rank, then it is the most influential attribute that the

prediction model is using to model integration delay.

Results. The integrator workload has a bigger influence on
integrator delay than the other attributes. By integrators we

refer to team members that are responsible for integration tasks

[8, 29, 30]. Figure 7 shows the distribution of the variable

286286286286

(a) ArgoUML (b) Eclipse (c) FireFox

Fig. 6: The performance of our random forest classifiers.

(a) ArgoUML (b) Eclipse (c) Firefox

Fig. 7: Distributions of variable importance values computed for the 10 folds that were run to train the models.

Fig. 8: The spread of issues among Firefox components. The

darker the colors, the smaller the proportion of issues that

impact that component.

importance values computed for the 10-folds of our models.

The result shows that workload is one of the most influential

attributes for estimating the integration delay of an addressed

issue. This finding holds for both the rapid and the traditional

release cycles. This result confirms the intuition that issues

that were addressed during periods of high integration activity

are more likely to be delayed.

In Firefox, component is the most influential attribute. To

better understand why component is considered influential,

we counted how many addressed issues that are in each

component. Figure 8 shows the top 7 Firefox components,

each having more than 400 addressed issues. We analyzed the

proportion of delayed integration in these top 7 components.

Figure 8 shows that, for classes next and after-1 the majority of

issues are related to the General component, whereas for after-
2 and after-3-or-more the majority are related to the Javascript
engine component. Addressed issues related to the General
component may be easy to integrate, whereas issues related

to the Javascript Engine may require more careful analysis

before integration.

Severity and priority have little influence on issue in-
tegration delay. Users and contributors of software projects

can denote the importance of an issue using the priority and

severity fields. Previous studies have shown that priority and

severity have little influence on bug fixing time [27, 31]. For

example, while an issue might be severe or of high priority, it

might be complex and would take a long time to fix. However,

in the integration context, we expect that priority and severity

would play a bigger role, since the issue has already been

addressed. One would expect that integrators would try to

287287287287

(a) ArgoUML Priority (b) Eclipse Priority (c) Firefox Priority (d) Eclipse Severity (e) Firefox Severity

Fig. 9: The percentage of priority and severity levels in each issue class. We expect to see light colour in the upper left

corner of these graphs, indicating that high priority/severity issues are integrated rapidly. Surprinsingly, we are not seeing

such a pattern in our datasets.

fast-track the integration of such high priority and severe

issues. For instance, according to Eclipse guidelines for filing

issue reports, priority value P1 is used for serious issues and

specifies that the existence of a P1 issue should prevent a

release from shipping [32]. Hence, it is surprising that priority

and severity play such a small role in determining the release

in which an issue will appear in.

We performed an additional analysis to investigate how

integration delays are related to priority and severity among

the studied projects and why they had such little influence in

our models. Figure 9 shows the percentage of issues with a

given priority (y-axis) in a given delay class (x-axis). Note that

the integration of 36% to 97% of priority P1 addressed issues

were delayed for at least one release, whereas the percentages

for P2 were 32% to 96%. In ArgoUML, while the majority of

priority P1 issues (64%) were integrated in the next release,

36% of them were delayed by at least one release. For Firefox,

97% of the P1 issues and 96% of the blocker issues were

delayed by at least one release. Finally, for Eclipse, 57% of

P1 issues and 49% of blocker issues were delayed by at least

one release. Hence, our data shows that, in the context of

issue integration, priority and severity have little influence on

integration delay.

The integrator workload plays a major role in estimating
the integration delay in the three studied projects. Priority
and severity have little influence in estimating integration
delay. Indeed, 36% to 97% of top priority (P1) addressed
issues were delayed by at least one release.

IV. THREATS TO VALIDITY

Interval validity. The internal threat to validity is concerned

with the ability to draw conclusions from the relation between

the independent and dependent variables. The main threat in

this regard is the representativeness of the data. Although

Firefox and Eclipse report the list of addressed issues in their

release notes, we do not know how complete this list truly is.

Moreover, the method that we use to map the addressed issues

to releases in ArgoUML is based on the target milestone
which may contain noise. Nonetheless, our Firefox and Eclipse

results are based on addressed issues that we are sure have

been integrated in the denoted releases.

We segmented the dependent variable into four classes: next,
after-1, after-2, and after-3-or-more. Although, we found it to

be a reasonable classification, a different classification may

yield different results. Also, the attributes that we considered

in our prediction models are not exhaustive. The addition

of other attributes would likely improve model performance.

Nonetheless, our models performed well compared to random

prediction and Zero-R models with the current set of attributes

and dependent variable segmentation.

External Validity. External threats are concerned with our

ability to generalize our results. In our work, we investigated

three open source projects. Although the projects that we

considered in our study are of different sizes and domains,

and prescribing to different release policies, our findings may

not generalize to other systems. Replication of this work in

a large set of systems is required in order to arrive at more

general conclusions.

V. RELATED WORK

Estimating the effort and time required to address an issue

has become an important project planning activity. To assist

developers and project managers in this regard, several studies

have proposed different approaches to estimate effort and time

required to triage and to address issues [1–7, 33]. In each of the

following subsections, we describe prior work about triaging,

addressing, and integrating issues.

A. Triaging Issues

Triaging issues is the process of deciding which issues have

to be addressed, and assigning the appropriate developer to

them [11]. This decision depends of several factors, such as

the impact of the issue on the software, or how much effort is

required to address the issue. Projects usually receive a high

number of issue reports. Issue reports come from a diverse

audience that is usually larger than the developer team. Hence,

effective triaging of issue reports is an important means of

keeping up with user demands.

Hooimeijer and Weimer [33] built a model to classify

whether or not an issue report will be “cheap” or “expensive”

to triage by measuring the quality of the report. Based on their

findings, the authors state that the effort required to maintain

a software system could be reduced by filtering out reports

that are “expensive” to triage. Saha et al. [34] studied long

lived issues, i.e., issues that were not addressed for more than

one year. They found that the time to assign a developer and

288288288288

address such issues is approximately two years. Our work

complements these prior studies by investigating the time to

integrate issues once they are addressed.

B. Addressing Issues

Once an issue is properly triaged, the assigned developer

starts to address it. To estimate the time required to address

issues, some approaches used the similarity of an issue to

existing issues [6, 7], while others built prediction models

using different machine learning techniques [2, 3, 5, 23]. Kim

and Whitehead [4] computed the time taken to address issues

in ArgoUML and PostgreSQL. They found that the median

issue-fix time is about 200 days. Guo et al. [10] used logistic

regression model to predict the probability that an new issue

will be fixed. The authors trained the model on Windows Vista

issues and achieved a precision of 0.68 and recall of 0.64 when

predicting Windows 7 issue reports. These approaches focus

on estimating the time required to address an issue. In our

study, however, we investigated in which release an addressed

issue will be integrated.

Recent empirical studies assess the relationship between

the attributes used to build models for estimating bug fix

time. Bhattacharya and Neamtiu [35] performed univariate and

multivariate regression analyses to capture the significance of

four features in issue reports. Their results indicate that more

independent variables are required to build better prediction

models. Herraiz et al. [27] studied the mean time to close

issues reported in Eclipse, and how the severity and priority

levels of the issues affect this time. In their study, the authors

used one way analysis of variance to group the different

priority and severity levels used in Eclipse. Based on their

result, the authors suggest to reduce the severity and priority

options to three levels. Zhang et al. [36] investigated the delays

incurred by developers in the issue addressing process. To

do such analyses, they extract the beginning and ending time

of an issue addressing activity from interaction logs. Using

the collected information they analyzed delays in the issue

addressing process. In their analysis, they investigated the

impact of three dimensions related to issues: issue reports,

source code involved in the issue, and code changes that are

required to address the bug. They found that metrics such

as severity, operating system, description of the issue, and

comments are likely to impact the delays in starting to address

the issue and changing the status to RESOLVED. Similar to

Zhang et al. [36], we used attributes related to issue reports to

build prediction models in order to understand which attributes

play an important role in the prediction. In addition, we

investigate why severity and priority levels are not relevant

to distinguish issue reports that are addressed and integrated

in a release prior to others.

C. Integrating Issues

Jiang et al. [8] studied attributes that could determine the

acceptance and integration of a patch into the Linux kernel. A

patch is a record of changes that is applied to a software system

to address an issue. To identify such attributes, the authors built

decision tree models and conducted top node analysis. Among

the attributes studied, developer experience, patch maturity,

and prior subsystem are found to play a major role in patch

acceptance and integration time. Similar to Jiang et al. [8], we

also investigate the integration of addressed issues. However,

we focus on the integration delay of issues that have been

addressed.

VI. CONCLUSION AND FUTURE WORKS

Once an issue is addressed, what users and code contributors

most care about is when the software is going to reflect the

addressed issue, i.e., when the integration occurs. However,

we observed that the integration of several addressed issues

was delayed for several releases. In this context, it is not clear

why certain addressed issues take longer to be integrated than

others. Hence, we performed an empirical study of 20,995

issues from the ArgoUML, Eclipse and Firefox projects. In

our study, we:

• found that despite being addressed well before of an

upcoming release, 34% to 60% of the addressed issues

were delayed by more than one release in ArgoUML and

Eclipse. Furthermore, 98% of Firefox issues were delayed

by at least one release.

• built models to predict the integration delay of an ad-

dressed issue. Our models achieved a weighted average

ROC area of at least 0.74. Our models outperform base-

line random and Zero-R models.

• computed the variable importance to understand what

attributes are the most important in our models of in-

tegration delay. The integrator workload is found to be

the most important attribute when estimating integration

delay. Surprisingly, we found that Priority and severity
have little impact on our models. Indeed, 36% to 97% of

priority P1 addressed issues were delayed by at least one

release.

Our work provides some initial insight as to why some

addressed issues are integrated prior to others. Our results

suggest that more work is needed to understand and facilitate

the activities of integration teams. For instance, the workload

of the integrators is an important indicator of integration delay.

It is important to improve the integration step of a release

cycle, since the availability of an addressed issue in a release is

what users and contributors care most about. Our models could

also be used to give an estimation for users and contributors

about when an addressed issue will be integrated from the

time when it is addressed.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an
open bug repository,” in Proceedings of the 2005 OOPSLA
Workshop on Eclipse Technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005, pp. 35–39. [Online].
Available: http://doi.acm.org/10.1145/1117696.1117704

[2] P. Anbalagan and M. Vouk, “On predicting the time taken to
correct bug reports in open source projects,” in Proceedings of
the 2009 IEEE International Conference on Software Mainte-
nance, ser. ICSM ’09, Sept 2009, pp. 523–526.

289289289289

[3] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of
bugs,” in Proceedings of the 2nd International Workshop on
Recommendation Systems for Software Engineering, ser. RSSE
’10. New York, NY, USA: ACM, 2010, pp. 52–56.

[4] S. Kim and E. J. Whitehead, Jr., “How long did it take to
fix bugs?” in Proceedings of the 2006 International Workshop
on Mining Software Repositories, ser. MSR ’06. New York,
NY, USA: ACM, 2006, pp. 173–174. [Online]. Available:
http://doi.acm.org/10.1145/1137983.1138027

[5] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time
for bugs in large open source projects,” in Proceedings of the
7th International Conference on Predictive Models in Software
Engineering, ser. Promise ’11. New York, NY, USA: ACM,
2011, pp. 11:1–11:8.

[6] C. Weib, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” in Proceedings of the Fourth
International Workshop on Mining Software Repositories, ser.
MSR ’07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 1–.

[7] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing
time: An empirical study of commercial software projects,” in
Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press,
2013, pp. 1042–1051.

[8] Y. Jiang, B. Adams, and D. M. German, “Will my patch
make it? and how fast?: Case study on the linux kernel,”
in Proceedings of the 10th Working Conference on Mining
Software Repositories, ser. MSR ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 101–110. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487111

[9] Firefox, Bug 883554, http://goo.gl/owzss5. Accessed: 17-04-
2014.

[10] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: An
empirical study of microsoft windows,” in Proceedings of
the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 495–504. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806871

[11] J. Anvik, L. Hiew, and G. C. Murphy, “Who should
fix this bug?” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New
York, NY, USA: ACM, 2006, pp. 361–370. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134336

[12] Bugzilla fields, http://goo.gl/jdbkwd. Accessed: 20-04-2014.

[13] Life cycle of a Bug, http://goo.gl/nbmhaf. Accessed: 20-04-
2014.

[14] M. V. Mantyla, F. Khomh, B. Adams, E. Engstrom, and K. Pe-
tersen, “On rapid releases and software testing,” in Software
Maintenance (ICSM), 2013 29th IEEE International Conference
on. IEEE, 2013, pp. 20–29.

[15] ArgoUML, http://argouml.tigris.org/. Accessed: 17-04-2014.

[16] Eclipse, https://www.eclipse.org/. Accessed: 17-04-2014.

[17] Mozilla Firefox, http://goo.gl/qyizd2. Accessed: 17-04-2014.

[18] ArgoUML Release Notes, http://goo.gl/rjggvd. Accessed: 20-
04-2014.

[19] Eclipse Release Notes, http://goo.gl/arjj0u. Accessed: 20-04-
2014.

[20] Firefox Release Notes, http://goo.gl/x8htzm. Accessed: 20-04-

2014.

[21] ArgoUML Release Notes, http://goo.gl/nbdxp7. Accessed: 20-
04-2014.

[22] ArgoUML, Bug 4914, http://goo.gl/iok56r. Accessed: 17-04-

2014.

[23] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings
of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 29–. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2007.25

[24] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” in Proceedings of the the 7th joint
meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software
engineering. ACM, 2009, pp. 111–120.

[25] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference
on. IEEE, 2005, pp. 284–292.

[26] L. Breiman, “Random forests,” in Machine Learning, ser.
Springer Journal no. 10994, 2001, pp. 5–32.

[27] I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and
G. Robles, “Towards a simplification of the bug report form
in eclipse,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08.
New York, NY, USA: ACM, 2008, pp. 145–148. [Online].
Available: http://doi.acm.org/10.1145/1370750.1370786

[28] Random Forest R Package, http://goo.gl/fyyd33. Accessed: 20-
04-2014.

[29] Eclipse Commiters, Contributors and Councils,
http://goo.gl/q4vzzl. Accessed: 14-07-2014.

[30] Firefox Release Engineering, http://goo.gl/gbvxsk. Accessed:
14-07-2014.

[31] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two
case studies of open source software development: Apache
and mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11,
no. 3, pp. 309–346, Jul. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/567793.567795

[32] Eclipse How to use BugZilla, http://goo.gl/xur43g. Accessed:
17-04-2014.

[33] P. Hooimeijer and W. Weimer, “Modeling bug report quality,”
in Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE
’07. New York, NY, USA: ACM, 2007, pp. 34–43. [Online].
Available: http://doi.acm.org/10.1145/1321631.1321639

[34] R. Saha, S. Khurshid, and D. Perry, “An empirical study of
long lived bugs,” in 2014 Software Evolution Week - IEEE Con-
ference onSoftware Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), Feb 2014, pp. 144–153.

[35] P. Bhattacharya and I. Neamtiu, “Bug-fix time prediction
models: Can we do better?” in Proceedings of the 8th Working
Conference on Mining Software Repositories, ser. MSR ’11.
New York, NY, USA: ACM, 2011, pp. 207–210. [Online].
Available: http://doi.acm.org/10.1145/1985441.1985472

[36] F. Zhang, F. Khomh, Y. Zou, and A. Hassan, “An empirical
study on factors impacting bug fixing time,” in Reverse Engi-
neering (WCRE), 2012 19th Working Conference on, Oct 2012,
pp. 225–234.

290290290290

