
Recovering Commit Dependencies for Selective
Code Integration in Software Product Lines
Tejinder Dhaliwal, Foutse Khomh, Ying Zou

Dept. of Elec. and Comp. Engineering
Queen’s University

Kingston, Ontario, Canada
{9td23, foutse.khomh, ying.zou}@queensu.ca

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University
Kingston, Ontario, Canada

ahmed@cs.queensu.ca

Abstract—In software product lines, multiple products of a
software product family, share source code of common com-
ponents. New features added to the common components of a
software product family, are integrated into products following a
selective code integration process. Selective code integration is a
process in which developers pick the commits (i.e., code changes)
related to a feature from one code branch and integrate them into
another code branch. Developers often manually link the commits
to the features to enable the selective integration of features. In
current practice, not all dependent commits are always linked to
features and developers might miss the unlinked commits during
selective code integration. In this paper, we propose two grouping
approaches that identify dependencies among commits and create
groups of dependent commits that need to be integrated as a
whole into a code branch. Our first approach is automatic and
the other is developer-guided. Through a case study on data
derived from a product line of mobile software applications, we
show that our approaches can achieve a precision of up to 95%
and a recall of up to 82% in grouping dependent commits. We
also show that our approaches can help to reduce by up to 94%
integration failures caused by missing commit dependencies.

Keywords-Selective Code Integration; Developer-guided
Grouping; Product Line Development; Empirical Software
Engineering.

I. INTRODUCTION

Version Control Systems (VCS) allow development teams
to track and manage source code changes. Modern VCS use
a change oriented model [1]. In such a model, every code
change submitted by a developer is stored as a commit. New
commits are added to the source code to implement Change
Requests (CR). A CR is a call for a modification of a system.
The modification can be, for example, an addition of a feature
or a bug fix.

VCS support branching, which allow separate changes to
be applied to different copies of a project. Each copy is called
a code branch and changes from one branch can be integrated
into another branch. When all the commits from one branch
are integrated into another branch, the integration is called a
code merge. Whereas, when a specific CR from one branch is
integrated into another branch, by selectively integrating the
commits related to the CR, the integration is called a selective
code integration.

Software product lines allow developers to build similar

software products (e.g., multiple variants of a software), using
common software artifacts [2]. A group of similar products
sharing common software artifacts is known as a product
family. In software product lines, a product family is supported
by a common main branch (i.e., trunk). The trunk contains
the source code common to all the products in the family.
For each product, a separate code branch is diverged from
the trunk to store and track code changes, specific to the
product. Selective code integration is a very important step in
the development and maintenance of software product lines.
During the development of a product family, after a new CR
is added to the trunk, developers selectively integrate the CR
from the trunk to the code specific to the products. During
the maintenance of a product family, when a common bug
is fixed on a product specific branch, developers selectively
integrate commits related the bug fix into other product specific
branches.

Selective code integration is a brittle process. A CR can
be implemented by multiple commits sharing dependencies
between them and/or depending on previous commits in the
branch. Developers often manually link commits to CR to
enable the selective integration of the CR. When a group
of commits share dependencies among them, all the commits
should be integrated as a whole into the destination branch.
For example, if the implementation of a change request CR1

modifies a common utility function on which another change
request CR2 is dependent, commits of CR1 also need to be
integrated during the integration of CR2. However, developers
often overlook or miss some commit dependencies because
they are not always explicit, especially when they occur at
run time (e.g., dependencies between commits of CR1 and
CR2).

When commit dependencies are missed during a selective
code integration, the integration fails. This failure is charac-
terized by either a compilation or a runtime error. We have
observed from an analysis of the product line of a mobile
software application that integration failures caused by missing
commit dependencies can increase the total integration time
of a CR by 530%. Therefore, it is critical for development
and maintenance teams to avoid missing commit dependencies
during the selective integration of a CR.

In this paper, we propose two approaches to identify com-978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

Product-1 Branch

Trunk

Product-n Branch

Selective Code Integration

Development Branch

In
te

gr
at

io
n

 S
u

p
p

o
rt

 S
ys

te
m

C
R

 T
ra

ck
in

g
Sy

st
em

Code Merge

Figure 1. Version Control Model (with Selective Code Integration)

mit dependencies and create groups of dependent commits
that should be integrated together. The first approach is an
automatic grouping approach that assists developer to find
the group of commits that needs to be integrated when they
are integrating a CR. The second approach is a developer-
guided approach that assists developers in finding a group of
related commits to a particular commit. These approaches are
particularly important because in large software applications,
developers generally have limited knowledge of the complete
application [3] and usually the developer responsible for the
integration of a CR is not the one who implemented the CR.
Therefore, it is important to assist developers in determining
commit dependencies. Our two approaches determine depen-
dencies among the commits by analyzing dependencies among
CRs, structural and logical dependencies among source code
elements, and the history of developers’ working collabora-
tions.

This paper makes the following three contributions:
• We propose four dissimilarity metrics to recover depen-

dency links between commits.
• We propose two approaches to group the dependent

commits, in order to assist developers during selective
code integration process.

• We evaluate our proposed approaches on data from a
product line of mobile software applications and show
that they can help to avoid 94% of the integration failures
caused by missing commit dependencies.

The rest of the paper is organized as follows. Section II gives
an overview of the selective code integration process. Section
III describes our approaches for grouping dependent commits.
Section IV presents the setup of our case study to validate
our proposed grouping approaches. Section V discusses the
results of the case study. Section VI discusses the threats to
the validity of our study. Section VII summarizes the related
literature on the selective code integration process in Software
Product Lines. Finally, Section VIII concludes our work.

II. OVERVIEW OF A SELECTIVE CODE INTEGRATION
PROCESS

The selective integration of CRs in software product lines
requires the following three essential systems:

1) The CR Tracking System (e.g., Jira1) which tracks the
CRs of each version of the products. This system also

helps developers to maintain the dependencies among the
CRs. A change request CR1 is considered dependent on
another change request CR2, if for example, CR1 makes
use of a feature introduces by CR2.

2) The Version Control System (e.g., Git2) which main-
tains source code branches. Software product lines often
follows a main line branching model [4], as shown in
Figure 1. This model contains three types of source code
branches: the development branch, the trunk and the
product specific branches. The development branch and
the trunk are common to all the products in a product
family, with each product having its own branch.

3) The Integration Support System (e.g., Gerrit3) which
is used to facilitate the selective code integration. The
integration support system maintains the links between
the commits and the CRs. There are two types of links:

• Commit to CR links - When developers implement
a CR, they link related commits with the CR.

• Commit to commit links - When a commit added for
one CR, is dependent on another commit added for
a different CR, developers link the two commits.

The Integration support system also keeps track of the
integration state of each CR. A CR can have the following
integration states:

• Ready for Integration - When a CR is implemented
and merged into the trunk, the CR is marked as ready
for integration into product branches.

• Integrated - When a CR is successfully integrated
into a product branch, the CR is marked as inte-
grated.

• Failed to Integrate - When the integration of a CR
into a product branch fails, the CR is marked as failed
to integrate.

A typical selective code integration process involves two
types of actors:

1) Developer - A developer commits the code changes for
a CR into the development branch and integrates the CR
into the trunk. Developers implement features for all the
products.

2) Integrator - An integrator belongs to a specific product
team. Integrators selectively integrate the CRs from the
trunk into their product specific branches.

Figure 2 shows the sequence of a selective code integration
process. The following actions are performed during the
selective integration of a CR:

• The developer implements the CR, commits the code
changes into the development branch and links the com-
mits with the CR. A CR can be implemented by one or
multiple developers.

• When a CR is implemented and tested in the development
branch, it is merged into the trunk and marked as ready

1. www.atlassian.com/software/jira
2. www.git-scm.com/
3. www.code.google.com/p/gerrit/

Developer Integrator

Development Code Branch Trunk (Main Branch) Product Code Branch Integration Support System

Mark CR as Ready For Integration

Notify Integrator

Integrate the CR into the Product Branch

Mark CR as Failed to Integrate

Notify Developer

Mark CR as Integrated

Debug and add missing dependecies

Mark CR as Ready for Integration (Resubmit the CR)

First Attempt to
Integrate the CR

Successive
Attempts to
Integrate the CR

Code Merge

Implements a CR

{If Successfull}

{Else}

Developer Action System Action

Figure 2. Sequence Diagram of the Selective Integration of a Change Request.

for integration (into product specific branches).
• Once a CR is marked as ready for integration, all product

integrators are notified. Each integrator checks if the CR
is applicable for their product. If applicable, the integrator
integrates all the commits linked to the CR into the
product specific branch.

• When integrating a CR, all commits linked directly or
indirectly with the CR are integrated into the product
branch. For example, if some commits of a change
request CR1 are linked with commits of a change request
CR2, and the change request CR1 is dependent on
another change request CR3 (in the CR tracking system),
the integration of CR1 requires that all commits linked
with CR1, CR2 and CR3 are to be integrated all together.

• When the integration succeeds, the CR is marked as
integrated and the process is completed. Otherwise, the
CR is marked with an integration failure notice and the
developers who implemented the CR are notified.

• Developers should debug the source code related to the
CR, make the required changes and/or add the missing
commit dependencies, and resubmit the CR for integra-
tion.

III. GROUPING OF COMMITS

When integrating a CR into a branch, developers have to
incorporate all the commits linked with the CR. However, all
too often some commits linked with a CR depend on other
commits not directly linked with the CR. Sometimes, commit
dependencies are dynamic i.e., a source code of two commits
are dependent only at runtime. Developers often have a hard
time tracking indirect or dynamic dependencies when integrat-
ing CRs. Missing dependencies cause integration failures. To
assist developers during CRs integration and prevent failures
caused by missing dependencies, we propose two approaches

to identify dependencies between commits. The approaches
also group dependent commits together and link them to the
corresponding CRs.

The remainder of this section discusses the details of our
identification of commits dependencies and introduces the two
grouping approaches.

A. Identification of Commit Dependencies

A commit is a set of source code changes submitted by a
developer into a code branch. A commit contains information
such as the list of files affected by the changes, the name of
the developer submitting the changes, the date of submission,
the description of the changes, and other information about
the branch in which the changes are submitted. In this work,
we represent a commit using a set of three attributes: the list
of files modified in the commit, the name of the developer
who submitted the commit, and the CR linked with the com-
mit. We select these attributes because they contain essential
information about the code elements that have been changed
and the authors of the changes.

To identify dependencies between commits, we introduce
the following four dissimilarity metrics.

1) File Dependency Distance (FD): The file dependency
distance (FD) measures the dissimilarity between two com-
mits using source code dependencies between the classes
contained in the files modified in the commits.

If Ca = {Fa, Da, CRa} and Cb = {Fb, Db, CRb} repre-
sents two commits; with Fa =< fa1, . . . fan > and Fb =<
fb1, . . . fbm > being respectively the lists of modified files
in Ca and Cb; Da and Db the names of the developers who
submitted Ca and Cb respectively; and CRa and CRb the CRs
linked with Ca and Cb respectively, we define FD in Equation

f1

f2

f3

f4

|π (f1,f1)| = 0

|π(f1,f3)| = 2

|π(f3,f1)| = 1

|π(f1,f4)| = ∞

Dependency Graph Example Path Values

Figure 3. Source Dependency Graph

(1).

FD(Ca, Cb) =

∑n
i=1

∑m
j=1(1−Dp(fai, fbj))

n ∗m
(1)

Where Dp(fai, fbj) measures the level of structural depen-
dency between fai and fbj .

A java file fa is considered dependent on a java file fb, if
a class defined in fa instantiates, invokes a function from,
extends, or implements a class defined in fb. To extract
dependencies between files in an application, we parse the
source code of the application and build a file dependency
graph. Figure 3 shows an example of the file dependency
graph. Each node in a file dependency graph represents a
source code file. A directed link between two nodes means
that one file is dependent on the other file. We use dependency
graphs to calculate the level of structural dependency between
two files, fa and fb, following Equation (2).

Dp(fa, fb) =
1

2
[

1

1 + |π(fa, fb)|
+

1

1 + |π(fb, fa)|
] (2)

Where |π(fa, fb)| is the number of nodes on the shortest path
from fa to fb in the dependency graph.

We consider both |π(fa, fb)| and |π(fb, fa)| in the definition
of Dp(fa, fb) because dependency graphs are directed graphs.

2) File Association Distance (FA): In the definition of
FD, the dependency between two files is measured using
structural dependencies between the java classes defined in
the files. However, two files can be dependent without a
direct source code dependency, for example two files that
changed together are considered logically dependent [5]. We
introduce the File Association (FA) distance to capture logical
dependencies between commits. We use the mean square
contingency coefficient (φ) [6] to measure the level of logical
association between files in commits. The φ coefficient is a
measure of association between two events, e.g., the modifica-
tion of two files fa and fb. The value of φ is computed using
Equation (3).

φ(fa, fb) =
(p1p4−p2p3)√

(p1+p2)∗(p3+p4)∗(p2+p4)∗(p1+p3)
(3)

Where, p1 is the number of commits in which both fa and fb
were modified, p2 is the number of commits in which fa was
modified but not fb, p3 is the number of commits in which fb
was modified but not fa, and p4 is the number of commits in
which neither fa nor fb were modified.
φ(fa, fb) captures the co-occurrence of modifications of fa

and fb. A value φ = 0 indicates that there is no logical

association between fa and fb, while a value φ = 1 indicates
a perfect association (i.e., fa and fb are always modified
together).

The FA distance of two commits Ca = {Fa, Da, CRa}
and Cb = {Fb, Db, CRb}, where Fa =< fa1, . . . fan > and
Fb =< fb1, . . . fbm >, is defined in Equation (4).

FA(Ca, Cb) =

∑n
i=1

∑m
j=1(1− φ(fai, fbj))
n ∗m

(4)

3) Developer Dissimilarity Distance (DD): Often, depen-
dent commits are submitted by developers who were col-
laborating on CRs in the past. We introduce the Developer
Dissimilarity Distance (DD) to capture the working relation
between two developers submitting commits. Similarly to FA,
we use the φ coefficient to measure the working relation
between two developers. We define the φ coefficient for two
developers Da and Db following Equation (5).

φ(Da, Db) =
(p1p4−p2p3)√

(p1+p2)∗(p3+p4)∗(p2+p4)∗(p1+p3)
(5)

Where p1 is the number of CRs implemented by both Da and
Db, p2 is the number of CRs in which Da contributed but not
Db, p3 is the number of CRs in which Db contributed but not
Da, and p4 is the number of CRs in which neither Da nor Db

contributed.
The DD distance between two commits Ca =

{Fa, Da, CRa} and Cb = {Fb, Db, CRb}, submitted respec-
tively by developers Da and Db is defined in Equation (6).

DS(Ca, Cb) = 1− φ(Da, Db) (6)

4) Change Request Dependency Distance (CRD): The
Change Request Dependency Distance (CRD) captures the
dissimilarity between the CRs implemented by two commits.
When two commits are linked with CRs marked (by develop-
ers) as dependent, the CRD value is 0. Otherwise the CRD
value is 1. Equation (7) gives a formalization of the CRD
between two commits, Ci and Cj .

CRD(Ci, Cj) =


0 if Ci and Cj are linked with

the same CR or dependent CRs
1 otherwise

(7)

B. Commit Grouping Approaches

Figure 4 gives an overview of our process to identify, group,
and link dependent commits to the corresponding CR. The
process is composed of three parts. The first part consists
in learning levels of dissimilarity among dependent commits
using historical commit data and metrics from Section III-A.
The second part describes a process to assign a commit to
existing groups of dependent commits. The third part defines
the grouping algorithms for each of our two approaches. The
algorithms are based on the dissimilarity levels learned in the
first part. Both algorithms also use the commit assignment
process from the second part. In the following we discuss
each part in details.

Precedence Order of
Dissimilarity Metrics

Automated Grouping
[Algorithm 3(a)]Learning the Levels of

Dissimilarity of
Dependent Commits

[Algorithm 1]
Developer-Guided

Grouping
[Algorithm 3(b)]

Assigning a New
Commit to Existing
Groups of Commit

[Algorithm 2]
Threshold Values for
Dissimilarity Metrics

Developer-Defined
Commit Groups

(Previous Versions)

Figure 4. Overview of Grouping Approach

Algorithm 1: LearnHistoryData(C[])

/* Learn Dissimilarity Levels from
Historical Data */
input : Commits of Previous Version C[]
output: Dissimilarity metrics D[], in order of

precedence
output: Max_Threshold and Min_Threshold

values for each Dissimilarity metric

1 Organize the commits into Developer-defined commit
groups ;

2 D[] = [FD,FA,DD,CBD] ;

3 foreach Dissimilarity metric d in D[] do
4 foreach Commit Ci in C[] do
5 ai = dissimilarity of Ci with its own group;
6 bi = min (dissimilarity of Ci with other

groups) ;
7 Sd(Ci) = (bi − ai) / max(bi, ai) ;

8 Max_Thresholdd = mean value of bi ∀Ci : C[];
9 Min_Thresholdd = mean value of ai ∀Ci : C[];

10 Sd = mean value of Sd(Ci) ∀ Ci : C[];

11 Sort dissimilarity metrics in D[] in descending order
of their Sd value ;

Part 1: Learning the Levels of Dissimilarity of Depen-
dent Commits: We learn the levels of dissimilarity among
dependent and independent commits using commit data from
previous versions. Algorithm 1 presents the steps of our
learning process.

• Using the links (added manually by developers) between
commits and CRs of previous versions, i.e., commit to
CR links and the CR dependency links, we organize the
commits into groups. We call these groups developer-
defined groups. [Line 1]

• D[] is the list of dissimilarity metrics defined is Section
III-A. [Line 2]

• Using developer-defined groups of previous versions,
we compute the Max_Threshold value, the
Min_Threshold value and the overall Silhouette
Value of each dissimilarity metric. [Line 3-10]

• We order dissimilarity metrics by their Silhouette values.
[Line 11]

To obtain developer-defined groups, we assign commits
linked together (by developers) in the same group, and com-

mits with no link to separate groups.
In summary, in our developer-defined groups, each group

represents a set of dependent commits, that were integrated
together in order to integrate the CR(s) linked to the commits
in the group. During the integration process of commits
contained in developer-defined groups, the links between the
commits have been verified and corrected if necessary by the
integrators. Therefore, the developer-defined groups are correct
and complete. In this study we use developer-defined groups
as our gold standard to learn dissimilarity levels (on prior ver-
sions of the application) and compute the performance of our
grouping approaches (on future versions of the application).

To compute the Silhouette value [7] of a dissimilarity metric
d, on developer-defined groups, we proceed as follows: given
a commit Ci, we calculate the Silhouette Sd(Ci) following as:

Sd(Ci) =
(bi − ai)
max(bi, ai)

(8)

Where ai is the average dissimilarity (i.e., d) between Ci and
other commits from the same group; bi is the minimum of
average dissimilarity values between Ci and all the commits
in other groups.

The silhouette value of a dissimilarity metric d is the mean
of the silhouette values Sd(Ci) of each commits Ci in C[].

Silhouette value compares the distance between items in
same group and the distance between the items in different
groups. The range of silhouette values is from -1 to 1. A
silhouette value of 0 represents a random grouping, while a
silhouette value of 1 represents a perfect grouping.

Part 2: Assigning a Commit to an Existing Groups of
Commit: To assign a commit C into existing groups of
commits G[], we follow the steps described in Algorithm 2.

• For the commit C, we select the groups Gsel[], such that
for each dissimilarity metric dj , the dissimilarity between
a selected group Gi and the commit C, is lower than the
Max_Threshold value of the dissimilarity metric dj .
[Line 2]

• Among the selected groups in Gsel[], we find the
group Gi that has the lowest dissimilarity with C, for
the dissimilarity metric dj with the highest ranking.
If the dissimilarity between C and Gi is lower than
the Min_Threshold value for the dissimilarity metric
dj , we assign the commit C to the group Gi and the
algorithm terminates. Otherwise, we select dj as the next
dissimilarity metric in the order of precedence and repeat
the comparison. [Line 3-7]

Algorithm 2: AssignGroup(Ci,G[])

/* Assign a Commit to Existing Groups
of Commit */

input: Commit C
input: List of existing groups G[]

1 D[] = Dissimilarity metrics in order of precedence;

2 Gsel[] = {Gi ∈ G[] | (dj(C,Gi) <=
Max_Thresholddj),∀ dj : D[] };

3 foreach Dissimilarity metric dj in D[] do
4 Gi = the group in Gsel[] with minimum

dj(C,Gi);

5 if dj(C,Gi) <= Min_Thresholddj then
6 assign C to Gi ;
7 exit ;

8 assign C to a new group Gn;
9 add Gn to G[];

• If the commit is not assigned to any group, a new group
is created for the commit. [Line 8-9]

Part 3: Grouping Dependent Commits: Using Algorithms
1 and 2, we propose two commit grouping approaches which
can be applied incrementally on newly created commits during
the development or the maintenance of a software application.
The two approaches identify dependencies between commits
and form groups of dependent commits that should be inte-
grated together. Algorithm 3:(a) and Algorithm 3:(b) presents
the details of the two approaches.

Algorithm 3: (a) Automated Grouping
input: Number of Iterations l
input: Commits to Group C[]

1 CommitGroups G[] ;
2 foreach Commit Ci in C[] do
3 AssignGroup (Ci,G[]) ;

4 iteration=0 ;
5 while iteration ≤ l do
6 foreach Commit Ci in C[] do
7 AssignGroup (Ci,G[]) ;

8 if no commit moved from one group to another
then

9 break;

10 iteration++;

(a) Automated Grouping: When an integrator integrates a CR,
he or she searches for all the commits related to the CR
that are available in the trunk. The trunk contains commits
linked with many CRs and the links between the commits
are not always explicit. In this scenario, the automated
grouping approach can help integrators to recover missing
dependencies among commits. The approach is presented

in Algorithm 3 (a). The approach is based on the K-mean
grouping algorithm [8]. The K-mean algorithm moves the
elements among the groups iteratively, until a stopping
criterion in met. The K-mean algorithm is not guaranteed
to converge, therefore in practise a bound on the number
of iterations is applied to guarantee termination [8]. For
our automated grouping approach, we fixed a maximum of
1,000 iterations in case the algorithm does not terminate
normally. However, we have observed through experi-
ments that the grouping results of Algorithm 3 (a) remain
similar when the maximum number of iterations is chosen
between 100 and 1,000.

• For each commit Ci in C[], we assign the commit
Ci to a group in G[] using Algorithm 2. Initially G[]
is empty. When a new commit is assigned, either a
new group is created for the commit or if a group of
similar commits was already created, the commit is
assigned to the group of similar commits. [Line 1-3]

• Once all the commits are assigned to a group in G[],
we reassign the commits between the groups in G[]
by using Algorithm 2. During the reassignment of the
commits in G[], the groups are changed and a commit
can move from one group to another. If no commit
is moved from one group to another group during a
reassignment, the algorithm terminates, otherwise we
reassign the commits again. To guarantee a conver-
gence, the algorithm is terminated after a maximum
number of iterations (i.e., 1,000 iterations).

(b) Developer-Guided Grouping: When a developer adds a
new commit, he or she links the commit with a CR.
However, a commit for a CR can be dependent on some
other commit(s) from another CR. In this scenario, we
recommend the developer-guided approach. The approach
is presented in Algorithm 3 (b).

Algorithm 3: (b) Developer-Guided Grouping
input: Newly added commit Cn

input: Existing Group of Commits G[]

1 AssignGroup (Cn,G[]);

2 A developer verifies the grouping of Cn. If incorrect,
the developer manually assigns Cn to the correct
group;

• When a new commit is added, the commit is assigned
to a group using Algorithm 2. [Line 1]

• After the new commit is assigned to a group, a
developer verifies if the commit is assigned correctly.
If not, the developer manually assigns the commit to
the correct group. [Line 2]

IV. CASE STUDY DESIGN

To show the benefits of using our grouping approach, we
perform a case study using a large scale software product
family. The goal of this case study is two-fold: (1) validate

CR Tracking
 System

Commit to Commit
Links

Extract CR Info

Extract Commits
Attributes

Build Developer-
Defined Commit

Groups

Extract Commit
LinksIntegration Support

System

Version Control
System

Extract Source
Code and Parse

Developer-Defined
Commit Groups

(Previous Version)

Automated Grouping
or

Developer-Guided
Grouping

Commit Groups
(Current Version)

Source Code
Dependencies

CR Dependencies

Commit Attributes

Commit to CR
Links

Figure 5. Data Collection and Commit Grouping

our dissimilarity metrics; (2) evaluate the effectiveness of our
proposed grouping algorithms. We formulate the following
research questions:

RQ1: Can the FD, FA, DD and CRD metrics, be used
to group dependent commits?

RQ2: How efficient are our proposed grouping approaches?

RQ3: What is the impact of using our approach on a
selective integration process?

A. Data Collection

In this study we analyze three major versions of a family
of mobile applications. The product family follows a main
line branching development model (illustrated by Figure 1).
We study the three most recent consecutive versions of the
product family. We name these versions V1, V2 and V3.

B. Data Processing

Figure 5 gives an overview of our data processing. First,
we extract CRs from the CR Tracking Systems. Then, we
download the source code of V1, V2 and V3 from the Version
Control System and extract dependencies between files. For
each CR of either version V1, V2 and V3, we retrieve the states
(i.e., Ready for Integration, Integrated, failed to integrate)
of the CR and the list of commits linked to the CR in the
Integration Support System. Using this data we apply our
grouping algorithms to automatically group dependent CRs
and assess the effectiveness of our grouping approach. The
remainder of this section elaborates on each of these data
processing steps.

1) Mining CR Tracking System: We retrieved the CRs of
versions V1, V2 and V3, and the dependencies among the CRs
for each version using the data collection API provided by the
CR Tracking System.

2) Mining the Version Control System: On the source code
of each downloaded version, we extract source code dependen-
cies between every pair of files. Using the data collection API
provided by the Version Control System, we retrieve commit
logs. We parse these commit logs to extract the following
attributes for each commit: the list of file modified in the
commit and the name of the developer who submitted the
commit.

3) Mining the Integration Support System: The Internal
Integration system used by the enterprise was developed
internally. The system is integrated with the Version Control
System to allow developers to link commits to related CRs.
Using the API provided by the Integration Support System, we
retrieved all the commits to CR links, the commit to commit
links, and the history of the states of all the CRs from versions
V1, V2 and V3.

V. CASE STUDY RESULTS

This section presents and discusses the results of our three
research questions. For each research question, we present the
motivation behind the question, the analysis approach and a
discussion of our findings.

RQ1: Can the FD, FA, DD and CRD metrics, be used to
group dependent commits?

Motivation: In Section III-A we proposed four metrics to
measure similarities between commits. The effectiveness of the
grouping approach presented in this paper is dependent on the
ability of the proposed metrics to identify dependent commits.
In this research question, we evaluate the effectiveness of each
of our four metrics in identifying dependent commits.

Approach: We evaluate each of our metrics using the
developer-defined groups of versions V1, V2 and V3, defined
in Section III-B. For each metric and for each pair of commit
from the developer-defined groups, we compute a dissimilarity
value using the metric. We expect that two commits from
the same group will have a low dissimilarity value, while
commits from separate groups a high dissimilarity value. To
measure the goodness of fit of our metrics to the developer-
defined groups, i.e., the ability of our metrics to identify two
commits that are linked together, we compute silhouette values
for each metric following Equation (8) from Section III-B. A
positive silhouette value means that the metric can successfully
identifies two linked commits. The higher the silhouette value,
the stronger is the ability of the metric to identify linked
commits.

Findings: The CRD metric is the strongest at indicating
linked commits. Table I shows the Silhouette values of the
four dissimilarity metrics measured on commits from our three
studied versions. CRD has the highest Silhouette and the
values are close to 1. This result was expected since one

Table I
SILHOUETTE VALUES OF THE PROPOSED DISSIMILARITY METRICS

Dissimilarity Measure V1 V2 V3

CR Distance (CRD) 0.94 0.96 0.96
File Association Distance (FA) 0.76 0.79 0.67
Developer Dissimilarity Distance (DD) 0.63 0.67 0.57
File Dependency Distance (FD) 0.46 0.47 0.49

expect commits linked together to belong to the same CR or to
dependent CRs. The FA metric has the next highest values,
indicating that files from dependent commits are frequently
changed together. The next in the precedence order is DD,
indicating that dependent commits are often added by devel-
opers with a history of joint work on CRs. The FD metric is
reported to be the least effective of our four metrics, with an
average silhouette value of 0.47. However, the average FD
dissimilarity between two dependent commits is 0.24 and the
average FD dissimilarity between two commits with no link
is 0.47. Indicating that files modified in dependent commits
have slightly stronger source code dependencies compare to
files modified in independent commits (i.e., commits with no
link). Nevertheless, FD remains the least effective of our four
dissimilarity measures.

RQ2: How efficient are our proposed grouping approaches?

Motivation: In Section III-B, we have defined two ap-
proaches to group dependent commits, in order to assist a
developer during a selective integration process. However,
because the prime motivation for automating the grouping
of commits is to save developers’ time and resources, the
efficiency of the proposed approaches is very important. In
this research question we evaluate how correctly and how
efficiently the proposed approaches can group dependent com-
mits.

Approach: To evaluate the efficiency of our proposed
automatic and developer-guided approaches, we first use
developer-defined groups from version V1 to learn dissimilar-
ity levels necessary to calibrate the grouping algorithms. We
then apply the two grouping algorithms on the commits of
V2. Second, we calibrate the two grouping algorithms using
developer-defined groups from version V1 and V2, and we
apply the grouping algorithms on the commits of version V3.

To assess the correctness of the groups created by our two
algorithms, we use developer-defined groups of versions V2
and V3 as our gold standard. We compare how well the com-
mit dependency links recovered by our grouping approaches
(i.e., the groups created by Algorithm 3(a) or Algorithm 3(b))
match the links established in the Integration Support System
by the developers of V2 and V3 (i.e., the developer-defined
groups).

We compute the precision and the recall of the automated
grouping approach (i.e., Algorithm 3) using respectively Equa-
tion (9) and Equation (10). The precision value measures the
fraction of retrieved commit dependency links that are correct,
while the recall value measures the fraction of correct commit
dependency links that are retrieved.

Table II
PRECISION, RECALL AND ACCURACY OF THE GROUPING APPROACHES

V2 V3

Precision (Automated) 92% 95%
Recall (Automated) 79% 82%
Accuracy (Developer-Guided) 96% 98%

Precision =
|{correct link}

⋂
{retrieved link}|

|{retrieved link}|
(9)

Recall =
|{correct link}

⋂
{retrieved link}|

|{correct link}|
(10)

In the case of our developer-guided approach (i.e., Algo-
rithm 3), we use developer-defined groups to simulate the
feedbacks from developers. Specifically, we proceed as follow:
after adding a commit, we compare the grouping result of
our algorithm with the groups in developer-defined groups. If
the commit is not assigned to the correct group of dependent
commits, we override the result of our algorithm and assign the
commit to the correct group suggested by developer-defined
groups. Because our developer-guided approach modifies its
grouping results to match with the developer-defined groups,
the precision and recall values at the end of the developer-
guided grouping process are 100%.

To assess the effectiveness of Algorithm 3 in assigning
commits to their appropriate groups, we use the accuracy
metric defined in Equation (11). The accuracy measures the
fraction of commits that are assigned correctly (i.e., that didn’t
need to be corrected using developers’ feedback).

Accuracy =
|{commits assigned correctly}|

|{all commits}|
(11)

Findings: Table II shows the precision and recall values for
the automated grouping approach and the accuracy values for
the developer-guided approach for versions V2 and V3. When
applying the grouping approaches to the commits of version
V2 (respectively version V3), we used historical information
from version V1 (respectively versions V1 and V2). The
results for version V3 are better than the results for version
V2, indicating that a longer history can help improve the
effectiveness of Algorithm 3 and Algorithm 3.

1) Complexity of the grouping approaches: Our two pro-
posed approaches use Algorithm 2 to assign a commit to a
group. This algorithm compares a given commit with all the
existing groups. The maximum number of commits groups can
be same as the number of commits, therefore the complexity
of the algorithm is O(n), where n is the number of commits to
be grouped. In developer-guided approach when a developer
adds a new commit, the Algorithm 2 is executed to find the
group of dependent commits, therefore the complexity of the
developer-guided approach remains O(n).

In the automated grouping approach, Algorithm 2 is ap-
plied for each existing commit. The complexity for running
Algorithm 2 for each commit is O(n2). If any commit
moves from one group to another, the process is repeated.

Therefore the overall complexity of the automated approach
is O(l.n2), where l is the number of iterations. We have
limited the number of iterations to 1,000 iterations, which
restricts the complexity of the automated approach to O(n2).
Moreover, the automated grouping approach is based on the K-
mean algorithm and the number of iterations of the K-mean
algorithm depends on the selection of the initial element of
each group [9]. In our automated grouping approach, the initial
groups are created by Algorithm 2, which ensures that only
the independent commits are selected as initial element of a
group.

RQ3: What is the impact of using our approach on a selective
integration process?

Motivation: On average, after a CR is added to the trunk,
it takes 6 days to integrate the CR to a production branch.
But, when the integration of a CR fails, it takes 32 days to
reintegrate the CR to the same production branch. Integration
failures are often caused by missing commit dependencies or
incorrect implementations of the CRs. When a CR fails to be
integrated, the CR is returned to a developer. The developer
debugs/corrects the implementation of the CR and re-submits
the CR for integration. On average, an integration failure
increases the integration time of a CR by 28 days. We want
to evaluate if our proposed grouping approaches can reduce
integration failures caused by missing dependencies between
commits.

Approach: To resolve an integration failure caused by
missing dependencies, developers link some existing commits
with the failing CR. Sometimes, a new commit is created and
linked to the CR. The CR is then resubmitted for integration.

We assess the effectiveness of our grouping approaches in
preventing integration failures by computing a Failure Reduc-
tion Rate (FRR). The FRR measures the fraction of missing
dependencies between commits (responsible of integration
failures) that are successfully recovered by our grouping ap-
proaches. To compute FFR, we identify all CRs that ever failed
during an integration (i.e., CRs that ever had the state Failed to
Integrate); second, we select among the obtained CRs, those
for which the failure was caused by missing dependencies;
third we compute for each selected CR (cr), the set Mcr of
missing dependencies responsible for the failure. For each of
our grouping approaches, we compute FRR using Equation
(12).

FRR =
|{cr ∈ F |Mcr ⊂ R}|

|F |
(12)

Where F is the set of CRs that failed during an integration
because of a missing dependency; and R is the set of commit
dependencies retrieved by our proposed grouping approach.

Findings: In our data set for versions V2 and V3, 1.7%
of the CRs failed during an integration process, because
of missing commit dependencies. This proportion represents
many hundreds of CRs that failed to integrate in the two
versions. The, FRR of our automated grouping (respectively
developer-guided) approach is 76% (respectively 94%). Using

our two grouping approaches, integration failures caused by
missing dependencies can be avoided in up to 94% of the
cases.

VI. THREATS TO VALIDITY

We now discuss the threats to validity of our study following
the guidelines for case study research [10].

Construct validity threats concern the relation between
theory and observation. In this work, the construct validity
threats are mainly due to measurement errors. We collected
the data from the CR tracking system, the Version Control
System and the integration support system using the API’s
provided by each system.

Threats to internal validity concern our selection of sub-
ject systems, tools, and analysis method. Although we study
multiple versions of a large software application, some of
the findings might still be specific to the development and
maintenance process of the studied software application.

Conclusion validity threats concern the relation between the
treatment and the outcome. In evaluation of the developer-
guided approach, we assume that if a commit is assigned incor-
rectly, developer will manually assign the commit to a group of
dependent commits. However, if the developer doesn’t reassign
an incorrectly-assigned commit, the subsequent commits can
be assigned to other groups than the groups which we observed
in this experiment.

Threats to external validity concern the possibility to gen-
eralize our results. We have conducted the study using three
versions of a large enterprise mobile software application.
Gaining access to such industrial data is hard. Nevertheless,
further validation on a larger set of software applications is
desirable, considering applications from different domains, as
well as several applications from the same domain.

VII. RELATED WORK

A. Software Product Lines and Selective Integration:

Modern software product lines can be divided in two
categories: integration-oriented product lines and open-
compositional product lines [11]. The open-compositional cat-
egory uses third party components to build software products.
These third party components are insulated from product
specific features. The integration-oriented category involves
an extensive product specific development in the common
components of the product family and developers need to
selectively integrate features from the common components
into the software products [11]. A differencing and merging
technique [12], is proposed by Chen et al. to integrate features
from one branch into another branch of a product family. The
technique is based on the ADL design [13] of the product
line and aims at assisting application architects, whereas our
approaches are based on the source code and aim at assisting
developers during code integration .

B. Recovering Commit Dependencies:

Many techniques [14], [15], [16] have been proposed to
slice large software applications into modules using an anal-

ysis of source code dependencies and the history of source
code fragments which are modified together. These techniques
divide a software application into high-level modules, whereas
our approaches identify related changes at a lower level
of granularity. The works that are most closely related to
our work are those of Hassan et al. [17], Zimmermann et
al. [18] and Ying et al. [19], who propose impact analysis
techniques to predict potential source code changes caused by
a given change, using version control system. The techniques
determine source code fragments that can potentially change
because of a change made to the system. In contrast, we
recover dependencies among the changes committed to the
system.

VIII. CONCLUSION

Selective code integration is an integral part of product line
development. However, selective code integration remains a
risky process in which developers can miss commit dependen-
cies. Missing commit dependencies cause integration failures
which significantly delay the delivery of CRs. We propose
four dissimilarity metrics that can be applied to retrieve
dependencies between commits. Based on the dissimilarity
levels learned from prior versions of a software application,
we propose two approaches to group the dependent commits:
a developer-guided approach, and an automatic approach. The
developer-guided approach can be applied when a developer
is adding a new commit, while the automated approach can be
applied when an integrator is integrating a CR. Evaluations of
our approaches on data derived from a software product line
shows that the developer-guided grouping approach can reduce
integration failures by 94% and that the automated grouping
approach can reduce integration failure by 76%.

IX. ACKNOWLEDGEMENT

We are grateful to Research In Motion (RIM) for providing
access to the data used in the case study. The findings and
opinions expressed in this paper are those of the authors and
do not necessarily represent or reflect those of RIM and/or
its subsidiaries and affiliates. Moreover, our results do not in
any way reflect the quality of RIM’s software or hardware
products.

REFERENCES

[1] A. Lie, R. Conradi, T. M. Didriksen, and E.-A. Karlsson, “Change ori-
ented versioning in a software engineering database,” in Proceedings of
the 2nd International Workshop on Software configuration management,
ser. SCM ’89. New York, NY, USA: ACM, 1989, pp. 56–65.

[2] R. van Ommering, “Building product populations with software compo-
nents,” in Proceedings of the 24th International Conference on Software
Engineering, ser. ICSE ’02. New York, NY, USA: ACM, 2002, pp.
255–265.

[3] M. Lindvall and K. Sandahl, “How well do experienced software
developers predict software change?” J. Syst. Softw., vol. 43, no. 1, pp.
19–27, Oct. 1998.

[4] L. Wingred, “How software evolves,” in Practical Perforce, Channeling
the Flow of Change in Software Development Collaboration, J. Gennick,
Ed. O’Reilly Media, 2005, pp. 176–197.

[5] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on fine-
grained change information,” in Reverse Engineering, 2008. WCRE ’08.
15th Working Conference on, oct. 2008, pp. 42 –46.

[6] J. Guilford, “The phi coefficient and chi square as indices of item
validity,” Psychometrika, vol. 6, pp. 11–19, 1941, 10.1007/BF02288569.

[7] P. J. and Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Journal of Computational and
Applied Mathematics, vol. 20, no. 0, pp. 53 – 65, 1987.

[8] H. S. Christopher D. Manning, Prabhakar Raghavan, “Flat clustering,”
in Introduction to Information Retrieval. Cambridge University Press,
2008, pp. 321–343.

[9] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means
clustering,” in Proceedings of the Fifteenth International Conference on
Machine Learning, ser. ICML ’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 91–99.

[10] R. K. Yin, Case Study Research: Design and Methods - Third Edition,
3rd ed. SAGE Publications, 2002.

[11] J. van Gurp, C. Prehofer, and J. Bosch, “Comparing practices for reuse
in integration-oriented software product lines and large open source
software projects,” Softw. Pract. Exper., vol. 40, pp. 285–312, April
2010.

[12] P. Chen, M. Critchlow, A. Garg, C. Van der Westhuizen, and A. van der
Hoek, “Differencing and merging within an evolving product line archi-
tecture,” in Software Product-Family Engineering, ser. Lecture Notes in
Computer Science, F. van der Linden, Ed. Springer Berlin / Heidelberg,
2004, vol. 3014, pp. 269–281.

[13] E. Dashofy, A. van der Hoek, and R. Taylor, “A highly-extensible, xml-
based architecture description language,” in Software Architecture, 2001.
Proceedings. Working IEEE/IFIP Conference on, 2001, pp. 103 –112.

[14] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code,” in Program Comprehension, 1998. IWPC ’98. Proceed-
ings., 6th International Workshop on, jun 1998, pp. 45 –52.

[15] A. Mockus and D. Weiss, “Globalization by chunking: a quantitative
approach,” Software, IEEE, vol. 18, no. 2, pp. 30 –37, mar/apr 2001.

[16] M. Kamkar, “An overview and comparative classification of program
slicing techniques,” Journal of Systems and Software, vol. 31, no. 3, pp.
197 – 214, 1995.

[17] A. E. Hassan and R. C. Holt, “Predicting change propagation in software
systems,” in Proceedings of the 20th IEEE International Conference on
Software Maintenance, ser. ICSM ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 284–293.

[18] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering,
IEEE Transactions on, vol. 31, no. 6, pp. 429 – 445, june 2005.

[19] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source
code changes by mining change history,” Software Engineering, IEEE
Transactions on, vol. 30, no. 9, pp. 574 – 586, sept. 2004.

