Validating the Use of Topic Models for Software Evolution

Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea Blostein
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
{sthomas, bram, ahmed, blostein}@cs.queensu.ca

Abstract

Topics are collections of words that co-occur fre-
quently in a text corpus. Topics have been found to
be effective tools for describing the major themes
spanning a corpus. Using such topics to describe the
evolution of a software system’s source code promises
to be extremely useful for development tasks such as
maintenance and re-engineering. However, no one has
yet examined whether these automatically discovered
topics accurately describe the evolution of source code,
and thus it is not clear whether topic models are a
suitable tool for this task.

In this paper, we take a first step towards deter-
mining the suitability of topic models in the analysis
of software evolution by performing a qualitative case
study on 12 releases of JHotDraw, a well studied and
documented system. We define and compute various
metrics on the identified topics and manually investi-
gate how the metrics evolve over time. We find that
topic evolutions are characterizable through spikes
and drops in their metric values, and that the large
majority of these spikes and drops are indeed caused
by actual change activity in the source code. We are
thus encouraged by the use of topic models as a tool
for analyzing the evolution of software.

1. Introduction

Topics are collections of words that co-occur fre-
quently in a corpus of text. Statistical topic models,
such as latent Dirichlet allocation (LDA) [1], are used
to automatically discover a set of topics within a
corpus; in practice it is found that these topics serve
to describe the major themes that span the corpus.
Recently, researchers have applied topic models to
various aspects of a software project, including source
code [2]-[5] and documentation [6], [7]. Thus, these
discovered topics provide a means of automatically

summarizing and organizing the various contents of
a software project.

Understanding how the use of a topic evolves, i.e.
changes, in a software project over time could provide
many benefits for project stakeholders. For example,
stakeholders could monitor the drift of a topic, i.e.,
when the implementation of a topic in the source code
gradually diverges from the original design (similar
to architectural drift [8]). Because of refactoring, re-
engineering, maintenance and other development activ-
ities, a topic that was once focused and modularized
may become more scattered across the system over
time, getting out-of-sync with the mental model that
designers and architects have about the system. Auto-
matically discovering and monitoring these topic drifts
would be a useful technique for developers and project
managers wishing to keep their project in good health.

One could measure the evolution of topics by apply-
ing LDA to each version of the system separately and
then linking topics together according to a similarity
measure (for example, KL divergence [9]). Another
method for discovering topic evolution is to apply
LDA to all of the versions of the system at once and
determine how the values of various topic metrics (e.g.,
assignment or scattering [5]) change over time. In this
paper, we consider the latter approach, and use the term
topic evolution to refer to the evolution of the topic’s
metrics over time.

Although previous work has applied LDA to the
history of the source code of a project to recover such
topic evolutions [10], it is not yet clear how or why
the topics evolve as they do. Topics lie at a higher
level of abstraction than other elements found in the
source code, such as classes [11], and it has yet to be
determined whether the automatically discovered topic
evolutions are consistent with the actual changes made
by developers (the change activity) in the source code.
Our goal is to validate the use of topic models to de-
scribe software change activities by closely examining
the results of the aforementioned previous work.

In this paper, we take a first step towards such a
validation by performing a qualitative case study of
topic evolution on a well-known and well-documented
system, i.e., JHotDraw. We apply LDA to the release
history of JHotDraw’s source code, compute several
metrics on the discovered topics, and manually inves-
tigate the source code and project documentation to
verify that the evolution of metric values are accurate
and consistent with the actual change activity. We use
a simple characterization of topic evolutions and find
that such topic evolutions are accurate descriptions of
the source code evolutions and thus can provide project
stakeholders with valuable information for understand-
ing and monitoring their project.

Specifically, the contributions of this paper can be
summarized as follows:

1) We find that we can characterize topic evolution
by using three simple events: spikes, drops, and
stays in metric values over time.

2) We find that most of the discovered topic evolu-
tion events arise due to actual change activities in
the source code, including bug fixes, refactorings,
and feature additions, thus validating the use of
topic models for the analysis of software evolu-
tion.

This paper is organized as follows. We first provide
background information on LDA and topic evolution
modeling in Section 2. Section 3 describes our research
goals. Section 4 outlines our approach for addressing
our research goals, and Section 5 applies our approach
to a detailed case study on JHotDraw. Section 6
discusses the our results and enumerates threats to the
validity of our study. Section 7 summarizes related
work. Finally, Section 8 concludes the paper.

2. Background

2.1. Latent Dirichlet Allocation

LDA is a popular probabilistic topic modeling tech-
nique [1]. Topic modeling is an automated technique
designed to discover topics within a corpus of text
documents [12], where topics are collections of words
that co-occur frequently in the corpus. Due to the
nature of language usage, the words that constitute a
topic are often semantically related—an example topic
is “bank finance money cash loan”, which describes
the financial industry. Documents can be represented
by the topics within them, and the entire otherwise
unstructured corpus can be structured in terms of this
discovered semantic structure.

LDA models each document in a corpus as a multi-
membership mixture of 7' topics, and each topic as a

multi-membership mixture of the words in the corpus
vocabulary. A multi-membership mixture means that
each document can contain more than one topic, and
each word can be contained in more than one topic.
Hence, LDA is able to discover a set of ideas or themes
that well describe the corpus as a whole [12].

As an example, consider the sample documents
below:
di: “A student left his university to get a loan at the

bank.”

ds: “University students prepare for their exams.”
ds: “Banks make money by giving loans.”
Applying LDA with 7" = 2 would yield topics similar
to:
z1: “student university exam”
zo: “bank money loan”
Document d; would have a 50% membership in both
topics, since it contains words from both topics to an
equal degree, and documents ds and d3 would have a
100% membership in z; and zs, respectively. We could
then represent each document as a vector of their topic
memberships:

dy = [0.5,0.5]
dy = [1.0,0.0]
ds = [0.0,1.0]

where the first element in each vector corresponds to
topic z; and the second element to z5.

More formally, LDA infers, for each of 7' topics,
an N-dimensional word membership vector z(¢1.x)
that describes which words appear in topic z, and to
what extent. Additionally, for each document d in the
corpus, LDA infers a T-dimensional topic membership
vector d(f.7) that describes the extent to which each
topic appears in d. LDA performs these inferences
using Bayesian techniques such as collapsed Gibbs
sampling [13].

2.2. Topic Evolution in Source Code

Several techniques have been proposed to model
collections of text that change over time. Most work
to date has focused on traditional corpora such as
newspaper articles or conference proceedings, whose
topics tend to show only gradual changes over time.
Source code topics, on the other hand, may have much
larger variability due to the addition of new features
or libraries or the removal of whole modules.

The Dynamic Topic Model [14], built for traditional
corpora, models the evolution of a topic as a discrete
Markov process with normally distributed changes be-
tween time periods, which allows only gradual changes

over time. Such a model is thus inappropriate for
source code analysis, where the changes to individual
topics between time periods could be more dramatic
than a normal distribution could allow.

Another proposed model, Topics Over Time
(TOT) [15], models time as a continuous beta distribu-
tion, allowing for much larger topic changes between
successive time periods. However, the beta distribution
is still too inflexible for source code, since it assumes
that a topic evolution will have only a single rise and
fall during the entire project history.

Hall et al. [16] apply LDA to the entire collection of
documents at once and perform post hoc calculations
based on the observed probability of each document in
order to map topics to time periods. The main advan-
tage of this approach is that no constraints are placed
on the evolution of topics, yielding excellent flexibility
for describing large, seemingly random changes to a
corpus, which are typical in software development.

Linstead et al. have applied the Hall et al. approach
to a project’s source code release history [10] and
found that such a technique can discover topics and
their evolution within the source code. It is this work
that we build upon in this paper.

3. Research Questions

Topic evolution provides a unique opportunity for
automatically monitoring a project’s source code over
time. For example, if such a monitoring system de-
tected that several topics were becoming more and
more scattered across the system, developers may wish
to address the issue by refactoring or some other
maintenance activity. Automatic monitoring is also
useful for answering questions about the history of a
project, such as “When was XML functionality first
added into the system?” or “At what point did the
project switch to a Swing-based UI?”

Previous work has found that topic models, such as
LDA, can automatically mine topics from a snapshot
of a software system [5], [17] and from its version
history [10]. In this paper, we validate these findings
with the goal of determining whether the discovered
topic evolutions are an accurate description of the
actual change activity in the source code.

In particular, we focus on the following research
questions:

RQ1 How can we characterize topic evolution? What
are the characteristics of a topic evolution? How
can we describe a topic evolution?

RQ2 What causes topics to evolve? What are the
underlying driving forces for the evolution of a
topic?

Addressing these questions will provide confidence
in the use of topic models for studying the evolution of
software, bringing us one step closer towards a robust
and complete software monitoring technique built upon
topic evolution models.

4. Approach

To address our research questions, we investigate the
topics and their evolution as produced by the Hall et
al. approach. In this section, we formally define our
model of topic evolution, explain how we apply LDA
to the source code of a software project, and introduce
the metrics we use to measure the discovered topics.

Formalization. We say that a fopic z is a tuple
(k,t,1,¢) discovered by LDA, where k is a unique
identifier for the topic, ¢ is the set of top terms related
to the topic, | is a one or two word label for the
topic, and ¢ is the normalized word distribution over
the vocabulary. In this paper, the labels are manually
created by the first author, although we note that
automated techniques have recently been proposed to
label topics [18]. Our manually created labels have
the form X::Y, where X is a logically higher-level
supertopic, such as Ul, and Y is a more specific task
within the supertopic, such as MOUSE CLICK.

A document d in the system is represented by the
tuple (n,w,), where n is the name of the document,
w is the preprocessed content of the document (i.e.,
bag of words—see below for details), and @ is the topic
membership vector discovered by LDA. We say that a
document d is related to a topic z, and that topic z is
present in document d, if d(6y) > 0.

A version V of a system is a set of documents
{d1,da, ...} with the same time-stamp ¢(V'). The his-
tory H of a system is the set of versions in the system,
H={V,V,,..}.

Finally, the evolution E of a metric m of a topic
2 18 a time-indexed vector of metric values for that
topic:

E(m,z) = [m(zk, t(V1)), ..., m(zk, t(Vi)))]-

We also define the following notation. dj; is the
jt" document in version V;. d;(6y) is the membership
value of document d; in topic z;. We say that there are
|V;| documents in a particular version V;, and a total
of |H| versions in the system. To be consistent with
the topic modeling literature, we use 7" to describe the
number of topics in a system.

Applying LDA. In this paper, we adopt the strategy
used by Linstead et al. [10]. In general, we preprocess

the source code, apply LDA to all versions of the code
at once to learn a set of topics, and postprocess the
results to track individual topics over time.

The preprocessing step involves extracting identi-
fiers and comments (words) from each document. We
then tokenize each word based on common naming
practices, such as camel case (oneTwo) and under-
scores (one_two). We then remove common English
language stop words (the, it, on) to reduce noise.
Finally, we stem those words that remain to reduce the
vocabulary size.

We apply LDA to this entire collection of prepro-
cessed data using the MALLET tool [19], which is an
implementation of the Gibbs sampling algorithm. We
run the tool for 100,000 sampling iterations, the first
half of which are used for optimization [20].

Finally, we postprocess the output of MALLET to
group versions of document together and compute
various metrics of interest, described next.

Metrics. It is useful to compute several metrics on the
output of LDA to measure the topics.

We compute the assignment of a topic zj, at version
V; by summing the membership values of that topic

over all documents in the version,
Vi

Zk» Z dj’b gk:

which gives an 1nd1cat10n of the total volume of the
topic throughout the code [5]. A higher topic assign-
ment means that more code is related to the topic.
The scattering of a topic z; at version V; is given
by its entropy over all documents [5],
[Vil
S(Zk, Zdﬂ Gk X log djz(gk)

j=1
Entropy is a common metric used in information

theory to determine how uncertain, or spread out, a
distribution is [21]. Thus, a topic with a high scatter
value will be more spread throughout the system than
a topic with a low scatter value.

We introduce a new metric, called the focus of a

topic zj at version V;, which is given by
Vil
Hd;i(0k) = 5}
Zk;7 Z |V | .

The focus metric reveals how densely, on average, a
topic is present in each of the documents that contain
it, which cannot be captured by either the assignment
or scattering metrics. Topics that are mostly dominant
in the documents in which they appear will have a
high focus value, while topics that tend to play only a
secondary role in the documents will have a low focus
value.

5. Case Study

We address our research questions by performing
an in-depth case study on a well-known software
system, JHotDraw. JHotDraw is a medium-
sized, open source, 2-D drawing framework
developed in the Java programming language
(http://www.jhotdraw.org). It was originally
developed as an exercise of good program design
and has become the de facto standard system for
experiments and analysis in topic mining (for example,
in [22], [23]). JHotDraw is a good choice for our
purposes due to its extensive documentation, good
design practices, and manageable size for manual
analysis.

In this paper, we considered all 12 public release
versions that are available on the JHotDraw project
website, giving us a coarse-grained view of the topic
evolutions. A revision-by-revision analysis would pro-
duce a finer-grained view of the evolution in the
system, but in this paper we focus on the coarser-
grained view to collect evidence of correctness at this
level before going into more detail later on. The 12
versions we considered were released over a nine year
period and saw a growth of over 600% in the number of
lines of code (from 17K lines in version 5.2.0 to 124K
in version 7.4.1), several complete restructurings, and
a large number of bug fixes and new feature additions.
We modeled JHotDraw with T' = 45 topics, to be
consistent with previous topic modeling analysis on
JHotDraw [5].

We applied our approach to the source code of
JHotDraw as outlined above, yielding topic evolutions
for the three metrics of interest. Table 1 lists a selected
subset of topics discovered for JHotDraw.

RQ1: How can we characterize topic evolu-
tion?

To address this question, we manually investigate the
topic evolutions for each topic over time. We consider
various visualizations and later introduce a change
event classification to characterize the evolutions.

Figure 1 shows a line plot view of the assignment
evolutions of a few selected topics that exhibit large
fluctuations over time. The evolutions express periods
of peaks and valleys, revealing periods of activity and
interest in the topic. For example, we see that the
TOOL::TEST topic has a large assignment value in ver-
sions 5.4.b2 and 6.0.bl, but almost none at any other
version. On the other hand, the DRAWING::SHAPES
topic slowly grows over time, beginning at version

Topic ID (k) Topic Label () Word List (%)

3 XML::READING elem valu attribut read inherit str token ixmlel ioexcept figur color string path stream text

6 DRAWING::SHAPES rectangl width figur pointd grow height draw stroke anchor bound attribut arc connector ellips

8 UI::SLIDERS color map put index compon slider model wheel math string valu set radiu uimanag rgb radial
25 TOOL::TEST test method junit doclet end begin javadoc testcas instanc framework draw set case vault class
32 TOOL::MENU action menu add view applic app window model util jmenu creat item put palett thi bar

36 UNDO undo view command activ undoabl editor set redo execut manag affect select creat wrap dispatch
37 DISPLAY figur draw box displai ifa enumer handl point chang current version framework updat rectangl

Table 1. Selected topics in JHotDraw. Topic labels are manually assigned; word lists are inferred by LDA.

7.0.7 and continuing until the latest release. Both the
DiSPLAY and UNDO topics are active during the initial
few versions, but disappear at version 7.0.7.

Figure 2 shows a heatmap of the assignment evo-
lutions of all 45 topics. The color of each cell in
the heatmap represents the assignment value for a
topic at a particular time, where darker colors indicate
higher assignment values. This visualization allows us
to quickly compare and contrast the trends exhibited
by the various topics. For example, the figure in-
dicates that topic 13 (STORAGE::FORMAT) becomes
increasingly active during the first four versions of
the system, but then dies at the fifth version. On the
other hand, topic 17 (UI::TOOLBAR) remains relatively
inactive until version 7.2.0, at which point the topic
has a large positive change in assignment that remains
constant until the latest version. A few topics get
increasingly larger assignments (and thus increasingly
more code) in the final four releases, as shown by
the increasing darkness of the cells (highlighted with
thin dashed rectangles and labeled “Increasing” in the
figure), while many other topics tend to have near-
constant assignments during this time (highlighted with
solid rectangles and labeled “Constant” in the figure).

A second use of the heatmap visualization is the
ability to visually detect different phases of develop-
ment. For example, the “visual wall” effect between
versions 6.0.b1 and 7.0.7 is created by a large color
change in several topics at once (highlighted with thick
dotted rectangles and labeled “Spike” in the figure),
suggesting that there was a large development effort
that affected multiple topics at once. Indeed, version
7.0.7 was a major release with multiple refactorings
involving changes to the core framework of the system,
as we will investigate further below. A second visual
wall is present at version 7.2.0, and the release notes
for this version indicate that “substantial changes and
enhancements have been made to fix shortcomings and
bugs of the frameworks”.

Both Figure 1 and 2 suggest that the topics of
JHotDraw show signs of active evolution over the
releases of the system. These evolutionary changes

occur at different times and by different amounts.
Some changes are isolated to a few versions, while
other changes occur constantly and slowly over time.
Some topics do not appear until later in the history,
while other topics die.

Change Events. To quantitatively characterize the
evolutionary trends of a topic, we introduce the notion
of a change event. A change event is an increase in
metric value (i.e., spike), decrease in metric value (i.e.,
drop), or no change in metric value (i.e., stay) for a
topic between successive versions of a system.

We classify a change event as a spike or drop,
respectively, if there is at least a 10% increase or
decrease in metric value compared to the previous time
period, and as a stay otherwise. Formally, for a metric
m of topic zj at version V;, the change

~ m(z, Vi) —m(zk, Vio1)

m(zx, Vie1)
is classified as

spike if ¢ > 0.10
Event(m, zx, V;) = ¢ drop if ¢ < —0.10
stay otherwise.

As a change must be computed by comparing two
versions, we do not define a change event for the initial
version of a system. Thus, if an evolution contains
|H| = 20 versions, then there are |[H|—1 = 19 change
events for each topic. Also, should the denominator of
a change c be 0 (i.e., the metric value was O at the
previous time period) and the numerator is nonzero,
we set ¢ = 1.0. Note that we assume here that all
metric values are > 0.

Table 2 lists the distribution of change events in
JHotDraw for the three metrics. We see that a topic’s
assignment is over three times as likely to spike (41%)
than to drop (12%), suggesting that topics tend to
grow in size over time. We also see that most topics
either drop (36%) or stay (49%) in their scatter metric,
indicating that the code has a healthy design and that
there is little drift in its location. Finally, we see that
the focus metric is twice as likely to experience a spike

\ —©— 6: Drawing::shapes
1 => 25: Tool:Test

' -3- 32: Tool::menu

- - 36: Undo

—A— 37: Display

Assignment

50
|

. .0
o---0 o

T T T T
~N @ o
e <o <9
~ ~ ~

Version

Lo g
el PR TEN 1LY TE TN TN PR
T

7.1.0 H
7.2.0 H
7.3.0 H
7.31

=
N
~

Figure 1. The assignment evolution of five se-
lected topics.

Spikes Drops Stays
Assignment 204 (41%) 58 (12%) 233 (47%)
Scatter 74 (15%) 176 36%) 245 (49%)
Focus 146 (29%) 68 (14%) 281 (57%)

Table 2. Change events in JHotDraw.

(29%) than a drop (14%), suggesting that topics tend to
become more dominant and documents tend to become
more focused on a single task.

We claim that such change events are simple to
compute and understand, yet are able to effectively
describe the behavior of a topic’s evolution. As such,
the change events of a topic evolution are a useful tool
for describing software evolution.

We conclude that topic evolutions can be
characterized through spikes, drops, and stays
in their metric values.

RQ2: What causes topics to evolve?

Longo et al. have recently proposed three categories
of software evolution interventions (i.e., causes of
software evolution) [24]:

C1) Corrective evolution (i.e., bug fixes)
C2) Refactoring (i.e., code improvement and adaptation)
C3) New functionalities and features

Refactoring is further divided into three categories:
C2.1) Adoption of coding conventions and style
C2.2) Adoption of new framework or libraries
C2.3) Improvement of the internal structure of the code
We refer to each item above as a change category.
We adopt this taxonomy to investigate why software is
changed by developers. Our goal is thus to determine

Constant 45: Ul:scrolling
Increasing
|
|

44: XML::reading

43: Storage format
[~] 42: Drawing::order

41: To u

i

ing::connectors

38: ngmmfring::anay
37: Display
36: Undo.

33: Ul
32: Tool:menu
31: Persistence::read-write
30: Events::observable
29: Tool::palette
8: Drawing::rect

27: Drawing::handle
26: Events::DnD Ul
25: Tool:Test
24: Ul::layol

3

P

: ing::lines

20: Drawing::raster images
19: Drawing::actions

18: Image::rendering

17: Ul::toolbar

: Ul::sliders
7: Events::drawing figures
6: Drawing::shapes
5: Drawing::curves
4: Drawing::scale

| 3: XML::reading

2: Drawing::paint

- 1: Text:fonts
O O 6N 4 N @@ o O o o o o
A m 2 2 5 o 8 A N M m <
m n ¥ © K K KN K K N N K

n o
Version

Figure 2. A heatmap view of all topics, showing
topic assignment for each version. Darker boxes
indicate a higher topic assignment.

if topic change events correspond to real-world change
activities.

We now qualitatively examine four randomly-
selected topic evolutions from JHotDraw in an effort
to understand the causes of their evolution. For each
selected topic we identify its change events and manu-
ally determine their causes by consulting existing doc-
umentation. We investigate the release notes, change
logs, and source code related the version of the change
event, with the goal of determining the underlying
cause of the real-world change activity.

The TooOL::TEST Topic. Our first selected topic is
one that deals with various testing mechanics used in
JHotDraw.

The evolutions of all three metrics for this topic
are shown in Figure 3(a). The figure shows a lot of
activity in all three metrics between versions 5.4.b2
and 7.0.7: all three metrics show a strong spike,
followed by a brief stay, followed by a strong drop.
The release notes and source code of these two
versions reveal the reasons for this activity. In ver-
sion 5.4.b2, the developers adopted the JUnitDoclet
(http://www. junitdoclet.orqg) testing frame-
work, which automatically creates a skeleton test class
for each regular class in an application. This process
resulted in a large number of new documents that were
specific for the TOOL:: TEST topic, resulting in a spike

S
-
e-—0
00 . [}
S ! \)
/ \ —=— Assignment
S ! \ —4 Scatter
/ . -+- Focus
<':7 ., \
o
| a—u
o .
L - A
<] Ao A% }i
&~ A= A A= A
g - 8—u s—8T—8=—=—eT—s"—s——4§
T T T T T T T T T T T T
© 9o o o N @® @ o o o o o
N o 8 2 S o o d N ®o o 3
)) < < ~ ~ ~ ~ ~ ~ ~ ~
[Te} © .
Version
(a) A detailed look at the TOOL::TEST topic.
S
-
© _|
o .
—=— Assignment
g— —4- Scatter
--+- Focus
<
o
Y
N - Ng =0
= AT T e
cAe A= Ae A A pe A= A= A
g 1e » : Al —g—E—— i ——f—E=—&
T T T T T T T T T T T T
O 9o o o ~ © o o o o o o
N o 8 8 S o o +H o «o o <
0 0 ~ o ~ ~ ~ ~ ~ ~ ~ ~
n [{e} .
Version
(b) A detailed look at the XML::READING topic.
°
—
o |
o
© |
© .
—=— Assignment
< -4 Scatter
- - 0
~ +- Focus 0T .-
A
_ Ae Ao . ‘,’/.A— A= A= A
o | trmtr=aioalogemtm et e
T T T T T T T T T T T T
9 9 o g ~n @ o o o o o o
N o 2 9 S 9o o +H oA o o <
n n ~ o ~ ~ ~ ~ ~ ~ ~ ~
Te} © .
Version
(c) A detailed look at the UI::SLIDERS topic.
S
-
©
o
©
o .
< —&— Assignment
S — 4 Scatter
--*- Focus
N | Bs S
=] SSy
o-—e 33
SO A= A= Ao Ao ae Ae ao
g 1 plar eyl N TR N O T
T T T T T T T T T T T T
© 9o o o N ® @ o o o o o
N o 2 9 S o o H oA o o <
)) < Q ~ ~ ~ ~ ~ ~ ~ ~
[Te} © .
Version

(d) A detailed look at the DISPLAY topic.

Figure 3. Metric evolutions for the three investi-
gated topics.

in the assignment, scatter, and focus metrics for that
topic.

Then, in version 7.0.7, the developers moved away
from the JUnitDoclet framework in favor of a more
automated technique on top of Ant’s JUnit Task
framework (http://www.ant.apache.orqg) that
is fully automated at build time with no need for
saving the generated test classes. When the develop-
ers removed the hundreds of test classes created by
JUnitDoclet from the release, the assignment, scatter,
and focus metrics of the TOOL::TEST topic sharply
dropped and remained low for the rest of the system
history.

Lesson: A change in frameworks and libraries
(change category C2.2) resulted in sharp spikes and
drops in all three topic metrics.

The XML::READING Topic. Our next selected topic
is one that deals with reading documents in the XML
format.

Figure 3(b) shows the evolutions of the topic met-
rics. We notice a dramatic spike in focus at version
7.0.7, as well as a spike in assignment from almost
zero to about 5%, indicating the addition of new code
related to the topic. Indeed, the release notes confirm
that during this time period, JHotDraw introduced
persistency based on XML by implementing a new
org.jhotdraw.xml wrapper package.

Prior to version 7.0.7, no XML functionality was
implemented. However, we see that the scatter of
this topic is non-zero during the initial four releases.
This is because some documents had non-zero topic
memberships for this topic during those releases, an
effect of the probabilistic nature of LDA that occa-
sionally matches words in a topic to words in unrelated
documents.

An interesting side note for this topic is that between
releases 6.0.bl and 7.0.7, JHotDraw actually had even
more XML activity in its inter-release revisions than
is shown in Figure 3(b). Namely, at revision 7.0.1,
XML functionality was implemented with the help
of a third-party library named NanoXML, which was
later removed for performance reasons, and XML
functionality was re-implemented. In revision 7.0.5, a
tweaked version of NanoXML was added back into
the system, only to be removed again for release
version 7.0.7! This series of events illustrates that a
finer granularity of analysis might yield even more
interesting results, reinforcing the need to monitor
topic evolution revision-by-revision.

Lesson: The addition of functionality (change cate-
gory C3) resulted in a spike in focus and assignment.

The UI::SLIDERS topic. Our next selected topic is one
that deals with slider controls in the user interface.

Figure 3(c) shows the selected topic. Prior to ver-
sion 7.2.0, there was no standard technique for UlI-
related classes to implement a slider control. Each class
brewed its own flavor of the same slider functionality,
an obvious inconvenience to developers and an indica-
tor of a problematic design. In total, we found that five
different packages contained such code, none of which
included files that were focused on the UI::SLIDERS
topic. It is also interesting to note the higher scattering
values during this time.

Then, upon the release of version 7.2.0, the
JAttributeSlider class was introduced that en-
capsulates slider control functionality into a single
class, and the use of sliders increased throughout the
GUI. Now, a total of 30 classes across the system
contained the UI::SLIDERS topic, all via references
to the new class. Eight of the 30 classes were fo-
cused, while the remaining 22 were just clients of the
JAttributeSlider class.

Lesson: Restructuring (change category C2.3) re-
sulted in spikes to the focus metric.

The DISPLAY topic. Our final selected topic is one
that deals with displaying a figure on the screen within
the drawing box of JHotDraw.

Figure 3(d) shows the selected topic. Initially, this
topic contained various figure drawing functionalities
scattered across six packages and 255 documents, 26
(10%) of which were focused. In each of the first
four releases, many smaller efforts were made by
the developers to encapsulate these functionalities into
more specific modules, which is shown by the slow
decrease in scatter. Then, after release 6.0.bl, a large
refactoring occurred that caused almost all of the 255
documents to be removed from JHotDraw, resulting in
a sharp drop in all three metrics.

At the same time, four different topics (5, 6, 19,
and 35—all in the DRAWING topic category) increased
in size by a total of 95%, effectively absorbing the
functionality of the now-dead DISPLAY topic. Before
the release of 7.0.7, only 97 documents were related to
these topics, and none of the documents were focused
on any of the topics. After the release, these topics now
were present in 190 documents, 32% of which were
focused on one of these topics.

We note that the scatter metric is non-zero at times
when assignment is almost zero. This is an effect of
LDA matching some words from this topic to some
words in unrelated documents, a consequence of the
probabilistic nature of LDA.

Lesson: Modularization (change category C2.3)
caused gradual decreases in the assignment, scatter-
ing, and focus metrics.

Manual Validation. In addition to the four example
topics presented above, we wanted to manually analyze
the rest of the change events in the system. However,
since there were a total of 472 change events for the
three metrics of the 45 topics, we relied instead on
random sampling to select a subset of change events.
We thus randomly selected 80 spike and drop change
events for manual analysis, corresponding to a 95%
confidence level with a margin of error of 5% [25].

We found that almost all (92+5%) of the randomly
selected events corresponded to actual change activities
in the source code, while the remaining (8+5%) had
no such correspondence, and were likely caused by
noise in the probabilistic LDA model. Of the selected
events that corresponded to actual change events, we
found that most spikes were due to the addition of
functionality (52%) or new frameworks, libraries, or
environments (25%). On the other hand, the majority
of drops were caused by internal improvements (70%),
followed by new coding conventions (11%).

We conclude that topics evolve due to actual
change activities in the source code, validating
the use of topic models to describe software
evolution.

6. Discussion and Threats to Validity

We have found a simple way to characterize topic
evolutions, and have found that such characterizations
are accurate for the purposes of describing software
evolution. These results encourage us to use topic
models during software evolution analysis, since topic
models are automated, abstract, and accurate.

However, we stress that this paper provides only
an initial qualitative assessment of the use of topic
models, and as such, our confidence in topic models
can be strengthened by additional work.

First, it would be useful to continue the manual
analysis on the causes of topic evolutions, eventually
analyzing every change event in the system. We posit
that current anomalies found in RQ2 are due to noise
in the LDA model, but more work is needed to locate
additional anomalies and fully understand this effect.

In this work, we investigated whether changes in
topic metrics correspond to changes in source code.
This work would be further improved by investigating
the other direction, that is, whether changes in source
code cause corresponding changes in topic metrics.
Such analysis would add strength to our claims and
show an even stronger relationship between source
code and topic metrics. We expect such a relationship
to hold, as the topics are computed from the source
code itself.

As with all source code analysis techniques based on
identifiers and comments, our results are dependent on
the quality of the naming conventions and commenting
style of the project developers. Poor discipline or
unorthodox conventions could result in topics with low
semantic value. However, a recent study showed that
most systems have identifiers and comments that are
sufficient for such topic analyses [26].

We have focused our initial analysis efforts on
JHotDraw, the de facto standard benchmark for source
code topic mining, due to its robust design and fairly
complete documentation. However, this could mean
that our results are dependent on these qualities and
thus generalize poorly to systems with worse designs.
Furthermore, as JHotDraw is a medium-sized open
source system, we cannot be sure if our results gener-
alize to small or large sized open-source systems, or
to any closed-source systems. We also cannot gener-
alize our results with any confidence to systems from
different domains. Additional case studies are needed
to investigate these alternatives.

7. Related Work

There has been a recent increase in the amount of
work involving the use of topic modeling to mine and
understand topics within source code. Most of this
work aims at making a snapshot of the system easier
for the developer to query or understand (e.g., [2], [4],
[5]) or to cluster a large collection of systems into
functionally related groups (e.g., [27], [28]).

Concern Mining. We note that useful surveys have
been created on concern mining techniques that are
not based on topic modeling [29], and here we only
focus on mining techniques based on topic modeling.

Kuhn et al. introduced semantic clustering, a tech-
nique based on Latent Semantic Indexing (LSI) to
group source code documents that share a similar vo-
cabulary [4]. After applying LSI to the source code, the
documents are clustered based on their similarity into
semantic clusters, resulting in clusters of documents
that implement similar functionalities.

Baldi et al. apply LDA to source code to automati-
cally mine concerns and summarize functionality [5].
They also outlined techniques to compute measure-
ments of scattering and tangling based on the results
of LDA.

Linstead et al. used LDA to analyze software evo-
lution, claiming that LDA provides better results than
LSI [10]. They showed topic assignment percentages
over the version history of a system, which revealed
integration points and other changes that shape a

project’s lifetime. We build on their work by for-
malizing the approach, considering additional topic
metrics (i.e., scatter and focus) to better understand
topic change events, and providing a detailed, manual
analysis of the topic change events to validate the
results of the approach.

Software Clustering. Kawaguchi et al. introduced a
tool named MUDABIue that uses LSI to automatically
classify software systems into categories based on the
identifiers in the system [27]. This is primarily useful
for browsing large, unlabeled collections of software.

Tian et al. modified the MUDABIue approach to
employ LDA instead of LSI and to consider comments
as well as identifiers [28]. They showed that such an
approach achieves comparable performance.

8. Conclusion

In this paper we have performed an initial assess-
ment of the validity of using topic models for analyz-
ing software evolution. By applying a topic evolution
model to the public releases of JHotDraw and comput-
ing three topic metrics of interest, we have shown that
the evolution of topics is observable and quantifiable
through the changes in their metric values over time.
We have further found that most of these metric
changes result from actual software change activities,
including corrective evolution, internal improvements,
and the addition of new features, and thus topic models
can be an effective tool for automatically discovering
and summarizing such software change activities.

Our case study on JHotDraw suggests that using
topic models to study the evolution of the source code
of a software project could be useful for develop-
ers and other project stakeholders, providing a deep
understanding of their system’s history and allowing
them to monitor and uncover design issues as they
appear. Our findings encourage us to further continue
this work by exploring revision-level monitoring of
topics, defining and measuring additional metrics, and
performing additional case studies.

References

[1] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet al-
location,” The Journal of Machine Learning Research,
vol. 3, pp. 993-1022, 2003.

[2] J. Maletic and A. Marcus, “Supporting program com-
prehension using semantic and structural information,”
in Proc. of the 23rd Intl. Conf. on Software Engineer-
ing. IEEE Computer Society, 2001, p. 112.

(3]

[4

—_

[5

—

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

D. Poshyvanyk and A. Marcus, “Combining formal
concept analysis with information retrieval for concept
location in source code,” in Proc. of the 15th IEEE Intl.
Conf. on Program Comprehension. 1EEE Computer
Society, 2007, pp. 37-48.

A. Kuhn, S. Ducasse, and T. Girba, “Semantic clus-
tering: Identifying topics in source code,” Information
and Software Technology, vol. 49, no. 3, pp. 230-243,
2007.

P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K.
Bajracharya, “A theory of aspects as latent topics,”
SIGPLAN Not., vol. 43, no. 10, pp. 543-562, 2008.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,”
Journal of the American society for information sci-
ence, vol. 41, no. 6, pp. 391-407, 1990.

A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot
and what’s not: Windowed developer topic analysis,”
in Proc. of the 25th IEEE Intl. Conf. on Software
Maintenance. 1EEE, September 2009, pp. 339-348.

D. E. Perry and A. L. Wolf, “Foundations for the study
of software architecture,” SIGSOFT Softw. Eng. Notes,
vol. 17, no. 4, pp. 40-52, 1992.

T. Cover and J. Thomas, Elements of information
theory. Wiley, 2006.

E. Linstead, C. Lopes, and P. Baldi, “An Application
of Latent Dirichlet Allocation to Analyzing Software
Evolution,” in Proc. of the 2008 7th Intl. Conf. on
Machine Learning and Applications. 1EEE Computer
Society, 2008, pp. 813-818.

M. Lanza, “The evolution matrix: Recovering software
evolution using software visualization techniques,” in
Proc. of the 4th Intl. Workshop on Principles of Soft-
ware Evolution. ACM, 2001, pp. 37-42.

D. Blei and J. Lafferty, “Topic models,” Text Mining:
Theory and Applications. Taylor and Francis, London,
UK, 2009.

I. Porteous, D. Newman, A. Ihler, A. Asuncion,
P. Smyth, and M. Welling, “Fast collapsed gibbs sam-
pling for latent dirichlet allocation,” in Proc. of the 14th
ACM Intl. Conf. on Knowledge Discovery and Data
mining. ACM, 2008, pp. 569-577.

D. Blei and J. Lafferty, “Dynamic topic models,” in
Proc. of the 23rd Intl. Conf. on Machine Learning.
ACM, 2006, p. 120.

X. Wang and A. McCallum, “Topics over time: a non-
Markov continuous-time model of topical trends,” in
Proc. of the 12th Intl. Conf. on Knowledge Discovery
and Data Mining. ACM, 2006, p. 433.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Hall, D. Jurafsky, and C. Manning, “Studying the
history of ideas using topic models,” in Proc. of the
Conf. on Empirical Methods in Natural Language Pro-
cessing. ACL, 2008, pp. 363-371.

G. Maskeri, S. Sarkar, and K. Heafield, “Mining busi-
ness topics in source code using latent Dirichlet allo-
cation,” in Proc. of the Ist Conf. on India Software
Engineering. ACM New York, 2008, pp. 113-120.

Q. Mei, X. Shen, and C. Zhai, “Automatic labeling of
multinomial topic models,” in Proc. of the 13th ACM
SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining. ACM, 2007, p. 499.

A. K. McCallum, “Mallet: A machine learning for
language toolkit,” 2002, http://mallet.cs.umass.edu.

T. Griffiths and M. Steyvers, “Finding scientific topics,”
Proc. of the National Academy of Sciences, vol. 101,
p. 5228, 2004.

C. Shannon, “A mathematical theory of communica-
tion,” ACM SIGMOBILE Mobile Computing and Com-
munications Review, vol. 5, no. 1, pp. 3-55, 2001.

M. Robillard and G. Murphy, “Representing concerns
in source code,” ACM Trans. on Software Engineering
and Methodology, vol. 16, no. 1, p. 3, 2007.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella, “Tool-supported refactoring of existing
object-oriented code into aspects,” IEEE Trans. on
software engineering, vol. 32, no. 9, pp. 698-717, 2006.

F. Longo, R. Tiella, P. Tonella, and A. Villafiorita,
“Measuring the Impact of Different Categories of Soft-
ware Evolution,” Software Process and Product Mea-
surement, pp. 344-351.

R. Scheaffer and J. McClave, Probability and statistics
for engineers. Duxbury Press Boston, Massachusetts,
USA, 1995.

S. Haiduc and A. Marcus, “On the use of domain terms
in source code,” in Proc. of 16th IEEE Intl. Conf. on
Program Comprehension, 2008, pp. 113-122.

S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue,
“Mudablue: An automatic categorization system for
open source repositories,” The Journal of Systems &
Software, vol. 79, no. 7, pp. 939-953, 2006.

K. Tian, M. Revelle, and D. Poshyvanyk, “Using la-
tent Dirichlet allocation for automatic categorization of
software,” Mining Software Repositories, pp. 163-166,
2009.

A. Kellens, K. Mens, and P. Tonella, “A survey
of automated code-level aspect mining techniques,”
Transactions on Aspect-Oriented Software Develop-
ment, vol. IV, no. LNCS 4640, pp. 143-162, 2007.

