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Abstract

Tracking the progress of a project is often done through
imprecise manually gathered information, like progress re-
ports, or through automatic metrics such as Lines Of Code
(LOC). Such metrics are too coarse-grained and too impre-
cise to capture all facets of a project. In this paper, we mine
the code changes in the source code repository and study
the concept of time dependence of code changes. Using this
concept, we can track the progress of a software project as
the progress of a building. We can examine how changes
build on each other over time and determine the impact of
these changes on the quality of a project. In particular,
we study whether new changes are built just-in-time or if
they build on older, stable code. Through a case study on
two large open source projects (PostgreSQL and FreeBSD),
we show that time dependence varies across projects and
throughout the lifetime of each project. We also show that
there is a high linear correlation between building on new
code and the occurrence of bugs.

1. Introduction

Getting accurate and timely feedback about the progress
of a software project is critical to deliver high quality results
on time and within budget [8, 11]. For this, project man-
agers often use informal meetings with the development
team and manually compiled progress reports. However,
these meetings and reports do not provide sufficient feed-
back, causing many projects to fail [31, 32]. Most of these
failures are attributed to the discrepancy between the devel-
opment process and project management [4, 21]. The act of
obtaining accurate and timely progress about which devel-
opment activities are on time, which ones are delayed and
which activities could be rescheduled to resolve a conflict,
has not been studied widely before.

We propose to track a project as one would track the
construction of a building, with each change providing the
structure on which other changes can build. As with build-

ings, some changes can build on fresh structure (built-
on-new changes) while other changes can build on well-
established structure (built-on-old changes). Furthermore,
some changes might build on no structure at all (indepen-
dent changes). As a construction evolves, one must ensure
that structure is being put just-in-time to avoid costly devel-
opment that might never be used or that might not be needed
for a while (and hence only add complexity). Furthermore,
engineers are often concerned about the risks of building on
fresh structure. Such analogies have never been explored
before in relation to the construction of software systems.

We believe that the required information for evaluating
the progress of a project is readily available in the source
code repository of a project. The repository contains the
building blocks of software features in the form of changes
to functions and files. The repository also contains informa-
tion about the temporal dependence between these changes.
We propose the concept of a time dependence relation be-
tween source code changes. A time dependence relation
between two changes indicates that one change to a source
code entity follows (depends on) another change. Using
these relations, we can track not only the location of a
change but also the changes it depends on.

To show that time dependence is a promising technique
for ensuring accurate and timely tracking of the progress of
a project, we apply the technique to two large open source
systems with a long development history, i.e., PostgreSQL
and FreeBSD. Our case study shows that:

• Over 50% of all changes in a quarter are built-on-new
changes. The rate of built-on-new changes, built-on-
old changes and independent changes varies through-
out the lifetime of a project and across projects. Large
fluctuation in the rate is indicative of major structural
changes and feature additions in the studied projects.

• The regular development and bug fix processes fol-
low the same breakdown of change types (built-on-
new, built-on-old and independent). This is a surpris-
ing finding, since we would have expected that the bug
fix process would be more dependent on recent activ-



 

Figure 1. Time dependence between
changes.

ities in a project, relative to the regular development
process.

• Spending more of the regular (i.e., non-bug fix) devel-
opment time budget building on new changes requires
spending more of the total development time on fixing
bugs. This finding matches well with common con-
struction wisdom concerning building on fresh struc-
ture compared to building on long-established struc-
ture.

The paper is organized as follows. Section 2 presents the
concept of time dependence and discusses how it allows to
measure the project progress. Section 3 presents the four
research questions we want to address using time depen-
dence. In Section 4, we explain the setup of the two case
studies we performed, and we discuss case study results for
each research question. Limitations and future work are de-
scribed in Section 5, related work is presented in Section 6,
and our conclusions are summarized in Section 7.

2. Time Dependence

The problem of measuring the progress of a software
project boils down to measuring the progress of source code
changes. In an ideal project, changes should occur just as
they are needed (i.e., just-in-time). Changes (i.e., struc-
tures) that are not needed for a few months do not need to
be put in a particular quarter. Instead, these changes can be
pushed forward and other changes could be brought in. In a
continuously evolving project, we expect that a large num-
ber of changes will build on recently added code instead of
depending on old, unchanged code, unless a major restruc-
turing happens on well-established structures within the
software system. While traditional views of software evo-
lution track basic metrics like lines of code (LOC) [15, 26],
we propose the concept of time dependence to quantify our
intuition about the progress of a project.

Time dependence captures the time between “related”
source code changes and records which changes are inde-

pendent of other changes. In particular, a time dependence
relation measures the time gap between a change of a source
code entity E (like a function or type definition) at time T ,
and the last change of E and of each entity which E de-
pends on. The example in Figure 1 illustrates this concept.
Function f1 is added at time 0. Function f2 is added at
time 1. At time 2, f1 is modified to add a call to f2. We
say that f1 at time 2 depends on the change (introduction)
that happened to f2 at time 1 and on the most recent change
to f1 time 0 (in this case the introduction of f1). These
prior changes provided the structure needed for the change
at time 2. This structure could be conceptual (i.e., a higher-
level feature) or concrete (i.e., just implementation/code).

Each change can depend on a large number of prior
changes, but for this paper we consider the smallest time in-
terval between a change and any of its dependent changes.
Using the example in Figure 1, we would say that the
change to f1 at time 2 depends on the change at time 1.
This indicates that the earliest possible time to perform the
change of time 2 is time 1, since at that time all the needed
structure was in place. We note that this formulation does
not account for the complexity of software development in
relation to features. For example, consider the case of f1
being the cut-and-paste logic in an application, with the
change at time 2 introducing the ability to cut-and-paste
HTML code. Although theoretically the change could have
been done at time 1, it might be the case that at time 1
HTML was not a popular format worth supporting yet. In
short, our formulation does not factor in the requirements of
a project and the external factors that drive changes. How-
ever, our formulation provides information to practitioners
about possible delays and dependencies. Practitioners need
to examine these findings in the context of their project and
their expectations for a particular change.

To provide a high-level view of the progress of a project,
we study all changes in a particular period (e.g., month,
quarter, year). We could even study the time dependence
of changes across releases, though we do not perform this
study in this paper. Whatever approach we use, we must
“lift” all time dependence relations within a particular pe-
riod. Figure 2 illustrates the lifting process. Three peri-
ods are shown on Figure 2a, each of these grouping the
changes that happened inside them. All edges correspond to
the time dependence relation from a change to its most re-
cently changed dependent change. This relation either links
changes inside the same period (dashed edge) or between
different periods (full edge). To lift the time dependence re-
lations up to the period level, we introduce the concepts of
“built-on-new”, “built-on-old” and “independent” changes:

built-on-new change depends on a change in a recent pe-
riod.

built-on-old change depends on a change in an older pe-
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Figure 2. Time dependence between periods (a) before and (b) after resolving transitive dependence.

riod.

independent change does not depend on changes in any
prior period.

Figure 2b shows the actual time dependence relations of
each change after resolving the transitive changes within
each period, i.e., after replacing each dashed edge with a de-
pendency on a change of an immediately preceding period
(built-on-new), a dependency on an older change (built-on-
old) or no dependency at all (independent). Changes 10
and 11 are clearly independent. If we consider “built-on-
new” to mean “builds on changes in the last period”, then
changes 5, 6 and 7 are built-on-new, whereas changes 8
and 9 are built-on-old. In one of our experiments, we de-
termine what the right number of periods is to consider a
change as built-on-new.

3 Research Questions

Using the concept of time dependence, we sought to
study four research questions. The first two questions
are about the nature of tracking the progress of projects,
whereas the last two questions address two common project
management beliefs. We briefly state and motivate the rele-
vance of each question:

Q1 How does the time dependence of changes vary over
time?

Do projects primarily build on recently modified
source code (built-on-new), or is there a gap between
a change and its most recent dependent change? As
a project ages, does its development progress slow
down with less built-on-new changes and more built-
on-old changes? Using our dependence analysis and
their knowledge of a project, practitioners can moni-
tor more closely the progress of a project.

Q2 What is the impact of independent changes?

Independent changes do not have timing constraints.
Such changes, in theory, can be re-scheduled and
moved around without any problems. However, it is
not clear whether such changes are common in sys-
tems. Are some systems more open to independent
changes than others?

Q3 Is the distribution of time dependence similar for regu-
lar development and bug fix processes?

Maintenance activities like bug fixing have been iden-
tified before as having a negative impact on devel-
oper productivity, and hence on the progress of a soft-
ware project [32]. However, do bug fix changes and
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PostgreSQL FreeBSD
type DBMS Operating System

period 1997–2007 1994–2005
#changes 84,311 353,958
#entities 31,863 253,896

#files 2,053 21,093
#Bug fixes 22,913 32,074

Table 1. Studied systems’ characteristics.

enhancement changes exhibit the same distribution
of time dependence relations, or are bug fixing and
regular development completely independent of each
other? This information could help project managers
derive information about the progress of the bug fix
process from the progress of the regular development
process, and vice versa. For example, do regular de-
velopment and bug fixing require similar operational
knowledge about a system?

Q4 Is building on recent changes risky?

Construction workers do not build a house on a fresh
foundation, instead they wait for the foundation to dry
up to not risk the collapse of the house. Does develop-
ing on built-on-new changes lead to more bugs in soft-
ware? Having this information could be used to decide
how many resources should be allocated to testing.

4. Case Study

To explore our four research questions, we performed a
case study using two large long-lived open-source projects.
We briefly present the used data and systems, then we
present the results for each one of our four questions.

4.1 Studied Systems

We used data from the open source PostgreSQL (1997–
2007) and FreeBSD (1994–2005) projects for our case
study. PostgreSQL is a relational database system of which
the original design goes back to the 1980s [30], whereas
FreeBSD is an operating system distribution derived from
the Berkeley flavor of UNIX [13]. We studied the FreeBSD
base system, without the ports and applications. Table 1
shows the number of changes and files for both projects. We
picked both systems due to their long history of changes,
which is easily accessible. The two systems being from two
different domains (databases and operating systems) would
help us verify the generality of our findings across domains.

For each system, we extract the history of changes from
the source code repository at the level of entities. We
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Figure 3. Beanplots with the percentage of
built-on-new changes for different quarter de-
lays.

lift line-level change information to the level of code en-
tity changes, like functions, function calls and variable ac-
cesses [17]. Using this entity-level information, we can
build the time dependence relation for each source code
change. The resulting information can be aggregated to de-
scribe the progress of a project at the level of periods (cf.
Figure 2a), or used as-is to identify changes with partic-
ularly high delay or changes that follow each other very
closely. Being able to identify specific changes, we could
map our high-level observations about the progress of a
project to concrete examples of changes. Using these con-
crete examples, practitioners can verify high-level observa-
tions using their experience and read through the metadata
attached to each change [18]. Possible metadata includes
the change commit message and the name of the developer
responsible for the change. With this data, we can distin-
guish between bug fix changes and other, non-bug fixing
enhancement changes [19]. We also filter out changes that
are done to indent the code or to update copyright notices,
since these are not interesting for our analysis.

We present below the results of our four research ques-
tions.

Q1. How does the Time Dependence of
Changes Vary over Time?

To define the concept of built-on-new and built-on-old
changes for our studied systems, we measure the percent-
age of changes that are built on the last one, two, three
and four quarters. These percentages are represented in
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Figure 4. The distribution of built-on-new, built-on-old and independent changes (PostgreSQL).
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Figure 5. The distribution of built-on-new, built-on-old and independent changes (FreeBSD).

Figure 3 as four beanplots [24], each beanplot comparing
the data for PostgreSQL (left) and FreeBSD (right). A
beanplot contains more information than a boxplot, as its
width shows how the observations for each quarter are dis-
tributed over the possible values (in this case the percentage
of changes). This facilitates the comparison of the Post-
greSQL and FreeBSD distributions. The horizontal black
lines show the average of each distribution.

From the beanplots, we note that the growth of the per-
centage of built-on-new changes slows down above two
quarters. For PostgreSQL, on average 49.8% of the changes
in a quarter depend on the last quarter, whereas on average
63.2% depend on the last two quarters. For FreeBSD, the
averages are 35.7% and 46.5%, respectively. When moving
to periods longer than two quarters (e.g., from two to three
quarters), we only gain a small increase, less than 10%.
Similarly, the 25th and 75th percentiles of each distribution
increase less than 10% when moving to periods longer than
two quarters. For this reason, we chose two quarters as the
boundary between built-on-new and built-on-old changes.
The beanplots show that PostgreSQL depends much more
on recent changes than FreeBSD. In particular, the average

percentage of built-on-new changes for PostgreSQL is more
than 15% higher than for FreeBSD and the beanplot density
is shifted up considerably compared to FreeBSD.

Figure 4 and Figure 5 show cumulative plots of the
percentages of built-on-new, built-on-old and independent
changes for PostgreSQL and FreeBSD respectively. A
larger area means that the corresponding type of change
occurs more frequently. Overall, there are many fluctua-
tions in the distribution of the three kinds of changes, and
no clear upward or downward evolution can be observed.
Built-on-old changes (grey area) seem to be equally impor-
tant for PostgreSQL and FreeBSD. Built-on-new changes
(white area) take up the majority of changes for Post-
greSQL, whereas for FreeBSD the development seems to
be spread more evenly across all three types of changes. In
particular, there is a large number of independent changes
in FreeBSD over time, possibly due to architectural char-
acteristics of FreeBSD over PostgreSQL. The large number
for FreeBSD might be due to its independent code bases
for hardware drivers and for externally developed system
tools like GCC or standard libraries that were imported
into the FreeBSD base system, whereas the “contrib” code
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Figure 6. Percentage of independent changes in PostgreSQL and FreeBSD.

base for PostgreSQL-related tools has a much smaller scale.
There are only a few periods for PostgreSQL (2007) and for
FreeBSD (1994 and 1996) where the percentage of built-on-
new changes drops below 20%. Those periods saw an un-
usually high number of independent changes (more on this
in the following question).

We manually examined all changes in 2003 for Post-
greSQL and all changes in 1997 for FreeBSD, as both
years saw a high percentage of built-on-new changes. For
each type of change (built-on-new, built-on-old and inde-
pendent), we determined those entities that were changed
most frequently. We then examined these entities and read
through the change messages attached to these changes.
We report here on prominent examples of built-on-new and
built-on-old changes we found. The next section (Q2) gives
examples of important independent changes.

For the studied period in PostgreSQL, we found that all
138 changes to the “ecpg” compiler for Embedded SQL
were done just-in-time, with each change depending on re-
cently added changes. The changes comprised the move to
a new GNU Bison parser generator, changes to the build
system, the addition of an Informix compatibility mode and
various bug fixes. We also found examples of built-on-old
changes, such as the addition of support for a new version
of the message protocol between the PostgreSQL front and
back end (out of 43 changes, 27 were built-on-old changes).

For the studied period in FreeBSD, we note one example
of built-on-new changes, and two examples of built-on-old
changes. A significant set of built-on-new changes merged
SMP support (Symmetric MultiProcessing) for the amd64
and i386 architectures into FreeBSD. This was clearly a ma-
jor effort, as 90 existing files were modified, many of them
at the core of the kernel, and 11 new files were added. These
changes were really just-in-time. A first example of built-
on-old changes, was the addition of timeout support to the
sysinstall installation utility, with some changes building
on changes that were done almost three years earlier. The
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Enhancement 
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Independent 
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  Bug Fix 
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Figure 7. Categories of changes.

second example involved changes to the internationaliza-
tion code to add support for the Japanese language. These
changes built on changes that were done more than one year
earlier.

�

�

�




Time dependence varies across projects and through-
out time. Changes in the FreeBSD project are
evenly distributed across the three types of changes
(built-on-new, built-on-old and independent), whereas
changes in PostgreSQL more frequently build on newer
changes.
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Q2. What is the Impact of Independent
Changes?

Independent changes are “floating” changes which do
not depend on changes from prior quarters. These changes
could have been made much earlier, if the requirements for
these changes were known in advance and resources were
available. Hence, it is interesting to compare the distribu-
tion of independent changes for PostgreSQL and FreeBSD.
To make this comparison a bit easier, Figure 6 plots the
black areas of Figure 4 and Figure 5 on one graph.

Figure 6 shows that FreeBSD has a much higher per-
centage of independent changes than PostgreSQL. Since we
studied the FreeBSD base system, it contains a kernel, de-
vice drivers and system tools like compilers and libraries.
Device drivers are self-contained modules with dedicated
logic for supporting devices like hard disks and network
cards. As a clean plug-in mechanism exists for drivers, new
drivers show up as independent changes. Similarly, sys-
tem tools introduce independent changes. Peaks in the per-
centage of independent changes coincide with the import of
large chunks of source code of externally developed tools
like CVS, GCC, sh, Bison and Perl for customization. The
high percentage of independent changes shows that the ar-
chitecture of FreeBSD overall has better support for exten-
sibility and independent development over PostgreSQL.

We note that in the second half of 2007, PostgreSQL ex-
perienced a huge spike in the percentage of independent
changes. We verified this finding by contacting the Post-
greSQL developers. These explained that two large inde-
pendent features had been added to the back end in August
and September 2007, in preparation of the 8.3 release [10]:

• Tom Lane, a major PostgreSQL developer, migrated
the Tsearch2 functionality (“Text Searching”) from the
separate “contrib” (see Q1) directory into the core di-
rectories. The Tsearch2 feature enables the searching
of terms in natural-language documents.

• One month later, the same developer committed large
additions to the HOT subsystem (“Heap Organized Tu-
ples”), which is an optimization feature for throughput
and more consistent response time.

�

�

�




The large percentage of independent changes shows
that FreeBSD imports large chunks of external source
code and that the architecture of FreeBSD is built for
extension, whereas spikes of independent changes in
PostgreSQL signal sudden additions of large indepen-
dent features.

PostgreSQL PostgreSQL∗ FreeBSD
built-on-new 0.64 0.87 0.81
built-on-old 0.85 0.9 0.91
independent 0.57 0.84 0.9

Table 2. Pearson correlations between the
relative percentage of built-on-new, built-on-
old or independent bug fix and enhance-
ment changes in a year for PostgreSQL and
FreeBSD. The ∗ correlations do not take into
account the last year (2007).

Q3. Is the Distribution of Time Depen-
dence Similar for Regular Development and
Bug Fix Processes?

Software development activities consist of two pro-
cesses: the regular development process and the bug fix pro-
cess. Developers devote their time across both processes,
with bug fixing interleaved with regular development. We
would like to study the relation between these two related,
yet different, processes. Do both types of processes build
on similar change periods or do they differ? For example,
are there periods with bug fixing depending on old changes
while regular development depends on newer changes? If
both processes depend on similar change periods, then one
can reduce the negative impact on the productivity of de-
velopers of interleaving bug fixing with regular develop-
ment [32].

Using our time dependence formulation, this problem
boils down to analyzing possible correlation between the
three types of enhancement (built-on-new, built-on-old and
independent) with the same types of bug fixes, i.e., we mea-
sure the correlation between EN

E and BN
B , EI

E and BI
B , and

EO
E and BO

B in Figure 7. Do periods with a large percent-
age of built-on-new enhancements have a large percentage
of built-on-new bug fixes, leading to a positive correlation
between both processes, or do such periods have a small
percentage of built-on-new bug fixes, leading to a negative
correlation?

We measured the Pearson correlation values between the
relative percentage of built-on-new, built-on-old and inde-
pendent bug fix and enhancement changes for PostgreSQL
and FreeBSD, at the year level (see Table 2). We calculated
the correlations at the year level, since the number of bug
fix changes per quarter is too small to make reasonable sta-
tistical claims. Using the same approach as discussed for
Q1, we use one year as the boundary between built-on-new
and built-on-old changes.

If we consider all the years for PostgreSQL and FreeBSD
(columns one and three in Table 2), PostgreSQL obtains
weak to strong correlations for the distribution of time de-
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pendence for enhancement and bug fix changes, whereas
FreeBSD obtains high correlations throughout.

Overall, PostgreSQL has a high linear correlation, ex-
cept for the last year (2007). If we ignore 2007, and recom-
pute the Pearson correlations (second column of Table 2),
PostgreSQL shows much higher correlation numbers, even
higher than for FreeBSD. We suspect that this is caused by
the unusual spike in independent changes in 2007 (see Q2).
The high correlation between built-on-new, built-on-old and
independent bug fix and enhancement changes shows that
developers need knowledge about similar periods of the de-
velopment history when doing regular development and bug
fixing.�




�

	
Regular development and bug fixing require knowl-
edge about source code changes from the same devel-
opment periods, i.e., the context switch between both
processes is relatively limited.

Q4. Is Building on Recent Changes Risky?

Construction workers avoid building on newly laid struc-
ture. Instead, they prefer to build on established dry struc-
ture. Workers fear that the new structure will be much
riskier and will lead to problems. We wish to verify this
common wisdom in the construction industry with software
development. Using our time dependence formulation, we
measure if between two years an increase in the number of
built-on-new enhancement changes relative to all enhance-
ment changes would lead to an increase in the number of
bug fix changes relative to all changes, i.e., we measure the
correlation between EN

E and B
E+B in Figure 7. In other

words, if you spend more of your regular development time
budget E to build on fresh changes, you are likely to spend
proportionally more of your total time budget E + B to fix
bugs, and hence less of your total time budget E + B to do
regular development.

The Pearson correlation between both metrics turns out
to be high: 0.65 for PostgreSQL and 0.91 for FreeBSD.
The lower correlation for PostgreSQL can be explained by
looking at Figure 8. This graph shows for each year the
increase of the considered percentages compared to the pre-
vious year (negative increase means decrease). From 2000
to 2001, and from 2003 and 2004 an increase of the rela-
tive percentage of built-on-new enhancement changes was
accompanied by a decrease of the total percentage of bug
fix changes. Investigating what happened in these periods
is future work.

Overall, the high linear correlation for PostgreSQL and
FreeBSD suggests that managers should be careful when
they plan to build relatively more enhancements on fresh
structure (i.e., new changes). They might consider assign-
ing extra resources on testing. Our experiment provides an

empirical proof of what seems to be common wisdom in
project management.�
�

�
�

Building on recent changes is risky, as more of the de-
velopment time is spent fixing bugs.

5. Limitations and Future Work

Our technique to recover the time dependence relations
only takes into account static dependencies. Implicit depen-
dencies due to dynamic dependencies are not considered.
This leads to an overestimation of independent changes.

Our analysis requires interpretation by project experts
to really determine whether a particular change could have
been done earlier or whether the requirements did not exist
at that earlier point in time. For our case study, we vali-
dated our approach by reading the documentation, manuals,
repository logs and mailing lists, and by contacting devel-
opers in the studied projects.

Our case study was done on two open source projects, so
our findings may not generalize to commercial projects, as
open source projects have different characteristics related to
facets like testing and communication. In future work, we
would like to perform a user study to determine the bene-
fit of this approach in a real project setting instead of just
mining the repository of a project.

6. Related Work

We discuss existing work directly related to project
scheduling and prediction of bugs, although there are also
similarities with techniques for detecting software restruc-
turing (e.g., [12]).

Research in software evolution [14, 15, 26] and software
metrics [7, 22] detects or monitors development periods and
areas with slow or rapid growth. However, these approaches
examine the final outcome (the changes) instead of explor-
ing the characteristics and temporal dependencies between
these changes.

A large part of research in project scheduling tries to es-
timate the optimal project plan up-front (e.g., [1, 2, 23, 28]),
such that the project’s goals and constraints are satisfied
with a minimal amount of risk. We on the other hand are
interested in extracting sufficient feedback from the source
code repositories to track the progress of a project, i.e., how
well the original plan is followed. Still, source code repos-
itories have been identified as an important data source for
effort estimation as well [1, 28].

Kothari et al. [25] introduce the Change Cluster tech-
nique to track the evolution of software projects. They cate-
gorize the progress of a project into different areas or ef-
forts, like maintenance and new development. The area
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Figure 8. Graph showing the correlation between the yearly increase of the relative percentage of
built-on-new enhancement changes and the yearly increase of the total percentage of bug fix changes
(PostgreSQL).

of “new development” differs from our definition of inde-
pendent changes, as it encompasses all newly added de-
velopment, whether or not it depends on earlier features or
changes. Therefore, their approach cannot identify the evo-
lution of unconstrained changes.

Xing et al. [33] and Barry et al. [5] characterize the dif-
ferent periods of a software project using characteristics like
spread of changes, effect of changes on dependency struc-
ture and number of changes. Their approaches cannot pro-
vide feedback either about how just-in-time enhancement or
bug fixing changes have been made.

The closest related work to our paper is a proposal by
Brudaru et al. to measure the genealogy of changes [9].
They model the impact between source code changes as
a directed acyclic graph. Changes are studied at the level
of lines of code, in order to to analyze the future impact
of changes on defects, maintainability of a system and de-
velopment effort. Change dependencies are obtained by
iteratively building the system without a change and then
observing which changes are broken, although alternative
heuristics are explored for this approach. Our technique
harvests time dependence relations directly from the infor-
mation stored in the source code repositories to keep them
up-to-date. By lifting this information up to the level of
source code entities, time dependence relations are brought
closer to the mind set of project managers.

The second group of related work consists of bug pre-
diction techniques. Although some approaches detect bugs
based on metrics like LOC [16, 20, 27] or on the presence of
prior faults [34], the majority of recent techniques are based
on information from the change history of a system, as ex-
tracted from the source code repository [3, 6, 16, 27, 29].
These techniques typically look at code churn [29] or the
number of changes. For example, Bernstein et al. [6] use
the number of revisions and reported issues in the last quar-
ter to predict the location and number of bugs in the next
month. In future work, we plan to compare the performance
of our approach against approaches which use other types of

historical data for predicting bugs.

7. Conclusion

We propose to study the process of building software
as one would study the process of constructing a building,
with new changes building on earlier changes. For this, we
considered the temporal dependence between code changes.
Such temporal dependence gives a different and interesting
view of the progress of a software project, with changes
building on fresh structure (i.e., built-on-new), changes
building on old established structure (i.e., built-on-old), and
changes not building on any previous structure (i.e., inde-
pendent). Using these concepts, we studied two open source
projects: PostgreSQL and FreeBSD. We found that 1) the
time dependence varies across both projects and throughout
time, 2) the architecture of a software application and its
evolution impacts the observed time dependence relations,
3) both regular development and bug fixing processes tend
to follow the same time dependence characteristics, and 4)
spending more of the regular development time building on
recent changes increases the total percentage of develop-
ment time that has to be spent fixing bugs.

Through our approach, practitioners can track more
closely the progress of their projects instead of having to
depend on informal meetings and coarse-grained metrics.
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