
Co-Evolution of Source Code and the Build System

Bram Adams
Software Analysis and Intelligence Lab

School of Computing
Queen’s University (Canada)

bram@cs.queensu.ca

Abstract

A build system breathes life into source code, as it config-
ures and directs the construction of a software system from
textual source code modules. Surprisingly, build languages
and tools have not received considerable attention by aca-
demics and practitioners, making current build systems a
mysterious and frustrating resource to work with. Our dis-
sertation presents a conceptual framework with tool support
to recover, analyze and refactor a build system. We demon-
strate the applicability of our framework by analyzing the
evolution of the Linux kernel build system and the introduc-
tion of AOSD technology in five legacy build systems. In all
cases, we found that the build system is a complex software
system of its own, trying to co-evolve in a synchronized way
with the source code while working around shortcomings
of the underlying build technology. Based on our findings,
we hypothesize four conceptual reasons of co-evolution to
guide future research in the area of build systems.

1. Introduction

A build system turns a set of source code and data files
into a suite of executable programs. As such, it (1) provides
a uniform interface for selecting the desired features and en-
vironment (configuration layer), and (2) efficiently invokes
construction tools like compilers in the correct order with
the appropriate flags and input (build layer). The configura-
tion layer is modeled by configuration scripts, which spec-
ify configuration parameters and their constraints. It config-
ures any parametrized source code file or build script before
the build layer starts its work. The build layer is modeled
by build scripts (e.g., makefiles [7]), which specify build
dependencies and instructions.

Most stakeholders in the software development process
interact directly or indirectly with the build system on a
daily basis, as the build system forms the backbone of mod-
ern software development (e.g., continuous integration or

release management). Surprisingly, the evolution and main-
tenance of build systems has been largely ignored in re-
search, except for work on modularising a build system [5],
recovering its high-level architecture [14] and speeding up
the build process. As a consequence, little (tool) support
exists to improve the understanding and re-engineering of
build systems. In particular, little is known about the intri-
cate relation between the build system and the source code.
This can have dramatic consequences for stakeholders, as
the following two observations show:

1. Development slowdown. KDE is a highly config-
urable, large, open source desktop environment. By 2005,
its build system had become so complex that even simple
tasks like moving a file from one folder to another were
tedious, often with unforeseen consequences [12]. Switch-
ing to a new build system seemed to be the only way out,
but this required developers to recover and reconstruct the
knowledge hidden inside the old build system. Only their
second attempt succeeded.

2. Hindering reuse. De Jonge [5] warns of the hidden
impact of the build system on source code reuse. A compo-
nent without a separate build system cannot be extracted
from its originating system and plugged into other sys-
tems, as its configuration options and constraints are spread
throughout the global build system. Build system limita-
tions discourage developers from reusing components.

In both observations, software engineers are either not
aware of the co-evolution of source code and the build sys-
tem, or not able to propagate changes between source code
and the build system in a synchronized way [6]. For exam-
ple, if new source code features are not properly specified or
constrained in the configuration scripts, users cannot benefit
from them. Likewise, linking an application with a wrong
library version causes unpredictable run-time behavior. On
the other hand, if the build system defines new conditional
compilation flags or header file locations, the source code
needs to be updated to reflect these changes.

The goal of our dissertation is to improve the understand-



ing of build systems and to investigate the Co-evolution of
Source code and the Build system (CSB), by studying real-
world systems and exploring a worst-case scenario from the
CSB’s point of view. This paper first presents our research
hypothesis (Section 2), followed by an overview of the main
dissertation parts (Section 3). Finally, we summarize our
major contributions in Section 4.

2. Research Hypothesis�




�

	
The build system is crucial in software development,
but is not well understood by practitioners. Tools and
techniques are needed to understand a build system
and its co-evolution with the source code.

Co-evolution is a software engineering phenomenon in
which different software models are causally connected [6]:
if one model changes, this may have an impact on the
other one and vice versa. Co-evolution can occur between
any two or more artifacts (or phases) of software devel-
opment: architecture/implementation, design regularities/-
source code, source code/tests, etc. Our dissertation focuses
on the co-evolution of source code and the build system.

The work is broken down into four parts. First, we de-
sign and implement a framework for understanding and re-
engineering build systems. Second, we validate this frame-
work by analyzing the evolution of the Linux kernel build
system. Third, we apply the framework to examine the im-
pact of CSB on the introduction of AOSD technology in
legacy systems. This co-evolution scenario confronts a sig-
nificant change on the source code level with rigid build
system technology. Fourth, we distill four conceptual rea-
sons from the case study findings for the existence of CSB.
These reasons represent important areas of future work in
build system research and practice.

3. Overview of the Dissertation

3.1. Conceptual Framework for Under-
standing Build Systems

Build systems are very hard to understand and modify.
At the level of individual configuration and build scripts,
users face arcane, complex configuration and build tools,
under- or over-specified configuration and build dependen-
cies, platform-specific build instructions and problems with
enforcing versioned dependencies. There are hardly any
debugging tools for build systems either. At the system
level, users need to identify performance bottlenecks, grasp
the different phases in the build process [14], and under-
stand the build architecture and its implications. For ex-
ample, “recursive make” is a popular “make” architecture

in which each directory has its own build script that is in-
voked in a separate “make” process by the parent directory’s
build script. Although conceptually simple, it requires
workarounds like adding multiple build loops or redundant
build dependencies to deal with inconsistent build depen-
dencies, race conditions during parallel build and plugga-
bility of build scripts of new subsystems.

As changes to the build system occur very frequently and
need to propagate through many configuration/build scripts
at once [13], tools are required to support developers and
the many other users of the build system. Our dissertation
proposes a re(verse)-engineering framework for build sys-
tems, named “MAKAO” [2], which provides five important
features to improve build system understanding and mod-
ification. First, MAKAO visualizes the build dependency
graph of a concrete build, with flexible navigation. In Fig-
ure 1, colors identify the different file types, edges have the
same color as their destination node and all files described
by the same build script are enclosed by the same convex
hull. Second, users can interactively query for static infor-
mation in the build scripts and for the dynamic values of
build script variables. Third and fourth, MAKAO’s Prolog-
based pattern matching facility allows to filter out patterns
in the build dependency graph, either to make the depen-
dency graph easier to interpret or to detect bad smells. Fifth,
MAKAO can re-engineer a make-based [7] build layer.

3.2. Evolution of the Linux Kernel Build
System

We used MAKAO to recover the design of the Linux
kernel build system in all major releases from 1991 until
2007 [3]. For each release, we generated the build depen-
dency graph of the default build configuration, measured
graph metrics like the number of nodes/edges in the build
dependency graph and consulted external resources like the
dedicated mailing list and documentation. We found that
the kernel build system evolved from a couple of build
scripts to a complex system of nearly one thousand build
scripts, half as many configuration scripts and almost one
hundred additional shell scripts and programs. Between the
2.4.x and 2.6.x kernel series the build system even saw a
major overhaul, as the highly dissimilar build dependency
graphs in Figure 1 show. MAKAO enabled us to understand
the kernel build system and to recover the re-engineering
steps performed between each successive version.

3.3. Introduction of AOSD Technology in
Legacy Build Systems

In order to analyze a concrete scenario in which CSB
plays an important role, we chose to study the introduc-
tion of AOSD technology [10] in legacy systems [11]. As-



t.ot.ct.htFORCE

(a) (b)

Figure 1. Build dependency graphs of Linux 2.4 (a) and 2.6 (b).

pects are modules that encapsulate “crosscutting concerns”
(CCCs) like logging or caching. Without AOSD, the im-
plementation of a CCC is typically “scattered” across mul-
tiple modules, where it is “tangled” with the implementa-
tion of other concerns. With AOSD, the CCC can be im-
plemented as “advice” inside aspect modules. Contrary to
a procedure, advice is triggered (“woven”) automatically
whenever a specified run-time condition (“pointcut”) is sat-
isfied. Although, conceptually, weaving is a run-time activ-
ity, most weavers transform the source code or bytecode at
build-time. This is exactly where the CSB kicks in, as re-
searchers and practitioners experience CSB problems with
the implicit scope of weaving (1), consistent weaving across
components (2), reliable speed-up of the weaving process
(3) and fine-grained weaver configuration (4) [1, 9, 15].

To investigate CSB in the presence of AOSD technol-
ogy, we designed a build-aware aspect language for C sys-
tems named “Aspicere” and implemented a source code and
a link-time bytecode weaver for it. As Aspicere pointcuts
are Prolog rules, pointcuts can be expressed in terms of
the build system configuration and structure by representing
build system concepts like “library”, “component” and “se-
lected feature” as logic facts. Build-aware pointcuts are in-
tended to narrow the gap between composition in the source
code (weaving) and in the build system (file manipulation).

We performed five case studies in which Aspicere as-
pects were woven into a C system. In two of them, trac-
ing aspects were woven to understand the architecture of
an industrial C system (269 makefiles) [15] and of Quake
3 (6 makefiles). A third case study proposed an aspect-
based exception handling scheme [4], while a fourth one re-

engineered the architecture of a small VM (1 makefile) [8].
A fifth case study refactored conditional compilation in the
Parrot VM (60 makefiles) into advice [1]. MAKAO proved
to be invaluable for understanding the case studies’ build
systems and for integrating Aspicere’s weavers. Aspicere’s
build-aware advice makes aspects more robust to changes
in the build system, and hence to CSB.

3.4. Conceptual Reasons of Co-evolution

Based on the experimental findings in the Linux and
AOSD case studies, we hypothesize four important reasons
why source code and the build system co-evolve:

1) Modular source code needs a modular build system.

The kernel’s error-prone “recursive make” build archi-
tecture continually has been re-engineered to improve
the seamless integration of new drivers. Aspect develop-
ers assume that the whole system is the scope of weav-
ing (“whole-program reasoning”), but because of the
complex interaction of binaries and libraries the build
system cannot guarantee this. This mismatch between
aspect and build modules causes important problems.

2) The build system is an executable specification of the
system architecture.

A build system is a meta-program that manipulates and
composes files according to the source code architec-
ture. The Linux kernel build engineers have exper-
imented with dozens of algorithms and tools to syn-
chronize the build dependencies with the actual source



code architecture. Things are even worse for aspect lan-
guages, as the build system does not understand the ad-
vice construct’s inversion of dependencies.

3) Correctness trumps efficiency.

The kernel build engineers are torn between deliberately
omitting source code dependencies to improve build
speed and adding more dependencies to ensure a cor-
rect build. For aspect languages, the issues with whole-
program reasoning and aspect interaction complicate
speeding up the weaving process in a reliable way.

4) A build system’s configuration layer controls the static
variability of source code.

The kernel’s extreme source code variability has re-
quired multiple configuration languages and powerful
graphical configuration utilities. The higher potential
for source code variability offered by aspects, aspect in-
teraction and the impact of the weaving order of aspects
put even higher demands on the configuration layer.

The findings of our case studies provide initial proof for
these four conceptual reasons of CSB, and we believe future
research on build systems should focus on them.

4. Conclusions and Contributions

Our dissertation investigates the build system and its pe-
culiar co-evolution relation with source code (CSB). Build
systems are very complex and hence very hard to under-
stand and manipulate. However, if the build system does
not evolve synchronously with the source code, the build
system fails to generate a fully-functional software system,
which affects most stakeholders in the software develop-
ment process. These are our major contributions:

1. MAKAO framework to study build systems and CSB.

2. Experimental validation of MAKAO on the evolution
of the Linux kernel build system, yielding proof of
problems related to CSB.

3. Build-aware aspect language support to manage CSB.

4. Five case studies in which MAKAO supports the intro-
duction of AOSD technology in legacy systems, yield-
ing proof of problems related to CSB.

5. Four conceptual reasons for CSB.

An opaque build system forms a potential risk for soft-
ware development, but simple tool and language support is
able to foster understanding of a build system and its rela-
tion to the source code.

Acknowledgments. We would like to thank the anony-
mous reviewer and Nicolas Bettenburg for their comments.

References

[1] B. Adams, W. De Meuter, H. Tromp, and A. E. Hassan.
Can we refactor conditional compilation into aspects? In
Proc. of the 8th ACM Int. conference on Aspect-Oriented
Software Development (AOSD), pages 243–254, New York,
NY, USA, 2009. ACM.

[2] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter.
Design recovery and maintenance of build systems. In
L. Tahvildari and G. Canfora, editors, Proc. of the 23rd Int.
Conference on Software Maintenance (ICSM), pages 114–
123, Paris, France, October 2007. IEEE Computer Society.

[3] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter.
The evolution of the Linux build system. Electronic Com-
munications of the ECEASST, 8, February 2008.

[4] B. Adams and K. D. Schutter. An aspect for idiom-based ex-
ception handling. In Proc. of the 5th Software-Engineering
Properties of Languages and Aspect Technologies Workshop
(SPLAT), AOSD, Vancouver, Canada, March 2007.

[5] M. de Jonge. Build-level components. IEEE Trans. Softw.
Eng., 31(7):588–600, 2005.

[6] J.-M. Favre. Meta-model and model co-evolution within the
3D software space. In Proc. of the Int. Workshop on Evolu-
tion of Large-scale Industrial Software Applications, ICSM,
Amsterdam, The Netherlands, September 2003.

[7] S. I. Feldman. Make - a program for maintaining computer
programs. Software - Practice and Experience, 1979.

[8] M. Haupt, B. Adams, S. Timbermont, C. Gibbs, Y. Coady,
and R. Hirschfeld. Disentangling virtual machine architec-
ture. IET Software: Special Issue on Domain-specific Aspect
Languages, 3(3):201–218, June 2009.

[9] A. Kellens, K. D. Schutter, T. D’Hondt, V. Jonckers, and
H. Doggen. Experiences in modularizing business rules into
aspects. In Proc. of the 24th IEEE Int. Conference on Soft-
ware Maintenance (ICSM), pages 448–451. IEEE, 2008.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proc. of the 11th European Conference
on Object-Oriented Programming (ECOOP), volume 1241,
pages 220–242, Jyväskylä, Finland, 1997. Springer-Verlag.

[11] K. Mens and T. Tourwé. Evolution issues in aspect-oriented
programming. In T. Mens and S. Demeyer, editors, Software
evolution, chapter 9, pages 203–232. Springer Verlag, 1st
edition, February 2008.

[12] A. Neundorf. Why the KDE project switched to CMake –
and how. https://lwn.net/Articles/188693/, June 2006.

[13] G. Robles. Software Engineering Research on Libre Soft-
ware: Data Sources, Methodologies and Results. PhD the-
sis, Universidad Rey Juan Carlos, February 2006.

[14] Q. Tu and M. W. Godfrey. The build-time software architec-
ture view. In Proc. of the 17th Int. Conference on Software
Maintenance (ICSM), pages 398–407, Florence, Italy, 2001.

[15] A. Zaidman, S. Demeyer, B. Adams, K. De Schutter,
G. Hoffman, and B. De Ruyck. Regaining lost knowledge
through dynamic analysis and aspect orientation. In Proc. of
the 10th Conference on Software Maintenance and Reengi-
neering (CSMR), pages 91–102, Bari, Italy, March 2006.
IEEE Computer Society.


