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ABSTRACT
Over the past decade with the rise of the Mining Software Reposi-
tories (MSR) field, the modelling of defects for large and long-lived
systems has become one of the most common applications of MSR.
The findings and approaches of such studies have attracted the
attention of many of our industrial collaborators (and other prac-
titioners worldwide). At the core of many of these studies is the
development and use of analytical models for defects. In this paper,
we discuss common pitfalls and challenges that we observed as
practitioners attempt to develop such models or reason about the
findings of such studies. The key goal of this paper is to document
such pitfalls and challenges so practitioners can avoid them in fu-
ture efforts. We also hope that other academics will be mindful
of such pitfalls and challenges in their own work and industrial
engagements.
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1 INTRODUCTION
Over the past decades, analytical modelling of defects has become
widespread within many software organizations, like Bell Labs [48],
AT&T [52], Turkish Telecommunication [84],Microsoft Research [49–
51, 83, 85], Google [42], Blackberry [62], Cisco [46, 56, 57, 69],
IBM [8], Sony Mobile [64], and Amisoft [55]. Today many software
organizations advocate the need for analytics specialist within soft-
ware teams. For example, data scientists are now a major part of
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Microsoft’s software teams [13, 31–33]. Hence, analytical modelling
skills play a crucial role in software development organizations
worldwide nowadays.

The successful deployment of defect analytical models in practice
relies heavily on an in-depth understanding ofmany intricate details
that are associated with the analytical modelling process. However,
due to the ubiquitous access to statistical and machine learning
toolkits (e.g., R, Weka, Scikit-learn) nowadays, many users of such
modelling toolkits have limited knowledge about many important
details (e.g., often missing to deal with correlated variables in defect
models). Such limited knowledge often leads to major problems
which in turn invalidate the results of studies and lead to the failure
of defect analytics projects in practice [37].

While research efforts have paid attention to guidelines for con-
ducting and reporting empirical studies [27, 35, 38], case study
research [58, 59], systematic literature review [34, 36, 54], replica-
tion studies [9, 65], grounded-theory [67], controlled experiments
with human participants [39], and statistical tests [1], the pitfalls
and guidelines for analytical modelling of defects has not attracted
enough attention from researchers.

Working closely with many industrial partners over the past
decade (e.g., BlackBerry [30, 62], Sony Mobile [64], Avaya [62, 63],
and a large number of small-to-medium size companies) on devel-
oping or deploying defect models in practice, or in explaining to
practitioners the findings of published analytical models in their
own settings, we have faced many challenges first hand. Hence,
in this paper, we discuss common pitfalls and challenges that we
faced. The key goal of our paper is to document such pitfalls and
challenges so practitioners and researchers can avoid them in future
efforts. We also hope that academics will be mindful of such pitfalls
and challenges in their own work and industrial engagements.
Paper organization. Section 2 provides a working definition and
an overview of the defect modelling process. Section 3 discusses the
pitfalls that are associated with the development of defect models.
Section 4 discusses challenges about defect modelling. Section 5
concludes the paper.

2 DEFECT MODELLING IN A NUTSHELL
2.1 Definition and Goal
Defect modelling refers to the development of a statistical or ma-
chine learning model that is trained using historical project data.
The goal of such modelling is to discover meaningful patterns, con-
firm hypotheses, explore relationships, predict, and/or understand
actionable insights in order to better inform decisions related to
the various phases of software practice (e.g., software development,
software maintenance, and software management). Defect mod-
elling is a core instrument in software analytics.
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Figure 1: The key steps in the defect modelling process.

2.2 An Overview of the Defect Modelling
Process

The defect modelling process involves several key steps (see Fig-
ure 1):

(Step-1) Hypothesis Formulation. One must formulate a set
of hypotheses pertaining to a phenomena of interest (e.g., whether
complex code increases project risk).

(Step-2) Designing Metrics. One must determine a set of met-
rics which operationalize the hypothesis of interest (e.g., McCabe’s
Cyclomatic Complexity (CC) to capture code complexity, and the
number of field-reported bugs to capture the risk that is associated
with a module (bugs)). One must also control for known confound-
ing factors (e.g., large modules (size) are likely to have more bugs).
We note that one needs to use control metrics to ensure that findings
are not due to confounding factor. While academic studies often
opt for complex transformations on metrics (e.g., using PCA to fuse
correlated metrics), we observed that there is a higher preference
for sensible, interpretable, and actionable metrics when applying
defect modelling in an industrial setting [2, 5, 23, 32, 55, 62, 64, 81].

(Step-3) Data Preparation. One must prepare the data and
compute metrics. Prior to model construction, one must analyze
the distributions of the data [82] and the correlation of metrics [28]
in order to understand the characteristics of the data.

(Step-4) Model Specification. One must define which metrics
should be included or excluded in an analytical model. Also, one
must decide the ordering of such metrics (e.g., Model1: bugs∼size
+CC vs Model2: bugs∼CC+size).

(Step-5) Model Construction. One must construct an analyt-
ical model using, for example, statistical techniques (e.g., logistic
or linear regression), or machine learning techniques (e.g., random
forest) [15, 17, 74, 77].

(Step-6) Model Validation.Model validation techniques (e.g.,
out-of-sample bootstrap validation, repeatedk-fold cross-validation)
are commonly used to estimate the model performance on an un-
seen part of the dataset [76].

(Step-7) Model Interpretation. To test the hypotheses of in-
terest and understand the relationship between a set of metrics and
an outcome, one must examine the ranking of metrics using model
interpretation techniques (e.g., many defect analytics studies use
ANOVA Type-I [28], since it is the default built-in interpretation
function for logistic regression (glm) models in R).

3 PITFALLS IN DEFECT MODELLING
In this section, we discuss several pitfalls that we faced over the
years in the defect modelling process (see Figure 2). For each pitfall,

Table 1: Descriptions of the metrics of the running-example
dataset [86].

Granularity Metric Description File level
Method FOUT Number of method calls (fan out) avg, max, total

MLOC Method lines of code avg, max, total
NBD Nested block depth avg, max, total
PAR Number of parameters avg, max, total
CC McCabe’s Cyclomatic Complexity avg, max, total

Class NOF Number of fields avg, max, total
NOM Number of methods avg, max, total
NSF Number of static fields avg, max, total
NSM Number of static methods avg, max, total

File ACD Number of anonymous type declarations value
NOI Number of interfaces value
NOT Number of classes value
TLOC Total lines of code value

we provide a detailed description of the pitfall along with a hands-
on demonstration of the pitfall using a running example. We also
discuss some pitfall avoidance strategies for each pitfall.
Running Example Dataset. To illustrate each pitfall, we use the
Eclipse 2.0 defect dataset as the subject of our analysis [86]. We
select the Eclipse 2.0 dataset since (1) Eclipse is a large-scale and
active software project; and (2) it is widely used in a large number
of prior studies [19]. The studied defect dataset has 6,740 modules
at the file-level granularity with 31 software metrics and a defective
ratio of 14.4%. Table 1 provides a description of the studied metrics.

3.1 Model Specification

Pitfall 1—Testing hypotheses without including control
metrics.

Description. Control metrics are confounding metrics that are not
of interest even though they could affect the outcome of a model.
However, studies are often not aware of the impact of not including
control metrics when proposing a set of new metrics (or when
studying the impact of a particular phenomenon). For example,
to study if complexity metrics [10] are associated with project
risk, one might use the number of reported bugs (bugs) to capture
risk, and McCabe’s Cyclomatic Complexity metrics to capture code
complexity (CC), while controlling for code size (TLOC). We note
that one needs to use control metrics to ensure that findings are not
due to confounding factors (e.g., large modules are more likely to
have more defects). Then, one must construct an analytical model
with a model specification of bugs∼TLOC+CC. One would then use
an interpretation technique (e.g. ANOVA Type-I) to determine the
ranking of metrics (i.e., whether the metrics of interest have a
stronger relationship than the control metrics).
Demonstration. To illustrate the impact of not including control
metrics, we examine the importance scores of the metric of inter-
est (CC) with and without a control metric (TLOC). To simplify the
demonstration, we select 3 metrics to be included in our model,
i.e., CC_max, PAR_max, FOUT_max. We then include one control met-
ric (TLOC) in the model. Then, we construct two different logistic
regression models:

– (M1) one model without a control metric (i.e., bugs∼CC_max+
PAR_max+FOUT_max) and
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Figure 2: An overview of the eight pitfalls in analytical modelling process.

Table 2: The importance scores of a model with and a model
without a control metric. The table shows that CC_max is
the most important metric for the model without a control
metric, yet CC_max is not the most important metric for the
model with a control metric.

M1 M2
Metrics AUC=0.78 AUC=0.79
Control Metric
TLOC - 82%
Studied Metrics
CC_max 76% 9%
PAR_max 17% 7%
FOUT_max 8% 2%

– (M2) another model with a control metric (i.e., bugs∼TLOC+
CC_max+PAR_max+FOUT_max).

We then examine the importance scores of the two models using
an ANOVA Type-I test.

Table 2 shows that CC_max is the most important metric for the
model without a control metric, yet it is not the most important
metric for the model with the control metric. Even though both
models have a similar AUC performance, the importance score of
CC_max substantially drops from 76% to 9% when including a con-
trol metric. This finding suggests that testing hypotheses without
including control metrics could lead to different interpretation.
Avoidance Strategy. Control metrics must be included in defect
models.

Pitfall 2—Failure to deal with correlated metrics when
interpreting models.

Description. Prior studies raise concerns that software metrics are
often correlated [18, 26, 75, 82]. For example, Herraiz et al. [26],
and Gil et al. [18] point out that code complexity (CC) is often
correlated with code size (TLOC). Zhang et al. [82] point out that
many metric aggregation schemes (e.g., averaging or summing of
McCabe’s Cyclomatic Complexity values at the function level to
derive file-levelmetrics) often produce correlatedmetrics. Moreover,
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Figure 3: A hierarchical clustering view of the correlated
metrics of the running-example dataset.

recent studies raise concerns that correlated metrics may impact the
interpretation of defect models [28, 29, 44, 73, 75, 82]. Unfortunately,
a literature survey of Shihab [61] shows that as much as 63% of
published defect studies during 2000-2011 do not mitigate (e.g.,
remove) correlated metrics prior to constructing defect models.
Demonstration. To assess the impact of correlated metrics on the
importance scores of metrics in a model, we analyze the impor-
tance scores of each metric in a model when correlated metrics are
included in the model. We start with 4 metrics to be included in
the models, i.e., CC_avg, CC_max, PAR_max, FOUT_max. To analyze
the correlation between metrics, we apply the variable clustering
analysis (VarClus). VarClus is a hierarchical clustering view of the
correlation between metrics [60]. We use the implementation of
the variable clustering analysis as provided by the varclus func-
tion of the Hmisc R package [21]. We use a Spearman correlation
(|ρ |) threshold of 0.7 to identify correlated metrics (see Figure 3).
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Table 3: The percentage of the importance scores for two dif-
ferent model specifications of a logistic regression model.
Each bracketed value indicates the position of a metric in
the model specification.

M1 (AUC=0.78) M2 (AUC=0.78)
Metrics Position ANOVA Position ANOVA
CC_max [1] 74% [2] 19%
CC_avg [2] 2% [1] 58%
PAR_max [3] 16% [3] 16%
FOUT_max [4] 7% [4] 7%

Our correlation analysis confirms that the average and the maxi-
mum McCabe’s Cyclomatic Complexity metrics (i.e., CC_avg, and
CC_max) are highly correlated. Hence, we construct two different
logistic regression models with different model specifications:

– (M1) bugs∼CC_max+CC_avg+PAR_max+FOUT_max and
– (M2) bugs∼CC_avg+CC_max+PAR_max+FOUT_max

We then examine the importance scores of the two regression mod-
els using the commonly-used ANOVA Type-I interpretation tech-
nique.

As shown in Table 3, CC_max is the most important metric when
it appears at the first position of the model (M1). However, CC_avg
is the most important metric when it appears at the first position of
the model (M2). Table 3 shows that the importance score of CC_max
substantially drops from 74% to 19% when appearing at the second
position of the model, indicating that the conclusions of many prior
studies can be altered by simply re-ordering metrics in the model
specification if correlated metrics are not properly mitigated.
Avoidance Strategy. Correlated metrics must be mitigated (e.g.,
removed) in models [28].

3.2 Model Construction

Pitfall 3—Class rebalancing techniques improve model
performance.

Description. Defectmodels are often trained on imbalanced datasets
(i.e., datasets where the proportion of defective and clean modules is
not equally represented). However, imbalanced datasets are highly
susceptible to producing inaccurate prediction models [25]. When
training a defect model using an imbalanced dataset, traditional clas-
sification techniques often fail to accurately identify the minority
class (e.g., defective modules). Thus, class rebalancing techniques
are often applied to improve model performance. However, Turhan
[80] points out that applying class rebalancing techniques may
lead to bias in learned concepts (i.e., concept drift) — the resam-
pled training dataset is not representative of the original dataset.
Concept drift appears when the class distributions of training and
testing datasets are different. Thus, class rebalancing techniques
may impact the interpretation of defect models.
Demonstration. To assess the impact of class rebalancing tech-
niques on the performance and interpretation, we analyze the AUC
and F-measure performance, and the importance ranking of met-
rics of models when class rebalancing techniques are applied and

when they are not applied. Since we find that correlated metrics
have a large impact on model interpretation (see Pitfall 2), we first
remove correlated metrics from the running-example dataset. To
generate training datasets, we use the 100-repeated out-of-sample
bootstrap validation technique [76] (the descriptions and rationale
are provided in Pitfall 6). A model is trained using the bootstrap
sample and tested using the rows that do not appear in the bootstrap
sample. Prior to constructing a logistic regression model, we apply
over-sampling and under-sampling techniques only on the training
datasets, while the testing data is not rebalanced. The over-sampling
technique randomly samples with replacement (i.e., replicating) the
minority class (e.g., defective class) to be the same size as the major-
ity class (e.g., clean class). The under-sampling technique randomly
samples (i.e., reducing) the majority class (e.g., clean class) in order
to reduce the number of majority modules to be the same number as
the minority class (e.g., defective class). To apply the over-sampling
technique, we use the implementation of the upSample function
that is provided by the caret R package [40]. To apply the under-
sampling technique, we use the implementation of the downSample
function that is provided by the caret R package [40]. We then
use an ANOVA Type-I test to estimate the importance scores of all
metrics of each trained model [14]. Since the analysis is repeated
100 times, each metric will have several importance scores (i.e., one
score for each of the repetitions). Hence, we apply the Scott-Knott
Effect Size Difference (ESD) test (v2.0) [71, 77] to produce rank-
ings of metrics of the models that class rebalancing techniques are
applied and not applied.

Figure 4a shows that class rebalancing techniques substantially
improve F-measure (with a commonly-used probability threshold
of 0.5), but have a minimal impact on AUC performance. Moreover,
Figure 4b shows that class rebalancing techniques tend to shift
the ranking of metric importances. For instance, we find that the
second-most important metric (i.e., TLOC) appears at the fourth rank
when class rebalancing techniques are applied.
Avoidance Strategy. This result and recent more rigorous analy-
sis [72] suggest that class rebalancing techniques should be avoided
when one plans to solely use an analytical model to guide decisions.

Pitfall 4—Not experimenting with different learners or
using default parameter settings for learners.

Description. There exists a variety of learners that can be used to
construct defect models (e.g., logistic regression, random forest, and
neural network). Plenty of prior software engineering studies show
that random forest is one of the best performing classification tech-
nique in multitude of software engineering data [41]. Furthermore,
Tantithamthavorn et al. [74] and Fu et al. [15] point out that most
software analytical models in literature often rely on the default
settings of modelling toolkits. However, prior work [79] points
out that the default parameter settings of random forest and naïve
bayes are often suboptimal.

Hence, nowadays practitioners (and researchers) primarily use
random forest learners, and in many cases fret over their use of op-
timal parameters. Instead, one must draw attention to well known
observations in the machine learning community about the “no
free lunch theorem”, which emphasizes that no single modelling
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Figure 4: The AUC and F-Measure performance, and the ScottKnott ESD rankings of metrics of models with and without
applying class rebalancing techniques.

0.65

0.70

0.75

0.80

Logistic Optimized.C5.0 RandomForest Default.C5.0

A
U

C
 P

er
fo

rm
an

ce

Figure 5: The AUC performance distributions of the logistic
regression, optimized C5.0, random forest, and default C5.0
models.

technique is able to perform well in all settings and datasets. In-
deed, practitioners should explore a multitude of learners for their
studies—keeping in mind that the primary goal of prior studies of
comparing learners (e.g., [17, 41]) is to highlight the commonly
well performing learners instead of dictating the use of particular
learners. Also, if possible, practitioners should consider optimizing
the parameters of their learners—keeping in mind again that prior
studies (e.g., [15, 74, 77]) show that automated parameter optimiza-
tion (e.g., grid search, random search, and differential evolution)
substantially improve model performance in a limited number of
learners (e.g., C5.0, neural network learners).
Demonstration. To assess the impact of different learners and
parameter settings, we examine the AUC performance of a defect
model. Similar to prior analysis, we select the 5 most important met-
rics that are derived from Figure 4b to be included in the models, i.e.,
FOUT_max, NOI, TLOC, PAR_max, and NOF_max. Then, we construct
our models using 3 commonly-used classification techniques (learn-
ers), i.e., logistic regression, random forest, and C5.0 (i.e., C4.5/J48).
Since the C5.0 classification technique is sensitive to parameter
settings, we construct the C5.0 classification technique with 2 pa-
rameter settings: a default setting and an optimal parameter setting.
We use the 100-repeated out-of-sample bootstrap validation tech-
nique to estimate the AUC performance of the models.

In contrast to prior findings [41], Figure 5 shows that random for-
est is not always the top-performing learner [15, 17, 74]. Moreover,

Table 4: Confusion matrix for predicting defect-prone code
entities.

Actual
Classified as Defective Non-Defective

Defective TP FP
Non-defective FN TN

Figure 5 shows that applying automated parameter optimization for
the C5.0 model substantially improves its AUC performance [74].
Avoidance Strategy. Given the availability of automated parame-
ter optimization in commonly-used research toolkits (e.g., Caret for
R, MultiSearch for Weka, GridSearch for Scikit-learn), one should
experiment with different learners and find optimal settings for
parameter-sensitive analytical learners (e.g., C5.0 and neural net-
work), instead of solely relying on observations from prior studies.

3.3 Model Validation

Pitfall 5—Using threshold-dependent performance mea-
sures (e.g, F-measure) to measure the performance of a
model.

Description. The performance of analytical models can be mea-
sured using a variety of threshold-dependent (e.g., precision, recall,
and F-measure) and threshold-independent (e.g, Area Under the
receiver operating characteristic Curve (AUC)) performance mea-
sures. Unlike threshold-independentmeasures, threshold-dependent
measures often rely on a probability threshold (e.g., 0.5) for gen-
erating a confusion matrix (see Table 4). Precision measures the
proportion of code entities that are classified as defective, which
are actually defective ( TP

TP+FP ). Recall measures the proportion
of actually defective code entities that were classified as such
( TP
TP+FN ). F-measure is the geometric mean of Precision and Recall
(
2∗precision∗recall
precision+recall ). However, such threshold-dependent measures

(e.g., Precision, Recall, and F-measure) can lead to different and
conflicting conclusions.
Demonstration. To assess the impact of probability thresholds,
we examine the F-measure performance of the four defect models
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Figure 6: The F-measure performance of logistic regression,
random forest, optimizedC5.0, and default C5.0modelswith
different probability thresholds.

from Pitfall 4 using different probability thresholds. We use the 100-
repeated out-of-sample bootstrap validation technique to estimate
the F-measure performance of the models. We then experiment
with different probability thresholds, i.e., 0.2, 0.5, and 0.8.

Figure 6 shows that the ranking of the learners is sensitive to the
used probability threshold. We find that the optimized C5.0 model
is the top-performing learner for a commonly-used probability
threshold of 0.5. However, the logistic regression model is the top-
performing learner for a probability threshold of 0.2, and the default
C5.0 model is the top-performing learner for a probability threshold
of 0.8.
Avoidance Strategy. Threshold-independent measures (e.g., AUC)
should be used in lieu of threshold-dependent measures (e.g., F-
measure).

Pitfall 6—Using 10-folds cross-validation for model vali-
dation.

Description. There exists a variety of model validation techniques
that can be used to estimate the performance of a model. Hold-
out validation randomly splits a dataset into training and testing
corpora according to a given proportion (e.g., 30% holdout for test-
ing). Cross-validation extends the idea of holdout validation by
repeating the splitting process several times, through the random
partitioning of the data into k folds of roughly equal size where
each fold contains roughly the same proportions of the binary
classes [16, 68]. We then use the training corpus to construct an
analytical model, while the testing corpus is used to estimate the
model performance. While such cross-validation techniques are
commonly used inmany software analytical modelling efforts, more
powerful approaches like bootstrap validation that leverages aspects
of statistical inference [12, 20, 24, 66] have been rarely explored in
software engineering research. Unlike cross-validation techniques,
a model is still trained using a bootstrap sample (i.e., a sample that is
randomly drawn with replacement from a dataset), and the model is
tested using the data points that do not appear in the bootstrap sam-
ple [11]. The process of resampling with replacement is repeated
several times (e.g., 100 repetitions). The key intuition is that the
relationship between a dataset and the theoretical population from
which it is derived is asymptotically equivalent to the relationship
between the bootstrap samples and the actual dataset.
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Figure 7: Model performance on unseen dataset versus
the performance estimates that are produced by the
25-repeated out-of-sample bootstrap, 100-repeated out-of-
sample bootstrap, 10-folds cross-validation, and 10x10-folds
cross-validation techniques.

Demonstration. To assess the impact of model validation tech-
niques, we examine the AUC performance estimates of defect mod-
els that are produced using the 25-repeated out-of-sample bootstrap,
100-repeated out-of-sample bootstrap, 10-folds cross-validation
(most-commonly used technique nowadays) and 10x10-folds cross-
validation. Our prior work [76] shows that cross-validation is sus-
ceptible to producing unstable performance estimates for datasets
with low EPV values (i.e., EPV < 3). Events Per Variable (EPV) [53,
76] is the ratio of the number of occurrences of the least frequently
occurring class of the dependent variable (i.e., the events) to the
number of software metrics that are used to construct the model
(i.e., the variables).

We split the running-example dataset into two subsamples, i.e., a
subsampled dataset with an EPV of 3 for applying the model valida-
tion techniques and another dataset for measuring the performance
of unseen dataset (i.e, ground-truth). To generate performance esti-
mates, we apply the 4 different model validation techniques using
the subsampled dataset. To generate the performance for the unseen
dataset, we train a logistic regression model using the subsampled
dataset, and compute the performance of the unseen dataset.

We find that the out-of-sample bootstrap validation technique
produces the most accurate and most stable performance estimates
for datasets with low EPV values [76]. Figure 7 shows that the
unseen performance is 0.77, while the performance estimates are
0.76, 0.76, 0.80, and 0.81 for the 25-repeated out-of-sample bootstrap,
100-repeated out-of-sample bootstrap, 10-folds cross-validation,
and 10x10-folds cross-validation techniques, respectively.
Avoidance Strategy. One should avoid using the 10-folds and
10x10 folds validation techniques (even though they have been
used, and unfortunately continue to be used extensively in litera-
ture), but instead, opt to use the out-of-sample bootstrap validation
technique, especially, for datasets with EPV < 3. Such datasets are
commonly present in the literature [76]. It is worth noting that the
computational cost of the 100-repeated out-of-sample bootstrap val-
idation is the same as the 10x10-folds cross-validation (i.e., it took
25 seconds to build the 100 logistic regression models of Figure 5).
Finally, the EPV values of datasets must be reported, especially
when the used datasets are not shared.
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3.4 Model Interpretation

Pitfall 7—Using ANOVA Type-I when interpreting a
model.

Description. The Analysis of Variance (ANOVA) is a statistical
test that examines the importance of two or more software metrics
on the outcome (e.g., defect-proneness). While ANOVA Type-I is
one of the most commonly-used interpretation techniques and
the default interpretation technique for a regression model in R,
other types of ANOVA (e.g., Type-II) have been rarely used in
software engineering literature [28]. Moreover, the conclusions of
analytical models must be insensitive to the model specification—
i.e., conclusions should not rely on the ordering of metrics in a
model specification. However, in some instances, conclusions may
change by simply rearranging the ordering of metrics in a model’s
specification.
Demonstration. To assess the impact of the types of the ANOVA
techniques and their sensitivity of model specification, we examine
the importance scores of logistic regression models that are pro-
duced by ANOVA Type-I and Type-II. According to a correlation
analysis of Figure 3, we construct two different logistic regression
models using 9 non-correlated metrics with different model specifi-
cations:

– (M1) one model where the TLOC metric appears at the first
position and

– (M2) another model where the TLOC metric appears at the
last position.

Then, we apply an ANOVA Type-I test using the implementation
of the anova function that is provided by the stats R package, and
an ANOVA Type-II test using the implementation of the Anova
function that is provided by the car R package. We then examine
the importance scores of the TLOC metric from the two different
models and different types of ANOVA.

Importance scores are sensitive to the ordering of metrics in a
model specification when interpreting the model using ANOVA
Type-I, even if correlated metrics are removed. Table 5 shows that
TLOC is the highest ranked metric when TLOC is at the first position
of the logistic regression (M1). Conversely, TLOC is among the lowest
ranked metric when TLOC is at the last position of the logistic
regression model (M2).

Different variants of the ANOVA test produce different impor-
tance scores. Table 5 shows that the NOM_max metric is the most
important metric when the model is interpreted using the ANOVA
Type-I test for the logistic regression model (M2). On the other
hand, the TLOCmetric is the most important metric when the model
is interpreted using the ANOVA Type-II test for the logistic regres-
sion model (M2), and consistent with the ANOVA Type-II test for
the logistic regression model (M1).

The different ranking of the most important metrics has to do
with the different calculation of the ANOVA types. Type-I ANOVA
computes the importance of each metric in a sequential order.
Hence, Type-I attributes as much variance as it can to the first
metric in a model’s specification before attributing residual vari-
ance to the second metric in the model’s specification. Thus, the

Table 5: The percentage of the importance scores of two dif-
ferent model specifications for each of the two logistic re-
gression models.

M1 M2
Metrics Type 1 Type 2 Type 1 Type 2
TLOC 76% 22% 6% 22%
PAR_max 7% 21% 10% 21%
FOUT_max 8% 20% 28% 20%
NOI 5% 20% 6% 20%
NOF_max 4% 12% 5% 12%
NOM_max 0% 2% 33% 2%
ACD 0% 1% 5% 1%
NSF_max 0% 1% 5% 1%
NSM_max 0% 0% 2% 0%

importance (i.e., produced ranking) of metrics is dependent on the
ordering of metrics in the model specification. On the other hand,
the calculation of Type-II is equivalent to the calculation of Type-I
where a metric under examination appears at the last position of
the model. The intuition is that Type-II is evaluated after all of the
other metrics have been accounted for.
Avoidance Strategy. This result and recent more rigorous analy-
sis [28] suggest that one must not use ANOVA Type-I (the default
in R), when testing hypotheses and developing analytical models.
Instead, ANOVA Type-II, which is independent to the ordering of
metrics in a model specification, should be used. ANOVA Type-III
should be used when dealing with models with interaction terms.
Furthermore, the exact specification of a defect model must be re-
ported and the exact type of an ANOVA test should be indicated
whenever an ANOVA analysis is performed.

Pitfall 8—Interpreting a model using the coefficients of
its variables.

Description. Software metrics often originate from different distri-
butions. For example, a total lines of code (TLOC) metric ranges from
0 to 50,000 TLOC, while a proportion of major developers (MDEV)
ranges from 0 to 1. The big difference of such distributions often
impact the coefficients of a regression model—e.g., the coefficients
of TLOC could be 0.001, while the coefficients of MDEV could be 10.
Interpreting coefficients from a regression model that is trained
using data with different distribution ranges and units is likely to
provide misleading conclusion—e.g., the MDEV metric is more im-
portant than TLOC, which is likely not true. Many novice modellers
face this pitfall.
Demonstration. To assess the impact of interpreting logistic re-
gression models using metric coefficients, we examine the coeffi-
cients and ANOVA Type-II importance scores of each of the metrics
using a model that is trained using the original dataset versus a
model that is trained using the scaled and centered dataset.

Irrespective of data transformation, the ANOVA Type-II test
always produced consistent test statistics. Table 6 shows that the
statistics of the ANOVA Type-II test are the same for models that
are trained using original data and scaled-and-centered data. On
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Table 6: The percentage of the importance scores of two
model specifications of a logistic regression model:

Model with Model with
original data scaled+centered data

Metrics Coefficients ANOVA Coefficients ANOVA
TLOC 0% 22% 25% 22%
PAR_max 10% 21% 12% 21%
FOUT_max 1% 20% 14% 20%
NOI -81% 20% -19% 20%
NOF_max -4% 12% -16% 12%
NOM_max 1% 2% 6% 2%
ACD -3% 1% -3% 1%
NSF_max 0% 1% 4% 1%
NSM_max 0% 0% -2% 0%

the other hand, coefficients are often impacted by data transforma-
tion. Table 6 shows that, when scaling and centering the data, the
percentage importance of the TLOC metric shifts from 0% to 25%.
Avoidance Strategy. The magnitude of the coefficients of regres-
sion models should not be interpreted. Alternatively (and prefer-
ably), more advanced interpretation techniques should be used
(e.g., an ANOVA Type-II/III test for logistic regression models, or a
variable importance analysis for random forest models).

4 CHALLENGES ABOUT DEFECT
MODELLING

In this section, we discuss some of the most notable challenges
that we faced while working with industrial partners on modelling
projects. Researchers must be careful about managing the expecta-
tions of practitioners by carefully discussing these challenges early
on. Such careful discussions ensure that industrial partners have a
broader view of findings and how to interpret them for their own
peculiar settings.

We do note that access to clean data for performing defect an-
alytics projects is a key challenge that often hinders progress in
such projects [73]. However, we do not delve into the “limited ac-
cess to good data” challenge in this paper due to space limitations.
There are also many other challenges that are well documented
elsewhere [4, 47, 70]. For this paper, we focus on challenges associ-
ated with defect modelling in particular and more specifically ones
that we faced working in prior industrial engagements.

Challenge 1—Using defect models to guide operational
decisions instead of simply predicting defects.

A common misunderstanding of studies that have a defect model
is that predicting defects is the main goal of such studies. Such a
misunderstanding often leads practitioners (and researchers in some
cases) to doubt the value of many published studies with defect
models, since practitioners might feel that the models are either
predicting well-known modules to be defective (i.e., providing little
practical value), or that the produced predictions are at a very high
level of granularity (e.g., file- or subsystem- vs method-level).

Instead, apart from being used for prediction, defect models are
especially essential for carefully examining phenomenas and hy-
potheses of interest in an effort to derive empirical theories and/or
to guide operational decisions surrounding software quality within
large corporations [3, 5, 22, 43, 45, 78]. The following are exam-
ples of such studies: Bird et al. [5] explore the risks of distributed
development, Bettenburg et al. [3] examine the impact of social
interaction on software quality, and recent work [43, 45, 78] exam-
ines best practices for code reviewing. While such studies examine
several metrics relative to defect proneness, the goal of such studies
is to identify actionable insights in order to predict bugs. Hence,
the use of statistical and machine learning models (e.g., logistic re-
gression, or random forest), that are interpretable, is more desirable
over black-box machine learning models like neural networks and
deep learners.

It is also worth noting that modelling defect-proneness or counts
might not always be the target of suchmodels. In particular, the goal
of models are often centred around quality with the definition of
what constitutes quality varying considerably across organizations
and even across products and teams within a single organization.
For instance, in one engagement [62], the concept of change risk
emerged as a very important concept that is worth modelling in-
stead of simply modelling defect-proneness—e.g., risk was defined
as any change that might lead to a schedule slippage.

Challenge 2—Replicating published studies in an indus-
trial setting.

While there is a large tendency in academic publications to
demonstrate that findings are generalizable, all too often practition-
ers are not too concerned about the generalization of a particular
finding [6, 7]. Instead, a major concern for practitioners is their
ability to easily adopt published approaches to their own context
(e.g., by replicating a particular study on their own project) [64].

Hence, the unavailability of well-documented modelling scripts
from published studies is often one of the biggest obstacle that
practitioners face when attempting to adopt published studies into
their own industrial setting. Such an obstacle is a much larger
concern that the availability of the datasets or the generality of
reported findings. Hence, we believe that efforts similar to the
PROMISE repository (which provides access to datasets) are needed
for the archival of scripts that are used in research studies. It is worth
noting that while data availability is not possible in many instances,
due to, for example NDA agreements, the restricted availability of
modelling scripts is hard to justify. Yet, nowadays, the scripts are
rarely offered.

5 CONCLUSIONS
In this paper, we demonstrate a collection of pitfalls in defect mod-
elling and discuss challenges about defect modelling. We wish to
emphasize that our work is not exhaustive. Instead, it simply docu-
ments the most common pitfalls and challenges that we faced as
part of several industrial engagements over the past decade.

Most importantly, we would like to emphasize that we do not
seek to claim the generality of our observations. Instead, the key
message of this paper is that there are some settings where such
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pitfalls can impact the results of defect models (as we demonstrated
using our simple running-example). Hence, it is of great importance
that practitioners and researchers are well aware of such pitfalls
and are on the lookout to avoid them in their work. We do provide
our R script online1 to assist practitioners and researchers that are
interested in studying and avoiding such pitfalls.

We wrap up this paper by highlighting three observations from
our industrial engagements in defect analytics projects:

– It is essential to manage the expectation of practitioners
early on about the benefits of the analytical modelling of
defect (e.g., its inability to demonstrate causal relationships).

– The absence of high-quality data to develop analytical mod-
els is too often the biggest challenge in starting a defect
modelling project in an industrial setting.

– The unavailability of well-documented modelling scripts
from most published studies is quite often the biggest ob-
stacle that practitioners face nowadays when attempting
to adopt published studies into their own industrial setting.
Such an obstacle is a much larger concern than the generality
of reported findings or even the availability of the datasets.
Hence, we believe that efforts similar to the PROMISE repos-
itory (which provides access to datasets) are needed for the
archival of scripts that are used in published studies.
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