
Revisiting the Impact of Classification Techniques

on the Performance of Defect Prediction Models

Baljinder Ghotra, Shane McIntosh, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada

{ghotra, mcintosh, ahmed}@cs.queensu.ca

Abstract—Defect prediction models help software quality as-
surance teams to effectively allocate their limited resources to the
most defect-prone software modules. A variety of classification
techniques have been used to build defect prediction models
ranging from simple (e.g., logistic regression) to advanced tech-
niques (e.g., Multivariate Adaptive Regression Splines (MARS)).
Surprisingly, recent research on the NASA dataset suggests that
the performance of a defect prediction model is not significantly
impacted by the classification technique that is used to train it.
However, the dataset that is used in the prior study is both: (a)
noisy, i.e., contains erroneous entries and (b) biased, i.e., only
contains software developed in one setting. Hence, we set out
to replicate this prior study in two experimental settings. First,
we apply the replicated procedure to the same (known-to-be
noisy) NASA dataset, where we derive similar results to the prior
study, i.e., the impact that classification techniques have appear
to be minimal. Next, we apply the replicated procedure to two
new datasets: (a) the cleaned version of the NASA dataset and
(b) the PROMISE dataset, which contains open source software
developed in a variety of settings (e.g., Apache, GNU). The results
in these new datasets show a clear, statistically distinct separation
of groups of techniques, i.e., the choice of classification technique
has an impact on the performance of defect prediction models.
Indeed, contrary to earlier research, our results suggest that some
classification techniques tend to produce defect prediction models
that outperform others.

I. INTRODUCTION

A disproportionate amount of the cost of developing soft-

ware is spent on maintenance [15]. Fixing defects is a central

software maintenance activity. However, before defects can

be fixed, they must be detected. Software Quality Assurance

(SQA) teams are dedicated to this task of defect detection.

Defect prediction models can be used to assist SQA teams

with defect detection. Broadly speaking, defect prediction

models are trained using software metrics (e.g., size and

complexity metrics) to predict whether software modules will

be defective or not in the future. Knowing which software

modules are likely to be defect-prone before a system has

been deployed allows practitioners to more efficiently and

effectively allocate SQA effort.

To perform defect prediction studies [21, 58], researchers

have explored the use of various classification techniques to

train defect prediction models [12, 34]. For example, in early

studies, researchers used simple techniques like logistic regres-

sion [2, 7, 47] and linear regression [24, 65] to train defect

prediction models. In more recent work, researchers have used

more advanced techniques like Multivariate Adaptive Regres-

sion Splines (MARS) [5, 27], Personalized Change Classifi-

cation (PCC) [27], and Logistic Model Trees (LMT) [51, 53].

Ensemble methods that combine different machine learning

techniques have also been explored [14, 61]. Moreover, re-

searchers have started to develop context-sensitive techniques

that are aware of the peculiarities of software defects [5, 35].

Despite recent advances in machine learning, studies sug-

gest that the classification technique used to train defect

prediction models has little impact on its performance [34,

38, 56]. For example, Lessmann et al. [34] conducted a

study comparing the performance of 22 different classification

techniques on the NASA corpus. Their results show that the

performance of 17 of the 22 classification techniques are

statistically indistinguishable from each other.

However, the NASA corpus that was used in the prior work

is noisy and biased. Indeed, Shepperd et al. [57] found that the

original NASA corpus contains several erroneous and implau-

sible entries. This noise in the studied corpus may have led

prior studies to draw incorrect conclusions. Furthermore, the

studied corpus only contains proprietary software developed

within one organization. Software developed in a different

setting (e.g., open source) may lead to different conclusions.

Therefore, we set out to revisit the findings of Lessmann

et al. [34] both in the original, known-to-be noisy setting

(Section IV), and in two additional settings (Section V). We

find that we can indeed replicate the initial results of Lessmann

et al. [34] when the procedure is reapplied to the known-

to-be noisy NASA corpus. On the other hand, the results of

our experiment in two additional settings seem to contradict

Lessmann et al.’s early results. We structure our extended

replication by addressing the following two research questions:

RQ1 Do the defect prediction models of different clas-

sification techniques still perform similarly when

trained using the cleaned NASA corpus?

No, we find a clear separation of classification tech-

niques when models are trained using the cleaned NASA

corpus [57]. The Scott-Knott statistical test [26] groups

the classification techniques into four statistically dis-

tinct ranks. Our results show that models trained using

LMT and statistical techniques like Simple Logistic

tend to outperform models trained using clustering,

rule-based, Support Vector Machines (SVM), nearest

neighbour, and neural network techniques.



RQ2 Do the defect prediction models of different

classification techniques still perform similarly when

trained using a corpus of open source systems?

No, Scott-Knott test results show that, similar to RQ1,

classification techniques like LMT, Simple Logistic

(and their combination with ensemble methods) tend

to produce defect prediction models that outperform

models trained using clustering, rule-based, SVM,

nearest neighbour, and neural network techniques.

In summary, contrary to prior results, our study shows that

there are statistically significant differences in the performance

of defect prediction models that are trained using different

classification techniques. We observe that classification tech-

niques are grouped into largely consistently ranks in both

the cleaned NASA and PROMISE corpora. Indeed, some

techniques tend to produce defect prediction models that out-

perform models that are trained using other techniques. Given

the ease of access to such advanced techniques nowadays in

the toolboxes of researchers (e.g., R and Weka), we encourage

researchers to explore the various techniques available in such

toolboxes instead of relying on prior findings to guide their

choice of classification technique.

Paper Organization

The remainder of the paper is organized as follows. Sec-

tion II describes the classification techniques that we used in

our study. Section III discusses the design of our case study.

Section IV discusses the results of our replication study on the

original, known-to-be noisy NASA corpus, while Section V

presents the results of our two research questions. Section VI

discloses the threats to the validity of our study. Section VII

surveys related work. Finally, Section VIII draws conclusions

and describes promising directions for future work.

II. CLASSIFICATION TECHNIQUES

In this section, we briefly explain the eight families of

classification techniques that are used in our study. Table I

provides an overview of each technique.

A. Statistical Techniques

Statistical techniques are based on a probability model [31].

These techniques are used to find patterns in datasets and build

diverse predictive models [4]. Instead of simple classification,

statistical techniques report the probability of an instance

belonging to each individual class (i.e., defective or not) [31].

In this paper, we study the Naive Bayes and Simple Logistic

statistical techniques. Naive Bayes is a probability-based tech-

nique that assumes that all of the predictors are independent of

each other. Simple Logistic is a generalized linear regression

model that uses a logit link function.

B. Clustering Techniques

Clustering techniques divide the training data into small

groups such that the similarity within groups is more than

across the groups [23]. Clustering techniques use distance and

similarity measures to find the similarity between two objects

to group them together.

In this paper, we study the K-means and Expectation Max-

imization clustering techniques. K-means divides the data into

k clusters and centroids are chosen randomly in an iterative

manner [22]. The value of k impacts the performance of the

technique [33]. We experiment with four different k values

(i.e., 2, 3, 4, and 5), and found that k = 2 tends to perform

the best. We also study the Expectation Maximization [16]

(EM) technique, which automatically splits a dataset into an

(approximately) optimal number of clusters [5].

C. Rule-Based Techniques

Rule-based techniques transcribe decision trees using a set

of rules for classification. The transcription is performed by

creating a separate rule for each individual path starting from

the root and ending at each leaf of the decision tree [31].

In this paper, we study the Repeated Incremental Pruning

to Produce Error Reduction (Ripper) and RIpple DOwn Rules

(Ridor) rule-based techniques. Ripper [10] is an inductive rule-

based technique that creates series of rules with pruning to

remove rules that lead to lower classification performance [33].

Ridor [18] is a rule-based decision tree technique where

the decision tree consists of four nodes: a classification, a

predicate function, a true branch, and a false branch. Each

instance of the testing data is pushed down the tree, following

the true and false branches at each node using predicate

functions. The final outcome is given by the majority class

of the leaf node [33].

D. Neural Networks

Neural networks are systems that change their structure

according to the flow of information through the network

during training [59]. Neural network techniques are repeatedly

run on training instances to find a classification vector that is

correct for each training set [31].

In this paper, we study the Radial Basis Functions neu-

ral network technique. Radial Basis Functions [8] consists

of three different layers: an input layer (which consists of

independent variables), output layer (which consists of the

dependent variable) and the layer which connects the input

and output layer to build a model [47].

E. Nearest Neighbour

Nearest neighbour (a.k.a., lazy-learning) techniques are

another category of statistical techniques. Nearest neighbour

learners take more time in the testing phase, while taking less

time than techniques like decision trees, neural networks, and

Bayesian networks during the training phase [31].

In this paper, we study the KNN nearest neighbour tech-

nique. KNN [11] considers the K most similar training ex-

amples to classify an instance. KNN computes the Euclidean

distance to measure the distance between instances [34]. We

find K = 8 to be the best-performing K value of the five

tested options (i.e., 2, 4, 6, 8, and 16).



TABLE I
OVERVIEW OF THE STUDIED CLASSIFICATION TECHNIQUES.

Family Technique Abbreviation

Statistical
Techniques

Naive Bayes NB
Simple Logistic SL

Clustering
Techniques

K-means K-means
Expectation
Maximization

EM

Rule-Based
Techniques

Repeated
Incremental
Pruning to
Produce Error
Reduction

Ripper

Ripple Down
Rules

Ridor

Neural Networks Radial Basis
Functions

RBFs

Nearest
Neighbour

K-Nearest
Neighbour

KNN

Support Vector
Machines

Sequential Mini-
mal Optimization

SMO

Decision Trees

J48 J48
Logistic
Model Tree
using Logistic
Regression

LMT

Ensemble
Methods using
LMT, NB, SL,
SMO, and J48

Bagging Bag+LMT,
Bag+NB,
Bag+SL,
Bag+SMO
and Bag+J48

Adaboost Ad+LMT,
Ad+NB, Ad+SL,
Ad+SMO and
Ad+J48

Rotation Forest RF+LMT,
RF+NB, RF+SL,
RF+SMO, and
RF+J48

Random
Subspace

Rsub+LMT,
Rsub+NB,
Rsub+SL,
Rsub+SMO,
and Rsub+J48

F. Support Vector Machines

Support Vector Machines (SVMs) use a hyperplane to

separate two classes (i.e., defective or not). The number of

features in the training data does not affect the complexity of

an SVM model, which makes SVM a good fit for experiments

where there are fewer training instances than features [31].

In this paper, we study the Sequential Minimal Optimization

(SMO) SVM technique. SMO analytically solves the large

Quadratic Programming (QP) optimization problem which

occurs in SVM training by dividing the problem into a series

of possible QP problems [49].

G. Decision Trees

Decision trees use feature values for the classification of

instances. A feature in an instance that has to be classified

is represented by each node of the decision tree, while the

assumption values taken by each node is represented by

each branch. The classification of instances is performed by

following a path through the tree from root to leaf nodes by

checking feature values against rules at each node. The root

node is the node that best divides the training data [31].

In this paper, we study the Logistic Model Tree (LMT)

and J48 decision tree techniques. Similar to model trees (i.e.,

regression trees with regression functions), LMT [32] is a

decision tree like structure with logistic regression functions

at the leaves [32]. J48 [50] is a C4.5-based technique that uses

information entropy to build the decision tree. At each node of

the decision tree, a rule is chosen by C4.5 such that it divides

the set of training samples into subsets effectively [54].

H. Ensemble Methods

Ensemble methods combine different base learners together

to solve one problem. Models trained using ensemble methods

typically generalize better than those trained using the stand-

alone techniques [64].

In this paper, we study the Bagging, Adaboost, Rotation

Forest, and Random Subspace ensemble methods. Bagging

(Bootstrap Aggregating) [6] is designed to improve the sta-

bility and accuracy of machine learning algorithms. Bagging

predicts an outcome multiple times from different training sets

that are combined together either by uniform averaging or with

voting [61]. Adaboost [17] performs multiple iterations each

time with different example weights, and gives a final pre-

diction through combined voting of techniques [61]. Rotation

Forest [52] applies a feature extraction method to subsets of

instances to reconstruct a full feature set for each technique in

the ensemble. Random Subspace [25] creates a random forest

of multiple decision trees using a random selection attribute

approach. A subset of instances is chosen randomly from the

selected attributes and assigned to the learning technique [61].

III. STUDY DESIGN

In this section, we discuss the studied corpora, and our

approach to constructing and evaluating defect prediction

models to address our research questions. Figure 1 provides

an overview of the steps in our approach.

A. Studied Corpora

In order to replicate the case study of Lessmann et al. [34],

we use the original, known-to-be noisy NASA corpus. More-

over, in order to perform our extended study, we use the

cleaned version of the NASA corpus as provided by Shepperd

et al. [57] (RQ1), and the PROMISE corpus 1 (RQ2). An

overview of the studied corpora is shown in Table II. The

studied corpora that we use in our study are available online,

enabling further replication (and extension) of our results.

1https://code.google.com/p/promisedata/

https://code.google.com/p/promisedata/


(Section IV)
Noisy NASA

corpus

(RQ1)
Clean NASA

corpus

(RQ2)
PROMISE

corpus

(B)
Fold

Generation 

Training
corpus

Testing
corpus

90%

10%

(C)
Model 

Construction 

Clustering
models

(D)
Model

Evaluation 

Repeat 100 times
(10 x 10-fold cross-validation)

Results

(A)
Studied
Corpora

Other models 
from Table I

Statistical
models

...

Fig. 1. An overview of our model construction and evaluation approach.

TABLE II
AN OVERVIEW OF THE STUDIED CORPORA.

Corpus Dataset No. of Modules Defective Defective (%)

N
o

is
y

N
A

S
A

(S
ec

ti
o

n
IV

) CM1 505 48 9.5
JM1 10,878 2,102 19.3
KC1 2,107 325 15.4
KC3 458 43 9.3
KC4 125 61 48.8

MW1 403 31 7.6
PC1 1,107 76 6.8
PC2 5,589 23 0.4
PC3 1,563 160 10.2
PC4 1,458 178 12.2

C
le

an
N

A
S

A
(R

Q
1

) CM1 327 42 12.8
JM1 7,720 1,612 20.8
KC1 1,162 294 25.3
KC3 194 36 18.5

MW1 250 25 10
PC1 679 55 8.1
PC2 722 16 2.2
PC3 1,053 130 12.3
PC4 1,270 176 13.8

P
R

O
M

IS
E

(R
Q

2
)

Ant 1.7 745 166 22.3
Camel 1.6 965 188 19.5

Ivy 1.4 241 16 6.6
Jedit 4 306 75 24.5

Log4j 1 135 34 25.2
Lucene 2.4 340 203 59.7

Poi 3 442 281 63.6
Tomcat 6 858 77 8.9
Xalan 2.6 885 441 46.4

Xerces 1.3 453 69 15.2

B. Fold Generation

The defect prediction models are trained using the 10-fold

cross-validation approach, which divides an input dataset into

10 folds of equal size. Of the 10 folds, 9 are allocated to the

training corpus (90%), and 1 fold is set aside for testing (10%).

The training corpus is used to train the models using different

classification techniques, whereas the testing corpus is used

to analyze model performance. This process is repeated ten

times, using each fold as the testing corpus once. To further

validate our results, we repeat the entire 10-fold process ten

times (100 total iterations).

C. Model Construction

In order to train our defect prediction models, we use

implementations of the classification techniques of Section II

provided by the WEKA [62] machine learning toolkit.

The process of training defect prediction models using

clustering techniques is different than for the other techniques.

Specifically, we adopt the approach of Bettenburg et al. in

order to train models using clustering techniques [5]. The

training corpus is divided into clusters and a classification

model is trained within each cluster using the Naive Bayes

technique. To determine which model to use in order to

classify any particular row in the testing corpus, we use the

Euclidean distance between each testing data point and the

various clusters. The model of the cluster that is the minimum

distance away is used to predict the final outcome for that row.

D. Model Evaluation

To compare the performance of defect prediction models,

we use the Area Under the receiver operating characteristic

Curve (AUC) [63], which plots the false positive rate (i.e.,
FP

FP+TN
) against the true positive rate (i.e., TP

FN+TP
). Larger

AUC values indicate better performance. AUC values above

0.5 indicate that the model outperforms random guessing.

Scott-Knott test. We use the Scott-Knott test [26] to group

classification techniques into statistically distinct ranks (α =

0.05). The Scott-Knott test uses hierarchical cluster analysis

to partition the classification techniques into ranks. The Scott-

Knott test starts by dividing the classification techniques into

two ranks on the basis of mean AUC values (i.e., mean

AUC of ten 10-fold runs for each classification technique). If

the divided ranks are statistically significantly different, then

Scott-Knott recursively executes again within each rank to

further divide the ranks. The test terminates when ranks can

no longer be divided into statistically distinct ranks [29, 39].

We used the Scott-Knott test to overcome the confounding

issue of overlapping groups that are produced by several other

post hoc tests, such as Nemenyi’s test [13], which was used by

the original study. Nemenyi’s test produces overlapping groups

of classification techniques, implying that there exists no



Scott-Knott
test (2nd run)

Project 2

Scott-Knott
test (1st run)

...Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

10x

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

10x

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

10x

T2, T5, T7

TechniqueRank

1

T1, T102

T3, T4, T63

T8, T94

T2, T5

TechniqueRank

1

T1, T7, T102

T3, T4, T63

T8, T94

Project 1

Scott-Knott
test (1st run)

...Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

10x

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

10x

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

10x

T3, T7, T8

TechniqueRank

1

T2, T102

T1, T4, T63

T5, T94

Project M

Scott-Knott
test (1st run)

...Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

Mean AUC 
value

Technique 1

10x

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

Mean AUC 
value

Technique 2

10x

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

Mean AUC 
value

Technique N

10x

T2, T10

TechniqueRank

1

T1, T7, T82

T3, T4, T63

T5, T94

...

Fig. 2. Our approach for ranking classification techniques using a double Scott-Knott test.

TABLE III
METRICS USED TO TRAIN DEFECT PREDICTION MODELS IN THE NASA CORPUS.

Category Metric Definition Rationale

McCabe
Software Metrics

cyclomatic complexity, cyclomatic density,
design complexity essential complexity and
pathological complexity

Measures of the branching
complexity of the software
module.

Complex software modules may
be more prone to defects [36].

Halstead
attributes

content, difficulty, effort, error est, length, level,
prog time, volume, num operands, num operators,
num unique operands, num unique operators

Estimates of the complexity of
reading a software module based
on the vocabulary used (e.g.,
number of operators and
operands).

Software modules that are
complex to understand may
increase the likelihood of
incorrect maintenance, and thus,
increase defect proneness [28].

LOC counts LOC total, LOC blank, LOC comment,
LOC code and comment, LOC executable and
Number of lines

Measures of the size of a software
module.

Larger software modules may be
difficult to understand entirely,
and thus, may be more prone to
defects [30].

Miscellaneous branch count, call pairs, condition count,
decision count, decision density, design density,
edge count, essential density, parameter count,
maintenance severity, modified condition count,
multiple condition count, global data density,
global data complexity, percent comments,
normalized cyclomatic complexity and node count

Metrics that are not well defined
metrics in the MDP database [37].

N/A

statistically significant difference among the defect prediction

models trained using many different classification techniques.

To address our research questions, Figure 2 provides an

overview of our Scott-Knott test approach. To find statistically

distinct ranks of classification techniques, we performed a

double Scott-Knott test. The first run of the Scott-Knott test

is run over each individual project. We input the 10 mean

AUC values of the 10 different 10-fold cross-validation runs

of each classification technique to the Scott-Knott test to

find the statistical distinct ranks of classification techniques

within each project. In the second run, for each classification

technique, we have ten different Scott-Knott ranks (i.e., one

from each project), which we input into another Scott-Knott

test to find the final statistically distinct ranks of techniques.

Our approach of using a double Scott-Knott test ensures that

our analysis recognizes techniques that perform well across

projects, independent of their actual AUC value. For example,

it might be the case that one classification technique achieves

an AUC of 0.5 for project A and an AUC of 0.9 for project

B. At first glance, it might seem that such a technique is not a

strong performing technique. However, if an AUC of 0.5 is the

best AUC value of the studied techniques for project A, and



TABLE IV
THE STUDIED TECHNIQUES RANKED ACCORDING TO OUR DOUBLE

SCOTT-KNOTT TEST ON THE KNOWN-TO-BE NOISY NASA CORPUS.

Overall

Rank

Classification

Technique

Median

Rank

Average

Rank

Standard

Deviation

1

Ad+NB, EM, RBFs,
Ad+SL, RF+NB,
Rsub+NB, Ad+SMO,
K-means, KNN, NB,
SL, Bag+NB, Rsub+SL,
Ad+J48, Rsub+J48,
Ad+LMT, LMT, RF+SL,
Bag+SL, RF+J48,
Rsub+LMT,Bag+J48,
RF+LMT and Bag+LMT

3.2 3.03 0.97

2

Rsub+SMO, SMO,
RF+SMO, Ridor,
Bag+SMO, Ripper
and J48

8 7.91 1.04

AUC of 0.9 is the best AUC for project B, then that particular

classification technique is the top-performing technique. The

first Scott-Knott test creates the project-level ranking for each

technique using the AUC values, then the second Scott-Knott

test creates a global ranking of techniques using their project-

level rankings.

IV. REPLICATION STUDY

In this section, we discuss the results of our replication study

on the known-to-be noisy NASA corpus. The NASA corpus

provides several software metrics that can be used to predict

defect-prone modules. Table III describes the metrics present

in the NASA corpus.

Results. Similar to prior work, our replication using the

known-to-be noisy NASA data yields a pattern of two

statistically distinct groups of classification techniques. Ta-

ble IV shows that 24 of the 31 studied classification techniques

appear in the first Scott-Knott group. Figure 3 shows the AUC

values for each of the studied techniques.

Figure 4 highlights the importance of our double Scott-

Knott approach. Looking at project JM1 and project PC4 (or

KC4), many of the best techniques for project JM1 perform

worse than some of the worst-performing techniques on the

PC4 (or KC4) project. Our double Scott-Knott approach is

able to account for such peculiarities by considering the rank

in the second Scott-Knott iteration.

Our replication yields a similar pattern of classification

techniques as was found in the previous NASA study, i.e.,

24 of the 31 studied techniques end up in the same statis-

tical group. Most classification techniques produce defect

prediction models that have statistically indistinguishable

performance from one another.

V. EXTENDED CASE STUDY

In this section, we present the results of the extended

Lessmann et al. [34] replication with respect to our two

research questions. Generally speaking, our goal is to study

whether the previously reported results of Lessmann et al. [34]

(and confirmed by us in Section IV) still hold in two new

●

●

●

● ●

●

●● ●

●●

●

● ●

● ●

●

●● ●

●

●●

●●

● ●

●

●●

●●

Ad+J48
Ad+LMT

Ad+NB
Ad+SL

Ad+SMO
Bag+J48

Bag+LMT
Bag+NB
Bag+SL

Bag+SMO
EM
J48

K−means
KNN
LMT

NB
RBFs

RF+J48
RF+LMT

RF+NB
RF+SL

RF+SMO
Ridor

Ripper
Rsub+J48

Rsub+LMT
Rsub+NB
Rsub+SL

Rsub+SMO
SL

SMO

0
.5

0
.6

0
.7

0
.8

0
.9

Fig. 3. AUC values for the studied classification techniques on the known-
to-be noisy NASA corpus.

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●

●
●

●

●●

●

●

●

C
M

1

J
M

1

K
C

1

K
C

3

K
C

4

M
W

1

P
C

1

P
C

2

P
C

3

P
C

4

0.5

0.6

0.7

0.8

0.9

Fig. 4. AUC values of all classification techniques that are applied to the
different projects in the known-to-be noisy NASA corpus.

experimental settings, which we formulate as our two research

questions. Below, we discuss our approach for addressing each

research question and the results.



TABLE V
DIFFERENCES IN THE NOISY AND CLEAN NASA CORPORA.

Dataset Instances before

cleaning

Instances after

cleaning

Instances

removed by

cleaning

CM1 505 327 178

JM1 10,878 7,720 3,158

KC1 2,107 1,162 945

KC3 458 194 264

MW1 403 250 153

PC1 1,107 679 428

PC2 5,589 722 4,867

PC3 1,563 1,053 510

PC4 1,458 1,270 188

TABLE VI
CLEANING CRITERIA APPLIED TO THE NOISY NASA CORPUS BY

SHEPPERD et al. [57].

Criterion Data Quality Category Explanation

1 Identical cases Instances that have identical
values for all metrics including
class label.

2 Inconsistent cases Instances that satisfy all
conditions of Case 1, but where
class labels differ.

3 Cases with missing
values

Instances that contain one or more
missing observations.

4 Cases with conflicting
feature values

Instances that have 2 or more
metric values that violate some
referential integrity constraint. For
example, LOC TOTAL is less
than Commented LOC. However,
Commented LOC is a subset of
LOC TOTAL.

5 Cases with implausible
values

Instances that violate some
integrity constraint. For example,
value of LOC=1.1.

(RQ1) Do the defect prediction models of different classifica-

tion techniques still perform similarly when trained using the

cleaned NASA corpus?

Approach. Our extended study starts with using the cleaned

version [57] of nine of the NASA projects that were used

by Lessmann et al. [34]. The purpose of using the cleaned

version is to find whether the removal of noisy instances

has an impact on the performance of defect prediction mod-

els produced using the studied classification techniques. An

overview of the cleaned version of the NASA dataset is shown

in Table II. We are only able to use 9 of the 10 NASA projects

because the KC4 dataset does not contain any instances after

cleaning. The differences in the noisy and clean NASA corpora

are highlighted in Table V. The preprocessing criteria that

Shepperd et al. [57] applied to the noisy NASA corpus are

presented in Table VI.

Results. We find four statistically distinct ranks of classi-

fication techniques when models are trained using datasets

from the cleaned NASA corpus. Table VII shows that there is

a clear separation of classification techniques into four Scott-

Knott ranks in the cleaned NASA corpus. This is in stark

contrast with the two groups of classification techniques that

Lessmann et al. [34] found (and that Section IV confirmed).

The techniques are divided into four distinct ranks in which

TABLE VII
THE STUDIED TECHNIQUES RANKED ACCORDING TO THE DOUBLE

SCOTT-KNOTT TEST ON THE CLEAN NASA CORPUS.

Overall

Rank

Classification

Technique

Median

Rank

Average

Rank

Standard

Deviation

1

Bag+J48, LMT, RF+J48,
SL, Bag+SL, RF+SL,
Rsub+SL, RF+LMT,
Rsub+LMT, and
Bag+LMT

1.22 1.24 0.15

2

RBFs, Ad+NB, KNN,
Ad+SL, RF+NB,
Rsub+NB, NB, Bag+NB,
Ad+SMO, Ad+J48,
Ad+LMT, and
Rsub+J48

2.61 2.62 0.51

3 Ripper, EM, J48, and K-
means

5.72 5.58 0.67

4

Rsub+SMO, RF+SMO,
SMO, Ridor, and
Bag+SMO

7.66 7.4 0.42

ensemble techniques (i.e., RF+a base learner), decision trees

(i.e., LMT), statistical techniques (i.e., Simple Logistic and

Naive Bayes), neural networks (i.e., RBFs), and nearest neigh-

bour (i.e., KNN) outperformed models trained using rule-based

techniques (i.e., Ripper and Ridor), clustering techniques (i.e.,

K-means and EM) and SVM (i.e., SMO). Our results in

Table VII show that the prediction models trained using

ensemble techniques (i.e., RF+a base learner), decision trees

(i.e., LMT), and statistical techniques (i.e., simple logistic)

also outperformed models trained using nearest neighbour

(i.e., KNN) and neural networks (i.e., RBFs). Furthermore, we

find that prediction models trained using the combination of

LMT and simple logistic with ensemble methods like bagging,

rotation forest, and random subspace produce defect prediction

models that perform the best (i.e., achieve the highest average

Scott-Knott rank) when compared to other combinations, i.e,

Naive Bayes, J48, and SMO with ensemble methods.

Since four statistically distinct ranks of classification

techniques emerge, we conclude that the used classifi-

cation technique has a statistically significant impact on

the performance of defect prediction models trained using

the datasets from the cleaned NASA corpus.

(RQ2) Do the defect prediction models of different classifica-

tion techniques still perform similarly when trained using a

corpus of open source systems?

Approach. In an effort to further generalize our extended

study results, we replicate the Lessmann et al. study [34]

using another ten datasets from the PROMISE corpus. The

selected PROMISE datasets were used in several previous

studies [47, 48]. The PROMISE datasets provide different

metrics than the NASA corpus. Table II provides an overview

of the PROMISE corpus. Table VIII describes the metrics

provided by the PROMISE corpus.

Results. We find that, similar to our results of RQ1, a

pattern of four statistically distinct ranks of classification

techniques emerges in the PROMISE corpus as well.



TABLE VIII
METRICS USED TO TRAIN DEFECT PREDICTION MODELS IN THE PROMISE CORPUS.

Category Metric Definition Rationale

Size loc Measures of the size of a software module. Larger software modules may be difficult to
understand entirely, and thus, may be more prone
to defects [30].

CK wmc, dit, cbo, noc, lcom,
rfc, ic, cbm, amc, lcom3

Measures of the complexity of a class
within an object-oriented system design.

More complex classes may be more prone to
defects [19].

McCabe’s
Complexity

max cc and avg cc Measures of the branching complexity of
the software module.

Complex software modules may be more prone to
defects [36].

QMOOD dam, moa, mfa, cam, npm Measures of the behavioural and structural
design properties of classes, objects, and
the relations between them [55].

Higher QMOOD metrics imply higher class quality.
On the other hand, lower QMOOD metrics imply
lower class quality 2, which may lead to defects.

Martin’s metrics ca, ce Measures of the relationship between
software components, including calls as
well as number of instances [45].

Higher values indicate low encapsulation,
reusability, and maintainability [45], which may
lead to defects.

●

●

●●

●

●

●

●

●●

●

●

●

Ad+J48
Ad+LMT

Ad+NB
Ad+SL

Ad+SMO
Bag+J48

Bag+LMT
Bag+NB
Bag+SL

Bag+SMO
EM
J48

K−means
KNN
LMT

NB
RBFs

RF+J48
RF+LMT

RF+NB
RF+SL

RF+SMO
Ridor

Ripper
Rsub+J48

Rsub+LMT
Rsub+NB
Rsub+SL

Rsub+SMO
SL

SMO

0
.5

0
.6

0
.7

0
.8

Fig. 5. AUC values of the classification techniques on the PROMISE corpus.

Table IX shows the four statistically distinct ranks generated

by applying the double Scott-Knott test.

The results show that prediction models trained using de-

cision trees, statistical techniques, K-nearest neighbour, and

neural networks outperform models trained using clustering

techniques, rule-based techniques, and SVM. Furthermore, we

find that when ensemble methods are used to combine LMT

and simple logistic, the best performance is achieved when

compared to the other classification techniques. Figure 5 shows

the mean AUC values of techniques on the PROMISE dataset.

We observe that the mean AUC value of the best (RF+LMT)

and the worst (RF+SMO) classification techniques in the

PROMISE corpus have higher values when compared to best

(Bag+LMT) and worst (Rsub+SMO) classification techniques

in the cleaned NASA corpus.

Figure 6 again emphasizes the importance of using the

●

●

A
n
t

C
a
m

e
l

Iv
y

J
e
d
it

L
o
g
4
j

L
u
c
e
n
e

P
o
i

T
o
m

c
a
t

X
a
la

n

X
e
rc

e
s

0.5

0.6

0.7

0.8

Fig. 6. AUC values of all classification techniques that are applied to the
different projects in the PROMISE corpus.

double Scott-Knott approach in our analysis. The best per-

forming technique for the Camel project is well below the

worst-performing technique for other projects, such as Poi

and Xalan.

We observed some common patterns in the ranks of both the

NASA and PROMISE corpora. Our results shows that LMT

when combined with ensemble methods (i.e., bagging, random

subspace, and rotation forest) achieve top-rank performance in

both corpora. Also, ensembles of simple logistic along with

stand-alone LMT and simple logistic appear in the top Scott-

Knott rank in both corpora. Furthermore, clustering techniques

(i.e., EM and K-means), rule-based techniques (Ripper and

Ridor), and SVM (i.e., SMO) appear in the lowest Scott-Knott

rank in both corpora.



TABLE IX
THE STUDIED TECHNIQUES RANKED ACCORDING TO THE DOUBLE

SCOTT-KNOTT TEST ON THE PROMISE CORPUS.

Overall

Rank

Classification

Technique

Median

Rank

Average

Rank

Standard

Deviation

1

Rsub+J48, SL, Rsub+SL,
Bag+SL, LMT, RF+SL,
RF+J48, Bag+LMT,
Rsub+LMT, and RF+LMT

1.7 1.63 0.33

2

RBFs, Bag+J48, Ad+SL,
KNN, RF+NB, Ad+LMT,
NB, Rsub+NB, and
Bag+NB

2.8 2.84 0.41

3

Ripper, EM, J48, Ad+NB,
Bag+SMO, Ad+J48,
Ad+SMO, and K-means

5.1 5.13 0.46

4
RF+SMO, Ridor,
SMO,and Rsub+SMO

6.5 6.45 0.25

Complementing our results of the cleaned NASA study, we

again find four statistically distinct ranks of classification

techniques, which leads us to conclude that the used clas-

sification technique has a statistically significant impact

on the performance of defect prediction models trained

using the datasets of the PROMISE corpus as well.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our

case study.

A. Construct Validity

The datasets that we analyze are part of two corpora (i.e.,

NASA and PROMISE), which each provide a different set of

predictor metrics. Since the metrics vary, this is another point

of variation between the studied corpora, which may explain

some of the differences that we observe when drawing compar-

isons across the corpora. Nevertheless, our main findings still

hold, i.e., there are statistically significant differences between

the performance of defect prediction models trained using

various classification techniques within the cleaned NASA

dataset and the PROMISE one as well.

B. Internal Validity

The tuning of the parameters of the K-means (k = 2) and

KNN (K = 8) techniques that we used may influence our

results. For example, this tuning may impact the performance

of models trained using these classification techniques when

compared to default parameters. To combat this bias, we

experimented with several configurations (k = 2, 3, 4, and

5; and K = 2, 4, 6, 8, and 16) that achieved similar results.

Nonetheless, a more carefully controlled experiment of the

influence of configuration parameters is needed.

C. External Validity

We performed our experiments on 29 datasets, which may

threaten the generalization of the results of our study. However,

these datasets are part of the popular NASA and PROMISE

corpora, which has been used by several studies that bench-

mark defect prediction models in the past [34, 47, 48].

The consistency of our results are based on two studied

data corpora. The results may vary in other corpora that we

have not analyzed. On the other hand, the two corpora contain

software systems that are developed in both proprietary and

open source paradigms, which helps to counter potential bias.

Nonetheless, additional replication studies may prove fruitful.

VII. RELATED WORK

In order to train defect prediction models, defective soft-

ware modules are predicted using software metrics, such as

object-oriented metrics (e.g., Chidamber and Kemerer (CK)

metrics [9]), process metrics [3, 24, 40, 42] (e.g., number of

changes, recent activity), product metrics [20, 41, 43, 44, 60]

(e.g., lines of code and complexity), historical metrics [20, 46]

(e.g., code change), and structural metrics [1] (e.g., cyclomatic

complexity or coupling). In this paper, we used several types

of metrics based on their availability in the studied corpora.

A promising direction for future research would be to explore

the impact that different metrics have on our findings (e.g.,

perhaps our findings are sensitive to the type of metrics that

are available for training our models).

There exists several evaluation metrics to measure the

performance of classification models, such as accuracy [61],

AUC [34, 47], error sum, median error, error variance, and

correlation [5]. In this paper, we use the AUC because it is

threshold-independent.

In addition to Lessmann et al. [34], there have been several

studies that compare the performance of classification tech-

niques across projects in search of the top-performing classi-

fication techniques. Panichella et al. [47] conducted a study to

compare the performance of statistical, neural networks, and

decision trees classification techniques using the PROMISE

corpus. Bettenburg et al. [5] conducted a study using the

PROMISE corpus in order to compare the performance of

classification models that are trained using clustering and

statistical techniques, reporting that clustering techniques tend

to perform better than models that are trained using statistical

techniques. However, Lemon [33] found contradictory results

to Bettenburg et al. [5] when building classification models

on NASA datasets using clustering and statistical techniques.

The key differences between such prior work and this paper

are the following:

1) To the best of our knowledge, this is the first study to

replicate a prior analysis using the cleaned NASA corpus.

2) Most prior studies use either the NASA or the PROMISE

corpus — they rarely combine both corpora together for

a single analysis, hence the generalization of prior results

is hindered.

3) Most prior studies use a post hoc statistical tests to

compare techniques. However, the results of such tests are

not as clear cut as the Scott-Knott tests, which produces

non-overlapping ranks.

4) To the best of our knowledge, this study is the first to

extrapolate project-specific analyses to a corpus-level by



ranking classification techniques at the project-level and

lifting it using a double Scott-Knott test.

5) To the best of our knowledge, this is the first study to

use several recent classification techniques (e.g., LMT),

while ensuring that we capture techniques from a variety

of families.

VIII. CONCLUSIONS

A previous study on the NASA corpus by Lessmann et

al. [34] showed that the performance of defect prediction

models that are trained using various classification techniques

do not vary much, implying that the use of any technique

should be sufficient when predicting defects. In this paper, we

revisit this very impactful finding, since it has influenced a

large amount of follow-up literature after its publication —

many researchers opt not to investigate the performance of

various classification techniques on their datasets.

Our replication of Lessmann et al. [34] yields the same

results even when using a more advanced statistical ranking

technique (i.e., the Scott-Knott test). However, when using a

cleaned version of the NASA corpus and when using another

corpus (the PROMISE dataset, which provides different met-

rics than the NASA corpus does), we found that the results

differ from those of Lessmann et al. [34], i.e., classification

techniques produce defect prediction models with significantly

different performance.

Like any empirical study, our study has several limitations

(cf. Section VI). However, we would like to emphasize that

we do not seek to claim the generalization of our results.

Instead, the key message of our study is that there are datasets

where there are statistically significant differences between

the performance of models that are trained using various

classification techniques. Hence, we recommend that software

engineering researchers experiment with the various available

techniques instead of relying on specific techniques, assuming

that other techniques are not likely to lead to statistically

significant improvements in their reported results. Given the

ubiquity of advanced techniques in commonly-used analysis

toolkits (e.g., R and Weka), we believe that our suggestion is

a rather simple and low-cost suggestion to follow.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-

back. This work was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC).

REFERENCES

[1] E. Arisholm and L. C. Briand, “Predicting fault-prone

components in a java legacy system,” in Proceedings of

the 2006 ACM/IEEE international symposium on Empir-

ical software engineering. ACM, 2006, pp. 8–17.

[2] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation

of object-oriented design metrics as quality indicators,”

IEEE Transactions on Software Engineering, vol. 22,

no. 10, pp. 751–761, 1996.

[3] A. Bernstein, J. Ekanayake, and M. Pinzger, “Improving

defect prediction using temporal features and non linear

models,” in Proceedings of the International Workshop

on Principles of Software Evolution, 2007, pp. 11–18.

[4] A. Berson, S. Smith, and K. Thearling, “An overview of

data mining techniques,” Building Data Mining Applica-

tion for CRM, 2004.

[5] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Think

locally, act globally: Improving defect and effort predic-

tion models,” in Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories. IEEE

Press, 2012, pp. 60–69.

[6] L. Breiman, “Bagging predictors,” Machine learning,

vol. 24, no. 2, pp. 123–140, 1996.

[7] L. C. Briand, J. Wüst, and H. Lounis, “Replicated case

studies for investigating quality factors in object-oriented

designs,” Empirical software engineering, vol. 6, no. 1,

pp. 11–58, 2001.

[8] M. D. Buhmann, “Radial basis functions,” Acta Numer-

ica 2000, vol. 9, pp. 1–38, 2000.

[9] S. Chidamber and C. Kemerer, “A metrics suite for

object oriented design,” IEEE Transactions on Software

Engineering, vol. 20, no. 6, pp. 476–493, 1994.

[10] W. W. Cohen, “Fast Effective Rule Induction,” in Pro-

ceedings of the International Conference on Machine

Learning, 1995, pp. 115–123.

[11] T. Cover and P. Hart, “Nearest neighbor pattern clas-

sification,” IEEE Transactions on Information Theory,

vol. 13, no. 1, pp. 21–27, 1967.

[12] M. D′Ambros, M. Lanza, and R. Robbes, “Evaluating de-

fect prediction approaches: a benchmark and an extensive

comparison,” Empirical Software Engineering, vol. 17,

no. 4-5, pp. 531–577, 2012.

[13] J. Demšar, “Statistical comparisons of classifiers over

multiple data sets,” The Journal of Machine Learning

Research, vol. 7, pp. 1–30, 2006.

[14] T. G. Dietterich, “An experimental comparison of three

methods for constructing ensembles of decision trees:

Bagging, boosting, and randomization,” Machine learn-

ing, vol. 40, no. 2, pp. 139–157, 2000.

[15] L. Erlikh, “Leveraging legacy system dollars for e-

business,” IT professional, vol. 2, no. 3, pp. 17–23, 2000.

[16] C. Fraley and A. E. Raftery, “Bayesian regularization for

normal mixture estimation and model-based clustering,”

Journal of Classification, vol. 24, no. 2, pp. 155–181,

2007.

[17] Y. Freund and R. E. Schapire, “Experiments with a New

Boosting Algorithm,” in Proceedings of the International

Conference on Machine Learning, 1996, pp. 148–156.

[18] B. R. Gaines and P. Compton, “Induction of ripple-down

rules applied to modeling large databases,” Journal of

Intelligent Information Systems, vol. 5, no. 3, pp. 211–

228, 1995.

[19] B. Goel and Y. Singh, “Empirical investigation of met-

rics for fault prediction on object-oriented software,” in

Computer and Information Science. Springer, 2008, pp.



255–265.

[20] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical valida-

tion of object-oriented metrics on open source software

for fault prediction,” IEEE Transactions on Software

Engineering, vol. 31, no. 10, pp. 897–910, 2005.

[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,

“A systematic literature review on fault prediction per-

formance in software engineering,” IEEE Transactions

on Software Engineering, vol. 38, no. 6, pp. 1276–1304,

2012.

[22] G. Hamerly and C. Elkan, “Learning the k in k-means,”

in Advances in Neural Information Processing Systems,

2004, pp. 281–288.

[23] K. Hammouda and F. Karray, “A comparative study of

data clustering techniques,” Fakhreddine Karray Univer-

sity of Waterloo, Ontario, Canada, 2000.

[24] A. E. Hassan, “Predicting faults using the complexity of

code changes,” in Proceedings of the 31st International

Conference on Software Engineering. IEEE Computer

Society, 2009, pp. 78–88.

[25] T. K. Ho, “The random subspace method for constructing

decision forests,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 20, no. 8, pp. 832–844,

1998.

[26] E. Jelihovschi, J. C. Faria, and I. B. Allaman, “Scottknott:

A package for performing the scott-knott clustering

algorithm in r,” Trends in Applied and Computational

Mathematics, vol. 15, no. 1, pp. 003–017, 2014.

[27] T. Jiang, L. Tan, and S. Kim, “Personalized defect

prediction,” in Proceedings of the 28th IEEE/ACM Inter-

national Conference on Automated Software Engineering

(ASE), 2013. IEEE, 2013, pp. 279–289.

[28] K. Kaur, K. Minhas, N. Mehan, and N. Kakkar, “Static

and dynamic complexity analysis of software metrics,”

World Academy of Science, Engineering and Technology,

vol. 56, p. 2009, 2009.

[29] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan,

“Prioritizing the devices to test your app on: a case study

of android game apps,” in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2014, pp. 610–620.

[30] A. G. Koru, D. Zhang, K. El Emam, and H. Liu, “An

investigation into the functional form of the size-defect

relationship for software modules,” IEEE Transactions

on Software Engineering, vol. 35, no. 2, pp. 293–304,

2009.

[31] S. Kotsiantis, “Supervised machine learning: A review of

classification techniques,” Informatica, vol. 31, pp. 249–

268, 2007.

[32] N. Landwehr, M. Hall, and E. Frank, “Logistic model

trees,” Machine Learning, vol. 59, no. 1-2, pp. 161–205,

2005.

[33] B. Lemon, “The effect of locality based learning on soft-

ware defect prediction,” Ph.D. dissertation, West Virginia

University, 2010.

[34] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,

“Benchmarking classification models for software defect

prediction: A proposed framework and novel findings,”

IEEE Transactions on Software Engineering, vol. 34,

no. 4, pp. 485–496, 2008.

[35] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann,

and D. Cok, “Local vs. global models for effort es-

timation and defect prediction,” in Proceedings of the

26th IEEE/ACM International Conference on Automated

Software Engineering (ASE 2011). IEEE, 2011, pp. 343–

351.

[36] T. Menzies, J. S. Di Stefano, M. Chapman, and

K. McGill, “Metrics that matter,” in Proceedings of

the 27th Annual NASA Goddard Software Engineering

Workshop (SEW-27’02). IEEE Computer Society, 2002,

p. 51.

[37] T. Menzies, J. Greenwald, and A. Frank, “Data mining

static code attributes to learn defect predictors,” IEEE

Transactions on Software Engineering, vol. 33, no. 1,

pp. 2–13, 2007.

[38] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and

A. Bener, “Defect prediction from static code features:

current results, limitations, new approaches,” Automated

Software Engineering, vol. 17, no. 4, pp. 375–407, 2010.

[39] N. Mittas and L. Angelis, “Ranking and clustering soft-

ware cost estimation models through a multiple compar-

isons algorithm,” IEEE Transactions on Software Engi-

neering, vol. 39, no. 4, pp. 537–551, 2013.

[40] R. Moser, W. Pedrycz, and G. Succi, “A comparative

analysis of the efficiency of change metrics and static

code attributes for defect prediction,” in Proceedings of

the 30th international conference on Software engineer-

ing. ACM, 2008, pp. 181–190.

[41] N. Nagappan and T. Ball, “Static analysis tools as early

indicators of pre-release defect density,” in Proceedings

of the 27th international conference on Software engi-

neering. ACM, 2005, pp. 580–586.

[42] ——, “Use of relative code churn measures to predict

system defect density,” in Proceedings of the 27th in-

ternational conference on Software engineering. ACM,

2005, pp. 284–292.

[43] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics

to predict component failures,” in Proceedings of the

28th international conference on Software engineering.

ACM, 2006, pp. 452–461.

[44] N. Ohlsson and H. Alberg, “Predicting fault-prone soft-

ware modules in telephone switches,” IEEE Transactions

on Software Engineering, vol. 22, no. 12, pp. 886–894,

1996.

[45] M. F. Oliveira, R. M. Redin, L. Carro, L. d. C. Lamb,

and F. R. Wagner, “Software quality metrics and their

impact on embedded software,” in Proceedings of the 5th

International Workshop on Model-based Methodologies

for Pervasive and Embedded Software, 2008. IEEE

Computer Society, 2008, pp. 68–77.

[46] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting

the location and number of faults in large software



systems,” IEEE Transactions on Software Engineering,

vol. 31, no. 4, pp. 340–355, 2005.

[47] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-

project defect prediction models: L’union fait la force,” in

Proceedings of the Software Evolution Week-IEEE Con-

ference on Software Maintenance, Reengineering and

Reverse Engineering (CSMR-WCRE). IEEE, 2014, pp.

164–173.

[48] F. Peters, T. Menzies, and A. Marcus, “Better cross

company defect prediction,” in Proceedings of the 10th

Working Conference on Mining Software Repositories.

IEEE Press, 2013, pp. 409–418.

[49] J. C. Platt, “Fast training of support vector machines

using sequential minimal optimization,” in Advances in

kernel methods. MIT Press, 1999, pp. 185–208.

[50] J. R. Quinlan, C4. 5: programs for machine learning.

Morgan kaufmann, 1993, vol. 1.

[51] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation

of refactorings and software defect prediction,” in Pro-

ceedings of the 2008 international working conference on

Mining software repositories. ACM, 2008, pp. 35–38.

[52] J. Rodrı́guez, L. Kuncheva, and C. Alonso, “Rotation

forest: A new classifier ensemble method.” IEEE trans-

actions on pattern analysis and machine intelligence,

vol. 28, no. 10, pp. 1619–1630, 2006.

[53] P. S. Sandhu, S. Kumar, and H. Singh, “Intelligence

system for software maintenance severity prediction,”

Journal of Computer Science, vol. 3, no. 5, p. 281, 2007.

[54] L. Sehgal, N. Mohan, and P. S. Sandhu, “Quality predic-

tion of function based software using decision tree ap-

proach,” in Proceedings of the International Conference

on Computer Engineering and Multimedia Technologies

(ICCEMT), 2012, pp. 43–47.

[55] A. Shaik, C. Reddy, B. Manda, C. Prakashini, and

K. Deepthi, “Metrics for object oriented design software

systems: a survey,” Journal of Emerging Trends in Engi-

neering and Applied Sciences, vol. 1, no. 2, pp. 190–198,

2010.

[56] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias:

The use of machine learning in software defect pre-

diction,” IEEE Transactions on Software Engineering,

vol. 40, no. 6, pp. 603–616, 2014.

[57] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data

quality: Some comments on the nasa software defect

datasets,” IEEE Transactions on Software Engineering,

no. 9, pp. 1208–1215, 2013.

[58] E. Shihab, “An exploration of challenges limiting prag-

matic software defect prediction,” Ph.D. dissertation,

Queens University, 2012.

[59] Y. Singh and A. S. Chauhan, “Neural networks in data

mining,” Journal of Theoretical and Applied Information

Technology, vol. 5, no. 6, pp. 36–42, 2009.

[60] R. Subramanyam and M. Krishnan, “Empirical analysis

of ck metrics for object-oriented design complexity:

Implications for software defects,” IEEE Transactions on

Software Engineering, vol. 29, no. 4, pp. 297–310, 2003.

[61] T. Wang, W. Li, H. Shi, and Z. Liu, “Software defect

prediction based on classifiers ensemble,” Journal of

Information & Computational Science, vol. 8, no. 16,

pp. 4241–4254, 2011.

[62] I. H. Witten and E. Frank, Data Mining: Practical ma-

chine learning tools and techniques. Morgan Kaufmann,

2005.

[63] S. Wu and P. Flach, “A scored auc metric for classifier

evaluation and selection,” 2005.

[64] Z.-H. Zhou, “Ensemble learning,” in Encyclopedia of

Biometrics. Springer, 2009, pp. 270–273.

[65] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting

Defects for Eclipse,” in Proceedings of the International

Workshop on Predictor Models in Software Engineering,

2007.


