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ABSTRACT
Detailed knowledge about implemented concerns in the source code
is crucial for the cost-effective maintenance and successful evolu-
tion of large systems. Concern mining techniques can automati-
cally suggest sets of related code fragments that likely contribute to
the implementation of a concern. However, developers must then
spend considerable time understanding and expanding these con-
cern seeds to obtain the full concern implementation. We propose a
new mining technique (COMMIT) that reduces this manual effort.
COMMIT addresses three major shortcomings of current concern
mining techniques: 1) their inability to merge seeds with small vari-
ations, 2) their tendency to ignore important facets of concerns, and
3) their lack of information about the relations between seeds. A
comparative case study on two large open source C systems (Post-
greSQL and NetBSD) shows that COMMIT recovers up to 87.5%
more unique concerns than two leading concern mining techniques,
and that the three techniques complement each other.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Concerns, Mining Software Repositories

General Terms
Algorithms, Documentation, Experimentation

Keywords
concern mining, mining software repositories, empirical research

1. INTRODUCTION
A concern is commonly defined as anything that stakeholders

consider as a conceptual unit [31]. Concerns range from development-
oriented tracing, and more general-purpose caching, to domain-
specific business rules. Developers and architects continuously
need up-to-date knowledge about concerns currently implemented
in their systems, and about the location of these concerns through-
out the code. For example, during maintenance and re-engineering,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

developers need to locate specific concerns in the source code. Bug
fixes must be propagated to the whole implementation of a con-
cern [14], and possibly to other concerns with which the concern in-
teracts. Architects need to map the currently implemented concerns
to the reference architecture to verify architecture conformance. As
such, concern mining is indispensable for software maintenance,
reverse-engineering, re-engineering and even for redocumentation.

As manual concern mining is tedious and subjective [1], con-
cern mining techniques support the identification of concerns in
software systems. Static techniques analyze source code, dynamic
techniques analyze execution traces, and history-based techniques
analyze changes in the source code repository. The techniques gen-
erate concern “seeds”, which are sets of program entities that pos-
sibly contribute to the implementation of a concern. In a typical
concern mining process [26, 28], developers perform the four steps:

1. generate concern seeds using concern mining techniques;
2. determine whether a seed represents a concern by analyzing

how its fragments work together;
3. complete the seed manually if it represents a concern;
4. try to understand the interaction between concerns.

Except for step 1, the concern mining process is purely man-
ual. Concern browsing tools [23, 31] can support the process, but
they still depend on the quality of the concern mining results and
human input. Due to shortcomings in current concern mining tech-
niques [26], the mining process in practice requires considerable
time and resources, slowing down developers. We identified three
major shortcomings of current concern mining techniques, which
hinder multiple steps of the concern mining process:

S1: Inability to merge seeds with variations
Concerns are often implemented by cloned code fragments [7].
Customization and developer mistakes [6] lead to slight vari-
ations between the clones. Concern mining techniques can
no longer unify them. This leads to duplicate seeds which
developers must process in step 2 of the mining process.

S2: Tendency to ignore important facets of seeds
Most of the mining techniques describe the behavior of seeds
(functions), but ignore the state of seeds (variables and types),
and preprocessor entities (macros). Hence, mined seeds are
less representative of the actual implementation of a concern,
making steps 2 and 3 more time-consuming for developers.

S3: Lack of information about seed relations
Composite concerns are large, widely scattered concerns that
are hard to maintain. They are usually composed of multiple
sub-concerns [10, 11]. Currently, developers need to discover
each collaborating sub-concern manually in step 4.



We propose a concern mining technique named COMMIT (“COn-
cern Mining using Mutual Information over Time”) that addresses
these three shortcomings. COMMIT analyzes the source code his-
tory to statistically cluster functions, variables, types and macros
that have been changed together intentionally. The links between
the clusters reveal the relations between seeds. We compare COM-
MIT to two other state-of-the-art mining techniques [5, 39] on the
open source PostgreSQL database and NetBSD operating system.
We find that COMMIT complements the other two techniques, while
recovering a larger number of unique and rich concern seeds, many
of which represent widely scattered, composite concerns.

Our main contributions are as follows:
• Identification and discussion of three shortcomings that hin-

der the concern mining process.
• Design of a history-based concern mining technique (COM-

MIT) to address these three critical shortcomings.
• A large-scale empirical comparison of COMMIT with two

leading mining techniques [5, 25].
Organization of the Paper. Section 2 introduces relevant con-

cern mining terminology. Section 3 discusses three identified short-
comings of state-of-the-art techniques. Section 4 presents COM-
MIT, and explains how it addresses the three shortcomings. Sec-
tion 5 compares COMMIT to a leading static technique, CBFA [39],
and history-based technique, HAM [5], by applying these tech-
niques on the PostgreSQL database and NetBSD operating sys-
tems. Section 6 discusses threats to validity. Related work is pre-
sented in Section 7, and Section 8 summarizes our findings.

2. BACKGROUND
This section introduces important concern mining concepts. For

the reader’s convenience, we briefly explain how the state-of-the-
art CBFA [39] and HAM [5] concern mining techniques work, as
we use them throughout this paper to motivate the shortcomings of
current concern mining techniques and we compare our COMMIT
mining technique to them. We illustrate CBFA and HAM on Fig-
ure 1, which contains four successive versions of a simple C system
consisting of a client, server front_end and back_end.

2.1 Terminology
Concerns can be categorized based on the modularity of their

implementation. Modular concerns are the easiest to locate and
understand as their implementation is concentrated in one source
module or component. Crosscutting concerns (CCCs) [24] are
concerns that are not modular. Their implementation is spread
(“scattered”) across multiple modules. Each scattered code frag-
ment of a CCC is called an “instance” of the CCC. The instances of
a CCC can be more or less identical to each other (“homogeneous
CCC”), or exhibit large variations (“heterogeneous CCC”) [13].

A composite concern is a CCC consisting of multiple smaller
sub-concerns that work together. These sub-concerns are typically
spread out across a large number of components and development
teams [10, 11]. For example, as encryption support without de-
cryption support is meaningless, a “secure communication” con-
cern consists of multiple instances of an encryption sub-concern
(one for each sender) and multiple instances of a decryption sub-
concern (one for each receiver) that work together.

Concern mining techniques generate concern seeds, i.e., sets of
related code entities that likely contribute to the implementation
(set of instances) of a concern. These techniques focus especially
on CCCs, as modular concerns can be easily identified manually.
Depending on the intended usage of a technique, it can be applied
as frequently as once per release (for documentation) up until once
per feature request or even bug report.

2.2 CBFA
Clustering-Based Fan-in Analysis (CBFA) [39] is a recent gen-

eralization of the widely used Fan-in static mining technique [25].
CBFA uses the number of unique callers of each function (i.e., Fan-
in value) as an indicator of the scattering of the use-sites of that
function across the system. CBFA then filters out functions that are
invoked too frequently (utility functions and getter or setter func-
tions) or not frequently enough. Functions with sufficiently simi-
lar substrings in their names are clustered together to create larger
seeds. Finally, CBFA ranks the seeds based on a “cluster Fan-in”
metric, i.e., the sum of the Fan-in values of all functions in a seed.

The second column of Table 1 shows the concern seeds identi-
fied by CBFA in Version 3 of Figure 1. These seeds are ordered
by their cluster Fan-in, then by their dimension D (number of pro-
gram entities that they contain). The *_log/*_lock3 functions
rank very high, as they are invoked eight times in total.

2.3 HAM
History-based Aspect Mining (HAM) is a history-based concern

mining technique [5]. HAM clusters all functions N that add or
remove a call to the same function during a particular time interval
or in all change transactions of a particular developer. Then, HAM
assigns all functions F that are called by the same cluster of calling
functions N to the same concern seed.

The third column of Table 1 shows the mining results of HAM
based on the four versions of Figure 1. HAM orders its results first
on the seed dimension D, then on the scattering value S (number
of unique calling functions over which the concern is scattered) [5].
The top results correspond to seeds of up to three program entities,
which are called from one or two functions. The logging concern
is not reported as a top result since the dimension D for seeds five
and six, which correspond to the logging concern, is only one.

3. THREE SHORTCOMINGS
Modern concern mining techniques suffer from three shortcom-

ings that hinder the concern mining process. We discuss these
shortcomings by comparing the results of CBFA and HAM on Fig-
ure 1 against the desired mining results in the fourth column of
Table 1. For each shortcoming, we discuss its motivation, give ex-
amples and explain how an ideal mining technique should deal with
it. The first shortcoming has been discussed before [22, 26].

S1: Inability to merge seeds with variations
Motivation Concern mining techniques cannot cope well with

variations in the instances of a concern. Such variations are quite
common. For example, Bruntink et al. [6] analyze the implemen-
tation of a tracing concern in a large company. Despite explicit
coding guidelines, the implementation of the tracing concern con-
tained significant variations because of developer mistakes, local
optimizations and ambiguous coding guidelines. Concern mining
techniques would typically generate separate seeds for each in-
stance variation, delegating the costly task of identifying and merg-
ing similar seeds to the developer (step 2 of the mining process).

Examples Figure 1 contains two illustrations of a CCC with
small variations in its instances, and two illustrations of a CCC
with large variations. In Version 1, the back-end developer acci-
dentally (or intentionally) calls start_log instead of end_log
in the back_end. HAM is incapable of merging the concern
seeds start_log and end_log into one seed because the sets
of use-sites of both seeds are not identical. The set of use-sites of
start_log contains client, front_end2 and back_end,
while the set of use-sites of end_log contains client and front_-



void client(void){
/*do something*/

}

void front_end(void){
/*do something*/

}

void back_end(void){
/*do something*/

}

(a) Version 0.

void client(void){
s t a r t _ l o g("Sending");
/*do something*/
end_log("Done!");

}

void front_end(void){
s t a r t _ l o g("Receiving");
/*do something*/
end_log("Done!");

}

void back_end(void){
s t a r t _ l o g("Storing");
/*do something*/
s t a r t _ l o g("Done!");

}

(b) Version 1.

extern queue_t queue;

void client(void){
start_log("Sending");
/*do something*/
l o ck(&queue);
enqueue(&queue,/*...*/);
unlock(&queue);
end_log("Done!");

}

void front_end(void){
start_log("Receiving");
l ock2(&queue);
/*do something*/
unlock2(&queue);
end_log("Done!");

}

void back_end(void){
start_log("Storing");
/*do something*/
start_log("Done!");

}

(c) Version 2.

extern queue_t queue;

void client(void){
start_log("Sending");
/*do something*/
lock(&queue);
enqueue(&queue,/*...*/);
unlock(&queue);
end_log("Done!");

}

void front_end2(void){
start_log("Receiving");
s t a r t _ l o c k 3(&queue);
lock_data_queue();
/*do something*/
unlock_data_queue();
end_lock3(&queue);
end_log("Done!");

}

void back_end(void){
start_log("Storing");
lock_data_queue();
/*do something*/
unlock_data_queue();
start_log("Done!");

}

(d) Version 3.

Figure 1: Motivating example that illustrates the shortcomings of concern mining techniques. Bold text corresponds to the addition
or removal of dependencies on program entities between two successive versions of the example system.

# CBFA HAM Desired

1
start_lock3, enqueue, lock, unlock lock, unlock, enqueue, queue, lock2,

start_log, end_log, unlock2, start_lock3, end_lock3,
end_lock3 lock_data_queue, unlock_data_queue

2 unlock, unlock_data_queue, lock_data_queue, start_log, end_log
lock_data_queue unlock_data_queue

3 lock lock2, unlock2 N/A
4 enqueue start_lock3, end_lock3 N/A
5 N/A start_log N/A
6 N/A end_log N/A

Table 1: Top six results for CBFA (Version 3) and HAM, and the desired mining results for Figure 1.

end2. Breu et al. [5] acknowledge this shortcoming of their tech-
nique. CBFA tries to deal with variations in concern instances
by taking into account naming conventions, but this often back-
fires. As the start_lock3, start_log, end_lock3 and
end_log functions pair-wise share parts of their name, CBFA as-
signs all these functions to the first concern seed. However, the
*_log and *_lock3 functions are semantically unrelated.

Version 3 of Figure 1 gives two illustrations of a CCC with large
variations in its instances. HAM cannot assign start_lock3/end_-
lock3 and lock2/unlock2 to the same seed, because it does
not recognize that the callers of these pairs of functions (i.e., front_-
end2 and front_end) are actually the same. CBFA’s heuris-
tic algorithm is sensitive to variations in the order of functions
in the source code. CBFA assigned lock_data_queue to the
same seed (#2) as unlock because unlock_data_queue had
already been assigned to concern seed #2 (because of the com-
mon “unlock”) and shares both “data” and “queue” with lock_-
data_queue. However, the algorithm accidentally processed lock
before lock_data_queue, and hence was unable to relate lock

to unlock and unlock_data_queue in concern seed #2.
Desired Outcome A concern mining technique should be robust

to variations in the instances of a concern. It should be able to
identify that start_log and end_log belong to the “logging”
concern, and that lock2/unlock2 and start_lock3/end_-
lock3 belong to the “inter-process communication” concern.

S2: Tendency to ignore important facets of seeds
Motivation Analyzing and completing a seed are crucial steps in

the concern mining process, yet concern mining techniques provide
developers only with a partial view on possible concerns, i.e., the
behavioral facet of a seed (functions), while they ignore the state
(variables and types) and any preprocessor entities (macros) of a
seed. This makes seeds less representative of actual concerns and
slows down the concern mining process, as state and preprocessor
entities dominate the source code for procedural languages like C,
and state also plays an important role in object-oriented systems
(for example in the Singleton and Flyweight design patterns).
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Figure 2: Desired mining results for Figure 1.

Examples In Figure 1, Version 2 introduces synchronization on
a queue between the client and the front_end. As this
synchronization is implemented differently on the client and the
server, different functions are called: the pair lock/unlock is
called in the client and the pair lock2/unlock2 is called in
the front_end. Since the two pairs of functions have differ-
ent names, neither CBFA, nor HAM are able to link them to each
other, even though they operate on arguments of the same type and
name. Focusing exclusively on function entities not only makes
seeds less rich, it also ignores important hints about the relation
between seemingly unrelated program entities.

Desired Outcome If variable and type references were taken into
account, an ideal mining technique could find out that the locking
function calls in the client and the ones in the front_end op-
erate on the same global variable as their argument (queue of type
queue_t), which was introduced in the code at the same time.
This is a strong indication that lock/unlock and lock2/un-
lock2 are part of the same concern (the top desired mining result
in Table 1). A richer concern seed is more complete and hence
easier to interpret and to expand.

S3: Lack of information about seed relations
Motivation Concern seeds generated by mining techniques are

usually just textual lists of code entities, without any relation be-
tween the different seeds. It is the developer’s task to get a global
view on how seeds relate to each other. For example, seeds for a
tracing concern and a caching concern are probably independent,
whereas the encryption and decryption concerns mentioned in Sec-
tion 2.1 collaborate to form the “secure communication” compos-
ite concern. Because of the large group of developers responsible
for the sub-concerns of a composite concern, composite concerns
should be documented explicitly.

Examples Neither CBFA, nor HAM are able to detect the rela-
tions between the sub-concerns of the “inter-process communica-
tion” composite concern in the fourth column of Table 1. CBFA
splits the concern across four different seeds, and even mixes it
with the logging concern in seed #1. HAM also fragments the con-
cern across four seeds: HAM’s top result leads to the client-
side locking and queue manipulation concern, the second result
contains the synchronization concern between front_end2 and
back_end, and the third and fourth result refer to two versions of
the front_end2 locking concern.

Desired Outcome An ideal mining technique should identify
HAM’s top four results, which are scattered across the code, as the
sub-concerns of a single composite concern for “inter-process com-
munication”. Figure 2 shows the structure of this concern (large
graph) and the smaller logging concern (upper right cluster). The
different sub-concerns of the former correspond to client (upper
left cluster), front_end2 (lower middle cluster) and back_end
(lower right cluster) functionality.

4. CONCERN MINING USING MUTUAL IN-
FORMATION OVER TIME (COMMIT)

We now present our concern mining technique named COMMIT
(“COncern Mining using Mutual Information over Time”), which
addresses the aforementioned shortcomings.

General Overview
COMMIT is a history-based concern mining technique. Its archi-
tecture is shown in Figure 3. First, COMMIT extracts a report of all
change transactions from the subject system’s source code reposi-
tory. A change transaction contains the line numbers of all code
lines that have been added, removed or modified by a developer
at a particular time. As this information is too low-level, an evolu-
tionary code extractor (C-REX) is used to map added, removed and
modified lines of code to added and removed calls or references to
program entities like functions, variables, types and macros [18].
C-REX uses a lexical technique and a number of heuristics to de-
termine the starting and ending line numbers of each function/type-
/macro definition and variable declaration. The output of C-REX is
a report of changes indicating when a dependency on a particular
entity is added or removed.

In the second step, COMMIT determines which function calls,
global variable references, macro calls and type references have
been added or removed simultaneously in each added, modified, or
removed function. Similar to HAM [5], COMMIT suspects that
such calls and references belong to the same concern. Co-removal
is important because function renaming corresponds to removing
calls to the old function, followed by adding calls to the new one.
Transactions that change more than 100 entities at once are ig-
nored, as they typically correspond to massive changes of licenses,
comments or code formatting [19]. Based on the co-addition and
co-removal information, several “seed graphs” are generated with
edges between every pair of program entities to which calls or refer-
ences have been co-added or co-removed over time. As each entity
is represented by one node, it belongs to at most one seed graph.

The resulting seed graphs are filtered such that they only con-
tain edges representing intentional co-addition and co-removal. To
measure how intentional co-additions and co-removals are, COM-
MIT applies the information-theoretical notion of mutual informa-
tion [16]. This is a statistical measure of how closely related two
entities are, i.e. how often the addition or removal of a dependency
(call or reference) on one entity coincides with the addition or re-
moval of a dependency on the other. It is calculated as follows [16]:

I(x; y) = log2

(
p(x, y)

p(x)× p(y)

)
with

p(x) =
#changed entities that add/remove a dependency on x

total # of changed entities in history

p(y) =
#changed entities that add/remove a dependency on y

total # of changed entities in history

p(x, y) =
#changed entities that co-add/remove deps. on x and y

total # of changed entities in history

A “changed entity” in this definition is an entity (like a function
or file) that has been changed in a particular change transaction.
Figure 1b contains three changed entities (client, front_end
and back_end), whereas Figure 1c contains two (client and
front_end). Applied to concern mining, higher I(x; y) implies
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Figure 3: Architecture of COMMIT.

a higher probability that the co-addition and co-removal of depen-
dencies on x and y is intentional. Hence, the higher the probability
that entities x and y are part of the same concern.

Once the mutual information I(x; y) between any two co-added
and co-removed entities x and y is calculated, we weight each edge
in the seed graph with it. Then, we filter out the edge between x
and y if its I(x; y) is below a threshold, i.e. if x and y are not
related closely enough. This filtering splits up large seed graphs
into multiple, disconnected graphs. Figure 2 shows the weighted
seed graphs for the desired mining results of Figure 1.

The resulting seed graphs consist of program entities of which
dependencies have evolved in close harmony with each other, scat-
tered throughout the system. Hence, we claim that these seed graphs
represent concern seeds. Similar to HAM, we order the seeds first
on their dimension D, then on their scattering value S. In practice,
this means that concern seeds representing CCCs are ranked much
higher than seeds representing modular concerns.

Determining the right value for COMMIT’s mutual information
threshold is an optimization problem [17]. We used a simple, ex-
haustive search technique to find a solution for the threshold that:

• minimizes the Coefficient of Variation [3] for the dimensions
D of the seeds (to avoid extreme situations, such as one giant
concern seed or hundreds of small ones);

• maximizes the scattering value S of the reported seeds.
Intuitively, these constraints ensure that the dimension of con-

cern seeds is manageable, while the seeds are as crosscutting, and
hence interesting, as possible (high S). We now discuss how COM-
MIT deals with the three shortcomings outlined in Section 3.

S1: Inability to merge seeds with variations
To deal with variation in concern instances, COMMIT clusters code
entities into seeds based on mutual information. COMMIT is ro-
bust to small or even large variations in instances as long as the
instances co-change sufficiently enough to be statistically valid. In
Figure 1, the call to end_log is accompanied twice by a call to
start_log, which links both entities to each other. This link
is not invalidated by the fact that back_end contains two calls
to start_log, as the mutual information between start_log
and end_log is still sufficiently high. Similarly, the added calls
in front_end2 are linked to the locking logic of front_end
in Version 2 because the removal of calls to lock2/unlock2 co-
incides with the addition of calls to start_lock3/end_lock3.

S2: Tendency to ignore important facets of seeds
COMMIT considers the co-addition and co-removal of dependen-
cies on all types of program entities (functions, macros, types and
variables), not just function calls. In Figure 1, COMMIT is able to
link together the locking function calls in client and front_end
(Version 2) based on the common reference to the queue global
variable. Hence, COMMIT identifies richer concerns than CBFA
and HAM, containing behavior, state and preprocessor entities.

S3: Lack of information about seed relations
COMMIT reports a composite concern as a seed graph with multi-
ple interconnected clusters of code entities. As the edges between
entities and clusters are weighted by the calculated mutual infor-
mation values, it is clear which clusters (and hence sub-concerns)

CBFA HAM COMMIT
D S M D S M D S M

PSQL 16 901 8 33 2 7 35 67 6
NBSD 209 5117 148 49 4 6 147 151 37

Table 2: Average dimension (D), scattering (S) and number of
seed entities that are functions (M ) for the top twenty concern
seeds for PostgreSQL (PSQL) and NetBSD (NBSD).

CBFA HAM COMMIT
P U C P U C P U C

PSQL 55 40 25 90 50 31 75 75 47
NBSD 90 45 29 75 45 29 75 70 45

Table 3: Precision (P ), uniqueness (U ) and coverage (C) (in
percentage) of the top twenty mining results for CBFA, HAM
and COMMIT for PostgreSQL (PSQL) and NetBSD (NBSD).

are strongly related and which ones are not. The reason why COM-
MIT can reconstruct entire composite concerns is that, during the
engineering and maintenance of these concerns, developers make
changes to multiple sub-concerns at a time. COMMIT is then able
to connect the pair-wise relations between these sub-concerns.

In Figure 1, the changes from Version 1 to Version 2, and from
Version 2 to Version 3 gradually introduce the “inter-process com-
munication” concern between client and front_end, and be-
tween front_end2 and back_end respectively. COMMIT is
able to reconstruct this composite concern. Its two sub-concerns
(client/server and front-end/back-end synchronization) show up as
tightly connected sub-graphs on Figure 2. A simple spring-based
layout can be used to outline the clusters in a seed graph.

To summarize, we have presented the architecture of COMMIT,
and have shown how COMMIT addresses the three identified short-
comings of Section 3. The next section compares COMMIT in a
case study to two state-of-the-art concern mining techniques.

5. COMPARATIVE CASE STUDY
We performed a case study to compare the ability of COMMIT,

CBFA [39] and HAM [5] to deal with shortcomings S1, S2 and
S3. We chose HAM because it is the most closely related history-
based technique, and CBFA because it is a recently proposed static
mining technique that has been shown to outperform other concern
mining techniques. We did not include a dynamic technique, as it
is very hard to select representative execution scenarios, especially
in the large systems that COMMIT aims at. In addition, CBFA
has been shown to perform better than the dynamic Dynamo tech-
nique [39]. Section 5.1 presents the setup of the case study and
Section 5.2 presents our research hypotheses. We then present the
validation results of each research hypothesis.

5.1 Setup of the Case Study
Our case study applies CBFA, HAM and COMMIT on histor-

ical revision control data from the open source PostgreSQL [30]
database management system (July 1996 to November 2002), and
NetBSD [29] operating system kernel and drivers (March 1993
to January 2003). PostgreSQL and NetBSD are large C systems



# CBFA HAM COMMIT
1 error logging parse/plan tree node types retrieve query results and check for errors
2 α: relation cache management β: referential integrity constraints management preprocess data types in query
3 α β initialize ODBC configuration
4 heap tuple management new and old version of API referential integrity triggers in SPI
5 bool utility functions β creating database index
6 data node construction replay transaction logs time parsing and decoding
7 invariant checking γ: SQL transaction support PL/pgsql execution and debugging
8 memory management index navigation and manipulation error handling embedded SQL for C
9 δ: list processing β authenticated database connection

10 δ γ node types of planner

(a)

# CBFA HAM COMMIT
1 ε: multi-platform Linux emulation ζ: ioctl/termios flags translation multi-platform ISO/IP IPC
2 /proc/sys support duplication in old/new ARM boot loader ε
3 η: device driver API basic error/log/input/... handling for USB SCSI controller driver logic
4 error handling ζ Digital/Intel 21x4x ("Tulip") Ethernet driver
5 ε ζ multi-platform (pseudo-)terminal handling
6 panic handling ζ Advanced Systems Inc. SCSI controller flags
7 interrupt priority level signal flags translation NFS file system
8 η VAX device switch table Gravis UltraSound audio cards driver
9 DDB in-kernel debugger Amiga CyberVision 64 parameters ε

10 η ISA/ATA data transfer Coda file system

(b)
Table 4: The top ten mining results for CBFA, HAM and COMMIT on (a) PostgreSQL and (b) NetBSD. Dark cells correspond to
CCCs, and bold text to composite concerns. Greek symbols indicate duplicate concerns.

(over 800 kLOC and 2 MLOC respectively) with a long, well-
documented development history (6,199 and 36,635 change trans-
actions respectively). Their size ensures that our work scales to
large, long-lived systems. Their accessible history permits us to
easily verify many of our identified concerns. Their distinct do-
mains ensure that our technique applies to different software sys-
tems. Since CBFA operates on a single version of a software sys-
tem, we apply it on the PostgreSQL version of November 2002 and
the NetBSD version of January 2003.

We re-implemented HAM and CBFA because the HAM proto-
type did not support C code and the CBFA prototype did not scale
to large systems [39]. To make our comparison fair, we extended
CBFA and HAM to also take into account variables, types and
macros, in addition to functions. We also automatically filter out
those concern seeds containing only standard macro constants (e.g.,
NULL), types (e.g., u_int) and utility functions (e.g., printf).
As the extended re-implementations consistently performed better
than the non-extended ones, we only report the results of the for-
mer. Using the search-based heuristics for COMMIT’s threshold
(Section 4), we obtained a mutual information threshold of 10.5 for
PostgreSQL and 14.5 for NetBSD. The differences between these
thresholds are caused by the larger number of changes we consid-
ered for NetBSD (36,635 compared to 6,199 for PostgreSQL). We
empirically determined that a minimum similarity threshold of 0.4
between the names of two entities gives better results for CBFA
than the threshold used in [39].

Developers do not have the patience to sort through all generated
seeds to find a relevant CCC. For this reason, our case study con-
siders only the top twenty mining results of the three mining tech-
niques. The first two authors independently analyzed the six lists
of top twenty seeds (3 techniques for 2 subject systems) to deter-
mine whether the seeds lead to a CCC, and, possibly, a composite

concern. Modular concerns were interpreted as undesired mining
results, as one does not need concern mining techniques to locate
them. Afterwards, both authors reconciled their findings to come
up with a unified list of CCCs per technique and subject system.
Conflicts were resolved using information from the source code,
online documentation, mailing lists and change logs. This process
is similar as to how mining techniques are used in practice, as the
interpretation of mining results is a subjective process [25].

The identified concerns are summarized in Table 4, and the cor-
responding metrics in Table 2. Due to space limitations, Table 4
reports only the top ten results of PostgreSQL and NetBSD. Seeds
identified as CCCs have a gray background. Seeds that lead to the
same concern (“duplicate” seeds) are marked with Greek symbols:
the first occurrence of a duplicate seed contains a Greek symbol
and the name of the concern, whereas all repetitions of the seed
only contain the Greek symbol. For ease of comparison, Table 2
reports the scattering S for all mining techniques. We note that the
CBFA seeds in Table 4 are sorted using the cluster Fan-in metric,
as recommended in the original paper [39], and not using S.

5.2 Research Hypotheses
The goal of the case study is to validate that COMMIT addresses

the three shortcomings of Section 3. We formulate this goal in the
form of three research hypotheses:

H1 COMMIT identifies a larger number of unique CCCs.

H1 evaluates the ability of COMMIT to deal with small vari-
ations in concern instances (shortcoming S1).

H2 COMMIT returns richer seeds.

H2 claims that state and preprocessor entities represent a sig-
nificant part of seeds (shortcoming S2).



H3 COMMIT complements CBFA and HAM.

H3 states that COMMIT’s ability to identify relations be-
tween seeds, in particular between the sub-concerns of a com-
posite concern (shortcoming S3), makes COMMIT comple-
mentary to CBFA and HAM.

For each hypothesis, we discuss its motivation, its validation ap-
proach, and our findings on the PostgreSQL and NetBSD data.

H1: COMMIT identifies a larger number of
unique CCCs

Motivation Concern mining techniques return a large number
of concern seeds. Several seeds may refer to the same concern,
as mining techniques are unable to resolve small variations in in-
stances of a concern (S1). This leads developers to waste their time
and effort merging or eliminating duplicate seeds. An approach
that returns a large number of unique CCCs is preferred over an ap-
proach that might return a larger set of seeds that eventually contain
duplicate seeds.

Approach For each mining technique, we measure the unique-
ness U of seeds using the following formula:

Uniqueness U =
# of unique CCCs identified

20

The obtained percentages are shown in Table 3. The uniqueness
metric differs from the classical precision metric P in the follow-
ing way: P divides by the number of unique seeds instead of the
total number of seeds (20). Intuitively, if a technique would return
20 duplicate seeds of one unique CCC, this would yield a precision
of 100% since all returned seeds are valid CCCs. However, the ac-
tual value for human concern miners is really just 5%, because they
wasted a great deal of time interpreting 19 duplicate seeds. Table 3
reports P to give an idea about the raw false positive rate of the
three concern mining techniques.

Findings Table 3 shows that COMMIT finds more unique CCCs
than CBFA and HAM. The results for HAM are similar to previous
experiments on Java systems [5].

The higher percentage of unique CCCs identified by COMMIT
relative to CBFA and HAM can be explained by the clustering tech-
nique used by the three techniques: CBFA clusters based on the
name of entities, HAM based on the set of callers of a function and
COMMIT based on the mutual information between entities. With
CBFA, entities with totally different names always end up in dif-
ferent seeds, whether or not they are related. HAM has a relatively
low U due to the high overlap of entities in the top twenty seeds
(seed #9 in PostgreSQL is even a subset of seed #3). Entities can
belong to multiple seeds if dependencies on them have been added
or removed in different time periods or by different developers [5].

Although COMMIT finds three more false positives than HAM
in PostgreSQL (difference of 15% in precision P ), its U is consid-
erably higher than for HAM and CBFA. COMMIT merges seeds
as soon as dependencies on at least one entity in each seed have
been co-added or co-removed a statistically significant number of
times. In addition, each entity can only belong to at most one seed,
otherwise COMMIT would merge two seeds into one.�
�

�
�

COMMIT identifies a larger number of unique CCCs, and
hence addresses shortcoming S1.

H2: COMMIT returns richer seeds
Motivation In the third step of the concern mining process, de-

velopers need to rebuild the full concern from the basic seed re-
turned by a concern mining technique. Richer seeds containing

D

CBFA HAM

COMMITsmall large

CBFA

S

HAM CBFA

COMMIT
small large

Figure 4: The dimension D and scattering S of the CBFA,
HAM and COMMIT results complement each other.

state and preprocessor entities in addition to behavior, provide de-
velopers with better insights into the semantics of a seed.

Approach To measure the richness of a concern seed, we mea-
sure the dimension D of the top twenty concern seeds, and the
number of functions M in each of these seeds. We use the latter
to demonstrate that functions represent only a minor part of CCCs.

Findings Table 2 shows, for the three mining techniques, the
average seed dimension D and number M of seed entities that
are functions. On average, COMMIT and HAM yield seeds with
more than 30 entities for PostgreSQL, and COMMIT and espe-
cially CBFA yield seeds of more than 100 entities for NetBSD. On
average, 10% to 25% of the seed entities generated by HAM or
COMMIT are functions, whereas for CBFA this is 50% to 70%.

The extremely low percentage of functions in the concern seeds
for HAM and COMMIT clearly shows that a significant facet of
CCCs is formed by variables, types, macros and conditional com-
pilation, especially in C systems. Some of the CCCs do not even
involve functions, such as seeds #1 and #4 of HAM (PostgreSQL)
and seed #10 of COMMIT (PostgreSQL). Across the three tech-
niques, five CCCs of PostgreSQL and eleven CCCs of NetBSD
would go unnoticed if the concern mining techniques would not
take into account the state of concerns and preprocessor entities.

The large dimension of CBFA seeds for NetBSD follows from
the naming convention and processing order limitations discussed
in Section 3. The high percentage of functions is due to the Linux
emulation API and the device driver API, both of which consist of
many functions with a strictly enforced naming scheme.�




�

	
The impact of shortcoming S2 is significant, as functions rep-
resent only 10% to 25% of the entities in the seeds generated
by HAM and COMMIT. Without considering state and pre-
processor entities, 16 CCCs would not even be detected.

H3: COMMIT complements CBFA and HAM
Motivation Concern mining is time and effort consuming. As

each technique has its own strengths, combining multiple tech-
niques yields a more complete and diverse set of CCCs [9]. We
hypothesize that COMMIT’s ability to identify relations between
seeds (S3), in particular between the sub-concerns of composite
concerns, complements the strengths of existing mining techniques.

Approach As the complete set of CCCs in a system is very hard
to determine, we measure the concern coverage C [38] (Table 3):

Coverage C =
# of unique CCCs identified

total # of unique CCCs across all techniques

This gives an indication about the completeness and overlap of
the results of a given technique compared to all obtained mining
results. In addition, we use the dimension D and scattering S (Ta-
ble 2) of the seeds to characterize them, and we qualitatively exam-
ine the seeds (Table 4).

Findings The mining results of CBFA, HAM and COMMIT are
complementary. The concern coverage of COMMIT is 55.2% to
88% higher than the coverage of CBFA, and 51.6% to 55.2% higher



CBFA HAM COMMIT
PostgreSQL 0.76 1.0 0.76

NetBSD 1.0 0.66 1.0

Table 5: Cohen Kappa inter-rater agreement for the two first
authors for the 6 lists of top twenty results.

than the coverage of HAM (Table 3). There is only one CCC shared
between techniques for PostgreSQL (seeds #18 and #19 of HAM
are similar to seed #3 of COMMIT) and one for NetBSD (seeds
#1 and #5 of CBFA are similar to seeds #2 and #9 of COMMIT).
In addition to concern coverage, Figure 4 shows that COMMIT
fills a missing gap in concern mining techniques, because CBFA
specializes in small or very large, homogeneous CCCs (low or very
high D) with high scattering (high S), HAM specializes in large,
homogeneous CCCs with low scattering, and COMMIT specializes
in large, heterogeneous CCCs with medium scattering. Hence, it
makes sense to combine the three mining techniques.

As an example, we found that many of the seeds returned by
COMMIT for NetBSD correspond to individual drivers. Most of
the drivers correspond to modular concerns, except for drivers that
are generic (default) for a large class of devices, such as the West-
ern Digital SCSI drivers in seed #3. These drivers turned out to be
non-modular composite concerns, in the sense that many of their
instances were scattered across the implementation of the kernel.
CBFA, on the other hand, is able to find seeds for the general de-
vice driver API, across all drivers, because the API functions have
similar names. COMMIT does not find a high mutual information
value for the API functions of different drivers, as the majority of
drivers have a modular implementation and are developed indepen-
dently. CBFA and COMMIT clearly complement each other.

Our qualitative analysis showed that the CCCs identified by CBFA
tend to be a mix of development-oriented (e.g., error logging, trac-
ing, invariant checking and memory management) and domain-
specific concerns (e.g., relational table management in PostgreSQL
and device driver API in NetBSD), whereas the ones identified
by HAM and COMMIT are all closer to the domain of database
systems or operating systems, like referential integrity constraints,
transaction management and data layout in PostgreSQL, and termi-
nal management and data transfer in NetBSD.

Only COMMIT is able to recover composite concerns. Six of
the seeds identified by COMMIT for PostgreSQL (especially the
top four seeds) lead to composite concerns, with the number of
sub-concerns varying between two and six. Similarly, five of the
seeds for NetBSD lead to composite concerns, with the number of
sub-concerns also varying between two and six. CBFA and HAM
only find single sub-concerns of these composite concerns, such as
CBFA seeds #1 and #5 for NetBSD and HAM seed #19 for Post-
greSQL. CBFA and HAM are not able to reveal the relations be-
tween these sub-concern seeds. This makes it difficult for develop-
ers to identify and reconstruct the full composite concern.

We now discuss PostgreSQL seed #1 for COMMIT in more de-
tail, as this is one of the best illustrations of a composite concern
that we found. Concern #1 is related to the ODBC framework
(“Open DataBase Connectivity”), which is a cross-platform and
cross-language API specification to shield client programs from
differences in relational database technology. Client programmers
write their systems in terms of ODBC, after which ODBC trans-
forms the generic queries into database-specific ones using a database-
specific ODBC driver. Concern #1 is responsible for “retrieving
query results and checking for errors”. It consists of the following
six co-operating sub-concerns:

1. Connection configuration concern, which configures the ODBC
connection from a client program.

2. Data retrieval concern, which supports the retrieval of data
from the database over the established connection.

3. SQL-to-ODBC mapping concern, which permits the efficient
mapping of SQL query results to ODBC-specific types.

4. Type conversion concern, which is used to map ODBC-specific
types to general C types.

5. Error handling concern for type conversions.
6. Error handling concern for client connectivity.�

�

�




CBFA, HAM and COMMIT complement each other. CBFA
identifies small or very large, development-oriented con-
cerns with high scattering. HAM identifies large, domain-
specific concerns with low scattering. COMMIT identi-
fies large, domain-specific concerns with medium scattering,
many of which are composite concerns (shortcoming S3).

6. THREATS TO VALIDITY
Construct Validity checks whether we use the right metrics in

our study. This paper focuses on macro-level shortcomings of con-
cern mining techniques, i.e. variation of seeds, ignored facets of
seeds and relations between seeds. However, mining techniques
also have micro-level shortcomings [26], such as false positive and
negative entities inside seeds.

Internal Validity is concerned with finding out whether other
plausible hypotheses can explain our findings. Our comparative
case studies rely on re-implemented and extended versions of HAM
and CBFA. HAM had not been applied to non-object oriented sys-
tems before, but our findings confirmed earlier object oriented stud-
ies [5]. Our extensions to HAM and CBFA performed significantly
better than the original algorithms on our subject systems, hence we
only reported the performance of the former re-implementations.

To analyze the source code changes, C-REX uses a lexical tech-
nique that does not resolve pointers or multiple definitions of the
same function [18]: if two functions have the same name, C-REX
does not know which one is called. However, as entities with the
same name in general represent the same concern (cf. polymor-
phism in object-oriented systems [25]), COMMIT treats all called
or referenced entities with the same name as one.

The optimization criteria of Section 4 to determine COMMIT’s
threshold encode our intended usage of COMMIT, i.e., getting a
high-level overview of concerns and their structure. If developers
want to zoom in on very specific concerns, other criteria should be
used, resulting in a higher threshold. The ability to tweak COM-
MIT based on the focus of the concern miner, is a powerful feature.

Finally, our assumption to ignore changes of more than 100 enti-
ties because such changes typically correspond to massive changes
of, for example, licenses, might not always hold.

External Validity deals with the generalization of our results.
For our study, we chose two large, long-lived legacy C systems,
similar to [1, 2, 6, 7, 15, 34, 39], and compared the performance
of COMMIT to the performance of CBFA and HAM. We chose
PostgreSQL and NetBSD because of their size and long history,
and respectively considered 7 and 11 years of that history, due to the
amount of effort to carefully analyze concerns across the lifetime of
such large systems. The development process (open versus closed
source), programming language and domain of the applications are
likely to affect the results and the applicability of COMMIT.

Comparisons with other concern mining techniques are needed
to further generalize our findings, in particular on smaller de facto
benchmark systems like JHotDraw [9], but in this paper we focused



on comparing COMMIT to two other techniques on larger-scale,
long-lived software systems. Because our CBFA re-implementation
consists of a Fan-in [25] re-implementation and a clustering tool,
we were able to compare Fan-in to COMMIT. As Fan-in did not
benefit from our extension to support non-function entities, we used
the original algorithm. The seed dimensionD is always 1, whereas
the scattering S is significantly lower than for CBFA. The unique-
ness U and coverage C are slightly worse than for CBFA. Hence,
COMMIT also complements the results of Fan-in.

Reliability Validity reflects the degree to which someone doing
the same study would reach the same results. It is a known fact
that concern mining is inherently subjective [26]. To counter this,
the two first authors independently validated the top twenty results
for CBFA, HAM and COMMIT (similar to for example [32]), af-
ter which their findings were reconciled. The Cohen Kappa inter-
rater agreements [3] for the decision if a concern seed is a CCC are
shown in Table 5. In three cases, the two raters agreed “perfectly”,
whereas in the other three cases the agreement was still “substan-
tial”: in two cases (agreement of 0.76) the raters disagreed on two
seeds, and in one case (agreement of 0.66) the raters disagreed on
three seeds. Per subject system, the interpretation of all 60 min-
ing results took ninety hours in total, primarily because none of the
authors knew the internals of PostgreSQL or NetBSD before this
case study, and the seeds of HAM and COMMIT contain entities
from different periods in time. We cannot make any claims about
the duration of our analysis for individual techniques because of
the learning effect involved with the subject systems.

7. RELATED WORK
None of the existing concern mining or browsing techniques ad-

dresses all three shortcomings. We picked CBFA and HAM as
example techniques to demonstrate this. We first discuss concern
mining techniques, then concern browsing techniques.

Various static concern mining techniques have been proposed:
Fan-in value [25], identifier analysis [36, 39], clone detection [7,
34], random walks [38], Latent Dirichlet Allocation [1], cluster-
ing [12, 39] or even a mix of techniques [33]. The techniques
based on inexact equality like clone detection techniques [7, 34]
and PAM [38] deal better with slight variations in concern instances
than CBFA and HAM, but are not able to handle larger variations
like near clones (S1). Concern mining techniques tend to focus
only on functions (S2), except for clone detection techniques [7]
and CBFA. To our knowledge, no concern mining technique re-
ports relations between concern seeds (S3).

Dynamic concern mining techniques [4, 15, 20, 35] use execu-
tion scenarios to detect which program entities collaborate in a use
case. While this theoretically allows them to exercise multiple sub-
concerns of a composite concern, one has to make sure that the
executed scenarios include all sub-concerns. This problem makes
it hard in general to detect all instances of a concern.

History-based concern mining techniques [5, 8] analyze which
program entities change together frequently, as such entities likely
belong to the same concern. As illustrated for HAM, the use of
exact equality checks between sets of calling entities makes these
techniques suffer from S1 and S2. Canfora et al. [8] tackle S2 by
considering individual lines of code instead of just function calls.

Concern browsing techniques [2, 21, 23, 27, 31, 32, 37] do not
generate all concern instances up front, but suggest related code
fragments as a developer browses through the source code in her
IDE. Manual input is needed to deal with shortcomings S1 and S2,
and the detection of relations between seeds is still troublesome.
Some techniques [27, 31] manage relations between concerns by
allowing users to manually structure concerns in a hierarchy.

8. CONCLUSION
Given the high maintenance and re-engineering risks represented

by crosscutting concerns, especially composite concerns, automatic
identification of these concerns is an important task. This paper
presents a history-based concern mining technique named COM-
MIT (“COncern Mining using Mutual Information over Time”) that
addresses three major shortcomings in the concern mining process.
First, it uses a robust, statistical clustering mechanism to deal with
small and even large variations in the instances of a concern. Sec-
ond, COMMIT considers dependencies on behavior (functions),
state (variables and types) and preprocessor entities (macros) to
identify different facets of seeds. Third, COMMIT uncovers the
relations between concern seeds. In particular, it can detect com-
posite concerns with multiple co-operating sub-concerns.

COMMIT has been applied on the open source PostgreSQL data-
base and NetBSD operating system kernel to compare its perfor-
mance with two state-of-the-art mining techniques, i.e. CBFA [39]
and HAM [5]. We found that for the top twenty results of each
technique, COMMIT obtained up to 87.5% more unique concerns
and up to 88% higher concern coverage, even after adapting CBFA
and HAM to non-function C entities. COMMIT’s ability to detect
highly heterogeneous, domain-specific CCCs makes it complemen-
tary to CBFA, which focuses on small or very large, homogeneous
CCCs with high scattering, and to HAM, which focuses on large,
homogeneous CCCs with low scattering.

The take-home message of this paper is that wide-spread adop-
tion of concern mining techniques for software maintenance, reverse-
engineering and re-engineering is only possible if they:

1. incorporate all possible sources of data (such as change his-
tory and execution traces) and information (such as state, be-
havior and preprocessor entities);

2. deal with noise in this data and information;
3. provide more context about seeds to improve the manual con-

cern mining steps.
Our results encourage us to study hybrid concern mining tech-

niques, supported by statistical analysis.
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