
Architecture Recovery of Web Applications

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

Department of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa, holt}@plg.uwaterloo.ca

ABSTRACT
Web applications are the legacy software of the future.
Developed under tight schedules, with high employee
turn over, and in a rapidly evolving environment, these
systems are often poorly structured and poorly docu-
mented. Maintaining such systems is problematic.

This paper presents an approach to recover the archi-
tecture of such systems, in order to make maintenance
more manageable. Our lightweight approach is flexible
and retargetable to the various technologies that are
used in developing web applications. The approach ex-
tracts the structure of dynamic web applications and
shows the interaction between their various components
such as databases, distributed objects, and web pages.
The recovery process uses a set of specialized extractors
to analyze the source code and binaries of web appli-
cations. The extracted data is manipulated to reduce
the complexity of the architectural diagrams. Develop-
ers can use the extracted architecture to gain a better
understanding of web applications and to assist in their
maintenance.

1 INTRODUCTION
A web application is a software system whose function-
ality is delivered through the web [9]. With the ad-
vent of the Internet and the web, many applications are
no longer developed using traditional client/server tech-
nologies. Instead, new applications are developed using
web technologies such as web browsers, web servers, and
application servers. A web browser is the user’s inter-
face to the application. Internet protocols such as Hyper
Text Transfer Protocol (HTTP) are used for communi-
cating between the interface and the rest of the appli-
cation.

Originally developed as a document-sharing platform,
the web is still often considered as such. Consequently,

the development of web applications is considered to
be an authoring problem and not a software engineer-
ing problem. For example, many of commercial and
research tools used to analyze the structure of a web ap-
plication show only the hyperlink relations between the
different web pages. These tools fail to show the interac-
tion between the databases, the distributed objects, and
the web pages that form a web application [32]. Such re-
lations are important to software developers who must
maintain or enhance these applications. For example
given a database table, a developer may need to answer
questions such as “Which web page writes data to this
table?”, or “Which object reads data from this table?”.
Furthermore, a software architect may need to deter-
mine the answer for questions such as “Does my appli-
cation have a three layered architecture?”, “Which part
of my application is affected if the CUSTOMERSPASSWORDS
data table is offline for maintenance?”. Currently, such
inquiries can only be answered by scanning the source
code for answers using tools such as grep, consulting
documentation, or asking senior developers.

Unfortunately, the documentation associated with a
web application does not commonly exist and if it does,
it is rarely complete or up-to-date. With a very short
development cycle, software-engineering principles are
rarely applied to the development of web applications.
As Pressman notes, the reluctance of web developers
to adopt well-proven principles is worrisome [25]. The
techniques used by web application developers are sim-
ilar to the ad hoc ones used by their predecessors in
the 1960s and 1970s. To aggravate matters, the web
community has a high turnover rate with an average
employment length that is just over one year [19]. The
original developers of a maintained web application are
often no longer part of the organization. This lack of
documentation and system experts increases the cost
and time needed to understand and maintain large web
applications.

Recent research [1, 2, 5, 6, 13, 26, 33] recognizes the
need to adapt traditional software engineering principles
to assist in the development of web applications. Re-
verse engineering and software visualization have been

proposed as techniques to improve the understanding
of large traditional non-web applications [14]. These
techniques have been used to study systems such as
as the Linux Kernel (800 KLOC) [4], the Apache web
server (80 KLOC) [12], and the Mozilla web browser
(2.1 MLOC) [20].

In this paper, we describe an approach to assist devel-
opers in understanding their web applications. We de-
scribe a set of tools which parse and extract relations be-
tween the various components of a web application. The
extracted components and relations are visualized us-
ing a specialized viewer. In this paper, we consider this
visualization to characterize the software architecture
of the system. It allows developers to perform impact
analysis on the extracted relations between the compo-
nents. The recovered architectures for a number of web
applications were shown to maintenance engineers who
reported that the produced diagrams are useful in as-
sisting them in understanding the systems. In many
cases, the engineers had produced similar diagrams by
manually examining the source code of various compo-
nents. In short, they would have used the tool, if it had
been available to them.

Paper Organization
The rest of this paper is organized as follows. Section 2
describes the interactions between the various compo-
nents in a web application. Section 3 describes the types
of information that are needed by developers to gain
a better understanding of web applications. Section 4
presents a sample web application and its recovered ar-
chitecture. Section 5 describes our architecture recovery
approach for web applications. Section 6 delves deeper
into the presented architecture recovery process and de-
scribes the schemas used to analyze the recovered archi-
tecture before visualizing it. Section 7 describes related
work. Finally, Section 8 draws conclusions from this
work.

2 COMPONENTS OF A WEB APPLICA-
TION

Static
Pages

Web
Browser

Web
Server

Multimedia
Objects

Active
Pages

Application
Server

Databases
Web

Objects

Figure 1: Dataflow Between the Components of a Web
Application

Web applications contain many components that are
linked together to deliver the functionality of the ap-
plication (see figure 1). These components are written
in various programming languages and run on multiple
machines distributed across the network. Each compo-

nent is written in a language which is appropriate to im-
plement its functionality. Scripting languages are used
to assemble the different components, and databases are
used by the components to store and share their data.

From our experience in studying and analyzing web ap-
plications, we observe that there is a recognizable set
of components which comprise these system. We be-
lieve that this set is a useful basis for analyzing these
applications. This set consists of web browsers (used
by the clients), web servers, application servers and the
following components:

Static pages These contain only HTML code and ex-
ecutable code that runs on the web browser. They
are served by the web server and do not need to be
preprocessed by the application server.

Active pages such as Active Server Pages and Java
Server Pages. These pages contain a mixture of
HTML tags and executable code. When an active
page is requested, the application server prepro-
cesses it and integrates data from various resources
such as web objects or databases, to generate the
final HTML web page sent to the browser. Ta-
ble 1 shows two active pages: welcome1.asp and
welcome2.asp which are equivalent to the static
page welcome.html. All pages say “Welcome to
CNN.COM ” when displayed in the user’s browser.
The symbols <% and %> indicate to the applica-
tion server that the text between them is con-
trol code which is to be executed and the out-
put returned to requesting client. For example, in
welcome2.asp the application server needs to lo-
cate the Server object and execute the getName()
method, then Write the output to the file returned
to the browser.

Static
Page

welcome.html

Active Page
welcome1.asp

Active Page
welcome2.asp

<html>
Welcome to
CNN.COM
</html>

<html>
Welcome to
<% Write(“CNN.COM”) %>
</html>

<html>
Welcome to
<% Write(Server.getName()) %>
</html>

Table 1: Examples of Active Pages

Web objects These are pieces of compiled code which
provide a service to the rest of the software system
through a defined interface. They are supported by
distributed technologies such as CORBA, EJB and
DCOM. They are not objects in the sense of source
code object-oriented programming objects such as
those defined in C++ or Java.

Multimedia objects such as images, and videos.

Databases These are used to store data that is shared
among the various components.

Figure 1 shows the data flow between the various com-
ponents of a web application. The user of the appli-
cation employs the web browser to access the function-
ality of the web application. The user interacts with
the browser by clicking on links and filling form fields.
The browser in turn transmits the user’s actions to the
web server. Requests are sent using the HTTP protocol.
Upon receiving the request, the web server determines
if it can fulfill the request directly or if the application
server must be invoked. The web server serves directly
static HTML pages and multimedia content such as im-
ages, videos, or audio files; or it forwards the request to
the application server. The application server processes
active pages and returns the result to the web server as
static HTML pages. The web server in turn returns the
HTML page back to the requesting web browser, which
displays it to the user.

3 VISUALIZATION NEEDS OF DEVELOP-
ERS

Web Applications are large complex software systems
that contain a rich structure with many interesting re-
lations between their components. The choice of the ap-
propriate relations and components is task dependent.
For example, a developer modifying an object used by
many active pages is interested in a different set of rela-
tions than a database administrator trying to track all
the components using a specific database table. Unfor-
tunately, the only relations shown by current web ap-
plication visualization tools are the hyperlinks between
the static pages in a web application. This limited visu-
alization is not sufficient for a developer to understand
the structure of the web application and the interactions
between its various components.

Previous studies in program maintenance and under-
standing conducted on the development of traditional
software systems [22, 27, 28, 29] assisted us in defining
a set of useful relations and components to recover and
display in generated diagrams. Studies have shown that
developers use visualization tools to pinpoint locations
of interest in the system’s code (for example to locate
all the files that use a database table); they delve into
these locations of interest to improve their understand-
ing using their code editors. In response, our recovered
architecture diagrams do not show all the detailed re-
lations and components, instead they show an overview
of the system. For example, we do not show the in-
ternal structure of code inside the same file. We show
the inter-file relations. Furthermore, we use techniques
such as containment and information hiding to reduce
the complexity of the visualized systems.

In a web applications each component has its own inter-

nal architecture or design. The web application devel-
oper is particularly concerned with the topology of the
components: how they interact together and how they
are glued together using the various web technologies.
On the other hand, the web application developer is not
usually interested in the internal architecture of the web
server or the web browser, as they add complexity to
the visualized system without contributing to the over-
all understanding of the system. The web server and the
browser represent software infrastructure similar to the
operating system and the windowing system, whose ar-
chitectures are not shown when visualizing traditional
software systems. The architecture diagrams for web
applications should show the main components of a web
application, such as web objects, database tables, mul-
timedia objects that are glued together to implement
large sophisticated web applications.

When developers search for a better understanding of
a system, the four most common search targets used
by developers are function definitions, uses of a func-
tion, variable definition, and all uses of a variable [28].
We adapted analogous relations for web applications,
but at a higher level of abstraction. Instead of showing
variables, functions and their interrelations, we show
database tables, distributed objects, and their interre-
lations.

4 AN EXAMPLE WEB APPLICATION
We have recovered the architecture of several large com-
mercial and experimental web applications. These ap-
plications had over 200 distributed web objects and over
15 databases per application. Space restrictions do not
allow us to present the architecture of such large sys-
tems, so we will illustrate our approach to architecture
extraction in terms of a small example system, called
Hopper News.

Figure 2: Main Page for Hopper News Web Applica-
tion

Hopper News is the web site for a fictitious newspa-
per. It features sections for local, national, interna-
tional news, sports, weather, and classified advertise-

ments. In this sample application, only the classified
advertisement section is implemented. The rest of the
links on the main web page, shown in Figure 2, are not
functional. The only functional link is the lowest button
in the page which links to the classified advertisement
page, shown in Figure 3. The application is developed
for the Microsoft Windows platform and contains com-
ponents written in HTML, VBScript, VB, and C++.
The application is developed by Microsoft to showcase
building web application on the Windows platform.

Figure 3: Hopper News Classified Advertisement Web
Page

The application supports two main functions: It per-
mits a person to browse advertisements, and it permits
registered users to place advertisements. To place an
advertisement, the user must pay a fee.

The Recovered Architecture for Hopper News
Using our approach, we recovered the architecture, as
shown in figure 4. The architecture of Hopper News has
the following layers:

Layer 1 consists of the Presentation Logic. It provides
the user interface to the two functions of the appli-
cation: browsing and placing advertisements.

Layer 2 consists of the Business Logic and Database.
It encapsulates the business rules based on the enti-
ties in the application domain (such as Customer,
Ad, and Product). For example, in figure 4 we
see that the Place Ad subsystem does not inter-
act with the Payment subsystem. The information
about the cost of placing an advertisement is encap-
sulated in the Ad subsystem. Such information is
considered to be a business rule. Also this layer pro-
vides persistent storage (Databases) for the busi-
ness data.

Layer 3 provides infrastructure to support the basic
functions needed by the upper layers, such as ac-
cess to the local file system, or string manipulation
functions. As this web application is developed on
the Microsoft Windows platform, the Infrastructure
layer contains Microsoft Windows specific compo-

nents such as Active Server Pages Objects, Win-
dows libraries and general utilities.

The architecture of Hopper News can be considered as
a three-tiered architecture as follows:

Tier 1 is the Presentation Logic, which is the same as
layer 1.

Tier 2 is the Business Logic, which is part of layer 2.
Tier 3 is the Database, which is the rest of layer 2.

The parts of the Database tier are localized according to
the Business Logic they support, so Figure 4 combines
these two tiers into a single layer (layer 2).

Hopper News

Browse Ads

System LibsASP Objects

ProductPayment

CustomerAd

Place Ads

Util

Layer 1:
Presentation

Logic

Layer 3:
Infrastructure

Layer 2:
Business
Logic &

Database

Figure 4: The Recovered Architecture of Hopper News

Since the Infrastructure subsystems are used extensively
by all other subsystems, arrows to these subsystems
have been truncated to simplify the diagram.

The viewer enables developers to browse and analyze
the architecture using interactive queries such as “What
are the subsystems that use the Customer subsystem?”.

The viewer shows the relations between the various com-
ponents. When the cursor is positioned on a specific ar-
row, a detailed description of the relation is displayed.
From our analysis of various web applications, we de-
cide to use three colors to group the relations into three
categories:

• Black arrows indicate a hyperlink dependency.
• Red arrows indicate a control dependency.
• Green arrows indicate a data dependency.

Color and icon shape are used to represent the various
kinds of components. Blue folders represent subsystems,
blue ovals represent web objects, grey pages represent
active and static pages, blue boxes represent DLLs1, and

1A Dynamic Link Library (DLL) is a shared library on the
Microsoft Windows operating system.

green cylinders represent database tables.

Customer

CUSTOMERS CUSTOMERSPASSWORDS

BUS_CUSTOMERC.DLL

DB_CUSTOMERPASSWORDC.DLLBUS_CUSTOMERC.DLL

CUSTOMERPASSWORDC.DLL

Ad.
DB_ADC.DLL

Place_Ad.
adconfirm.asp

Place_Ad.
custmaint.asp

Place_Ad.
adentry.asp

Payment.
BUS_PAYMENTC.DLL

Util_TAKEANUMBER.DLL SystemLibs_MSVBVM60.DLL

Figure 5: Hopper News Customer Subsystem

The viewer permits us to delve into the structure of each
subsystem. To do this we double-click on the subsystem
of interest and the viewer opens a new diagram showing
the internals of the subsystem.

Figure 5 shows the internal structure of the Customer
subsystem. It shows the various database tables that
are part of the Customer subsystem and shows their in-
teraction with the DLLs that encode the business rules of
the web application. The viewer also shows how the in-
ternal components of the Customer subsystem interact
with the components that aren’t part of it.

5 RECOVERING THE ARCHITECTURE OF
WEB APPLICATIONS

To recover the architecture of web applications, we use a
semi-automated approach. A set of tools/extractors ex-
amine the source code of the web application. The tools’
output is combined with input from a system expert
to produce architecture diagrams. This approach is an
adaptation of a similar approach used by the Portable
BookShelf (PBS) [10, 23, 24] environment to recover the
architecture of traditional software systems. The PBS
environment incorporates knowledge and techniques de-
veloped over the last decade in program understanding
and architecture recovery.

Figure 6 shows the steps involved in creating the archi-
tecture diagrams shown in the previous section. First
the components of the software system are processed
using specialized extractors. The extractors generate
facts about the components, relations and attributes of
the software system. The facts could be detailed such
as: function f uses variable a or at a higher level such
as: file f1 uses file f2. The level of detail of the ex-
tracted facts depends on the extractor and the level of

System
Components

Fact
Extractors

Clustering

Layout

Architecture
Viewer

FACTS DB

Figure 6: Our Architecture Recovery Approach

analysis to be performed on the recovered facts. For ex-
ample, for architecture level analysis, facts at the func-
tion level aren’t needed and can be lifted to the level of
files or subsystems. The extracted facts are stored in
TA format [15, 16]. Figure 8 illustrates how the extrac-
tion phase takes place for web applications. Each ex-
tractor generates facts that conform to a domain model
(schema), as will be explained in the following section.

Figure 7: View of Facts Without Clustering

Once the facts have been produced, an immediate at-
tempt to visualize them would lead to an architecture
view which resembles figure 7. The figure shows a com-
plicated graph of the relations between the different
components of a software system. Each small dot repre-
sents an artifact of the software system (such as a source
file, a database, etc.), and each line between two dots
indicates the existence of a relation (such as uses, or
calls) between two of the artifacts. The developer can-
not use the diagram to gain a better understanding of
the software system because of the complexity of the
diagram. Instead of showing all the extracted relations
and artifacts in the same diagram, we decompose the
artifacts of the software system into smaller meaningful
subsystems. The clustering is initially performed by a
tool that proposes decompositions based on heuristics

such file naming conventions, development team struc-
ture, directory structure, or software metrics [34, 35, 3].
The developer later manually refines the automatically
proposed clustering using their domain knowledge and
available system documentation. The decomposition in-
formation along with the extracted facts is stored in TA
format.

Finally, an automatic layout tool processes the stored
facts to generate diagrams such as the one shown in
figure 4. The layout tool attempts to minimize the line
crossing in the generated architecture diagrams [30, 31].
The developer may manually modify the generated lay-
out.

The aforementioned process combines tool support and
human input to recover the architecture. Tool support
dramatically reduces the recovery time of a large soft-
ware system. Human interpretation is essential in orga-
nizing and clustering the large amount of extracted in-
formation to produce meaningful architecture diagrams.

Extractors for Web Applications
Web applications are developed using a variety of lan-
guages and are composed of components for which the
source code may not be available or an appropriate ex-
tractor may not exist. The properties of web applica-
tions present many challenges for traditional software
architecture recovery approaches that typically depend
on a single extractor[18]. To deal with web applications,
we developed five types of extractors:

• HTML extractor
• Server Script extractor
• DB Access extractor
• Source Code extractor
• Binary Code extractor

Each extractor parses a component or a section within
a component and generates the appropriate facts. To-
gether these extractors generate facts from the entire
web application. Figure 8 shows an overview of the var-
ious extractors and their input and the type of facts gen-
erated by them. Once all the facts are emitted, the clus-
tering information is combined and all the data (facts
and clustering) are processed to reduce their complexity.

The various extractors are invoked by a shell script
which crawls the directory tree of the source code for
the web application. The script determines the type of
the component and invokes the corresponding extrac-
tor. For example, if the script determines that a file
is a binary file, the Binary Code extractor is invoked.
Each extractor stores its generated facts in a file with
the same name as the input file and the name of the
extractor as the suffix. Later, another script crawls the
directories and consolidates all the generated facts files
into a single file called THEFACTS. This file is combined

with the clustering information which decomposes the
web application into a hierarchy of subsystems.

HTML
Extractor

Source Code
Extractor

DB Access
Extractor

Server Script
Extractor

Binary Code
Extractor

Web Page

Server Scripts

COM
Source Code

COM
Binary

HTML
Facts

Script
Facts

DataBase
 Facts

Source
Code Facts

Binary
Facts

Figure 8: Conceptual Architecture of the Fact Extrac-
tors

To process the large code base written in several lan-
guages, we use these four extraction techniques: island
extraction [17], robust extraction [8], heuristic extrac-
tion, and binary extraction.

Island Extraction
In web applications a single source file may contain
multiple sections written in different programming lan-
guages. Special tags are used in the file to indicate the
different sections and the programming language used.
For example, an active page may contain sections of
HTML code, VBScript code, and JavaScript code. Fur-
thermore, many application servers have their own pro-
prietary language.

To parse each file and extract the relations, it seems
that we would have to implement parsers/grammars for
each language. Instead we choose to extract only the
entities which we are interested in. By considering each
processed file as an ocean of tokens, a set of extrac-
tor where developed using grammars for each island of
interest. Each extractor processes the file and locates
the subsections (islands) of interest in the file. Once
these are located, the appropriate parse is performed to
extract the information.

Robust Extraction
Some of the languages used to implement web appli-
cations are still in development and aren’t well doc-
umented (for example, VBScript). Also many appli-
cation servers provide extensions for the programming
languages. As the language reference manuals did not
provide a grammar for the language, we based our ex-
tractors on the code examples and any available docu-
mentation. Then, we extended the parsers to support
robust parsing. Robust parsers are capable of identify-
ing and tolerating minor syntax errors without causing
the parse to fail. This technique enabled us to overcome

many of the problems associated with parsing undocu-
mented features in the studied languages and platform-
specific extensions.

Heuristic Extraction
The Database Access extractor uses regular expressions
to locate accesses to data tables within source code
statements. As shown in figure 8, this extractor takes as
input a server script or the source code of a component.

The extractor searches for common database access
functions and SQL keywords such as SELECT or INSERT.
The extractor then uses heuristics to validate the
matches. For example, once the extractor locates the
keyword SELECT it searches for the keyword FROM and
determines, based on the distance and the strings be-
tween both keywords, if a database table is being ac-
cessed or if the match is coincidental and no database
table access has occurred. Because of the use of heuris-
tics, the output of this extractor is reviewed manually
to validate it. The Database Access extractor has been
tuned to work well for the systems we studied. For other
systems, we expect that the extractor won’t perform as
well. User intervention is possible to correct the ex-
tractor if it fails to recognize database accesses or if it
mis-recognizes database accesses.

Binary Code Extraction
The Binary Code extractor examines the binaries for
compiled components. It extracts the function calls and
the data from the symbols table stored in the binary.
This extractor is used to analyze components when:

• We do not have access to the source code. The com-
ponent may have been purchased as binary code or
the source code of the components wasn’t given to
us for analysis due to its sensitive nature.

• We do not have a Source Code extractor. Many
languages are used to develop web applications and
we may not have a language extractor for each one.

6 SCHEMAS
As shown in the previous section, our recovery pro-
cess depends on a set of extractors. Each extractor
emits different type of data. For example, the Source
Code extractor emits relations such as function calls,
whereas the DB Access extractor emits relations such
as database table updates. To generate architecture di-
agrams, we need to combine these types of data. We
need to combine the output of all individual extrac-
tors to generate useful diagrams that show the inter-
component interactions. Furthermore, we need to be
able to reduce the details of the extracted facts to im-
prove the readability of the architecture diagrams. Yet
we should not throw away the detailed facts as the user
may need to get more details. An ad-hoc methods may
be used to achieve this goal. But we need to be able
to later incorporate other extractors in the process with

very minimal modifications. We use schemas to solve
these problems.

Call

Function/
Procedure

Object

Method Property

Call

Variable

PropDclByUseVar

UseVar

MthdDclBy

UseProp

UseProp

Call

Instantiate/
Reference

Instantiate/
Reference

DBTable

WebObject

Instantiate/
Reference

Instantiate/
ReferenceUseDBTable

UseDBTable

Figure 9: Entity Level Schema for the VBScript Lan-
guage

Each fact extractor produces facts which conform to a
particular domain model or schema. A schema is essen-
tially an entity-relational model. It consists of entities,
relations between these entities and attributes attached
to the entities and relations. For example, as shown
in Figure 9 the schema for the VBScript language has
entities such as Method, Procedure, and Object. It
has relations such as UseVar, UseDBTable, and Call.
Each entity has attributes such as “LineNumber” and
“Filename”. We do not show the attributes to make
the diagrams easier to read.

Function Object

Call

Variable

UseVar

Instantiate/
Reference

Reference

Data Type

DBTable

WebObject

UseDBTable

UseDataType

Instantiate/
Reference

Figure 10: Entity Level Schema for the JavaScript
Language

Figure 10 shows the schema for the JavaScript lan-
guage. Given the VBScript and the JavaScript schemas
we can take their union to create a schema for facts
for both VBScript and JavaScript. With this union
schema, we are able to consolidate facts into a com-
mon fact base. This allows us to study the interaction
between components written in different programming
languages. Figure 11 shows a union schema for both
VBScript and JavaScript. All the common entities of
the JavaScript and the VBScript languages are present
in the common schema. They are prefixed with VBS

for VBScript entities and JS for JavaScript entities. As
can be seen in figure 11, the common schema uses in-
heritance relations to indicate the mapping between the
union schema and the language specific schema. For ex-
ample, a UserObject entity is a super class of VBScript
Object and JavaScript Object.

UseVar

JSObjectVBSObject

UserObjectFunction

JSFunction
VBSFunction

VBSProcedure

JSVariableVBSVariable

Variable

JSDataTypeVariant

DataType

Instantiate

Call

UseDataType

Call

WebPage

UseVar

IncludeFuncDefBy ObjDefBy

VarDefBy

WebObject

DBTable

UseDBTable

Reference/
Instantiate

UseDBTable

Reference/
Instantiate

Figure 11: A Union Entity Level Schema for VBScript
and JavaScript

If we were to visualize the extracted facts for the en-
tire web application at this level of detail, we would get
very complicated diagrams — similar to figure 7. At
this level of detail we are visualizing every entity in our
code base. This includes entities that aren’t accessible
outside of a particular source file, such as local vari-
ables inside of a function. To reduce the clutter in the
architecture diagrams, we perform another two steps of
schema transformations. These schema transformations
raise the level of abstraction from the source code level
to the architecture level. Figure 12 shows the three lay-
ers of schemas used in our approach.

A
bstraction

Low
(Source Code)

High
(Architecture)

CLS:
Databases, Web pages,

Web Objexct, etc.

ALS:
Components &

Subsystems

ELS:
JavaScript, VBScript,

Java, C, C++, etc.

Figure 12: Layers of Schemas

The Entity-Level Schema (ELS) describes the permitted
relations between the program entities such as functions,

variables, objects, database tables and web objects. The
ELS is language dependent, as previously indicated.
Figure 9 and 10 are examples of an Entity-Level Schema
(ELS). Figure 11 is a union of such schema.

WebObject

DBTable

Call

WebPage

Include

UseDBTable

UseVar

Reference

DLL

Instantiate

Contain

HTMLRef

Multimedia
Object

HTMLRef

Reference Reference

UseDBTable

Figure 13: Component Level Schema for Web Appli-
cations

The Component Level Schema (CLS) describes the re-
lations between the components of a web application
such as web pages, database tables, binary libraries and
distributed objects. It raises the level of abstraction of
the extracted facts from the internal structure of the
components to the components themselves. Figure 13
shows the CLS, which contains the various components
of a web application and their interrelations. As can
be seen in the figure, a WebPage component can include
other WebPages. The HTML code in a WebPage can ref-
erence another WebPage or a MultimediaObject such as
a picture, a movie, or an audio file. Also code segments
written in JavaScript or VBScript in a WebPage can use
a variable, instantiate an object, or call a function de-
fined in another WebPage. The code segments can also
read, update, and insert data in database tables. The
code segments can instantiate or reference a WebObject
that may reside inside a DLL. A WebObject can in turn
reference other WebObjects or it can access DBTables.

Contain

Subsystem Component

Contain

Contain

DependOnDependOn

DependOn

Figure 14: Architecture Level Schema for Web Appli-
cations

At the highest level of abstraction we have the
Architecture-Level Schema (ALS) which describes the
relations between the architecture elements which are
subsystems and components, see figure 14. The ALS is

independent of language (such as VBScript, JavaScript)
and independent of technology (such as DCOM, EJB,
or CORBA).

The different levels of schemas enable developers to
study their software system at various levels of abstrac-
tion. Developers can perform a detailed analysis on the
source code or a higher-level analysis on the architec-
ture. They can drill down [7] to investigate architec-
ture anomalies at the source code level such as unex-
pected subsystem interdependencies. Using roll up op-
erations, developers can investigate the effects of source
code changes on the overall architecture of the software
system [21]. More generally, schemas provide a conve-
nient conceptual framework that helps developers think
about the structure of web applications and underlies
the construction of tools that help developers explore
and visualize this structure.

7 RELATED WORK
This section compares our approach to architecture re-
covery of web applications to related research that ad-
dresses web applications. In particular, we address work
on the evolution, the architecture recovery and the mod-
eling of web applications.

Web Applications: Evolution
Brereton et al. point out that HTML’s nested tags are
analogous to the block structure of third generation pro-
gramming languages and that links between pages are
analogous to GOTO statement [5]. They demonstrate a
tool that can track the evolution of pages in a web site.
The tool is based on a modified network crawler that
visits the web site multiple times over a span of a year
and reports the change in the contents of the web pages.
Ricca and Tonella developed a similar tool [26].

Both tools are suited toward static web sites which do
not have active pages, web object, or databases. Their
crawler won’t recognize that many apparent changes in
the web site may be due to active pages and not to
the actual modification of the content of the web page.
For example, the tool would indicate that the homepage
of a site like CNN.COM changes continuously, but in
fact the source of the home page rarely changes. It
is an active page, which contains executable code that
retrieves updated information from a database, at the
time the page is accessed.

The approach suggested by Rica, Tonella, and Brereton
puts more emphasis on the user’s experience. It at-
tempts to track the changes that are sensed by the user
of the application. These changes may not be mirrored
in the source code of the web application. Also, changes
in the source code may not affect the pages viewed by
the user. For example, in an early version of an email
service web application, the page displaying the user’s
inbox may retrieve all the email messages from a flat file.

In a later version, the email messages may be stored in
an SQL database. When accessing the page, the user
won’t notice the change. Clearly, the architecture of
the web application has changed. Our approach ana-
lyzes the source of the components of a web application.
Using this approach, we can study more sophisticated
dynamic web applications. Stated differently, We use a
white box reverse engineering approach and they use a
black box approach.

Web Applications: Architecture Recovery
The related work discussed thus far is based on tools
such as parsers and crawlers. In contrast, Antoniol et
al. suggest a non-automated technique to recover the
architecture [1]. The technique is founded on the Rela-
tion Management Methodology (RMM), which in turn
is based on the Entity Relationship model. Using RMM,
the application domain is described in terms of entity
types, attributes and relationships. For example, an
exam booking web application would have entities such
as students, and courses; and relations such as “takes”,
and “provides”.

RMM is best suited for static web applications whereas
our approach can be used to recover the structure of
dynamic web applications. The RMM recovered ar-
chitecture is a high level view of the main entities in
the domain and the relations between them. Our ap-
proach extracts the implementation view of the system.
The high level view of a system tends to remain stable
across different releases compared to the implementa-
tion architecture which changes as new technologies are
deployed, a common occurrence in the fast moving web
application domain. For example, an RMM recovered
architecture would not changed if the courses and the
students are now stored in a database instead of a flat
file.

Web Applications: Modeling
To aid developers in their analysis, researchers have pro-
posed various methods to model web applications. Each
method emphasizes an aspect or a set of interesting rela-
tions that the developers can model. Ceri et al. present
the Web Modeling Language (WebML) [6]. WebML
provides a high level conceptual description of a web
application. The language is geared towards database-
driven applications. WebML is more suited for the high
level specification of web application than for modeling
the actual implementation because it lacks the concepts
needed to model control flow. For example, relations
between the objects and the call graph cannot be ex-
pressed using WebML’s constructs.

Conallen’s work on extending UML [11] to model
web applications is the most similar to our work [9].
Conallen presents the Web Application Extension
(WAE) for UML. Web pages are modelled as UML com-

ponents. Every web page is modelled using two different
aspects:

1. The server side aspect where he shows the page’s
interaction with other pages, the business logic ob-
jects, the databases and the server provided re-
sources.

2. The client side aspect where he shows the page’s
interaction with the browser’s built-in objects and
Java applets. This aspect is more concerned with
the page’s layout and presentation.

By contrast our approach focuses mainly on the server
side aspect of modeling web applications. Conallen has
demonstrated the generation of skeleton code for a web
application based on a UML specification of the ap-
plication. His work can be thought of as the forward
engineering of web applications where our research is
concerned with assisting developers who did not spec-
ify their web application using UML but need to un-
derstand them. We could convert our diagrams into
UML compliant diagrams using a schema transforma-
tion. Current UML tools do not provide the features
available in our specialized viewer, such as querying and
hierarchal navigation.

8 CONCLUSION
In the work we have done, we concentrated on the ex-
traction of web applications developed on the Microsoft
Windows platform. While we do not foresee problems
with extractions for applications developed on other
platforms, we recommend that further research be done
to generalize and improve our approach. Also detailed
empirical studies are needed to verify the benefits of our
tools for web developers.

We presented an approach to recover the architecture
of web applications. The approach uses a set of special-
ized parsers/extractors which analyze the source code
and binaries of web applications. We described the
schemas used to produced useful architecture diagrams
from highly detailed extracted facts. The recovered ar-
chitecture is shown as simple box and arrow diagrams.
This visualization helps developers of web application
understand the structure of their application, helping
them to rapidly update it to handle new requirements.

The need for tools to assist developers of web applica-
tion is clear and justifiable. Web applications are to-
morrow’s legacy software. With a short release cycle, a
“no-documentation” culture and high employment at-
trition rates, web development companies face severe
challenges to stay competitive in a highly volatile mar-
ket.

ACKNOWLEDGEMENTS
To validate our approach, we used web applications

provided by Microsoft Inc. and Sun Microsystems of
Canada Inc. In particular, we would like to thank Wai-
Ming Wong from Sun for his assistance in our analysis
of the web applications.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, and A. D.
Lucia. Web Site Reenginnering using RMM. In
Proceedings of euroREF: 7th Reengineering Forum,
Zurich, Switzerland, Mar. 2000.

[2] C. Boldyreff. Web Evolution: Theory and Prac-
tice, 2000. Available online at
<http://www.dur.ac.uk/cornelia.
boldyreff/lect-1.ppt>

[3] I. T. Bowman. Architecture Recovery for Object
Oriented Systems. Master’s thesis, University of
Waterloo, 1999.

[4] I. T. Bowman, R. C. Holt, and N. V. Brewster.
Linux as a Case Study: Its Extracted Software Ar-
chitecture. In IEEE 21st International Conference
on Software Engineering, Los Angeles, USA, May
1999.

[5] P. Brereton, D. Budgen, and G. Hamilton. Hyper-
text: The Next Maintenance Mountain. Computer,
31(12):49–55, Dec. 1998.

[6] S. Ceri, P. Fraternali, and A. Bongio. Web Mod-
eling Language (WebML): a modeling language for
designing Web sites . In The Ninth International
World Wide Web Conference (WWW9), Amster-
dam, Netherlands, May 2000. Available online at
<http://www9.org/w9cdrom/177/177.html>

[7] S. Chaudhuri and U. Dayal. An Overview of Data
Warehousing and OLAP Technology. ACM SIG-
MOD Record, 26(1), Mar. 1997.

[8] G. Clarke and D. T. Barnard. Error Handling in
a Parallel LR Substring Parser. Computer Lan-
guages, 19(4):247–259, 1993.

[9] J. Conallen. Building Web Applications with
UML. object technology. Addison-Wesley Long-
man, Reading, Massachusetts, USA, first edition,
Dec. 1999.

[10] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr,
K. Kontogiannis, H. A. Müller, J. Mylopou-
los, S. G. Perelgut, M. Stanley, and K. Wong.
The software bookshelf. IBM Systems Jour-
nal, 36(4):564–593, 1997. Available online
at <http://www.almaden.ibm.com/journal/sj/
364/finnigan.html>

[11] T. O. M. Group. Unified Modeling Lan-
guage Specification. The Object Manage-
ment Group, June 1999. Available online at
<http://www.rational.com/media/uml/post.pdf>

[12] A. E. Hassan and R. C. Holt. A Reference Ar-
chitecture for Web Servers. In 7th Working Con-
ference on Reverse Engineering, Brisbane, Queens-
land, Australia, Nov. 2000.

[13] A. E. Hatzimanikatis, C. T. Tsalidis, and
D. Christodoulakis. Measuring the readability
and maintainability of Hyperdocuments. Soft-
ware Maintenance: Research and Practice, 7:77–
90, 1995.

[14] Hausi A. Müller and Jen H. Jahnke, Dennis B.
Smith and Margaret-Ann Storey and Scott R.
Tilley and Kenny Wong. Reverse Engineering: A
Roadmap. In Proceedings of Future of Software En-
gineering, Limerick, Ireland, June 2000.

[15] R. C. Holt. An Introduction to TA: the Tuple-
Attribute Language, Mar. 1997. Available online
at <http://plg.uwaterloo.ca/~holt/papers/
ta.html>

[16] R. C. Holt. Structural manipulations of software
architecture using Tarski relational algebra. In Pro-
ceedings of WCRE’98, Oct. 1998.

[17] Island Grammars. Available online
at <http://losser.st-lab.cs.uu.nl/~visser/
cgi-bin/twiki/view/Transform/IslandGrammars>

[18] R. Kazman and S. J. Carrière. Playing detective:
Reconstructing software architecture from avail-
able evidence. Automated Software Engineering,
Apr. 1999.

[19] R. Konrad. Tech employees jumping jobs faster,
2000. Available online at <http://news.cnet.com
/news/0-1007-202-2077961.html>

[20] E. H. S. Lee. Analyzing Mozilla, 2000.
Available online at <http://plg.uwaterloo.ca/
~ehslee/pub/mozilla.ppt>

[21] E. H. S. Lee. Software Comprehension Across Lev-
els of Abstraction. Master’s thesis, University of
Waterloo, 2000.

[22] T. C. Lethbridge and N. Anquetil. Architecture
of a Source Code Exploration Tool: A Software
Engineering Case Study. Tr-97-07, School of Infor-
mation Technology and Engineering, University of
Ottawa, 1997.

[23] The Portable Bookshelf (PBS). Available online at
<http://www.turing.toronto.edu/pbs>

[24] D. A. Penny. The Software Landscape: A Visual
Formalism for Programming-in-the-Large. PhD
thesis, University of Toronto, 1992.

[25] R. S. Pressman. What a Tangled Web We Weave.
IEEE Software, 17(1):18–21, Jan. 2000.

[26] F. Ricca and P. Tonella. Visualization of Web Site
History. In Proceedings of euroREF: 7th Reengi-
neering Forum, Zurich, Switzerland, Mar. 2000.

[27] S. E. Sim. Supporting Multiple Program Compre-
hension Strategies During Software Maintenance.
Master’s thesis, University of Toronto, 1998. Avail-
able online at <http://www.cs.utoronto.ca/
~simsuz/msc.html>

[28] S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archety-
pal Source Code Searching: A Survey of Software
Developers and Maintainers. In Proceedings of In-
ternational Workshop on Program Comprehension,
pages 180–187, Ischia, Italy, June 1998.

[29] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M.
Cox. Browsing and Searching Software Architec-
tures. In Proceedings of International Conference
on Software Maintenance, Oxford, England, 1999.

[30] K. Sugiyama and K. Misue. Visualization of Struc-
tural Information: Automatic Drawing of Com-
pound Digraphs. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):867–892, July 1991.

[31] K. Sugiyama, S. Tagawa, and M. Toda. Methods
for Visual Understanding of Hierarchical System
Structures. IEEE Transactions on Systems, Man,
and Cybernetics, 11(2):109–125, Feb. 1981.

[32] S. Tilley and S. Huang. Evaluating the Reverse
Engineering Capabilities of Web Tools for Un-
derstanding Site Content and Structure: A Case
Study. In IEEE 23st International Conference on
Software Engineering, Toronto, Canada, May 2001.

[33] S. R. Tilley. Web Site Evolution. Avail-
able online at <http://mulford.cs.ucr.edu/
stilley/research/wse/index.htm>

[34] V. Tzerpos and R. C. Holt. A Hybrid Process for
Recovering Software Architecture. In Proceedings
of CASCON ’96, Toronto, Canada, Nov. 1996.

[35] V. Tzerpos and R. C. Holt. Software botryology:
Automatic clustering of software systems. In Pro-
ceedings of the International Workshop on Large-
Scale Software Composition, 1998.

