
Studying the Impact of Social Structures on Software Quality

Nicolas Bettenburg and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University
Kingston, Ontario, Canada

Email: {nicbet, ahmed}@cs.queensu.ca

Abstract—Correcting software defects accounts for a sig-
nificant amount of resources such as time, money and per-
sonnel. To be able to focus testing efforts where needed the
most, researchers have studied statistical models to predict in
which parts of a software future defects are likely to occur.
By studying the mathematical relations between predictor
variables used in these models, researchers can form an
increased understanding of the important connections between
development activities and software quality. Predictor variables
used in past top-performing models are largely based on file-
oriented measures, such as source code and churn metrics.
However, source code is the end product of numerous interlaced
and collaborative activities carried out by developers. Traces of
such activities can be found in the repositories used to manage
development efforts. In this paper, we investigate statistical
models, to study the impact of social structures between
developers and end-users on software quality. These models
use predictor variables based on social information mined from
the issue tracking and version control repositories of a large
open-source software project. The results of our case study
are promising and indicate that statistical models based on
social information have a similar degree of explanatory power
as traditional models. Furthermore, our findings suggest that
social information does not substitute, but rather augments
traditional product and process-based metrics used in defect
prediction models.

Keywords-Human Factors; Software Evolution;
Metrics/Measurement; Software Quality Assurance;

I. INTRODUCTION

In the foreword to “Why programs fail” [31], James Larus,
director of Microsoft’s CCF project notes: “If software
developers were angels, debugging would be unnecessary”
as an homage to the famous words by James Madison.
With this line, Larus expresses a fundamental software
engineering concept that sparks enormous research efforts.
Software contains errors, and fixing these errors is very
costly – even more so, if they are discovered after the
software has shipped.

To keep these costs at minimum, researchers have long-
since studied two core areas in empirical software engineer-
ing: understanding and minimizing the cause of errors and
building effective systems to predict where these errors are
likely to occur in the software [8]. Both research areas are
intertwined, as knowledge gained from understanding root
causes can help in building better predictors [25]. At the
same time the study of prediction models provides cues

for understanding the causes of errors, such as complex
code change processes [16]. Past work in defect prediction
makes extensive use of product and process measures that
can be obtained from the source code of a software, such
as code complexity metrics [18], change metrics [21] and
inter-dependencies of elements in the code [23].

However, source-code is the end product of a variety of
collaborative activities carried out by the developers of a
software. Lately, researchers begin to understand that the
intricacies of these activities such as social networks [30],
work dependencies [10] and daily routines [27] stand in
relation to the quality of a software product. Traces of these
activities can be found in the repositories that developers
use on a day to day basis, such as version archives, issue
tracking systems, email communication archives. In this
study we investigate how we can use information about the
social interactions between developers and users in defect
prediction and set out to study their impact on software
quality. We use statistical models to establish and inspect
mathematical dependencies between these measurements –
an approach that been successfully used in previous research
to study the relation between measures of source code and
defects [10], [16], [22], [23], [25], [34].

In particular, we set out to study the following relations
between measures of social interaction and software quality.

(1) The relationship between the social structures
formed by developers and users, and software
quality.

(2) The relationship between the contents of commu-
nication that takes place between developers and
users, and software quality.

(3) The relationship between the dynamics of this
communication and software quality.

Through a case study on the ECLIPSE software system,
we find that such relationships exist and that they can be used
to create prediction models with explanatory power similar
to models based on code metrics. In addition, we find that a
combination of social interaction measures and complexity
metrics yields higher explanatory power than each of the
models taken separately.

The rest of this paper is organized as follows. We discuss
work that is closely related to our study in Section II. In
Section III we present the data we base our case study on

and describe the set of information measures we calculate
from this data in Section IV. The discussion of our study
design in Section V is then followed by a presentation of our
case study. We close the paper by discussing possible threats
to the validity of the work (Section VI), and our conclusion
(Section VII).

II. RELATED WORK

In the following we discuss related research from the two
major research areas of defect prediction and social analyses
of software development.

A. Defect Prediction

Several researchers have previously investigated the use
of data captured from version control systems and bug
databases for defect prediction. Basili et al. [5] established
and promoted the usefulness of object-oriented code metrics
for predicting the defect density of code. Ohlsson and
Ahlberg were among the first researchers to use code-
oriented metrics to predict failure prone modules of a
software [24]. Extensive work by Nagappan et al. [22], [23]
has investigated the value of code and churn metrics to
predict defects in large-scale commercial systems. Schroeter
et al. showed that module dependencies, which are already
available at design time can be used to predict software
defects [25]. Hassan demonstrates in a large case study that
prediction models based on change complexity outperform
traditional churn based prediction models [16]. Zimmermann
et al. use social network measures on dependency graphs to
predict defects [32]

In contrast to previous studies, the work presented in
this paper does not focus on formulating accurate predic-
tion models, but rather on using statistical models and the
insights about relationships between variables that can be
gained from studying these models, to investigate the rela-
tionships between social interactions and software quality.
We use prediction models as an explorative tool in the same
vein of work done by Mockus et al. [19], [20].

B. Social Analysis

The research work probably most related to ours is a
study by Wolf et al. [30], which presents a case study on
the use of social network analysis measures obtained from
inter-developer communication in the IBM Jazz repository
to predict build failures.

A similar study was conducted by Bacchelli et al. [4]
that investigates the possible use of code popularity metrics
obtained from email communication among developers for
defect prediction.

Our work differs from these studies, as we use a variety
of measures of social information to study relationships
between these measures and the strength of their associations
rather than performing actual predictions.

III. DATA COLLECTION

For our case study, we used two main sources of data
available for the ECLIPSE project. First, we obtained a copy
of the project’s BUGZILLA database. This database collects
modification requests that are submitted electronically by a
reporter. These requests are commonly referred to as “bug
reports”. However, we find this term misleading as not all
reported issues are defects [2] and for the remainder of this
paper we will refer to them as “issue reports”. Every report
contains a variety of supporting meta-information such as
a unique identification number, the software version and
operating system it relates to, or the reporter’s perceived
importance. In addition, entries contain a short one-line
summary of the issue at hand, followed by a more elaborate
description. After submission, entries are discussed in more
detail between developers and users, who provide further
comments. In this study we do not need to distinguish
the initial description from the following discussion and
hence treat the description as the first discussion message.
Overall, we collected a total of 300,000 issues submitted to
the BUGZILLA system between October 2001 and January
2010.

The second data source we use is the software archive
of the ECLIPSE project. We obtained a snapshot of the
CVS software repository, which contains the project’s source
code, as well as all the information about past changes
that have been carried out by developers. To record which
files were changed together in the form of a transaction,
we perform a grouping of single change records using a
sliding window approach [27]. Overall, we collected 977,716
changes (accounting for 224,643 transactions) carried out
between October 2001 and December 2009.

In order to link information from both repositories to-
gether, we automatically inspect the transaction messages to
identify pointers to issue reports. Each number mentioned in
a transaction message is treated as a potential link to an entry
in the bug database. Links start out with a low trust at first,
which increases when we find additional clues of the link’s
validity, such as keywords like “bug” or “fix”, or common
patterns used to mark references like “#” followed by a
number. This approach was used in previous research [13],
[25], [27], [28] with high success. To further increase the
quality of links, we incorporated the improvements by Bird
et al. [8]. Through these links we can then associate issue
reports with files. Overall, we were able to establish 67,705
such links.

IV. SOCIAL INTERACTION MEASURES

In this section we describe the social interaction measures
that we use in our statistical models. For each measure, we
briefly motivate its inclusion and outline our approach to
measure it. Our social measures are determined from traces
of activity that developers leave behind in the issue tracking
system. Hence we calculate each measure on a per-issue

report level. However, as we will later study the relation
between social interaction measures and software quality on
a per-file level, we need to aggregate the measures across
all issue reports associated with a file. Our default method
of aggregation is to take the average. However, for some
measures we are interested in their variability and for these
measures we will use entropy for aggregation. Entropy is
a concept we borrow from information theory [26]. The
normalized entropy is defined as

H(P) = −
n∑

k=1

(pk · logn(pk))

where pk ≥ 0,∀k ∈ 1, . . . , n and
∑n

k=1 pk = 1. Normalized
entropy is an extension to Shannon’s classical measure of
entropy [26] and allows us to compare entropy measures
across different distributions.

A. Measures of Discussion Contents
In a previous study [6], we asked developers of the

ECLIPSE and MOZILLA projects, which of the information
inside bug reports is most helpful for them when work-
ing on the reported issues. Among the top answers were
information items like crash reports (in the form of stack
traces), source code examples and patches. As a precise
understanding of a problem is crucial for addressing a
reported issue adequately, we conjecture that the presence
or absence of such information items in bug reports can
possibly influence the quality of the source code changes
carried out under the context of the reported issue. For
example, discussions of test cases can help developers to im-
plement regression tests that safeguard the software against
an accidental reintroduction of the problem in the future.
Therefore, we choose to incorporate structural elements as
factors in our statistical models. We used the infoZilla
tool [7] to extract structural elements from the textual
contents of bug report discussions. In the following we
describe the seven measures of discussion contents we used
in our study.

1) Source Code: Our first measure is the amount of
source code (NSOURCE) present in a discussion. Source
code can find its way into an issue report due to several
reasons: reporters point out specific classes and functions
they encountered a problem with, or provide smaller test-
cases to exactly illustrate a misbehaviour; developers point
users at locations in the source code they require more
information about, and discuss possible ways to address an
issue with peers. As the complexity of the code discussed
might be an indicator for the intricacy of the reported
problem and an indicator of future risk, we also compute the
source code complexity (NSCOM) as a qualitative measure
for each of the source code examples. Since the discussions
often contain a mix of natural language text and structural
elements, we use McCabe’s cyclomatic complexity [18],
rather than lines of code as our complexity measure.

2) Patches: Our second measure is the amount of patches
(NPATCH) provided in the discussions. Publicly discussed
patches provide peer-reviewed solutions to the reported
issues and as such are less likely to contain errors. In
addition to this quantitative measure we also compute a
qualitative measure of patches by recording the number
of files changed by a patch (PATCHS), which measures
how spread out changes provided by the patch are. We
motivate this choice with the idea that patches resulting
in large or wide-spread changes to the source code might
negatively impact dependent parts of the code (even though
they correctly fix the reported issues).

3) Stack Traces: Our third measure records the amount
of stack traces (NTRACE) provided in the contents. Infor-
mation inside stack traces provide helpful information for
developers to narrow down the source of a problem, and
are hence valuable for finding and fixing the root causes
of issues rather than addressing their symptoms [31]. We
use the number of methods reported in the stack traces as a
qualitative measure for the size of stack traces (TRACES).

4) Links: Our fourth measure of discussion contents
records the amount of links (NLINK) present. Developers
and users use URLs to provide cross-references to related
issues and to refer to external additional information that
might be relevant to the original problem.

B. Measures of Social Structures

In addition to the information obtained from the textual
contents of discussions, we also compute a number of
measures to describe the social structures created through
issue reports. In the following we describe the five measures
of social structures used in our study.

1) Discussion Participants: In order to contribute to the
BUGZILLA system, users have to sign in with a username
and password. The username acts as a unique handle for
all his activity in the system. We conjecture that the total
amount of unique participants in the discussion of an issue
report is an indicator for the relative importance of the re-
ported problem. Our first measure hence counts the number
of unique participants (NPART) in the discussion.

2) Role: In this study we further categorize participants
into two different roles: developers and users. We consider a
participant as a developer if he was assigned to fixing at least
one issue reported in the past. By measuring the number
of unique users (NUSERS) and the number of unique
developers (NDEVS) participating in the discussions we can
distinguish between internal discussions (more developers
than users), external discussions (more users than develop-
ers) and balanced discussions (even amount of developers
and users).

3) Reputation: Another social property of participants,
which is orthogonal to their role is their degree of reputation
in the community. In our study, we determine the top three

participants with the highest reputation (expressed by the
past amount of contributed messages) for each discussion
attached to issue reports. These measures are captured in
the three factor variables (CON1), (CON2), and (CON3).
The degree of reputation of a participant can influence the
development process connected to an issue; for example Guo
et al. show that defects reported by more reputable users
have a higher likelihood to get fixed [15]. As each factor
variable introduces many degrees of freedom to the model,
we limit our study to the top three most reputable developers.

4) Centrality: Our last measure of social structure is
taken from the area of social network analysis. For each
discussion attached to an issue report in the bug database we
first construct a discussion flow graph. The discussion flow
graph is an undirected graph that has participants as nodes
and contains an edge for every pair of two consecutive mes-
sages in the discussion connecting the message senders. We
express the interconnectedness of nodes (participants) in the
discussion flow graph as a measure of closeness-centrality
(SNACENT). This measure focuses on how close each
participant is to all other participants in the discussion [29].
However, closeness-centrality is a per-node measure, yet
we want to express whether there is a healthy discussion
between all participants, or whether there is a smaller set
of key participants that drive the communication back and
forth. To aggregate the closeness-centrality of all participants
in the discussion into a single value, we use the normalized
entropy measure. We need this normalization, as discussions
do not all have the same amount participants.

C. Measures of Communication Dynamics

In addition to information about the discussion content
and the actors involved, we can measure the dynamics of a
discussion. In the following we describe the six measures of
communication dynamics we used in our study.

1) Number of Messages: By their very nature, issues that
are complex, not well understood, or controversial require a
greater amount of communication than simple problems. We
represent this idea by a measure of the amount of messages
(NMSG) exchanged in a discussion.

2) Length of Messages: In addition to this quantitative
measure, we define two qualitative measures: first, the num-
ber of words in a discussion (DLEN), and second discussion
length entropy (DLENE). We consider the “wordiness” of
messages as an indicator for the cognitive complexity of
the reported issue and greater fluctuations of wordiness
(resulting in a higher measure of entropy) as an indicator
for possible communication problems.

3) Reply Time: Cognitive sciences define communication
as “the sharing of meaning” [1], [11]. The absence of
communication for an extended period of time, or distorted
communication, can be the cause of misinterpretations and
misunderstandings. In the context of software development,

such misinterpretations when carrying out changes to the
source code can be the cause of errors. We capture this
idea by measuring the mean reply time between messages
(REPLY), and the reply time entropy (REPLYE) for discus-
sions.

4) Interestingness: The BUGZILLA system allows users
to get automatic notifications when an issue report is
changed, via so-called “CC-lists”. We use a measure of the
number of people who signed up for such notifications as an
indicator the interestingness (INT) of an issue report. This
measure is different from the number of participants, since
users of the issue tracking system can be on the notification
list, while not contributing to the issue report discussion. In
addition we capture the variability of interestingness in a
measure of interestingness entropy (INTE).

D. Workflow Measures

Issue reports represent work items for developers and
follow a set of states from creation until closure [3] and
transitions between these states create a workflow. Any
workflow activity associated with each report is recorded in
the BUGZILLA system. We conjecture that a high workflow
activity indicates anomalies, such as re-assignment of the
work item to another developer, or re-opening reports that
were previously marked as completed. To capture workflow
activities, we measure the total amount of workflow activity
(WA) associated with each issue report, as well as the
variability of workflow activity (WAE).

V. ANALYSIS AND RESULTS

Our analysis uses statistical models to investigate the
relation between social information and software quality. We
do so by exploring the statistical relations between failure
proneness of files and the measures of social information
captured from issue reports associated with these files. In
this section we describe the design of our study, our model-
building process and the results of our comparative analysis
between the model based on social information measures
and classical code-metrics based models.

A. Study Design

Following previous work in defect prediction [23], we
divide the collection of measurements into two distinct
phases. For a period of 6 months before a release of
the software we capture the social interaction measures
described in Section III for each file that has at least one
issue report associated with it. We then measure the amount
of defects (POST) reported for each file for the next 6
months following the release. In order to later compare our
statistical models to previous work, we choose to perform
our measures for periods of 6 months surrounding the release
of Eclipse 3.0. From the measurements obtained for
this time period, we create linear regression models that set

the amount of post-release defects into relation of our pre-
release measures. The complete linear regression model has
the form

Defects =
∑
i

αi · ContentMeasurei

+
∑
j

βj · StructuralMeasurej

+
∑
k

γk · ComDynMeasurek

+
∑
l

δl ·WorkflowMeasurel + ε

Based on this model, we will investigate the statistical
relationships between the social interaction measures, which
are represented by the regression variables in the model, and
post release defects, represented by the dependent variable
in the model. We start with a preliminary analysis of the
regression variables using descriptive statistics, to illustrate
general properties of the measurements we collected. Next,
we perform a correlation analysis to consider possible inter-
relations between measurements. We then construct several
logistic regression models to investigate the relative impact
that each of the four dimensions of social measures has on
post-release defects. Our approach is similar to the work by
Cataldo and Mockus [10], [20].

We follow a hierarchical modelling approach when cre-
ating these models: we start out with a baseline model
that uses classical defect predictors as regression variables.
We then build subsequent models to which we step-by-step
add our content, structure, communication dynamics and
workflow measures, and report for each statistical model
the explanatory power, χ2, of the model and the percentage
of deviance explained. The deviance for each model Mi is
defined as D(Mi) = −2 · LL(Mi), with LL(Mi) denoting
the log-likelihood of the model, and the deviance explained
as a ratio between D(M0) = D(Defects ∼ Intercept)
and D(Mi). In addition we test for each subsequent model,
whether the difference from the model it is derived from is
statistically significant and present the corresponding p-level.
A hierarchical modelling approach has the advantage over
a step-wise modelling approach that it minimizes artificial
inflation of errors and thus overfitting.

B. Preliminary Analysis of Social Interaction Measures

Our four groups of social interaction measures (content,
structure, dynamics, workflow) represent different charac-
teristics of collaborative development on work items that
are represented by issue reports. While content measures
are more explicit in capturing the information exchanged
between developers and users, our measures of social struc-
ture are more implicit and capture the latent relationships
and roles of stakeholders. Table I presents a summary of
our measures in the form of descriptive statistics.

Due to a relatively high amount of skew, we apply a stan-
dard log transformation to each social interaction measure-

Mean SD Min Max Skew
POST 1.16 2.28 0.00 35.00 5.00

NSOURCE 0.86 2.48 0.00 48.00 7.14
NSCOM 0.27 0.49 0.00 5.00 2.77
NPATCH 0.02 0.24 0.00 5.00 17.17
PATCHS 0.01 0.11 0.00 3.00 13.26

NTRACE 0.14 0.44 0.00 9.00 7.82
TRACES 3.56 10.73 0.00 175.00 5.04

NLINK 0.20 0.91 0.00 8.00 7.02
NPART 3.61 3.89 1.00 40.00 7.48
NDEVS 2.94 1.46 1.00 12.00 2.78

NUSERS 0.67 2.81 0.00 28.00 8.44
SNACENT 0.19 0.07 0.00 0.51 0.43

NMSG 7.32 5.92 2.00 67.00 3.13
REPLY 122.32 206.99 0.00 3239.00 5.17

REPLYE 0.10 0.09 0.00 1.00 1.29
DLEN 337.00 441.75 2.00 6259.00 4.60

DLENE 0.23 0.10 0.00 1.00 0.08
INT 3.80 8.42 0.00 55.00 4.94

INTE 0.14 0.26 0.00 1.00 1.74
WA 9.33 6.36 0.00 49.00 1.68

WAE 0.17 0.19 0.00 1.00 0.65

Table I
DESCRIPTIVE STATISTICS OF SOCIAL INTERACTION MEASURES

ment to even out the skewing effects during modelling [9].
Figure 1 summarizes the pairwise correlations between our
20 regression variables and our dependent variable in a
correlogram visualization [14]. A correlogram reports for
each unique pair of variables the strength of the correlation
as a colour-coded field (red for positive correlation, blue for
negative correlation) and the p-level at which the correlation
is significant. This visualization technique allows us to
identify “hotspots” that need our attention.

We identify the following types of intercorrelations in
our dataset that could pose problems in our statistical
modelling. First, we observe correlations between measures
from different concepts. For example, the measure of in-
terestingness (INT) has a moderate to high correlation with
our measures for number of users (NUSERS), number of
participants (NPART), number of developers (NDEV), and
number of links (NLINK). We believe the first of these
three intercorrelations stem from a default setting in the
issue tracking systems that puts contributors automatically
on the notification lists, but can not offer an explanation for
the correlation between the URLs provided by users in the
discussion contents and interestingness.

Second, we observe correlations through redundancy. We
expected such correlations when designing social interaction
measures: naturally the number of participants (NPART) is
highly correlated with the number of users (NUSERS) and
number of developers (NDEVS). However, our motivation
for incorporating such redundancy is to investigate, whether
splitting up the information into more specialized represen-
tations helps to improve our model. The same intuition holds
for the measure of centrality (SNACENT).

The third type of observed hotspots are moderate corre-
lations between quantitative measures and qualitative mea-
sures, e.g., between the number of patches and the average

M1

M
2

post

NSOURCE

NSCOM

NPATCH

PATCHS

NTRACE

TRACES

NLINK

NPART

NDEVS

NUSERS

SNACENT

NMSG

REPLY

REPLYE

DLEN

DLENE

INT

INTE

WA

WAE

********* *** ********* ******

************ **** *********** *******

************ *********

******** ****** ****** ****

***** ****** ****** ******

****** ****** * ********* *********

****** *** **** ***** *********

********* *** ****** ************ *** ****

********* ******* *******

***** **** **** ********

****** * *** *************

************ ********

********* *************

********* *** *************** ***

WAE WA INTE INT DLENE DLEN REPLYE REPLY NMSG SNACENT NUSERS NDEVS NPART NLINK TRACES NTRACE PATCHS NPATCH NSCOM NSOURCE post

corr
1.0
0.5
0.0

−0.5
−1.0

Figure 1. Pairwise correlations of social interaction measures with levels * p<0.05, ** p<0.01, *** p<0.001. Strength of correlations is indicated by
colour intensities; negative correlations are marked with a dashed outline.

Variance Inflation Factor
log(Yi) Model 1 Model 2 Model 3
NSOURCE 3.38 3.38 3.40
NSCOM 3.34 3.34 3.36
NPATCH 3.94 3.88 3.90
PATCHS 3.84 3.82 3.84
NTRACE 4.62 4.60 4.57
TRACES 4.78 4.75 4.70
NLINK 2.24 2.22 1.90
NDEVS 9.32 9.27 1.91
NUSERS 4.55 4.54 2.30
SNACENT 10.66 10.65 —
NMSG 11.63 — —
REPLY 1.17 1.17 1.17
REPLYE 2.04 1.91 1.90
DLEN 4.21 1.91 1.87
DLENE 4.65 1.98 1.96
INT 2.82 2.82 2.60
INTE 1.71 1.71 1.71
WA 2.26 1.99 1.96
WAE 2.08 2.06 2.02

Table II
STEP-WISE ANALYSIS OF MULTICOLLINEARITY.

size of patches.
Since we observe a substantial number of high correla-

tions among regression variables, we have to examine po-
tential issues due to multi-collinearity among the variables.
To investigate potential problems, we compute the variance
inflation factors for each variable. Variance inflation factors
are widely used to measure the degree of multi-collinearity
between variables in regression models [17]. Following
Kutner et al. [17], we remove those variables from the

model that have a variance inflation factor greater than 10.
We start our analysis with a regression model that contains
all our variables. The variance inflation factors for this
model are presented in Table II, Model 1. We observe two
variables that have a variance inflation factors greater than
10. We remove the highest one (NMSG) from the regression
model and recompute the variance inflation factors with the
reduced set of variables. The resulting model, (Model 2 in
Table II) contains only one more variable with an inflation
factor larger than 10. We remove the regression variable
(SNACENT) from the model and recompute the inflation
factors. In the resulting model (Model 3 in Table II), no
variables have an inflation factor larger than 5 and we finish
our analysis of multicollinearity.

C. Hierarchical Analysis Design
After having determined the reduced set of regression

variables with low multicollinearity, we proceed by inves-
tigating the relative impact of each of the four dimensions
of social measures on the post-release defects.

The results of our hierarchical analysis are presented in
Table III. To make the interpretation of the coefficients of
the regression variables easier, we report the odds ratios [12]
of each measure, rather than the coefficients themselves.
An odds ratio greater than one indicates a positive rela-
tion between the dependent variable (post-release defects)
and the independent variables (social interaction measures),
whereas an odds ratio smaller than one indicates a negative
relation. As we are working in a log-transformed space, the

log(Yi) MB M1 M2 M3 M4 M5
CHURN 4.996 *** 4.631 *** 4.658 *** 5.303 *** 3.688 *** 4.470 ***
NSOURCE 1.694 *** 1.698 *** 1.772 *** 1.769 *** 1.667 ***
NTRACE 0.79 0.768 0.864 0.881 1.115
NPATCH 0.209 * 0.210 * 0.284 + 0.231 * 0.291
NSCOM 1.218 1.194 1.246 1.208 1.244
PATCHS 12.607 * 12.626 * 11.200 * 12.736 * 18.207 **
TRACES 1.016 1.012 1.004 0.989 0.975
NLINK 1.764 *** 1.613 ** 1.600 ** 1.666 ** 1.596 +
NPART 2.481 2.888 4.480 4.542
NDEVS 0.475 0.582 0.385 0.274
NUSERS 0.749 0.803 0.692 0.792
REPLY 1.019 0.986 0.982
REPLYE 0.117 *** 0.082 *** 0.044 ***
DLEN 0.936 0.898 * 0.876 +
DLENE 2.499 1.251 2.044
INT 0.829 ** 0.821 ** 0.963
INTE 1.109 1.013 1.306
WA 1.432 *** 1.224 +
WAE 2.718 * 2.169
CON1-3 Fig. 2 ***

χ2 559.01 *** 698.5 *** 700.15 731.5 *** 752.3 *** 1055.19 ***
Dev. Expl. 10.71% 13.38 % 13.41 % 14.02 % 14.41 % 26.07 %
∆χ2 139.48 1.652 31.357 20.28 302.87
*** p<0.001, ** p<0.01, * p<0.05, + p <0.1

Table III
HIERARCHICAL ANALYSIS OF LOGISTIC REGRESSION MODELS ALONG THE FOUR DIMENSIONS OF SOCIAL INTERACTION MEASURES.

odds-ratios have to be interpreted accordingly: a single unit
change in the log-transformed space corresponds to a change
from 1 to 2.71 (= e1) units in untransformed space.

We start our hierarchical analysis with a baseline model
which relates churn [21] to post-release defects. Churn has
been shown in the past to be a valuable code-based predictor
of defects [22], [23] even when used across projects [33]. We
obtained a measure of churn by mining the change histories
of each file in the project’s version control system. The
results for the baseline model are presented in column MB
of Table III and show that CHURN is positively associated
to the failure proneness of a file during the post-release
period. As expected, these results are in line with earlier
findings [22], [23].

Model M1 introduces the first dimension of social in-
teraction we want to study: the measures of structural
information items in the contents of issue report discussions.
The results of the logistic regression model show, that only
specific structural information items are statistically signif-
icant. Whereas the number of source code examples, the
number of links and the effect size of patches stay significant
throughout all models when new variables are introduced,
the total number of patches plays only a marginal role, indi-
cating that this measure is unlikely to impact future failure
proneness. When looking at the odds ratios, we surprisingly
find a positive link between the number of source code
samples and future defects, as we initially expected code
samples to have a beneficial effect. One possible explanation
might be that developers trust user provided sample solutions
and incorporate their proposed (yet possibly flawed) mod-

ifications without further verification. The second strongest
relationship observed from the results is the positive relation
between the number of links provided by users and failure
proneness. The third relationship that we observe is a very
high, positive relation between the effect size of patches and
future failure proneness of files. This result confirms earlier
findings on the risk of scattered changes [16]. Overall the
results show that measures of structural elements in issue
report discussions are indicators of increased future failure
proneness of a file. The explanatory power of the model
increases by 2.67% over the baseline model and this change
is statistically significant.

Model M2 introduces the second dimension of social in-
teraction measures: structural information. The results show
that the role of a participants and the overall amount of
participants in a discussion have no statistically significant
impact on the future failure proneness of files. As a result
we see no increase in the explanatory power of the model
by introducing the role of participants. We left out the
measures of reputation from this model, as we record them
as factors with many levels that may disrupt our hierarchical
modelling approach. We will revisit these measures later in
model M5. Overall, we cannot find a significant relation
between the role of participants and post-release defects.
The explanatory power of the extended model increases
only marginally, however this increase is not statistically
significant.

Model M3 introduces measures form the category of
communication dynamics. The results show a statistically
significant and strongly negative relation between the mea-

0 50 100 150 200 250 300

0
5

10
15

20
25

30

Index

lre
g.

or
(m

od
el

5)
[−

c(
1)

, 2
]

Figure 2. Odds ratios for reputation measures in model M5, each index
represents one distinct level (developer) of the factor variables.

sure of reply time entropy and future failure likelihood,
yet not statistically significant relation between the related
quantitative measure of average reply time length. The link
between reply time entropy and failure proneness stays
strong throughout the hierarchical process and indicates a
relevant relationship. The second relation that we find is
a moderately negative relation between the interestingness
of an issue report and post-release defects. This relation
however becomes irrelevant at a later point, when we
introduce reputation in model M5. Overall, we observe a
strong effect of inconsistencies in discussion flow on the
future failure proneness of files associated with the discus-
sion. Even though the explanatory power of the extended
model increases by only 0.61%, this increase is statistically
significant.

Model M4 introduces the last category of social in-
teraction measures used in our study: workflow activity.
Our results show a strong positive relation between the
total amount of workflow activities and post-release defects.
However this relation is rendered less significant when
we later introduce measures of reputation in model M5.
Our findings suggest that workflow activities play only a
marginal, complementary role in the relation between social
interaction measures and post-release defects. This is also
indicated by the minor, yet statistically significant increase
of explanatory power of the extended model (0.39%) when
adding workflow activity measures.

We revisit the dimension of social structures in Model
M5, by adding our measures of reputation. These measures
are expressed as three factors (with discussion participants
as levels) and measure the top3 reputable contributors for
each discussion. As each factor generates as many binary
dummy variables as its levels we do not show the complete
model. However, we measure the inherent effect of the
factors on the statistical model with type II ANOVA tests
and present a plot of the odds ratios of each factor level
in Figure 2. Our analysis of variance tests for the repu-
tation measures show that they are statistically significant
at p < 0.001. From the plot of odds ratios we observe a
relation between the presence of certain reputable partici-
pants in a discussion and post-release defects, indicated by

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.7228 0.2475 -19.08 0.0000

log(1 + pre) 1.1766 0.0890 13.22 0.0000
log(1 + MLOC max) -0.2049 0.0606 -3.38 0.0007

log(1 + PAR max) 0.4081 0.1324 3.08 0.0021
log(1 + PAR sum) -0.1599 0.0888 -1.80 0.0716

log(1 + TLOC) 0.8058 0.0936 8.60 0.0000

Table IV
BASELINE MODEL M

distinct spikes in the plot. One possible explanation for this
relation might be that specific participants are responsible
for certain areas of a project’s code. These experts contribute
the most to discussion on this area and become associated
with defects. However, when introducing these factors our
focus lies less on the relationship between the presence of
specific top reputable contributors, but rather on extending
the explanatory power of the model. As contributors are
uniquely identified in the ECLIPSE issue tracking system
by their email addresses, we do not include their names in
this paper for privacy reasons. Overall, the introduction of
reputation measurements increases the explanatory power
of the extended model significantly. The increase of 11.66%
is statistically significant. The large increase shows that the
presence of particular contributors in a discussion can act
as a valuable indicator for future failure proneness.

D. Enhancing Traditional Models with Social Information

In the final part of our analysis we want to investigate
whether social information measures can augment existing,
top-performing defect prediction models that are based on
an extensive set of source-code and file metrics. To per-
form this comparison, we use a publicly available defect
prediction dataset, which was prepared by the University
of Saarland [34]. As Bird et al. note [8], this dataset
is extensively documented and has been widely used in
research. Among other informations, this data set contains
a variety of source-code and file-level metrics for files of
different Eclipse releases. We are specifically interested in
the latest release contained in this dataset, Eclipse 3.0, as
we measured the social interaction metrics presented in this
study during the same time period. We first re-create the
original code-metrics based model created by Zimmermann
et al. [34]. The original statistical model M is presented in
Table IV. We assess it using the same criteria as the models
we derived from our hierarchical analysis. Our results show
that the model has an explanatory power of χ2 = 889.48
(17.04% of deviance explained) and all regression variables
are statistically significant at p < 0.1.

Next, we create an extended model M ′ using the set
of social interaction measures that we found statistically
significant in our previous analysis and compare it to the
original model M . The extended model is presented in Ta-
ble V. The addition of social interaction measures increases
the explanatory power of model M by χ2 = 716.55 to a

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.2783 0.2860 -18.46 0.0000

log(1 + pre) 0.9341 0.0987 9.46 0.0000
log(1 + NSOURCE) 0.5128 0.0657 7.81 0.0000

log(1 + NPATCH) -1.5056 0.7009 -2.15 0.0317
log(1 + PATCHS) 2.0683 0.9862 2.10 0.0360

log(1 + NLINK) 0.5146 0.1175 4.38 0.0000
log(1 + REPLYE) -2.0122 0.5515 -3.65 0.0003

log(1 + WA) 0.3919 0.0796 4.92 0.0000
log(1 + MLOC max) -0.1839 0.0614 -3.00 0.0027

log(1 + PAR max) 0.3795 0.1354 2.80 0.0051
log(1 + PAR sum) -0.1743 0.0908 -1.92 0.0550

log(1 + TLOC) 0.7939 0.0950 8.36 0.0000
CON1-CON3 — — — —

Table V
AUGMENTED MODEL M ′

total of χ2 = 1606.03. This corresponds to an increase of
13.73% percent of additional deviance explained, to a total
of 30.77%. The observed increase is statistically significant
at p < 0.001. The large increase in explanatory power of the
augmented model demonstrates that social interaction mea-
sures are valuable for complementing traditional prediction
models based on product and process measures.

VI. CONSIDERATIONS OF VALIDITY

We now discuss potential threats to the validity of our
study. The first concern is generalizability. In our analysis
we presented a single case study surrounding a major release
of a large open-source software system. However based on
this limited scope, our results might not generalize to other
projects and domains. Second, our analysis of the relation
between social interaction measures and post-release defects
can not claim causal effects, as we are investigating corre-
lations, rather than conducting impact studies. For example,
even though we have seen relation between workflow activi-
ties and defects, it could be the case that increased workflow
activity is generated because a file contains many defects.
Third, recent research has raised numerous concerns about
the quality of data contained in version archives [2], [8]. To
account for major source of bias we performed a careful se-
lection of features and avoided to base our social interaction
measures on features of issue reports that were reported to be
highly biased. Fourth, the selection of measurements might
not be complete: our measurements might capture only the
symptomatic effects of other variables. We tried to counter
this threat by performing a selection of measurements along
four different dimensions and conducting an analysis of
intercorrelation and multicollinearity using variance inflation
factors.

VII. CONCLUSION

In this study we investigated the impact of social in-
teraction measures on software quality, expressed through
their impact on post-release defects. We observed that the
presence of certain information items in the contents of
discussions were considerably more relevant than of roles

of participants, in relation to the future failure proneness of
the software. Similarly we discovered that the consistency
of the communication flow stands in strong relation with
failure proneness. In summary we observe the following
relationships from Table III.
• For every unit increase in logarithmic space of changes

made to a file, then chances of failure proneness in-
crease 4.5 times.

• For every log-unit increase of source code items dis-
cussed, the failure proneness increases by 67%.

• For every log-unit increase in the number of files
changed by a discussed patch, the odds of failure-
proneness increase 18 times.

• A consistent information flow in discussions decreases
the likelihood of future defects significantly.

• The participation of particular contributors is a signifi-
cant indicator for future failure-proneness.

These observations open a variety of research opportu-
nities in order to investigate their intrinsic effects more
deeply. In addition to demonstrating a connection between
social activities in development and software defects we
have shown that social information can not only explain
a similar amount of variance than traditional models but
complements traditional complexity-based defect prediction
models increasing their explanatory power. In future work,
we plan to explore these relationships in more detail and
further investigate the possibilities of defect prediction based
on social metrics.

ACKNOWLEDGEMENT

We want to thank Audris Mockus of Avaya Labs for his
helpful comments on early versions of this study.

REFERENCES

[1] J. E. Alatis, Language, communication and social meaning.
Georgetown University Press, 1993.

[2] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-
G. Guéhéneuc, “Is it a bug or an enhancement?: a text-
based approach to classify change requests,” in CASCON
’08: Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research. ACM, 2008,
pp. 304–318.

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in ICSE ’06: Proceedings of the 28th International
Conference on Software Engineering. ACM, 2006, pp. 361–
370.

[4] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are popular
classes more defect prone?” in To appear in FASE 2010:
Proceedings of the 13th International Conference on Fun-
damental Approaches to Soft. Eng. Springer, 2010.

[5] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10, pp.
751–761, 1996.

[6] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann, “What makes a good bug report?” in SIG-
SOFT ’08/FSE-16: Proceedings of the 2008 ACM SIGSOFT
Symposium on Foundations of Software Engineering. ACM,
2008, pp. 308–318.

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Ex-
tracting structural information from bug reports,” in MSR ’08:
Proceedings of the 2008 International Working Conference on
Mining Software Repositories. ACM, 2008, pp. 27–30.

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced?: bias in bug-
fix datasets,” in ESEC/FSE ’09: Proceedings of the 2009 ACM
SIGSOFT Symposium on Foundations of Software Engineer-
ing. ACM, 2009, pp. 121–130.

[9] M. J. Bland and D. G. Altman, “Transformations, means and
confidence intervals.” British Medical Journal, vol. 312, no.
7038, p. 1079, 1996.

[10] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb,
“Software dependencies, work dependencies, and their impact
on failures,” IEEE Transactions on Software Engineering,
vol. 35, no. 6, pp. 864–878, 2009.

[11] C. D’Este, “Sharing meaning with machines,” in Proceedings
of the Fourth International Workshop on Epigenetic Robotics.
Lund University Cognitive Studies, 2004, pp. 111–114.

[12] A. W. F. Edwards, “The measure of association in a 2 by
2 table,” Journal of the Royal Statistical Society. Series A
(General), vol. 126, no. 1, pp. 109–114, 1963.

[13] M. Fischer, M. Pinzger, and H. Gall, “Analyzing and relating
bug report data for feature tracking,” in WCRE ’03: Proceed-
ings of the 10th Working Conference on Reverse Engineering.
IEEE Computer Society, 2003, p. 90.

[14] M. Friendly, “Corrgrams: Exploratory displays for correlation
matrices,” The American Statistician, vol. 56, no. 1, pp. 316–
324, November 2002.

[15] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy,
“Characterizing and predicting which bugs get fixed: An
empirical study of microsoft windows,” in To appear in
Proceedings of the 32th International Conference on Software
Engineering, 2010.

[16] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering. IEEE Computer
Society, 2009, pp. 78–88.

[17] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied
Linear Regression Models, fourth international ed. McGraw-
Hill/Irwin, September 2004.

[18] T. J. McCabe, “A complexity measure,” in ICSE ’76: Pro-
ceedings of the 2nd International Conference on Software
Engineering. IEEE Computer Society Press, 1976, p. 407.

[19] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test
coverage and post-verification defects: A multiple case study,”
in ESEM ’09: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measure-
ment. IEEE Computer Society, 2009, pp. 291–301.

[20] A. Mockus, P. Zhang, and P. L. Li, “Predictors of customer
perceived software quality,” in ICSE ’05: Proceedings of
the 27th International Conference on Software Engineering.

ACM, 2005, pp. 225–233.

[21] J. C. Munson and S. G. Elbaum, “Code churn: A measure
for estimating the impact of code change,” in ICSM ’98:
Proceedings of the International Conference on Software
Maintenance. IEEE Computer Society, 1998, p. 24.

[22] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in ICSE ’05:
Proceedings of the 27th International Conference on Software
Engineering. ACM, 2005, pp. 284–292.

[23] ——, “Using software dependencies and churn metrics to
predict field failures: An empirical case study,” in ESEM
’07: Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement. IEEE
Computer Society, 2007, pp. 364–373.

[24] N. Ohlsson and H. Alberg, “Predicting fault-prone software
modules in telephone switches,” IEEE Trans. Softw. Eng.,
vol. 22, no. 12, pp. 886–894, 1996.

[25] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting com-
ponent failures at design time,” in ISESE ’06: Proceedings of
the 2006 ACM/IEEE International Symposium on Empirical
Software Engineering. ACM, 2006, pp. 18–27.

[26] C. E. Shannon, “A mathematical theory of communication,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 5, no. 1, pp.
3–55, 2001.

[27] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in MSR ’05: Proceedings of the 2005
International Workshop on Mining Software Repositories.
ACM, 2005, pp. 1–5.

[28] D. Čubranić and G. C. Murphy, “Hipikat: recommending
pertinent software development artifacts,” in ICSE ’03: Pro-
ceedings of the 25th International Conference on Software
Engineering. IEEE Computer Society, 2003, pp. 408–418.

[29] S. Wasserman and K. Faust, Social Network Analysis: Meth-
ods and Applications (Structural Analysis in the Social Sci-
ences), 1st ed. Cambridge University Press, 1994.

[30] T. Wolf, A. Schröter, D. Damian, and T. Nguyen, “Predicting
build failures using social network analysis on developer
communication,” in ICSE ’09: Proceedings of the 31st In-
ternational Conference on Software Engineering. IEEE
Computer Society, 2009, pp. 1–11.

[31] A. Zeller, Why Programs Fail, Second Edition: A Guide to
Systematic Debugging. Morgan Kaufmann, 2009.

[32] T. Zimmermann and N. Nagappan, “Predicting defects us-
ing network analysis on dependency graphs,” in ICSE ’08:
Proceedings of the 30th international conference on Software
engineering. ACM, 2008, pp. 531–540.

[33] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process,” in ESEC/FSE
’09: Proceedings of the 2009 ACM SIGSOFT Symposium on
Foundations of Software Engineering. ACM, 2009, pp. 91–
100.

[34] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for eclipse,” in Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, May
2007.

