
STUDYING USER-DEVELOPER INTERACTIONS THROUGH THE

UPDATING AND REVIEWING MECHANISMS OF THE GOOGLE PLAY

STORE

by

SAFWAT MOHAMED IBRAHIM HASSAN

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

September 2018

Copyright © Safwat Mohamed Ibrahim Hassan, 2018



Abstract

M
OBILE app stores (such as the Apple App Store and the Google Play Store)

provide a unique updating mechanism that helps app developers to dis-

tribute their updates efficiently. In addition, after downloading a new

update, users are able to review the latest update so other users could benefit from the

posted reviews. Such unique reviewing and updating mechanisms enable users and

developers to interact with each other through the store.

In this thesis, we study user-developer interactions through the updating and re-

viewing mechanisms of app stores. Our studies can help store owners to acquire a

global view about user-developer interactions. Such a global view about user-developer

interactions can help store owners to improve the quality of the offered apps in their

stores. For example, store owners can leverage our findings to identify the common re-

lease mistakes that are made by app developers and improve the app updating mecha-

nism to prevent developers from making such mistakes in their updates. In particular,

i



we study the user-developer interactions along three perspectives: (1) study the com-

mon developer mistakes that lead to emergency updates, (2) study how the reviewing

mechanism can help spot good and bad updates, and (3) study the dialogue between

users and developers to help design next-generation app reviewing mechanisms.

In this thesis, we identify eight patterns of emergency updates in two categories

“Updates due to deployment issues” and “Updates due to source code changes”. Our

studies show that it can be worthwhile for app owners to respond to reviews, as re-

sponding may lead to an increase in the given rating. In addition, we identify four pat-

terns of developer responses. Our work demonstrates the necessity of an update-level

analysis of reviews to capture the impressions of an app’s user-base about a particular

update. An app-level analysis is not sufficient to capture these transient impressions.

ii



Acknowledgments

I wish to express my gratitude to Allah (God) for his blessings and his help to complete

this work. I am incredibly thankful to my supervisor Prof. Ahmed E. Hassan who gave

me the opportunity to do my Ph.D. at Queen’s University. I appreciate his great sup-

port and continuous help throughout my Ph.D. study. At the beginning of my study,

I picked up a point that looked extremely difficult and infeasible, but he continues to

believe in my skills, he helped me a lot, and he guided me throughout my Ph.D. study

until I finished this work. I consider myself lucky to work under his supervision, and I

appreciate his tremendous effort and support.

I would like to thank my supervising committee members, Prof. Hossam Hassanein

and Prof. Patrick Martin for their help and their insightful guidance and discussions. I

also would like to thank my examination committee members for their valuable feed-

back and their useful comments.

I am very honored to have the chance to work and collaborate with the brightest

iii



researchers during my Ph.D. study. I would like to thank all of my collaborators, Prof.

Abram Hindle, Prof. Weiyi Shang, Prof. Chakkrit Tantithamthavorn, and Prof. Cor-

Paul Bezemer for their great help. I also would like to thank my labmates, Hammam

AlGhamdi, Heng Li, Dr. Mohamed Sami Rakha, Suhas Kabinna, Ravjot Singh, Sumit

Sourav, Dr. Daniel Da Costa, Prof. Yasutaka Kamei, Dr. Gustavo Ansaldi Oliva, Dr.

Wang Shaowei, Stuart McIlroy, Md Ahasanuzzaman, and Filipe Côgo for their great

support. I also thank my friends, Dr. Shadi Khalifa, Wenyan Wu, Tarek Mamdouh,

Dr. Ahmed Youssef, and Mahmoud Ragab for their great help.

I appreciate Microsoft Azure and Compute Canada for providing me with the needed

resources and infrastructure to perform the data collection and analysis for my studies.

A special thanks to my mother, my father, my brothers and my family for their end-

less support, love, help, and appreciation at every moment in my Ph.D. study. I ap-

preciate their exceptional care and their assistance primarily in the hardest moments

of my Ph.D. study. I believe that this work could not be done without their great help,

their endless love and their continuous praying for me.

iv



Dedication

To my beloved parents who supported me at every moment throughout my Ph.D. jour-

ney.

v



Co-authorship

Earlier versions of the work in the thesis were published as listed below:

1. An Empirical Study of Emergency Updates for Top Android Mobile Apps (Chap-

ter 4)

Safwat Hassan, Weiyi Shang, and Ahmed E. Hassan. Empirical Software Engi-

neering Journal (EMSE), 2017.

2. Studying Bad Updates of Top Free-to-Download Apps in the Google Play Store

(Chapter 5)

Safwat Hassan, Cor-Paul Bezemer, and Ahmed E. Hassan. IEEE Transactions on

Software Engineering (TSE), 2018.

3. Studying the Dialogue Between Users and Developers of Free Apps in the Google

Play Store (Chapter 6)

Safwat Hassan, Chakkrit Tantithamthavorn, Cor-Paul Bezemer, and Ahmed E.

vi



Hassan. Empirical Software Engineering Journal (EMSE), 2018.

vii



Table of Contents

Abstract i

Acknowledgments iii

Dedication v

Co-authorship vi

List of Tables x

List of Figures xiii

1 Introduction 1
1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

3 Literature Survey 12
3.1 Bugs in Mobile Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 User Reviews of Mobile Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Characteristics of Successful Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 User-Developer Dialogue in App Stores . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Studying the Common Developer Mistakes that Lead to Emergency Updates 22
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Characteristics of Emergency Updates . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Our Approach for Identifying the Patterns of Emergency Updates . . . . . 39
4.5 Identified Patterns for Emergency Updates . . . . . . . . . . . . . . . . . . . . . 50
4.6 Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



4.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Studying How the Reviewing Mechanism Can Help Spot Good and Bad Up-
dates 84
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Motivational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4 A Study of Bad Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Analyzing Good Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Studying the Dialogue Between Users and Developers 136
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3 Preliminary Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4 Study I: A Study of the Characteristics of User-Developer Dialogues . . . 151
6.5 Study II: A Quantitative Study of the Likelihood of a Developer Respond-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Study III: A Qualitative Study of What Drives a Developer to Respond . . 176
6.7 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.8 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.10 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7 Conclusions and Future Work 193
7.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

ix



List of Tables

2.1 User-developer dialogue for the AppLock app . . . . . . . . . . . . . . . . . . . 11

3.1 Summary of the prior studies which analyze user reviews (ordered by
the publication year) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Mean and five-number summary of emergency ratio of the top 1,000
emergency updates. The larger the emergency ratio, the longer the life-
time of the update preceding the emergency update. . . . . . . . . . . . . . . 29

4.2 Mean and five-number summary for lifetime (in days) of the top 1,000
updates (according to the emergency ratio of their following update). . 30

4.3 Our major findings (and their implications) on the characteristics of the
top 1,000 emergency updates for top Android apps. . . . . . . . . . . . . . . . 31

4.4 Study of version numbers in the top 1,000 emergency updates. . . . . . . 35
4.5 Mean and five-number summary of comparison metrics for the top 1,000

emergency updates. A value higher than one means that the ratio of
negative reviews in the corresponding date is higher than the date of
the deployment of the update preceding the emergency update. . . . . . 38

4.6 Patterns of deployment issues emergency updates. . . . . . . . . . . . . . . . 52
4.7 Patterns of source code changes emergency updates. . . . . . . . . . . . . . 53
4.8 The median speed of repair for all patterns of emergency updates. . . . . 54

5.1 Dataset description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Mean and five-number summary of the negativity ratio of the 19,150

studied updates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Descriptive summary of the Top 250 bad updates. . . . . . . . . . . . . . . . . 95
5.4 The identified issue types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Mean and five-number summary of the Rangeneg% per app. . . . . . . . . . 102
5.6 The number of updates that were labeled with a certain issue type and

the median negativity ratio of each issue type (ranked by the number of
bad updates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 The identified sub-types of user interface issues. . . . . . . . . . . . . . . . . 112
5.8 The number of apps with bad updates grouped by the app category. . . 113

x



5.9 User review changes and release notes for the “Handcent Next SMS” app. 115
5.10 The number of bad updates for which we observed evidence that devel-

opers could recover from the bad update, the number of bad updates
for which users were still complaining at the end of the study period and
the number of bad updates for which there is not enough information
to verify whether an issue was addressed. . . . . . . . . . . . . . . . . . . . . . . 116

5.11 The number of bad updates that raised a certain issue type, the number
of recovered updates, the median number of updates that were needed
to recover from each issue type and the median negativity difference af-
ter recovering from bad updates (ranked by the number of bad updates). 119

5.12 Mean and five-number summary of the positivity ratio of the 19,150 up-
dates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.13 Description of the top 100 good updates dataset. . . . . . . . . . . . . . . . . . 126
5.14 The identified reasons for an update being perceived as a good update. 127
5.15 Statistics for the reasons for good updates (ranked by the number of up-

dates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2 Mean and five-number summary of collected data for every studied app 147
6.3 The percentage of reviews and ratings that change with and without re-

ceiving a response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 An excerpt from a single user-developer dialogue for the Piano+ app.

The dialogue emerged as the user and developer updated their review
and response. We omitted the rest of the dialogue as the review and
response updates became repetitive. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 The length and speed of the user-developer dialogues. . . . . . . . . . . . . 154
6.6 Rating change after a developer response. The diagonal values (i.e., bold

values) mean that there is no change in the user rating value. The values
above the diagonal mean that the rating value is increased and values
below the diagonal mean that the rating value is decreased. . . . . . . . . . 157

6.7 The identified reasons for rating increase (ranked by the percentage of
responses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.8 Collected metrics for each studied review. . . . . . . . . . . . . . . . . . . . . . . 165
6.9 Summary of the model analysis of the mixed-effect models that we used

to understand the relationship between review metrics and the likeli-
hood of a developer responding to a review. . . . . . . . . . . . . . . . . . . . . 169

6.10 The extracted key features for the generated logistic regression model
for the “MapFactor GPS Navigation Maps” app . . . . . . . . . . . . . . . . . . 174

6.11 Data summary of the top ten apps with the highest number of reviews
with responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xi



6.12 The identified drivers for responding. . . . . . . . . . . . . . . . . . . . . . . . . 180
6.13 Statistics for the drivers for responding (ranked by the number of re-

sponses). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.14 The identified similar responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xii



List of Figures

1.1 An example of the user-developer interactions through the Google Play
Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 User-developer dialogue in the Google Play Store . . . . . . . . . . . . . . . . 10

4.1 An overview of the methodology of our study. . . . . . . . . . . . . . . . . . . . 27
4.2 An overview of the studied dates for an app A. . . . . . . . . . . . . . . . . . . . 37
4.3 Boxplot for the calculated comparison metrics for the top 1,000 emer-

gency updates. The red line in the figure shows the metric value 1. Met-
ric values lower than 1 means that the update preceding the emergency
update has a higher ratio of negative reviews than this emergency up-
date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Process for identifying patterns of emergency updates. . . . . . . . . . . . . 43

5.1 The percentage of negative reviews for the “GasBuddy: Find Cheap Gas”
app. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 An overview of our approach for identifying how many updates are needed
to recover from a bad update Ui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 An overview of our approach for studying bad updates . . . . . . . . . . . . 92
5.4 An example of an app with nine updates U1 to U9. The blue dotted line in

the figure shows the lowest negativity ratio of the top 1,000 updates with
the highest negativity ratio. In our study, we included both updates U2

and U8 as they are separated by other updates while we excluded update
U3 since it follows the bad update U2 . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiii



5.5 An example of: (A) the “La Biblia en Español” app with a low standard
deviation (0.5%) and a small Rangeneg% (2%), (B) the “WhatsApp Mes-
senger” app with a burst in the percentage of negative reviews and a
fast recovery of the percentage of negative reviews (the standard devia-
tion value is 9% and the Rangeneg% is 42%), and (C) the “Handcent Next
SMS” app with a burst in the percentage of negative reviews and a slow
recovery of the percentage of negative reviews (the standard deviation
value is 18.3% and the Rangeneg% is 72%). The black dotted line in the
figure shows the average percentage of negative reviews of every app. . 99

5.6 A histogram of the standard deviation of the percentage of negative re-
views per app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 An overview of our approach for comparing the raised issues in bad up-
dates to the raised issues in regular updates of our motivational study
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Distribution of each issue type for both regular updates and bad updates
of our motivational study dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 An overview of our approach for studying the raised issues in bad updates 108
5.10 Distribution of each issue type for both all updates and bad updates of

our motivational study dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 An overview of our approach for collecting user-developer dialogues . . 144
6.2 The percentage of reviews to which a developer responded for each stud-

ied app. The figure displays only the 794 apps that have at least one re-
view to which a developer responded. . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 An overview of our data selection and metrics collection step. . . . . . . . 161
6.4 An overview of our approach for studying the relationship between the

studied metrics and the likelihood of a developer responding to a user
review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.5 The relationship between the review-level metrics and the likelihood
that a developer will respond. The grey area represents the confidence
interval. Note that these plots show the likelihood that a developer will
respond for apps with responses to at least 5% of the reviews. . . . . . . . 172

6.6 An overview of our approach for identifying the developer response pat-
terns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xiv



CHAPTER 1

Introduction

M
OBILE app stores (such as the Google Play Store and the Apple App Store)

provide a unique updating mechanism that enables app developers to

easily publish and distribute their updates. In addition, after download-

ing a new update, users can post their feedback (i.e., review) so other users could ben-

efit from the posted reviews. Such unique updating and reviewing mechanisms enable

users and developers to interact with each other through the store. In particular, users

can (1) download the latest updates and (2) post their reviews about updates. In addi-

tion, developers can (1) publish updates and (2) respond to user reviews.

The interactions between users and developers within the stores occur at a rapid

pace. Every day, there are new updates being published, and users posting their re-

views about these updates. Developers benefit from such reviews to improve their apps

1



CHAPTER 1. INTRODUCTION 2

U2 TimeU1

App doesn't
work

P P

U3

P

Google Play Store 

Now it works
fine!

R RD D

We are working
on this issue

User User

Dev Dev

Rs

Glad that you like
our app!

Dev

Rs

R

P

A user posts / updates a review

A developer publishes an update

D A user  downloads the latest update

Rs A developer responds to the posted review

Figure 1.1: An example of the user-developer interactions through the Google Play
Store

(or associated documentation), or fix any issues in their new update. Figure 1.1 illus-

trates the user-developer interactions through the Google Play Store. As shown in Fig-

ure 1.1, a developer publishes a new update. Then, the Google Play Store distributes

the update to the current app users. After downloading the latest update of an app,

users can post their feedback (e.g., “App does not work!”). This feedback offers insights

into how users perceive a new update. For example, app developers could benefit from

the reviews and quickly publish an emergency update to fix any widely raised issues.

1.1 Thesis Statement

App stores provide us with a unique opportunity to explore user-developer interac-

tions and the impact of such interactions on the evolution of mobile apps. In this the-

sis, we study user-developer interactions through the updating and reviewing mech-

anisms of app stores. Our studies can help store owners improve the overall quality

of the offered apps in their stores by better understanding the interactions between



CHAPTER 1. INTRODUCTION 3

app users and developers. Providing high-quality apps is essential not only for app

developers but also for store owners. For example, in September 2016, the Apple App

Store started a continuous app store cleaning process that removed outdated or non-

functional apps (Apple, 2018a). This cleaning process resulted in removing hundreds

of thousands of apps from the Apple App Store (Miller, 2017).

In particular, we study the user-developer interactions along three perspectives:

(1) studying the common developer mistakes that lead to emergency updates, so that

store owner can develop mechanisms to prevent app developers from repeating such

mistakes, (2) studying how the reviewing mechanism can help spot good and bad up-

dates, so store owners can leverage user reviews to proactively limit the distribution

of bad updates, and (3) studying the dialogue between users and developers to help

design next-generation app reviewing mechanisms.

Thesis Statement: Studying user-developer interactions through the updating and

reviewing mechanisms of app stores can help store owners improve the overall per-

ceived quality of the provided apps in their stores and enhance the overall experience

of app users.

1.2 Thesis Overview

In this section, we provide an outline of our thesis.

1.2.1 Chapter 2: Background

This chapter gives background information about the user-developer dialogue in the

Google Play Store.



CHAPTER 1. INTRODUCTION 4

1.2.2 Chapter 3: Literature Survey

In this chapter, we provide an overview of prior research that is related to our work. In

particular, we focus on prior research in the following four areas:

1. Bugs in mobile apps. We summarize prior research that studies issues (e.g., user

interface issues) in mobile apps. The importance of analyzing issues in mobile

apps motivates us in studying the common developer mistakes that lead to emer-

gency updates.

2. User reviews of mobile apps. We summarize prior research that analyzes user

reviews to extract useful information such as bug reports and feature requests.

From our survey, we observed that prior research incorrectly assumes that re-

views are static in nature and users never update their reviews. In this thesis, we

examine changes in the posted reviews to understand how users perceive every

update and to leverage users’ feedback about every update.

3. Characteristics of successful apps. We summarize prior research that studies

the characteristics of successful apps (i.e., apps with high ratings). From our

survey, we observed that prior research analyzed the characteristics of success-

ful apps by taking an app-centric view. Recent research noted the importance

of understanding apps on an update-level (i.e., capturing the impressions of an

app’s user-base about a particular update). This motivates us to study how the

reviewing mechanism can help in spotting good and bad updates.

4. User-developer dialogue in app stores. We summarize prior research that ana-

lyzes the dialogue between users and developers. From our survey, we observed

that prior research noted that responding to a review often has a positive effect



CHAPTER 1. INTRODUCTION 5

on the rating that is given by the user to an app. This motivates us to revisit prior

work by conducting a more in-depth study on a larger dataset.

1.2.3 Chapter 4: Studying the Common Developer Mistakes that Lead

to Emergency Updates

In this chapter, we study emergency updates for top Android mobile apps as follows.

First, we propose an approach for identifying emergency updates. Second, we study

the characteristics of emergency updates. We find that the emergency updates often

have a long lifetime (i.e., they are rarely followed by another emergency update). We

also observe that updates preceding emergency updates often receive a higher ratio

of negative reviews than the emergency updates. Finally, we identify eight patterns of

emergency updates. We categorize these eight patterns along two categories “Updates

due to deployment issues” and “Updates due to source code changes”. Our study can

help store owners continuously identify the common developer mistakes that lead to

emergency updates and prevent the distribution of updates with such mistakes.

1.2.4 Chapter 5: Studying How the Reviewing Mechanism Can Help

Spot Good and Bad Updates

In this chapter, we propose an approach for leveraging user reviews to spot good and

bad updates. Then, we study the characteristics of the top 250 bad updates (i.e., up-

dates with the highest increase in the percentage of negative reviews relative to the

prior updates of the app) to learn how users perceive a bad update and how develop-

ers could recover from bad updates. We find that feature removal and UI issues have



CHAPTER 1. INTRODUCTION 6

the highest increase in the percentage of negative reviews. We also observe that bad

updates with crashes and functional issues are the most likely to be fixed by a later up-

date. Our study can help store owners improve the quality of the apps in their stores

by spotting good and bad updates.

1.2.5 Chapter 6: Studying the Dialogue Between Users and Develop-

ers

In this chapter, we perform an in-depth analysis of user-developer dialogue. First, we

analyze the impact of responding to user reviews and the common reasons for a rating

increase/decrease after a developer responds to a user review. Second, we perform

a quantitative analysis of the likelihood of a developer responding. We observe that

the likelihood of a developer responding to a review increases as the review rating gets

lower or as the review content gets longer. Finally, we perform a qualitative analysis of

what drives a developer to respond. We identify seven drivers that make a developer

respond to a review, of which the most important ones are to thank the users for using

the app and to ask the user for more details about the reported issue.

Understanding how user and developers leverage the reviewing mechanism through

user-developer dialogue will help in building better next-generation reviewing mecha-

nisms. For example, next-generation reviewing systems should somehow consider the

changes in users’ long-term impressions while calculating the rating of an app. More-

over, store owners should notify app developers about such changes so developers can

track the changes in users’ impressions about their app.



CHAPTER 1. INTRODUCTION 7

1.3 Thesis Contributions

In this thesis, we show the importance of analyzing user-developer interactions through

the updating and reviewing mechanisms of app stores to gain a better understanding

of how users and developers leverage these mechanisms. We demonstrate that this

in-depth analysis of user-developer interactions can help store owners improve the

overall quality of the provided apps in their stores and enhance the overall experience

of app users. In particular, our main contributions are as follows:

1. This thesis is the first work to demonstrate the dynamic nature of reviews. In

addition, our work is the first work that leverage this dynamic nature to (1) spot

good/bad updates and analyze the characteristics of these updates and (2) ana-

lyze user-developer dialogues.

2. We show that developers share common mistakes and such common mistakes

can be identified using the global view of emergency updates in the Google Play

Store. We identify eight patterns of emergency updates. Store owners can benefit

from our studies to develop mechanisms to prevent app developers from repeat-

ing such mistakes.

3. Our work is the first work to deeply explore developer responses to user reviews.

Furthermore, we are the first to demonstrate an interesting use of the app-review

mechanism as a user support medium. Finally, our identification of similar developer-

responses highlights the importance of providing automated responses in next-

generation app-review mechanisms.

4. We demonstrate the importance of update-level analysis compared to the tradi-

tional app-level view that is done by most prior work. Furthermore, we propose



CHAPTER 1. INTRODUCTION 8

an approach for identifying good/bad updates. In addition, we perform an in-

depth analysis of the characteristics of bad updates and how developers recov-

ered from bad updates.



CHAPTER 2

Background

I
N this chapter, we give background information for our study by explaining how

the user-developer dialogue in the Google Play Store works.

Figure 2.1 shows an abstraction of the user-developer dialogue in the Google

Play Store. A user initiates the dialogue by posting a review, including a rating, for an

app (S1). User reviews can contain valuable information such as bug reports, feature

requests, complaints or praise about the app (Maalej and Nabil, 2015). In turn, the

app developer engages in the dialogue by responding to the review (S2). The Google

Play Store notifies a user when a developer responds to the user review. Both the user

review and the developer responses can be updated at any time. Hence, by considering

the changes made to the review and the response in a chronological order, we can see

the dialogue between the user and developer. Note that the app store shows only the

9



CHAPTER 2. BACKGROUND 10

Response 
posted

Review 
posted

User updates the reviewUser updates
 the review

Developer responds to the posted review

Developer updates
 the response

User posts a review  

S
2

S
1

Figure 2.1: User-developer dialogue in the Google Play Store

latest versions of the review and the response. Hence, to study such a dialogue we

must continuously crawl the app store reviews to spot any changes to user reviews or

developer responses. At the start of our research, the Google Play Store is the only store

with support for developer responses. Apple’s App Store is expected to add support for

responding to reviews soon (Perez, 2017).

The Google Play Store sends an email notification to an app user when a developer

responds to their review (i.e., when the user-developer dialogue changes from state S1

to state S2) (Google, 2018c). In addition, the Google Play Store sends an email notifi-

cation to an app developer whenever a user changes their posted review after a devel-

oper response (i.e., when the user-developer dialogue changes from state S2 to state S1).

However, the store does not notify developers when users keep updating their review

(i.e., remain in state S1). In addition, the store does not notify users when developers

keep changing their response (i.e., remain in state S2). In summary, developers and

users are not always notified when a review or response changes.



CHAPTER 2. BACKGROUND 11

Table 2.1: User-developer dialogue for the AppLock app

Dialogue State Rating

User: “Applock stopped locking apps sud-
denly.... help”

S1

Developer: “Hi Vikhyath, thanks for using
AppLock. To solve this problem, please open
phone settings, then select security, then select
apps with usage access, enable AppLock.”

S2 -

User: “Applock stopped locking apps sud-
denly.... help . edit: why is it asking for usage
access all of a sudden ? Reply please.”

S1

Developer: “Hi Vikhyath, since Lollipop sys-
tem, there are some changes in Android sys-
tem. In order to make AppLock work, please
open phone settings, then select security, then
select apps with usage access, enable Ap-
pLock.”

S2 -

User: “Thank you .thank you for response” S1

Developer: “Hi Vikhyath, thanks for your
support all along. :) We will keep working to
provide the best user experience. Have a nice
day!”

S2 -

Table 2.1 shows an example of how such a dialogue emerges when a user or a de-

veloper update their review or response for the AppLock app. The dialogue shows how

a user raises an issue in his review and how the developer helps the user resolve that

issue. After resolving the issue, the user increases the given rating from 2 stars to 5 stars

out of 5 stars.



CHAPTER 3

Literature Survey

I
N this chapter, we give an overview of prior research that is related to our work.

In particular, we focus on prior research in the area of (1) bugs in mobile apps,

(2) user reviews of mobile apps, (3) characteristics of successful apps and (4)

user-developer dialogue in app stores.

3.1 Bugs in Mobile Apps

In order to minimize the bugs in mobile apps, prior research studies crashes and bugs

in mobile apps. Guana et al. (2012) analyzed data for 20,169 bugs in the Android plat-

form repository. They found that the framework layer contains a higher number of

bugs than the kernel layer. Han et al. (2012) studied the Android platform bugs that

12



CHAPTER 3. LITERATURE SURVEY 13

are reported for the HTC and Motorola devices. They manually labeled the bugs and

applied Latent Dirichlet Allocation (LDA) and Labeled LDA techniques in order to gen-

erate topics from the bug reports. Han et al. identified 57 topics and 72 topics for the

Motorola and HTC devices respectively. Han et al. found 14 common topics between

the Motorola and HTC devices.

Syer et al. (2013) studied the differences between mobile apps, desktop/server ap-

plications. Syer et al. studied 15 open-source mobile apps (from the Google Play Store

and F-Droid apps repositories) and five desktop/server applications. Syer et al. found

that mobile apps have a smaller code base than desktop/server applications. Syer et

al. found that the reported bugs of mobile apps are fixed faster than in desktop/server

applications. Syer et al. (2015) studied the relation between the use of Android APIs

and the probability of bugs in mobile apps. Syer et al. found that source code files that

have a higher dependence on the Android APIs are more bug-prone than other files.

Thus, Syer et al. recommended the prioritization of code review efforts on source code

files that heavily depend on the Android APIs.

Ravindranath et al. (2012) proposed an AppInsight tool that analyzes a mobile app

and identifies performance bottlenecks. Their study included the analysis of the usage

of 30 users of 30 apps over a four-months period and leveraged the AppInsight tool

to identify the performance bottlenecks in these studied apps. Vásquez et al. (2013)

studied the fault-proneness of the used APIs on an app’s rating. They observed a high

correlation between an app’s rating and the change and fault-proneness of the APIs

that are used by the app (Vásquez et al., 2013; Bavota et al., 2015).

The limited battery power of mobile devices may impact the user experience if

some app features (e.g., the mobile camera) have a high battery consumption (Wan



CHAPTER 3. LITERATURE SURVEY 14

et al., 2015). Researchers studied energy bugs and energy hotspots in mobile apps (Pathak

et al., 2011; Banerjee et al., 2014; Pathak et al., 2012; Wan et al., 2015). According to

Banerjee et al. (2014) energy bugs are defined as the cases when the mobile device re-

sources are still used although the app is no longer active, while energy hotspots are

defined as the cases when an app causes high energy consumption although the re-

source utilization is small. Pathak et al. (2011) proposed a taxonomy of smartphone

energy bugs. Pathak et al. found that there is a variation in the types and causes of

energy bugs. Pathak et al. provided a roadmap for developing a framework that iden-

tifies the root-cause of energy bugs. Banerjee et al. (2014) developed a framework that

generates test data to detect energy bugs and energy hotspots in mobile apps. Wan

et al. (2015) identified UI screens that have more energy consumption than optimized

screens. For example, optimized colors may reduce energy consumption. Wan et al.

rank UI screens with respect to the difference in the energy consumption between the

original UI screens and the energy-optimized screens, so developers can focus on top

energy consuming screens to reduce the consumption of energy.

Prior research provides best practices and tools that help avoid crashes and bugs

in mobile apps. The importance of analyzing issues in mobile apps motivates us

in studying the common developer mistakes that lead to emergency updates, so that

store owner can develop mechanisms to prevent app developers from repeating such

mistakes.

3.2 User Reviews of Mobile Apps

Researchers often analyze user reviews to extract useful information such as complaints

and feature requests (Oh et al., 2013; Iacob and Harrison, 2013; Iacob et al., 2013b,a;



CHAPTER 3. LITERATURE SURVEY 15

Maalej and Nabil, 2015; Villarroel et al., 2016; Keertipati et al., 2016; Khalid, 2013; Khalid

et al., 2015; McIlroy et al., 2016b). Table 3.1 summarizes prior studies which analyze

user reviews. For example, Iacob and Harrison (2013); Iacob et al. (2013a) proposed

MARA (Mobile App Review Analyzer) which uses linguistic rules to identify reviews that

contain bug reports or feature requests.

Maalej and Nabil (2015) used different techniques to extract features from user re-

views (such as review rating). Then Maalej and Nabil used different algorithms (such

as Naive Bayes and decision tree) to label reviews into four categories: (1) feature re-

quest, (2) bug report, (3) user experience, and (4) app rating based on the extracted

features. Maalej and Nabil’s evaluated their approach using 4,400 manually-labeled

reviews. Their approach achieves a precision that ranges from 70% to 95% and a recall

that ranges from 80% to 90% based on the technique that is used to classify reviews.

Khalid et al. (2015) studied user complaints in mobile apps and identified 13 issue

types (e.g., crashes and bug reports) that were raised in user reviews. McIlroy et al.

(2016b) improved the taxonomy of issue types that was identified by Khalid et al. and

proposed an approach to automatically classify reviews into the corresponding issue

type. McIlroy et al. manually labeled 7,456 reviews of 24 apps in the Google Play Store

and the Apple App Store to evaluate their approach. McIlroy et al. reported that their

approach achieves a precision of 66% and a recall of 65% in classifying reviews into the

corresponding issue types.

Panichella et al. (2015, 2016) proposed ARdoc (App Reviews Development Oriented

Classifier) which classifies user reviews into five categories: (1) feature request, (2) bug

report, (3) providing information, (4) requesting information, and (5) others. Similar

to Maalej and Nabil’s approach, Panichella et al. used different techniques (such as



CHAPTER 3. LITERATURE SURVEY 16

Natural Language Processing (NLP) and sentiment analysis) to extract features from

user reviews. Then, Panichella et al. built models that classify reviews to the afore-

mentioned five categories based on the extracted features. Finally, Panichella et al.

evaluated their approach by manually labeling 1,421 sentences from the reviews of

seven apps (Panichella et al., 2015). Panichella et al. observed that combining ma-

chine learning techniques (e.g., sentiment analysis and text analysis) achieves higher

accuracy than using a single technique. Panichella et al. evaluated ARdoc on reviews of

different mobile apps and observed that ARdoc could achieve a precision that ranges

from 84% to 89% and a recall that ranges from 84% to 89%.

Sorbo et al. (2017, 2016) proposed SURF (Summarizer of User Reviews Feedback)

which is based on Panichella et al.’s approach (Panichella et al., 2015, 2016). First, the

SURF technique labels reviews into the five categories that were proposed by Panichella

et al. (2015, 2016). Then, Sorbo et al. manually analyzed 1,390 reviews and identified

12 topics that are mentioned in these reviews. Finally, SURF identifies which topic of

these 12 topics (e.g., pricing) is mentioned in every review. Di Sorbo et al.’s approach

is useful for app developers to automatically filter reviews that are related to a certain

category (e.g., feature request) and a certain topic (e.g., pricing).

Villarroel et al. (2016) proposed CLAP (Crowd Listener for releAse Planning) which

classifies reviews into three issue types: (1) bug report, (2) feature request, and (3) oth-

ers. Later, Scalabrino et al. (2017) improved CLAP to classify reviews into seven types:

(1) bug report, (2) feature request, (3) performance issues, (4) energy issues, (5) security

issues, (6) usability issues, and (7) others. CLAP groups similar reviews in every issue

type (e.g., group all reviews that raise the same energy complaint). Finally, CLAP prior-

itizes the identified groups based on different factors (such as the average rating of all



CHAPTER 3. LITERATURE SURVEY 17

reviews in every group). CLAP is useful for app developers to plan for the next release

by selecting the most important raised complaints in a particular issue type (e.g., most

important performance issue that was raised in the reviews).

Chen et al. (2014) proposed AR-Miner (Automatic Review Miner) that filters out

non-informative reviews and groups similar reviews based on topic extraction. The

AR-Miner approach ranks topics based on different criteria such as the number of re-

views containing this topic or the average rating of the topic. Finally, AR-Miner displays

the identified topics. The proposed approach is useful for app developers to identify

raised topics over time and easily select reviews that are related to a certain topic.

Later, Palomba et al. (2015) leveraged Chen et al.’s technique to filter non-informative

reviews and proposed the CRISTAL technique. CRISTAL links user reviews to the cor-

responding code changes (i.e., code commits and bug reports) using text similarity.

Palomba et al. applied CRISTAL to 100 apps and observed that implementing features

that are requested in user reviews leads to a rating increase. Palomba et al. results

suggest that developers should leverage reviews analysis tools to continuously high-

light the requested features and implement these features to improve their app rating.

Palomba et al. (2018) extended their study by surveying app developers whether they

consider the requested features in user reviews. Palomba et al. observed that at least

75% of the surveyed developers mentioned that they frequently consider the features

that are requested by users. Later, Palomba et al. (2017) proposed the CHANGEADVISOR

approach to group user reviews that request similar features and map these reviews to

the corresponding source code. The CHANGEADVISOR approach was applied to ten

apps and the CHANGEADVISOR approach achieves high accuracy (81% precision and

70% recall) in mapping the requested features from user reviews to the corresponding



CHAPTER 3. LITERATURE SURVEY 18

Table 3.1: Summary of the prior studies which analyze user reviews (ordered by the
publication year)

Study Approach name Venue-Year

Iacob and Harrison
(2013); Iacob et al.
(2013a)

MARA MSR-2013, MobiCASE-2013

Khalid et al. (2015);
Khalid (2013)

- ICSE-2013, IEEE Soft.-2015

Chen et al. (2014) AR-Miner ICSE-2014
Maalej and Nabil (2015) - RE-2015
Panichella et al. (2015,
2016)

ARdoc ICSME-2015, FSE-2016

Palomba et al. (2015,
2018)

CRISTAL ICSME-2015, JSS-2018

McIlroy et al. (2016b) - EMSE-20016
Sorbo et al. (2017, 2016) SURF FSE-2016, ICSE-2017
Villarroel et al. (2016) &
Scalabrino et al. (2017)

CLAP ICSE-2016, TSE-2017

Palomba et al. (2017) CHANGEADVISOR ICSE-2017
Gao et al. (2018) IDEA ICSE-2018

source code elements.

Gao et al. (2018) proposed IDEA (IDentify Emerging App issues) that identifies the

emerging topics in every update of an app. IDEA automatically identifies the represen-

tative sentence for each topic and displays the topic’s evolution over time. The main

difference between AR-Miner and IDEA is that IDEA introduced the AOLDA (Adap-

tively Online Latent Dirichlet Allocation) technique to adaptively detect the topics of

an update Ui based on the topics of the previous updates. Gao et al. evaluated IDEA

by comparing the identified topics to the release notes of six apps. Gao et al. observed

that IDEA detects the topics with 60% precision and 60% recall.



CHAPTER 3. LITERATURE SURVEY 19

Prior research incorrectly assumes that reviews are static in nature and users never

update their reviews. In addition, prior research mainly focused on the app-level

analysis of reviews. Such app-level analysis does not identify how users perceive ev-

ery update. In this thesis, we examine changes in the posted reviews to understand

how users perceive every update and to learn from users’ feedback about every up-

date.

3.3 Characteristics of Successful Apps

Researchers studied the characteristics of successful apps (i.e., apps with high ratings).

Harman et al. (2012) studied the relationship between the app rating, the rank for

the number of users who downloaded the app, and the price of the app using data from

32,108 apps on the Blackberry App Store. Their study showed that there is a strong cor-

relation between the app rating and the app downloads and that there is no correlation

between the app price, and the app rating or the app downloads.

Prior work primarily examined the characteristics (e.g., deployed APK file size and

app category) of successful apps based on the latest update and the overall rating of

an app (Vásquez et al., 2013; McIlroy et al., 2016a; Tian et al., 2015; Noei et al., 2017).

Ruiz et al. (2016) observed that the overall rating of an app is not impacted much by

individual updates. Hence, by taking an app-centric view when studying mobile apps,

important information about updates may be lost. Therefore, in this thesis, we focus

on studying mobile apps using an update-centric view.

Later, Martin (2016); Martin et al. (2016) performed causal impact analysis to study

the impact of the deployed updates of an app on the success of the app. The success

of an app is quantified using three metrics: (1) the average app rating, (2) the number



CHAPTER 3. LITERATURE SURVEY 20

of ratings of the app, and (3) the number of weekly ratings of the app. Martin et al.

found that 33% of the studied updates have an impact on the success of their apps. In

addition, Martin et al. observed that updates that positively impact the success of an

app have more descriptive release notes which mention bug fixes and new features.

Finally, Martin et al. reported that 39 out of 45 surveyed app developers wish to know

the characteristics of their impactful updates.

Prior research analyzed the characteristics of successful apps by taking an app-

centric view. Recent research showed the importance of understanding apps on

update-level. This motivates us to study how the reviewing mechanism can help

spot good and bad updates. In addition, we carefully examined the characteristics

of bad updates and how developers recovered from such updates.

3.4 User-Developer Dialogue in App Stores

Researchers studied the characteristics of user-developer dialogues. In this section,

we present prior research that is related to analyzing user-developer dialogue in app

stores.

Oh et al. (2013) surveyed 100 users to study the different approaches for user-developer

interactions. Oh et al. found that users prefer posting reviews on the mobile stores over

giving feedback through other communication channels (such as email or telephone).

McIlroy et al. (2017) studied the impact of a developer response on the rating given

by a user. They found that users often increase the given rating after a developer re-

sponds to the posted review. McIlroy et al. showed that the majority of developer re-

sponses provide assistance to the user or ask the user to contact the developer through

another communication channel.



CHAPTER 3. LITERATURE SURVEY 21

Prior research showed that responding to a review often has a positive effect on the

rating that is given by the user to an app. In this thesis, we revisited prior work by

conducting a more in-depth study on a larger dataset (as well tracking such user-

developer dialogues in detail over an extended period of time).



CHAPTER 4

Studying the Common Developer Mistakes that Lead to

Emergency Updates

T
HE mobile app market continues to grow at a tremendous rate. The mar-

ket provides a convenient and efficient updating mechanism for updating

apps. App developers continuously leverage such mechanism to update

their apps at a rapid pace. The mechanism is ideal for publishing emergency updates

(i.e., updates that are published soon after the previous update). In this chapter, we

study such emergency updates in the Google Play Store. Examining more than 44,000

updates of over 10,000 mobile apps in the Google Play Store, we identify 1,000 emer-

gency updates. By studying the characteristics of such emergency updates, we find

that the emergency updates often have a long lifetime (i.e., they are rarely followed

by another emergency update). Updates preceding emergency updates often receive

22



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 23

a higher ratio of negative reviews than the emergency updates. However, the release

notes of emergency updates rarely indicate the rationale for such updates. Hence, we

manually investigate the binary changes of several of these emergency updates. We

find eight patterns of emergency updates. We categorize these eight patterns along

two categories “Updates due to deployment issues” and “Updates due to source code

changes”. We find that these identified patterns of emergency updates are often as-

sociated with simple mistakes, such as using a wrong resource folder (e.g., images or

sounds) for an app. We manually examine each pattern and document its causes and

impact on the user experience. App developers should carefully avoid these patterns

in order to improve the user experience. In addition, store owners can develop mecha-

nisms to prevent app developers from repeating such mistakes. Our findings are based

on a study of the top 1,000 emergency updates. The characteristics and patterns of the

emergency updates that are not in the top 1,000 may be different from our findings.

Our work is the first step towards analyzing emergency updates and our study may be

improved by examining more emergency updates (e.g., analyzing randomly selected

updates instead of the top 1,000 emergency updates).

4.1 Introduction

The mobile app market is continuously growing and evolving. Research on mobile app

markets reports that in 2018 more than 7.1 million mobile apps are available for users

across the different mobile app stores (Statista, 2018). There exist more than 1.2 billion

mobile app users worldwide and the number of users continues to grow at a very fast

pace (mobiThinking, 2013). ABI research estimates that mobile users downloaded 70

billion apps in 2013 (ABI Research, 2013).



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 24

Mobile app stores, such as the Google Play Store, provide a unique updating mech-

anism to facilitate the release and deployment of app updates. When a developer pub-

lishes an update for their app, all the current users of the app can automatically receive

the update within the same day (Google, 2018a). Developers extensively leverage this

low cost updating mechanism in order to rapidly publish updates. Such an updating

mechanism eases the shift towards faster update cycles (Khomh et al., 2012; Mäntylä

et al., 2013). However, frequent updates may disturb users, such that some corpora-

tions (like Microsoft (Mic, 2018)) opted to reduce the frequency of their updates based

on user feedback.

The updating mechanism enables the rapid release and deployment of emergency

updates for mobile apps. Emergency updates are updates that are released soon after

the previous update. For example, the “OPM Alert”1 app has an update on February

4t h 2014 and an emergency update on the following day (February 5t h 2014).

However, to the best of our knowledge, there exist no studies that explore such

emergency updates. In this chapter, we perform an empirical study on the emergency

updates for the top apps in the Google Play Store. Our study focuses on the top 12,000

free-to-download apps (according to the App Annie’s top popular apps report in 2013 (Ap-

pAnnie, 2018), these top free-to-download apps are distributed among 25 different cat-

egories). We choose to study these apps, since updates to these top apps impact a large

number of users. Moreover, such mature apps are less likely to exhibit very frequent

updates. Hence, we can easily identify emergency updates. We rank the emergency

nature of each update by measuring the ratio of the lifetime of its preceding update

versus the median lifetime of an update for that particular app (we call this metric, the

emergency ratio of an update).

1https://play.google.com/store/apps/details?id=gov.opm.status

https://play.google.com/store/apps/details?id=gov.opm.status


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 25

We study the top 1,000 emergency updates (according to our aforementioned emer-

gency ratio metric). Our study of the characteristics of the top 1,000 emergency up-

dates, shows that emergency updates often have a long lifetime (i.e., they are rarely

followed by another emergency update). The lifetime of an emergency update is on

average 2.25 times longer than the median lifetime of all non-emergency updates of

an app. Hence, users should install these emergency updates and not worry about an-

other emergency update following the emergency update. In addition, we find that

developers rarely mention the reasons of emergency updates in their release notes.

63.4% of the emergency updates do not include any useful information about the ra-

tionale for the updates in their release notes. We find that the ratio of negative reviews

for the update preceding an emergency update is often higher than the ratio of negative

reviews for the emergency update.

To further understand emergency updates, we manually examine the decompiled

code and files in the binaries (APK files) associated with such emergency updates and

their preceding updates. Our manual analysis of 361 emergency updates leads us to

identify several common patterns for emergency updates. We document eight pat-

terns of emergency updates. These patterns of common developer mistakes that lead

to emergency updates belong to two categories: 1) Updates due to deployment issues

and 2) Updates due to source code changes. We document the details of each pattern

with its root-causes, example updates, speed of repair, examples of user complaints

and lessons learned from the pattern.

The contributions of this chapter are as follows:

1. This chapter is the first study to empirically study the characteristics and pat-

terns of emergency updates for mobile apps.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 26

2. Our detailed documentation of emergency updates can help mobile app devel-

opers avoid these patterns before releasing updates for their mobile apps.

Our work is a first step towards documenting such patterns and we expect that future

studies will extend these patterns and uncover new ones.

The rest of this chapter is organized as follows. Section 4.2 describes the studied

apps and illustrates our data collection process and study methodology. Section 4.3

discusses the characteristics of emergency updates and Section 4.4 defines our ap-

proach for identifying patterns of emergency updates. Section 4.5 describes the iden-

tified patterns for emergency updates. Section 4.6 outlines the limitations and threats

to the validity of our study. Section 4.7 describes the related work. Finally, Section 4.8

concludes our study.

4.2 Methodology

In this section, we describe the methodology of our study. First, we collect apps from

the Google Play Store. Then, we identify emergency updates from the collected apps.

Figure 4.1 illustrates an overview of the methodology of our study.

4.2.1 Collecting the Studied Apps

We study the top free-to-download mobile apps in the Google Play Store. Google Play

Store is one of the world’s largest mobile app stores with millions of apps and billions

of downloads (Statista, 2018, 2016). We study free-to-download apps because the ma-

jority of the apps in the Google Play Store are free-to-download (AppBrain, 2018). In



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 27

Google 
 Play 
Store

1. Collecting the studied apps

Collect 
apps' 

data over
12 months

Reviews and
release notes 
of each update

Select 
the top
 1,000 

emergency 
updates

Apk file of 
each update

2. Identifying emergency updates
for each collected app

Over 10,000 
top apps

App's data 
including all 

updates

Calculate
 emergency 

ratio

Emergency 
ratio of

 all updates

Select
12,000
Android
 apps

Figure 4.1: An overview of the methodology of our study.

addition, we can only download binary files (APK file) from such apps due to our lim-

ited budget. We focus on the most popular free-to-download apps since these apps

have many users and contain more updates than the less popular apps. We select the

top free-to-download mobile apps using the App Annie’s top popular apps report in

2013 (AppAnnie, 2018). App Annie’s report provides a list of the 400 top apps for each

of the 24 non-Game categories. In addition, App Annie’s report provides a list of 400 top

apps for each of the 6 Game categories. In total, we collect 12,000 top free-to-download

apps. We use the App Annie’s published popular apps ranking in 2013 (one year before

we start our data collection) in order to ensure that the apps are more stable and that

the collected updates are not early updates of an app (such early updates are likely to

be rapid in nature).

In order to collect daily data about the studied apps, we crawl the Google Play Store

using a specialized store crawling library (Akdeniz, 2013). We collect the general infor-

mation of an app on a daily basis, such as its name, category, uploaded APK file, and

user reviews. We select the Samsung S3 as the mobile device to download apps from

the Google Play Store, as Samsung S3 is a very popular mobile device (at the time of our

study). If the crawler interacts with the Google Play Store frequently, the crawler may



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 28

be blocked by the Store due to too many requests. Therefore, we use a timer to pause

the crawler periodically and visit the store page of a particular app only once a day.

The crawler runs during the study period of around 12 months starting from Novem-

ber 26t h 2013 to November 18t h 2014. During the study period, some apps were re-

moved from the Google Play Store. Hence, we only collect data for the 10,747 available

top apps. During the study period, we collect the APK files and user reviews for 44,113

updates. On average, each app has 4.11 updates during the study period and 6,894

apps published at least one update during the study period.

4.2.2 Identifying Emergency Updates

In order to identify emergency updates, for each update Ui , we calculate the lifetime of

the update (Ui ), as the time difference (in days) between the update date of the update

Ui and the update date of the next update Ui+1.

In order to identify emergency updates, intuitively we consider an update Ui as

an emergency update, if the lifetime of the update Ui−1 is less than one day. However,

some apps have a more frequent update cycle than other apps. For example, The “Hola

Free VPN”2 app has 69 updates during the study period (the median update lifetime for

this app is three days), while the “Stock Watch: BSE /NSE”3 app has only three updates

during the study period (the median update lifetime for this app is 202 days). There

are 200 apps that have a median update lifetime of less than a week.

Therefore, we cannot use one value as a threshold to determine whether an update

is an emergency update. Instead, we quantify the emergency nature of an update using

a metric named the Emergency ratio of an update. We define the Emergency ratio of an

2https://play.google.com/store/apps/details?id=org.hola
3https://play.google.com/store/apps/details?id=com.snapwork.finance

https://play.google.com/store/apps/details?id=org.hola
https://play.google.com/store/apps/details?id=com.snapwork.finance


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 29

Table 4.1: Mean and five-number summary of emergency ratio of the top 1,000 emer-
gency updates. The larger the emergency ratio, the longer the lifetime of the update
preceding the emergency update.

Update category Mean Min. 1st Qu. Median 3rd Qu. Max.

The emergency update (Ui ) 0.03 0.00 0.02 0.03 0.04 0.05

update Ui as the ratio between the lifetime of the Ui−1 update and the median lifetime

of all the updates for that app.

E me r g e n c y r a t i o (Ui ) =
l i f e t i me (Ui−1)

M e d i a n l i f e t i me o f t he up d a t e s f o r t ha t a p p
(4.1)

The lower the emergency ratio, the higher the emergency nature of a particular update.

We rank the updates by their emergency ratio and we focus on the top 1,000 emer-

gency updates with the lowest emergency ratios. Table 4.1 represents the mean and

five-number summary of emergency ratio of the top 1,000 emergency updates. For ex-

ample, the “Tweakker APN INTERNET MMS”4 app has a median update lifetime of 124

days and the lifetime of one update (“version 1.8.1”) is only one day (i.e., the emergency

ratio for the following update is 0.008). Such a low emergency ratio indicates that the

following update is very likely an emergency update.

Table 4.2 represents the mean and five-number summary for lifetime (in days) of

the updates that precede the 1,000 top most updates according to their emergency ra-

tio. We notice that 688 of the updates are followed by an emergency update within one

day and a large portion of updates are followed with an emergency update within two

days.

4http://tweakker.com, the app was available during the study period but the Google Play Store no
longer hosts this app at the time of the writing of this chapter.

http://tweakker.com


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 30

Table 4.2: Mean and five-number summary for lifetime (in days) of the top 1,000 up-
dates (according to the emergency ratio of their following update).

Update category Mean Min. 1st Qu. Median 3rd Qu. Max.

The lifetime of the update
preceding the emergency

update (Ui−1)

1.79 1.00 1.00 1.00 2.00 21.00

4.3 Characteristics of Emergency Updates

In this section, we study the characteristics of the top 1,000 emergency updates. In

particular, we focus on five aspects of emergency updates: their lifetime, the content

of their release notes, their rating and their version numbering. Table 4.3 summarizes

the major findings and implications of our findings.

4.3.1 Lifetime of Emergency Updates

We would like to examine whether emergency updates last for a long time, and whether

emergency updates are likely to be followed by additional emergency updates. First,

we compare the lifetime of emergency updates and the median lifetime of an update of

an app. We then study whether there is a statistically significant difference between the

emergency ratios of the update that follows an emergency update and the update that

follows a non-emergency update. We use the MannWhitney U test (Wilcoxon rank-

sum test) (Gehan, 1965), since the emergency ratio is highly skewed. The MannWhit-

ney U test is a non-parametric test which does not have any assumptions about the

distribution of the sample population. A p-value of ≤ 0.05 means that the difference

between the emergency ratios of the updates that follow an emergency update and the

emergency ratios of the updates that follow a non-emergency update is statistically

significant and we may reject the null hypothesis. By rejecting the null hypothesis, we



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 31

Table 4.3: Our major findings (and their implications) on the characteristics of the top
1,000 emergency updates for top Android apps.

Lifetime of emergency updates Implications
Emergency updates have a long
lifetime.

Users should update mobile apps with the
emergency updates without being
concerned about another update showing
up soon afterwards.

Release notes of emergency
updates

Implications

Release notes of emergency
updates rarely provide a clear
description about the rationale
for the update.

Developers should highlight the emergency
nature of an update and encourage users to
download it.

Version numbering of an
emergency update

Implications

There is no fixed numbering
convention for the emergency
updates.

Developers may consider using version
numbers to indicate whether an update is a
major update or an emergency update.

Ratings of emergency updates Implications
The updates preceding the
emergency updates have more
negative reviews than the
emergency updates.

It would be beneficial if users are told about
the recent rating of a newly available update
(relative to the apps rating for its prior
update) when users are informed of the
availability of the update.

can accept the alternative hypothesis, which shows that there is a statistically signifi-

cant difference between the emergency ratios of the updates that follow an emergency

update and the emergency ratios of the updates that follow a non-emergency update.

Emergency updates have a long lifetime. We find that that on average the lifetime

of an emergency update is 2.4 times the median lifetime of all non-emergency updates

of an app. The p-value of the MannWhitney U test Test is 0.01271, (i.e., less than 0.05)

which shows that there is a statistically significant difference between the emergency

ratios of the updates that follow an emergency update and the emergency ratios of the



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 32

updates that follow a non-emergency update.

Nevertheless, we find 40 emergency updates (out of the 1,000 studied emergency

updates) that are followed by another emergency update. We find that the minimum

value of the emergency ratio of the update after the emergency updates is only 0.01.

For example, “Horoscope HD Free”5 app has an update on March 30t h 2014, the de-

velopment team published an emergency update on the next day (March 31s t 2014).

However, the development team forgot to add the needed permissions for the modi-

fied code. Therefore, they publish yet another emergency update on the next day on

April 1s t 2014 to add the missing permissions.

Our results suggest that users should update their mobile apps if an emergency

update is published as developers rarely follow an emergency update with yet another

one.

4.3.2 Release Notes of Emergency Updates

We would like to better understand the rationale for emergency updates and whether

developers do inform their users about the rationale for such emergency updates. We

read the release notes for all 1,000 identified emergency updates (Ui ) and the updates

preceding the emergency updates (Ui−1). Then we identify the differences in the re-

lease notes between an emergency update (Ui ) and the preceding update (Ui−1). Based

on the differences between the two release notes, we determine whether the release

note provides useful information about the rationale for the emergency update.

Around a third of the updates explain the rationale for the emergency update

in the release notes. We find that 36.6% of the release notes explain what is fixed in

5https://play.google.com/store/apps/details?id=ch.smalltech.horoscope.free

https://play.google.com/store/apps/details?id=ch.smalltech.horoscope.free


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 33

the emergency update. For example, the “Body Fat Calculator”6 app has an update on

October 10t h 2014 and an emergency update on the next day. The emergency update

added text in the release notes that describes the update as follows: “Version 3.2.1: Re-

vised on-line guide did not load properly on some old devices. Issue Fixed”.

Two third of the updates do not have a clear description regarding the rationale

for the emergency update. We find that 63.4% of the release notes do not include any

useful information about the rationale for the emergency update. 59.8% of the emer-

gency updates use the same release note as the previous update and 3.7% of the emer-

gency updates changed their release notes, however with very general descriptions,

such as “Fix bugs and add new features”.

We find that both apps with long or short update cycles rarely include the rationale

for the emergency update in their release notes. For example, the “Emojidom: Chat

Smileys and Emoji”7 app has a median update lifetime of 20 days. An update of the

“Emojidom: Chat Smileys and Emoji” app was published on September 16t h 2014 and

an emergency update was published on the next day. Both updates have the exact same

release notes. Similarly, the “Sushi Bar”8 app with a long update lifetime of 409 days

has one emergency update without updating the release notes that are associated with

that emergency update.

We also investigate the release notes that are from the websites of the 361 studied

apps with emergency updates. We find that 279 apps provide a link to their website on

their store page in the Google Play Store. We manually checked the websites for these

279 apps and we find that only 18 apps provide release notes on their web site. We find

that such online release notes provide no additional information over the release notes

6https://play.google.com/store/apps/details?id=com.fullquieting.android.FatCalc
7https://play.google.com/store/apps/details?id=com.plantpurple.emojidom
8https://play.google.com/store/apps/details?id=com.roidgame.sushichain.activity

https://play.google.com/store/apps/details?id=com.fullquieting.android.FatCalc
https://play.google.com/store/apps/details?id=com.plantpurple.emojidom
https://play.google.com/store/apps/details?id=com.roidgame.sushichain.activity


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 34

that are posted on the app’s store page.

Our analysis suggests that developers should consider highlighting emergency up-

dates in their release notes to encourage users to download these emergency updates.

Besides, store owners should encourage app developers to highlight the fixed issues in

their release notes. For example, store owners could leverage the changed files (e.g.,

changed image files or added permissions) in the emergency updates and provide ini-

tial suggestions for the release notes. For example, if an emergency update added an

app permission, the store owner can give an initial recommendation to app developers

to write a fix about the added permission.

4.3.3 Version Numbering of an Emergency Update

We would like to understand whether the update version numbers of emergency up-

dates follow a certain format, in order to ease the further investigation of emergency

updates. We study the difference between the version numbers for the emergency up-

date (Ui ) and the update preceding the emergency update (Ui−1).

There is no fixed numbering convention for emergency updates. We define Ver-

sion level as the number of digits that are separated by dots (“.”) in a version number. In

some cases, developers change the version numbers while keeping the same number

of version levels (e.g., from version 2.32 to version 2.33). In other cases, developers use

an additional version level for their emergency updates relative to the version number

of the preceding update (e.g., from version 2.3 to version 2.3.1). Table 4.4 summarizes

the different changes to version numbers that we find in the emergency updates.

From Table 4.4, we summarize the results as follows:

• In 11% of the emergency updates, the update preceding the emergency update



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 35

Table 4.4: Study of version numbers in the top 1,000 emergency updates.

Changes in the version numbers of emergency updates
% of

emergency
updates

The update preceding the emergency update and the
emergency update have the same exact version number.

11%

The emergency update has the same version level as the
update preceding the emergency update (e.g., version 5.77
and 5.78).

71%

The emergency update has an additional version level than
the update preceding the emergency update (e.g., version
7.3 and 7.3.1).

18%

and the emergency update both have the same exact version number.

• In 89% of the emergency updates, the update preceding the emergency update

and emergency update have different version numbers. In such cases:



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 36

– 71% of the emergency updates have the same version level as the update

preceding the emergency update (e.g., version 5.77 and 5.78).

– 18% of the emergency updates have an additional version level than the

update preceding the emergency update (e.g., version 7.3 and 7.3.1).

Based on the obtained results, we find that users cannot know whether an update is

an emergency update just based on changes to version numbers. However, developers

may consider making better use of version numbering patterns (and best practices) to

indicate whether an update is a major update or an emergency update.

4.3.4 Ratings of Emergency Updates

In order to study changes in the ratings to the updates preceding the emergency up-

dates. We focus on negative reviews (reviews with one or two stars rating) as these

reviews mainly contain user complaints (Khalid et al., 2015; Martin, 2015). Among the

total 1,000 emergency updates, 363 updates have no reviews for the update preceding

the emergency update and 280 updates have too few reviews (with a median of two re-

ceived reviews for the update preceding the emergency update). Therefore, we focus

on the rest 357 updates to study the negative reviews.

We define the ratio of negative reviews (R N R ) for an app A at date d as follows:

R N R (A, d ) =
N (A, d )
T (A, d )

(4.2)

where N (A, d ) is the number of negative reviews that are received at date d for an app

A, and T (A, d ) is the total number of reviews that are received at date d for an app A.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 37

time

 The emergency update U
i

ED1 ED2 ED3

The update preceding the
emergency update U

i-1

BE

The second update preceding 
the emergency update U

i-2

2BE

Figure 4.2: An overview of the studied dates for an app A.

For each app A that has an emergency update, as illustrated in Figure 4.2, we cal-

culate the ratio of negative reviews for the app during the following five dates:

• Date d2B E is the deployment date of the second update preceding the emergency

update.

• Date dB E is the deployment date of the update preceding the emergency update.

• Date dE D 1 is the deployment date of the emergency update.

• Date dE D 2 is the following day to the deployment date of the emergency update.

• Date dE D 3 is the second following day to the deployment date of the emergency

update.

In order to compare the ratio of negative reviews, we use the R N R (A, dB E ) i.e., the

ratio of negative reviews on the deployment date of the update preceding the emer-

gency update as a baseline. We compare the ratios of negative reviews as follows:

C o mp a r i s o n2B E (A) =
R N R (A, d2B E )
R N R (A, dB E )

(4.3)

C o mp a r i s o nE D 1 (A) =
R N R (A, dE D 1)
R N R (A, dB E )

(4.4)



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 38

C o mp a r i s o nE D 2 (A) =
R N R (A, dE D 2)
R N R (A, dB E )

(4.5)

C o mp a r i s o nE D 3 (A) =
R N R (A, dE D 3)
R N R (A, dB E )

(4.6)

where C o mp a r i s o n2B E (A) compares the ratio of negative reviews between dates

d2B E and dB E . The rest of the equations follow similar comparisons.

The updates preceding the emergency updates have more negative reviews than

the emergency updates. We compare the ratio of negative reviews in different days as

illustrated in equations (4.3, 4.4, 4.5 and 4.6) for all emergency updates.

Table 4.5: Mean and five-number summary of comparison metrics for the top 1,000
emergency updates. A value higher than one means that the ratio of negative reviews
in the corresponding date is higher than the date of the deployment of the update pre-
ceding the emergency update.

Metric name
Mean Min.

1st
Qu.

Me-
dian

3rd
Qu.

Max

C o mp a r i s o n2B E 0.89 0.00 0.00 0.56 1.29 8.83
C o mp a r i s o nE D 1 1.02 0.00 0.00 0.78 1.30 7.48
C o mp a r i s o nE D 2 0.91 0.00 0.00 0.67 1.22 10.74
C o mp a r i s o nE D 3 0.97 0.00 0.00 0.67 1.31 8.48

As shown in Table 4.5, the update preceding the emergency update (Ui−1) has a

higher ratio of negative reviews than the 2nd update preceding the emergency update

(Ui−2). Also we find that the update preceding the emergency update (Ui−1) has a higher

ratio of negative reviews than the emergency update (Ui ) in the 1s t , 2nd , and 3r d deploy-

ment days. We notice that users still complain during the days after issuing the emer-

gency update since users may have not downloaded the new update (the emergency



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 39

update) yet. Interestingly, for some emergency updates, users may prefer the issues

not being fixed, such as the emergency updates that are published to ensure that the

app is able to continue displaying advertisement (based on our manual reading of user

reviews).

Based on the observed results, it would be beneficial if users are told about the re-

cent rating of a newly available update (relative to the rating of the prior update of the

app) when users are informed of the availability of the update. This would permit users

to decide on whether they wish to update their apps or not. For example, users might

even configure their automated updaters to only install updates with an improved rat-

ing.

4.4 Our Approach for Identifying the Patterns of Emer-

gency Updates

In this section, we present our approach for identifying the patterns of emergency up-

dates. In order to identify the patterns of emergency updates, as illustrated in Fig-

ure 4.4, we leverage four data sources as follows:

1. The APK file for each update.

2. The release notes for each update.

3. The reviews associated with each update.

4. The F-Droid apps repositories data (F-Droid, 2018).

We explain the content of each source in the rest of this section.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 40

4.4.1 The APK File for Each Update

First we unarchive the APK files of the emergency update (Ui ), the two updates pre-

ceding the emergency update (Ui−2 and Ui−1) and the update following the emergency

update (Ui+1). We unarchive each APK file using the Android-Apktool (Apktool, 2018).

Each unarchived APK file contains four folders and one AndroidManifest.xml file as

follows (Apk, 2013):

• Smali: This folder contains the byte code files (Apk, 2013; Hendysoft, 2013). In

order to obtain readable source code, we converted the APK to jar using dex2jar

tool (dex2jar, 2016). We decompiled the generated jar into java source code using

the Class File Reader (CFR) tool (CFR, 2018).

• Libs: This folder contains third-party libraries that are used by the mobile app (Apk,

2013).

• Res: This folder stores the different resources that are needed by the app, such as

images (stored in “drawable” folders), layout, style, colors, and configuration files

for the various customizations that are used across the app (e.g., the displayed

text) (Apk, 2013).

• Assets: This folder contains raw files that a developer may want to use in the

app, such as texture, audio, text, fonts, and game data files. The raw data files

can be stored either in the sub folder raw in the Res folder (res/raw) or in the as-

sets folder: Files in the raw folder need to be accessed via the resource identifier,

while files in the assets folder are accessed using the Java filesystem API with-

out constraints on the file names (Apk, 2013; Pete Houston, 2011; stackoverflow,

2011, 2013; Google, 2018d).



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 41

• AndroidManifest.xml: The manifest file specifies the required configuration for

the Android platform for the proper execution of the app (Google, 2018a). For

example, the manifest file specifies the required Android SDK version for the mo-

bile app to work properly (Google, 2018c). Developers also configure the needed

permissions (Google, 2018e) and the needed software or hardware features (such

as camera, Bluetooth, app widgets) (Google, 2018b) that are required by the app.

In total, we only encounter 56 APKs where the unarchiving or decompilation failed

in our experiment.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 42

Figure 4.3: Boxplot for the calculated comparison metrics for the top 1,000 emergency
updates. The red line in the figure shows the metric value 1. Metric values lower than 1
means that the update preceding the emergency update has a higher ratio of negative
reviews than this emergency update.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 43

R
el

ea
se

 n
ot

es
 

fo
r 

ea
ch

 
st

ud
ie

d 
up

da
te

  A
ll 

ap
k 

fil
es

 fo
r 

em
er

ge
nc

y 
up

da
te

s,
 

pr
ec

ed
in

g 
up

da
te

s 
an

d 
fo

llo
w

in
g 

up
da

te

D
ec

om
pi

le
 

ap
k 

fil
e

C
om

pa
rin

g 
th

e 
em

er
ge

nc
y 

up
da

te
 to

 
th

e 
up

da
te

 
be

fo
re

 it

C
ha

ng
ed

 
ar

tif
ac

ts
 

fo
r 

ea
ch

 
up

da
te

F
ilt

er
in

g 
up

da
te

s 
w

ith
 n

o 
do

m
in

an
t 

ch
an

ge
 (

i.e
., 

ch
an

ge
s

 a
re

 s
ca

tte
re

d 
ac

ro
ss

 a
ll 

fil
e 

ty
pe

s)
 

●
U

pd
at

es
 w

he
re

 2
5%

 o
f t

he
 u

pd
at

e 
ch

an
ge

s 
ar

e 
co

nc
en

tr
at

ed
 o

n 
a 

si
ng

le
 ty

pe
 o

f a
rt

ifa
ct

 (
e.

g.
, i

m
ag

e)
.

●
U

pd
at

es
 w

he
re

 o
nl

y 
on

e 
so

ur
ce

 c
od

e 
 fi

le
 is

 d
iff

er
en

t.

●
U

pd
at

es
 th

at
 a

re
 o

ne
 o

f t
he

 u
pd

at
es

 
  i

n 
a 

ra
nd

om
ly

 s
el

ec
te

d 
sa

m
pl

e 
(w

ith
 

  a
 9

5%
 c

on
fid

en
ce

 le
ve

l a
nd

 a
 1

0%
 

  c
on

fid
en

ce
 in

te
rv

al
) 

w
ith

 a
 lo

w
er

 th
an

 
  o

r 
eq

ua
l t

o 
m

ed
ia

n 
nu

m
be

r 
of

 
  c

ha
ng

ed
 s

ou
rc

e 
co

de
 fi

le
s.

R
ev

ie
w

s 
fo

r 
ea

ch
 s

tu
di

ed
 

up
da

te

A
pp

s 
th

at
 h

av
e 

on
e 

of
 

th
e 

st
ud

ie
d 

to
p 

1,
00

0
 e

m
er

ge
nc

y 
up

da
te

s

Id
en

tif
yi

ng
 

th
e 

pa
tte

rn
s

 o
f e

m
er

ge
nc

y 
up

da
te

s

Id
en

tif
ie

d 
pa

tte
rn

s

F
-D

ro
id

 a
pp

s
re

po
si

to
rie

s 
da

ta

F
ig

u
re

4.
4:

P
ro

ce
ss

fo
r

id
en

ti
fy

in
g

p
at

te
rn

s
o

fe
m

er
ge

n
cy

u
p

d
at

es
.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 44

We compare the decompiled binaries in the emergency update (Ui ) and the pre-

ceding update (Ui−1) to find what is changed in the emergency updates. We define ten

types of files: code, third-party libraries, images, layout, style, colors, audio and video,

displayed text, application configurations, and changes in the AndroidManifest.xml

file. Then we categorize the similarly changed files together into one type, e.g., the im-

ages files are grouped together into image type, all source code files are grouped into

the code type and changed XML elements in AndroidManifest.xml file as the Android-

Manifest.xml change type. After that, we count the number of changes in each type.

For the artifacts that are typically at the file level, e.g., figures and source-code files, we

count the number of files that are changed. For the artifacts that are not at the file level,

e.g., permissions and SDK version, we count the number of individual items of the ar-

tifact. In particular, changes to the AndroidManifest.xml are not counted as only one

change. Then we calculate the total number of changes in the APK file as the total num-

ber of items changed in the AndroidManifest.xml file and the total number of changed

files (other than the AndroidManifest.xml file). Finally, we calculate the percentage of

changes in each type relative to the total number of changes in the APK file.

We examine the decompiled source code files that are different between the emer-

gency update (Ui ) and the preceding update (Ui−1). We find that the median percentage

of files that are the same between the two updates is 99.7%, and the minimum percent-

age is 1.2%. We manually investigated the updates with a very large number of source

code files that are different to the files in the proceeding updates (i.e., low percentage of

unchanged files). In particular, we rank the updates with the percentage of unchanged

files across the two updates. We find that the updates in the first quartile have up to



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 45

98.3% of the files that are the same between the update and the previous one. We man-

ually investigate several of the updates in the first quartile. We find that there are two

reasons for the low percentage of unchanged code files across updates:

1. The low percentage of unchanged source code files is due to code obfuscation,

instead of actual code changes.

2. The app has too few app-specific code files and the rest of the code files are li-

brary files (e.g., advertisement library files). Hence, the adoption of a different

library would lead to a very large percentage of changed source code files in that

particular update. For instance, the update of the “Fingerprint Lock Free”9 app

on May 3r d 2014 contains only 1.2% of the code files that are unchanged relative

to its prior update. This update involves changes to four out of nine app-specific

source code files and 651 out of 654 third party advertisement libraries files.

Since around two thirds of the emergency updates do not specify the rationale for

their update (see Section 4.3.2), we need to manually analyze some of these emergency

updates. In order to ease our understanding of the rationale for an emergency update,

we manually examine an emergency update if one of the following three selection cri-

teria hold:

• At least 25% of the update changes are concentrated on a single type of artifact.

For example, all of the files (100%) in the images type is changed in the “Pedi-

atrics”10 app on January 8t h 2014. Therefore, we manually examine this emer-

gency update. If there are no major changes to the artifacts, it would be very

difficult for us to deduce the root-cause of the emergency update.

9https://play.google.com/store/apps/details?id=com.nb.fingerprint.lock.free
10https://play.google.com/store/apps/details?id=com.texterity.android.Pediatrics

https://play.google.com/store/apps/details?id=com.nb.fingerprint.lock.free
https://play.google.com/store/apps/details?id=com.texterity.android.Pediatrics


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 46

• There is only one code file that differs (i.e., a new file, a removed old file or a

changed old file) between the emergency update (Ui ) and its preceding update

(Ui−1), as any large amounts of source code differences between the two updates

are likely due to code obfuscation. Furthermore, it is very challenging for us to

deduce the rationale for such large changes given that we are using decompiled

code and we have very limited knowledge of the apps and their codebase.

• The update is one of the updates in a random sample of updates (with a 95%

confidence level and a 10% confidence interval) that have lower than or equal

to median number of changed source code files. In order to create the random

sample, we count the median number of changed source code files in the emer-

gency updates and find that the median number of changed source code files

is four. We collect all 376 updates that have less than or equal to four changed

source code files and randomly select a sample of 77 updates for manual inspec-

tion. The size of our random sample achieves a 95% confidence level and a 10%

confidence interval.

In our study, we examine the updates for which we can identify the rationale for

the changes without the need for the release notes. E.g., 1) updates where at least 25%

of the update changes are concentrated on a single type of artifact (such as images, re-

quested permissions, layout, colors, Android SDK versions), 2) updates with only one

source code file being different, or 3) the random sample of updates for manual in-

spection.

In total, we select 361 emergency updates to manually examine based on our afore-

mentioned selection criteria.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 47

4.4.2 The Reviews Associated with Each Update

Google Play Store enables users to provide their reviews for each update of an app. We

manually examine the reviews that are associated with each studied emergency update

(Ui ) and the preceding update (Ui−1).

4.4.3 The Release Notes for Each Update

Release notes are also one of the data sources that are used to study the emergency

updates. However, about 60% of the emergency updates use the same release notes as

their preceding update, and 3.7% of the emergency updates only have general words

for the emergency updates, such as: Hot-fix and Various Bug Fixes (see Section 4.3.2).

In our manual process for identifying patterns of an emergency update, first we

start by reading the release notes for the emergency update and comparing the details

that are mentioned in the release notes to the changed files in the emergency update.

If the release notes do not mention any useful details about the rationale for the emer-

gency update, then we manually read all the reviews associated with the emergency

update (Ui ) and the preceding update (Ui−1). We excluded reviews that contain generic

user complaints and considered reviews that mention details that are related to each

identified pattern.

If the emergency update does not include useful release notes or reviews that are

explicitly related to the identified patterns, we manually compare the changed files in

the four updates (the emergency update (Ui ), the update following emergency update

(Ui+1), and the two updates preceding the emergency update (Ui−1) and (Ui−2)) in order

to identify the rationale for the change. For example, in order to identify that incor-

rect images were included in a particular update (Ui ), we compare the images content



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 48

in the two preceding updates (Ui−1) and (Ui−2) in order to see the content before the

emergency update, then we compare the emergency update with the preceding up-

date (Ui−1) in order to identify the changed images. Finally, we compare the content

of the updates (Ui ) and (Ui+1) in order to ensure that the updated files are the correct

images that are still used in the following updates.

4.4.4 The F-Droid Apps Repositories Data

The release notes of app updates may be short and with limited details (see Section 4.3.2).

In order to have more information about the update, we explore another source of data

to understand the patterns of emergency updates. In particular, we find that 11 apps

with emergency updates are hosted in a software repository named F-Droid (2018). F-

Droid provides a public collection of different FOSS (Free and Open Source Software)

apps. We collect all the available releases for the 11 apps from F-Droid. We search for

the emergency update (Ui ) and the preceding update (Ui−1) releases. Then we collect

the code comment in the source code files and the commit messages, for the changed

files between the two releases for the updates (Ui ) and (Ui−1). We collect the reposi-

tory release notes, which are different from the release notes shown in the Google Play

Store,11 for the emergency update (Ui ).

The releases of emergency update (Ui ) or the release of the preceding update (Ui−1)

are not always explicitly tagged in the repository. In such cases, we use the update time

to find the related code commits for the emergency update (Ui ) and the preceding up-

date (Ui−1). Then we use the commit messages and code comments that are associated

with these particular code commits to understand the root-cause for the emergency

11We refer to the release note collected from the Google Play Store as “release notes” and the release
notes collected from the apps repositories as “repository release notes”.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 49

updates.

We have the following three cases for the 11 apps that are hosted on F-Droid:

1. The repository is not available. We find two updates where either the repository

URL is not working or the repository does not store the commits for the code

changes during our study period.

2. The repository is available but we cannot identify the code changes to the emer-

gency update. We find three updates in this case.

3. The repository is available and we could benefit from the releases and code changes

in order to map the studied updates to the actual changed code. We find six up-

dates in this case.

Such results show that even though F-Droid provides much detailed development in-

formation about mobile apps, data analytics on mobile apps cannot rely solely on F-

Droid due to its small scale and the quality of its data.

4.4.5 Manual Inspection

We manually inspected all emergency updates that meet our aforementioned selection

criteria. In our process, we go through the following two steps:

• First step – identifying patterns of emergency updates. Two researchers (in-

cluding myself and a collaborator) work together by manually examining all dif-

ferences between all the associated updates. We examine the differences be-

tween the downloaded APKs, release notes, F-Droid repositories data and app

reviews in order to know the issue that is fixed in each update. If the issue is a



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 50

new issue then we add it to the list of identified issues. We iteratively examine

all the updates until there are no more identified issues. If there is disagreement

during the issue identification process, the two researchers together come to a

consensus. In particular, we have 20 updates which there is disagreement in the

identified issues. After finalizing the list of identified issues, we consider only is-

sues that are fixed in more than one update as patterns for emergency updates.

The output of the first step is the list of the identified patterns along with the

updates that are related to each pattern.

• Second step – identifying root-causes of each pattern. Similar to the first step,

the two researchers examine all the updates associated with each pattern in order

to study the root-causes for each pattern. For each inspected emergency update,

we use all available data in order to identify the root-cause for the update. If we

identify a new root-cause for a certain pattern, we add this root-cause to the list

of the root-causes that are related to this pattern. We iteratively examine all the

updates in the pattern until there are no more identified root-causes.

4.5 Identified Patterns for Emergency Updates

We could map 146 updates to certain patterns and we cannot identify the patterns for

the remaining 215 updates (361 in total). We identify two categories of emergency pat-

terns including “Updates due to deployment issues” and “Updates due to source code

changes”. Each category consists of different patterns. Tables 4.6 and 4.7 summarize

the identified patterns for emergency updates. For each pattern, we discuss the de-

scription of the pattern and the root-cause of the pattern with some real-life examples.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 51

We also discuss how fast developers address the root-cause problem of the pattern (as

shown in Table 4.8) and show some examples of user complaints. Finally, we discuss

the lessons learned from each pattern.

4.5.1 Updates Due to Deployment Issues

We identify 68 emergency updates that are due to deployment issues: nine updates

that are done to address image quality issues, 18 updates that are done to address im-

age content issues, 13 updates that are done to address inconsistent permissions, 18

updates that are done to address inappropriate SDK versions and ten updates that are

done to address incorrect debugging mode.

Including low quality images

Pattern description:

An update is published to repair image quality (e.g., image resolution or image bright-

ness). If an emergency update (Ui ) fixes the quality of the displayed images in the up-

date preceding the emergency update (Ui−1), we consider that the emergency update

(Ui ) belongs to this pattern.

Root-causes:

We find three root-causes of this pattern:

1. Developers may not have the resources to verify the quality of images on every

single device on which their apps may run. The images may not be of a suitable



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 52

Ta
b

le
4.

6:
Pa

tt
er

n
s

o
fd

ep
lo

ym
en

ti
ss

u
es

em
er

ge
n

cy
u

p
d

at
es

.

U
p

d
at

es
d

u
e

to
d

ep
lo

ym
en

ti
ss

u
es

P
at

te
rn

N
am

e
D

es
cr

ip
ti

o
n

R
o

o
t-

ca
u

se
Id

en
ti

fi
ed

u
p

d
at

es
A

p
p

n
am

es

In
cl

u
d

in
g

lo
w

q
u

al
it

y
im

ag
es

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
re

p
ai

r
im

ag
e

q
u

al
it

y
is

su
es

(i
m

ag
e

re
so

lu
ti

o
n

o
r

im
ag

e
b

ri
gh

tn
es

s)
.

1)
D

ev
el

o
p

er
s

d
o

n
o

t
te

st
th

e
q

u
al

it
y

o
f

im
ag

es
o

n
d

ev
ic

es
w

it
h

va
ry

in
g

sc
re

en
re

so
lu

ti
o

n
.

2)
D

ev
el

o
p

er
s

fo
rg

et
to

te
st

n
ew

ly
ad

d
ed

im
ag

es
.

9
“R

ea
d

U
n

li
m

it
ed

ly
!K

id
s’n

B
oo

ks
”,

“C
h

om
p

SM
S

th
em

e
ad

d
-o

n
”,

“L
ea

rn
P

or
tu

gu
es

e
w

it
h

B
ab

be
l”

,
“L

ea
rn

Fr
en

ch
w

it
h

B
ab

be
l”

,
“L

ea
rn

G
er

m
an

w
it

h
B

ab
be

l”
,

“O
u

r
G

ro
ce

ri
es

Sh
op

p
in

g
Li

st
”,

“C
u

rs
o

d
e

In
gl

es
G

ra
ti

s”
,

“N
av

er
”

an
d

“B
ab

y
Fl

as
h

C
ar

d
s

fo
r

K
id

s”
In

cl
u

d
in

g
in

co
rr

ec
t

im
ag

es

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
re

p
la

ce
th

e
in

co
rr

ec
t

im
ag

e
w

it
h

th
e

ap
p

ro
p

ri
at

e
o

n
e.

1)
D

ev
el

o
p

er
s

o
f

m
u

lt
ip

le
m

o
b

ile
ap

p
s

u
se

th
e

w
ro

n
g

im
ag

es
fr

o
m

th
ei

r
o

th
er

ap
p

s.
2)

D
ev

el
o

p
er

s
m

is
s

u
p

d
at

in
g

o
ld

im
-

ag
es

.

18
“C

am
er

a
Z

O
O

M
F

X
B

u
d

d
y

P
ac

k”
,“

P
ed

ia
tr

ic
s”

,“
C

am
er

a
Z

O
O

M
F

X
H

al
lo

w
ee

n
P

ac
k”

,
“N

av
m

ii
G

P
S

U
SA

(N
av

fr
ee

)”
,

“D
av

is
’s

D
ru

g
G

u
id

e”
,

“1
0K

R
u

n
n

er
Tr

ai
n

er
F

R
E

E
”,

“C
25

K
©

-
5K

R
u

n
-

n
er

Tr
ai

n
er

F
R

E
E

”,
“O

n
Li

ve
”,

“C
am

er
a

Z
O

O
M

F
X

C
om

p
os

it
es

”,
“C

am
er

a
Z

O
O

M
F

X
N

ew
C

om
p

os
it

es
”,

“C
am

er
a

Z
O

O
M

F
X

E
x-

tr
a

P
ro

p
s”

,“
C

am
er

a
Z

O
O

M
F

X
P

ro
p

s
P

ac
k”

,“
C

am
er

a
Z

O
O

M
F

X
M

or
e

C
om

p
os

it
es

”,
“C

am
er

a
Z

O
O

M
F

X
P

ic
tu

re
Fr

am
es

”,
“C

am
-

er
a

Z
O

O
M

F
X

C
oo

lB
or

d
er

s”
,“

B
ra

in
A

ge
Te

st
Fr

ee
”,

“P
ol

ic
e

Li
gh

ts
an

d
Si

re
n

s
P

t.
”

an
d

“S
af

ew
ay

”
H

av
in

g
in

-
co

n
si

st
en

t
p

er
m

is
si

o
n

s

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
re

m
ov

e
th

e
re

q
u

es
t

fo
r

n
o

t
n

ee
d

ed
p

er
m

is
si

o
n

s
o

r
to

re
q

u
es

t
th

e
n

ee
d

ed
p

er
m

is
-

si
o

n
s

th
at

ar
e

m
is

si
n

g.

1)
D

ev
el

o
p

er
s

u
se

so
m

e
p

er
m

is
si

o
n

s
d

u
ri

n
g

d
ev

el
o

p
m

en
t

b
u

t
so

m
e

o
f

th
es

e
p

er
m

is
si

o
n

s
ar

e
n

o
lo

n
ge

r
n

ee
d

ed
fo

r
th

e
m

o
st

re
ce

n
ta

p
p

u
p

d
at

e.
2)

D
ev

el
o

p
er

s
fo

rg
et

to
ad

d
so

m
e

o
ft

h
e

n
ee

d
ed

p
er

m
is

si
o

n
s.

3)
D

ev
el

o
p

er
s

m
ak

e
m

is
ta

ke
s

w
h

en
d

efi
n

in
g

cu
st

o
m

iz
ed

p
er

m
is

si
o

n
s.

13
“E

as
y

U
n

in
st

al
le

r
A

p
p

U
n

in
st

al
l”

,“
Fr

ee
Sp

or
ts

R
ad

io
”,

“M
ob

il
e-

ta
g

Q
R

&
p

ro
d

u
ct

Sc
an

n
er

”,
“H

ig
h

er
O

n
e

M
ob

il
e

B
an

ki
n

g
A

p
p

”,
“M

ix
ol

og
y

™
D

ri
n

k
R

ec
ip

es
”,

“B
in

go
Fe

ve
r

-
Fr

ee
B

in
go

G
am

e”
,

“S
p

an
is

h
Tr

an
sl

at
or

”
‘O

n
e

M
or

e
C

lo
ck

W
id

ge
t

Fr
ee

”,
“O

P
M

A
le

rt
”,

“E
ve

rn
ot

e
W

id
ge

t”
,

“H
or

os
co

p
e

H
D

Fr
ee

”,
“A

ro
u

n
d

M
e”

an
d

“A
n

yT
im

er
P

il
lR

em
in

d
er

”

H
av

in
g

in
-

ap
p

ro
p

ri
at

e
SD

K
ve

rs
io

n
s

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
fi

x
th

e
n

ee
d

ed
SD

K
ve

rs
io

n
o

f
th

e
ap

p.

1)
D

ev
el

o
p

er
s

m
is

ta
ke

n
ly

le
ve

ra
ge

n
ew

fe
at

u
re

s
fr

o
m

a
n

ew
ve

rs
io

n
o

ft
h

e
SD

K
w

it
h

o
u

t
sp

ec
if

yi
n

g
th

e
n

ee
d

o
f

th
e

n
ew

SD
K

ve
rs

io
n

in
th

e
m

o
st

re
ce

n
ta

p
p

u
p

-
d

at
e.

2)
D

ev
el

o
p

er
s

m
ak

e
a

co
d

e
ch

an
ge

an
d

d
ow

n
gr

ad
e

o
r

u
p

gr
ad

e
th

e
ta

rg
et

SD
K

ve
rs

io
n

,
w

h
ic

h
is

d
is

co
ve

re
d

to
le

ad
to

p
ro

b
le

m
s

in
th

e
fi

el
d

.

18
“ G

u
it

ar
Le

ss
on

sF
re

e”
,“

H
or

os
co

p
e

an
d

Ta
ro

t”
,“

C
on

ve
rt

vi
d

eo
to

m
p

3”
,“

M
p

3
C

on
ve

rt
er

Fr
ee

”,
“C

h
in

oo
k

B
oo

k”
,“

St
oc

k
W

at
ch

er
”,

“V
ox

er
W

al
ki

e
Ta

lk
ie

M
es

se
n

ge
r”

,
“P

yr
am

id
Sp

ir
it

s
3

-
Sl

ot
s”

“S
im

p
le

N
ot

ep
ad

”,
“U

se
fu

l
K

n
ot

s”
,

“D
J”

,
“F

V
D

-
Fr

ee
V

id
eo

D
ow

n
lo

ad
er

”,
“B

oo
th

St
ac

h
e”

,
“U

gl
yB

oo
th

”,
“M

ix
B

oo
th

”,
“A

g-
in

gB
oo

th
”,

“F
at

B
oo

th
”

an
d

“B
al

d
B

oo
th

”

In
co

rr
ec

t
d

eb
u

gg
in

g
m

o
d

e

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
en

ab
le

o
r

to
d

is
ab

le
th

e
d

e-
b

u
gg

in
g

m
o

d
e.

D
ev

el
o

p
er

s
n

ee
d

to
en

ab
le

o
r

d
is

ab
le

th
e

d
eb

u
gg

in
g

m
o

d
e.

10
“O

ffi
ce

C
al

cu
la

to
r

Fr
ee

”,
“M

ix
ol

og
yT

M
D

ri
n

k
R

ec
ip

es
”,

“O
ff

ro
ad

Le
ge

n
d

s”
,“

Fo
od

s
T

h
at

B
u

rn
Fa

t”
,“

R
ea

lT
im

e
C

P
R

G
u

id
e”

,“
P

re
-

n
at

al
U

lt
ra

so
u

n
d

Li
te

”,
“T

A
G

st
ag

ra
m

-
IG

TA
G

se
ar

ch
er

”
an

d
“V

AT
C

A
LC

U
L

AT
O

R
”



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 53

Ta
b

le
4.

7:
Pa

tt
er

n
s

o
fs

o
u

rc
e

co
d

e
ch

an
ge

s
em

er
ge

n
cy

u
p

d
at

es
.

U
p

d
at

es
d

u
e

to
so

u
rc

e
co

d
e

ch
an

ge
s

P
at

te
rn

N
am

e
D

es
cr

ip
ti

o
n

R
o

o
t-

ca
u

se
Id

en
ti

fi
ed

u
p

d
at

es
A

p
p

n
am

es

In
vo

ki
n

g
u

n
-

av
ai

la
b

le
A

P
Is

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
ch

ec
k

th
e

av
ai

l-
ab

ili
ty

o
f

A
P

Is
b

ef
o

re
ca

lli
n

g
th

e
A

P
Is

.

D
ev

el
o

p
er

s
fi

n
d

th
at

th
ei

r
ap

p
cr

as
h

es
d

u
e

to
ca

lli
n

g
ce

rt
ai

n
fe

at
u

re
s

in
A

n
d

ro
id

A
P

Is
th

at
m

ay
n

o
t

ex
is

t
in

so
m

e
SD

K
ve

rs
io

n
s

o
n

u
se

r
d

ev
ic

es
.

5
“j

u
st

W
in

k
G

re
et

in
g

C
ar

d
s”

,
“C

ou
p

le
Tr

ac
ke

r
-

M
ob

il
e

m
on

it
or

”,
“D

J
C

on
tr

ol
”,

“F
re

e
G

ol
f

G
P

S
A

P
P

-
Fr

ee
C

ad
d

ie
”

an
d

“W
or

d
Le

ar
n

er
V

oc
ab

B
u

il
d

er
G

R
E

”

A
d

ve
rt

is
em

en
t

is
su

es
A

n
u

p
d

at
e

is
p

u
b

lis
h

ed
to

en
su

re
th

e
co

r-
re

ct
d

is
p

la
y

o
f

ad
ve

rt
is

em
en

ts
.

1)
D

ev
el

o
p

er
s

d
o

n
o

t
se

t
th

e
co

rr
ec

t
id

en
ti

fi
er

fo
r

th
e

ad
-

ve
rt

is
em

en
t.

2)
D

ev
el

o
p

er
s

d
o

n
o

t
va

l-
id

at
e

h
ow

ad
ve

rt
is

em
en

ts
ar

e
lo

ad
ed

an
d

d
is

p
la

ye
d

in
th

e
ap

p.

19
“T

ra
ct

or
P

u
ll

”,
“K

W
C

H
12

”,
“P

oc
ke

tT
an

ks
”,

“B
aj

a
Tr

op
h

y
Tr

u
ck

R
ac

in
g

”,
“M

ak
e

U
p

Sa
lo

n
!”

,“
Lo

ve
-

C
yc

le
s

-
P

er
io

d
Tr

ac
ke

r”
,

“D
ri

ft
M

an
ia

C
h

am
p

i-
on

sh
ip

Li
te

”,
“U

p
d

at
e

Sa
m

su
n

g
A

n
d

ro
id

V
er

si
on

”
an

d
“C

ra
zy

G
ra

n
d

p
a”

U
n

-h
an

d
le

d
ex

ce
p

ti
o

n
s

A
n

u
p

d
at

e
is

p
u

b
lis

h
ed

to
h

an
d

le
ex

ce
p

-
ti

o
n

s.

D
ev

el
o

p
er

s
d

o
n

o
t

h
an

d
le

al
l

p
o

ss
ib

le
ex

ce
p

ti
o

n
s

th
at

ca
n

o
cc

u
r

w
h

en
u

se
rs

ru
n

th
e

ap
p.

54
“P

h
ot

os
p

h
er

e
Fr

ee
W

al
lp

ap
er

”,
“S

le
n

d
er

M
an

LI
V

E
”,

“F
ro

st
W

ir
e

-
To

rr
en

t
D

ow
n

lo
ad

er
”,

“”
,

“G
R

O
W

Lr
:

G
ay

B
ea

rs
N

ea
r

Yo
u

”,
“F

as
t

B
u

rs
t

C
am

er
a

Li
te

”,
“Z

en
P

in
ba

ll
”,

“H
er

sh
ey

p
ar

k”
,

“H
ar

ve
st

T
im

e
&

E
xp

en
se

Tr
ac

ke
r”

,
“F

ir
st

A
id

E
m

er
ge

n
cy

&
H

om
e”

,“
Fl

as
h

li
gh

t
+

C
lo

ck
”,

“F
ea

-
tu

re
P

oi
n

ts
:

Fr
ee

G
if

t
C

ar
d

s”
,“

G
P

S
P

h
on

e
Tr

ac
ke

r
P

ro
”,

“F
ol

lo
w

er
s+

fo
rT

w
it

te
r”

,“
B

u
yc

ot
t-

B
ar

co
d

e
Sc

an
n

er
V

ot
e”

,
“H

ig
h

w
ay

C
ra

sh
D

er
by

”,
“N

ex
t

M
u

si
c

W
id

ge
t”

,
“G

O
C

le
an

er
&

Ta
sk

M
an

ag
er

”
an

d
“S

p
ee

d
C

ar
d

Fr
ee

”



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 54

Table 4.8: The median speed of repair for all patterns of emergency updates.

Category Pattern name
Median speed of

repair (days)

Updates due
to

Including low quality images 1

deployment
issues

Including incorrect images 3

Having inconsistent permissions 1
Having inappropriate SDK versions 1
Incorrect debugging mode 2

Updates due
to

Invoking unavailable APIs 2

source code Advertisement issues 1
changes Un-handled exceptions 1

quality (e.g., resolution) for all mobile devices (especially for mobile devices with

high screen resolution).

2. Developers may forget that they included new images in an app and they forget

to test the quality of such new images.

3. Developers add images and icons without knowing whether users would like the

new images and icons.

Example updates:

• An update of the “Chomp SMS theme add-on”12 app on August 17t h 2014 has

icons that are not comfortable for users (very bright). An emergency update ad-

justs the images to be less fluorescent.

• An update of the “Baby FlashCards for Kids FREE”13 app on November 25t h 2013

12https://play.google.com/store/apps/details?id=com.p1.chompsms
13https://play.google.com/store/apps/details?id=au.com.alexooi.android.

flashcards.alphabets

https://play.google.com/store/apps/details?id=com.p1.chompsms
https://play.google.com/store/apps/details?id=au.com.alexooi.android.flashcards.alphabets
https://play.google.com/store/apps/details?id=au.com.alexooi.android.flashcards.alphabets


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 55

has images with sizes that are not suitable for all devices. An emergency update

adjusts the images sizes to be suitable for all devices, especially for the devices

with high-resolution screens.

Examples of user complaints:

We find user complaints (in the app reviews) for only one out of the nine updates that

are related to this pattern. The users become frustrated with the image quality issues

and complain about this pattern. The update of “Chomp SMS theme add-on” app on

August 17t h 2014 has an issue in the displayed icons. Users complain about the icons

in the app reviews, such as “Love the app ever since I purchased it a while back ! The

icon not so much.” and “Love the update but not a big fan of the new icon”. The devel-

opment team repairs the icon images and publishes a new update with release notes

“Thanks for valuable user feedback, we appreciate it and have updated the icon to be

less fl(u)orescent!”.

Speed of repair:

As shown in Table 4.8, this pattern requires a median of one day to repair (i.e., the me-

dian lifetime for the update that precedes the emergency update is one day). The short

time to repair indicates that it is not hard for developers to replace the image with ones

of higher quality.

Lessons learned for developers:

Developers should examine the quality of the images when new images are added to

the mobile app or when the mobile app starts to support new devices with different

screen resolutions. Having an image of low resolution may not be suitable for some

devices with higher resolution screens. Developers should always consider making



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 56

different versions of images with different quality to suit the different devices. A recent

study of user reviews have proposed approaches to prioritize the devices that need

to be tested based on the reviews (Khalid et al., 2014). Developers may leverage such

an approach to prioritize their effort in order to test the quality of images on various

devices.

Prior research studies the relationship between the colors that are used in products

and the successfulness of the products (Hannah Alvarez, 2014; Neil Patel, 2017; Icons

Mind, 2017; Apple, 2018b). Tools have been proposed to assist in evaluating whether

the used colors in a product are comfortable for end users (Color-Oracle, 2018; Coblis,

2011). Developers may leverage results and tools of the prior studies to select the most

suitable colors for their apps.

Lessons learned for store owners:

Mobile app store owners can enhance the current review mechanism by enabling users

to upload screenshots for their complaints. Moreover, app store owners can augment

their existing tooling to notify app developers about images that may not appear well

on some devices so developers are aware of the issue earlier (e.g., as part of the auto-

mated verification of an app that is published by the store owners for each new update

of an app before making the update available on the store).



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 57

Including incorrect images

Pattern description:

An app has incorrect images. An update is published to replace the incorrect images

with the appropriate ones. If an emergency update (Ui ) fixes the content of the dis-

played images in the update preceding the emergency update (Ui−1), we consider that

the emergency update (Ui ) belongs to this pattern.

Root-causes:

We find two root-causes of this pattern:

1. Developers of multiple mobile apps mistakenly package incorrect images across

their other apps.

2. Developers forget to include updated images in a new update.

Example updates:

• The “Camera ZOOM FX Buddy Pack”, “Camera ZOOM FX Halloween Pack”, “Cam-

era ZOOM FX Composites”, “Camera ZOOM FX New Composites”, “Camera ZOOM

FX Extra Props”, “Camera ZOOM FX Props Pack”, “Camera ZOOM FX More Com-

posites”, “Camera ZOOM FX Picture Frames”, and “Camera ZOOM FX CoolBor-

ders” apps have issues in their updates on June 10t h 2014 when all these apps

use the same set of images. Developers had mistakenly replaced the images with

Halloween photos from the “Camera ZOOM FX Halloween Pack” app. The devel-

opers repair this issue by updating the images for each of their apps.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 58

• Developers forgot to update the main introductory image for the app portfolio

of the “Pediatrics” app on January 6t h 2014. Developers replace the wrong image

with the correct image in an emergency update.

• The “Brain Age Test Free”14 app stopped using the Hyzap (2018) advertisement

network but the developers forgot to remove the Heyzap advertisement in their

image. They published an emergency update on July 31s t 2014 that removes all

images that represent Heyzap. The release notes for this update are “No more

Heyzap”.

Examples of user complaints:

We find user complaints (in the app reviews) for only one out of the 18 updates that are

related to this pattern. The “Camera ZOOM FX Extra Props”15 app has a user complain-

ing that the different “Androidslide” apps have the same content. The small number of

reviews may be because not all users realize the wrong image content.

Speed of repair:

The median time to repair the updates with this pattern is three days (shown in Ta-

ble 4.8). In comparison to the pattern of “Including low quality images”, this pattern

takes a longer time to repair. We believe that the slower repair pace may be due to

the users not complaining about this pattern as often as the pattern of including low

quality image. The fewer complaints may cause the developers to not realize the issue

right after the update, or the developers realize the issue but are not as hard pressed to

repair it, given the low number of complaints.

14https://play.google.com/store/apps/details?id=brain.age.analyzer
15https://play.google.com/store/apps/details?id=slide.cameraZoom.extraprops

https://play.google.com/store/apps/details?id=brain.age.analyzer
https://play.google.com/store/apps/details?id=slide.cameraZoom.extraprops


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 59

Lessons learned for developers:

There exist automated GUI testing tools for mobile apps, such as Robotium (2016).

However, automated GUI testing on mobile apps is effort consuming and challeng-

ing (Joorabchi et al., 2013). In order to avoid this pattern, developers need better au-

tomated testing tools that can reduce their testing efforts. Developers might wish to

consider using different build environments for their different apps to ensure that each

app has separate resources.

Developers need better code analysis tools that track the dependency between two

changed elements in the app (e.g., which parts of the code that are related to which

resources in the app) (Hassan and Holt, 2004; Zimmermann et al., 2004). For example,

If developers change source code, tools can notify developers with a list of non-code

resources (e.g., images) that should be updated.

Lessons learned for store owners:

Mobile app store owners should augment their automated verification process of new

updates so that the process would examine all recent updates across a single organiza-

tion not just for the current app update. The app store may then warn app developers

about the repeated content (e.g., resources and configurations) across their different

apps. Such automated analysis might also help flag spam apps (i.e., apps with similar

content and very slight variations) (Ruiz et al., 2012, 2014).



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 60

Having inconsistent permissions

Pattern description:

A mobile app requests a list of permissions. Some of these permissions may not be

actually needed or, on the other hand, some needed permissions are not requested.

An update is published to remove the request for the not needed permissions or to

request the needed permissions that are missing. If an emergency update (Ui ) fixes

the requested permissions in the AndroidManifest.xml file, we consider that the emer-

gency update (Ui ) belongs to this pattern.

Root-causes:

We find four root-causes for this pattern:

1. Developers do not examine whether all the requested permissions by the app are

actually needed. For example, developers sometimes use tools to assist during

development but these tools may require permissions to function correctly, how-

ever such permissions are not needed once the app is published (Telerik, 2014).

2. Developers may use some permissions during development but forget to remove

them before issuing their update.

3. Developers forget to add some needed permissions.

4. Developers restrict the permissions for certain SDK versions and discover after

issuing an update that the permission needs to be requested for all SDK versions.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 61

Example updates:

• An update of the “Free Sports Radio”16 app on March 8t h 2014 requests several

not needed permissions. The developers removed the not needed permissions

“Read External Storage”, “Write External Storage”, “Read User Directory”, and “Write

User Directory” in an emergency update.

• To repair an issue in an update of the “Higher One Mobile Banking App”17 app on

April 29t h 2014, developers needed the “Read Phone State” permission, which

requests read access to the phone state. This permission is not needed any more

after the fix. However, developers of the “Higher One Mobile Banking App” app

forgot to remove the permission for this update. An emergency update removes

the permission since it is no longer needed.

• The “Spanish Translator”18 app has an update on November 11t h 2014 and the

update has unused permissions Read Phone State and Access Network State. On

the next day, the development team publishes a repair that removes these per-

missions that are not needed.

• An update of the “One More Clock Widget Free”19 app on November 4t h 2014 was

restricting the “Write External Storage” permission to certain SDK versions. De-

velopers discover that they need to request the “Write External Storage” permis-

sion for all SDK versions. To repair this issue, developers correctly reconfigure

the permission request in an emergency update by removing the “maxSdkVer-

sion” attribute so the “Write External Storage” permission is requested for all SDK

16https://play.google.com/store/apps/details?id=com.MyIndieApp.FreeSportsRadio
17https://play.google.com/store/apps/details?id=com.higherone.mobile.android
18https://play.google.com/store/apps/details?id=pl.pleng.spanish
19https://play.google.com/store/apps/details?id=com.sunnykwong.freeomc

https://play.google.com/store/apps/details?id=com.MyIndieApp.FreeSportsRadio
https://play.google.com/store/apps/details?id=com.higherone.mobile.android
https://play.google.com/store/apps/details?id=pl.pleng.spanish
https://play.google.com/store/apps/details?id=com.sunnykwong.freeomc


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 62

versions.

• An update of the “Evernote Widget”20 app on May 16t h 2014 misses to request the

“Read Data” and “Write Data” permissions. Developers publish an emergency

update to request these missing permissions.

Examples of user complaints:

We find that two out of 13 updates that are related to this pattern (the updates for the

“One More Clock Widget Free” and the “Evernote Widget” apps) have user complaints.

The missed permissions introduces high severity issues as the app may not work

because of these missed permissions. Below are examples of user complaints:

• The update of the “Evernote Widget” app on May 16t h 2014 misses to request

the “Read Data” and “Write Data” permissions. Users start to complain that the

updated app is not working. Users leave the following reviews on the same day

of the update, such as a review “Application No longer working correctly since

evernote update”, and another review with title “Stopped working” and content

“The new update does not work”. Developers publish the emergency update that

requests the missing “Read Data” and “Write Data” permissions.

• The update for the “One More Clock Widget Free” app on November 4t h 2014 re-

stricts the request for the “Write External Storage” permission to some SDK ver-

sions. Users start complaining that they cannot open the app. For example, user

wrote a review on November 4t h 2014 with title “Was good” and comment text

“App was great till latest update, then wouldn’t open. Will try again later”. Devel-

opers publish an emergency update on the next day to fix this permission issue.

20https://play.google.com/store/apps/details?id=com.evernote.widget

https://play.google.com/store/apps/details?id=com.evernote.widget


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 63

Speed of repair:

As shown in Table 4.8, the median time to repair the updates related to this pattern is

one day. The reason for this fast repair can be explained as follows:

• In the case where the emergency update removes the unneeded permissions, we

think the fast turnaround may be due to developers taking permission requests

very seriously. For example, according to a recent survey issued on 2,272 partic-

ipants, 49% of mobile app users do not download at least one app due to privacy

issues (Stuart Dredge, 2013).

• In the case where the emergency update adds the missing permissions, we find

that reviews often report app crashes for missing to request the needed permis-

sions. The app crashing may be the reason for this fast speed of repair.

Lessons learned for developers:

Developers should better track the requested permissions and their corresponding

source code or third party libraries. With strong and up to date traceability links be-

tween requested permissions and the source code of an app or third party libraries,

developers can ensure that all requested permissions are needed and all needed per-

missions are requested correctly (stackoverflow, 2013, 2011, 2014).

In order to track the inconsistency in the requested permissions, many researchers

introduced tools to verify the needed permissions (Felt et al., 2011; Xu et al., 2013; Pan-

dita et al., 2013; Gorla et al., 2014). Developers should leverage the existing permis-

sions tracking tools to identify any inconsistency between the requested permissions

and the app behavior.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 64

Lessons learned for store owners:

Mobile app store owners should leverage the existing permission tools in order to pre-

vent app developers from issuing updates with unneeded or missing permissions.

Having inappropriate SDK versions

Developers define the minimum and target SDK versions in the Android Manifest

file. The minimum SDK version represents the minimum SDK version that needs to be

installed on the mobile device in order to assure that the app runs properly (Google,

2018c). Users, who installed a later version of the Android platform, can run the up-

dated app. For example, if a user has SDK version 5.0 installed on his mobile device and

the app has a minimum SDK version 7.0, this update will not appear to this user (Google,

2018c; Simon Vig Therkildsen, 2012). Developers change (usually increase) the mini-

mum SDK version because they use new features that are introduced in a certain SDK

version. By upgrading the minimum SDK version to a higher value, developers prevent

the update from being installed on devices with lower SDK versions. If the app runs on

an older SDK version, the app may crash because the app may call features that are not

supported by the older SDK version (Simon Vig Therkildsen, 2012).

The target SDK version represents the SDK version that is targeted by the develop-

ment team (Google, 2018c). Adjusting the target SDK version to a certain value means

that this SDK version is the version that development team use to test the app. For

example, if an app has a target SDK version lower than the user’s installed SDK ver-

sion, the Android platform may apply compatibility behavior in order to make the app

run in the same way as expected by app developers (Google, 2018c). For example, The



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 65

“Honeycomb” version of Android provides a set of themes called “Holo” themes, by

identifying the target SDK version to a lower version than Android Honeycomb, the

Android platform will not enable the “Holo” themes for these apps in order to pre-

vent issues like drawing a black text on a black background (Google, 2018c; Simon Vig

Therkildsen, 2012).

We find 18 emergency updates that are due to issues related to SDK versions (ei-

ther minimum or target SDK versions). Eight updates are done to address the issue of

missing to update an old SDK version and ten updates are done to address the issue of

using a wrong SDK version.

Pattern description:

A mobile app requires a certain SDK version to run, however the app fails to specify the

need for this SDK version in its AndroidManifest.xml file. An update is published to fix

the needed SDK version of the app. If an emergency update (Ui ) fixes the required SDK

version of the app, we consider that the emergency update (Ui ) belongs to this pattern.

Root-causes:

We find two root-causes for this pattern:

1. A new version of the SDK often provides new features, such as additional APIs.

Developers may leverage such new features from a new version of SDK. However,

an update might miss specifying the need for a new SDK version in the Android-

Manifest.xml file.

2. Developers make a code change and downgrade or upgrade the SDK version.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 66

After the update, developers discover that the SDK version change introduces is-

sues (e.g., menus do not appear) on some devices. Developers perform an emer-

gency update to correct the SDK version to the version that is suitable for the new

changes, or to revert back their new changes and to continue using the original

SDK version.

Example updates:

• An update of the “Stock Watcher”21 app on September 25t h 2014 misses to change

the target SDK version. Developers release an emergency update on the next day

in order to update the SDK version with release notes “Fix the disappearing menu

button on some devices”.

• An update of the “DJ”22 app on November 5t h 2014 increases the target SDK ver-

sion from 10 to 21. The developers discover an issue that the menu key does not

appear, such that users cannot shut down the app. The developers repair the

issue by reverting the SDK version back to 10.

Examples of user complaints:

We find that four out of the 18 updates that are related to this pattern (for the “Voxer

Walkie Talkie Messenger”23, “DJ”, “AgingBooth”24 and the “FatBooth”25 apps) have users

complaining about symptoms that are related to this pattern:

21https://play.google.com/store/apps/details?id=com.mobileappsresearch.
stockwatcher

22https://play.google.com/store/apps/details?id=com.spartacusrex.prodjlite
23https://play.google.com/store/apps/details?id=com.rebelvox.voxer
24https://play.google.com/store/apps/details?id=com.piviandco.agingbooth
25https://play.google.com/store/apps/details?id=com.piviandco.fatbooth

https://play.google.com/store/apps/details?id=com.mobileappsresearch.stockwatcher
https://play.google.com/store/apps/details?id=com.mobileappsresearch.stockwatcher
https://play.google.com/store/apps/details?id=com.spartacusrex.prodjlite
https://play.google.com/store/apps/details?id=com.rebelvox.voxer
https://play.google.com/store/apps/details?id=com.piviandco.agingbooth
https://play.google.com/store/apps/details?id=com.piviandco.fatbooth


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 67

• The “Voxer Walkie Talkie Messenger” app on September 15t h 2014 does not up-

date the minimum SDK version. A user posts a review with the title “Voxer freez-

ing” and the following review content “After new update voter is freezing and not

letting me listen to full vox messages”. Developers publish an emergency update

on the following day to increase the minimum SDK version from version 8 to

version 10.

• The “AgingBooth” app has an update on June 20t h 2014 and users report issues

about this update. For example, a user leaves a review with title “Crashed on first

use” and content “Cannot use it. Let’s me take pic and then adjust markers. Then

it closes unexpectedly for no apparent reason. Uninstalling”, another user leaves

a review with content “Force closes after I take a picture, as I can see it(’)s doing the

same for everyone else too”. Because of the large impact on the user experience,

the development team publishes an emergency update to repair this pattern in

two days.

• Before updating the “DJ” app with the emergency update, we observe that the

users complain that the app cannot shutdown. For example, a user leaves the

review “Since it(’)s for free but with add - you cannot shut down anymore this app.

Craps!!”. After the emergency update, the same user confirms that the app is

working well “NOW it works PERFECT! GREAT technical support and best DJ app.

THANKS”.

• The app “FatBooth” has an update on June 20t h 2014 and users complain about

this update. For example, a user writes a comment with the title “Force close”

and the following text: “Since last update it automatically force closes”. Another



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 68

user left a comment “I (t)take a picture, then go to do it and it force close every

single time. Stupidity”. The development team published an emergency update

to upgrade the minimum SDK version from version 9 to version 10 and the target

SDK version from version 20 to version 21.

Speed of repair:

The median time to repair the SDK version issues pattern is one day (as shown in Ta-

ble 4.8). The reason of this pattern being repaired fast is that this pattern is easy to fix.

Moreover, this pattern has a large impact on users since every user with the inappro-

priate SDK version is impacted.

Lessons learned for developers:

To ensure the correct running environment of apps, developers must correctly specify

the minimum requirement of SDK version in the AndroidManifest.xml file. However,

there exist no automated techniques to ensure that the specified minimum require-

ment of SDK version is the correct one. Therefore, for every update of an app, develop-

ers need to verify the correctness of the specified minimum SDK version. Automated

techniques are needed to analyze the app source code and identify the minimum SDK

version that is needed for the current code, then to notify the developers with any in-

consistency between the needed and the requested minimum SDK versions.

Prior research finds that updating to a new SDK version may be harmful since the

API change may lead to defects in mobile apps, leading to a negative impact on the

user ratings (Bavota et al., 2015; Vásquez et al., 2013). Before updating the SDK version,

developers need to understand the impact of the update. A thorough regression testing

process is needed to compare the behavior of an app with the old and the new SDK

versions.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 69

Lessons learned for store owners:

Mobile app store owners need automated tools that warn developers if they change

the source code without updating the needed SDK version, or if the new source code

is not compatible with the specified minimum SDK version.

Incorrect debugging mode

Pattern description:

A mobile app uses debugging functionality to store information about the app behav-

ior. Developers find a need to enable or disable the debugging mode. An update is

published to change the debugging mode. If the emergency update (Ui ) changes app

source code in order to enable or disable the debugging mode, we consider that the

emergency update (Ui ) belongs to this pattern.

Root-causes:

We find two root-causes of this pattern:

• Developers forgot to disable the debugging mode. Developers publish an emer-

gency update to disable the debugging mode.

• Developers find that there is a need to store the debugging information in order

to track the app behavior, so an emergency update is published to enable the

debugging mode.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 70

Example updates:

• Developers of the “Office Calculator Free”26 app notice that the app was pub-

lished with the debugging mode mistakenly enabled. An emergency update is

published on June 30t h 2014 to disable the debugging mode.

• Developers of the “MixologyT M Drink Recipes”27 app need to track debugging in-

formation about the app. An update is published on July 2nd 2014 to enable the

debugging mode.

Examples of user complaints:

We did not find user complaints about this pattern. The lack of user complaints is likely

due to users not being aware of the debugging and with debugging not having a large

impact on the user experience with the app (e.g., performance).

Speed of repair:

As shown in Table 4.8, this pattern requires a median of two days to repair. The short

time to repair is most likely due to enabling or disabling debugging information not

requiring much effort from developers.

Lessons learned for developers:

Developers should have a checklist to review the app configurations (such as enabling

or disabling the debugging mode) before issuing the updates, in order to avoid the need

for an emergency update.

26https://play.google.com/store/apps/details?id=net.taobits.officecalculator.
android

27https://play.google.com/store/apps/details?id=com.digitaloutcrop.mixology

https://play.google.com/store/apps/details?id=net.taobits.officecalculator.android
https://play.google.com/store/apps/details?id=net.taobits.officecalculator.android
https://play.google.com/store/apps/details?id=com.digitaloutcrop.mixology


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 71

4.5.2 Updates Due to Source Code Changes

We identify 78 emergency updates that are due to source code changes: five updates

are done to address invoking unavailable APIs, 19 updates are done to address adver-

tisement issues and 54 updates are done to address un-handled exceptions.

Invoking unavailable APIs

Pattern description:

A mobile app does not consider the users’ installed SDK versions while calling cer-

tain API features. App developers publish an emergency update that enables different

behaviors based on the availability of API. If an emergency update (Ui ) changes the

source code to address the invocation of an unavailable API issue, we consider that the

emergency update (Ui ) belongs to this pattern.

Root-cause:

The root-cause for this pattern is that developers fail to consider the availability of an

API before invoking it in their code.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 72

Example updates:

An update of the “Word Learner Vocab Builder GRE”28 app on June 19t h 2014 has an

issue in getting the app data using the Android “Context” object. The issue exists be-

cause the app invokes APIs that are not available in some versions of the Android SDK

. An emergency update with version “2.3” is published to handle the described issue

with release notes “Version 2.3: Fixed crash on Android 4.2 and above”.

Examples of user complaints:

We find complaints about the app crashing but we cannot be sure that the complaints

about app crashing are related to the code changes in the emergency update.

Speed of repair:

As shown in Table 4.8, the “Invoking unavailable APIs” pattern requires a median of

two days to repair. The “Invoking unavailable APIs” pattern needs longer time to fix

than the other code related patterns (e.g., “Un-handled exceptions”). The reason may

be that the “Invoking unavailable APIs” pattern needs more investigation and devel-

opment effort than the other source code related patterns.

Lessons learned for developers:

We notice that developers handle this pattern by adapting the code to behave in a dif-

ferent ways depending on the availability of APIs on the user device. Development

tools (e.g., development IDEs) can warn developers when their code calls certain meth-

ods that are not provided for some SDK versions that are configured by the app. Sim-

ilarly, apps store owners can easily warn developers about such issues as part of their

automated verification of new updates.

28https://play.google.com/store/apps/details?id=com.wordLearner.Free

https://play.google.com/store/apps/details?id=com.wordLearner.Free


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 73

Advertisement issues

Pattern description:

A mobile app uses third party libraries to display advertisement. Developers find an

issue that is related to displaying advertisement. An update is published to ensure the

correct display of advertisement. If an emergency update (Ui ) changes app source code

to fix issue in the calls to the ad libraries, we consider that the emergency update (Ui )

belongs to this pattern.

Root-causes:

We find two root-causes of this pattern:

1. Developers use a pseudo value for the ad identifier and forget to update the ad

identifier with the correct value.

2. Developers do not validate how the ad will be loaded and displayed in the app.

Example updates:

• An update of the “Tractor Pull”29 app on May 11s t 2014 has an issue in setting the

ad identifier for the displayed advertisement. An emergency update is published

on the next day to fixe the ad identifier value.

• An update of the “KWCH 12”30 app on June 5t h 2014 does not handle issues re-

lated to the rendering of advertisement. An emergency update is published on

the next day to handle such issues. The emergency update adds retry mecha-

nisms to load advertisement.
29https://play.google.com/store/apps/details?id=com.anddgn.tp.main
30https://play.google.com/store/apps/details?id=com.newssynergy.kwch

https://play.google.com/store/apps/details?id=com.anddgn.tp.main
https://play.google.com/store/apps/details?id=com.newssynergy.kwch


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 74

Examples of user complaints:

We did not find user complaints about advertisement in the updates that precede the

emergency update. On the other hand, we find 128 recent reviews of the emergency

updates that are related to this pattern where users complain about the intensive ex-

istence of the advertisement in the app. Some users threaten to uninstall the app. For

example, on the same day of the emergency update of the “Tractor Pull” app, users

posted negative reviews such as “Fun game but since last update get killed with ads!

Hard to run gas peddle when a stupid ad covers right half of screen! Uninstall!!!”.

Speed of repair:

As shown in Table 4.8, this pattern requires a median of one day to repair. The short

time to repair may be because displaying advertisement is one of the main sources of

revenue for the free-to-download app developers.

Lessons learned for researchers:

More research needs to be done in order to provide recommendation about the com-

mon usability issues (e.g., best practices and common pitfalls) surrounding the inte-

gration of advertisements in mobile apps.

Un-handled exceptions

Pattern description:

Mobile app code does not handle all possible scenarios and app crashes in certain

scenario. An update is published to handle exceptions. If an emergency update (Ui )



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 75

changes app source code to handle some previously unhandled exceptions that may

be thrown by the code, we consider that the emergency update (Ui ) belongs to this

pattern.

Root-cause:

The root-cause for this pattern that developers do not handle all possible raised excep-

tions that may occur when users run the apps.

Example updates:

• An update of the “Photosphere Free Wallpaper”31 app on June 27t h 2014 has an

issue in setting the scroll speed for users if the mode is auto scroll. The app code

does not handle the case if the user does not provide scroll speed value. An emer-

gency update is published on the next day (on June 28t h 2014) to handle the ex-

ception by setting the scroll speed to a default value with release notes “Fixed

issue with auto scroll”.

• An update of the “SlenderMan LIVE”32 app on April 3r d 2014 has an issue in the

code that opens the camera and sets the orientation of the displayed preview

of the camera images. The app code does not handle the case of an exception

occurring while opening and setting the camera preview. An emergency update

is published on the next day (on April 4t h 2014) to handle the exception of the

un-handled cases with release notes “Fixed upside down camera !”.

• An update of the “First Aid Emergency & Home”33 app on December 8t h 2013 has

an issue in loading the In Case of Emergency (ICE) profile data. The issue occurs

31https://play.google.com/store/apps/details?id=fishnoodle.photospherewp_free
32https://play.google.com/store/apps/details?id=www.agathasmaze.com.

slendermanlive
33https://play.google.com/store/apps/details?id=com.nikolay.arfa

https://play.google.com/store/apps/details?id=fishnoodle.photospherewp_free
https://play.google.com/store/apps/details?id=www.agathasmaze.com.slendermanlive
https://play.google.com/store/apps/details?id=www.agathasmaze.com.slendermanlive
https://play.google.com/store/apps/details?id=com.nikolay.arfa


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 76

because the code does not handle the case of the user not providing all the re-

quested information. An update is published on the next day to handle the null

cases with release notes “Fixed crash related ICE Profile”.

• An update of the “Flashlight + Clock”34 app on June 9t h 2014 has an issue in set-

ting the visibility of component as the code does not handle case if component

is null. An update with version “1.1.2” is published on the next day to handle the

null cases with release notes “Version 1.1.2 Crash bug fixed”.

• An update of the “FeaturePoints: Free Gift Cards”35 app on April 30t h 2014 has an

issue in connecting to Google+ as the code does not handle the case of the user

data being null. An update is published to handle the null cases with release

notes “Fixed crash when connecting to Google+”.

Examples of user complaints:

We find some user complaints about the app crashing but similar to the “Invoking un-

available APIs” pattern, it is difficult to be sure that these complaints are related to

exceptions.

Speed of repair:

As shown in Table 4.8, this pattern requires a median of one day to repair. The short

time to repair can be explained as this pattern causes the app to crash with the un-

handled exceptions.

34https://play.google.com/store/apps/details?id=flashlight.led.clock
35https://play.google.com/store/apps/details?id=com.tapgen.featurepoints

https://play.google.com/store/apps/details?id=flashlight.led.clock
https://play.google.com/store/apps/details?id=com.tapgen.featurepoints


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 77

Lessons learned for developers:

Although un-handled exceptions may produce critical issues, research illustrates that

un-handled exceptions are not often identified during code review. For example, Bac-

chelli and Bird (2013) study code review comments for Microsoft code. Bacchelli et al.

find that only 4% of code review comments are about handling exceptions. Developers

need to perform more efficient code review mechanism and possibly automated tools

in order to avoid the occurrence of this pattern.

We find 35 of the 54 updates that are related to this pattern are due to unhandled

null pointer exceptions. There exists a slew of tools that can identify possibly unhan-

dled null pointer exceptions (FindBugs, 2015). Developers and store owners should

make use of static analysis tools to avoid the need for emergency updates.

4.6 Limitations and Threats to Validity

In this section, we discuss the limitation and threats to validity of our findings.

4.6.1 Construct Validity

We select 1,000 emergency updates based on the emergency ratio that is defined in this

chapter. The emergency ratio depends on the number of days after the last update and

the median update lifetime. As illustrated in Table 4.1, the lifetime for the updates pre-

ceding the emergency updates is less than or equals to 5% of the median lifetime of the

app. Such a low emergency ratio indicates that such updates are most likely emergency

updates. However, some mobile apps may have an unstable update cycle. An update

with a low emergency ratio may not be an actual emergency update. Including other



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 78

factors in defining the emergency updates such as considering the standard deviation

of the release cycle is another possible alternative definition of emergency updates.

We leverage a heuristic to identify emergency updates. The heuristic may not be

100% accurate. There is a chance that a developer might release two updates back

to back even though the second update is not urgently needed. However, we feel the

chances of such rapid updating is very low. For example, as illustrated in Table 4.2 we

find one app (for the “AutoZone”36 app) where the lifetime for the update preceding

the emergency update is 21 days, while its median lifetime is 568 days. However, for

this particular update, many issues are fixed. The release notes are as follows: “Version

2.0.1 Multiple bug fixes, including: * Accurate product fitment notes. * AutoZone Re-

wards login issue. * Free Repair Guide images issue. * Improved accuracy with barcode

scanning”. Therefore, such an update is not included in our manual investigation of

patterns of emergency updates.

We manually identify the patterns of emergency updates. Although we examine

the decompiled APK file artifacts of the updates, the release notes and the user reviews,

we are not experts in the development of these mobile apps. Our observation can be

biased by our knowledge. To minimize the bias, two researchers (including myself and

a collaborator) work together during the manual investigation. However, to further

address this threat, interviews and users studies of such mobile apps are required to

better understand the rationale for these emergency updates.

36https://play.google.com/store/apps/details?id=com.autozone.mobile

https://play.google.com/store/apps/details?id=com.autozone.mobile


CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 79

4.6.2 Internal Validity

Although we find eight patterns of emergency updates, not all studied emergency up-

dates follow one of our eight patterns. In short, we do not consider our patterns as a

comprehensive set of emergency updates patterns. Instead, our work is a first step in

creating a richer and more complete set of such patterns. As more updates are exam-

ined, we expect that more patterns will emerge.

The key contribution of our study is to raise awareness about the fact that many of

these emergency updates share common reasons and by documenting such patterns

we hope to assist in improving the quality assurance processes for app updates.

4.6.3 External Validity

Our study is based on the 10,747 top free-to-download apps from the Google Play Store.

App Annie lists the top apps from each category of apps for the US market. There might

be other top apps in other areas of the world. Including other mobile app stores, such

as iOS store, and including the top popular apps in different countries (not only the

US) would complement our study. Our results are based on running a Google Play

Store crawler for 12 months. Our empirical study may be improved by including the

mobile apps’ data from a longer run period of our crawler. As any work that identifies

patterns, our work is a first step towards creating a catalogue of such patterns. We

expect that more patterns will emerge over the years. Although we find other issues that

are fixed in emergency releases (e.g., we find one update that fixes the displayed text of

a field), we did not formally document them as patterns since we find too few instances

of them to claim a recurring pattern. Future studies should explore the generality of

these patterns.



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 80

The Google Play Store crawler acts as a Samsung S3 device in order to download

APK files. Some apps may have multiple APK files for different mobile devices. There-

fore, other mobile devices may download different APK files from such apps. Crawling

Google Play store with another device may complement our study.

The Google Play Store limits the number of retrieved user reviews for an app. Such

a limitation is also noted by recent research by Martin et al. (2015). In our study we

try to overcome this issue by running the Google Play Store crawler on a daily basis to

ensure that we get as many reviews as possible (since the store will not return more

than 500 new reviews since our last crawl).

Our study focuses on the top free-to-download apps since free-to-download apps

are the majority of the apps in the Google Play Store. Moreover, free-to-download apps

may not be totally free as some free-to-download apps include paid features through

in-app purchases or subscriptions. Our study may benefit from including the top non-

free apps and comparing the difference in the emergency updates of both free-to-

download and non-free apps. However, one would need access to the APK files of these

non-free apps by purchasing such apps, requiring a substantial amount of funds.

Our findings are based on a study of the top 1,000 emergency updates. The char-

acteristics and patterns of the emergency updates that are not in the top 1,000 may be

different from our findings. Our study may be improved by examining more emergency

updates (e.g., analyzing randomly selected updates instead of the top 1,000 emergency

updates).



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 81

4.7 Related work

In this section, we present prior research that is related to our work. In particular, we

focus on prior research in the area of rapid releases.

4.7.1 Rapid Releases

Many organizations are moving from a traditional slower release cycle to a rapid re-

lease cycle (Souza et al., 2015; Mäntylä et al., 2015; Khomh et al., 2015). For example,

Mozilla Firefox has shifted from releasing every 12 to 18 months to releasing every six

weeks. (Souza et al., 2015). Rapid releases enable the delivery of software in a shorter

time and enables reacting rapidly to customer feedback (Mäntylä et al., 2015; Khomh

et al., 2015). However, there is little knowledge about the impact of a faster release

cycle on the quality of software. Thus, researchers have explored the impact of rapid

releases on quality (Souza et al., 2015; Mäntylä et al., 2015; Khomh et al., 2015, 2012;

Souza et al., 2014).

Khomh et al. (2012, 2015) study the impact of changing from a traditional long re-

lease cycle to a rapid release cycle in the Mozilla Firefox by comparing the number of

post-release bugs, median uptime, and crash rates. Khomh et al. (2012, 2015) illustrate

that the number of reported bugs per day in rapid releases does not change signifi-

cantly in comparison to traditional long releases, while defects are fixed faster in rapid

releases. Khomh et al. also find that users discover bugs faster because the program

crashes more quickly than in traditional releases.

Mäntylä et al. (2015) study the testing of rapid releases for the Mozilla Firefox browser.

The study collects different metrics that are related to the testing activities; such as the

count of tests that are executed per day, the count of testers who are working in the



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 82

project per day; they compare the testing activities within traditional releases to the

testing activities within rapid releases. The study finds that with rapid releases devel-

opers test less compared to traditional releases.

Souza et al. (2014) study the impact of rapid releases on the software quality by

comparing the bug reopening rate in traditional and rapid releases. They study tra-

ditional and rapid releases of Mozilla Firefox and find that rapid releases have a 7%

increase in the bug reopening rate than traditional releases. Hemmati et al. (2015) find

that a risk-driven prioritization technique has a higher accuracy in prioritizing the test

cases in rapid releases than other prioritization techniques.

All prior work on rapid releases is done on Mozilla Firefox, while we study the mo-

bile apps in the Google Play Store. Moreover, we look at another type of release, which

is very rapid by definition, i.e., emergency updates.

4.8 Chapter Summary

Mobile app stores provide an update mechanism that enables app developers to rapidly

publish new updates to their users in a cost effective manner. Developers leverage this

mechanism to publish emergency updates that are published soon after the previous

update.

In this chapter, we study emergency updates in the Google Play Store by analyzing

more than 44,000 updates based on around a year of monitoring the update activities

of over 10,000 of the top free-to-download apps in the store.

By analyzing the top 1,000 emergency updates, we find that:

1. The emergency updates are often updates with a long lifetime (i.e., they are rarely



CHAPTER 4. STUDYING THE COMMON DEVELOPER MISTAKES THAT LEAD TO
EMERGENCY UPDATES 83

followed by another emergency update). Users should update their apps when

there is an emergency update without being concerned about another update

showing up soon afterwards.

2. Emergency updates rarely include a description in their release notes about the

rationale for such an update.

3. The updates preceding the emergency updates receive a higher ratio of negative

reviews than the emergency updates.

We identify eight patterns of emergency updates in two categories, updates due to

deployment issues and updates due to source code changes. For each pattern, we doc-

ument the description, root-causes, example updates, examples of user complaints,

speed of repair, and the takeaway from this pattern for users, developers, researchers

and app store owners. Our findings can help developers and app store owners avoid

emergency updates in order to improve the quality and user satisfaction of their apps.

Our study is a first step in creating a rich catalogue of patterns of emergency up-

dates. Future studies should explore additional emergency updates in order to aug-

ment our identified patterns.

In the next chapter, we study how the reviewing mechanism can help in spotting

good and bad updates. Hence, store owners can leverage user reviews to proactively

limit the distribution of bad updates



CHAPTER 5

Studying How the Reviewing Mechanism Can Help Spot Good

and Bad Updates

D
EVELOPERS always focus on delivering high-quality updates to improve, or

maintain the rating of their apps. Prior work has studied user reviews by

analyzing all reviews of an app. However, this app-level analysis misses

the point that users post reviews to provide their feedback on a certain update. For

example, two bad updates of an app with a history of good updates would not be spot-

ted using app-level analysis. In this chapter, we examine reviews at the update-level

to better understand how users perceive bad updates. We focus our study on the top

250 bad updates (i.e., updates with the highest increase in the percentage of negative

84



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 85

reviews relative to the prior updates of the app) from 26,726 updates of 2,526 top free-

to-download apps in the Google Play Store. We find that feature removal and UI is-

sues have the highest increase in the percentage of negative reviews. Bad updates with

crashes and functional issues are the most likely to be fixed by a later update. However,

developers often do not mention these fixes in the release notes. Our work demon-

strates the necessity of an update-level analysis of reviews to capture the impressions

of an app’s user-base about a particular update.

5.1 Introduction

App developers focus on publishing high-quality updates to improve or at least to main-

tain the rating of their apps. A 2015 survey shows that 77% of the users would not

download an app with a rating that is less than three stars (Martin, 2015).

Mobile app stores, such as the Google Play Store and the Apple App Store, enable

app developers to rapidly deploy new updates of their apps. In turn, users are able to

provide update-level feedback to developers. A recent survey of 138 app developers

highlights app developers’ need for understanding the characteristics of impactful up-

dates (i.e., updates that have an impact on the rating of an app) (Martin et al., 2016).

App stores are starting to show the update rating (Google, 2018). Such update-level

ratings are likely to impact whether users download an app or not, highlighting the

importance of the update rating for app developers.

However, prior work (including our own prior work) mostly focused on studying

reviews at the app-level instead of taking an update-centric view to capture the dy-

namic nature of the response of the user-base for a particular update. Recently, Gao

et al. (2018) studied topics that are raised in reviews of each update of an app. Gao



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 86

0

10

20

30

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21
Update

P
er

ce
nt

ag
e 

of
 n

eg
at

iv
e 

re
vi

ew
s

Figure 5.1: The percentage of negative reviews for the “GasBuddy: Find Cheap Gas”
app.

et al. observed that the distribution of the raised topics for an app changes with each

update. In addition, Martin et al. (2016) showed that taking an update-centric view

when studying mobile apps is important. For example, an update may lead to many

crashes about which users complain. The following update may address the crashes,

thereby introducing performance issues. An app-level analysis of reviews will observe

that reviews complain about crashes and performance issues without identifying the

reality that user complaints were about two different updates. In addition, the crash

is already addressed and the app currently has a performance issue. Our work per-

forms an in-depth analysis of mobile app reviews through an update-centric view. Our

main target audience consists of researchers. For example, researchers could benefit

from our proposed approach by studying the reviews of each update to analyze how

the user-perceived quality of an app changes over time.

The necessity of studying reviews at the update-level is demonstrated by the follow-

ing real-life example. Figure 5.1 shows the percentage of negative reviews per update

of the “GasBuddy: Find Cheap Gas” app. As shown in Figure 5.1, the percentage of

negative reviews increased after the U4 update (September 13t h 2016) of the app. The



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 87

update forces users to enable the GPS location to locate the nearest station instead

of searching for the already saved favorite stations. Users complained about sharing

their GPS location. On the following day (September 14t h 2016), developers deployed

the U5 update that restored the favorites search. As shown in Figure 5.1, the percent-

age of negative reviews started to decrease after deploying the fix for the raised issue.

An app-level analysis of reviews would fail to identify that user complaints are about a

GPS issue that is already addressed in the following updates.

In this chapter, we present an in-depth analysis of bad updates (i.e., updates with

an increased burst of the percentage of negative reviews) of mobile apps. In particu-

lar, we analyzed 26,726 updates and 26,192,781 reviews of 2,526 top free-to-download

apps in the Google Play Store. We observed that (1) the update-level analysis is useful

for identifying how users perceive the updates of an app over time and (2) the negative

reviews of bad updates are different from the negative reviews of regular updates. In

particular, the negative reviews of bad updates are more descriptive and contain more

update-related information than the negative reviews of regular updates. These results

motivated us to further analyze such bad updates to learn how users perceive a bad up-

date and how developers could recover from bad updates. In particular, we addressed

the following research questions:

RQ1: What do users complain about after a bad update?

A manual analysis of the release notes and negative reviews of the top 250 bad

updates in our dataset shows that functional complaints, crashes, additional cost

and user interface issues are the most frequently raised issues in bad updates.

We observed that apps in the financial and social categories have the highest

percentage of bad updates. In addition, we measured the negativity ratio of an



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 88

Figure 5.2: An overview of our approach for identifying how many updates are needed
to recover from a bad update Ui

update Ui as the ratio of the percentage of negative reviews before update Ui to

the percentage of negative reviews of updateUi . We observed that updates where

feature removal and user interface issues are raised have the highest negativity

ratio.

Our findings show that bad updates are not only perceived as bad because of

functional issues as previously observed in prior app-centric studies (McIlroy

et al., 2016b). Instead, we observed that crashes, additional cost and user in-

terface issues are the second most-often raised issues in bad updates.

RQ2: How do developers recover from a bad update?

Figure 5.2 shows an example of a bad update U1 that makes the app crash. We

determined if an issue was addressed by looking at updated reviews. For exam-

ple, as shown in Figure 5.2, a user complained about the crash after update U1.

The same user changed their review of the following update U2 to say that the

app “Still does not work”. Finally, after update U4 the user reported that the crash

was addressed.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 89

Out of 250 manually investigated bad updates, we located evidence that devel-

opers could recover from 105 bad updates. For these updates, recovery was most

likely when response time, crashes, network problems, and functional issues

were raised (100%, 68%, 60%, and 59% respectively). In the release notes of 44%

of the updates that address the raised issues in bad updates, developers explicitly

mentioned that they addressed an issue. We measured the differences in the neg-

ativity ratio (NegDiff ) as the negativity ratio of a bad update - the negativity ratio of

the fixing update. We measured the NegDiff in both cases when developers men-

tioned explicitly that an update addresses the raised issue and when developers

mentioned general release notes (e.g., “bug fixes”). We observed that the cases

where developers mentioned explicitly that they addressed the issues of a bad

update have a higher difference in the negativity ratio (the median NegDiff= 1.9)

than the cases where developers do not mention that the issues were addressed

(the median NegDiff= 1.7). Hence, we recommend that developers mention ex-

plicitly in their release notes that an issue was addressed to encourage users to

download the update and eventually update their rating leading to an improved

overall app rating.

The purpose of our study is twofold. First, we demonstrate the importance of update-

level analysis compared to the traditional app-level view that most prior work (includ-

ing our own work) on app review analysis takes. Hereby, we propose an approach

which can be used by researchers. Second, we use the update-level analysis to un-

derstand the characteristics of bad/good updates and to analyze how developers re-

cover from bad updates, hereby allowing researchers to understand the opinion of

users about an app with a much finer granularity.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 90

The rest of this chapter is organized as follows. Section 5.2 describes our method-

ology for identifying bad updates. Section 5.3 describes our motivational study of bad

updates. Section 5.4 analyzes the characteristics of bad updates. Section 5.5 describes

the implications of our work. In addition to the analysis of bad updates, to complete

our analysis, we study why users perceive an update as good in Section 5.6. Section 5.7

describes threats to the validity of our findings. Section 5.8 concludes this chapter.

5.2 Methodology

In this section, we describe our approach for studying bad updates from the Google

Play Store. Figure 5.3 gives an overview of the steps of our approach. We detail each

step below.

5.2.1 Collecting Data

In this section, we describe our selection criteria and data collection process.

Select Top Android Apps

We selected apps for our study based on the following criteria:

• App popularity: We focused on popular apps as we expect that these apps are

maintained by developers who care about the rating of their app, and have a large

enough user-base that has an opinion about the app.

• App diversity: We selected top popular apps across all categories in the Google

Play Store to ensure that the app categories do not impact our observations.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 91

We selected the top free-to-download apps in 2016 using App Annie’s report on

popular apps (AppAnnie, 2018). We focused on free apps to avoid the impact of app

price on our analysis. The price of an app may have a significant impact on how users

perceive an update (Noei et al., 2017). App Annie’s report of popular apps contains 28

app categories (e.g., games and finance categories). We selected the top 100 apps in

each category. In total, we selected 2,800 apps for our study. We found that 214 apps

were repeated across categories and 60 apps were already removed from the store when

we started our study. Hence, we conducted our study on 2,526 top apps. We did not

use the same dataset for the study in Chapter 4 as we study recent apps (i.e., popular

apps in 2016) and we need to collect more data than the collected data in the previous

study (e.g., we collect the changes in user reviews to understand how developers could

recover from bad updates).

Crawl App Data Over 12 Months

We used a Google Play crawler (Akdeniz, 2013) to collect data from the Google Play

Store. For each studied app, we collected the following data:

1. General data: app description, app title, the current number of downloads and

current rating of the app.

2. Updates: release notes of each update.

3. User reviews: review title, review contents, rating, review time.

The crawler connects to the Google Play Store using the Samsung S3 device model

(as the Samsung S3 device was one of the most popular models at the time that we

started to crawl (AppBrain, 2018)). Each time the crawler collects app data, the crawler



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 92

 
2) Identifying bad updates

 
 
 
 
 
 

 
1) Collecting data

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

App data

General data including
app description, # of
downloads and rating

Updates 

User reviews 

Crawl app data
over 12 months

Select top Android
apps

Google Play
Store

Calculate the
negativity ratio

Negativity ratio of
 19,150 updates 

Select updates that
received at least 100

ratings

Data for 19,150 updates 

2,526 top apps 

Top 250 bad
updates 

Rank updates based on negativity
ratio and select the top 250 bad
updates with at least 20 negative

reviews  

Figure 5.3: An overview of our approach for studying bad updates

stores the current app data (e.g., the current rating) and the latest 500 reviews of that

app.

During our study, we observed that apps differ in the amount of posted reviews per

day. For example, some apps receive thousands of new reviews per day (e.g., Facebook

and Instagram) while other apps receive a small number of new reviews per day. To

avoid overloading the Google Play Store while still crawling as much data as possible,

our crawler automatically adjusts its crawling frequency per app based on the number

of newly posted reviews after each crawl.

The Google Play Store allows users to post only one review per app. Users can mod-

ify the contents or rating of their posted review. Our crawler receives a chronological



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 93

Table 5.1: Dataset description.

Number of studied apps 2,526
Number of collected updates 26,726
Number of collected reviews 26,192,781
Number of collected changes in reviews 3,470,113

overview of the review changes. We used changes in each review to investigate the time

that it takes a developer to address a reported issue (i.e., by studying the time between

a user reporting an issue and the same user updating their review to report that the

issue was addressed).

We ran the crawler from April 20t h 2016 to April 13t h 2017. We crawled the store for

almost a year as we need app data for a longer period to identify a bad update. During

our study period, we collected 26,726 updates, and 26,192,781 reviews with 3,470,113

changes in reviews. We focused on updates with at least 100 ratings to assure that ev-

ery update has sufficient data for our study. We ended up with 19,150 updates for our

study. Table 5.1 describes our dataset. In the next section, we explain how we used the

collected data to identify bad updates.

5.2.2 Identifying Bad Updates

In this section, we describe the steps for identifying bad updates. First, we explain how

to calculate the negativity ratio which we used to identify bad updates.

Calculating the Negativity Ratio

To identify bad updates, we calculated the negativity ratio for an update Ui as fol-

lows. First, we calculated the percentage of negative ratings (i.e., ratings of one or



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 94

Table 5.2: Mean and five-number summary of the negativity ratio of the 19,150 studied
updates.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Negativity ratio 1.0 0.0 0.8 1.0 1.1 26.3

two stars (Martin, 2015)) of an update Ui (PNR(Ui )) as the ratio of the number of neg-

ative ratings of update Ui to the total number of ratings of update Ui . For example, an

update with ten ratings (two ratings with one star and eight ratings with four stars) has

a PNR of 0.2.

Then, we calculated the percentage of negative ratings before updateUi (PNRB(Ui ))

as the ratio of the number of negative ratings before update Ui to the total number of

ratings before update Ui .

Finally, we calculated the negativity ratio of an update Ui as follows:

Negativity ratio(Ui ) =
PNR(Ui )

PNRB(Ui )
(5.1)

Note that we link a review to the latest update at the time that the review was posted.

A negativity ratio that is lower than one means that users are less negative about the

app after releasing update Ui than before. On the other hand, a negativity ratio higher

than one means that users are more negative about the app after the release of update

Ui than before. Table 5.2 shows the mean and five-number summary of the negativity

ratio of all 19,150 studied updates.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 95

Table 5.3: Descriptive summary of the Top 250 bad updates.

Number of studied apps 211
Number of studied updates 250
Number of collected negative reviews 81,273
Number of collected changes in reviews 12,987

Identifying the Top 250 Bad Updates

To identify top bad updates, we focused on updates with the highest negativity ratio.

We applied the following approach. First, we ranked all updates based on their nega-

tivity ratio. Then for the top 1,000 updates with the highest negativity ratio, if an app

has consecutive updates in the list of the top 1,000 updates, we include only the first

update in our study. The reason is that we cannot verify whether the negative ratings

that are posted for a consecutive bad update are due to an issue with the consecutive

update or because users are still complaining about an issue from the previous update.

Figure 5.4 shows an example of an app with nine updates. The three updates U2, U3

and U8 are in the top 1,000 bad updates. We included both updates U2 and U8 as users

clearly started to complain about these updates, while we excluded update U3 since we

cannot verify whether the negative ratings that were posted for update U3 were due to

a new issue in update U3, or because users were still complaining about update U2.

We selected the top 250 bad updates with at least 20 negative reviews to have enough

data for our manual analysis to help us understand why users perceive the update as a

bad update.

Table 5.3 shows the number of apps, the number of collected reviews and the num-

ber of collected review revisions of the studied bad updates.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 96

Figure 5.4: An example of an app with nine updates U1 to U9. The blue dotted line in
the figure shows the lowest negativity ratio of the top 1,000 updates with the highest
negativity ratio. In our study, we included both updates U2 and U8 as they are separated
by other updates while we excluded update U3 since it follows the bad update U2

5.2.3 Approach for Identifying the Types of the Raised Issues in a Re-

view

In our analysis of raised issues about bad updates, we need to investigate which issues

do users raise in a bad update and what is the difference between the raised issues

in the negative reviews of bad updates and those issues of negative reviews of regu-

lar updates. To answer these questions, we need to manually read user reviews and

identify the issue type (e.g., crash) that is raised in every review. Our approach for the

manual analysis is as follows. Two researchers (including myself and a collaborator)

manually read the reviews and identified the raised issues and the corresponding is-

sue type of each raised issue. McIlroy et al. manually analyzed the complaints in user

reviews of mobile apps and identified 14 issue types (e.g., crashing and user interface

issue) (McIlroy et al., 2016b). We used the same issue types as McIlroy et al. (2016b).

Note that Maalej and Nabil used several techniques (e.g., bag of words) to automati-

cally classify user reviews into four high-level categories: bug report, feature request,

user opinion or rating (Maalej and Nabil, 2015). In our analysis of negative reviews,



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 97

Table 5.4: The identified issue types.

Issue type Description (D) - Example (E)

Functional Com-
plaint

D: The user complains about a functional issue in the app.

E: “It does not update cart. Also keeps login me off”
Crashing D: The user complains that the app crashes or does not work.

E: “Always crashes. It says it’s updating and then just closes out. Stupid useless
app I just get on the Browser to pay my card.”

User Interface D: The user complains about user interface issues (e.g., layout, icons, colors
and style issues).
E: “Please revert back to old icon. Changing the icon took away the true iden-
tity of Instagram.”

Feature Request D: The user requests from developers to add a certain feature.
E: “The new update got rid of tabs.... one of the best features of the browser.”

Additional Cost D: The user complains about the additional cost of the app (e.g., an app has
advertisements or asks for additional payment).
E: “Too much advertisements are ruining the experience.”

Privacy and Ethical
Issue

D: The user complains about the private information that is requested by the
app or the user complains about ethical issues in the app.
E: “I would like an explanation of the need for the phone permission. Clearly
app permissions in Android have become useless.”

Network Problem D: The user complains about network or connectivity issues.
E: “New update running slowly and keeps prompting me to connect to wifi
despite already being connected.”

Compatibility Issue D: The user complains about an issue for a certain device model or a certain
Android version.
E: “Unable to sync lyrics on samsung j5”

Feature Removal D: The user requests from developers to remove a certain feature.
E: “Please remove the news section.” or “Mandates to rate. Hate the mandatory
ratings after every ride.”

Response Time D: The user complains about the slow performance or the delay of the app.
E: “Very slow.”

Uninteresting Con-
tent

D: The user complains that the app content is not useful or uninteresting.

E: “CNN has become too one sided and biased as a news organization. Will
uninstall the app.”

Update Issue D: The user complains that the issue is related to the new update.
E: “New update is terrible”

Resource Heavy D: The user complains that the app consumes too many resources, such as
battery, memory, CPU or storage.
E: “ESPN made it so if you want to listen to podcasts or live radio you are now
required to use this app. My battery usage has now jumped to 41% just for this
app alone. Uninstalled and will not be using until this issue is fixed.”

Unspecified D: The review does not contain detailed information about a raised issue.
E: “Bad very bad”



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 98

we did not use Maalej and Nabil’s high-level categories as the proposed categories are

too generic and do not provide issue types at the level of detail (e.g., user interface is-

sue type or privacy and ethical issue type) that is necessary for our analysis. Table 5.4

shows the list of McIlroy et al.’s issue types, together with a description and an exam-

ple of each issue type. If there is a conflict between the two researchers, then both

researchers discuss how they interpreted the reviews until both researchers agree on

the identified issue types of the manually analyzed reviews. Finally, we calculated the

agreement between both researchers using Cohen’s Kappa interrater agreement (Co-

hen, 1960). Cohen’s Kappa measures the agreement between the two researchers and

provides value ranges from -1 to +1 (Cohen, 1960). The highest Cohen’s Kappa mea-

surement value (i.e., +1) means that both researchers identified the same issue types

in all examined reviews.

In the following sections, we describe the motivation, approach and the results of

our study.

5.3 Motivational Study

In this section, we discuss our motivational study of bad updates. Our motivational

study has two parts. First, we demonstrate the importance of update-level analysis of

user reviews. Second, we studied the difference between the negative reviews of bad

updates and the negative reviews of regular updates. The motivation, approach and

the results of our motivational study are described in the following sub-sections.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 99

● ● ● ● ● ● ● ● ● ● ●

Standard deviation = 0.5% and Rangeneg% = 2%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11
Update

P
er

ce
nt

ag
e 

of
 n

eg
at

iv
e 

re
vi

ew
s

(A) The  "La Biblia en Español"  app 

●

●
● ● ● ● ● ● ●

●
●

●
●

●
●

●

●

●

●

Standard deviation = 9% and Rangeneg% = 42%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19
UpdateP

er
ce

nt
ag

e 
of

 n
eg

at
iv

e 
re

vi
ew

s (B) The  "WhatsApp Messenger"  app 

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

Standard deviation = 18.3% and Rangeneg% = 72%

0

25

50

75

100

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23
UpdateP

er
ce

nt
ag

e 
of

 n
eg

at
iv

e 
re

vi
ew

s (C) The  "Handcent Next SMS"  app 

Figure 5.5: An example of: (A) the “La Biblia en Español” app with a low standard
deviation (0.5%) and a small Rangeneg% (2%), (B) the “WhatsApp Messenger” app with
a burst in the percentage of negative reviews and a fast recovery of the percentage of
negative reviews (the standard deviation value is 9% and the Rangeneg% is 42%), and (C)
the “Handcent Next SMS” app with a burst in the percentage of negative reviews and
a slow recovery of the percentage of negative reviews (the standard deviation value is
18.3% and the Rangeneg% is 72%). The black dotted line in the figure shows the average
percentage of negative reviews of every app.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 100

5.3.1 Demonstrating the Need for of Update-Level Analysis of User

Reviews

Motivation: We want to demonstrate the importance of update-level analysis over the

app-level analysis of reviews. The app-level analysis shows the average percentage of

negative reviews of an app across all updates, while the update-level analysis shows the

percentage of negative reviews for each update. By comparing how the app-level and

update-level views change over time, we could determine whether the update-level

view is necessary.

We calculated the percentage of negative reviews instead of using the average rat-

ing as the latter does not indicate the percentage of the overall user-base who posted

negative reviews about the update. For example, if an app has two updates. The first

update has two ratings, one rating with 1-star and one rating with 5-stars. The second

update has six ratings, four ratings with 2-stars and two ratings with 5-stars. Both up-

dates have the same average 3-stars, but the percentage of users who posted negative

reviews about the update is different (50% for the first update and 67% for the second

update).

Approach: We measured the percentage of negative reviews for each update for

each studied app. Figure 5.5 shows an example of changes of the percentage of negative

reviews for three different apps. We observe from Figure 5.5 that, (1) the percentage of

negative reviews may change from update to another (e.g., the “WhatsApp Messenger”

and “Handcent Next SMS” apps in cases B and C), and (2) apps vary in how fast they

recover from a bad update (i.e., the “Handcent Next SMS” app in case C).

We measured the standard deviation of the percentage of negative reviews for all



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 101

0

200

400

600

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Standard deviation of the percentage of negative reviews per app

N
um

be
r 

of
 a

pp
s

Figure 5.6: A histogram of the standard deviation of the percentage of negative reviews
per app

the studied updates. A low standard deviation value means that the percentage of neg-

ative reviews is almost stable for that app during the study period. As shown in Fig-

ure 5.5 for the “WhatsApp Messenger” app, the standard deviation of the app will not

be impacted if there is a bad update and the percentage of the negative reviews recov-

ered quickly in the following updates. Hence, in addition to the standard deviation, we

measured the range of the percentage of negative reviews (Rangeneg%) per app (i.e., the

maximum percentage of negative reviews per app - the minimum percentage of nega-

tive reviews per app). A high Rangeneg% means that there are cases when there is a burst

of negative reviews that may point to a bad update. The Rangeneg% alone does not show

how fast an app recovers from a bad update. Thus, we measured both the standard de-

viation and the Rangeneg% to identify cases when there is a burst of negative reviews

and how fast an app recovers from such cases.

Findings: Figure 5.6 shows the histogram of the standard deviation of the percent-

age of negative reviews per app. Table 5.5 shows the mean and the five-number sum-

mary of the Rangeneg% per app.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 102

Table 5.5: Mean and five-number summary of the Rangeneg% per app.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Rangeneg% 9.8% 0% 4% 7% 12% 88%

We observe from Figure 5.6 and Table 5.5 that: (1) The percentage of negative re-

views does not vary much between updates (the median standard deviation is 2.3%).

(2) There are peaks of negative reviews as the median difference between the maximum

and the minimum percentage of negative reviews is 7% and the maximum difference

is 88%.

To compare the app-level analysis with the update-level analysis, Figure 5.5 shows

the average percentage of negative reviews for the same three cases. As shown in Fig-

ure 5.5, the update-level analysis could identify the burst of variation in the negative

reviews so users and store owners could easily identify when there is a bad update and

when an app recovers from such a bad update.

5.3.2 Comparing the Raised Issues in Bad Updates to the Raised Is-

sues in Regular Updates

Motivation: Before analyzing the raised issues of every bad update, we need to examine

whether the overall base of the negative reviews of bad updates differs from the over-

all base of negative reviews of regular updates. If there is no difference between the

negative reviews of bad updates and negative reviews of regular updates, then there is

no need for further analysis of bad updates. On the other hand, if there is a difference

between the type of raised issues for negative reviews of bad updates versus regular

updates, then it is useful to further investigate how users perceive bad updates (i.e.,



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 103

Step 2: Extract negative reviews of regular updates

Motivational
study

dataset 

Extract negative reviews of bad updates
42,525

negative
reviews 

Step 1: Select a
statistically

representative
sample of the

negative reviews
of bad updates

945
regular
updates 

Extract
negative
reviews

226,460
negative
reviews 

Step 4: Identify
the raised issues
in both samples

and compare
themStep 3: Select a

statistically
representative
sample of the

negative reviews
of the regular

updates

Differences
between the

raised issues of
bad and regular

updates

Find
regular
udpates

Find list of
apps

Apps
with bad
updates  

Figure 5.7: An overview of our approach for comparing the raised issues in bad updates
to the raised issues in regular updates of our motivational study dataset

what do users complain about after a bad update?) and how developers often recover

from bad updates.

Approach: Figure 5.7 shows an overview of our approach for comparing the raised

issues in the negative reviews of bad updates versus the negative reviews of regular

updates. We followed these steps:

Step 1: Select a statistically representative sample of the negative reviews of bad up-

dates. As described in Section 5.2, we observed that apps differ in the number

of received reviews. Hence, sampling the overall collected reviews may lead to

a bias towards apps with many reviews. Thus, we first randomly selected a sta-

tistically representative sample of the negative reviews with a confidence level

of 95% and a confidence interval of 5% for each bad update of the top 100 bad

updates. Then, we grouped the collected random samples. We ended up with a

refined sample of 11,829 negative reviews out of 42,525 negative reviews.

Finally, we randomly selected a statistically representative sample of 372 reviews

(out of 11,829 reviews) with a confidence level of 95% and a confidence interval

of 5%.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 104

Step 2: Extract negative reviews of regular updates. To compare reviews of bad updates

and regular updates, both types of updates should be related to the same apps.

In this way, we eliminate any bias caused by comparing reviews of different apps.

We observed that our motivational study dataset (i.e., the top 100 bad updates)

spans 94 apps with 1,450 updates.

To identify regular updates, first, we filtered out bad updates (we kept 1,350 out

of 1,450 updates). Then, we ranked the 1,350 updates with their negativity ratio

and removed the top 30% bad updates (i.e., updates with the highest negativity

ratio), so we can ensure with more confidence that the remaining updates are

not bad updates. We ended up with 945 regular updates, which have 226,460

negative reviews in total.

Step 3: Select a statistically representative sample of the negative reviews of the regu-

lar updates. For each regular update, we randomly selected a statistically rep-

resentative sample of its negative reviews with a confidence level of 95% and a

confidence interval of 5%. Then, we grouped the collected random samples. We

ended up with 70,643 negative reviews (out of the collected 226,460 negative re-

views).

Finally, we randomly selected a statistically representative sample of 382 reviews

(out of 70,643 reviews) with a confidence level of 95% and a confidence interval

of 5%.

Step 4: Identify the raised issues in both samples and compare them. We manually

read the reviews in both samples and identified the raised issues and the cor-

responding issue type in the negative reviews of both samples (as described in



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 105

Section 5.2.3). We measured the agreement between both researchers. In addi-

tion, we compared the statistics of the issue types across samples. Finally, we

applied a statistical test to examine the statistical difference between the distri-

bution of the issues types in bad updates and regular updates. In particular, we

applied Pearson’s Chi-squared test because it can be used to test distributions of

categorical variables for a statistical difference (Ling, 2008; RTutorial, 2018). We

defined the null-hypothesis as the hypothesis that the raised issue types for bad

updates are different from those raised in regular updates.

Findings: The frequency of update-related issues in the negative reviews of bad

updates is higher than in regular updates. Figure 5.8 shows the distribution of each

issue type for regular updates and bad updates. Users mention that an issue is related

to the latest update in 32% of the negative reviews of bad updates and in 20% of the

negative reviews of regular updates. Hence, an important characteristic of bad updates

is that users complain more specifically about an issue in the update. Thus, reading

the negative reviews of every bad update might provide insight as to why an update is

perceived as bad.

The frequency of unspecified issues in the negative reviews of regular updates is

almost four times higher than that in bad updates. For regular updates, 26% of the

negative reviews do not specify an issue (e.g., a review only says “Bad”). On the other

hand, for bad updates, only 7% of the negative reviews are not specific. This finding

suggests that negative reviews of bad updates are more descriptive than the negative

reviews of regular updates.

User interface, feature request, feature removal, additional cost, crashing and



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 106

compatibility issues are raised more frequently in the negative reviews of bad up-

dates than in regular updates. For negative reviews of bad updates that raise user

interface, feature request and feature removal issues, we observed that users often ask

developers to revert back to the old user interface or an old feature. For example, in

reviews that request the addition of a feature, users do not ask for new features. In-

stead, users ask for the restoration of a removed feature. In the user interface reviews,

users ask developers to return to the original user interface as they felt that the previ-

ous update had a better user experience than the new update. Hence, it is important

that developers consult with their users before changing or removing a feature.

We measured Pearson’s Chi-squared test and we found that the p-value is < 0.01.

The Pearson’s Chi-squared test result shows that there is a statistical difference between

the issue types of regular updates and the issue types of bad updates. As described

in our approach section, we measured the agreement between both researchers. We

observed that the Cohen’s Kappa interrater agreement between both researchers is 0.7.

The update-level analysis is useful for identifying updates with a burst of user com-

plaints (i.e., bad updates). Analyzing a sample of negative reviews of bad updates

shows that the negative reviews of bad updates are different from those of regular up-

dates. In particular, negative reviews of bad updates are more descriptive and raise

more update-related issues than those of regular updates. Hence, further analysis

on what do users complain about after a bad update? and how do developers re-

cover from a bad update? can offer insights about bad updates and how to recover

from such updates.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 107

0

10

20

30

U
pd

at
e 

Is
su

e

F
un

ct
io

na
l C

om
pl

ai
nt

F
ea

tu
re

 R
eq

ue
st

A
dd

iti
on

al
 C

os
t

C
ra

sh
in

g

U
se

r 
In

te
rf

ac
e

P
riv

ac
y 

an
d 

E
th

ic
al

 Is
su

e

U
ns

pe
ci

fie
d

U
ni

nt
er

es
tin

g 
C

on
te

nt

C
om

pa
tib

ili
ty

 Is
su

e

F
ea

tu
re

 R
em

ov
al

R
es

po
ns

e 
T

im
e

N
et

w
or

k 
P

ro
bl

em

R
es

ou
rc

e 
H

ea
vy

P
er

ce
nt

ag
e 

of
 r

ev
ie

w
s

Update type
Bad updates
Regular updates

Figure 5.8: Distribution of each issue type for both regular updates and bad updates
of our motivational study dataset

5.4 A Study of Bad Updates

In this section, we present our study of the top 250 bad updates. For each RQ, we

present our motivation, approach, and results.

5.4.1 RQ1: What do users complain about after a bad update?

Motivation: It is hard to make every user happy. Bad reviews are inevitable. The real

problem with bad reviews is when they result in an alienation of the user-base of an

app. Prior work studied user complaints in reviews at the app-level (Oh et al., 2013;

Iacob and Harrison, 2013; Iacob et al., 2013b,a; Maalej and Nabil, 2015; Villarroel et al.,



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 108

 
 
 
For every bad update Ui out of the top 250 bad updates 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Top 250 bad
updates 

Extract negative
reviews of bad

updates

81,273
negative
reviews 

Manually identify the
primary raised issue
(e.g., crash) of every

update Ui 

The raised issue
(along with the issue

type) of every bad
update Ui 

Analyze the frequency
and the median

negativity ratio of each
issue type for the top

250 bad updates

Select a
random

sample of 100
reviews for
update Ui

100 reviews (in total
17,646 negative

reviews) 

Figure 5.9: An overview of our approach for studying the raised issues in bad updates

2016; Keertipati et al., 2016; Hu et al., 2018a,b). In our motivational study, we demon-

strated the need for update-level analysis. In this section, we analyze user complaints

at the update-level. Our goal is to understand whether some issue types are more likely

to make a particular update be perceived as bad. Our findings can help developers

identify the issues that should be dealt with more caution to avoid bad updates.

Approach: We manually analyzed 17,646 negative reviews of bad updates. Fig-

ure 5.9 shows an overview of our approach for analyzing reviews at the update-level.

We grouped all reviews per update and analyzed what is the primary raised issue

for every bad update. For each bad update Ui , we identified the negative reviews that

are posted between the release of update Ui and Ui+1. We found 81,273 negative re-

views that belong to the top 250 bad updates (a median of 84.5 negative reviews per

bad update). Then, for each update Ui , two researchers (including myself and a col-

laborator) manually read a random sample of 100 negative reviews as we observed that

100 reviews were enough to identify the core issues of a bad update. Both researchers

independently read the reviews to identify the raised issues in bad updates. If there



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 109

was a conflict between the two researchers, then both researchers discussed how they

interpreted the reviews until both researchers agreed on the identified issues for every

bad update. As described in Section 5.2.3, we used the issue types that are listed in

Table 5.4. The Cohen’s Kappa interrater agreement between both researchers for this

classification is 0.78.

For each bad update, we observed that most of the negative reviews complained

about the same issue (the primary issue). Hence, we documented the primary issue

for each update. We counted the number of updates that refer to a certain issue type.

As described in Section 5.3, If at least 20% of the reviews of an update do not complain

about a specific issue (i.e., there is no primary issue), we consider the raised issue for

this update as unspecified. Additionally, for each issue type, we calculated the median

negativity ratio of the updates that were labeled with this issue as the primary issue.

We also compared the percentage of apps with bad updates across app categories.

Findings: Functional complaint and crashing issues are the most frequently raised

issues in bad updates. Table 5.6 shows the number of updates that were labeled with

a certain issue type. We observed that functional complaints (70 updates) were the

most occurring primary issue type in bad updates. For 20 out of 70 updates, users com-

plained that they could not log in to the app. For 5 out of 20 login issues, developers

mentioned in the release notes of one of the following updates that the login issue was

addressed. For the other 15 updates, the release notes have generic content (e.g., “bug

fixes”). For the two updates out of the five updates with descriptive release notes, the

reason was that the login functionality did not work on all devices (e.g., “Fixed issue on

small screens where account button got hidden”). Testing an app on all possible devices

requires considerable time and resources. Developers could benefit from the existing



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 110

studies to prioritize the needed devices for testing their apps (Khalid et al., 2014; Noei

et al., 2017).

We performed a comparison between the frequency of the identified issue types in

our update-level analysis and the identified issue types in the app-level analysis work

that was performed by McIlroy et al. (2016b). In particular, we observed that crashes,

additional cost and user interface issues occur more frequently at the update-level than

at the app-level. On the other hand, reviews with feature requests and network issues

are more frequent at the app-level than at the update-level. A possible explanation for

this difference is that the two studies were conducted on different apps and analyzed

user reviews at different times which may impact the distribution of the raised issues

in the two studies. However, the differences between our work and the work of McIlroy

et al. indicate that our update-level analysis provides a complementary view that is not

available in other prior work on the analysis of mobile app reviews.

Feature removal and user interface issues have the highest median negativity ra-

tio. We observed that the highest median negativity ratio (3.5) occurred for bad up-

dates where users ask for removing a new feature that was added by the latest update.

For example, users complained about an additional step that mandates users to create

an account to use the app or users asked for the removal of notifications. In another

example, the developer improved the app’s security by making the user session expire

after a particular time, and users need to enter their credentials (i.e., the username

and the password) to remain signed in. Although developers initially expected that

the added features would be perceived as a good update, users asked developers to

roll back this additional feature. Hence, app developers should consult users before

adding new features to avoid such bad updates.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 111

Table 5.6: The number of updates that were labeled with a certain issue type and the
median negativity ratio of each issue type (ranked by the number of bad updates).

Issue type

# of bad updates
containing this

issue as a primary
issue

Median
negativity

ratio

Functional Complaint 70 2.8
Crashing 44 2.5
Additional Cost 35 2.5
User Interface 23 3.4
Privacy and Ethical Issue 23 2.5
Other 18 2.3
Feature Request 17 2.8
Uninteresting Content 16 2.6
Network Problem 10 2.5
Feature Removal 7 3.5
Compatibility Issue 3 2.8
Response Time 2 2.4
Resource Heavy 1 2.1

Total number of bad updates 250 2.7

During our manual analysis of the 23 updates where user interface issues were

raised, we observed that user interface issues could be classified into different sub-

types. To identify the different subtypes of user interface issues, we used an approach

similar to coding (Khandkar, 2009; Borgatti, 1996). We manually read the previously-

selected random sample of 100 reviews of each of the 23 updates. Then, we identified

the subtypes of the user interface issues. If a new subtype was identified, it was added

to the list of identified subtypes. After reading the reviews, we identified five different

subtypes of user interface issues in bad updates. Table 5.7 shows the five identified

subtypes together with their description. Although the identified subtypes seem mi-

nor issues and could be addressed easily (e.g., icons or colors), clearly users care about



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 112

Table 5.7: The identified sub-types of user interface issues.

Category Description (D) - Example (E)

Logo or icon D: The user complains about the main app logo or the dis-
played icons in the apps.
E: “The previous icon was much much better than this new up-
dates icon... Didn’t like this”

Design and layout D: The user complains about the design or layout of the
screens.
E: “The layout before was so easy to navigate and use. There is
literally nothing I like about the new update.” or “No more sim-
plicity. So much wasted space and have to scroll miles for miles
to look at anything. Not intuitive. Writing is so small can’t read
anything even tho my screen could accommodate much more.
Peoples pics are tiny can’t even see who’s attending the events.
Whoever did this should be fired.”

Colors D: The user complains about the colors of the screen (e.g.,
screens are too bright or too dark).
E: “This new UI is too bright n I don’t find it comfortable to use it
at night” or “I can barely even type this black on black is kinda
hard to use”

Photos/pictures D: The user complains about the quality of an image.
quality E: “New version is not good picture quality is very bad plz solved

tha problem.. Discasting...’
Not user-friendly D: The user complains that functionality is not easily acces-

sible in the new interface (e.g., users need to perform many
actions to navigate).
E: “Your changes are awful dumped all of my stocks no longer
easy to look at requires multiple clicks to see portfolio.should
have left the app alone”

these user interface issues. Hence, it is recommended that developers give more at-

tention to how their apps look because even trivial details like icons can impact their

ratings.

Finance and social apps have the highest percentage of bad updates. Table 5.8

shows the number of apps with at least one bad update, the number of updates, the



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 113

Table 5.8: The number of apps with bad updates grouped by the app category.

Category
# of apps
with bad
updates

# of
bad
up-

dates

Total
# of

apps

Total #
of up-
dates

% of apps
with bad
updates

% of
bad
up-

dates

Median #
of updates

per app

Finance 22 30 81 544 27% 6% 5
Social 19 27 79 1,434 24% 2% 16
Shopping 18 20 88 1,042 20% 2% 9
News and Magazines 13 19 66 644 20% 3% 6
Sports 12 13 58 439 21% 3% 5
Communication 11 11 75 1,289 15% 1% 12
Productivity 11 13 79 965 14% 1% 9
Health and Fitness 10 11 70 746 14% 1% 8
Tools 10 11 92 1,729 11% 1% 12
Photography 9 10 91 1,337 10% 1% 9
Lifestyle 8 10 58 535 14% 2% 7
Weather 8 10 66 422 12% 2% 3
Games 7 8 79 757 9% 1% 7
Travel and Local 7 7 68 730 10% 1% 8
Business 6 8 76 657 8% 1% 7
Entertainment 6 7 81 656 7% 1% 7
Education 5 5 66 690 8% 1% 7
Maps and Navigation 5 5 57 495 9% 1% 3
Personalization 5 5 76 826 7% 1% 6
House and Home 4 5 11 132 36% 4% 14
Medical 3 3 45 257 7% 1% 4
Music and Audio 3 3 76 882 4% 0% 8
Books and Reference 2 2 64 512 3% 0% 6
Food and Drink 2 2 13 229 15% 1% 17
Parenting 2 2 6 50 33% 4% 8
Auto and Vehicles 1 1 11 132 9% 1% 7
Comics 1 1 29 175 3% 1% 3
Video Players 1 1 55 619 2% 0% 7

percentage of bad updates, and the median number of updates per app in each app

category. As shown in Table 5.8, finance apps (e.g., the “Citi Mobile” and the “Bank of

America Mobile Banking” apps) and social apps (e.g., the “Instagram” and the “Meetup”

apps) have the highest number of bad updates. One possible reason for the finance

category having more bad updates than others, is that users may expect higher quality

updates from large financial corporations. For example, the “Citi Mobile” app released



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 114

an update that crashed, after which users posted negative reviews such as: “I do not

understand why such a big and powerful bank has this awful app” and “Can’t believe it

is a banking app by Citi... keep giving error.. worst app ever”.

Considering the percentage of bad updates, financial apps have the highest per-

centage of bad updates (27% of the apps and 6% of the updates have bad updates). We

observed that while social, house and home, food and drink, communication and tools

apps have the highest median number of deployed updates per app, not all of these app

categories rank high when it comes to the number of apps with bad updates. Hence,

we cannot conclude that the number of deployed bad updates per app is a direct con-

sequence of the total number of updates of an app.

Bad updates are not only perceived as bad because of functional issues. Instead,

crash, additional cost and user interface issues often occur in bad updates whereas

at app-level these issues do not occur as often. In addition, we observed that feature

removal and user interface issues have the highest negativity ratio.

5.4.2 RQ2: How do developers recover from a bad update?

Motivation: Receiving low ratings and negative reviews can be devastating for an app (Mar-

tin, 2015). Hence, it is important that in the event of a bad update, developers can

recover quickly by releasing a good update. Analyzing how developers behave after a

bad update can provide insights on how developers can recover from future bad up-

dates. Therefore, we studied if, how and after how long do developers recover from a

bad update.

Approach: For each bad update Ui , we studied how many updates are needed to

recover from this bad update (e.g., by addressing the primary reported issue). To iden-

tify whether the primary issue was addressed, we manually conducted the following



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 115

Table 5.9: User review changes and release notes for the “Handcent Next SMS” app.

User review and release notes Date Rating

Release Notes: (Version 7.0.0)
“Next SMS new features: - New set of emoji, more fun with animated
ones. - Application level changes to greatly improve the overall speed.
- UI overhaul to give a more immersive and polished material design.
- Redesigned pop-up window look and functionality. - Optimization
for much lower power usage. - Add night mode to make it easier on
the eyes.”

11-8-2016 -

User: “This is the only app I use that consistently gets awful reviews
everytime you ‘improve’ it. Wasted, useless heading space, distracting
grey shadows around time stamp in convos, jarring electric blue box
around contact pictures in convo lists, and my contact picture disap-
peared completely. And what is with the hideous stop sign red unread
message counter I cant get rid of!? It gives me the anxiety to have my
texting app scream at me about how many messages I need to read.
Please, can you tell me the point?”

11-8-2016

Release Notes: (Version 7.0.1)
“Less space on conversation item, display conversations. - Fixed share
pic at gallery. - Fixed some force close issues. - Improve MMS. ** Please
be patient if you get blank inbox when first upgrade to ,it need some
minutes optimize sync messages ***”

12-8-2016 -

User: “First update fixed a few things. Still seeing strange stop sign
red unread message counter, but better already”

12-8-2016

Release Notes: (Version 7.0.5)
“Remove top navigator bar for saving space. - Add blacklist feature
display main window. - Improve function. - Add resend message fea-
ture. - Fixed background of password input for privacy box. - Fixed
known issue. - Add avatar self. -Add My Theme table theme service
window.’

15-8-2016 -

User: “First update fixed a few things. Took nearly 5 days, but it did
eventually load all my convos. Still seeing strange stop sign red un-
read message counter, but better already.”

15-8-2016



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 116

Ta
b

le
5.

10
:T

h
e

n
u

m
b

er
o

fb
ad

u
p

d
at

es
fo

r
w

h
ic

h
w

e
o

b
se

rv
ed

ev
id

en
ce

th
at

d
ev

el
o

p
er

s
co

u
ld

re
co

ve
r

fr
o

m
th

e
b

ad
u

p
d

at
e,

th
e

n
u

m
b

er
o

f
b

ad
u

p
d

at
es

fo
r

w
h

ic
h

u
se

rs
w

er
e

st
ill

co
m

p
la

in
in

g
at

th
e

en
d

o
f

th
e

st
u

d
y

p
er

io
d

an
d

th
e

n
u

m
b

er
o

fb
ad

u
p

d
at

es
fo

r
w

h
ic

h
th

er
e

is
n

o
t

en
o

u
gh

in
fo

rm
at

io
n

to
ve

ri
fy

w
h

et
h

er
an

is
su

e
w

as
ad

d
re

ss
ed

.

D
ec

is
io

n
#

o
fb

ad
u

p
d

at
es

D
es

cr
ip

ti
o

n

D
ev

el
o

p
er

re
co

ve
rs

fr
o

m
a

b
ad

u
p

d
at

e
10

5
W

e
o

b
se

rv
ed

ch
an

ge
s

in
u

se
r

re
vi

ew
s

m
en

ti
o

n
in

g
th

at
th

e
p

ri
m

ar
y

is
su

e
w

as
ad

d
re

ss
ed

.
U

se
rs

st
ill

co
m

p
la

in
58

W
e

o
b

se
rv

ed
th

at
u

se
rs

st
ill

co
m

p
la

in
ab

o
u

t
th

e
p

ri
m

ar
y

is
su

e
an

d
ei

th
er

(1
)

th
e

re
le

as
e

n
o

te
s

fo
r

th
e

fo
llo

w
in

g
u

p
d

at
es

d
o

n
o

tm
en

ti
o

n
an

y
d

et
ai

ls
ab

o
u

t
th

e
is

su
e

(4
3

u
p

d
at

es
),

(2
)

th
e

re
le

as
e

n
o

te
s

m
en

ti
o

n
a

fi
x

fo
r

th
e

is
su

e
b

u
tu

se
rs

co
n

ti
n

u
e

to
co

m
p

la
in

(9
u

p
d

at
es

)o
r(

3)
th

er
e

ar
e

n
o

fu
rt

h
er

u
p

d
at

es
at

th
e

en
d

o
fo

u
r

st
u

d
y

(6
u

p
d

at
es

).
T

h
er

e
is

n
o

te
n

o
u

gh
in

fo
rm

at
io

n
97

W
e

co
u

ld
n

o
tv

er
if

y
(a

)p
re

ci
se

ly
w

h
en

th
e

p
ri

m
ar

y
is

su
e

w
as

fi
xe

d
as

u
se

r
re

vi
ew

s
w

er
e

ch
an

ge
d

at
d

if
fe

re
n

tt
im

es
(6

u
p

d
at

es
)o

r(
b

)w
h

et
h

er
th

e
p

ri
-

m
ar

y
is

su
e

w
as

ad
d

re
ss

ed
(8

7
u

p
d

at
es

)
as

(1
)

th
er

e
w

as
n

o
p

ri
m

ar
y

is
su

e
(1

8
u

p
d

at
es

)o
r(

2)
w

e
d

id
n

o
tfi

n
d

an
y

ch
an

ge
s

in
th

e
re

vi
ew

s
af

te
rt

h
e

b
ad

u
p

d
at

e
(6

3
u

p
d

at
es

).
W

e
al

so
re

ad
th

e
re

le
as

e
n

o
te

s
o

f
th

e
ap

p
s

o
f

th
es

e
63

u
p

d
at

es
an

d
w

e
st

ill
co

u
ld

n
o

tv
er

if
y

w
h

et
h

er
th

e
p

ri
m

ar
y

is
su

e
w

as
ad

-
d

re
ss

ed
as

(1
)

th
e

re
le

as
e

n
o

te
s

fo
r

th
e

fo
llo

w
in

g
u

p
d

at
es

d
o

n
o

t
m

en
ti

o
n

an
y

d
et

ai
ls

ab
o

u
tt

h
e

is
su

e
(5

2
u

p
d

at
es

)o
r

(2
)d

ev
el

o
p

er
s

m
en

ti
o

n
ed

a
fi

x
fo

r
th

e
is

su
e

b
u

t
th

er
e

w
er

e
n

o
ch

an
ge

s
in

th
e

re
vi

ew
co

n
te

n
ts

to
ve

ri
fy

w
h

et
h

er
th

e
is

su
e

w
as

ad
d

re
ss

ed
(1

1
u

p
d

at
es

).



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 117

steps:

Step 1: Examine changes in reviews of the bad update. As described in Section 5.2,

our crawler stores changes in reviews. Hence, for all negative reviews of a bad update

Ui , we manually examined the changes that users made after the bad update Ui . By

tracking the changes in the prior reviews, we could figure out whether users still com-

plained about the primary issue or whether the issue was addressed. If a user reported

that the issue was addressed, we used the posting time of the updated review to iden-

tify which update addressed the issue. In total, we analyzed 12,987 review revisions out

of the 81,273 negative reviews that belong to the top 250 bad updates.

Step 2: Examine the release notes. We examined the release notes of all the up-

dates that were deployed after the bad update Ui until we observed an update that

mentioned in the release notes that the primary issue was addressed.

As described in Section 5.2, the Google Play Store provides the current app data

(e.g., the current review contents and the currently deployed update). To track the

changes in user reviews and examine the following release notes of a bad update, we

need to crawl the Google Play Store over a period of time to track these changes. Hence,

as described in Section 5.2, we built our own crawler and crawled the Google Play Store

for 12 months to collect the changes in user reviews and the deployed updates of an

app. Table 5.9 shows an example of changes in a single user review over time for an

issue that occurred in the “Handcent Next SMS” app. On August 11t h 2016, develop-

ers deployed update Ui (version 7.0.0) that made changes to the user interface. Users

started complaining about the new user interface. On the next day, developers de-

ployed update Ui+1 but the update did not address all user interface complaints. Then



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 118

on August 15t h 2016, the developers deployed update Ui+2 that improved the user in-

terface and many users updated their reviews accordingly by increasing their ratings.

As shown in Table 5.9 it took two updates (from version 7.0.0 to version 7.0.5) to recover

from the user interface issue.

Findings: In 42% of the studied updates, we could verify that app developers could

recover from a bad update. Table 5.10 shows the number of bad updates for which we

observed evidence that developers could recover from the bad update, the number of

bad updates for which users were still complaining at the end of the study period and

the number of bad updates for which there is not enough information to verify whether

the raised issue was addressed. To understand the impact of solving the primary issue

of a bad update on the rating of an app, we calculated the difference between the neg-

ativity ratio of a bad update and its following update that addressed the primary issue.

We observed that the median negativity difference is 1.8, which means that the fixing

updates have less negative reviews than the bad updates. Our findings show that al-

though we could not verify that all apps could recover from a bad update, listening to

user feedback and addressing the primary issue of a bad update can lead to an im-

provement of the rating of an update.

For the bad updates for which we have evidence that the developers could re-

cover, we observed that they recover the most often from bad updates where re-

sponse time, crashes, network problems, and functional issues are raised. Table 5.11

shows the number and percentage of updates from which they could recover, the me-

dian number of needed updates to recover from a bad update and the median value of

the difference between the negativity ratio of a bad update and the recovery update. As

shown in Table 5.11, apps are most likely to recover from bad updates where response



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 119

Ta
b

le
5.

11
:

T
h

e
n

u
m

b
er

o
f

b
ad

u
p

d
at

es
th

at
ra

is
ed

a
ce

rt
ai

n
is

su
e

ty
p

e,
th

e
n

u
m

b
er

o
f

re
co

ve
re

d
u

p
d

at
es

,t
h

e
m

e-
d

ia
n

n
u

m
b

er
o

fu
p

d
at

es
th

at
w

er
e

n
ee

d
ed

to
re

co
ve

r
fr

o
m

ea
ch

is
su

e
ty

p
e

an
d

th
e

m
ed

ia
n

n
eg

at
iv

it
y

d
if

fe
re

n
ce

af
te

r
re

co
ve

ri
n

g
fr

o
m

b
ad

u
p

d
at

es
(r

an
ke

d
b

y
th

e
n

u
m

b
er

o
fb

ad
u

p
d

at
es

).

Is
su

e
ty

p
e

#
o

fb
ad

u
p

d
at

es
(A
)

#
o

f
re

co
ve

re
d

u
p

d
at

es
(B
)

%
o

f
re

co
ve

re
d

u
p

d
at

es
(B
/A
)

M
ed

ia
n

#
o

f
re

le
as

es
to

re
co

ve
r

M
ed

ia
n

d
if

fe
re

n
ce

o
fn

eg
at

iv
it

y
ra

ti
o

Fu
n

ct
io

n
al

C
o

m
p

la
in

t
70

41
59

%
1

1.
8

C
ra

sh
in

g
44

30
68

%
1

1.
5

A
d

d
it

io
n

al
C

o
st

35
7

20
%

4
2.

5
U

se
r

In
te

rf
ac

e
23

10
43

%
2.

5
2.

7
P

ri
va

cy
an

d
E

th
ic

al
Is

su
e

23
7

30
%

1
1.

9
U

n
sp

ec
ifi

ed
18

0
0%

N
A

N
A

Fe
at

u
re

R
eq

u
es

t
17

6
35

%
2.

5
1.

7
U

n
in

te
re

st
in

g
C

o
n

te
n

t
16

0
0%

N
A

N
A

N
et

w
o

rk
P

ro
b

le
m

10
6

60
%

1
1.

9
Fe

at
u

re
R

em
ov

al
7

3
43

%
1

2.
4

C
o

m
p

at
ib

ili
ty

Is
su

e
3

1
33

%
4

2.
2

R
es

p
o

n
se

T
im

e
2

2
10

0%
2

1.
6

R
es

o
u

rc
e

H
ea

vy
1

0
0%

N
A

N
A



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 120

time, crashes, network problems, and functional issues are raised (100%, 68%, 60%,

and 59% respectively). For the 44 bad updates where crashes are raised, we observed

30 out of 44 updates that eventually were addressed. For the remaining 14 updates, we

could not confirm whether the primary issue was addressed as the release notes for

the following updates were generic (e.g., “bug fixes”) and no previously posted reviews

were updated to confirm that the issue was addressed. We also observed that the me-

dian number of required updates to recover from crashes and functional issues is one

update, which indicates that these types of issues are addressed fast.

Identifying similarity across negative reviews (such as device model or SDK ver-

sion) could help developers in the identification of the issues. We observed that the

release notes of 2 out of 30 crash-fixing updates mentioned that the crash occurred

only on certain devices (i.e., for a certain Android version or certain device model).

For example, the release notes of the “Period Tracker” app say: “Fixes crash on notes

page for devices with OS 4.0 and below.” In another example, the release notes of the

“HERE WeGo - Offline Maps & GPS” app mention that: “Fixed a crash on app start that

affected some Samsung Galaxy users.” We observed that in 14 out of 97 (14%) of the

posted reviews of the bad update, the reviews mentioned that the crash occurred on

Samsung Galaxy devices (e.g., the Samsung Galaxy J5 or Galaxy Note).

The Google Play Store shows the meta-data of a review to app developers (i.e., the

installed SDK version and the device model of a user who posted the review). Prior re-

search studied the relation between the device model and the overall app rating so de-

velopers could identify which devices impact their app ratings (Noei et al., 2017; Khalid

et al., 2014). Developers could benefit from analyzing the meta-data of the negative re-

views to detect devices and SDK versions that have issues. For example, developers can



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 121

calculate the percentage of negative reviews that have a certain device model or SDK

version to identify which devices or SDK versions are more frequently associated with

the reported issues of an update.

In 16 out of 23 (70%) of the bad updates where user interface issues were raised,

developers mentioned in the release notes that they made improvements to the user

interface. In only 43% of the bad updates where a user interface issue was raised, we

observed evidence that developers could recover from a bad update. The median

number of updates to recover from user interface issues is two, which suggests that

user interface issues are not addressed as fast. For example, developers of the “ATV Ex-

treme Winter Free” app deployed two updates to recover from the user interface issue

(i.e., version 7.0.5 with release notes “Less space on conversation item and display con-

versations” and version 7.0.7 with release notes “Remove top navigator bar for saving

space”). Only for update 7.0.7 did users update their review and increased their ratings.

User feedback may force developers to reduce the added cost. In 7 out of 35 up-

dates (20%), we found evidence that developers could recover from the complaints

about the additional cost (in 6 updates developers removed the additional cost after

users complained about it, and in 1 update developers provided alternative solutions

for the additional cost). For example, developers of the “MARVEL Contest of Cham-

pions” app deployed an update with additional in-app purchases. Users complained

about the additional cost and started writing the hashtag #boycottmcoc in the review

comments. For example, a user says “New update is horrible. Used to love this game!

Played for over 2 years. Spent LOTS on money. Now its the worst game Ive seen. Go back

to the previous setup. #boycottmcoc”. We also observed that the campaign that was



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 122

initiated by users to boycott the app became viral as many game players started com-

plaining about the additional cost in the app, which forced the developers to reduce

the additional app cost (Eli Hodapp, 2017). In our manual analysis of the 35 updates

where the additional cost issue is raised, we identified three patterns for managing user

complaints about additional cost:

• Rolling back the additional cost (10 out of 35 updates). These developers rolled-

back the additional cost, e.g., by removing annoying advertisements or offering

certain features for free. Note that in only 6 out of the 10 updates in which a

developer rolled back the additional cost, we observed evidence that the addi-

tional cost issues were fixed and users increased their ratings. In the remaining

four cases, we did not find changes in the user reviews to verify that the issue was

fixed.

• Providing alternative solutions for the additional cost (20 out of 35 updates).

These developers offered alternative solutions for the additional cost such as (1)

offering a non-free version that does not contain advertisements (2 updates) or

(2) keep on improving their app by adding new features without reducing the

additional cost (18 updates). We observed that in only one of the two updates

related to offering a non-free version, users liked the non-free version and in-

creased their review rating.

• Ignoring the user complaints (5 out of 35 updates). These developers did not

reduce the additional cost. We could not identify evidence that they attempted

to satisfy the users in a different way.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 123

Crashes and functional errors have a higher recovery rate and a faster recovery speed

than other complaints. It is relatively difficult to recover from user interface issues

compared to other complaints. In particular, 70% of the apps tried to recover from

bad updates with user interface issues, while we could find evidence for only 43%

of the updates that they succeeded to do so. Our findings show that app developers

should carefully consult users before changing their apps to avoid bad updates.

5.5 Implications

Studying reviews at the update-level rather than at the app-level provides a richer

view of the issues of an app. The app-level analysis does not indicate how users per-

ceive each particular update. In particular, we observed during our analysis for RQ1

that it is important to read several reviews to understand the primary issue of an up-

date. Hence, to understand how users perceive an update, we recommend that re-

searchers analyze the overall sentiment of an update as captured by many reviews in-

stead of focusing on a single review or a group of reviews for unrelated updates.

App developers need to consult with their users before deploying a new update

that makes changes that can make users unhappy (e.g., changing the app’s user in-

terface). We observed that 55% of the raised issues in bad updates are not due to

crashes or functional issues instead they are about other aspects (e.g., reducing fea-

tures, adding cost, or changing in the user interface of an app). For example, we ob-

served that additional cost and user interface issues are the second most raised issue

types in bad updates, which indicates that mitigating such issues may enable devel-

opers to reduce the probability of bad updates. Existing tools could help in generating

source code or testing user interface components. For example, Moran et al. (2018a,b)



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 124

proposed an approach that facilitates the generation of mobile app source code from

UI design mock-ups. However, existing tools cannot automatically identify all non-

functional issues such as user interface issues (23 updates) or feature request/removal

issues (24 updates) that we encountered, because of the subjective nature of these is-

sues. Therefore, developers should not rely solely on automated testing tools.

App developers should explicitly mention fixes in the release notes of the updates

following bad updates to motivate users to download the new update. We observed

that developers often do not mention explicitly in the release notes whether they ad-

dressed the user-raised issues. Instead, developers use either general words (e.g., “bug

fixes”), or they reuse the release notes of the bad update. For example, we observed

only 46 out of 105 (44%) fixing updates for which developers mention explicitly that

the update addresses an issue that was raised in reviews of the previous update. We

measured the differences in the negativity ratio (NegDiff ) as the negativity ratio of a

bad update - the negativity ratio of the fixing update. We measured the NegDiff in (1)

where developers mentioned explicitly that an update addresses the raised issue and

(2) where developers mentioned general release notes (e.g., “bug fixes”). We observed

that the cases where developers mentioned explicitly that they addressed the issues of

the previous bad update have a higher difference in the negativity ratio (the average

NegDiff = 1.9) than the cases where developers do not mention that the issues were ad-

dressed (the average NegDiff = 1.7). Hence, developers should mention in the release

notes the rationale of the new release (especially if the release addresses a critical issue

that was raised in the previous update).

Store owners should provide both the overall rating of an app and the rating of

the latest update so users can evaluate the new update before installing it. The Google



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 125

Play Store offers only the overall app rating. The overall app rating hides useful infor-

mation about the latest update, such as whether the latest update was bad or good.

The Apple App Store provides rating information for each update. Recently, the Apple

App Store enabled app developers to display either the rating of the latest update or

the overall rating of an app (Google, 2018). Future research is necessary to investigate

the impact of this option. For example, studies need to be done on whether developers

tweak this option to make their app ratings look better to users.

Store owners (such as Google) should provide both the overall app rating and the

rating of the latest update, so that users have the ability to decide whether to download

the new update.

5.6 Analyzing Good Updates

In our study, we only focused on bad updates. To complete our analysis, we study

why users perceive an update as good. To analyze good updates, we calculated the

positivity ratio in a similar way as the negativity ratio, we only counted positive ratings

(i.e., ratings of four or five stars (Martin, 2015)) instead of the negative ones. Table 5.12

shows the mean and five-number summary of the positivity ratio of all updates. We

followed the same approach for identifying the top 100 bad updates to identify the

top 100 good updates using the positivity ratio. Table 5.13 shows the number of apps,

number of collected reviews and the number of collected changes in reviews of good

updates.

To understand what makes users perceive an update as good, we followed the same

approach of identifying what do users complain about after a bad update, focusing

only on positive reviews, as follows. First, we randomly selected 100 positive reviews



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 126

Table 5.12: Mean and five-number summary of the positivity ratio of the 19,150 up-
dates.

Metric Mean Min. 1st Qu. Median 3rd Qu. Max.

Positivity ratio 1.0 0.0 1.0 1.0 1.0 4.5

Table 5.13: Description of the top 100 good updates dataset.

Number of studied apps 82
Number of studied updates 100
Number of collected reviews 36,358
Number of collected changes in reviews 2,668

for each of the top 25 good updates. Then, we manually read the 100 positive reviews

of every good update and identified the primary reason for an update being perceived

as a good update. In total, we manually read 1,879 positive reviews of the top 25 good

updates. Table 5.14 shows the list of the identified primary reasons of good updates.

As described in Section 5.2.3, Maalej and Nabil studied several machine learning tech-

niques that could be used to automatically classify reviews into four high-level cate-

gories: bug report, feature request, user opinion or rating (Maalej and Nabil, 2015). In

our analysis of what makes users perceive an update as good, we did not use Maalej

and Nabil’s high-level categories as these categories are too generic for our purpose.

Finally, for each of the identified reasons for good updates, we calculated the number

of updates for this reason.

We observed that developing apps that provide great functionality with an easy and

straightforward user interface is by far the top reason for an update to be perceived as a

good one. Table 5.15 shows the number and the percentage of the reasons for the good

updates. In 68% of the analyzed updates, users liked an update because it provided

great functionality. In 24% of the analyzed updates, developing a straightforward and



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 127

Ta
b

le
5.

14
:T

h
e

id
en

ti
fi

ed
re

as
o

n
s

fo
r

an
u

p
d

at
e

b
ei

n
g

p
er

ce
iv

ed
as

a
go

o
d

u
p

d
at

e.

R
ea

so
n

fo
r

go
o

d
u

p
d

at
e

D
es

cr
ip

ti
o

n
(D

)-
E

xa
m

p
le

(E
)

G
re

at
fu

n
ct

io
n

al
it

y
D

:T
h

e
u

se
r

lik
es

th
at

th
e

ap
p

p
ro

vi
d

es
gr

ea
t

fu
n

ct
io

n
al

it
y

(e
.g

.,
an

im
p

o
rt

an
t

fe
at

u
re

o
r

in
te

re
st

in
g

co
n

te
n

t)
.

E
:“

N
ic

e
h

av
in

g
sc

h
ed

u
le

al
w

ay
s

av
ai

la
bl

e
an

d
ca

n
be

u
p

d
at

ed
.

K
ee

p
s

m
e

or
ga

-
n

iz
ed

”
E

as
y

in
te

rf
ac

e
D

:T
h

e
u

se
r

lik
es

th
at

th
e

ap
p

h
as

a
st

ra
ig

h
tf

o
rw

ar
d

an
d

ea
sy

in
te

rf
ac

e.
E

:“
V

er
y

ea
sy

to
u

se
.”

A
sk

fo
r

im
p

ro
ve

m
en

ts
D

:T
h

e
u

se
r

as
ks

fo
r

a
n

ew
fe

at
u

re
o

r
an

im
p

ro
ve

m
en

tt
o

th
e

ap
p.

E
:“

W
is

h
m

or
e

re
m

in
d

er
s

d
ay

s
be

fo
re

ev
en

t”
B

et
te

r
th

an
co

m
p

et
it

o
rs

D
:T

h
e

u
se

r
is

sa
ti

sfi
ed

th
at

th
e

ap
p

p
ro

vi
d

es
b

et
te

r
fu

n
ct

io
n

al
it

y
th

an
co

m
p

et
i-

to
r

ap
p

s.
E

:“
W

or
ks

gr
ea

t!
Fa

r
be

tt
er

th
an

H
B

O
G

O
!”

T
h

e
u

p
d

at
e

im
p

le
m

en
te

d
a

re
q

u
es

te
d

fe
at

u
re

o
r

ad
d

re
ss

ed
an

is
su

e

D
:

T
h

e
u

se
r

is
sa

ti
sfi

ed
th

at
th

e
re

ce
n

t
u

p
d

at
e

im
p

le
m

en
te

d
a

p
re

vi
o

u
sl

y
re

-
q

u
es

te
d

fe
at

u
re

o
r

ad
d

re
ss

ed
a

p
re

vi
o

u
sl

y
re

p
o

rt
ed

is
su

e.

E
:“

T
h

an
k

yo
u

fo
r

br
in

gi
n

g
th

e
C

h
ro

m
ec

as
t

su
p

p
or

t.
R

ea
ll

y
h

el
p

s
w

h
en

w
e

d
on

’t
h

av
e

ca
bl

e
in

ev
er

y
ro

om
.”

Lo
w

co
st

D
:T

h
e

u
se

r
ap

p
re

ci
at

es
th

at
th

e
ap

p
is

fr
ee

o
r

in
ex

p
en

si
ve

.
E

:“
Fr

ee
w

ea
th

er
ap

p”
N

o
sp

ec
ifi

c
in

fo
rm

at
io

n
D

:
T

h
e

u
se

r
ex

p
re

ss
es

a
p

o
si

ti
ve

ex
p

er
ie

n
ce

o
f

u
si

n
g

an
ap

p
w

it
h

n
o

sp
ec

ifi
c

in
fo

rm
at

io
n

.
E

:“
G

re
at

ap
p

!”



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 128

Table 5.15: Statistics for the reasons for good updates (ranked by the number of up-
dates).

Reason for good update
# of

updates
Percentage of

updates

Great functionality 17 68%
Simple and easy 6 24%
Ask for improvements 3 12%
The update implemented a requested feature
or addressed an issue

3 12%

Low cost 3 12%
Better than competitors 1 4%
No specific information 1 4%

easy to use app was the reason for an update to be perceived as a good one. This find-

ing shows the importance of developing straightforward user interfaces and providing

great functionalities.

In 12% of the analyzed updates, users asked for improvements or complained about

issues in the app. That means users still post positive reviews even if the app has minor

issues or the app requires improvements. Developers can benefit from the positive re-

views to identify the most appreciated features by their users and focus on improving

and/or maintaining these features.

5.7 Threats to Validity

5.7.1 Construct Validity

We assume throughout this chapter that reviews belong to the latest update at the time

of posting the reviews. In our previous work (Hassan et al., 2017), we observed that

in some cases users still complained in the next few days after the release of a fixing



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 129

update, even though that update addressed the issue. To mitigate this problem, we did

not include consecutive bad updates, as we cannot confidently determine to which

update a complaint belongs. We describe this problem in more detail in Section 5.2.

In Section 5.3.2, we compared the raised issues in bad updates to the raised issues

in regular updates of the same apps. Our results may be limited to characteristics of

the studied 94 apps with bad updates. To validate whether our observations are still

valid for other apps, we compared the raised issues of bad updates to the raised issues

of all other updates. We followed the same approach as in Section 5.3.2, except (1) In

Step 2: We included all updates except the top 100 bad updates (19,050 out of 19,150

updates) and (2) In Step 3: We randomly selected a statistically representative sample

of the negative reviews with a confidence level of 95% and a confidence interval of

5% for each update of the 19,050 updates. Then, we grouped the collected random

samples together. We ended up with 1,181,974 negative reviews (out of the collected

3,424,820 negative reviews). Finally, we randomly selected a statistically representative

sample of 384 reviews (out of 1,181,974 reviews) with a confidence level of 95% and a

confidence interval of 5%.

Figure 5.10 shows the distribution of each issue type for all updates and bad up-

dates of our motivational study dataset. As shown in Figure 5.10, our observations still

hold. For example, the frequency of unspecified issues in all updates is almost four

times higher than that in bad updates. We observed that the percentage of update-

related issues in all updates is less than in regular updates (7.3% and 19.6% respec-

tively). This difference can be explained as users of the studied apps with bad updates

are more likely to mention in their reviews that the raised issues are due to the latest

update than the users of other apps.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 130

0

10

20

30

U
pd

at
e 

Is
su

e

F
un

ct
io

na
l C

om
pl

ai
nt

F
ea

tu
re

 R
eq

ue
st

A
dd

iti
on

al
 C

os
t

C
ra

sh
in

g

U
se

r 
In

te
rf

ac
e

P
riv

ac
y 

an
d 

E
th

ic
al

 Is
su

e

U
ns

pe
ci

fie
d

U
ni

nt
er

es
tin

g 
C

on
te

nt

C
om

pa
tib

ili
ty

 Is
su

e

F
ea

tu
re

 R
em

ov
al

R
es

po
ns

e 
T

im
e

N
et

w
or

k 
P

ro
bl

em

R
es

ou
rc

e 
H

ea
vy

P
er

ce
nt

ag
e 

of
 r

ev
ie

w
s

Update type
Bad updates
Other updates

Figure 5.10: Distribution of each issue type for both all updates and bad updates of
our motivational study dataset

5.7.2 Internal Validity

We collected data for the top 2,800 free popular apps in 2016 during almost one year. As

described in Section 5.2, the Google Play Store provides the current app data (e.g., the

current review contents and the currently deployed update). Crawling the Google Play

Store once will not provide us with chronological information about the previously de-

ployed updates and the changes in the user reviews of an app. Thus, we crawled the

Google Play Store for almost one year to have enough data for identifying bad updates

and analyzing why the overall user-base perceives an update as a bad update. Col-

lecting data for a longer period and for more apps may provide more details about the

characteristics of bad updates.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 131

In our study, we analyzed the characteristics of the top 250 bad updates. We fo-

cused on the top bad updates as these updates provide good examples of unsuccessful

updates. Our work performs an in-depth analysis of mobile app reviews while taking

an update-centric view. Further studies can extend our work by including more than

just the top bad 250 updates.

The results of our manual studies are impacted by our knowledge and experience.

We are not the app owners, so our analysis may be inaccurate in some cases (especially

if there was not enough data to understand user complaints). To increase the accuracy

of our manual analysis, we included updates that contained at least 20 reviews. In

addition, we used data from different sources (i.e., user reviews and release notes), so

that, we could have a better understanding of the raised issues.

In our analysis of bad updates, we need to understand the primary issue of an up-

date. We observed that it is important to read several reviews to understand the pri-

mary issue (rather than just a single review) because of different reasons. First, users

may have different priorities, thereby making a single review extremely biased. Second,

users may not report all issues in their review. Hence, to identify the primary issue of

an update, we read a random sample of 100 reviews of every update to understand the

overall impressions of the user-base about every update.

Recently, researchers tried to automatically label user-reviews with the correspond-

ing issue type (e.g., crashing or bug reports) based on the review content. For example,

in prior work (McIlroy et al., 2016b), we proposed an automated technique that la-

bels reviews with the corresponding issue type with a precision 66% and a recall 65%.

Later, Maalej and Nabil compared different techniques and algorithms (e.g., bag of



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 132

words and decision tree) to automatically classify reviews into four high-level cate-

gories: bug report, feature request, user opinion or rating (Maalej and Nabil, 2015).

The proposed techniques by Maalej and Nabil have a higher accuracy than McIlroy et

al.’s approach regarding the precision and recall (a precision ranges from 70% to 95%

and recall ranges from 80% to 90%). In our study, we need a deeper understanding of

the rationale behind the negative reviews. For example, for every bad update, we need

to understand what are the raised issues and how developers could recover from every

issue. Labeling reviews with generic high-level labels, such as bug reports or feature

requests, will not provide us with insights about the nature of the raised issues and

how developers addressed these issues. While manual analysis might consume more

resources than using automated approaches, we decided to manually read and inves-

tigate the issues of bad updates to have more accurate results and to achieve a better

understanding than we would have gotten with using automated approaches.

In our analysis, we observed that apps in the financial and social categories have

the highest percentage of bad updates. This observation does not necessarily mean

that apps in these categories have lower quality than apps in other categories. It might

be about the passion of the user-base towards an app rather than that this app is of a

lower quality. For example, users of apps in the financial category may expect higher

quality updates from large financial corporations.

In our study, we observed that identifying similarity across negative reviews (such

as device model or SDK version) could help developers in the identification of the is-

sues. To analyze similarity across negative reviews, we need to determine the device

model or the SDK version of a user who posted the review. The Google Play Store pro-

vides the device model or SDK version of the user that posted a review to the developer



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 133

of an app. In particular, in our collected dataset, we do not have the installed SDK ver-

sion of a user who posted the review. The crawler could collect the device model for

only 1.6% of the collected negative reviews. Hence, we could not perform further anal-

ysis about the similarity of the device model or the SDK version of a user who posted

the review across negative reviews.

In our study, we applied our analysis of the bad updates for all app categories and

the number of downloads. We analyzed the difference in the negativity ratio and pos-

itivity ratio across app categories and the number of downloads. To examine whether

our analysis of bad updates should be repeated across app categories and the num-

ber of downloads. First, we applied the Scott-Knott test to group the negativity ratio

of app categories into groups based on the negativity ratio (Jelihovschi et al., 2014).

The Scott-Knott test is an analysis of variance test (ANOVA) that is used to validate if

app categories or download ranges have statistical differences in negativity ratio. The

Scott-Knott test places two distributions in different groups only if they are signifi-

cantly different. The Scott-Knott test result indicated that all app categories fit into

one group for the negativity ratio values. Hence, in our study, we did not need to rerun

our analysis of bad updates for each app category. Second, we applied the Scott-Knott

test to study the difference of the negativity ratio across the number of downloads. The

Scott-Knott test results indicate that all download ranges fit into one category for the

negativity ratio. Therefore, we also did not need to repeat our analysis across the dif-

ferent number of download ranges.



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 134

5.7.3 External Validity

The Google Play Store shows only the most recent 500 reviews per app which means

that previously-posted reviews or changes in the existing reviews will not be accessi-

ble. In our study, we needed to collect as many reviews for each update as possible to

understand the primary issue of a bad update. As shown in Section 5.4.2, we needed to

track the changes in user reviews to identify when the raised issues in bad updates are

addressed. Martin et al. (2015) discussed the sampling error in analyzing store data. To

minimize the sampling error, we adjusted our crawler to visit the store many times per

day. During our crawling period from April 20t h 2016 to April 13t h 2017), the crawler

connected to the store 759,413 times. During our study, we found 1,284 out of 759,413

crawling cases (0.16%) in which the crawler found 500 new reviews. This means that in

99.84% of the crawling times, the crawler could collect all crawlable store data for the

studied apps (i.e., we did not miss any data). Hence, we are confident about the anal-

ysis of user’s complaints about a bad update and how developers recover from such

bad updates as we miss a very minor amount of data (such as reviews or changes in

the user reviews) for the studied apps that could impact our analysis.

5.8 Chapter Summary

Below are the key findings of our study:

1. An update-level analysis of reviews is necessary to capture the overall impres-

sions of the user-base about a particular update. An app-level analysis is not

sufficient to capture these transient impressions.

2. Bad updates are not only perceived as bad because of functional issues. Instead,



CHAPTER 5. STUDYING HOW THE REVIEWING MECHANISM CAN HELP SPOT
GOOD AND BAD UPDATES 135

crash, additional cost and user interface issues often occur in bad updates whereas

at the app-level these issues do not occur as often. We also observed that feature

removal and user interface issues have the highest median negativity ratio.

3. We observed evidence that bad updates where response time, crashes, network

problems, and functional issues are raised have the highest probability of their

issues being addressed (100%, 68%, 60%, and 59% respectively). However, de-

velopers do not often mention in the release notes that the updates after the bad

updates address the previously-reported issues. Therefore, we recommend that

app developers mention in their release notes the rationale for the new update

to motivate users to download the fix.

4. Uninteresting content and additional cost issues have the lowest recovery rate.

Additional cost and user interface issues require the largest number of updates

to recover. In addition, feature removal and user interface issues have the highest

median negativity ratio. As such issues are difficult to detect automatically, app

developers should consult users before releasing a new update to avoid such bad

updates.

Our findings highlight the need for studying reviews at the update-level instead of

at the app-level as is commonly done in literature nowadays. In the next chapter, we

study the dialogue between users and developers to help design next-generation app

reviewing mechanisms.



CHAPTER 6

Studying the Dialogue Between Users and Developers

T
HE popularity of mobile apps continues to grow over the past few years. Mo-

bile app stores, such as the Google Play Store and Apple’s App Store provide

a unique user feedback mechanism to app developers through the possibil-

ity of posting app reviews. In the Google Play Store (and soon in the Apple App Store),

developers are able to respond to such user feedback.

Over the past years, mobile app reviews have been studied excessively by researchers.

However, much of prior work (including our own prior work) incorrectly assumes that

reviews are static in nature and that users never update their reviews. In a recent study,

McIlroy et al. (2017) started analyzing the dynamic nature of the review-response mech-

anism. McIlroy et al.’s study showed that responding to a review often has a positive

effect on the rating that is given by the user to an app.

136



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 137

In this chapter, we revisit McIlroy et al.’s finding in more depth by studying 4.5 mil-

lion reviews with 126,686 responses for 2,328 top free-to-download apps in the Google

Play Store. One of the major findings of our chapter is that the assumption that re-

views are static is incorrect. In particular, we find that developers and users in some

cases use this response mechanism as a rudimentary user support tool, where dia-

logues emerge between users and developers through updated reviews and responses.

Even though the messages are often simple, we find instances of as many as ten user-

developer back-and-forth messages that occur via the response mechanism.

Using a mixed-effect model, we identify that the likelihood of a developer respond-

ing to a review increases as the review rating gets lower or as the review content gets

longer. In addition, we identify four patterns of developers: 1) developers who primar-

ily respond to only negative reviews, 2) developers who primarily respond to negative

reviews or to reviews based on their contents, 3) developers who primarily respond to

reviews which are posted shortly after the latest release of their app, and 4) developers

who primarily respond to reviews which are posted long after the latest release of their

app.

We perform a qualitative analysis of developer responses to understand what drives

developers to respond to a review. We manually analyzed a statistically representative

random sample of 347 reviews with responses for the top ten apps with the highest

number of developer responses. We identify seven drivers that make a developer re-

spond to a review, of which the most important ones are to thank the users for using

the app and to ask the user for more details about the reported issue.

Our findings show that it can be worthwhile for app owners to respond to reviews,

as responding may lead to an increase in the given rating. In addition, our findings



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 138

show that studying the dialogue between user and developer can provide valuable in-

sights that can lead to improvements in the app store and user support process.

6.1 Introduction

Mobile apps continue to rapidly gain popularity over the last few years. Mobile apps

can be downloaded from app stores, such as the Google Play Store, which has more

than 3.1 million apps available as of July 2017 (AppBrain, 2018). These app stores allow

users to express their opinion about an app through posting reviews, including a rating,

that other potential users of the app see in the store.

A 2015 survey shows that 69% of the users consider the app rating as an important

or very important deciding factor when downloading an app. In addition, 77% of the

users will not download an app that has a rating that is lower than 3 stars (Martin, 2015).

Hence, the success of an app is closely tied to the reviews and ratings that it receives.

The reviewing and rating processes have always been one-way mechanisms, as de-

velopers1 were not allowed to respond to the reviews or ratings. As a result, issues

that are raised in reviews can discourage other users from downloading the app, even

though the raised issue may be inaccurate or might be easily solved.

Recently, app stores have given developers the opportunity to engage in a dialogue

with the users of their apps by responding to user reviews. The Google Play Store pro-

vides guidelines for responding to a posted review (Google, 2018b). In addition, Apple’s

App Store is expected to add support for responding to a posted review soon (Perez,

2017). Such dialogue allows developers to provide possible solutions for the issues that

1Throughout this chapter, we use ‘developer’ to indicate the person(s) or company who are respon-
sible for making an app.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 139

are raised in the review, or to ask users to clarify their unsatisfaction with their app. In

addition, developers can also encourage users to change their review or rating, which

in turn can result in more downloads as reviews become more positive.

Prior work on mobile app reviews focuses on extracting useful information for de-

velopers from those reviews, such as bug reports or feature requests. However, prior

work (including our own) falsely assumes the following: (1) app reviews and ratings

are considered to be immutable, even though a user may change them over time, and

(2) reviewing and rating apps is considered a one-way mechanism, even though the dy-

namic nature of app reviews and the response mechanism can lead to a rich dialogue

between developers and users.

In this chapter, we empirically study the dynamic nature of app reviews. In par-

ticular, we study the dialogue that takes place between users and developers in 2,328

free-to-download apps in the Google Play Store. We study 126,686 dialogues that con-

tain messages between the user and the developer. First, we conduct a preliminary

study of the benefit of responding to a user review. We show that responding to a re-

view increases the chances of users updating their given rating for an app by up to six

times compared to not responding. Second, we conduct the following studies:

Study I: A study of the characteristics of user-developer dialogues

Motivation: To understand how users and developers interact via the review sys-

tem in the Google Play Store, we study the characteristics of these dialogues that

emerge through back-and-forth (updated) app reviews and developer responses.

Results: A user-developer dialogue was triggered by 2.8% of the user reviews. If

users change the review rating after a developer response, users tend to increase



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 140

the review rating (in 4.4% of the reviews that received a response). In compari-

son, only 0.7% of the reviews that do not receive a response change their rating.

Hence, app owners should assign more effort to responding to user reviews as a

response is likely to lead to an increased rating.

Study II: A quantitative study of the likelihood of a developer responding

Motivation: In our preliminary study and Study I, we observed that responding

to reviews can be beneficial for developers. Therefore, in our second study, we

investigate which metrics are related to the likelihood of a developer responding

to a review. The goal of Study II is to provide recommendations for store owners

and developers to easier identify reviews that may require a response. For exam-

ple, store owners could automatically highlight reviews that a developer is likely

to respond to.

Results: When developers respond, they tend to respond to reviews that are longer

and have a low rating. In addition, we find four patterns of developers: (1) de-

velopers who primarily respond to only negative reviews, (2) developers who

primarily respond to negative reviews or to reviews based on their contents, (3)

developers who primarily respond to reviews which are posted shortly after the

latest release of their app, and (4) developers who primarily respond to reviews

which are posted long after the latest release of their app.

Study III: A qualitative study of what drives a developer to respond

Motivation: In Study II we found how we can identify reviews that may require

a response. However, the results obtained from Study II do not explain the ac-

tual contents of a response. Understanding the contents of developer responses



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 141

can lead to improvements in the review-response mechanism, or to improve-

ments in the way that developers use reviews and responses. For example, if

developers turn out to ask users for more details in many of their responses,

such requests can be better accommodated by next-generation automated re-

view mechanisms. Therefore, we conduct a manual study of the contents of re-

sponses to understand better what drives developers to respond to reviews.

Results: We manually examined a statistically representative random sample of

347 reviews for the top ten apps with the highest number of developer responses.

We identify seven different drivers for responding, of which the most important

ones are to thank the user for using the app and to ask for more details about the

reported issue. In addition, we uncover interesting opportunities for developers,

such as the opportunity to automatically generate frequently asked questions

(FAQs) that can be published to improve the user support process.

The main contributions of this chapter are as follows:

1. Our chapter is the first work to demonstrate the dynamic nature of reviews. Much

of prior work (including our own prior work) incorrectly assumes that reviews are

static in nature and users never update their reviews. Our chapter shows that this

is an incorrect assumption – an assumption that impacts studies in this nascent

research area. For example, prior work on studying user complaints in mobile

app reviews is impacted, as the static view that such work currently has of re-

views cannot reflect changing user complaints.

2. Furthermore, we are the first to demonstrate a peculiar use of the app-review

mechanisms as a user support medium – we do acknowledge that not as many



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 142

developers are using the review system in this way. Nevertheless, this is a use

which further work needs to explore, especially given that the Apple App Store

is expected to add support for responding to a posted review soon (Perez, 2017).

Given the nascent nature of app reviews, it might be worthwhile that such type

of use is encouraged and better supported in next-generation app-review mech-

anisms.

By encouraging such use, future mining studies of reviews will have access to a

richer and more complete view of user concerns. Currently, in many instances

developers encourage users to continue discussions via other mediums (e.g.,

email). Hence, the reviews do not provide an in-depth view of the user concerns

(as previously thought – for instance, this observation impacts recent publica-

tions which mine reviews to gather requirements).

3. Furthermore, our work is the first work to deeply explore developer responses in

a systematic manner. Our analysis is much deeper and uses considerably more

data. The more in-depth analysis led us to reformulate some of our prior obser-

vations/recommendations. For instance, in comparison to our prior work (McIl-

roy et al., 2017), we still see that responding to user reviews may increase the rat-

ing but we find that the chances of a user updating a review based on a developer

response to be quite low (even though they are up to six times higher than with-

out a response). A deeper investigation shows that all too often, the developer

responses are rather simplistic and are just asking users to raise their ratings.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 143

4. Finally, our classification of developer-responses highlights the value of provid-

ing canned or even automated responses in next-generation app-review mech-

anisms. For instance, 45% of the developer-responses ask for more details. Fur-

thermore, the ability to auto-construct FAQs based on the commonly repeated

questions and answers in the user-developer dialogue is a valuable one for next-

generation app-review mechanisms.

The rest of this chapter is organized as follows. Section 6.2 describes our methodol-

ogy for collecting the user-developer dialogues from the Google Play Store. Section 6.3

describes a preliminary study for the user-developer interactions. Section 6.4 discusses

the characteristics of user-developer dialogues in the Google Play Store. Section 6.5

and 6.6 present our quantitative and qualitative studies of what drives developers to

respond. Section 6.7 discusses the implications of our studies. Section 6.8 discusses

the limitations and threats to the validity of our findings. Section 6.9 discusses the re-

lated work and describes the difference between our prior work and the current work

that is presented in this chapter. Finally, Section 6.10 presents our conclusion.

6.2 Data Collection

In this section, we describe our approach for collecting the user-developer dialogues

from the Google Play Store. Figure 6.1 gives an overview of our approach.

6.2.1 Selecting Apps

We select the apps to study based on the following criteria:



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 144

Figure 6.1: An overview of our approach for collecting user-developer dialogues

1. App popularity: We focus on popular apps since popular apps contain more re-

views than unpopular apps (Harman et al., 2012), which should facilitate enough

data for studying user-developer dialogues.

2. App maturity: We focus on mature apps to ensure that the apps have had enough

time to gather reviews and responses.

We select the top popular 12,000 free-to-download apps in 2013 according to Ap-

pAnnie (2018) as these apps were top apps one year prior to our study. This decision



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 145

was made to ensure that the studied apps had enough reviews and that their develop-

ment teams were concerned about their apps (i.e., not abandoned apps). In our study,

we focus on free-to-download apps to avoid the influence of the pricing of the app.

The price of a paid app is very likely to be a confounding factor, as the app price may

affect the expectation of a user.

After verification, we find that 8,218 apps out of these 12,000 free-to-download apps

are still available in the Google Play Store. As an additional measure for selecting ma-

ture apps only, we select only apps with at least 100 reviews. After removing all apps

that have less than 100 reviews, we end up with 2,328 apps that match our selection

criteria.

6.2.2 Collecting Data

We collected a new dataset for this study (i.e., we did not use the same datasets for the

studies in Chapter 4 and Chapter 5) as we need to collect developer responses and to

track the changes made to developer responses. We use a Google Play crawler (Akd-

eniz, 2013) to collect data from the Google Play Store. For each studied app, we collect

the following data:

1. General data: app title, app description, number of downloads, app rating and

app developer.

2. Updates: date of each update.

3. User-developer dialogues: review title, review text, review time, reviewer name,

rating, user device model, the time it took a developer to respond and the text in

the developer response.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 146

Table 6.1: Dataset description

Number of studied apps 2,328
Number of collected reviews (A) 4,474,023
Number of collected changes in reviews 355,600
Number of collected responses (B ) 126,686
Percentage of reviews with responses (100 ∗ B

A ) 2.8%

The crawler uses the Samsung S3 device model to connect to the Google Play Store,

as the Samsung S3 is a popular mobile device (AppBrain, 2018). When the crawler con-

nects to the store, the crawler collects the latest 500 reviews for each configured app.

During our study, we noticed that apps differ in the amount of new data that can

be collected for an app per day. For example, the Facebook app receives thousands of

new reviews per day while other apps receive only a small number of new reviews per

day. To avoid flooding the Google Play Store with requests, we adapted the crawler to

automatically adjust the number of times that it checks for new data to match the rate

with which new review content is being posted for each studied app.

Every time the crawler connects to the Google Play Store, it checks whether there

is new or updated data available for each studied app. The crawler collects the new

or the updated data and appends that data to a database in which data for all apps is

stored. As a result, we get a chronological overview of newly-posted reviews, ratings

and responses and changes to those reviews, ratings and responses.

We run our crawler from September 22nd 2015 to December 3r d 2015. During that

period, we collected almost 4.5 million reviews for 2,328 apps and over 355,000 changes

that are made to those reviews. More than 126 thousand collected reviews have re-

ceived a response from the app developer. Table 6.1 describes our dataset.

Table 6.2 shows the mean and five-number summary of the number of reviews, the



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 147

Table 6.2: Mean and five-number summary of collected data for every studied app

Mean Min. 1st Qu. Median 3rd Qu. Max.

Number of reviews per app (Aa p p ) 1,922 100 177 357 1,026 184,693
Number of reviews with responses per app (Ba p p ) 53 0 0 0 8 6,055

Percentage of reviews with responses per app (100 ∗ Ba p p

Aa p p
) 4.9% 0.0% 0.0% 0.0% 1.4% 98.6%

number of reviews with responses and the percentage of responses for each studied

app.

6.3 Preliminary Study

Ideally, responding to a review results in either a rating increase or an updated review

that contains more information about the issue that was raised by the user. In this

section, we describe the results of our preliminary study to demonstrate the chances

of a user updating the review or rating after a developer responded to the review.

A user-developer dialogue was triggered by 2.8% of the user reviews. As shown in

Table 6.1, developers responded to 2.8% of the user reviews during the studied period.

Figure 6.2 shows the distribution of the percentage of reviews that have triggered a

dialogue between the user and developer, i.e., reviews that have received a developer

response, for each studied app. For clarity we display only the data for the 794 apps for

which the developer responded at least once to a user review. As shown by Figure 6.2,

there is a broad variation in the percentage of reviews that receive a response for each

studied app. The broad variation suggests that developers of different apps assign a

different value to the opportunity of engaging in a dialogue with the user through the

Google Play Store.

The chances of a user updating their rating after receiving a response are six



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 148

0

100

200

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Percentage of reviews that have a developer response per app

N
um

be
r 

of
 a

pp
s

Figure 6.2: The percentage of reviews to which a developer responded for each studied
app. The figure displays only the 794 apps that have at least one review to which a
developer responded.

times as high compared to users who did not receive a response. Table 6.3 shows the

percentage of reviews and ratings that change with and without receiving a response.

Of the reviews that did not receive a response, only 0.7% increased their rating, while

4.4% of the reviews that received a response increased their rating. The percentage of

decreased ratings does not change (0.7%), indicating that a response is more likely to

have a positive effect on the rating. In addition, we studied the number of times a given

rating both increased and decreased over time (0.0% of reviews without a response and

0.1% of reviews with a response). These rare cases are caused by a user changing the

rating several times, usually over a longer period of using the app. For example, Ta-

ble 6.4 shows an example dialogue in which the user increased and decreased the rat-

ing. As illustrated in Chapter 2, for the represented example in Table 6.4, a developer



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 149

Table 6.3: The percentage of reviews and ratings that change with and without receiv-
ing a response.

Reviews without a response: Total number
% of total reviews
without a response

Collected reviews 4,350,541 100%
Changed review contents 100,142 2.3%
Increased ratings 28,903 0.7%
Decreased ratings 31,344 0.7%
Both increased and decreased ratings 4,469 0.0%

Reviews with a response: Total number
% of total reviews
with a response

Collected reviews 123,556 100%
Changed review contents 9,246 7.5%
Increased ratings 5,457 4.4%
Decreased ratings 925 0.7%
Both increased and decreased ratings 81 0.1%

should receive four email notifications (i.e., an email each time the user changes in the

review). In some cases, users may update their reviews several times after receiving

developer responses. For example, a user may follow up to a developer response by

writing few details about an issue and then the user modifies the posted review to add

more details. As illustrated in Chapter 2, the Google Play Store will not notify the devel-

oper with the new modification. Thus, the developer may lose potential information

that may help in solving the reported issue.

Responding to reviews positively impacts app ratings. The chances of seeing an in-

crease in the given rating are six times as high after responding to a review.

Now that the potential of responding to reviews is clear, we study the phenomenon

of the user-developer dialogue in the Google Play store in more depth in the remainder

of the chapter.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 150

Table 6.4: An excerpt from a single user-developer dialogue for the Piano+ app. The
dialogue emerged as the user and developer updated their review and response. We
omitted the rest of the dialogue as the review and response updates became repetitive.

Dialogue State Rating

User: “I can’t play a song from the song book :(” S1

Developer: “Hi Brandon, we feel so sorry for any inconvenience you
experienced. Please leave us a message at support@rubycell.com to
let us know more clearly about your problem. If possible, show us a
screenshot of the issue so that we can offer you some help. We truly
look forward to your response. Many thanks. ”

S2 -

User: “I can’t play a song from the song book :( On Samsung galaxy
S4”

S1

Developer: “Hi Brandon, we feel so sorry for any inconvenience you
experienced. Please contact us at support@rubycell.com and have a
detailed discussion. We faithfully promise to help you address this
problem. Hope for your response soon! ”

S2 -

User: “I can’t play a song from the song book :( On Samsung galaxy
S4... Sorry about this but I love this app and not being able to play it
sucks.”

S1

Developer: “Hi again, as we said before, we really want to receive
your message at support@rubycell.com and have a detailed discus-
sion about this problem with you. Please give us a hand to get it fixed.
Many thanks!”

S2 -

User: “Sorry the problem was my phone I fixed it The best piano app
on here by a long shot Download this app if you haven’t already you’ll
enjoy it!!”

S1

Developer: “Hi Brendon, we are very glad to know that your problem
was handled and hope you will find more good time with Piano+.
Best wishes. ”

S2 -

User: “I think this version was Ok, but there are many things I don’t
like, like the absence of the play all button ( instead the play button is
play all) sometimes I just want to listen/play to the 1st part of the song
but with this update you need to listen to both, (also the play/play all
button is glitchy, letting the game play the song for you is glitchy with
that), also some parts of songs (for ex. MIDIs) won’t display the not for
that part but instead the other part will play it, AlsoNotAsPolished”

S1

Developer: “Hi there, in new version, though "Play all" is not avail-
able we sure that the current "Play" button has same function. It is
the matter of change in name. If you still have a problem with this
button, do not hesitate to send us your email. We promise to provide
you with the most suitable answer. Many thanks. ”

S2 -



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 151

6.4 Study I: A Study of the Characteristics of User-Developer

Dialogues

6.4.1 Motivation

Most prior studies of the app review mechanism in mobile app stores focus on extract-

ing developer-relevant information from reviews. However, reviews form only part of

the app review mechanism. As explained in the previous sections, the possibility of

responding to such reviews leads to new opportunities for developers to increase the

rating of their app and elicit more information about issues that are raised by their

users. Prior work (McIlroy et al., 2017) has only touched the surface of the emerging

phenomenon of developers responding to reviews. In this section, we examine the

characteristics of this phenomenon in more detail.

6.4.2 Approach

We studied the length and speed of the dialogue between a user and developer, and

the effect of a developer responding to a review.

To calculate the length of the dialogue, we counted the number of iterations in the

user-developer dialogue during the studied period for each review. We counted a tran-

sition from state S1 to S2 in the state diagram in Figure 2.1 as a single iteration. Hence,

the dialogue in Table 2.1 consists of 3 iterations.

To calculate the speed of the dialogue, we measured the developer response time

as the time difference (in hours) between the time when a user posts a review and the

time when a developer responds to the user review.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 152

To quantify the effect of a developer responding to a review, we studied the differ-

ence in the review rating before and after receiving a developer response. We used the

Wilcoxon signed-rank test (Gehan, 1965; Wilcoxon, 2018), a paired statistical test that

validates if two samples have the same distribution. A p-value of less than 0.05 means

that the difference between the distributions of the two samples is statistically signifi-

cant and that there is a change in the review rating after a developer response.

In addition, we calculated Long et al. (2003)’s delta (d ) effect size to quantify the

difference in the distributions of the metrics. We used the following thresholds for in-

terpreting d , as provided by Romano et al. (Romano et al., 2006):

Effect size=



ne g l i g i b l e (N ), if |d | ≤ 0.147.

s ma l l (S ), if 0.147< |d | ≤ 0.33.

me d i um (M ), if 0.33< |d | ≤ 0.474.

l a r g e (L ), if 0.474< |d | ≤ 1.

We conducted several manual analyses to better understand our findings. For ex-

ample, we manually studied why users decrease their rating after a developer responds

to their review. In all manual analyses, we went through the following process:

Step 1: We used an iterative process that is similar to the coding method (Seaman,

1999) to study the following cases:

• To understand why user-developer dialogues last for just one iteration, we read

the user-developer dialogues which lasted for only one iteration and we identi-

fied why such dialogues did not continue.

• To understand why the percentage of reviews with responses is high for some



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 153

apps, we read the user-developer dialogues for the five apps whose developers

responded to at least 95% of the reviews and we identified why such developers

responded to almost all the reviews for their apps.

• To understand why users decrease the rating after a developer response, we read

the user-developer dialogues in which the rating is decreased and we identified

the most likely explanation for the decrease.

• To understand why users increase the rating after a developer response, we read

the user-developer dialogues in which the rating is increased and we identified

the most likely explanation for the increase.

To eliminate human bias, two researchers (including myself and a collaborator as two

coders) conducted the manual analysis. Both coders independently read the user-

developer dialogues and identified the explanations for the studied cases. When there

was no exact explanation specified in the dialogue, the explanation was identified based

on the experience and intuition of the coders.

Step 2: Both coders compared their results. To resolve conflicts, the coders discussed

the differences to come to a consensus on the most likely explanation.

6.4.3 Results

The vast majority of user-developer dialogues last for just one iteration. Table 6.5

shows the distribution of the number of iterations within a user-developer dialogue.

During our studied period, we found that user-developer dialogues can be as elabo-

rate as up to ten iterations. However, 97.5% of the dialogues end after one iteration.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 154

Table 6.5: The length and speed of the user-developer dialogues.

Number of
reviews

Number of
review-

response
iterations

Median
response

time
(hours)

Median
review

update time
(days)

Number of
apps

4,350,541 0 NA NA 2,328
123,556 1 14.7 4.1 794

2,774 2 15.9 5.4 308
255 3 12.9 4.8 78

61 4 10 4.1 35
18 5 14 2.0 15
11 6 6.1 4.6 9

5 7 3.1 3.6 5
4 8 0.4 2.0 4
1 9 0.5 24.2 1
1 10 0.2 NA 1

After manual inspection of a statistically representative random sample (with a con-

fidence level of 95% and a confidence interval of 10%) of 96 user-developer dialogues

that ended after one iteration, we find the following explanations for the large number

of short dialogues:

1. Users do not always require a response from the developer (67% of the sample).

For example, the developer responds simply to thank the user for downloading

the app or posting a review.

2. Users are requested by the developer to continue the dialogue through another

channel, such as email (29% of the sample).

3. Users do not provide the additional information that is requested by the devel-

oper response (10% of the sample).



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 155

Table 6.4 shows an excerpt of a longer dialogue between a user and app developer

that we found in our study. In this dialogue, the review-response mechanism is used

in two ways. First, the user is asked to provide more details through another channel

(email). Second, the user is explained that the ‘play all’ functionality is now provided

by the ‘play’ button. In addition, the dialogue demonstrates how a developer response

can impact the user rating (i.e., a rating increase and decrease occur – the given ratings

vary from three to five stars!).

Developers tend to respond faster as the number of iterations in the user-developer

dialogue increases. As shown in Table 6.5, the median value for the developer response

time decreases as the number of iterations in the user-developer dialogue increases.

We manually analyzed the user-developer dialogues that have more than five itera-

tions. We observed that users and developers leverage longer dialogues as a user sup-

port mechanism. During the user-developer dialogue, users either continue the dis-

cussion (e.g., follow up on the reported issue) or start a new discussion (e.g., raise a new

complaint). As explained in Chapter 2, the Google Play Store notifies app developers

when users follow up to a response. Table 6.5 suggests that developers give priority to

responding to such notifications.

An interesting observation in Table 6.5 is that the median review update time is

much longer (i.e., several days) than the median response time (i.e., several hours).

Upon inspection, the longer median review update time appears to be caused by users

posting new issues that they encountered after using the app for some time in the

updated reviews. Next generation reviewing systems should somehow consider the

changes in users’ long term impressions while calculating the app rating. Moreover,

store owners should notify app developers about such changes so developers can track



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 156

the changes in users’ impressions about their app.

When more than 95% of the reviews of an app have a response, the responses are

mostly repetitive. As shown in Table 6.2, the maximum percentage of reviews with re-

sponses for an app is 98.6%. This high percentage indicates that the developer of such

apps responded to almost all reviews. To understand better why these the percentage

of reviews with responses is high for some apps, we studied the five apps whose de-

velopers responded to at least 95% of the reviews. Together, these five apps responded

4,301 times to 4,431 reviews.

Two researchers (including myself and a collaborator) manually analyzed a statis-

tically representative random sample of 353 out of the 4,301 responses with a confi-

dence level of 95% and a confidence interval of 5%. We found that in 275 out of 353

(78%) cases in the sample, the response is generic in nature and based on a template.

55% of the responses in the sample ask the user to contact the company email in case

they have issues with the app. For example, the “PrankDial - #1 Prank Call” app uses

the following template response: “Please send us a mail to support@prankdial.com if

you are having any issues with the app. Thank you.” In 61% of the sample, the devel-

oper simply expresses appreciation for using the app using a template response. For

example, the “Podcast Player - Free” app uses the template response: “Thanks for the 5

stars, *user*!”, in which *user* is replaced with the name of the user posting the review.

The value of the type of responses above for a user is questionable. On the one

hand, a response shows that the developer is appreciative of the user. On the other

hand, such unremarkable responses lead to more clutter in the Google Play Store. Google

has set a quota of 500 responses per day per app in the Google Play Developer API (Google,

2018c), which suggests that Google is trying to prevent developers from posting a large



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 157

Table 6.6: Rating change after a developer response. The diagonal values (i.e., bold
values) mean that there is no change in the user rating value. The values above the
diagonal mean that the rating value is increased and values below the diagonal mean
that the rating value is decreased.

After response
Before

response

48.8% 4.6% 7.7% 11.5% 27.5%
15.3% 31.9% 10.4% 14.4% 28.0%

7.1% 7.8% 33.1% 17.7% 34.3%
3.4% 2.1% 7.2% 43.2% 44.1%
4.5% 3.3% 4.5% 3.9% 83.7%

number of automated responses to their reviews.

To study the value of template-based responses, we compared the percentage of

rating increases and decreases after template-based and non-template-based responses.

The percentage of rating decreases was similar (approximately 8.0%) across template-

based and non-template-based responses. Surprisingly, the percentage of ratings that

are increased after a non-template-based response is lower (42.6%) than after a template-

based response (48.2%). However, after manual inspection, we observed that the template-

based responses that resulted in an increased rating were responses that contained

useful information for the user. For example, the response contained an email ad-

dress that could be used to contact the developers, or the developers responded us-

ing a template-based solution for an issue that was raised in the review. Hence, these

observations suggest that providing useful information in the response improves the

chances of a rating increase, even if that information is template-based.

A developer response can have a positive impact on the given rating. We tracked

the changes in the review rating during the user-developer dialogue. We observed that



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 158

in 11,813 out of the 126,686 iterations (9.3%)2, users follow-up on the developer re-

sponse. The Wilcoxon signed-rank test indicates that there is a significant change in

the review rating before and after a developer response, with a small effect size.

Table 6.6 shows the percentage of the change in the user review rating after a de-

veloper responds to a review. The bold values indicate that the rating does not change.

As illustrated by Table 6.6, users tend to increase the review rating (in particular, to 5-

stars) if they change the review rating after a developer response. We calculated that

in 5,504 reviews, the rating increases after a developer response. We found 942 reviews

in which the user decreases the rating after a developer response. Two researchers

(including myself and a collaborator) manually examined a statistically representative

random sample of 87 of such reviews (a confidence level of 95% and a confidence in-

terval of 10%). We identified the following reasons for decreasing a rating:

1. The user raises a new issue after a developer response, and the decreased rating

is based on the severity of the new issue (31% of the sample).

2. The user has an issue and the developer responds that the issue cannot be fixed

or the issue will be solved in one of the next releases (13% of the sample).

3. The user has an issue and the developer recommends a solution for the raised

issue. The user complains that the provided solution does not work (15% of the

sample).

4. The user has an issue and the developer responds to that issue by asking for more

details. The user decreases the rating as follows:

2Note that this number is different from the numbers in Table 6.3, since in Table 6.3 we count the
number of reviews/ratings that changed at least once during the dialogue.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 159

(a) The user decreases the rating without providing the requested details to the

developer (15% of the sample). We believe that the user was expecting the

issue to be solved directly without asking for more details.

(b) The user provides the requested details and expresses their disappointment

that the issue is not solved yet (23% of the sample).

We found two dialogues in which a user decreased the rating without explanation

after having a positive experience with the app. A possible explanation is that those

users misinterpreted the scale of the rating system (i.e., they mistakenly assumed that

a 1-star rating is better than a 5-star rating).

App developers can solve 34% of the reported issues without deploying an app

update. We found that in 5,504 reviews, the rating increased after a developer re-

sponse. To understand why users increased the rating after a developer response, we

manually investigated a statistically representative random sample of 94 of such re-

views (a confidence level of 95% and a confidence interval of 10%). Table 6.7 shows

the identified reasons for a rating increase. As illustrated in Table 6.7, developers could

guide users to solve 34% of the reported issues without having to deploy an app update.

This percentage shows that in one-third of the studied dialogues, it was relatively easy

for the developer to achieve a rating increase.

The majority of user-developer dialogues last for one iteration. However, if the user

decides to change the given rating during the dialogue, the rating is increased in

most cases. In one-third of the studied dialogues, a rating increase was achieved by

simply explaining to the user how to resolve the reported issue.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 160

Table 6.7: The identified reasons for rating increase (ranked by the percentage of re-
sponses).

Percentage
of responses

Reason for rating increase

34% The developer guides the user to solve the reported issue without
having to deploy an app update.

24% The developer deploys an app update to address the reported issue.
13% The details of the solution are communicated outside the store.

7% The developer asks a satisfied user for a rating increase.
6% The user appreciates that the developer cared by responding, even

though the issue cannot be fixed.
5% The developer indicates that the reported issue is temporary and

the rating is increased when the issue is addressed.
5% The user raises a new issue.
4% No reason could be identified.

6.5 Study II: A Quantitative Study of the Likelihood of a

Developer Responding

6.5.1 Motivation

In the previous section, we illustrated that responding to user reviews can have a posi-

tive effect on the user rating. Reading and responding to user reviews is a time-consuming

process, especially if an app has a large number of user reviews. Providing a better

understanding of the metrics that drive a developer to respond, can be used by app

developers and store owners to facilitate a better and more efficient user-developer di-

alogue. For example, the identified metrics can be used by store owners to highlight

reviews that are more likely to require a response, thereby helping developers to prior-

itize the reviews to read and respond to.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 161

Figure 6.3: An overview of our data selection and metrics collection step.

6.5.2 Approach

In this section, we describe our approach for analyzing the relationship between the

studied metrics and the likelihood of a developer responding. Figures 6.3 and 6.4 de-

pict the steps of our approach. As shown in Figures 6.3 and 6.4, our approach contains

three steps. First, we collected metrics that may have a relationship with the likelihood

of a developer responding. Second, we constructed statistical models (i.e., mixed effect

models) to capture the relationship between the studied metrics and the likelihood of

a developer responding. Finally, we analyzed the constructed models to understand

which metrics are related to the likelihood of a developer responding. In the next sec-

tions, we detail every step.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 162

Figure 6.4: An overview of our approach for studying the relationship between the
studied metrics and the likelihood of a developer responding to a user review.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 163

Data Selection and Metrics Collection

In order to create a model to understand which metrics are related to a developer re-

sponding to a user review, we need to study apps that have sufficient user reviews and

developer responses. Hence, we removed apps in which less than 5%3 of the reviews

have a response. After removing such apps, there remained 415 apps with 556,314 re-

views and 103,612 responses in total. Consequently, the results that are presented in

this section are valid for developers who respond to at least 5% of the posted reviews.

Table 6.8 presents the two levels of metrics that we collected in our study. app-level

metrics are at the app level (e.g., the app category) while review-level metrics are at the

review level (e.g., the review rating).

In the app-level metrics, we collected the app ID, app rating and app category. In

the review-level metrics, we collected the review title length, review text length, days

since last release, review rating and positive/negative sentiment.

We used the SentiStrength (2017) tool to measure the review sentiment metrics.

SentiStrength is designed for analyzing sentiments in a short text such as online re-

views (Thelwall et al., 2010). Several studies have shown that the SentiStrength tool is

applicable to the software engineering domain (e.g., (Tourani et al., 2014) and (Guz-

man et al., 2014)). In particular, the SentiStrength tool was previously used to analyze

user reviews of mobile apps (e.g., (Guzman and Maalej, 2014), (Maalej and Nabil, 2015)

and (McIlroy et al., 2016b)).

SentiStrength provides for each analyzed sentence two values: (1) a positive sen-

timent value that ranges from 1 to 5 and (2) a negative sentiment value that ranges

from -1 to -5. Tourani et al. (2014) studied the sentiment analysis in developer emails

3We experimented with several thresholds, as explained in Section 6.8, which resulted in very similar
models.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 164

and found that the maximum sentiment value per line can be used to represent the

sentiment value for the entire email text. Hence, we followed the same approach by

calculating the sentiment value per sentence and consider the maximum sentiment

values across all sentences as the sentiment value for the entire review text.

For example, a user for the “Daily Yoga - Get Fit & Relaxed” app posts a review “Bril-

liant App Very easy to use and extremely good fun! Would recommend it to all ages. I

would down load it twice if I could!”. The highlighted sentence has the highest positive

sentiment value (i.e., a sentiment value of 5) while the other sentences have lower sen-

timent values (i.e., sentiment values of 1 and 2), so we considered this review to have a

positive sentiment value of 5.

Constructing the Models (CM)

In order to examine the metrics that have a relationship with the likelihood of a devel-

oper responding, we performed the following steps to construct our models. Note that

we are not trying to predict whether a developer will respond to a review.

(CM-1) Removing correlated and redundant metrics. We removed highly correlated

review-level metrics before constructing our models to remove the risk that those cor-

related metrics interfere with our interpretation of the models (Shepperd et al., 2014).

We measured the correlation between the review-level metrics using the Spearman

rank correlation test (cut-off value for ρ is 0.7). We then used a metric clustering ap-

proach to construct a hierarchical overview of the inter-metric correlation using the

implementation of the varclus function that is provided by the Hmisc R package (Hmisc,

2018). To detect multicollinearity, we performed a redundant analysis using the im-

plementation of the redun function that is provided by the Hmisc R package (Hmisc,



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 165

Ta
b

le
6.

8:
C

o
lle

ct
ed

m
et

ri
cs

fo
r

ea
ch

st
u

d
ie

d
re

vi
ew

.

M
et

ri
c

ca
te

go
ry

M
et

ri
c

Va
lu

es
D

es
cr

ip
ti

o
n

(D
)-

R
at

io
n

al
e

(R
)

A
p

p
-l

ev
el

m
et

ri
cs

A
p

p
ID

C
at

eg
o

ri
ca

l
D

:I
d

en
ti

fi
er

fo
r

th
e

st
u

d
ie

d
ap

p.
R

:I
n

cl
u

d
in

g
th

e
ap

p
id

en
ti

fi
er

ca
n

b
e

u
se

d
to

u
n

d
er

st
an

d
h

ow
ea

ch
ap

p
b

eh
av

es
w

h
en

it
co

m
es

to
u

se
r-

d
ev

el
o

p
er

in
te

ra
ct

io
n

s.
A

p
p

ra
ti

n
g

C
at

eg
o

ri
ca

l
D

:T
h

e
ap

p
ra

ti
n

g
(e

.g
.,

3.
4)

.
R

:A
p

p
s

w
it

h
ce

rt
ai

n
p

o
p

u
la

ri
ty

(i
.e

.,
ap

p
ra

ti
n

g
va

lu
e)

m
ay

p
ro

vi
d

e
b

et
te

r
u

se
r

su
p

p
o

rt
th

an
ap

p
s

w
it

h
d

if
fe

re
n

tr
at

in
g.

A
p

p
ca

te
go

ry
C

at
eg

o
ri

ca
l

D
:T

h
e

ca
te

go
ry

o
ft

h
e

ap
p

(e
.g

.,
ga

m
es

o
r

to
o

ls
).

R
:A

p
p

s
in

ce
rt

ai
n

ca
te

go
ri

es
m

ay
p

ro
vi

d
e

b
et

te
r

u
se

r
su

p
p

o
rt

th
an

ap
p

s
in

o
th

er
ca

te
-

go
ri

es
.

R
ev

ie
w

-
le

ve
l

m
et

ri
cs

R
ev

ie
w

ti
tl

e
le

n
gt

h
N

u
m

er
ic

al
D

:T
h

e
n

u
m

b
er

o
fc

h
ar

ac
te

rs
in

th
e

re
vi

ew
ti

tl
e.

R
:D

ev
el

o
p

er
s

m
ay

te
n

d
to

re
sp

o
n

d
to

is
su

es
w

it
h

w
el

l-
d

es
cr

ib
ed

ti
tl

es
.

R
ev

ie
w

te
xt

le
n

gt
h

N
u

m
er

ic
al

D
:T

h
e

n
u

m
b

er
o

fc
h

ar
ac

te
rs

in
th

e
re

vi
ew

te
xt

.
R

:D
ev

el
o

p
er

s
m

ay
te

n
d

to
re

sp
o

n
d

to
is

su
es

w
it

h
w

el
l-

d
es

cr
ib

ed
te

xt
.

D
ay

s
si

n
ce

la
st

re
-

le
as

e
N

u
m

er
ic

al
D

:T
h

e
n

u
m

b
er

o
fd

ay
s

b
et

w
ee

n
th

e
re

vi
ew

p
o

st
in

g
d

at
e

an
d

th
e

la
st

re
le

as
ed

u
p

d
at

e
o

f
th

e
ap

p.
R

:U
se

rs
te

n
d

to
p

o
st

re
vi

ew
s

in
th

e
sh

o
rt

p
er

io
d

af
te

r
a

n
ew

u
p

d
at

e
(P

ag
an

o
an

d
M

aa
le

j,
20

13
).

H
en

ce
,d

ev
el

o
p

er
s

m
ay

te
n

d
to

re
sp

o
n

d
to

re
vi

ew
s

th
at

ar
e

p
o

st
ed

sh
o

rt
ly

af
te

r
an

u
p

d
at

e.
R

ev
ie

w
ra

ti
n

g
N

u
m

er
ic

al
D

:T
h

e
st

ar
ra

ti
n

g
o

fa
u

se
r

re
vi

ew
.

R
:T

h
e

re
vi

ew
ra

ti
n

g
re

fl
ec

ts
th

e
re

vi
ew

co
n

te
n

t
(e

.g
.,

n
eg

at
iv

e
re

vi
ew

s
h

av
e

a
lo

w
ra

t-
in

g)
(K

h
al

id
et

al
.,

20
15

).
H

en
ce

,d
ev

el
o

p
er

s
m

ay
te

n
d

to
re

sp
o

n
d

to
re

vi
ew

s
w

it
h

a
lo

w
ra

ti
n

g
to

in
cr

ea
se

th
e

ov
er

al
lr

at
in

g
o

ft
h

ei
r

ap
p.

P
o

si
ti

ve
/

N
eg

at
iv

e
se

n
ti

m
en

t
N

u
m

er
ic

al
D

:T
w

o
m

et
ri

cs
th

at
in

d
ic

at
e

th
e

p
o

si
ti

ve
an

d
n

eg
at

iv
e

se
n

ti
m

en
t

va
lu

es
fo

r
th

e
re

vi
ew

co
n

te
n

t.
T

h
e

p
o

si
ti

ve
se

n
ti

m
en

t
m

et
ri

c
h

as
va

lu
es

th
at

ra
n

ge
fr

o
m

1
to

5.
T

h
e

n
eg

at
iv

e
se

n
ti

m
en

t
m

et
ri

c
h

as
va

lu
es

th
at

ra
n

ge
fr

o
m

-1
to

-5
.

R
:T

h
e

re
vi

ew
se

n
ti

m
en

tc
an

b
e

u
se

d
to

in
d

ic
at

e
th

e
p

u
rp

o
se

o
ft

h
e

u
se

rr
ev

ie
w

(e
.g

.,
u

se
r

co
m

p
la

in
ts

h
av

e
a

n
eg

at
iv

e
se

n
ti

m
en

t)
( M

aa
le

ja
n

d
N

ab
il,

20
15

).
D

ev
el

o
p

er
s

m
ay

te
n

d
to

re
sp

o
n

d
to

re
vi

ew
s

b
as

ed
o

n
th

e
re

vi
ew

se
n

ti
m

en
t.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 166

2018). After doing the correlation and redundancy analysis, we found that no metrics

were correlated or redundant. Hence, no metrics were removed from our dataset.

(CM-2) Constructing the mixed-effect models. As explained in Section 6.5.2, the

collected metrics represent two hierarchical levels (i.e., the app level and the review

level). Constructing a simple regression model that ignores the hierarchical nature of

the collected metrics may produce inaccurate results (Anderson et al., 2001). As the

user reviews were collected from different mobile apps, the likelihood of a developer

responding may vary depending on the mobile app. For example, developers of one

particular app may have the policy to never respond to reviews or the metrics that are

related to the response likelihood might differ between groups of apps (something that

we observe later on in our analysis).

In a traditional linear regression model, all subjects have the same relation with the

outcome y :

y =αx +β +ε (6.1)

with the slopeαand the interceptβ being fixed andεbeing the standard error. Because

all subjects have the same relation with y , such a model cannot express differences for

subjects at different hierarchical levels.

To study the user review characteristics while considering mobile application con-

text, we used a mixed-effect model (Snijders and Bosker, 2012) instead. A mixed-effect

model includes two types of metrics, i.e., explanatory metrics and context metrics. Ex-

planatory metrics (review-level metrics) are used to explain the data at the user review

level, while context metrics refer to the app level (i.e., app category and app ID). A

mixed-effect model expresses the relationship between the outcome (i.e., a developer



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 167

responding) and the review-level metrics (e.g., review rating), while taking into con-

sideration the different app-level metrics (e.g., the app ID).

There are two ways to construct a mixed-effect model: (1) a random intercept model

and (2) a random slope and intercept model (Snijders, 2005). A random intercept model

contains different intercepts (for the app-level metrics) and fixed slopes (for the review-

level metrics). Such a model assumes that each app has its own baseline likelihood to

respond, while the final likelihood to respond is related to a general model that is the

same across all apps (i.e., a fixed slope for the review-level metrics).

A random slope and intercept model contains different intercepts (for the app-level

metrics) and different slopes (for the review-level metrics). Such a model assumes that

the likelihood to respond varies per app and per review-level metric for each app. In

our study, we constructed both types of mixed-effect models using the glmer function

of the lme4 R package (lme4, 2018).

Analyzing the Models (AM)

After building the mixed-effect models, we evaluated the explanatory and discrimina-

tive power of the models and we estimated the impact of the review-level metrics. In

addition, we examined the relationship of each metric to the likelihood of a developer

responding.

(AM-1) Evaluating the explanatory and discriminative power of the mixed-effect

models. Explanatory power measures the goodness-of-fit of a model (Eisenhauer, 2009).

To calculate the explanatory power e x p lmixed of a mixed-effect model, we calculated:

e x p lmixed =
Dnull−Dmixed

Dnull
(6.2)



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 168

where Dnull is the deviance (which is a goodness-of-fit measure) of the null model and

Dmixed is the deviance of the mixed-effect model. The null model is the simplest pos-

sible mixed-effect model that contains only app-level metrics. The explanatory power

explains the proportion of the data that can be explained by the review-level metrics,

with 0 being the lowest proportion, and 1 being the highest proportion.

The discriminative power of a model measures the model’s ability to discriminate

between whether a developer will or will not respond to a review. We calculated the

discriminative power using the Area Under the receiver operator characteristic Curve

(AUC). The Receiver Operator Characteristic (ROC) curve plots the true positive rate

against the false positive rate for different threshold settings. AUC values range be-

tween 0 (worst performance), 0.5 (performance of random guessing), and 1 (best per-

formance) (Hanley and McNeil, 1982; StackExchange, 2015).

(AM-2) Estimating the impact of review-level metrics. To understand the most im-

pactful metrics in our mixed-effect models, we used Wald statistics to estimate the rel-

ative contribution (χ2) and the statistical significance (p -value) of each review-level

metric in the model. The larger the χ2 value, the larger the impact that a particular

review-level metric has on the performance of the model. We used the ANOVA im-

plementation that is provided by the Anova function of the car R package (Fox and

Weisberg, 2018) to calculate the Wald χ2 and the p -value of each review-level metric

in the model.

(AM-3) Examining the relationship between the review-level metrics and likelihood

of a developer responding. To study the relationship between the review-level metrics

and the likelihood of a developer responding, we plotted the likelihood that developers

will respond corresponding to the changes in each review-level metric while holding



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 169

Table 6.9: Summary of the model analysis of the mixed-effect models that we used
to understand the relationship between review metrics and the likelihood of a de-
veloper responding to a review.

Model Statistics
Random

intercept model
Random intercept &
random slope model

Explanatory power 0.28 0.34
Discriminative power (AUC) 0.92 0.93

Random Intercept Statistics

App-level Metrics Variance Variance

App ID 4.4 9.4
App rating 1.8 2.2
App category 0.1 0.4

Random Slope Statistics

Review-level Metrics Variance Variance

Review rating —a 1.6

Review-level Metrics Statistics for the Random Intercept Model

Review-level Metrics
Coeff± Std.

Error
χ2

Review rating -1.018 ±0.00 62,533 ***
Review text length 0.003 ±0.00 2,317 ***
Days difference -0.007 ±0.00 504 ***
Review title length 0.005 ±0.00 192 ***
Negative sentiment 0.040 ±0.01 39 ***
Positive sentiment 0.010 ±0.01 4 -

Review-level Metrics Statistics for the Random Intercept & Random Slope Model

Review-level Metrics
Coeff± Std.

Error
χ2

Review text length 0.003 ±0.00 2,278 ***
Days difference -0.006 ±0.00 457 ***
Review title length 0.006 ±0.00 235 ***
Negative sentiment 0.024 ±0.01 13 ***
Positive sentiment 0.011 ±0.01 3 -

Statistical significance of the χ2 test:
‘***’ <0.001, ‘-’ ≤ 1

aThere is no variance value for the review rating metric for the ‘Random Intercept’ model be-
cause the random intercept model has a fixed slope for the review-level metrics.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 170

the other review-level metrics at their median values.

6.5.3 Results

Table 6.9 shows the statistics for the two mixed-effect models.

Different mobile apps have a different likelihood of a developer responding. Ta-

ble 6.9 shows that the random intercept of the app ID metric varies across different

apps, which indicates that apps have a different likelihood of a developer responding.

As shown in Table 6.9, the random intercept of the app rating metric varies across dif-

ferent apps, which indicates that apps with different ratings have a different likelihood

of a developer responding. Table 6.9 shows that the app category metric has the lowest

influence in the mixed-effect model.

Reviews with a low rating have the highest likelihood of receiving a response. Ta-

ble 6.9 displays the ANOVA results of the random intercept model. The review rating

metric accounts for the largestχ2 value in the model, indicating that review rating con-

tributes the most to our model.

Figure 6.5 shows the relationship between the likelihood of a developer responding

and each review-level metric in the random intercept model. We omit the plots for

the random intercept and random slope model because the plots are very similar to

Figure 6.5. As illustrated by Figure 6.5, the likelihood that a developer will respond

increases as the review rating gets lower. Hence, we conclude that developers are likely

to respond to reviews with a low rating.

The relation that the review rating has with the likelihood of a developer respond-

ing is different across mobile apps. Table 6.9 shows that there is a variance in the

review rating coefficient (for the random slope and random intercept model) which



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 171

indicates that app developers differ in the way their likelihood of responding is related

to the review rating.

Longer reviews have a higher likelihood of receiving a response. Figure 6.5 shows

the likelihood of a developer responding for each review-level metric. The grey area in

Figure 6.5 represents the confidence interval of 95%. As shown in Figure 6.5, the like-

lihood of a developer responding increases as the length of the review text increases.

However, as most reviews are short, the confidence interval for the longer reviews is

larger.

6.5.4 Identifying Response Patterns

Since we found that each mobile app exhibits different behavior (as the app-level met-

rics and the review rating slope change per app), we performed a deeper investigation

to identify the common patterns for developer responses. Figure 6.6 shows an overview

of our approach.

To group apps that share a behavioral pattern when it comes to responding to a user

review, we constructed a logistic regression model for each app using the glm function

that is provided by the stats R package (Stats, 2018). The logistic regression model

indicates the likelihood of a developer responding based on the values of the review-

level metrics.

We found that the constructed models differ in the importance of each review-level

metric and the relation of each review-level metric (i.e., the review-level metric is either

positively or negatively related) to the likelihood that a developer responds. Hence, we

digested the generated app model by extracting the following key features from each

model:



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 172

Review Rating

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0 4.0 5.0

Review Text Length

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

   0  200  400  600  800 1000 1200 1400

Days difference

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

   0  200  400  600  800 1000

Review title length

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

  0  50 100 150 200 250 300

Negative sentiment

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

−5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0

Positive sentiment

Li
ke

lih
oo

d 
th

at
 a

 d
ev

el
op

er
 w

ill
 r

es
po

nd

0.0

0.2

0.4

0.6

0.8

1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 6.5: The relationship between the review-level metrics and the likelihood that
a developer will respond. The grey area represents the confidence interval. Note that
these plots show the likelihood that a developer will respond for apps with responses
to at least 5% of the reviews.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 173

Figure 6.6: An overview of our approach for identifying the developer response pat-
terns.

1. The percentage of importance for each review-level metric. To calculate the

percentage of importance for each review-level metric, first we measured the

power of each review-level metric. We used Wald statistics to estimate the rel-

ative contribution (χ2) for each review-level metric in the model. We then cal-

culated the percentage of χ2 for each review-level metric to the total χ2 for all

review-level metrics. For example, the percentage of importance for the review



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 174

Table 6.10: The extracted key features for the generated logistic regression model for
the “MapFactor GPS Navigation Maps” app

The
review-level

metric
χ2 Slope

Percentage of
importance

Sign of the
slope

Review rating 55.32 -5.80 79.2% Negative
Negative sentiment 6.61 -1.49 9.5% Negative
Review title length 2.68 0.03 3.8% Positive
Review text length 2.24 0.00 3.2% Positive
Positive sentiment 1.99 -0.46 2.8% Negative
Days difference 0.98 0.02 1.4% Positive

rating in the model described by Table 6.9 is 95.6%.

2. The sign of the slope for each review-level metric. In order to estimate the di-

rection of the relationship of review-level metrics for each model, we extracted

the sign of the slope for each review-level metric.

Table 6.10 shows the extracted key features for the generated logistic regression

model for the “MapFactor GPS Navigation Maps” app. We used the extracted key fea-

tures from each model as input to a clustering technique. We used the clustering im-

plementation of the kmeans function that is provided by the stats R package (Stats,

2018). In order to identify the optimal number of clusters, we started with the minimal

number of clusters (two clusters) and increased that number until the newly-found

clusters are only sub-clusters of the previous run. Eventually, we identify four clusters

of developer response patterns using our heuristic. The four clusters can be explained

as follows:

1. Developers who primarily respond to only negative reviews. In the first cluster



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 175

(231 apps), developers responded mainly to negative reviews (the mean value for

the importance of the review rating metric is 78%).

2. Developers who primarily respond to negative or longer reviews. In the second

cluster (95 apps), developers responded mostly to negative reviews (the mean

value for the importance of the review rating metric is 40%). However, in addition

to the negative reviews, developers in the second cluster appear to pay attention

to the length of a review as well (the mean value for the importance of the review

text length is 26%).

3. Developers who primarily respond to reviews which are posted shortly after

the latest release. In the third cluster (50 apps), developers responded mostly

to reviews which are posted soon after the latest update (the mean value for the

importance of the days since last release metric is 47%).

4. Developers who primarily respond to reviews which are posted longer after the

latest release. In the fourth cluster (39 apps), developers have a higher likelihood

of responding to reviews that are posted long after the deployment of the latest

update (the mean value for the importance of the days since last release metric

is 42%).

The explanation for the first and second cluster is quite obvious, as negative and

longer reviews are the most likely to be candidates for a rating increase. The third and

fourth cluster are less intuitive. We manually read a sample review to which a devel-

oper responded for each app in the third and fourth cluster. We noticed that for both

clusters developers responded shortly after the review is posted. For the third cluster,

we noticed that in most cases users complain about an issue in the latest update and



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 176

developers try to solve the issue or announce that they are working on fixing the issue.

For example, we noticed that in 18 apps (out of 50 apps belonging to this pattern) the

median number of days between the update and a posted review is less than a week.

Hence, the third cluster can be explained as developers focusing on issues that arise

directly after an update.

The fourth cluster can be explained as developers who focus mostly on issues that

are raised longer after an update. A possible explanation for the focus of these develop-

ers is that they focus on reviews that raise issues that need to be fixed. Hence, shortly

after an update, the same obvious issues are reported by many users, yet these devel-

opers respond to only a few of them. Instead, they shift their focus to responding to

issues in reviews that are raised at a later stage, which are less likely to be noticed by

users, therefore taking a longer time to be reported in reviews.

6.6 Study III: A Qualitative Study of What Drives a Devel-

oper to Respond

6.6.1 Motivation

In the previous section, we gave a quantitative view of the metrics that are related to

the likelihood of a developer responding to a review. These metrics can be used to

identify reviews that are likely to require a response. However, these metrics do not

explain the actual contents of a response, nor do they explain the rationale for a devel-

oper responding to a review. In this section, we study more qualitatively what drives

developers to respond. Getting a better understanding of what drives developers to



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 177

respond to a user review can be beneficial for developers, as it allows them to identify

flaws in their user support process. For example, it can help them to improve or extend

the Frequently Asked Questions (FAQs) on their website. In addition, identifying the

drivers for responding can assist the app store owners by revealing useful functionality

for developers that can be added to their store.

6.6.2 Approach

In order to identify what drives developers to respond to a user review, we conducted

a manual analysis of their responses. First, we ranked the apps by the number of re-

sponses by a developer. To avoid bias in our manual study, we examined a statistically

representative random sample (with a 95% confidence level and a 5% confidence in-

terval) of the responses for each of the 10 apps with the highest number of responses.

Table 6.11 shows a summary of the selected ten apps together with the size of the se-

lected sample. In total, we selected 3,431 responses.

For our manual analysis, we examined a statistically representative random sample

of 347 responses from the selected 3,431 responses (with a 95% confidence level and a

5% confidence interval). Two researchers (including myself and a collaborator as two

coders) went through the following process to identify the drivers that make developers

respond to a user review:

Step 1: The coders independently followed a method similar to the open coding method (Khand-

kar, 2009; Borgatti, 1996) to identify the drivers that make developers response. The

open coding method iteratively builds a list of identified drivers. For every studied de-

veloper response, the coder identifies the driver. If the driver is not in the list of iden-

tified drivers, the coder extends the list and revisits all developer responses using the



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 178

Ta
b

le
6.

11
:D

at
a

su
m

m
ar

y
o

ft
h

e
to

p
te

n
ap

p
s

w
it

h
th

e
h

ig
h

es
t

n
u

m
b

er
o

fr
ev

ie
w

s
w

it
h

re
sp

o
n

se
s.

A
p

p
n

am
e

N
u

m
b

er
o

f
co

ll
ec

te
d

re
vi

ew
s

w
it

h
re

sp
o

n
se

s

N
u

m
b

er
o

f
d

ow
n

lo
ad

s
A

ve
ra

ge
ra

ti
n

g
C

at
eg

o
ry

N
u

m
b

er
o

f
se

le
ct

ed
re

sp
o

n
se

s

C
le

an
M

as
te

r
(B

o
o

st
&

A
p

p
Lo

ck
)

6,
12

8
50

0M
-

1,
00

0M
4.

66
To

o
ls

36
2

D
ai

ly
N

ew
s,

eB
o

o
ks

&
M

ag
az

in
es

4,
55

4
10

M
-

50
M

4.
24

N
ew

s
&

M
ag

az
in

es
35

4

P
ic

sA
rt

P
h

o
to

St
u

d
io

4,
48

1
10

0M
-

50
0M

4.
44

P
h

o
to

gr
ap

h
y

35
4

A
p

p
Lo

ck
4,

47
1

10
0M

-
50

0M
4.

35
To

o
ls

35
4

So
lo

La
u

n
ch

er
C

le
an

Sm
o

o
th

D
iy

4,
18

7
10

0M
-

50
0M

4.
48

P
er

so
n

al
iz

at
io

n
35

2

H
u

n
ga

m
a

M
u

si
c

-
So

n
gs

&
V

id
eo

s
3,

94
9

10
M

-
50

M
4.

11
M

u
si

c
&

A
u

d
io

35
0

T
h

e
P

C
H

A
p

p
2,

45
2

1M
-

5M
4.

46
Li

fe
st

yl
e

33
2

U
C

B
ro

w
se

r
-

Fa
st

D
ow

n
lo

ad
2,

19
3

10
0M

-
50

0M
4.

55
C

o
m

m
u

n
ic

at
io

n
32

7

Fr
o

st
W

ir
e

-
To

rr
en

tD
ow

n
lo

ad
er

2,
02

6
10

M
-

50
M

3.
93

M
ed

ia
&

V
id

eo
32

3

W
eC

h
at

2,
02

3
10

0M
-

50
0M

4.
25

C
o

m
m

u
n

ic
at

io
n

32
3



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 179

new list of identified drivers. The open coding method terminates when there are no

newer drivers to be identified and all developer responses are studied.

Using the open coding method, we can identify multiple drivers for a single devel-

oper response. For example, a user posted a review “Good” and the developer response

is “Dear Rama Thanks for your valuable feedback. Please revise your ratings to support

us better since 3 star that you have rated is lower and 5 star is the highest.”. We tagged

this response with the “Thank the user” and “Ask for endorsement” labels.

The output from this step is the list of drivers that the coders identified for each

studied response.

Step 2: The first coder compared the drivers that were identified by both coders for all

studied responses and marked the differences.

Step 3: The coders discussed the differences and came to a consensus about the final

codes for each studied response. We found 19 developer responses that had differences

in the identified drivers between the two coders. After discussion, all differences were

easy to resolve.

6.6.3 Results

We identified seven drivers that make a developer response to a review. Table 6.12

shows the identified drivers for responding along with their description and examples

of a developer response. Table 6.13 shows statistics about the identified drivers for

responding. In particular, Table 6.13 shows for each driver the number of responses,

the percentage of the total number of responses in the sample, the number of apps

whose developers had that driver at least once for responding, the number of reviews

that were changed after a developer response and the number of reviews that changed



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 180

Ta
b

le
6.

12
:T

h
e

id
en

ti
fi

ed
d

ri
ve

rs
fo

r
re

sp
o

n
d

in
g.

D
ri

ve
r

fo
r

re
sp

o
n

d
in

g
D

es
cr

ip
ti

o
n

(D
)-

E
xa

m
p

le
(E

)

A
d

ve
rt

is
e

o
th

er
D

:T
h

e
d

ev
el

o
p

er
ad

ve
rt

is
es

o
n

e
o

fh
is

o
th

er
p

ro
d

u
ct

s.
p

ro
d

u
ct

s
E

:“
H

iM
ic

h
ae

lw
e

h
op

e
yo

u
en

jo
y

th
e

P
C

H
A

p
p.

P
le

as
e

fe
el

fr
ee

to
tr

y
on

e
of

ou
r

ot
h

er
fu

n
an

d
ex

ci
t-

in
g

op
p

or
tu

n
it

ie
s

to
w

in
li

ke
P

C
H

Lo
tt

o
B

la
st

an
d

P
C

H
C

as
h

Sl
ot

s.
If

yo
u

ev
er

n
ee

d
an

y
as

si
st

an
ce

p
le

as
e

ch
ec

k
ou

to
u

r
ap

p
FA

Q
p

ag
e

w
it

h
in

th
e

ap
p

it
se

lf
.”

A
sk

fo
r

en
d

o
rs

em
en

t
D

:T
h

e
d

ev
el

o
p

er
as

ks
a

u
se

r
to

m
ar

ke
tf

o
r

th
e

ap
p

s
b

y
in

cr
ea

si
n

g
th

e
re

vi
ew

ra
ti

n
g

o
r

b
y

sh
ar

in
g

th
e

go
o

d
ex

p
er

ie
n

ce
w

it
h

o
th

er
s.

E
:“

If
yo

u
li

ke
A

p
p

Lo
ck

p
le

as
e

ra
te

5
st

ar
s

to
su

p
p

or
tu

s
an

d
sh

ar
e

it
th

an
ks

.”
A

sk
fo

r
m

o
re

d
et

ai
ls

D
:T

h
e

d
ev

el
o

p
er

as
ks

fo
r

ad
d

it
io

n
al

d
et

ai
ls

in
o

rd
er

to
so

lv
e

th
e

u
se

r
co

m
p

la
in

t.
E

:“
H

iP
ra

ti
k

C
ou

ld
yo

u
p

le
as

e
le

t
u

s
kn

ow
if

th
is

is
h

ap
p

en
in

g
al

lt
h

e
ti

m
e

or
is

it
a

re
ce

n
t

oc
cu

r-
re

n
ce

?
D

oe
s

it
h

ap
p

en
w

it
h

a
p

ar
ti

cu
la

r
so

n
g

or
al

lo
ft

h
em

?
K

in
d

ly
sh

ar
e

m
or

e
d

et
ai

ls
ab

ou
t

th
is

is
su

e
an

d
w

e
w

il
lp

ro
vi

d
e

yo
u

w
it

h
op

ti
m

u
m

su
p

p
or

t.”
Ju

st
if

y
th

e
D

:T
h

e
d

ev
el

o
p

er
ex

p
la

in
s

th
e

ra
ti

o
n

al
e

fo
r

th
e

ex
is

ti
n

g
ad

ve
rt

is
em

en
ts

in
th

e
ap

p.
ad

ve
rt

is
em

en
ts

E
:“

So
rr

y
fo

r
m

ak
in

g
yo

u
tr

ou
bl

e
w

it
h

ad
s

an
d

w
e

al
so

co
m

p
le

te
ly

u
n

d
er

st
an

d
yo

u
r

co
n

ce
rn

.
W

e
ar

e
al

w
ay

s
tr

y
to

im
p

ro
ve

ou
r

ap
p

an
d

w
e

w
an

t
to

p
ro

vi
d

e
ou

r
u

se
r

a
go

od
an

d
fr

ee
cl

ea
n

m
as

te
r.

So
w

e
h

op
e

yo
u

co
u

ld
u

n
d

er
st

an
d

th
at

w
e

n
ee

d
th

is
p

ar
tf

or
ou

r
in

co
m

e.
T

h
an

k
yo

u
!”

P
ro

vi
d

e
gu

id
an

ce
D

:T
h

e
d

ev
el

o
p

er
s

p
ro

vi
d

es
gu

id
an

ce
an

d
ad

d
it

io
n

al
d

et
ai

ls
to

th
e

u
se

rs
.

E
:“

P
le

as
e

op
en

p
h

on
e

se
tt

in
gs

,t
h

en
se

le
ct

se
cu

ri
ty

,t
h

en
se

le
ct

ap
p

s
w

it
h

u
sa

ge
ac

ce
ss

,e
n

ab
le

A
p

-
p

Lo
ck

.”
W

ai
tf

o
r

u
p

d
at

es
D

:T
h

e
d

ev
el

o
p

er
n

o
ti

fi
es

th
e

u
se

r
th

at
th

e
re

p
o

rt
ed

is
su

e
w

ill
b

e
so

lv
ed

o
r

th
e

re
q

u
es

te
d

fe
at

u
re

w
ill

b
e

ad
d

ed
an

d
as

ks
th

e
u

se
r

to
w

ai
t

fo
r

u
p

co
m

in
g

u
p

d
at

es
.

E
:“

Yo
u

r
fe

ed
ba

ck
is

re
ce

iv
ed

an
d

w
il

lb
e

h
an

d
le

d
as

so
on

as
p

os
si

bl
e.

St
ay

tu
n

ed
w

it
h

u
s

fo
r

u
p

-
d

at
es

.T
h

an
ks

fo
r

yo
u

r
su

p
p

or
t!

”
T

h
an

k
th

e
u

se
r

D
:T

h
e

d
ev

el
o

p
er

th
an

ks
th

e
u

se
r

fo
r

u
si

n
g

th
e

ap
p

o
r

p
o

st
in

g
a

re
vi

ew
.

E
:“

H
iS

h
an

iT
h

an
k

yo
u

fo
r

yo
u

r
fa

n
ta

st
ic

re
vi

ew
!!”

U
n

sp
ec

ifi
ed

D
:T

h
e

d
ev

el
o

p
er

re
sp

o
n

se
is

ge
n

er
ic

o
r

th
e

d
ev

el
o

p
er

re
sp

o
n

se
is

n
o

ti
n

th
e

E
n

gl
is

h
la

n
gu

ag
e.

E
:“

D
ea

r
U

se
r

W
e

h
op

e
yo

u
en

jo
y

u
si

n
g

th
e

ap
p

an
d

be
co

m
es

a
sa

ti
sfi

ed
u

se
rs

of
th

e
ap

p.
”



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 181

Table 6.13: Statistics for the drivers for responding (ranked by the number of re-
sponses).

Driver
Number

of
responses

Percent-
age of

responses∗
Number
of apps

Number of
changed
reviews

Number of
changed

rating

Thank the user 219 63% 10 8 5
Ask for more details 155 45% 9 12 6
Provide guidance 86 25% 10 7 3
Ask for endorsement 83 24% 9 3 2
Advertise other products 47 14% 3 1 0
Wait for updates 31 9% 8 2 1
Justify the advertisements 5 1% 3 0 0
Unspecified 3 1% 2 0 0
∗Since a response can have several drivers, this column does not add up to 100%.

their rating after a developer response.

In 24% of the responses, app developers use the review mechanism to ask users

to increase their given rating. In general, users tend to ignore these requests and do

not update their rating. Table 6.13 shows that the “Ask for endorsement” label occurs

in responses for nine out of ten studied apps, which indicates that this kind of request

is common. Only in 3 out of 83 developer responses, users change their review after a

developer asks for a rating increase and in only two cases the rating actually increases.

The observation about developers asking for a rating increase is in line with our finding

in Section 6.5.3, where we show that developers are more likely to respond to reviews

with low ratings. These observations combined confirm (in accordance with litera-

ture (Martin, 2015)) the importance of ratings to developers.

In 45% of the developer responses, developers ask for more details about the re-

ported issues. Users tend to post reviews that contain a complaint but do not contain

enough information for the developer to address the complaint. For example, devel-

opers ask for more details about the hardware or the OS version on which an issue



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 182

occurred. Developers ask the user to provide the additional details through one of the

following channels: (1) directly in the dialogue (i.e., by updating the review), (2) using

the crash reporting mechanism in the app or (3) by email.

Moran et al. (2015) propose an approach for guiding users to report the steps that

produce reported issues. Store owners and developers can include more detailed in-

formation about the reported issues by following Moran et al.’s approach.

In 25% of the responses, developers provide guidance to users to solve their is-

sues. We notice that often, users encounter the same issue as others. During our man-

ual analysis, we find eight cases of the same issue that is reported by multiple users to

which the developer responses mostly the same. For each case, we manually extract

keywords from the responses (e.g., ‘clear cache’) and search for responses containing

those keywords for that app in the total set of reviews. We then manually check how

many times the response occurs in the total set of reviews (not just our manually coded

reviews). Table 6.14 shows the top five responses that occur the most often, together

with a description of the reported problem and the given response.

As Table 6.14 shows, the repeated responses often indicate an issue that occurs for

many users. Knowing about such issues can be beneficial for developers, as they can

improve their app to address the issue. Another possibility is to address the issue in

the Frequently Asked Questions (FAQs) section of the app to help users solve the issue

without having to post a review (which often includes a low rating). For example, the

“AppLock” issue that is addressed by 520 reviews can be summarized by the question

“How can I use the AppLock app to lock other apps?" By studying the reviews and re-

sponses, developers can semi-automatically (e.g., using keywords) extract issues that

should be addressed in the FAQ section.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 183

Ta
b

le
6.

14
:T

h
e

id
en

ti
fi

ed
si

m
ila

r
re

sp
o

n
se

s.

A
p

p
N

u
m

b
er

o
f

si
m

il
ar

re
vi

ew
s

D
es

cr
ip

ti
o

n
(D

)-
R

es
p

o
n

se
(R

)

A
p

p
Lo

ck
52

0
D

:T
h

e
u

se
r

as
ks

h
ow

to
u

se
th

e
“A

p
p

Lo
ck

”
ap

p
to

lo
ck

o
th

er
ap

p
s.

R
:“

P
le

as
e

op
en

p
h

on
e

se
tt

in
gs

se
cu

ri
ty

ap
p

s
w

it
h

u
sa

ge
ac

ce
ss

en
ab

le
A

p
p

Lo
ck

.”
P

ic
sA

rt
27

1
D

:T
h

e
u

se
r

co
m

p
la

in
s

th
at

th
e

ap
p

is
ve

ry
sl

ow
.

R
:“

H
iV

in
ce

n
t

th
is

is
su

e
ca

n
so

m
et

im
es

be
so

lv
ed

by
cl

ea
ri

n
g

th
e

ca
ch

e.
To

d
o

so
go

to
yo

u
r

d
ev

ic
e’

s
Se

tt
in

gs
-

A
p

p
s

-
P

ic
sA

rt
an

d
ta

p
‘C

le
ar

d
at

a’
an

d
‘C

le
ar

ca
ch

e’.
If

th
e

is
su

e
p

er
si

st
s

p
le

as
e

fe
el

fr
ee

to
co

n
ta

ct
u

s
at

su
p

p
or

t@
p

ic
sa

rt
.c

om
an

d
w

e
w

il
lb

e
h

ap
p

y
to

in
ve

st
ig

at
e

th
e

is
su

e
so

yo
u

ca
n

u
se

th
e

ap
p

w
it

h
ou

tp
ro

bl
em

s.
”

A
p

p
Lo

ck
10

9
D

:T
h

e
u

se
r

co
m

p
la

in
s

th
at

th
e

ap
p

st
o

p
s

w
o

rk
in

g.
R

:“
P

le
as

e
op

en
A

p
p

Lo
ck

to
ch

ec
k

w
h

et
h

er
th

e
ap

p
is

lo
ck

ed
.

T
h

en
tr

y
to

en
ab

le
ad

va
n

ce
d

p
ro

te
ct

io
n

.”
W

eC
h

at
70

D
:T

h
e

u
se

r
co

m
p

la
in

s
th

at
th

e
ap

p
d

o
es

n
o

td
is

p
la

y
o

r
u

p
lo

ad
p

ic
tu

re
s.

R
:“

Yo
u

ca
n

tr
y

fo
ll

ow
in

g
ti

p
s

to
tr

ou
bl

es
h

oo
t

yo
u

r
p

ro
bl

em
s:

1.
D

ow
n

lo
ad

an
d

in
st

al
l

th
e

la
te

st
ve

rs
io

n
of

W
eC

h
at

.
W

e
su

gg
es

t
yo

u
m

ig
ra

te
yo

u
r

ch
at

h
is

to
ry

be
fo

re
u

n
in

st
al

li
n

g
W

eC
h

at
to

p
re

ve
n

td
at

a
lo

ss
.2

.S
el

ec
ta

n
y

on
e

of
th

e
ch

at
p

ag
es

an
d

se
n

d
‘/
/s

w
it

ch
sd

ca
rd

’.
If

th
e

ab
ov

e
ti

p
s

ca
n’

tfi
x

yo
u

r
is

su
e

co
n

ta
ct

u
s

ag
ai

n
.”

Fr
o

st
W

ir
e

26
D

:
T

h
e

u
se

r
co

m
p

la
in

s
th

at
th

e
ap

p
d

o
es

n
o

t
w

o
rk

af
te

r
u

p
d

at
in

g
to

A
n

d
ro

id
M

ar
sh

m
al

lo
w

(A
n

d
ro

id
ve

rs
io

n
6)

.
R

:“
H

av
e

yo
u

ju
st

u
p

d
at

ed
yo

u
r

op
er

at
in

g
sy

st
em

to
A

n
d

ro
id

6?
W

e
ar

e
st

il
lw

or
k-

in
g

on
a

co
m

p
at

ib
le

re
le

as
e.

..
lo

ts
to

ch
an

ge
.

In
th

e
m

ea
n

ti
m

e
yo

u
ca

n
go

to
P

h
on

e
Se

tt
in

gs
an

d
go

to
A

p
p

s
fi

n
d

Fr
os

tW
ir

e
th

en
se

le
ct

P
er

m
is

si
on

s
an

d
en

ab
le

al
lo

ft
h

e
p

er
m

is
si

on
s

li
st

ed
.E

ve
ry

th
in

g
el

se
sh

ou
ld

w
or

k
ju

st
fi

n
e

:)
”



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 184

Developers can benefit from the analysis of user reviews and developer responses

by extracting repeated questions. These questions can help to identify issues that

should either be fixed, or discussed in the Frequently Asked Questions (FAQs) section

of the app.

6.7 Implications

In this section, we discuss the implications of our work for researchers and app store

owners.

6.7.1 Implications for Researchers

App reviews and app ratings are not immutable. Prior work on app reviews has always

assumed that reviews and ratings are posted and thereafter not changed. However, our

work shows that users may change their reviews and ratings over time. Even though the

portion of changed reviews (3.7% in our studied period) and ratings (1.4%) is fairly low,

researchers need to be aware of the potential impact of changes in reviews and ratings

on their work. Future studies are necessary to better understand the implications of

changing reviews and ratings on prior research findings.

Reviews only do not provide an in-depth view of user concerns. Recently, several

approaches were proposed for extracting requirements from app reviews. For exam-

ple, Martin et al. (2017)’s survey shows that existing research uses reviews as a tool for

requirements engineering (e.g., by extracting user complaints and feature requests).

In our study, we observed that in many cases, developers ask a user for more informa-

tion based on the review (in particular the final revision of a review). Hence, studying



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 185

only reviews does not give a complete overview of user concerns. Future studies on ex-

tracting requirements from app reviews should investigate how user concerns in app

reviews can be combined with concerns expressed through other channels, such as

email or a support forum.

Developers use the review mechanism as a user support medium. Even though

not many developers use the review mechanism in this way, future studies should

monitor this type of usage to identify possible improvements to the review mechanism

that may better facilitate developers and users.

6.7.2 Implications for Store Owners

Developers need to resort to alternative channels, such as email, to be of full assis-

tance to a user. We encountered in many cases developers asking users to contact

them through an alternative channel, such as email. One possible explanation is that

the user is forwarded to a more technical support team. Another possible explana-

tion is that the review mechanism of the app store is not sufficient to provide adequate

support. Mobile app store owners should study in depth how developers and users are

using the review mechanism to find out how the mechanism can be improved.

Developers need to be notified whenever users update their reviews. As illus-

trated in Chapter 2, developers are not always notified when users update their reviews,

which prevents developers from tracking users’ changes in their impressions about the

app. Moreover, missing notifications about user updates may hinder developers from

noticing any additional information that is added by users to the posted reviews.

Developers can be assisted by highlighting reviews that are more likely to require



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 186

a response. We showed that, depending on the app, there can be several types of re-

views identified that developers respond to. Store owners can improve the response

mechanism by highlighting reviews that are longer or have a low rating. The highlight-

ing could be done using thresholds for the length of the review text, and the number

of given stars. These thresholds can be automatically defined for developers based on

their response behavior, or they could be configured by the developers themselves.

Not all developers follow the published guidelines for responding to reviews. Al-

though Google has set guidelines for responding to reviews in the Google Play store (Google,

2018b), we showed that not all developers follow these guidelines. For example, several

developers thank every user for their review. Developers are discouraged from posting

such responses in the guidelines as they do not contain useful information for other

users. A possible solution for avoiding such responses is to automatically filter repeti-

tive or very short responses. Another possible solution to lower the number of useless

responses is to put a limit on the total number of responses that can be posted per day.

With such a limit, developers need to be more selective in deciding on which reviews

to respond to. Google has recently introduced a limit of 500 responses per day per app

in the Google Play store API (Google, 2018c). Future studies must investigate whether

a limit of 500 responses is sufficient to ban useless responses from the store.

Many users may share the same concerns about an app. Store owners can im-

prove the way in which reviews are displayed by clustering reviews and responses based

on the concerns that are expressed and addressed in them. The most often-expressed

concerns (and if available, their responses/solutions!) can then be displayed on the

product page of an app. Clustering reviews and responses is beneficial for both devel-

opers and users, as (1) it gives developers the chance to explain to users how to handle



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 187

a concern after downloading the app, and (2) it gives users the chance to adjust their

expectations of the app.

6.8 Threats to Validity

6.8.1 Construct Validity

In our quantitative study of the metrics that are related to the response likelihood of a

developer, we filtered out apps for which less than 5% of the reviews have responses. To

evaluate whether our filtering has an impact on our results, we constructed our models

using a threshold of 3%, 5% and 8%. We found that the most important metrics (i.e.,

the review rating and review text length) do not change across thresholds. Hence, we

conclude that the threshold of 5% does not impact our results.

There are several approaches to understand what drives a developer to respond.

For example, interviewing and surveying developers might be one way. In this chapter,

we chose to instead look at the actual responses. Both approaches have their benefits

and limitations. For example, with surveys developers might miss reporting on some

reasons since we are depending on their recollection. Nevertheless, a mining approach

has its limitation as well. For example, the collected data cannot represent all reasons

for responding to user reviews. Thus, we suggest that future studies are needed to tri-

angulate our observations through developer surveys.

6.8.2 Internal Validity

In our study, we analyzed the top free popular apps from 2013 for a two months period.

Including more apps and extending the study period may provide more insights about



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 188

developer responses. While we studied considerably more data than prior work on

developer responses (McIlroy et al., 2017), future studies should revisit our findings for

data that is collected during a longer period (i.e., years).

We assume throughout this chapter that the posted responses are written by app

developers. We were unable to find information about the team size and structure of

the teams that built the top 25 apps with the highest percentage of developer responses.

Clutch4, a company that lists 2,532 mobile app development firms, shows that 1,732

out of 2,532 (68%) of these firms have less than 50 employees. Hence, while we do not

have strong evidence that responses were written by actual software developers, we

do have evidence that most mobile app development firms are small. Therefore, due

to the small team size, it is likely that responses to reviews are posted either by app

developers themselves or by other team members who are in close contact with the

app developers. Future studies should investigate further the team size and structure

of mobile app development teams.

The results for our manual studies are impacted by the experience of the coders and

the amount of the collected data. To reduce the errors in the manual analysis, three

researchers (including myself and two collaborators with at least two researchers in

each manual study) were involved in the manual analysis process. In addition, while

doing the manual analysis, we extracted reasons for posting reviews and responses

based on the implications of their contents. Hence, while we put considerable effort to

mitigate the bias, the extracted reasons may be biased by our experience and intuition.

4https://clutch.co/

https://clutch.co/


CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 189

6.8.3 External Validity

App store data changes very rapidly and the Google Play Store provides only the latest

500 reviews per app. Therefore, the crawler may miss to crawl data when the crawls are

not executed as often as required. Martin et al. (2015) illustrate the sampling problem

in analyzing app store data. In order to overcome this issue, we scheduled our crawler

to connect to the Google Play Store several times per day to collect as many reviews as

possible. In our study, we collect the data for 8,218 apps. During the study period (from

September 22nd 2015 to December 3r d 2015), in only 307 out of 547,966 crawls (0.06%)

the maximum of 500 reviews (either new or updated reviews) could be downloaded.

This shows that in at least 99.94% of the crawls, we were able to collect all the new

reviews and the changes that were made to the existing reviews.

We studied developer responses for reviews of free apps only. One of the main rea-

sons for removing non-free apps is that the pricing of an app is very likely to act as a

major confounding factor. Developers and users of paid apps may have different ex-

pectations and attitudes than developers and users of free apps. Hence, our findings

are valid for free apps only.

In this chapter, we classify developer response patterns based on general character-

istics (e.g., review rating). The characteristics of developer responses may vary based

on other factors such as the company size, team structure and cultural differences. Fur-

ther studies are needed to investigate the nature of user-developer dialogues based on

different factors (e.g., the cultural differences). However, our documentation of the

type of patterns is an essential first step for future studies.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 190

6.9 Related Work

As shown in Section 3.4, McIlroy et al. (2017) observed that users often increase the

given rating after a developer responds to the posted review. In this thesis, we revisited

McIlroy et al.’s findings by conducting a more in-depth study on a larger dataset (as

well tracking such user-developer dialogues over an extended period of time).

McIlroy et al. found that 13.8% of the apps respond to at least one review. In our

study, we found that 794 out of 2,328 apps (34.1%) respond to at least one review. A pos-

sible explanation for this difference is that we studied apps that have more than 100 re-

views only (to ensure maturity of the app). By including all still-active apps (8,218 apps)

in our analysis, we found that there are 1,311 (out of 8,218) apps (16%) in which devel-

opers respond at least once to a user review. McIlroy et al. indicated that apps with a

large number of reviews tend not to respond to reviews as they may be overwhelmed

by the large number of reviews. In this thesis, we showed that this perception appears

to be changing, since we focused on apps that have at least 100 reviews.

In addition, McIlroy et al. found that a developer response has an impact on the

review rating in 38.7% of the studied cases. In this thesis, we found the number of

reviews in which the rating is changed after a developer responds to be much lower

(3.8%). Our findings did confirm that the rating change is often positive. A possible

explanation for this difference is that we found that in many of the responses, the user

is not actually being assisted directly by the developers. The large number of “Thank

you” responses may influence the number of rating changes. The lack of assistance in

the responses may be due to the large number of reviews that developers are dealing

with, leading to (semi-)automated responses.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 191

6.10 Chapter Summary

The Google Play Store provides a mechanism that allows users and developers to en-

gage in a dialogue. On the one hand, users leverage this mechanism by reading, writ-

ing, and updating reviews for an app. On the other hand, developers use this mecha-

nism to respond to the posted user reviews.

In our study, we analyzed 4.5 million reviews with 126 thousand responses for 2,328

top free popular apps in the Google Play Store. We found that users and developers

leverage the user-developer dialogues as a user support mechanism. However, in most

cases the dialogue between the user and the developer is short.

Below are some of the most notable findings of our study:

1. Reviews and ratings change over time by a user. Hence, researchers need to con-

sider the dynamic nature of reviews while analyzing user reviews.

2. When the rating is changed after a developer response, it is increased in most

cases. Hence, app owners should focus more on responding to reviews, espe-

cially given that in many cases reported issues can be resolved without having to

deploy an app update.

3. Users and developers use the user-developer dialogue as a user support mecha-

nism. However, in most cases, the dialogue is short.

4. In general, developers are more likely to respond to reviews with a low rating and

that are longer. The more in-depth analysis led us to identify four different pat-

terns of developers. App store owners can facilitate a better responding mecha-

nism by automatically highlighting reviews that are likely to require a response.



CHAPTER 6. STUDYING THE DIALOGUE BETWEEN USERS AND DEVELOPERS 192

5. In 45% of the responses, the user is asked to provide more details about a re-

ported issue. App store owners can improve the review-response mechanism by

automatically providing developers with more details about the raised issues.

The presented findings in this chapter show that responding to a review improves

the chances of a user rating increase. However, we observed that developers do not

leverage the potential of the response mechanism, as a large percentage of the re-

sponses consists of template-based responses. In particular, app owners should fo-

cus more on sending tailored responses that actually address the concerns that are

raised by users. In addition, app store owners should improve their review-response

mechanism as currently, developers need to ask the user to contact them via another

communication channel to retrieve more details about a raised issue.



CHAPTER 7

Conclusions and Future Work

T
HIS chapter summarizes our work and presents the potential opportunities

for further work.

App stores provide a unique updating mechanism that enables developers

to publish their updates rapidly. In addition, app stores allow users to download the

latest updates and post their feedback about such updates. In return, developers can

respond to user reviews (i.e., feedback) through a user-developer dialogue and publish

emergency updates that fix any raised issues.

In this thesis, we study the user-developer interactions through the updating and

reviewing mechanisms of the Google Play Store along three perspectives: (1) study-

ing the common developer mistakes that lead to emergency updates, (2) studying how

193



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 194

the reviewing mechanism can help spot good and bad updates, and (3) studying user-

developer dialogues. Our research provides useful insights and recommendations for

store owners to improve the existing updating and reviewing mechanisms and en-

hance the overall quality and user experience for the offered apps in stores.

7.1 Thesis Contributions

This thesis aims to demonstrate that studying user-developer interactions through the

updating and reviewing mechanisms of app stores can help store owners improve the

overall quality of the provided apps in their stores and enhance the overall experience

of app users.

The main contributions of this thesis are as follows:

1. Demonstrating the Dynamic Nature of App Reviews. We demonstrate that the

reviews are not static. Instead, users change their posted reviews to represent

their current thoughts about an update. For example, users change their review

to raise a new issue or to announce that their raised issue is resolved. We lever-

age the dynamic nature of user reviews to (1) analyze how users and developers

use the reviewing mechanism as a user support medium (see Chapter 6) and (2)

analyze how and after how long do developers recover from a bad update (see

Chapter 5).

2. Identifying Patterns of Emergency Updates. We propose an approach for iden-

tifying emergency updates (i.e., updates that are published soon after the previ-

ous update). We analyze the characteristics of the top 1,000 emergency updates.

We identify eight patterns of emergency updates. Our study shows that there



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 195

are commonly repeated mistakes across the analyzed emergency updates. Store

owners can leverage our studies to develop mechanisms to prevent app devel-

opers from repeating such mistakes (see Chapter 4).

3. Demonstrating the Importance of Update-Level Analysis of Reviews. We show

the importance of analyzing review at the update-level over the traditional app-

level analysis of user reviews. In particular, we demonstrate that the traditional

app-centric analysis of user reviews is not able to understand how the user-base

perceive an update as a bad update. Our work performs an in-depth analysis of

mobile app reviews through an update-centric view. Store owners could benefit

from our proposed approach by studying the reviews of each update to analyze

how the user-perceived quality of an app changes over time (see Chapter 5).

4. Dynamically Spotting Good and Bad Updates. We propose an approach for

spotting good and bad updates. We use our approach to identify the top 250

bad updates. Our analysis of bad updates shows that bad updates are not only

perceived as bad because of functional issues. Instead, crash, additional cost

and user interface issues often occur in bad updates whereas at the app-level

these issues do not occur as often. We also observed that feature removal and

user interface issues have the highest median negativity ratio. Store owners can

leverage our approach to spot good and bad updates and proactively limit the

distribution of bad updates (see Chapter 5).

7.2 Further Work

In this section, we explore the potential opportunities for improving our work.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 196

7.2.1 Expanding and Revisiting Prior Work Using Update-Level Anal-

ysis

In this thesis, we demonstrate the necessity of an update-level analysis of reviews to

capture the impressions of an app’s user-base about a particular update. Researchers

could leverage our work by expanding and revisiting the existing reviews analysis stud-

ies using the update-level analysis. For example, prior work proposed techniques that

can be used to identify reviews with useful information such as bug reports or fea-

ture requests. Researchers could leverage update-level analysis to study (1) how the

reported bugs or requested features evolve over updates of an app, (2) how these raised

issues or requested features can impact the rank of an app within its peer competitor

apps. In addition, prior research analyzed the characteristics of successful apps and

tried to predict whether an app will be perceived as a successful app. With the insights

that are provided by our work, researchers can extract the key features of every update

and build models that predict whether an update will be perceived as a good update

or as a bad update. In addition, researchers could identify which artifacts that need to

be changed in order to make the next update perceived as a good or bad update.

7.2.2 Helping Design the Next-Generation App Updating and Review-

ing Mechanisms

In this thesis, we perform an in-depth analysis of user-developer interactions through

the updating and reviewing mechanisms of app stores. Our work can help store owners

design the next-generation updating and reviewing mechanisms, as follows:

• Store owners can leverage our user-developer dialogue work while designing the



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 197

next-generation reviewing mechanisms. For example, the next-generation re-

viewing mechanisms can show (1) the time that it takes for developers to respond

to user reviews and (2) the impact of developers’ response on app rating, which

can encourage app developers to provide fast and helpful responses to users. In

addition, store owners can leverage the user-developer dialogues to automati-

cally generate the FAQs of an app.

• Store owners can benefit from our update-level analysis while designing the next-

generation reviewing mechanism to show (1) rating details of every update, (2)

the most disliked features in every update, and (3) the most useful features in

every update. Hence, users can make a better decision as of whether to install

the recent update of an app. In addition, app developers could benefit from the

update-level analysis to understand how users perceive their updates and rapidly

react to any raised issues.

• Store owners can benefit from our emergency updates analysis while design-

ing the next-generation updating mechanism to continuously identify the com-

monly repeated mistakes that lead to emergency updates. They can also develop

mechanisms to prevent app developers from repeating such mistakes. In addi-

tion, we demonstrate how the reviewing mechanism can help spot good and bad

updates, so store owners can design the next-generation updating mechanism to

leverage user reviews to proactively limit the distribution of bad updates.



Bibliography

(2013). Structure of an Android app. http://sofia.cs.vt.edu/sofia-2114/book/

chapter2.html. (Last accessed August 2018).

(2018). Patch Tuesday. http://en.wikipedia.org/wiki/Patch_Tuesday. (Last ac-

cessed August 2018).

ABI Research (2013). Android will account for 58% of smartphone

app downloads in 2013, with iOS commanding a market share

of 75% in tablet apps. https://www.abiresearch.com/press/

android-will-account-for-58-of-smartphone-app-down/. (Last accessed:

August 2018).

Akdeniz (2013). Google play crawler. https://github.com/Akdeniz/

google-play-crawler. (Last accessed: August 2018).

198

http://sofia.cs.vt.edu/sofia-2114/book/chapter2.html
http://sofia.cs.vt.edu/sofia-2114/book/chapter2.html
http://en.wikipedia.org/wiki/Patch_Tuesday
https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down/
https://www.abiresearch.com/press/android-will-account-for-58-of-smartphone-app-down/
https://github.com/Akdeniz/google-play-crawler
https://github.com/Akdeniz/google-play-crawler


BIBLIOGRAPHY 199

Anderson, D. R., Burnham, K. P., Gould, W. R., and Cherry, S. (2001). Concerns about

finding effects that are actually spurious. Wildlife Society Bulletin, pages 311–316.

Apktool (2018). Apktool. http://ibotpeaches.github.io/Apktool/. (Last accessed

August 2018).

AppAnnie (2018). App Annie. https://www.appannie.com/. (Last accessed August

2018).

AppBrain (2018). Free versus paid Android apps. http://www.appbrain.com/stats/

free-and-paid-android-applications. (Last accessed: August 2018).

AppBrain (2018). Top Android phones. http://www.appbrain.com/stats/

top-android-phones. (Last accessed August 2018).

Apple (2018a). App store improvements. https://developer.apple.com/support/

app-store-improvements/. (Last accessed: August 2018).

Apple (2018b). iOS human interface guidelines: iOS design themes. https:

//developer.apple.com/library/ios/documentation/UserExperience/

Conceptual/MobileHIG/ColorImagesText.html. (Last accessed August 2018).

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of modern

code review. In Proceedings of the 35th International Conference on Software Engi-

neering, ICSE ’13, pages 712–721.

Banerjee, A., Chong, L. K., Chattopadhyay, S., and Roychoudhury, A. (2014). Detecting

energy bugs and hotspots in mobile apps. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE ’14, pages

588–598.

http://ibotpeaches.github.io/Apktool/
https://www.appannie.com/
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/free-and-paid-android-applications
http://www.appbrain.com/stats/top-android-phones
http://www.appbrain.com/stats/top-android-phones
https://developer.apple.com/support/app-store-improvements/
https://developer.apple.com/support/app-store-improvements/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/ColorImagesText.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/ColorImagesText.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/ColorImagesText.html


BIBLIOGRAPHY 200

Bavota, G., Vásquez, M. L., Bernal-Cárdenas, C. E., Penta, M. D., Oliveto, R., and Poshy-

vanyk, D. (2015). The impact of API change- and fault-proneness on the user ratings

of Android apps. IEEE Transactions on Software Engineering, 41(4):384–407.

Borgatti, S. (1996). Introduction to grounded theory. http://www.analytictech.

com/mb870/introtogt.htm. (Last accessed August 2018).

CFR (2018). CFR - another java decompiler. http://www.benf.org/other/cfr/. (Last

accessed August 2018).

Chen, N., Lin, J., Hoi, S. C. H., Xiao, X., and Zhang, B. (2014). AR-miner: mining infor-

mative reviews for developers from mobile app marketplace. In Proceedings of the

36th International Conference on Software Engineering, ICSE ’14, pages 767–778.

Coblis (2011). Coblis - color blindness simulator. http://www.color-blindness.

com/coblis-color-blindness-simulator/. (Last accessed August 2018).

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psy-

chological Measurement, 20(1):37–46.

Color-Oracle (2018). Color oracle, design for the color impaired. http://

colororacle.org. (Last accessed August 2018).

dex2jar (2016). dex2jar download. http://sourceforge.net/projects/dex2jar/.

(Last accessed August 2018).

Eisenhauer, J. G. (2009). Explanatory power and statistical significance. Teaching

Statistics, 31(2):42–46.

http://www.analytictech.com/mb870/introtogt.htm
http://www.analytictech.com/mb870/introtogt.htm
http://www.benf.org/other/cfr/
http://www.color-blindness.com/coblis-color-blindness-simulator/
http://www.color-blindness.com/coblis-color-blindness-simulator/
http://colororacle.org
http://colororacle.org
http://sourceforge.net/projects/dex2jar/


BIBLIOGRAPHY 201

Eli Hodapp (2017). Players upset about recent ‘Marvel Contest

of Champions’ changes organize “#BoycottMCOC Movement” .

http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-

of-champions-changes. (Last accessed August 2018).

F-Droid (2018). F-Droid. http://f-droid.org/. (Last accessed August 2018).

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. A. (2011). Android permissions

demystified. In Proceedings of the 18th ACM Conference on Computer and Commu-

nications Security, CCS ’11, pages 627–638.

FindBugs (2015). Findbugs™- find bugs in java programs. http://findbugs.

sourceforge.net. (Last accessed August 2018).

Fox, J. and Weisberg, S. (2018). Package ‘car’. https://cran.r-project.org/web/

packages/car/car.pdf. (Last accessed August 2018).

Gao, C., Zeng, J., Lyu, M. R., and King, I. (2018). Online app review analysis for identify-

ing emerging issues. In Proceedings of the 40th International Conference on Software

Engineering, ICSE ’18.

Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-

censored samples. Biometrika, 52(1-2):203–223.

Google (2018a). App manifest, Android developers. http://developer.android.

com/guide/topics/manifest/manifest-intro.html. (Last accessed August

2018).

Google (2018b). Google my business help - read and reply to reviews. https://

http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-of-champions-changes-organize-boycottmcoc-movement/
http://toucharcade.com/2017/03/09/players-upset-about-recent-marvel-contest-of-champions-changes-organize-boycottmcoc-movement/
http://f-droid.org/
http://findbugs.sourceforge.net
http://findbugs.sourceforge.net
https://cran.r-project.org/web/packages/car/car.pdf
https://cran.r-project.org/web/packages/car/car.pdf
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://support.google.com/business/answer/3474050?hl=en


BIBLIOGRAPHY 202

support.google.com/business/answer/3474050?hl=en. (Last accessed August

2018).

Google (2018c). Google Play Developer API - Reply to Reviews. https://developers.

google.com/android-publisher/reply-to-reviews. (Last accessed: August

2018).

Google (2018d). Managing projects overview - Android developers. https://

developer.android.com/tools/projects/index.html. (Last accessed August

2018).

Google (2018e). Permission, Android developers. http://developer.android.

com/guide/topics/manifest/permission-element.html. (Last accessed August

2018).

Google (2018). Ratings, Reviews, and Responses. https://developer.apple.com/

app-store/ratings-and-reviews/. (Last accessed August 2018).

Google (2018a). Update your apps - developer console help. https://support.

google.com/googleplay/android-developer/answer/113476?hl=en. (Last ac-

cessed August 2018).

Google (2018b). Uses-feature, Android developers. http://developer.android.

com/guide/topics/manifest/uses-feature-element.html. (Last accessed Au-

gust 2018).

Google (2018c). Uses-sdk, Android developers. http://developer.android.com/

guide/topics/manifest/uses-sdk-element.html. (Last accessed August 2018).

https://support.google.com/business/answer/3474050?hl=en
https://support.google.com/business/answer/3474050?hl=en
https://developers.google.com/android-publisher/reply-to-reviews
https://developers.google.com/android-publisher/reply-to-reviews
https://developer.android.com/tools/projects/index.html
https://developer.android.com/tools/projects/index.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
https://developer.apple.com/app-store/ratings-and-reviews/
https://developer.apple.com/app-store/ratings-and-reviews/
https://support.google.com/googleplay/android-developer/answer/113476?hl=en
https://support.google.com/googleplay/android-developer/answer/113476?hl=en
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html


BIBLIOGRAPHY 203

Gorla, A., Tavecchia, I., Gross, F., and Zeller, A. (2014). Checking app behavior against

app descriptions. In Proceedings of the 36th International Conference on Software

Engineering, ICSE ’14, pages 1025–1035.

Guana, V., Rocha, F., Hindle, A., and Stroulia, E. (2012). Do the stars align? Multidimen-

sional analysis of Android’s layered architecture. In Proceedings of the 9th Working

Conference on Mining Software Repositories, MSR ’12, pages 124–127.

Guzman, E., Azócar, D., and Li, Y. (2014). Sentiment analysis of commit comments

in GitHub: an empirical study. In Proceedings of the 11th Working Conference on

Mining Software Repositories, MSR ’14, pages 352–355.

Guzman, E. and Maalej, W. (2014). How do users like this feature? A fine grained senti-

ment analysis of app reviews. In Proceedings of the 22nd International Requirements

Engineering Conference, RE ’14, pages 153–162.

Han, D., Zhang, C., Fan, X., Hindle, A., Wong, K., and Stroulia, E. (2012). Understanding

Android fragmentation with topic analysis of vendor-specific bugs. In Proceedings

of the 19th Working Conference on Reverse Engineering, WCRE ’12, pages 83–92.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143(1):29–36.

Hannah Alvarez (2014). A guide to color, ux, and conversion rates. http://www.

usertesting.com/blog/2014/12/02/color-ux-conversion-rates/. (Last ac-

cessed August 2018).

Harman, M., Jia, Y., and Zhang, Y. (2012). App store mining and analysis: MSR for app

http://www.usertesting.com/blog/2014/12/02/color-ux-conversion-rates/
http://www.usertesting.com/blog/2014/12/02/color-ux-conversion-rates/


BIBLIOGRAPHY 204

stores. In Proceedings of the 9th Working Conference on Mining Software Repositories,

MSR ’12, pages 108–111.

Hassan, A. E. and Holt, R. C. (2004). Predicting change propagation in software systems.

In Proceedings of the 20th International Conference on Software Maintenance, ICSM

’04, pages 284–293.

Hassan, S., Shang, W., and Hassan, A. E. (2017). An empirical study of emergency up-

dates for top Android mobile apps. Empirical Software Engineering, 22(1):505–546.

Hemmati, H., Fang, Z., and Mäntylä, M. V. (2015). Prioritizing manual test cases in tra-

ditional and rapid release environments. In Proceedings of the 8th IEEE International

Conference on Software Testing, Verification and Validation, ICST ’15, pages 1–10.

Hendysoft (2013). Smali2java. http://www.hensence.com/en/smali2java/. (Last

accessed August 2018).

Hmisc (2018). Package ‘hmisc’. https://cran.r-project.org/web/packages/

Hmisc/Hmisc.pdf. (Last accessed August 2018).

Hu, H., Bezemer, C.-P., and Hassan, A. E. (2018a). Studying the consistency of star rat-

ings and the complaints in 1 & 2-star user reviews for top free cross-platform Android

and iOS apps. Empirical Software Engineering.

Hu, H., Wang, S., Bezemer, C.-P., and Hassan, A. E. (2018b). Studying the consistency

of star ratings and reviews of popular free hybrid Android and iOS apps. Empirical

Software Engineering.

Hyzap (2018). Hyzap. https://www.heyzap.com. (Last accessed August 2018).

http://www.hensence.com/en/smali2java/
https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf
https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf
https://www.heyzap.com


BIBLIOGRAPHY 205

Iacob, C. and Harrison, R. (2013). Retrieving and analyzing mobile apps feature re-

quests from online reviews. In Proceedings of the 10th Working Conference on Mining

Software Repositories, MSR ’13, pages 41–44.

Iacob, C., Harrison, R., and Faily, S. (2013a). Online reviews as first class artifacts in mo-

bile app development. In Proceedings of the 5th International Conference on Mobile

Computing, Applications, and Services, MobiCASE ’13, pages 47–53.

Iacob, C., Veerappa, V., and Harrison, R. (2013b). What are you complaining about?: a

study of online reviews of mobile applications. In Proceedings of the 27th Interna-

tional BCS Human Computer Interaction Conference, BCS-HCI ’13, page 29.

Icons Mind (2017). Which color is right for your mobile app icon. https://www.

iconsmind.com/color-right-mobile-app-icon/. (Last accessed August 2018).

Jelihovschi, E. G., Faria, J. C., and Allaman, I. B. (2014). ScottKnott: A package for per-

forming the Scott-Knott clustering algorithm in R. Trends in Applied and Computa-

tional Mathematics, 15(1):3–17.

Joorabchi, M. E., Mesbah, A., and Kruchten, P. (2013). Real challenges in mobile app

development. In Proceedings of the 7th ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement, ESEM ’13, pages 15–24.

Keertipati, S., Savarimuthu, B. T. R., and Licorish, S. A. (2016). Approaches for prioritiz-

ing feature improvements extracted from app reviews. In Proceedings of the 20th In-

ternational Conference on Evaluation and Assessment in Software Engineering, EASE

’16, pages 33:1–33:6.

https://www.iconsmind.com/color-right-mobile-app-icon/
https://www.iconsmind.com/color-right-mobile-app-icon/


BIBLIOGRAPHY 206

Khalid, H. (2013). On identifying user complaints of iOS apps. In Proceedings of the

35th International Conference on Software Engineering, ICSE ’13, pages 1474–1476.

Khalid, H., Nagappan, M., Shihab, E., and Hassan, A. E. (2014). Prioritizing the de-

vices to test your app on: a case study of Android game apps. In Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE ’14, pages 610–620.

Khalid, H., Shihab, E., Nagappan, M., and Hassan, A. E. (2015). What do mobile app

users complain about? IEEE Software, 32(3):70–77.

Khandkar, S. H. (2009). Open coding. http://pages.cpsc.ucalgary.ca/~saul/

wiki/uploads/CPSC681/open-coding.pdf. (Last accessed August 2018).

Khomh, F., Adams, B., Dhaliwal, T., and Zou, Y. (2015). Understanding the impact of

rapid releases on software quality - the case of Firefox. Empirical Software Engineer-

ing, 20(2):336–373.

Khomh, F., Dhaliwal, T., Zou, Y., and Adams, B. (2012). Do faster releases improve soft-

ware quality? An empirical case study of Mozilla Firefox. In Proceedings of the 9th

Working Conference on Mining Software Repositories, MSR ’12, pages 179–188.

Ling (2008). Tutorial: Pearson’s Chi-square test for independence. http://www.ling.

upenn.edu/~clight/chisquared.htm. (Last accessed August 2018).

lme4 (2018). Package ‘lme4’. https://cran.r-project.org/web/packages/lme4/

lme4.pdf. (Last accessed August 2018).

Long, J. D., Feng, D., and Cliff, N. (2003). Ordinal Analysis of Behavioral Data. John

Wiley & Sons, Inc.

http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://www.ling.upenn.edu/~clight/chisquared.htm
http://www.ling.upenn.edu/~clight/chisquared.htm
https://cran.r-project.org/web/packages/lme4/lme4.pdf
https://cran.r-project.org/web/packages/lme4/lme4.pdf


BIBLIOGRAPHY 207

Maalej, W. and Nabil, H. (2015). Bug report, feature request, or simply praise? on auto-

matically classifying app reviews. In Proceedings of the 23rd International Require-

ments Engineering Conference, RE ’15, pages 116–125.

Mäntylä, M., Khomh, F., Adams, B., Engström, E., and Petersen, K. (2013). On rapid

releases and software testing. In Proceedings of the 29th International Conference on

Software Maintenance, ICSM ’13, pages 20–29.

Mäntylä, M. V., Adams, B., Khomh, F., Engström, E., and Petersen, K. (2015). On rapid

releases and software testing: a case study and a semi-systematic literature review.

Empirical Software Engineering, 20(5):1384–1425.

Martin, P. (2015). 77% will not download a retail app

rated lower than 3 stars. https://blog.testmunk.com/

77-will-not-download-a-retail-app-rated-lower-than-3-stars/. (Last

accessed August 2018).

Martin, W. (2016). Causal impact for app store analysis. In Proceedings of the 38th

International Conference on Software Engineering, ICSE ’16, pages 659–661.

Martin, W., Harman, M., Jia, Y., Sarro, F., and Zhang, Y. (2015). The app sampling prob-

lem for app store mining. In Proceedings of the 12th Working Conference on Mining

Software Repositories, MSR ’15, pages 123–133.

Martin, W., Sarro, F., and Harman, M. (2016). Causal impact analysis for app releases

in Google Play. In Proceedings of the 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, FSE ’16, pages 435–446.

https://blog.testmunk.com/77-will-not-download-a-retail-app-rated-lower-than-3-stars/
https://blog.testmunk.com/77-will-not-download-a-retail-app-rated-lower-than-3-stars/


BIBLIOGRAPHY 208

Martin, W., Sarro, F., Jia, Y., Zhang, Y., and Harman, M. (2017). A survey of app

store analysis for software engineering. IEEE Transactions on Software Engineering,

43(9):817–847.

McIlroy, S., Ali, N., and Hassan, A. E. (2016a). Fresh apps: an empirical study of

frequently-updated mobile apps in the Google play store. Empirical Software En-

gineering, 21(3):1346–1370.

McIlroy, S., Ali, N., Khalid, H., and Hassan, A. E. (2016b). Analyzing and automatically

labelling the types of user issues that are raised in mobile app reviews. Empirical

Software Engineering, 21(3):1067–1106.

McIlroy, S., Shang, W., Ali, N., and Hassan, A. E. (2017). Is it worth responding to re-

views? studying the top free apps in Google Play. IEEE Software, 34(3):64–71.

Miller, C. (2017). Apple ramping up app store cleaning efforts, has already removed

‘hundreds of thousands’ of apps. https://9to5mac.com/2017/06/21/apple-

ramping-up-app-store-cleaning-efforts-has-already-removed-hundreds-of-

thousands-of-apps/. (Last accessed: August 2018).

mobiThinking (2013). Global mobile statistics 2013 section e: Mobile apps, app

stores, pricing and failure rates. http://mobiforge.com/research-analysis/

global-mobile-statistics-2013-section-e-mobile-apps-app-stores-pricing-and-failure-rates?

mT. (Last accessed: August 2018).

Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R., and Poshyvanyk, D. (2018a).

Machine learning-based prototyping of graphical user interfaces for mobile apps.

IEEE Transactions on Software Engineering.

https://9to5mac.com/2017/06/21/apple-ramping-up-app-store-cleaning-efforts-has-already-removed-hundreds-of-thousands-of-apps/
https://9to5mac.com/2017/06/21/apple-ramping-up-app-store-cleaning-efforts-has-already-removed-hundreds-of-thousands-of-apps/
https://9to5mac.com/2017/06/21/apple-ramping-up-app-store-cleaning-efforts-has-already-removed-hundreds-of-thousands-of-apps/
http://mobiforge.com/research-analysis/global-mobile-statistics-2013-section-e-mobile-apps-app-stores-pricing-and-failure-rates?mT
http://mobiforge.com/research-analysis/global-mobile-statistics-2013-section-e-mobile-apps-app-stores-pricing-and-failure-rates?mT
http://mobiforge.com/research-analysis/global-mobile-statistics-2013-section-e-mobile-apps-app-stores-pricing-and-failure-rates?mT


BIBLIOGRAPHY 209

Moran, K., Li, B., Bernal-Cárdenas, C., Jelf, D., and Poshyvanyk, D. (2018b). Automated

reporting of GUI design violations for mobile apps. In Proceedings of the 40th Inter-

national Conference on Software Engineering, ICSE ’18.

Moran, K., Vásquez, M. L., Bernal-Cárdenas, C., and Poshyvanyk, D. (2015). Auto-

completing bug reports for Android applications. In Proceedings of the 10th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, ESEC/FSE ’15, pages 673–

686.

Neil Patel (2017). How to use the psychology of color to increase website conversions.

https://blog.kissmetrics.com/psychology-of-color-and-conversions/.

(Last accessed August 2018).

Noei, E., Syer, M. D., Zou, Y., Hassan, A. E., and Keivanloo, I. (2017). A study of the

relation of mobile device attributes with the user-perceived quality of Android apps.

Empirical Software Engineering, 22(6):3088–3116.

Oh, J., Kim, D., Lee, U., Lee, J., and Song, J. (2013). Facilitating developer-user interac-

tions with mobile app review digests. In Proceedings of the ACM SIGCHI Conference

on Human Factors in Computing Systems, CHI ’13, pages 1809–1814.

Pagano, D. and Maalej, W. (2013). User feedback in the appstore: An empirical study.

In Proceedings of the 21st International Requirements Engineering Conference, RE ’13,

pages 125–134.

Palomba, F., Salza, P., Ciurumelea, A., Panichella, S., Gall, H. C., Ferrucci, F., and Lucia,

A. D. (2017). Recommending and localizing change requests for mobile apps based

https://blog.kissmetrics.com/psychology-of-color-and-conversions/


BIBLIOGRAPHY 210

on user reviews. In Proceedings of the 39th International Conference on Software

Engineering, ICSE ’17, pages 106–117.

Palomba, F., Vásquez, M. L., Bavota, G., Oliveto, R., Penta, M. D., Poshyvanyk, D., and

Lucia, A. D. (2015). User reviews matter! tracking crowdsourced reviews to support

evolution of successful apps. In Proceedings of the 31st International Conference on

Software Maintenance and Evolution, ICSME ’15, pages 291–300.

Palomba, F., Vásquez, M. L., Bavota, G., Oliveto, R., Penta, M. D., Poshyvanyk, D., and

Lucia, A. D. (2018). Crowdsourcing user reviews to support the evolution of mobile

apps. Journal of Systems and Software, 137:143–162.

Pandita, R., Xiao, X., Yang, W., Enck, W., and Xie, T. (2013). WHYPER: towards automat-

ing risk assessment of mobile applications. In Proceedings of the 22th USENIX Secu-

rity Symposium, pages 527–542.

Panichella, S., Sorbo, A. D., Guzman, E., Visaggio, C. A., Canfora, G., and Gall, H. C.

(2015). How can I improve my app? classifying user reviews for software mainte-

nance and evolution. In Proceedings of the 31st International Conference on Software

Maintenance and Evolution, ICSME ’15, pages 281–290.

Panichella, S., Sorbo, A. D., Guzman, E., Visaggio, C. A., Canfora, G., and Gall, H. C.

(2016). ARdoc: app reviews development oriented classifier. In Proceedings of the

24th ACM SIGSOFT International Symposium on Foundations of Software Engineer-

ing, FSE ’16, pages 1023–1027.



BIBLIOGRAPHY 211

Pathak, A., Hu, Y. C., and Zhang, M. (2011). Bootstrapping energy debugging on smart-

phones: a first look at energy bugs in mobile devices. In Proceedings of the 10th ACM

Workshop on Hot Topics in Networks, HOTNETS ’11, page 5.

Pathak, A., Jindal, A., Hu, Y. C., and Midkiff, S. P. (2012). What is keeping my phone

awake?: characterizing and detecting no-sleep energy bugs in smartphone apps. In

Proceedings of the 10th International Conference on Mobile Systems, Applications,

and Services, MobiSys ’12, pages 267–280.

Perez, S. (2017). Apple will finally let developers respond to

App Store reviews. https://techcrunch.com/2017/01/24/

apple-will-finally-let-developers-respond-to-app-store-reviews/.

(Last accessed: August 2018).

Pete Houston (2011). Store and use files in assets. https://xjaphx.wordpress.com/

2011/10/02/store-and-use-files-in-assets/. (Last accessed August 2018).

Ravindranath, L., Padhye, J., Agarwal, S., Mahajan, R., Obermiller, I., and Shayandeh, S.

(2012). Appinsight: Mobile app performance monitoring in the wild. In Proceedings

of the 10th USENIX Symposium on Operating Systems Design and Implementation,

OSDI ’12, pages 107–120.

Robotium (2016). Robotium. https://code.google.com/p/robotium/. (Last ac-

cessed August 2018).

Romano, J., Kromrey, J. D., Coraggio, J., Skowronek, J., and Devine, L. (2006). Exploring

methods for evaluating group differences on the NSSE and other surveys: Are the

https://techcrunch.com/2017/01/24/apple-will-finally-let-developers-respond-to-app-store-reviews/
https://techcrunch.com/2017/01/24/apple-will-finally-let-developers-respond-to-app-store-reviews/
https://xjaphx.wordpress.com/2011/10/02/store-and-use-files-in-assets/
https://xjaphx.wordpress.com/2011/10/02/store-and-use-files-in-assets/
https://code.google.com/p/robotium/


BIBLIOGRAPHY 212

t-test and Cohen’s d indices the most appropriate choices. In Annual meeting of the

Southern Association for Institutional Research.

RTutorial (2018). Chi-squared test of independence. http://www.r-tutor.com/

elementary-statistics/goodness-fit/chi-squared-test-independence.

(Last accessed August 2018).

Ruiz, I. J. M., Adams, B., Nagappan, M., Dienst, S., Berger, T., and Hassan, A. E. (2014).

A large-scale empirical study on software reuse in mobile apps. IEEE Software,

31(2):78–86.

Ruiz, I. J. M., Nagappan, M., Adams, B., Berger, T., Dienst, S., and Hassan, A. E. (2016).

Examining the rating system used in mobile-app stores. IEEE Software, 33(6):86–92.

Ruiz, I. J. M., Nagappan, M., Adams, B., and Hassan, A. E. (2012). Understanding reuse

in the Android market. In Proceedings of the 20th IEEE International Conference on

Program Comprehension, ICPC ’12, pages 113–122.

Scalabrino, S., Bavota, G., Russo, B., Oliveto, R., and Penta, M. D. (2017). Listening to

the crowd for the release planning of mobile apps. IEEE Transactions on Software

Engineering, pages 1–1.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.

IEEE Transactions on Software Engineering, 25(4):557–572.

SentiStrength (2017). SentiStrength. http://sentistrength.wlv.ac.uk. (Last ac-

cessed August 2018).

Shepperd, M. J., Bowes, D., and Hall, T. (2014). Researcher bias: The use of machine

http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://www.r-tutor.com/elementary-statistics/goodness-fit/chi-squared-test-independence
http://sentistrength.wlv.ac.uk


BIBLIOGRAPHY 213

learning in software defect prediction. IEEE Transactions on Software Engineering,

40(6):603–616.

Simon Vig Therkildsen (2012). What API level should I target? http://simonvt.net/

2012/02/07/what-api-level-should-i-target/. (Last accessed August 2018).

Snijders, T. A. and Bosker, R. J. (2012). Multilevel Analysis: An Introduction to Basic and

Advanced Multilevel Modeling. Sage Publications.

Snijders, T. A. B. (2005). Fixed and Random Effects, in Encyclopedia of Statistics in Be-

havioral Science. John Wiley & Sons, Ltd.

Sorbo, A. D., Panichella, S., Alexandru, C. V., Shimagaki, J., Visaggio, C. A., Canfora, G.,

and Gall, H. C. (2016). What would users change in my app? summarizing app re-

views for recommending software changes. In Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE ’16, pages

499–510.

Sorbo, A. D., Panichella, S., Alexandru, C. V., Visaggio, C. A., and Canfora, G. (2017).

SURF: summarizer of user reviews feedback. In Proceedings of the 39th International

Conference on Software Engineering, ICSE ’17, pages 55–58.

Souza, R. R. G., von Flach G. Chavez, C., and Bittencourt, R. A. (2014). Do rapid releases

affect bug reopening? A case study of Firefox. In Proceedings of the 28th Brazilian

Symposium on Software Engineering, SBES ’14, pages 31–40.

Souza, R. R. G., von Flach G. Chavez, C., and Bittencourt, R. A. (2015). Rapid releases

and patch backouts: A software analytics approach. IEEE Software, 32(2):89–96.

http://simonvt.net/2012/02/07/what-api-level-should-i-target/
http://simonvt.net/2012/02/07/what-api-level-should-i-target/


BIBLIOGRAPHY 214

StackExchange (2015). What does AUC stand for and what is

it? http://stats.stackexchange.com/questions/132777/

what-does-auc-stand-for-and-what-is-it. (Last accessed August 2018).

stackoverflow (2011). Difference between /res and /assets di-

rectories. http://stackoverflow.com/questions/5583608/

difference-between-res-and-assets-directories. (Last accessed August

2018).

stackoverflow (2011). Remove extra unwanted permissions from manifest An-

droid, stackoverflow. http://stackoverflow.com/questions/8257412/

remove-extra-unwanted-permissions-from-manifest-android. (Last ac-

cessed August 2018).

stackoverflow (2013). Clean up unused Android permissions, stack-

overflow. http://stackoverflow.com/questions/18362305/

clean-up-unused-android-permissions. (Last accessed August 2018).

stackoverflow (2013). Storage limit in raw and asset folder in

Android. http://stackoverflow.com/questions/14995756/

storage-limit-in-raw-and-asset-folder-in-android. (Last accessed Au-

gust 2018).

stackoverflow (2014). How to check if Android permission is actually be-

ing used?, stackoverflow. http://stackoverflow.com/questions/24858462/

how-to-check-if-android-permission-is-actually-being-used. (Last ac-

cessed August 2018).

http://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
http://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
http://stackoverflow.com/questions/5583608/difference-between-res-and-assets-directories
http://stackoverflow.com/questions/5583608/difference-between-res-and-assets-directories
http://stackoverflow.com/questions/8257412/remove-extra-unwanted-permissions-from-manifest-android
http://stackoverflow.com/questions/8257412/remove-extra-unwanted-permissions-from-manifest-android
http://stackoverflow.com/questions/18362305/clean-up-unused-android-permissions
http://stackoverflow.com/questions/18362305/clean-up-unused-android-permissions
http://stackoverflow.com/questions/14995756/storage-limit-in-raw-and-asset-folder-in-android
http://stackoverflow.com/questions/14995756/storage-limit-in-raw-and-asset-folder-in-android
http://stackoverflow.com/questions/24858462/how-to-check-if-android-permission-is-actually-being-used
http://stackoverflow.com/questions/24858462/how-to-check-if-android-permission-is-actually-being-used


BIBLIOGRAPHY 215

Statista (2016). Cumulative number of apps downloaded from the google play

as of may 2016 (in billions). http://www.statista.com/statistics/281106/

number-of-android-app-downloads-from-google-play/. (Last accessed: Au-

gust 2018).

Statista (2018). Number of apps available in leading app stores as of

1st quarter 2018. http://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/. (Last accessed: Au-

gust 2018).

Stats (2018). Documentation for package ‘stats’. https://stat.ethz.ch/R-manual/

R-patched/library/stats/html/00Index.html. (Last accessed August 2018).

Stuart Dredge (2013). Information commissioner’s office releases app pri-

vacy guidelines. http://www.theguardian.com/technology/2013/dec/19/

information-commissioners-office-app-privacy-guidelines. (Last accessed

August 2018).

Syer, M. D., Nagappan, M., Adams, B., and Hassan, A. E. (2015). Studying the rela-

tionship between source code quality and mobile platform dependence. Software

Quality Journal, 23(3):485–508.

Syer, M. D., Nagappan, M., Hassan, A. E., and Adams, B. (2013). Revisiting prior em-

pirical findings for mobile apps: an empirical case study on the 15 most popular

open-source Android apps. In Proceedings of the 2013 Conference of the Center for

Advanced Studies on Collaborative Research, CASCON ’13, pages 283–297.

http://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
http://www.statista.com/statistics/281106/number-of-android-app-downloads-from-google-play/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/00Index.html
http://www.theguardian.com/technology/2013/dec/19/information-commissioners-office-app-privacy-guidelines
http://www.theguardian.com/technology/2013/dec/19/information-commissioners-office-app-privacy-guidelines


BIBLIOGRAPHY 216

Telerik (2014). Extra Android permissions always set. http://www.telerik.com/

forums/extra-android-permissions-always-set. (Last accessed August 2018).

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kappas, A. (2010). Sentiment in

short strength detection informal text. JASIST, 61(12):2544–2558.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the characteristics

of high-rated apps? A case study on free Android applications. In Proceedings of the

31st International Conference on Software Maintenance and Evolution, ICSME ’15,

pages 301–310.

Tourani, P., Jiang, Y., and Adams, B. (2014). Monitoring sentiment in open source mail-

ing lists: exploratory study on the Apache ecosystem. In Proceedings of 24th Annual

International Conference on Computer Science and Software Engineering, CASCON

’14, pages 34–44.

Vásquez, M. L., Bavota, G., Bernal-Cárdenas, C., Penta, M. D., Oliveto, R., and Poshy-

vanyk, D. (2013). API change and fault proneness: a threat to the success of Android

apps. In Proceedings of the 9th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering, ESEC/FSE ’13, pages 477–487.

Villarroel, L., Bavota, G., Russo, B., Oliveto, R., and Penta, M. D. (2016). Release plan-

ning of mobile apps based on user reviews. In Proceedings of the 38th International

Conference on Software Engineering, ICSE ’16, pages 14–24.

Wan, M., Jin, Y., Li, D., and Halfond, W. G. J. (2015). Detecting display energy hotspots

http://www.telerik.com/forums/extra-android-permissions-always-set
http://www.telerik.com/forums/extra-android-permissions-always-set


BIBLIOGRAPHY 217

in Android apps. In Proceedings of the 8th IEEE International Conference on Software

Testing, Verification and Validation, ICST ’15, pages 1–10.

Wilcoxon (2018). Wilcoxon rank sum and signed rank tests. https://stat.ethz.ch/

R-manual/R-devel/library/stats/html/wilcox.test.html. (Last accessed Au-

gust 2018).

Xu, W., Zhang, F., and Zhu, S. (2013). Permlyzer: Analyzing permission usage in Android

applications. In Proceedings of the 24th IEEE International Symposium on Software

Reliability Engineering, ISSRE ’13, pages 400–410.

Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A. (2004). Mining version histo-

ries to guide software changes. In Proceedings of the 26th International Conference

on Software Engineering, ICSE ’04, pages 563–572.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html

	Abstract
	Acknowledgments
	Dedication
	Co-authorship
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Thesis Overview
	Thesis Contributions

	Background
	Literature Survey
	Bugs in Mobile Apps
	User Reviews of Mobile Apps
	Characteristics of Successful Apps
	User-Developer Dialogue in App Stores

	Studying the Common Developer Mistakes that Lead to Emergency Updates
	Introduction
	Methodology
	Characteristics of Emergency Updates
	Our Approach for Identifying the Patterns of Emergency Updates
	Identified Patterns for Emergency Updates
	Limitations and Threats to Validity
	Related work
	Chapter Summary

	Studying How the Reviewing Mechanism Can Help Spot Good and Bad Updates
	Introduction
	Methodology
	Motivational Study
	A Study of Bad Updates
	Implications
	Analyzing Good Updates
	Threats to Validity
	Chapter Summary

	Studying the Dialogue Between Users and Developers
	Introduction
	Data Collection
	Preliminary Study
	Study I: A Study of the Characteristics of User-Developer Dialogues
	Study II: A Quantitative Study of the Likelihood of a Developer Responding
	Study III: A Qualitative Study of What Drives a Developer to Respond
	Implications
	Threats to Validity
	Related Work
	Chapter Summary

	Conclusions and Future Work
	Thesis Contributions
	Further Work


