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Abstract Build systems are responsible for transforming static source code artifacts

into executable software. While build systems play such a crucial role in software

development and maintenance, they have been largely ignored by software evolution

researchers. However, a firm understanding of build system aging processes is needed

in order to allow project managers to allocate personnel and resources to build system

maintenance tasks effectively, and reduce the build maintenance overhead on regular

development activities. In this paper, we study the evolution of build systems based on

two popular Java build languages (i.e., ANT and Maven) from two perspectives: (1) a

static perspective, where we examine the complexity of build system specifications using

software metrics adopted from the source code domain; and (2) a dynamic perspective,

where the complexity and coverage of representative build runs are measured. Case

studies of the build systems of six open source build projects with a combined history

of 172 releases show that build system and source code size are highly correlated, with

source code restructurings often requiring build system restructurings. Furthermore,

we find that Java build systems evolve dynamically in terms of duration and recursive

depth of the directory hierarchy.

Keywords Build Systems · Software Evolution · ANT · Maven · Software Complexity

1 Introduction

Software build systems are responsible for automatically transforming the source code

of a software project into a collection of deliverables, such as executables and de-

velopment libraries. A build process may involve hundreds of command invocations

that must be executed in a specific order to correctly produce a set of deliverables.

First, a configuration tool identifies which build tools are needed during the build and

checks whether the configuration of software features selected by the user is valid. The
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requirements and constraints of build tools and software features are derived from spec-

ifications written in a configuration language [10]. Second, a construction tool like make

or ANT constructs the configured build deliverables in the correct order by observing

the dependencies in the build specification files (e.g., makefile or ANT build.xml files).

Build systems play a key role in the software development process. They simplify the

lives of developers, who constantly need to re-build testable artifacts after completing a

code modification. Build systems also play a key role in team coordination. For example,

the continuous integration development methodology requires automatic execution of

project builds and publication of results via email or web sites to provide direct feedback

to developers about software quality [1]. Maintaining a fast and correct build system

is pivotal to the success of modern software projects.

Unfortunately, build systems require substantial maintenance effort. Kumfert et al.

find that on average, build systems induce a 12% overhead on development effort [20],

i.e., 12% of development effort is spent maintaining the build system. Build mainte-

nance can involve the addition of build rules to accommodate new source code modules,

or adjustments to the configuration of compiler/linker flags. Build maintenance drives

the evolution of build specification files in many projects. For example, the Linux build

engineers went out of their way to make integration of new code into the build process

trivial to encourage contributions. The core build machinery, which is hidden behind an

intricate facade, has evolved into a highly complex build system that requires consider-

able effort to maintain [3]. As a second example, the maintenance of the build system

in the KDE 3 project was such a burden that it drastically impacted the productivity

of KDE developers, and even warranted migration to a new build technology, requiring

a substantial investment of effort [30]. To most developers, it would appear that as a

build system ages, only its perceived complexity increases, i.e., builds consume more

computational resources and take longer to complete.

Despite the crucial role of build systems and their non-trivial maintenance effort,

software engineering research rarely focuses on them. Initial findings have shown that

the size and complexity of build systems grow over time [3, 36]. However, this evolution

primarily has been studied in make-based build systems for C projects. Little is known

about build specifications for Java projects.

Similar to C and C++ code, Java code must be compiled and bundled before

it can be delivered to end users. Hence, Java projects also require build systems to

translate source code files into a deliverable format. Due to improvements in the com-

piler behaviour, the Java compiler can resolve dependencies at compile time [11], while

most C and C++ compilers cannot. Hence, we suspect that Java build systems evolve

differently than C and C++ build systems studied in prior work [3, 36].

In this paper, we present an empirical study of traditional source code evolution

phenomena in six Java build systems. We address the following two research questions:

RQ1) Do the size and complexity of source code and build system evolve together?

Our static code analysis of build system specifications shows not only that Java

build systems follow linear or exponential evolution patterns in terms of size and

complexity, but also that such patterns are highly correlated with the evolution

of the Java source code.

RQ2) Does the perceived build-time complexity evolve?

Our build-time analysis of Java build systems did not reveal a common pattern

in the build-time length of the studied projects, although for some projects we
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observe linear growth or other trends in build-time length, recursive depth, and

build coverage.

This paper is an extended version of our earlier work [24]. The original work pro-

vides:

– An empirical study of the evolution of ANT build systems in four small-to-large

open source systems;

– A definition of the Halstead suite of complexity metrics for the domain of build

systems;

– Evidence of high correlation between the evolution of ANT build systems and the

source code.

We extend this work to provide an empirical study of the evolution of Maven build

systems in two medium-sized open source projects. Maven is a different Java build

technology that is gaining momentum recently. In addition, we further expand the

Halstead suite of complexity metrics to the domain of Maven build systems. Further-

more, we draw comparisons between the ANT and Maven build system evolution, and

extrapolate higher-level comparisons between Java and C build systems.

The remainder of the paper is organized as follows. Section 2 introduces the ANT

and Maven build languages and associated terminology. Section 3 elaborates on the

research questions that we address. Section 4 discusses the methodology for the case

studies that we conducted on six open source systems, while Sections 5 and 6 present the

results. Section 7 draws comparisons between the evolution of ANT versus Maven build

systems, and build systems for C versus Java projects. Section 8 discusses the threats

to validity. Section 9 surveys related work. Finally, Section 10 draws conclusions.

2 Background

We first provide an overview of build system concepts in general, then introduce the

ANT and Maven build languages for Java projects, which are the focus of our study.

2.1 Build System Concepts

A typical build system consists of two major layers [2]. The configuration layer allows

a user or developer to select code features, compilers, and third-party libraries to

use during the build process, and enforces any constraints or conflicts between these

configuration options. The configuration layer may automatically detect a default set of

configuration options by scanning the build environment, but these default values can

be overridden by the user. In this paper, we ignore the configuration layer and assume

that the default set of configuration options has been selected (similar to Adams et

al. [2]).

The construction layer considers the configuration options that were selected by

the user and parses the build specification files to determine the necessary build tasks

and the order in which they must be executed to produce the desired build output.

Construction layer (or build) specifications are typically expressed in a build system

language. Among build languages, popular choices include make [13], ANT [5], and

Maven [6]. Table 1 compares the features of these build languages. We discuss ANT and
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sub/build.xml
<project name="example" default="link">
   <property name="blddir" location="build" />
   <property name="classes" location="${blddir}/classes" />
   <property name="dist" location="${blddir}/dist" />

   <target name="init">
      <mkdir dir="${blddir}" />
      <mkdir dir="${classes}" />
      <mkdir dir="${dist}" />
   </target>

   <target name="compile" depends="init">
      <javac
         destdir="${classes}"
         srcdir="maindir"
         includes="**/*.java"
      />

      <ant
         antfile="sub/build.xml"
         target="compile"
      />
   </target>

   <target name="link" depends="compile">
      <jar
         jarfile="${dist}/example.jar"
         basedir="${classes}"
      />
   </target>

   <target name="clean">
      <delete dir="${blddir}" />
   </target>
</project>

build.xml
<project name="example-sub" default="compile">
   <target name="init">
      <echo message="In sub/build.xml" />
   </target>

   <target name="compile" depends="init">
      <javac
         destdir="${classes}"
         srcdir="."
         includes="**/*.java"
      />
   </target>
</project>

build.xml sub/build.xml

init

compile

link

init

compile

References
Follows

(1)

(2)

(3)

(4)(5)

Fig. 1 Example ANT build.xml files (left, top-right) and the resulting build graph (bottom-
right). The build graph has a depth of 2 (i.e., “compile” in build.xml references “init” in
sub/build.xml) and a length of 5 (i.e., execute (1), (2), (3), (4), then (5)).

sub/pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>an.example</groupId>
  <artifactId>application</artifactId>
  <packaging>pom</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>application</name>
  <url>http://www.example.com/</url>
  <modules>
    <module>sub</module>
  </modules>
</project>

pom.xml
<project ...>
  <modelVersion>4.0.0</modelVersion>
  <groupId>an.example.application</groupId>
  <artifactId>sub</artifactId>
  <packaging>jar</packaging>
  <parent>
    <groupId>an.example</groupId>
    ...
  </parent>
  <version>1.0-SNAPSHOT</version>
  <name>sub</name>
  <url>http://www.example.com/</url>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
  <build>
    <plugins>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <version>2.3.2</version>
        <configuration>
          <source>1.5</source>
          <target>1.5</target>
        </configuration>
      </plugin>
    </plugins>
  </build>
</project>

children

Selected
compiler
features

Junit
external

dependency

Fig. 2 Example Maven pom.xml files.

Maven in the next subsections, but first we briefly explain the general build language

concepts.

Every build language depends at the lowest level on a unit of build activity. For

instance, in make, these units are invocations of concrete build commands, such as

shell scripts, compilers, and other tools. These units of build activity are typically

encapsulated in an abstraction to describe a high-level build task, e.g., the construction

of one library in the system, or a specific conceptual task like “preprocessing all files”.

In make, this abstraction corresponds to build rules that specify how to construct build

targets like executables, dynamic libraries or perform more abstract tasks. Finally the

build process is defined in terms of dependencies between the abstractions. For example,
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Table 1 Build concepts.

make ANT Maven

Build specifica-
tions

Makefiles, *.mk build.xml pom.xml

Unit of build activ-
ity

Build commands in-
side build rule.

ANT tasks inside
ANT targets.

Goals bound to a
particular phase.

Unit of abstraction Build rules specify-
ing how to build par-
ticular build target
(file or abstraction).

Custom ANT tar-
gets specifying how
to perform a concep-
tual build activity.

Standardized Maven
phases specifying
how to perform a
conceptual build
activity.

Dependency man-
agement

A target is only re-
built if one or more
of its dependent tar-
gets have been re-
built.

A target is only re-
built if one or more
of its dependent tar-
gets have been re-
built.

A fixed sequence of
phases.

a make target is only built if at least one target on which it depends has changed. The

abstractions and their dependencies in the build system form a directed acyclic graph

(“build graph”), which is the basis for most build languages [2].

2.2 ANT

This paper studies the evolution of open source build systems implemented in the

ANT build language. ANT, an acronym for Another Neat Tool, was created by James

Duncan Davidson in 1999. He was fed up with some of the inconsistencies in the

make build language, which was and still is the de facto standard among build system

languages for C and C++ projects [29]. Although make pioneered many build system

concepts, there are serious flaws in its design, such as the inherent platform dependence

of commands inside the make build rules and the common recursive architecture found

in many make build systems [27]. To resolve these flaws, ANT was designed to be small,

extensible, and operating system independent. Still, many of the concepts introduced

by make survive in ANT. An example ANT specification file and the resulting build

graph are shown in Figure 1.

An ANT build system is specified by a collection of XML files. <project> tags

contain all of the code related to a software project. <target> tags correspond to build

targets (unit of abstraction) we explained above. Such a <target> is responsible for

conceptual build activities like “compile all source files” (“compile” target in Figure 1)

or “collect all class files in a jar archive” (“link” target in Figure 1). <targets>s are

essentially sequences of <task> tags (unit of build activity) that specify for example

how to “create a directory” (“mkdir” tasks in the “init” target of build.xml) or “run

the compiler on the given set of source files” (“javac” task in the “compile” target of

either XML file).

The ANT build language comes stocked with a library of common build <task>s.

If a <task> implementation does not exist, ANT provides an Application Programmer

Interface (API) for developing expansion tasks. The Task API, like the ANT parser

itself, is implemented for the Java SE platform. This enables the <task>s to be imple-
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mented in a platform-independent way, in contrast to the shell scripts and tools used

by make.

Similar to targets in make build systems, ANT targets “depend” on one another.

These dependencies can be modeled as a build graph consisting of length and depth

dependencies. For instance, consider the build graph shown in the bottom-right section

of Figure 1. In this example, ANT has been instructed to execute the “link” target, yet

its dependencies must be satisfied first. The “link” target depends on the “compile”

target, which in turn depends on the “init” target. As an example of a depth depen-

dency, the “compile” target (via its <ant> task) depends on another “compile” target

in a different specification file (i.e., sub/build.xml). The build graph shown in Figure 1

is said to have a length of five since five targets were triggered, and a depth of two

since two was the maximum depth encountered in the graph.

2.3 Maven

This paper also studies the evolution of open source build systems implemented with

Apache Maven [6]. Maven was created with build process standardization in mind,

since many Java projects of the Apache foundation had to re-implement the same ANT

targets and tasks over and over again. These common build activities were consolidated

into the dedicated concept of a Maven Build Lifecycle. A lifecycle is composed of one

or more sequential phases in a fixed order (imposed by the Maven designers). For

example, a simple lifecycle may contain (1) a “compile” phase where source code is

compiled into bytecode, followed by (2) a “package” phase where bytecode is bundled

into a deliverable format.

Each phase may contain zero or more sequential goals. A phase without goals is

skipped during the build, whereas those with one or more goals bound are executed

in the order dictated by the build lifecycle. For example, the “compile” phase may (1)

enforce a coding style standard by binding an “enforce” goal to it, then (2) compile the

source code by binding a “compile” goal to it. Each goal is implemented as a Maven

plugin.

The default build lifecycle is composed of 23 phases [8]. Typically, not all 23 phases

are needed for a particular project. Instead, the build engineers select a subset of the 23

phases, or for certain types of deliverable (e.g., JAR or WAR), Maven already provides

a default set of phases to accelerate build system development. For example, Figure 2

shows an example Maven build system with a module “sub” that is built using JAR

packaging (sub/pom.xml line 5). Hence, when building this module, maven will execute

the default build lifecycle for JAR packaging projects as shown in Table 2. All of the

studied Maven projects use JAR packaging, so we do not discuss the lifecycles of other

packaging types in the paper.

Additional goals may be bound to lifecycle phases by configuring additional Maven

plugins in build specification files. For example, integration testing may be executed

during the build process by loading an appropriate plugin and binding an integration

testing goal to the integration-test lifecycle phase (not configured by default).

In addition to build process standardization through the build lifecycle, Maven also

features automatic management of third party libraries. Java projects often struggle

with managing these external dependencies, typically opting to either (1) commit the

exact versions of the libraries into the project’s Version Control System (VCS), or (2)

download them automatically using hard-coded ANT targets. Maven provides support
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Table 2 The Maven default lifecycle for JAR packaging.

Phase Description

process-resources Pre-process the resource files.

compile Compile the source code.

process-test-resources Pre-process the test resource files.

test-compile Compile the test code.

test Execute the unit tests.

package Package the compiled code into the deliverable format.

install Install the deliverables in the local Maven repository.

deploy Upload the installed deliverables to a remote reposi-
tory.

for specifying required versions and maintaining them in a local cache repository for

use in all Maven-built projects.

3 Research Questions

Software evolution is concerned with the aging process of source code. For example,

Lehman et al. established the laws of software evolution, which suggest that as software

ages, it increases in size and complexity [9, 21, 22]. Godfrey et al. found that the Linux

source code grows super-linearly in size and complexity [14].

We conjecture that build systems also evolve in terms of size and complexity. Un-

derstanding this evolution is important, since the build system plays a critical role

in the software development process. Indeed, most software development stakeholders

interact with the build system [31]. Developers use a build system to run a software

system after adding a new feature or fixing a defect. Software testers use the build sys-

tem to automate the validation of deliverables by executing unit and integration tests

during the build process. Development methodologies based on continuous integration

depend on a fast and correct build system in order to swiftly deliver reports on the

current status of the project source code. For all of these stakeholders, maintaining a

correctly functioning build system is of the utmost importance.

This paper improves the understanding of build system evolution by studying the

evolution of Java build systems. Prior work focused exclusively on C and C++ build

systems. For example, Adams et al. found initial evidence of increasing complexity in

the Linux kernel build dependency graphs [3]. Zadok also found evolving complexity in

the Berkeley Automounter build system [36], measured in terms of lines of build code

and the number of conditionally compiled code branches.

Similar to C and C++ code, Java code must be compiled and bundled before it can

be delivered to end users. Hence, Java projects also require build systems to translate

source code files into deliverable bytecode. However, the Java compiler differs from the

C compiler in two ways: (1) a single invocation of the Java compiler will automatically

resolve dependencies between all of the input source files, while dependencies between

C files traditionally can only be managed by external dependency management tools

like make, requiring separate compiler invocations per source code file; and (2) Java

compiler invocations are expensive, since the Java Virtual Machine (JVM) must be
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Fig. 3 Overview of our approach to study the evolution of build systems.

started before and shut down after each invocation [11]. Both compiler differences

result in a reduction of the number of Java compiler invocations needed to build a Java

system. Based on this, we conjecture that Java build systems are not only specified in

a different manner, and hence, evolve differently than C build systems, but also that

Java build systems should require less maintenance than C build systems. To validate

these claims, this paper focuses on the following two research questions:

RQ1) Do the size and complexity of source code and build system evolve together?

We need to analyze how the evolution of build systems is related to that of

the source code in order to: (1) validate earlier build system findings, and (2)

contrast the evolution of build systems against the evolution of source code. Since

traditionally, evolution studies typically only considered complexity metrics for

source code, we first need to define specialized complexity measures for build

systems.

RQ2) Does the perceived build-time complexity evolve?

Developers and users often complain about how long their build takes and how

the build seems to become slower over time. We are interested in investigat-

ing whether this perceived build-time complexity indeed exhibits evolutionary

trends. That is, how much build code is routinely exercised and how long does

a typical build take across different releases of a software project.

4 Methodology

To address the two research questions, we track the evolution of software build systems

for different releases of six open source projects. There are some existing metrics from

the source code domain that we can use, but we also need to define metrics that

are customized to the domain of build systems. The focus of these metrics is on the

identification of trends related to RQ1 and RQ2. An overview of our approach is shown

in Figure 3. We now explain each step of our approach.

4.1 Data Retrieval

We consider official software releases of a project as the level of granularity for our

analysis. While no software team can guarantee their product to be buildable at all
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Table 3 Metrics used in our build system analysis. The examples in Figures 1 and 2 are used
to provide example calculations for ANT and Maven.

Group Metric Description Example
(ANT)

Example
(Maven)

Static

Build Lines of
Code (BLOC)

The number of non-
empty lines of code in
build specification files.

30 + 12 = 42 16 + 34 = 50

Target Count The number of build
targets in the build
specification files.

4 + 2 = 6 N/A

Task Count The number of task in-
vocations in the build
specification files.

7 + 2 = 9 N/A

File Count The number of specifi-
cation files in the build
system.

2 2

Halstead
Complexity

The amount of infor-
mation contained in the
build system (Volume).

(15 + 24) ×
log2(10 +
10) ≈ 168.6

(35 + 33) ×
log2(20 + 18) ≈
356.9

The mental difficulty
associated with under-
standing the build sys-
tem specification files
(Difficulty).

10
2
× 24

10
= 12 19

2
× 33

18
≈ 17.4

The weighted Difficulty
with respect to Volume
(Effort).

168.6 × 12 ≈
2, 023.2

356.9 × 17.4 ≈
6, 210.1

Dynamic

Build Graph
Length

The length of a build
graph, either in terms
of the total number
of executed tasks (fine-
grained) or of the total
number of executed tar-
gets (coarse-grained).

Targets: 3 +
2 = 5; Tasks:
6 + 2 = 8

7

Build Graph
Depth

The maximum level of
depth references made
in chains of references
from one build target
to another in different
build specification files.

2 2

Target Cover-
age

The percentage of tar-
gets in the build system
that are exercised by a
given build target.

Default: 5
6
≈

83.3%
N/A

Dynamic
Build Lines
of Code
(DBLOC)

The percentage of code
in the build system that
is exercised by a given
build.

Default: 38
42
≈

90.5%
N/A

times in the development cycle, an official software release is by nature a buildable and

runnable version of a project. This decision is critical for our dynamic build analysis

in RQ2.

For each project, a collection of official source code releases were retrieved. These

releases were downloaded from the official release archives, except for the ArgoUML

and Hibernate data, which were retrieved from the project Version Control System
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Table 4 Studied Projects
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Domain
UML Web App IDE ORM App
Editor Container Server Server

Source Size ≤ 176 ≤ 277 ≤ 731 ≤ 2, 900 ≤ 328 ≤ 219
(KSLOC)
Build System ≤ 6 ≤ 11 ≤ 29 ≤ 200 ≤ 3 ≤ 30
Size (KBLOC)
Timespan 2002-09 1999-09 2002-09 2001-09 2008-10 2006-10
Number of

12 90 25 25 9 11
Releases
Shortest Rel.

53 days 2 days 13 days 32 days 15 days 8 days
Cycle
Longest Rel.

593 days 714 days 398 days 176 days 286 days 328 days
Cycle
Average Rel.

228 days 95 days 130 days 110 days 91 days 100 days
Cycle
Release Style Single Parallel Parallel Single Parallel Single

(VCS). The released versions of ArgoUML and Hibernate were marked in the VCS

with annotated tags.

4.2 Evolution Metrics

In our study, we use various static and dynamic metrics to quantify a wide variety of

build system characteristics across the releases. The metrics are summarized in Table 3.

BLOC, build target/task/file count, and Halstead complexity are gathered statically.

Dynamically, build system content is measured using the length and depth dimensions

of the build graph. Metrics such as BLOC, file count, DBLOC and the Halstead suite of

complexity metrics are inspired by corresponding source code metrics, whereas others

such as target count and task count were used in earlier studies [3]. Build graph depth

and target coverage are new metrics proposed by this study. Some metrics only apply

to ANT build systems.

Most of the metrics are self-explanatory, except for the Halstead complexity met-

rics, as we had to adapt their definition from source code to build systems. To our

knowledge, the notion of such an explicit metric for static build system complexity is

new. To measure the complexity of build files, we adapt a source code metric, because

build specification files share many similarities with source code implemented in an

interpreted programming language. Case in point, the SCons [19] and Rake [17] build

languages are entirely based on the Python and Ruby programming language, respec-

tively. With this in mind, we conjecture that build system complexity can be measured

by applying source code complexity metrics on build system description files.

Since establishing a definitive measure of static complexity for build systems is not

the focus of this paper, we only focus on the Halstead suite of complexity metrics [16].

In future work, we plan to examine the McCabe cyclomatic complexity [23] and how

it applies to build systems, although results of our case study indicate that (similar
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to source code [15, 32]), size metrics already provide a good approximation of build

system complexity.

We now define the Halstead suite of complexity metrics for build system languages.

The Halstead complexity metrics measure:

– Volume: How much information a reader has to absorb in order to understand a

program’s meaning.

– Difficulty: How much mental effort a reader must expend to create a program or

understand its meaning.

– Effort: How much mental effort would be required to recreate a program.

Each Halstead metric depends on four tally metrics that are based on source code

characteristics. First, we must tally the number of operators, i.e., functions that take

input parameters to produce some output. Within the scope of build systems, we

consider an operator as any target or task in ANT or any XML tag in Maven. Next,

we must tally the number of operands used in the source code. Within the scope of

build systems, we consider operands as the parameters passed to a target or task tag

in ANT (excluding the target “name” parameter; e.g, ‘b’ in <a b=c>) or to any child

tag in Maven.

We tally both the number of distinct operators and operands in the build code

(n1 and n2), as well as the total number of operators and operands in the build code

(N1 and N2). The tallies with the ‘1’ suffix represent the number of operators, and the

tallies with the ‘2’ suffix represent the number of operands. These values are then used

to calculate the Halstead volume, difficulty, and effort as follows [16]:

Volume = (N1 +N2) × log2(n1 + n2) (1)

Difficulty =
n1

2
× N2

n2
(2)

Effort = Difficulty × Volume (3)

Table 3 shows calculations of the Halstead metrics for the ANT and Maven exam-

ples in Figures 1 and 2. Here we briefly discuss how we arrived at the N1, N2, n1, and

n2 values.

For the ANT example in Figure 1, there are 5 targets and 10 tasks in the two

build.xml files (N1 = 5 + 10 = 15). Together, these targets and tasks have 24 operands

(N2 = 24). There are 4 distinct targets and 6 tasks (n1 = 4 + 6 = 10). Finally, there

are 10 distinct operands (n2 = 10).

For the Maven example in Figure 2, there are 10 XML tags in pom.xml and 25

XML tags in sub/pom.xml (N1 = 10 + 25 = 35). 33 of the 35 XML tags are child tags

(N2 = 33). 20 of the XML tags are distinct (n1 = 20), while 18 child XML tags are

distinct (n2 = 18).

4.3 Analysis Methodology

As suggested by our choice of metrics in Table 3, we analyze each release using two

perspectives. For RQ1, build system files and program source files of each release are

examined statically. SLOC was measured using David A. Wheeler’s sloccount util-

ity [35]. To measure static build metrics such as target count, task count, and the

Halstead complexity of build system specification files, we developed a SAX-based
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Java tool. Since comment and whitespace lines are discarded by the sloccount tool,

our BLOC count also discards them using a sed script. The surviving lines are tallied

using wc.

For RQ2, the build system of each release was exercised using the default build

configuration and the results were logged, similar to Adams et al. [2]. The ANT output

was exported to an XML log using the built-in ANT XML logger (-logger XmlLogger).

The Maven output was exported in text, since Maven does not support XML output.

The log of a build embodies the dynamic build graph. To analyze the graph, our

Java tool was extended to calculate dynamic metrics such as target coverage, build

graph length and depth in terms of both targets and tasks, and the time elapsed

during the build. To facilitate future work, we have made the raw ANT and Maven

build logs available on the web [25].

Developers may implement customized ANT tasks using the Java-based ANT API.

While such .java files are technically maintained as part of the build system, they specify

the internals of a custom task, comparable to the implementation of a shell script

invoked by makefiles. Hence, they should not simply be aggregated with the ANT build

specifications, which are task-agnostic. We elect to leave custom task implementations

out of this study, but do plan to revisit the problem in future work.

Historical project documentation such as mailing list archives, release notes, and

source code revision comments were consulted in order to investigate our findings for

RQ1 and RQ2.

4.4 Studied Projects

We selected six open source projects of different size, domain, build technology and

release style. Table 4 summarizes the characteristics of the projects, ranked from small

to large.

ArgoUML is a Computer Aided Software Engineering (CASE) tool for producing

Unified Modelling Language (UML) diagrams. Tomcat is a popular implementation of

the Java Servlet and Java Server Pages (JSP) technologies. JBoss is a well-known Java

Application Server. Eclipse is a general-purpose Integrated Development Environment

(IDE) developed by IBM. Hibernate is an Object-to-Relational mapping framework

for Java programs, of which we studied the “core” subsystem. Geronimo is a Java 2

Enterprise Edition (J2EE) application server runtime environment.

Four of the studied projects use ANT as the build technology (ArgoUML, Tomcat,

JBoss, Eclipse), while only two studied projects use Maven (Hibernate and Geronimo).

Maven is a newer build technology that is starting to gain momentum. Thus, there is

less data available for analysis.

5 ANT Case Study

In this section, we present the results of our ANT case study with respect to our two

research questions.
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Fig. 4 Standardized BLOC and SLOC values. In most projects, the source code and build
system evolution trends are very similar. Anomalies are discussed in the text.

Table 5 Correlation of static size metrics (ArgoUML, Tomcat, JBoss, and Eclipse). P-values
are mostly <0.01, except for some of the low correlations shown in bold, whose p-values are
shown in parentheses.

Task Count File Count
A T J E A T J E

Target Count 0.99 0.99 0.88 0.97 0.98 0.99 0.75 0.98
Task Count 0.95 0.98 0.64 0.99

BLOC SLOC
A T J E A T J E

Target Count 0.98 0.99 0.40 (0.05) 0.98 0.98 0.97 0.89 0.95
Task Count 1.00 1.00 0.15 (0.47) 1.00 0.95 0.97 0.78 0.99
File Count 0.94 0.99 0.59 0.99 0.96 0.98 0.88 0.98

BLOC 0.94 0.98 0.40 (0.05) 0.99

RQ1) Do the size and complexity of source code and build system evolve together?

We explored the evolution of ANT build system specification files from three angles.

First, we use Figure 4 to show a general trend of increasing size in the four projects,

then we use Table 5 and 6 to show that there is a strong correlation between the growth

in the static size and complexity of a build system, and finally we use Figure 4 and

Table 5 again to show that the build system and source code evolve similarly in terms

of size.

ANT Build systems grow in size: In Figure 4, we plot the standardized BLOC

and SLOC metrics so that we may compare these two metrics in one graph, as SLOC

values have a much higher scale than BLOC values (see Table 4). This standardization

is calculated by weighting each data point in terms of its distance from the average

BLOC or SLOC across all releases of a system, measured in units of standard deviation

(i.e., Y = n−µ
σ , where n is the size in BLOC or SLOC, µ is the mean size in BLOC
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or SLOC, and σ is the standard deviation). In projects with parallel releases, i.e.,

two or more release branches supported simultaneously, we standardized values with

respect to each branch rather than across all releases. A logarithmic transformation

was explored, but we found that it compressed many of the subtle characteristics of

the trends.

The BLOC of ArgoUML in Figure 4 shows a clearly increasing trend with the ex-

ception of one period in between releases 0.18.1 and 0.20 (Figure 4(b)). During this

period, ArgoUML underwent a restructuring where modules for C# code generation

and internationalization were migrated from the main ArgoUML repository into sepa-

rate repositories. In doing so, the ArgoUML team seized an opportunity to revise the

associated build specifications for these modules. As a result, the overall build system

size was reduced. The ArgoUML team confirmed these findings.

Tomcat shows two unique trends of growth in BLOC. In the 4.0.x releases, the build

system was initially subject to a rapid increase in BLOC (Figure 4(d)). This was due to

extensive work in the Catalina subproject. 568 lines of BLOC were added to implement

configuration detection and release packaging logic in the Catalina build specification

file. This period was followed by a rather calm period where only critical bug fixes were

committed to the branch as it neared the end of its maintenance life. The 4.1.x branch

begins its life with a calm period, followed by an 18-month hiatus between revisions

4.1.31 and 4.1.32 (Figure 4(e)) as Tomcat moved out of the Jakarta project and was

rebranded as a standalone Apache project. This period shows an explosive increase of

both BLOC and SLOC as a result of the 18 month project structure overhaul. After

the restructuring was complete, the branch returns to a relatively calm progression as

it approaches its end of maintenance life.

Refactoring efforts at Figure 4(f) and Figure 4(g) skew the first half of the results in

JBoss, which otherwise has an increasing trend in BLOC. During Figure 4(f), an entire

rewrite of the enormous “testsuite” build specification file resulted in the removal of

approximately 5,000 BLOC. During Figure 4(g), code for supporting JAX-RPC was

moved out of the main JBoss project and into a separate plugin project called JBoss

WS (Web Services). In addition, the ‘common’ module was removed and its source

code was integrated into other areas of the project hierarchy. As a result, the main

JBoss project lost two build specification files and 568 BLOC.

Figure 4 shows that the Eclipse build system is growing in terms of BLOC. Fur-

ther inspection of the trend using an exponential regression (Figure 5) suggests that

the Eclipse build system is growing exponentially (with an R2 value of 0.98). This

exponential trend is accounted for by the plugin nature of Eclipse. The Eclipse project

maintains a modular and self-contained build system for each plugin. The top level of

the build system simply chains together the builds for each plugin. It then follows that

with each new plugin added, a large amount of build code is also introduced. As pop-

ularity rises and more plugins make their way into the Eclipse project mainline, these

new plugins each introduce more build code. We calculated the Pearson correlation be-

tween the number of plugins in each release and BLOC to be 0.99. This suggests that

the exponentially rising trend in build system size strongly correlates with the trend in

the number of plugins per release. ArgoUML and Tomcat 4.1.x appear to have a linear

growth trend with R2 values of 0.86 and 0.91 respectively. JBoss and Tomcat 4.0.x do

not have clear linear or exponential regression trends, since the R2 values are less than

0.5.
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Table 6 Pearson correlation between Halstead Metrics (Rows) and BLOC (Columns). P-
values are mostly <0.01, except for some of the low correlations shown in bold, whose p-values
are shown in parentheses.

ArgoUML Tomcat JBoss Eclipse

Volume 0.99 1.00 0.17 (0.43) 1.00
Difficulty 0.98 0.99 0.20 (0.34) 1.00

Effort 0.93 0.98 0.11 (0.61) 0.96

Similar to Lehman’s first law of software evolution, build system specifica-

tions tend to grow over time unless explicit effort is put into refactoring

them.

All dimensions of ANT build systems grow: Table 5 shows the Pearson cor-

relation (and p-value statistic) between the static size metrics for each studied system.

With the exception of the JBoss project, which will be explained later, the high corre-

lation and statistically significant p-values with p < 0.05 indicate that BLOC, target

and task count evolve similarly. Since the general trends of BLOC are growing, we can

say that all dimensions of the ANT build systems grow.

The static complexity of ANT build systems increases: We find that the

Halstead complexity metrics follow trends similar to BLOC. Table 6 shows, for each

studied system, the Pearson correlation between each Halstead complexity metric and

the BLOC. With the exception of the JBoss project, the results indicate that build

specification complexity is highly correlated with build specification size (BLOC) and

the values are statistically significant with p < 0.05. This finding seems to agree with

similar findings from research in the source code domain [15, 32].

In the JBoss build system, the Halstead complexity metrics and build system size

are not highly correlated, as the JBoss build system is implemented in a different style.

It leverages the underlying XML roots of ANT specification files to introduce a system

of abstraction. The <!ENTITY> macro substitution tag is used extensively to import

build specification code from external files, similar to header file inclusion in C. The

expansion is performed at run-time. This causes skew in our results since we study

BLOC in the unexpanded build files, whereas for the three other systems there is no

difference between expanded and unexpanded form.

The Halstead complexity of a build system is highly correlated with the build

system’s size (BLOC), indicating that BLOC is a good approximation of

build system complexity.

Source code and ANT build system growth are highly correlated: Based

on our observations of size and complexity trends, we are now able to verify whether

growth periods of the build system coincide with growth periods of the source code.

For each project, we: (1) calculated the Pearson correlation between BLOC and SLOC;

and (2) visually compare the trends of BLOC and SLOC in Figure 4.

Table 5 shows that BLOC and SLOC are highly correlated, suggesting that the

build system and source code tend to evolve together. Once again, the JBoss results

are skewed because of their <!ENTITY> code inclusion method.

The correlation between the growth in BLOC and SLOC for the four subject sys-

tems is illustrated in Figure 4. In most cases, the characteristics of the source code

and build specification curves are very similar, which suggests that BLOC and SLOC
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are co-dependent. Deviations from the trend are analyzed by investigating individual

commits in the respective source code repositories.

In ArgoUML, anomalies occur at Figure 4(a), (b), and (c). During Figure 4(a), a

refactoring was performed where source code that was previously hard-coded in six

java source files, became automatically generated from an ANTLR grammar file. The

build specifications were updated to perform the Java code generation task. Hence, we

see an increase in BLOC and a sharp decrease in SLOC. During the period encircled in

Figure 4(b), C# code generation and internationalization modules were migrated from

the main ArgoUML repository to individual repositories (as mentioned above) and

the test source code of the unit tests module was distributed across different areas of

the project hierarchy. The build specifications for the original unit tests module were

deleted. Since no source was removed in the restructuring process and development

work in other areas was continuing, we see an increase in project source code. During

Figure 4(c), another refactoring effort was undertaken where the documentation module

was removed and placed into its own repository. In ArgoUML, the majority of build

system restructuring seems to be instigated by source code evolution.

In the Tomcat project, the trends suggest that the source code and build system

are growing in sync with each other. The increases at Figure 4(d) and (e) are explained

above.

For the first of the parallel release branches of the JBoss project, it would appear

that there is little correlation between the BLOC and SLOC trends. During the rewrite

of the build specification file in the “testsuite” module in the Figure 4(f) interval, the

system source code was unaffected and hence was subject to the standard growth. The

build system size apparently reached such a critical point that explicit steps were taken

to restructure the build system. During Figure 4(g), JAX-RPC support was moved out

of the main JBoss project and as a result, the SLOC reduced by 72 KSLOC. These

events produce considerable noise in otherwise highly correlated BLOC and SLOC

trends.

In Eclipse, the trends in BLOC and SLOC are very similar. However, in between re-

leases 3.5 and 3.5.1 (Figure 4(h)), we observe a sharp increase in BLOC and a moderate

increase in SLOC. The BLOC increase is due to the introduction of a special plugin with

the express purpose of driving the build system. The org.eclipse.releng.eclipsebuilder

plugin contains ANT code that invokes script generators to build all of the shipped

Eclipse plugins. The plugin contains nine new ANT files and 1,127 BLOC.

In most projects, BLOC and SLOC are highly correlated. Manual inspec-

tion suggests that many large restructurings in the build system are caused

by major restructurings in the source code.

RQ2) Does the perceived build-time complexity evolve?

We study the evolution of perceived build system complexity from three angles. First,

we use Figure 6 to show growth of build graph length and depth in the four studied

build systems, then we use Table 7 to examine the build recursion complexity, and

finally we analyze changes in target coverage, which is a measure of perceived build

system complexity.
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Fig. 6 Standardized build graph dimensions. Build graph length (in targets) and depth have
an R2 value of 0.94 and 0.88 in Eclipse.

We elected to exercise the build target that generates all deliverable jar files in each

project, conventionally called the “all” target. We selected the “all” target, since it is

available in each of the studied projects, and has the same meaning in each project.

ANT Build Graph Behaviour Analysis: We study the dynamic behaviour of

a build system by examining changes to the standardized length and depth of its build

graph.
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During Figure 6(a), ArgoUML shows a large change in both dimensions of the

build graph. This was caused by the introduction of new internationalization and unit

test compilation targets that became part of the default build. The Figure 6(b) interval

corresponds to the Figure 4(b) interval. The restructuring of modules into independent

projects results in a considerable decrease in the build graph dimensions, and hence

build time of the main project.

Figure 6(2) does not show data for Tomcat 3.x, 4.x and 6.x because of an interesting

evolution. The Tomcat build system automatically downloads required third party Java

archives (.jar files) based on hard-coded URLs of the archived releases. The hard-coded

URLs for Tomcat 3.x and 4.x have become stale by now, preventing us from building

these releases. The Tomcat 5.x URLs were still valid, allowing us to build these releases.

During Figure 6(c), Tomcat shows an increase in build graph length and depth where

a collection of third party library dependencies were, for a brief period, built from

source code instead of downloaded pre-built. The inability to build Tomcat 3.x and

4.x shows that managing third-party dependencies is an important driver for build

system evolution. This is why the Maven build technology integrates third-party library

dependency management into the build system.

In JBoss 3.x, the trend in build graph length sees rapid change initially, followed

by a lull in later releases. However, JBoss 4.x shows a decrease in build length at (d)

due to the removal of the JAX-RPC support and its build files from the main project

at release 4.0.5 (mentioned above). JBoss 5.x is not plotted since only three releases in

this branch are analyzed and this is not enough data to derive a solid trend.

In the Eclipse project, we see a steady linear increase for both the length and depth

dimensions (with R2 values of 0.94 and 0.88 respectively). The correlation between

these two dimensions is discussed below.

We found no general laws for build graph behaviour. Studied systems show

either increasing trends in build graph length, or periods of growth and

reduction. Trends are due to build restructurings or functionality being

added to the default build.

Constant Depth vs. Varying Depth: Figure 6 shows two distinct trends in the

build graph depth: (1) a near-constant depth (Tomcat and JBoss), and (2) a depth that

seems to vary in trends similar to build graph length (ArgoUML and Eclipse). Table 7

shows the Pearson correlation (and p-values) between build graph depth and length

metrics. The table indicates that the ArgoUML and Eclipse builds grow similarly in

both length and depth dimensions, while Tomcat and JBoss do not. Manual investiga-

tion of the build systems of the projects reveals that the ArgoUML and Eclipse builds

are recursive, while the Tomcat and JBoss ones are not. A recursive build process is one

that divides the build process into smaller builds of each component, and each com-

ponent build is further divided into builds of subcomponents, and so on. Conversely,

non-recursive builds are performed in one build process. We observe that the recursive

builds vary in depth, while the non-recursive builds have a constant depth. We also find

that once a recursive or non-recursive design has been selected, the project maintains

the design and does not change.

As the Eclipse project ages, the maximum depth of recursion reached during its

build process increases. This implies that as the project ages, the build process ac-

tually grows linearly in both length and depth dimensions. The build system had

grown to such a state that the Eclipse team has introduced in version 3.5.1 the

org.eclipse.releng.eclipsebuilder plugin mentioned earlier. Both JBoss and Tomcat make
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Table 7 Pearson Correlation between Dynamic Metrics (Rows) and Build Graph Depth
(Columns).

ArgoUML Tomcat JBoss Eclipse
Cor. p-val Cor. p-val Cor. p-val Cor. p-val

Elapsed Time 0.37 0.24 0.14 0.40 0.40 0.70 0.92 <0.01

Build Graph Length
0.92 <0.01 0.37 0.02 0.48 0.02 0.96 <0.01

(Targets)
Build Graph Length

0.94 <0.01 0.12 0.48 0.80 <0.01 0.96 <0.01
(Tasks)

limited use of recursion, only ever reaching a maximum depth of two. These projects

only grow in length.

Our findings suggest that build systems require design before implementa-

tion, similar to source code. The studied projects either select a recursive

design or a non-recursive one. Once a design has been selected, the studied

projects do not switch.

ANT Build Coverage Behaviour Analysis: To study the dynamic coverage of

a typical build, we calculate the proportion of code exercised in the default build target

relative to the total amount of static specification code. We do not show a graph for

coverage because the values remain relatively constant unless a major event occurs.

In ArgoUML, the coverage varies between 14-29%, with two notable increases of 7%

and 8% corresponding to the project restructuring periods discussed earlier (Figure 6(b)

and (c)). The BLOC shrank during the restructuring, which implies that the ArgoUML

build system was bloated with unused code prior to the project restructuring.

The coverage metrics in both Tomcat and JBoss do not show any significant change

in value hovering at around 30% and 40% respectively. Minor fluctuations of ±3% occur

between release branches (e.g., Tomcat 5.0.x to 5.5.x), however the major restructurings

that were mentioned above do not seem to have an effect on the build system coverage.

In Eclipse, there is one notable change in the otherwise constant coverage showing

an increase of 36% from 2.x to 3.x. This was caused by a decrease in total number

of existing targets and an increase in the number of targets hit by the default build.

The decrease in total targets was caused by the removal of redundant build logic.

This indicates that while major changes were made to system functionality (enough to

warrant an increase in major release number), a similar amount of work was invested

in the build system.

In general, the coverage values are low, ranging between 14% and 40%. There are

numerous potential reasons for the low coverage, such as platform-specific behaviour,

configuration-specific behaviour, or dead code accrual. Furthermore, release prepara-

tion and automated testing features of the build system were not exercised.

Target coverage remains more or less constant for each project. Major

fluctuations of ±10% correspond with major project events such as re-

structuring efforts or major releases that change the default build func-

tionality.
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Fig. 7 Standardized BLOC and SLOC values for the Maven projects. Source code and build
system evolution trends are very similar.

6 Maven Case Study

In this section, we present the results of our Maven case study with respect to our two

research questions.

RQ1) Do the size and complexity of source code and build system evolve together?

We explored the evolution of Maven build specification files using the same three angles

as ANT. First, we use Figure 7 to show a general trend of increasing size in the two

projects, then we use Table 8 to show that there is a strong correlation between the

growth in the static size and complexity of a build system, and finally we use Figure 7

and Table 8 again to show that the build system and source code evolve similarly.

Maven builds also grow: Figure 7 shows that, similar to ANT and make, the size

of Maven-based build systems also grows over time. Below, we discuss the anomalies

with respect to each project.

In 2006, the Hibernate project migrated their existing ANT build system to Maven

build technology [12]. The exact motivation for the migration is unclear. In this section,

we analyze the Maven-built portion of the Hibernate project evolution. Version 3.3.0 is

the first release that used the Maven build system to produce the official deliverables.

In Figure 7, we show the Hibernate releases built with Maven, i.e., from version 3.3.0

onward.

The Hibernate Maven build system shows consistent growth throughout its lifetime.

The large spike is due to major changes from the 3.3.2 to the 3.5.0 releases, while the

smaller increases are due to small changes between service pack releases (e.g., 3.3.x).

Larger code changes are more likely to introduce defects [28]. Thus, to avoid breaking

the existing build infrastructure of a release-producing branch of code, large changes

to the build are delayed until a new minor release (e.g., 3.5.0).

The Geronimo project used Maven for their build system from project birth. The

Geronimo build is consistently growing with the exception of the encircled 1.0 to 2.0

transition, when the build shrank. In Geronimo, the 1.0 build system was implemented

using Maven 1.x technology. In version 2.0, the Geronimo build system was migrated to
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Table 8 Pearson correlation between BLOC (Columns) and the build system’s Halstead com-
plexity and SLOC (Rows). P-values are mostly <0.01, except for some of the low correlations
shown in bold, whose p-values are shown in parentheses.

Hibernate Geronimo

Volume 1.00 1.00
Difficulty 0.99 0.33 (0.33)

Effort 1.00 0.84
SLOC 0.99 0.76

Maven 2.x technology, which required major build specification changes [7]. Specifically,

the project.properties and build.properties files were merged into a settings.xml file,

and the maven.xml and project.xml files were replaced with the pom.xml file.

Maven builds grow unless explicit effort is invested to restructure them.

The complexity of Maven specification files evolves: Table 8 shows that,

similar to ANT build systems, the Halstead complexity of Maven specification files is

highly correlated with BLOC. Again, this is similar to prior work in the source code

domain that suggests that size is a good approximation for source code complexity [15,

32].

In Geronimo, we observe little correlation between BLOC and Halstead Difficulty

(0.33). The p-value for this metric was 0.30, much larger than the standard cutoff

of 0.05, indicating that this correlation is not statistically significant. The Pearson

correlation of the Volume and Effort Halstead metrics had p-values that were less than

0.01, indicating that those correlations are statistically significant.

Since the studied build systems grow in size, and the build system complexity

metrics are highly correlated with the size, we can say that the studied build systems

also grow in complexity as projects age.

Similar to findings in the source code domain, build system complexity can

be reasonably approximated by its size in BLOC.

Maven build growth is highly correlated with source growth: The positive

correlations in Table 8 also show that trends of growth or reduction in the source code

are often accompanied by similar trends in the build system. We encircle periods in

Figure 7 when the build and source code do not agree. Below we elaborate on each

anomaly with respect to each project.

In Hibernate, most periods of growth in the source code have similar growth in the

build system. However, in the encircled period between releases 3.5.0 and 3.5.1, the

build grew quicker than the source code. The build files were modified to add Groovy

source code generation to the build process, which introduced a family of new library

dependencies to the build.

In Geronimo, the encircled discrepancy between build and source code was due to

the migration of Maven versions 1 and 2 mentioned above. Otherwise, the source and

build size trends are similar.

Source code and Maven build systems tend to grow and shrink together.
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Fig. 8 Standardized build graph dimensions.

RQ2) Does the perceived build-time complexity evolve?

We study the evolution of perceived build system complexity in Maven build systems

using a similar approach as used to study ANT systems. We use Figure 8 to show

growth of build graph dimensions in the two studied build systems.

Similar to our ANT study, we measure two dimensions of the Maven build graphs for

the JAR-producing “package” phase. We measure the length of the build by counting

the number of goals that are executed to reach the end of the “package” phase, and we

measure the depth of a build by counting the number of directories from the deepest

module containing a Maven specification file to the top of the source tree. Figure 8

shows the standardized versions of these two build graph dimensions for each release.

Maven features automated downloading and maintenance of third-party component

dependencies. In order to keep our comparison with ANT on an even plane, the third-

party components were downloaded prior to our analysis.

Since versions previous to 3.3.x of Hibernate were not built using Maven, we refrain

from presenting them in Figure 8. In Geronimo, builds prior to 2.x require libraries

that are no longer served in the Geronimo Maven repositories, hence we only present

Geronimo builds of the 2.x releases.

Maven build length slowly increases as a project ages: Figure 8 shows

growth in the length of a build as projects age. The steep increases in length happen

during minor release changes, i.e., 3.3.2 and 3.5.0 in Hibernate and 2.0.2 and 2.1.0

in Geronimo. There is much less growth between service pack releases, e.g., 2.0.1 and

2.0.2 in Geronimo. There are fewer large changes in service pack releases, since they

are more likely to introduce defects [28]. Thus, there is little growth in the build length

since there is little new code to build. In minor and major releases, there are larger

amounts of source code change, and hence longer build lengths since the new code must

be compiled and linked.

Maven builds consistently grow longer as a project ages. There is much

more growth between minor releases than in between service pack releases.

Maven build depth remains constant: Before discussing our depth results, we

briefly introduce the concept of modules and multi-module Maven build process. A

Maven module is simply a component of a Maven-build product that is self-contained,
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i.e., a subdirectory with its own Maven build specification file(s). Multi-module Maven

builds are achieved by connecting modules together using “Reactor” builds. In a Maven

Reactor build, the top-level specification file is parsed first. The specification lists all

modules that must be built in order to complete the build. The Maven process will then

parse all of the module build files, each of which may contain their own specification

lists that are processed recursively until there are no longer any module specifications

to parse. The Maven process then proceeds to execute the necessary goals in each

module until the build request is satisfied. We measure the depth of a Maven build

by counting the number of directories between the deepest build module in the build

process and the top directory in the source tree.

Figure 8 shows that depth is constant for both Hibernate and Geronimo projects.

This suggests that Hibernate and Geronimo do not need to grow deeper. This may be

due to the evolutionary activity before the period that we examine. For instance, we

study Hibernate builds 3.3.x-3.5.x. This means that Hibernate has had 2 major releases,

i.e., 1.x.x and 2.x.x, to solidify a source tree structure before we begin examining the

build. Similarly, in Geronimo, we study the 2.x builds, leaving out the 1.x builds where

much of the depth growth may have occurred.

The depth of the studied Maven projects does not appear to change.

7 Discussion

We divide our post-experiment discussion into (1) a comparison of our findings for

ANT and Maven build technologies, (2) a comparison of our findings for Java build

systems to earlier findings for C and C++ build systems, and (3) a discussion of our

future work in the area of build systems.

7.1 ANT and Maven comparison

We study the evolution of both ANT and Maven build systems in open source projects.

We find that both types of build systems: (1) grow in terms of static and dynamic

complexity as a project ages unless explicit effort is invested to restructure them, (2)

the build system size in BLOC is a good approximation for build system complexity,

and (3) build system and source code grow together, and in cases when they disagree,

they were often reacting to the same development event.

Although the Hibernate project migrated its existing ANT build infrastructure to

Maven between versions 3.2.7 and 3.3.0, we are unable to directly compare the ANT and

Maven build evolution. Such a comparison would not be fair for two reasons. First, while

the ANT build was much smaller, only ever reaching 1,152 BLOC, it provided much

less functionality. Maven builds provide built-in mechanisms for library dependency

management, automated test execution, report publishing, and website generation.

While these three tasks are achievable in ANT, they require a large investment of

development effort.

Second, the Hibernate migration to the Maven build was accompanied by a project

restructuring. The Hibernate ANT build only needed to produce client and back-end

libraries, whereas the Maven build must produce several smaller libraries. This decom-

position of the larger libraries was done to allow Hibernate users to only link their
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applications with those classes that they require. However, the smaller source code

components that produce the smaller libraries must also have a build component to

allow for seamless decomposition [18]. Thus, the number of build files increased. Fur-

thermore, we find that the last Hibernate ANT build (version 3.2.7) had 288 BLOC/file

on average in four files, and the first Maven build (version 3.3.0) had 78 BLOC/file in

27 files. This drop in average size was likely due to the restructuring effort and is likely

not a generalizable trend across all Maven migrations. However, more case studies are

required to clarify this.

7.2 C and Java build system comparison

A single invocation of the Java compiler will automatically resolve dependencies be-

tween the input source files, while the C compiler must rely on external dependency

management through build tools like make. For this reason, we expect to find that Java

build systems should require less effort to create and keep in sync with the source code

than C build systems. In this section, we compare our findings for Java to prior work

on make-based C build systems.

Adams et al. made three observations about the evolution of the make-based Linux

build system: (1) the Linux build system evolves, (2) the complexity of the build

increases over time, and (3) maintenance drives the evolution of the build system. The

first two findings are mirrored by our findings for both ANT and Maven build systems

for Java projects, i.e., both ANT and Maven build systems grow in size and complexity

unless explicit effort is invested to restructure them. This indicates that, similar to C

build systems, effort is still invested in keeping the build in sync with the source code.

However, there are differences in the driving motivations of the evolution.

For instance, in make, there are serious flaws with the common recursive paradigm

used to implement modular make-based build systems [27]. The Linux build engineers

invested much effort in maintaining a modular build system that avoids the flaws as-

sociated with recursive make [3]. Build system modularity support is built into ANT

via the <ant> task, and Maven via Reactor builds. Modularity support provided by

ANT and Maven relieves ANT and Maven build engineers from concerns about poten-

tial modularity flaws. The engineers can focus on the actual restructuring of the build

system.

The Linux build engineers were also greatly concerned with maintaining a simple

interface for driver developers to integrate code into the Linux build process. This is a

major concern since driver source code contributions make up the majority of the Linux

source code [14]. We found that similar concerns drive the evolution of the Eclipse and

JBoss build systems. Eclipse build engineers maintain a separate plugin that simplifies

the Eclipse build process for plugin developers. The JBoss “buildmagic” code increases

build code reuse and simplifies the process of adding a JBoss component to the JBoss

project.

Finally, Linux build engineers must maintain explicit dependency listings among

targets in the build specifications, i.e., makefiles. They need to implement large

amounts of boilerplate code to prevent incorrect dependencies from producing inconsis-

tent deliverables or even breaking the build. ANT and Maven build specification are not

concerned with such details, since the Java compiler handles dependency management

among source files.
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To summarize, C and Java build systems evolve similarly from a high-level of

analysis. Many of the drivers of the evolution of C build systems are present in Java

build systems, yet there are important differences.

7.3 Future Work

Since the major finding of this paper is that the complexity of build systems increases

unless explicit effort is invested to restructure them, we believe that the major task

of future work is to identify concrete measures that practitioners can take to reduce

the impact of build system maintenance. We provide two important areas for concrete

measures.

The first area is at the developer level. Since changes to the source code often

require changes to the build system, and vice versa, it is important for all stakeholders

to know when build maintenance is necessary, and how. Since developers often struggle

with code that they are not familiar with [4], similar issues are to be expected for build

code, which uses lesser known languages and tools. Hence, a novice developer may

easily introduce a source code change, unaware that build maintenance is required. If

the build system is not changed when a change is required, the source code may not

compile or may produce incorrect deliverables. Hence, we are currently working on a

recommendation system to assist developers by identifying code changes that require

build maintenance.

Apart from tool support, it is also important to identify concrete measures at

the development process level. For example, projects such as Linux [3] and Perl [34]

have dedicated teams of build experts. Centralizing build maintenance provides explicit

support for developers to help them maintain the build system, yet can turn turn out

to be a bottleneck. On the other hand, there are probably not enough build experts

to distribute them across every development team. Hence, determining policies and

strategies for build maintenance at the process level is a second important avenue for

future work.

8 Threats to Validity

Construct Validity: Our analysis focuses on the release level. At this resolution,

we miss build system events that happen during the development cycle. We avoid

development revisions because there is no guarantee that the system is in a buildable

and working state, a precondition to our dynamic analysis for RQ2.

Similar to earlier work [3], our builds are all based on a single platform and configu-

ration. The platform we used is Linux on an x86-based processor and the configuration

is the default configuration suggested for this platform. This decision was made to

ensure that we used a consistent platform for comparison. By only exploring a single

configuration, we may have left areas of the build unexplored.

Internal Validity: The BLOC metric measures lines of build specification code

and does not consider build task implementation code. As such, custom ANT task

implementations and Maven plugin code did not factor into the build system size or

complexity. Build task implementation code remains an unmeasured dimension of the

build system size and complexity.
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External Validity: Our case studies are based on open source projects and more

specifically, open source projects built using ANT or Maven. Our results may not

generalize to commercial systems or even open source systems in different domains.

To combat this limitation, we considered projects of differing size, domain, and release

style.

Our case studies are limited to ANT and Maven build technologies, and as such,

our findings may not generalize to other build technologies. However, the similarities

between our findings and those found for make-based build processes studied in prior

work [3] suggest that this threat is limited.

9 Related Work

We present work related to our study in the areas of build system and software evolu-

tion.

Robles et al. argue that software artifacts other than source code also exhibit in-

teresting maintenance and evolution patterns [33]. In our paper, we present a study of

the evolution of build systems, a software artifact that co-evolves with project source

code.

Adams et al. conjecture that not only do build systems evolve but also that they co-

evolve with the program source code [3]. Their study of the Linux kernel build system,

implemented using make, showed a super-linear (i.e., exponential) trend in the size of

build specifications. We only found a super-linear growth in the Eclipse build system.

We studied a variety of Java systems with different build technologies, while the prior

work only studied the Linux build system.

Miller studies make build systems implemented using the common recursive paradigm [27].

He explains some of the rather gruesome pitfalls of the paradigm when used in an un-

bounded fashion. In our study, we use our build graph depth metrics to keep track of

the maximum level that a build recursively encounters. We have no data about whether

or not the practice of build recursion in ANT or Maven is a good design choice for Java

build systems.

Kumfert and Epperly investigate the development overhead involved with maintain-

ing the build system [20]. In a survey they conducted, developers claim that anywhere

between 0% and 35.71% of their development time is spent maintaining the build sys-

tem. For one specific case, Kumfert and Epperly validate their survey result of 20%

by mining the project team’s VCS history, categorizing each commit as relating to the

build, the project source, and a few other categories that are out of this scope. We

study software releases to try to uncover why developers find build systems complex,

with the aim of eventually proposing better methods for managing build systems. In a

follow-up study, we have also investigated the overhead of build maintenance on nine

open source systems and one commercial system at the level of individual changes.

We found that build maintenance can impose up to a 27% overhead on source code

development [26], which confirms Kumfert et al.’s numbers.

Tu et al. identified a “Code Robot” build system design pattern [34]. In case stud-

ies of the Perl and GCC projects, they show that many build processes produce a

preliminary, platform-specific version of a deliverable responsible for building the final

version of the deliverable. For instance, in GCC, an initial phase of the build produces

a restricted GCC compiler that is used to compile the remaining code and produce

the final GCC deliverable. In this paper, we also study the build system, however we
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focus on the evolution of build system specifications, both statically and dynamically

in order to better understand the build system maintenance process.

Lehman et al. discuss their laws of program evolution [21, 22]. Based on the patterns

observed in proprietary software, they find that source code tends to grow in size and

entropy. Whereas Lehman et al. focus on the evolution of programs and changes in the

program environment, we focus on the evolution of build systems and changes in the

build environment.

Zadok studied the effect of the migration of the Berkeley Automounter build system

to the GNU Autotools build infrastructure [36]. We did not consider migrations of build

technology, since complexity metrics are hard to compare across technologies. For this

reason, we refrained from comparing Hibernate’s ANT and Maven build systems.

10 Conclusions

Software build systems are complex entities in and of themselves. They evolve both

statically and dynamically in terms of size and complexity. We find that Lehman’s first

two laws apply in the context of build systems, i.e., our case study indicates that build

systems change continuously. Furthermore, build systems grow in complexity as a side

effect of the changes induced by Lehman’s first law. Changes to the build system often

need to be accompanied by changes to the project’s source code.

Through a case study of six open source Java projects, we made the following

important observations across ANT and Maven build systems:

– Both the static and dynamic size, and the complexity of build systems show patterns

of growth over time that correlate with the size of the project source code.

– The exponential growth of Eclipse’s build system is highly correlated with the

project plugin count.

– Once a build system has established either a recursive or flat design, it does not

switch to the other.

– The Halstead complexity of a build system is highly correlated with the build

system’s size (BLOC).

– As observed in Tomcat, management of third-party libraries is a crucial factor in

build system evolution.

– Large fluctuations in target coverage (±10%) correspond with major project events

such as restructuring efforts and major releases.

– The findings above are consistent with earlier findings for make-based systems with

slightly different drivers of build system evolution.

Together with our findings on build maintenance [26], the finding in this paper

that large project restructurings are accompanied by similar restructuring in the build

system suggests that software projects should dedicate more resources to build main-

tenance tasks, or at least consider these resources in their planning and budgeting.

Armed with this understanding, project managers can predict that periods of sub-

stantial change in the source code will be accompanied by similar change in the build

system. This allows them to allocate resources to the maintenance and testing of the

build system more effectively.
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