
Noname manuscript No.
(will be inserted by the editor)

Analyzing and Automatically Labelling The Types of User
Issues that are Raised in Mobile App Reviews

Stuart McIlroy, Nasir Ali, Hammad Khalid and
Ahmed E. Hassan

the date of receipt and acceptance should be inserted later

Abstract Mobile app reviews by users contain a wealth of information on the issues that
users are experiencing. For example, a review might contain a feature request, a bug report,
and/or a privacy complaint. Developers, users and app store owners (e.g., Apple, Blackberry,
Google, Microsoft) can benefit from a better understanding of these issues – developers can
better understand users’ concerns, app store owners can spot anomalous apps, and users can
compare similar apps to decide which ones to download or purchase.

However, user reviews are not labelled, i.e., we do not know which types of issues are
raised in a review. Hence, one must sift through potentially thousands of reviews with slang
and abbreviations to understand the various types of issues. Moreover, the unstructured and
informal nature of reviews complicates the automated labelling of such reviews.

In this paper, we study the multi-labelled nature of reviews from 20 mobile apps in
the Google Play Store and Apple App Store. We find that up to 30% of the reviews raise
various types of issues in a single review (e.g., a review might contain a feature request and
a bug report). We then propose an approach that can automatically assign multiple labels
to reviews based on the raised issues with a precision of 66% and recall of 65%. Finally,
we apply our approach to address three analytics proof-of-concept use case scenarios: (i)
we compare competing apps to assist developers and users, (ii) we provide an overview of
601,221 reviews from 12,000 apps in the Google Play Store to assist app store owners and
developers and (iii) we detect anomalous apps in the Google Play Store to assist app store
owners and users.

Keywords Mobile apps, reviews, multi-labelling, anomaly detection

1 Introduction

The Mobile app market continues to grow at a very rapid pace with thousands of devel-
opers, thousands of apps, and millions of dollars in revenue [1]. Mobile apps are available
through app stores such as the Apple App Store, the Blackberry World Store, the Google

Stuart McIlroy, Nasir Ali, Hammad Khalid and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
E-mail: {mcilroy, nasir, hammad, ahmed}@cs.queensu.ca

Table 1: The number of user reviews occurring in a five day window (Sept 4 to Sept 9 2013).

App Name User Reviews in a 5 day period
AccuWeather 878

The Weather Channel 665
WeatherBug 298

Play Store, Microsoft Phone Apps Store and many more specialized or regional app stores.
Such stores provide a convenient and efficient medium for users to download apps and to
provide feedback on their user-experience through mobile app user reviews.

Such mobile app user reviews (from this point forward, we refer to the description sec-
tion of a mobile app user review as simply a user review) contain valuable information e.g.,
feature requests, functional complaints, and privacy issues. This information is valuable to
mainly three stakeholders (from this point forward, we will use the term “stakeholders” to
refer to developers, users, and app store owners): (i) developers receive timely feedback
about issues related to their apps e.g., bugs, feature requests, and any other issue, (ii) a user
can read user reviews to make an informed decision whether or not to download/purchase an
app, and (iii) app store owners, e.g., Apple, Blackberry, Google and Microsoft, can analyze
user reviews to uncover anomalous apps, e.g., an app with an unexpected number or type of
issues relative to other apps.

Due to the large number of user reviews and their free form, it is infeasible for stakehold-
ers to fully benefit from the valuable information in user reviews through manual inspection.
As seen in Table 1, there are hundreds of reviews that may occur per day for popular apps.
The valuable information in such reviews has led to the emergence of a whole set of com-
panies - mobile app analytics companies. Such companies specialize in providing detailed
statistics and comparative analysis of user reviews and app revenues to their clients i.e., app
developers [2, 3]. However, much of the provided analytics are not software engineering
oriented yet. For example, the occurrence of words in reviews across competing apps are
presented, however, the provided analysis would not link such word occurrences to software
related concepts (e.g., software quality).

Automated approaches are needed to automatically label reviews based on the types
of raised issues e.g., feature requests, functional complaints, and privacy issues. However,
users might raise several issues within a particular review. Figure 1 shows an excerpt of a
user review where the user raises three issues about an update issue, the response time, and a
functional complaint. We cannot label such user reviews with only a single issue. Moreover,
such labelling is a difficult task due to the unstructured nature of reviews with many of them
containing slang, lacking punctuation, and containing improper grammar.

In this paper, we present an approach that can automatically assign multi-labels (i.e.,
multi-labelling) to user reviews. The approach helps the various stakeholders gain an overview
of the users’ feedback that is readily available in the reviews, provides an overview of an app
store and allows for the detection of anomalous apps. We perform a large scale empirical
study to answer the following three research questions:

RQ1: How many user reviews contain multiple issue types?
Up to 30% of the user reviews raise more than one issue type, i.e., 30% of the data is
multi-labelled. We identify 14 types of issues, e.g., feature requests, functional com-
plaints, and privacy issues. We find that the issue types in our manually-labelled data
are skewed towards certain issue types and that some issue types are correlated (i.e.,
they often co-occur often in the same review).

2

Fig. 1: An example of a Google Play Store one-star user review of ‘theScore: Sports &
Scores’ app. The review contains (raises) multiple issue types

RQ2: How well can we automatically multi-label user reviews?
Our multi-labelling approach can correctly label issue types in user reviews with a
precision of 66% and a recall of 65%. We also find that our approach can label some
types more accurately (i.e., higher precision and recall) than other types.

RQ3: Are multi-label approaches useful for stakeholders?
We demonstrate several useful applications of our multi-labelling approach for stake-
holders using three different scenarios. The first scenario is useful to developers and
users when comparing issues across competing apps. The second scenario is useful
to app store owners and developers as we analyze the issue distribution of apps in
the Google Play Store by app category (e.g., social, finance) and compare the issues
from competing app stores for the same app titles. The third scenario is useful to app
store owners when detecting anomalous apps based on user reviews and finding apps
that violate or disregard the policies and guidelines of an app store (i.e., Google Play
Store).

This paper is organized as follows: Section 2 provides the details of our empirical study and
presents our approach. Section 3 presents the application of our approach on three analytics
use case scenarios. Section 4 discusses the results of applying our approach. Section 5 dis-
cusses the threats to the validity of our study. Section 6 presents the related work. Section 7
concludes our work.

2 Empirical Study

In the empirical study section, we present our study design, the results of our preliminary
study and our multi-labelled approach.

3

2.1 Background

In this section we introduce the goals of our study, we provide a brief background about app
stores and mobile app analytics. We also motivate our choice to focus our study on negative
reviews.

2.1.1 Study Design

The goals of our empirical study are to analyze the extent of multi-labelled user reviews,
evaluate the effectiveness of automatically labelling multi-labelled user reviews, and present
several applications of automated labelling of user reviews for various stakeholders.

The quality focus of our empirical study are the evaluation measures that we use to eval-
uate the performance of our multi-labelling approach. Our perspective is that of practitioners
(i.e., stakeholders) and researchers interested in user reviews for mobile apps. The object of
our case study is user reviews from the Google Play Store and the Apple App Store.

2.1.2 App Stores

We choose two of the most popular app stores, the Google Play Store and the Apple App
Store. Our criteria for selection is based on popularity (the Google Play Store and the Apple
App Store are the top two most popular app stores) and the availability of tools to automat-
ically collect reviews from both app stores (the tool that we used for the Apple App Store
has since been made incompatible with an updated version of the store).

The Google Play Store is a digital distribution outlet run by Google. Apart from apps,
the Play Store sells other digital media, e.g., e-books, movies and music. The Google Play
Store has over 1,000,000 apps available as of July 2013 [4].

The Apple App Store is the digital distribution outlet for Apple where users can down-
load third-party apps. The apps range from games, productivity apps, social networking and
business apps. There are approximately 775,000 apps in the App Store as of July 2013 [4].

There are paid and free apps available in both stores. Apps can be downloaded and
updated from the stores. Once downloaded a user can review the app. The number of reviews
associated to an app varies depending on the popularity of the app. Some popular apps have
over a million user reviews. In our dataset, the top 65 apps with over 100 million downloads
have an average of 353,753 user reviews with a maximum of 2,751,345 user reviews for the
Facebook app on the Google Play Store.

Reviews in both stores contain a title, a date, a numerical rating between 1 and 5 (where
1 represents a poor app) and a comment section where the user is free to write whatever they
wish.

2.1.3 Mobile App Analytics

There are many app analytics companies that specialize in giving developers tools to un-
derstand how users interact with developers’ apps, how developers generate revenue (in-app
purchases, e-commerce, direct buy) and the demographics of app users [2, 3, 5, 6]. These app
analytics companies also provide developers with overviews of user feedback and logging
crash reports. Google has their own extensive analytics tools for Android developers such as
measuring how users are using their app, locating where the users originate from and how
they reached the app, tracking how the developer makes money through in-app purchases

4

and calculating the impact of promotions on the sales of the app [7]. Vision Mobile per-
formed a study based on a survey of 7,000 developers and found that 40% of developers
make use of user analytics tools [8] and 18% use crashing reporting and bug tracking. Previ-
ous studies also highlight that developers need app analytics tools. For example, Pagano &
Bruegge conducted a study on how feedback occurs after the initial release of a product [9].
The authors concluded that there is a need to structure and analyze feedback, particularly
when it occurs in large quantity.

2.1.4 Motivation to study one-star & two-star reviews

We select only one-star and two-star user reviews for analysis as we and previous litera-
ture make the assumption that one-star and two-star reviews are indicative of negative is-
sues [10] [11]. We decided to focus on negative issues since users and developers are most
interested in addressing such issue types. We confirm our groupings of bad and good re-
views by running a sentiment analysis tool [12] over all of the bad (one-star and two-star),
neutral (three-star) and good (four-star and five-star) reviews of the studied apps. This tool
estimates the positive and negative sentiment expressed in the text. As expected, one-star
and two-star reviews were given a negative score while four-star and five-star reviews were
given a positive score.

We present the results of our empirical study in the following sub-sections. We first
present a preliminary study to motivate our work then we present our approach to automati-
cally multi-label user reviews. We follow the results of our empirical study with a discussion
of three proof-of-concept scenarios that demonstrate the application of our approach.

2.2 Preliminary Study

We first explore how often do multiple issues occur in user reviews and if so, how many issue
types co-occur within a user review. The amount of multi-labelled data informs our decision
to use single-labelled or multi-labelled approaches. Single-labelled approaches map user re-
views to one label whereas multi-labelled approaches map user reviews to more than one
label. One can use multi-labelled approaches on single labelled data, however; multi-label
approaches are more complex as the hypothesis space is larger and so multi-labelled ap-
proaches would decrease prediction performance unnecessarily. For example, determining
whether a user review contains a functional complaint issue or not is an inherently sim-
pler task than determining whether a user review contains a functional complaint, and/or a
network problem, and/or a crashing issue. If we use single-labelled approaches on multi-
labelled data we will be guaranteed to mis-label the multi-labelled user reviews. Therefore,
we carefully consider our choice of approach based on the amount of multi-labelled data
that we observe in our preliminary study.

RQ1: How many user reviews contain multiple issue types?

Our process to answer RQ1 is divided into several sections: data collection, our approach
to analyze the data, and our results.

2.2.1 Data Collection

We analyze the user reviews of 20 Apple App Store apps and 4 Google Play Store apps.
The list of apps can be found in Table 2. We select apps which cover a broad range of

5

Table 2: User reviews were collected from these 20 apps on the Apple App Store and user
reviews from 4 of these apps were collected from the Google Play Store

Name of Apps
Weight Watchers Mobile, Evernote, Hulu Plus, Yelp, Netflix,

CNN App for iphone, Farmville by Zynga, Find my iphone, Word Lens, Foursquare,
Facebook, Wikipedia Mobile, Adobe Photoshop Express, Last fm, Kindle,

Metalstorm Wingman, ESPN Scorecenter, Mint, Epicurious Recipes shopping list, Gmail

Table 3: Data statistics for data collected from the Apple App Store and the Google Play
Store

Collected Manually Labelled Auto-Labelled
Apple App Store Google Play Store Apple App Store Google Play Store Google Play Store

226,797 3,480 6,390 1,066 601,221

categories and have a significant number of user reviews. Half of the apps that we choose
have an above average rating, while the other half have a below average rating. We select
4 matching Google Play Store apps from the Apple App Store to examine how issue types
from Google Play Store apps differ from those of Apple App Store apps given the exact same
apps. After identifying the apps, we built a simple web crawler to automatically collect the
user reviews of these apps from the website of each app store.

In total, we downloaded 226,797 one-star and two-star user reviews for the Apple App
Store and 3,480 one-star and two-star user reviews for the Google Play store (see Table 3).
The discrepancy between the number of user reviews across the app stores is due to the
different APIs that Apple and Google exposed for data collection at the time of our study.
Apple App Store allows us a user to subscribe to an RSS feed for user reviews, however the
Google Play Store only lists the top 500 reviews for each star rating. Hence, the collection of
user reviews of the Google Play Store was restricted as no tool existed at the time, to collect
the reviews other than crawling the Google Play Store Website.

2.2.2 Approach

In our previous study [13], we manually labelled a statistically representative sample of
6,390 and 1,066 user reviews for the Apple App Store and the Google Play store respectively.
Both amounts are above the number required for a statistical sample with a confidence level
of 95% and confidence interval of 5%. We labelled only user reviews with a one-star or two-
star rating. In total, a graduate student spent approximately 125 hours to manually analyze
and label each user review. A faculty member and a post-doctoral fellow, who are not co-
authors of this paper, reviewed the labels for consistency. If they disagreed on a label, they
took the majority opinion, i.e., in total there were three votes, one from the individual who
labelled the data and two from the individuals who verified the data. If the vote was a three-
way tie they came to a consensus which occurred for very few reviews.

Our manual labelling process identified issue types from app reviews via manual in-
spection. Instead of beginning with a set of issues, we analyzed the data to identify common
concepts which can be grouped together. We refer to these concepts as issue types. Our se-
lection of issues was motivated by what we believed would be useful for developers and
independent of particular apps. There is no doubt that there exist multiple different issues
that may or may not be relevant for developers that we do not consider. However, we believe

6

Table 4: Descriptions of each issue type.

Issue Type Description
Additional Cost Complain about the hidden costs to enjoy the full experience of the app
Functional Complaint Unexpected behavior or failure
Compatibility Issue App has problems on a specific device or an OS version
Crashing The app is often crashing
Feature Removal One or more specific feature is ruining the app
Feature Request App needs additional feature(s) to get a better rating
Network Problem The app has trouble with the network e.g., network lag
Other A review-comment that is not useful or doesn’t point out the problem
Privacy and Ethical Issue The app invades privacy or is unethical
Resource Heavy The app consumes too much battery or memory
Response Time The app is slow to respond to input, or is laggy overall
Uninteresting Content The specific content is unappealing
Update Issue The user blames an update for introducing new problems
User Interface Complain about the design, controls or visuals

that the selected issues is a baseline from which future work can be done to explore the
remaining issues [13]. Stakeholders are free to select a different set of issues that they feel
would be useful to them. Our approach is independent of the selected issues. In total, we
identify 13 issue types from the user reviews that we randomly sampled as shown in Table
4. We include a 14th issue type (“other”) that covers any user review that does not conform
to the 13 issue types.

In our current study, to observe the relationship between issue types, we calculate the
percentage of multi-labelled data per issue type e.g., 39% of functional complaints are multi-
labelled and the amount of co-occurrence between the various issue types. For example, a
functional complaint occurred in 44% of the user reviews that contained a network problem
issue. We calculate the word length of the single versus the multi-labelled data to see how
they differ. Finally, to study the type of multi-labelled data, we calculate the label cardi-
nality and label density of each review. Label cardinality and label density are commonly
used statistics to describe multi-labelled data [14]. These measures are used to quantify the
amount of multi-labelling in the studied data set. Let Y be the number of relevant labels, L
be the number of all the different label types and N be the size of the dataset.

label cardinality =
1

N

N∑
j=1

Yj (1)

Label density is the average number of labels in the example divided by the total number of
different label types L.

label density =
1

N

N∑
j=1

Yj
L

(2)

2.2.3 Results

We find that the data set is skewed towards certain issue types as seen in Table 5. Functional
complaint, feature request and crashing dominate over the other issue types, while issue
types such as uninteresting content and resource heavy occur at a much lower frequency.

7

Table 5: The percentage of issue types in our labelled dataset as well as the probability that
a specific issue type co-occurs with other issues i.e.,a multi-labelled user review

Issue Type Apple App Store Google Play Store
Freq. % Multi-Labelled % Freq. % Multi-Labelled %

Additional Cost 10.8 27.8 1.7 66.7
Functional Complaint 26.7 39 34.1 50.3
Compatibility Issue 2.4 27.7 14.3 11.2
Crashing 16.2 40.3 11.3 56.7
Feature Removal 6 33.4 3 62.5
Feature Request 19.7 28.8 23.1 43.1
Network Problem 10.3 58.1 19.3 65
Other 11.7 0 6.9 0
Privacy and Ethical Issue 2.4 17 0.7 28.6
Resource Heavy 0.4 41.7 6 56.3
Response Time 1.6 64.1 2.3 80.8
Uninteresting Content 0.7 32.6 0.2 50
Update Issue 11.3 74.7 9 78.1
User Interface 4.6 57.4 3.7 56.4

For the Google Play Store user reviews, 30% (317) of the 1,066 user reviews are multi-
labelled. The maximum number of labels for a user review is 4; the average number of labels
per review is 1.4.

In the Apple App Store user reviews, 22% (1431) of the 6,390 user reviews are multi-
labelled. The maximum number of labels for a user review is 5; the average number of labels
per review is 1.2.

We observe that the reviews associated with certain issue types are more multi-labelled
than other reviews. The multi-labelled column in Table 5 shows how many times an issue
type co-occurred with others. As Figure 5 demonstrates ‘functional complaint’ occurs with
many other issue types. ‘Update issue’ is in multi-labelled data 75% of the time. On the
other side of the spectrum, certain issue types co-occur less frequently with others, such as
‘privacy and ethical issue’ with only 17% co-occurrences. The issue types with the most co-
occurring labels are crashing, feature request, functional complaint, network problem, and
update issue.

We find that certain issue types co-occur together with increased frequency than others
as Figure 2 shows. For example, we observe that the issue type ‘crashing’ and ‘functional
complaint’ occur frequently with the ‘update issue’. Such co-occurrences of issue types
demonstrate that issue types are not independent.

As Figure 3 shows, multi-labelled user reviews are longer than single-labelled user re-
views. The intuitive reason is that the reviewer has more to say when raising several types of
issues in the same review. On average, a user review contains 32 and 33 words for Google
Play Store and Apple App Store user reviews respectively. Multi-labelled user reviews are
on average 41 words for both Google Play and Apple App Stores.

Both stores show similar patterns. The user reviews of both stores have low label cardi-
nality and label density. The observed values for label cardinality and density in our dataset
are similar to prior research on multi-label text datasets [15]. The label cardinality is 1.36,
1.25 and 1.26 for the Google Play Store, Apple App Store and combined respectively. The
label density is 0.10, 0.09 and 0.09 for the Google Play Store, Apple App Store and com-

8

0

200

400

600

800

1000

1200

N
u

m
b

er
 o

f
u

se
r

re
vi

ew
s

resource heavy network problem feature request update issue

user interface functional complaint feature removal response time

privacy and ethical issue crashing uninteresting content other

compatibility issue additional cost

Fig. 2: Amount of co-occurrence per issue types.

0
50

10
0

15
0

Single Multi

W
or

d
co

un
t

Fig. 3: A bean plot of the length of user reviews in both single and multi-labelled data for
both stores

bined respectively. In the following section we make use of prior research techniques for
automated labelling of multi-labelled datasets.

9

Fig. 4: Process to label multi-labelled user reviews.

30% of Apple App Store and 22% of Google Play Store user reviews are multi-labelled.
Users raise multiple issue types in a single review and the distribution of issue types is
skewed with some issue types occurring more frequently than others. Moreover, some
issue types tend to co-occur at a higher frequency than other issue types.

2.3 Automated Labelling of User Reviews

From the results of RQ1, we conclude that the user reviews of the Google Play Store and
Apple App Store contain a substantial amount of multi-labelled data. Hence, we wish to
explore how well we can automatically label user reviews using machine learning models
that are tailored specifically to multi-labelled data.

RQ2: How well can we automatically multi-label user reviews?

Our process is divided into several steps: data preparation, multi-label approaches and
evaluation and results (as shown in Figure 4). In the following subsections, we explain each
step in detail.

2.3.1 Data Preparation

The input to the data preparation step is the manually-labelled data from RQ1. The output
is a list of processed user reviews.

Preprocessing: For all user reviews, we merge the title and comment together. We choose
not to remove stop words because certain issue types benefit from words such as ‘should’
and ‘could’ as shown by Iacob & Harrison [16]. We remove all numbers and special charac-
ters except hyphens and apostrophes. We filter words that occur less than three times in our
data set. Such filtering removes rare instances of misspellings and long sequences of mean-
ingless characters. Filtering words that occur less than three times reduces the complexity of

10

assigning labels to user reviews and the approaches are less likely to overfit to the data. We
stem the words using the snowball stemmer [17] because it implements the popular Porter
stemming algorithm [18]. We expand abbreviated words such as ‘couldn’t’ to ‘could not’.
We ensure that user reviews are meaningful with at least a one-word title and a three-word
comment. Hence, we remove any user review that is three words or less e.g., review: bad!,
Not working. At the end of the preprocessing step, we are left with 7,290 reviews out of the
initial set of 7,458 manually labelled user reviews.

Frequency Building: We transform the text of the user reviews into an array of word fre-
quencies. The word frequency format is readable by machine learning algorithms. We use
the String To Word Vector filter, available in MEKA (a multi-label classification
tool [19] which is an extension to WEKA [20]), in order to build a dictionary of all words left
after preprocessing. There are 6,525 unique words before preprocessing and 2,771 unique
words after preprocessing. The attributes of each user review are the words. The MEKA
filter forms a M ×N matrix of M user reviews and N word attributes. MiNj represents the
frequency of a word. We employ the term frequency–inverse document frequency (TF-IDF)
as a means to increase the weight of words that occur frequently in a single user review and
decrease the weight of words that occur frequently in many user reviews [21]. For exam-
ple, the word ‘app’ would be penalized because it occurs in many user reviews whereas an
uncommon word like ‘omission’ would be given a higher weight. fi,j is the frequency of a
word i in user review j:

TF-IDF(wordi,j) = fi,j ∗ log(
total user reviews

total user reviews with word i
) (3)

2.3.2 Multi-labelling Approaches

In this paper, we experiment with several different multi-labelling approaches e.g., Binary
Relevance (BR), Classifier Chains (CC), and Pruned Sets with threshold extension (PSt) as
well as several different classifiers e.g., support vector machines (SVM), decision tree (J48)
and Naive Bayes (NB).

Selection of approaches and classifiers We selected three approaches for multi-labelling
the user reviews. The approaches transform the problem of classifying multi-labelled data
into one or more problems for single labelling. For example, if a multi-labelled problem had
two labels, the approach would predict if the user review contained the first label, the second
label, both labels, or neither. Such prediction is accomplished by building two classifiers, a
classifier for label one and a classifier for label two. The results from both classifiers are
combined. Such a problem transformation allows standard discriminative machine learning
models like SVM to be used to multi-label user reviews.

As Figure 5 demonstrates, BR transforms the problem into many single-labelled prob-
lems. BR will construct N binary models for N labels. The models can be any binary ma-
chine learning algorithm. The main weakness of BR is that it does not leverage the correla-
tions between labels. BR’s loss of information is problematic because the issue types in our
dataset are correlated (i.e., some of them have high co-occurrence probabilities) as shown
in the results of our preliminary study (see Section 2.2.3) i.e., a network problem is more
likely to be in a user review that has a bug complaint.

11

Fig. 5: Examples of Binary Relevance, Classifier Chains and Pruned Sets with Threshold
Extension

CC extends BR by building models in a serial fashion and every kth model takes into
account the prediction of the k − 1th model. As such, CC does not assume independence
between labels and correlates labels with one another [22].

PSt differs from BR and CC by treating each possible multi-label combination as a value
in a single label. PSt leverages the correlations between labels. PSt produces a large number
of possible outcomes that contain each single label e.g., 2n possible combinations exist for
n labels. PSt removes infrequently-occurring label combinations and any user reviews that
contained the infrequent label combination are duplicated into multiple single labelled user
reviews. For example, an infrequently-occurring combination label {functional complaint,
additional cost}would be removed and the user reviews i containing the combination would
be duplicated into two user reviews i1 {functional complaint} and i2 {additional cost}. Fur-
thermore, any combinations that had never occurred in the training data and therefore would
be excluded from the list of possibilities would be given a posterior probability. The pos-
terior probability is the percentage of a label’s frequency in the training data. For example
{functional complaint, response time, network problem} which never occurred in the train-
ing data would be assigned a probability based on the probability of each label occurring
together e.g., probability of {functional complaint, response time, network problem} = prob-
ability of {functional complaint} and {response time} and {network problem} occurring in
the same user review.

Our selection of the SVM, J48 and NB classifiers is motivated by prior studies which
demonstrate the good performance of these classifiers with multi-labelled data [15].

The BR, CC, PSt, SVM, J48 and Naive Bayes classifiers are implemented in MEKA.
We use the default values of each classifier in MEKA.

Threshold Optimization: Multi-labelled classification requires a threshold. Surpassing the
threshold with a prediction confidence indicates that a user review has such a particular
label. There is a corresponding threshold value for each label. More formally, in multi-

12

labelled classification the output of the model is a matrix of d × l confidence predictions;
where d are the user reviews and l are the labels. For example, the model predicts that the
label li is in user review dj because the model’s prediction confidence is 0.7 for li. 0.7 is
higher than the threshold 0.6 for li. The confidence predictions are real numbers ranging
from 0 to 1. The goal of threshold optimization is to determine at what value a confidence
prediction denotes class membership of a label. More information on threshold optimization
can be found in [23].

We use the Proportional Cut threshold algorithm and determine a separate threshold
for each of the 14 labels. The thresholds are set based on the occurrence of label values
in the training data. This threshold optimization assumes that the test data will have a sim-
ilar distribution. This algorithm exhibits similar performance as well as other methods in
literature [15].

2.3.3 Evaluation

Cross-validation: To test the accuracy of performing multi-labelled classification on our
labelled dataset, we perform a 10-fold cross-validation. The data is split into 10 equal groups
(i.e., folds). The first group is selected as the testing data and the other 9 groups are selected
as the training data. The process is repeated 10 times with a different group chosen as the
testing data for each repetition.

Justification of evaluation measures: We provide six evaluation measures for multi-labelled
data. The rationale for providing six different measures is for the following reasons: (i) There
are multiple different evaluation measures used in the literature for multi-labelled data [24].
(ii) BR’s, CC’s and PSt’s performance, relative to one another, are affected by the choice of
evaluation measure [15]. (iii) Each measure has different levels of strictness and penalizes
the errors in the classifier differently. (iv) There are two categories of evaluation measures
for multi-label classification, i.e., label-set and label-based. Label-set measures (we refer to
label-set measures as review-based measures from this point forward) independently evalu-
ate each user review, whereas label-based measures independently evaluate each label. Ac-
curacy and exact match and F-measure micro are review-based measures, f-measure macro
(by label) is an example of a label-based measure. An approach may have superior perfor-
mance in one measure relative to another measure.

Evaluation measures: The first selected measure is called exact match [22]. Exact match
is a very strict evaluation measure. Exact match is defined as follows: let S be the predicted
label values, let Y be the actual label values. Let rj be a user review. Let n be the total
number of user reviews.

f(rj) =

{
1 if Sj = Yj

0 if Sj 6= Yj

(4)

exact match =
1

n

n∑
j=1

f(rj) (5)

For example, if a model predicts {functional complaint, response time, network prob-
lem} and the actual labels are {functional complaint, response time, crashing, feature re-
quest} the exact match score is 0 because there is at least one label incorrectly labelled.

13

A less strict alternative is multi-labelled accuracy [22]. The intersection of the predicted
labels with the actual labels is divided over the union of the predicted labels with the actual
labels. Let Yj be the actual labels for user review j, let Sj be the predicted labels for user
review j and n be the number of user reviews.

accuracy =
1

|n|

n∑
j=1

|Sj ∩Yj|
|Sj ∪Yj|

(6)

For example, if a model predicts {functional complaint, response time, network prob-
lem} for a review and the actual labels are {functional complaint, response time, crashing,
feature request} then the intersection is {functional complaint, response time} and the union
is {functional complaint, response time, crashing, feature request, network problem}. The
accuracy is 2

5 for the example review.
F-measure is another common evaluation measure in the multi-labelled literature. It is

the harmonic mean of precision and recall. Let z be a vector of 0/1 values of actual labels
and ẑ be the predicted labels.

precision(z, ẑ) = (|z ∩ ẑ|)/|ẑ| (7)

recall(z, ẑ) = (|z ∩ ẑ|)/|z| (8)

F measure(z, ẑ) =
2 ∗ precision(z, ẑ) ∗ recall(z, ẑ)
precision(z, ẑ) + recall(z, ẑ)

(9)

There are different ways to calculate the precision, recall and f-measure for the entire
dataset. The method of calculation is dependent on how the z vector is created. Let N be the
number of user reviews and L be the number of labels. In the micro version z is L×N data
points:

z = [yij , ..., y
N
L] (10)

In the micro version there is one precision, one recall and one f-measure for the entire
dataset. The f-measure micro is a global f-measure across all reviews. The z and ẑ are
calculated per review and then the value of both are summed up across all the reviews. This
summation produces two global values that are used to calculate the precision and recall.

F measuremicro(D) = F measure(z, ẑ) (11)

The z vector for macro (by label) is of size N :

z = [y1j , ..., y
N
j] (12)

Given that there are L labels, there are L precision, recall and f-measures. The f-measure
macro (by label) is calculated as the average f-measure for each label. The z and ẑ are
summed per label.

F measuremacro by Label =
1

|L|

L∑
j=1

F measure(zi, ẑi) (13)

We evaluate the models using the following measures: exact match, accuracy, micro
precision, micro recall, micro f-measure and macro f-measure L (by label). Table 6 demon-
strates examples of the different measures.

14

Table 6: Example of evaluation measures

Two Example Reviews Labels L1 L2 L3 L4 L5 L6 L7

Review 1 Actual X X X X
Predicted X X X

Review 2 Actual X X X X
Predicted X X

Measure Value
Exact Match 1

2
(0 + 0) = 0

Accuracy 1
2
(2
5
+ 1

5
) = 0.3

Precision-Micro 3
5
= 0.6

Recall-Micro 3
8
= 0.375

Precision-Macro by Label 1
7
(1
2
+ 1

2
+ 0

1
+ 0

1
+ 1

2
+ 0

0
+ 0

1
) = 0.214

Recall-Macro by Label 1
7
(1
2
+ 1

2
+ 0

1
+ 0

1
+ 1

1
+ 0

0
+ 0

1
) = 0.286

Table 7: Performance of a multi-labelled approach on 14 labels

Evaluation Measure Pruned Sets with threshold extension - SVM
Precision 65%

Recall 64%
F-measure micro 64%

F-measure Macro (by label) 56%
Accuracy 59%

Exact Match 44%

2.3.4 Results

Results for all 14 labels: As Table 7 shows average performance results, we achieve 59%
accuracy, 44% exact match, 65% precision, 64% recall, 64% F-measure micro and 56% F-
measure macro (by label). The results are well above 1/15 (0.07%), which is the random
chance of guessing that a user review contains one of the 14 labels or no label at all. We find
the results to be satisfactory as they compare well with prior results of other multi-labelled
classification efforts [15]. We leave the improvement in performance to future work as this
is a first step.

Ambiguous issue types: As a precaution, we investigated the performance of each label
individually. We remove the multi-labelled Google Play Store and Apple App Store user
reviews (the single labelled user reviews allows us to observe individual f-measures and
precision-recall curves (PRC) for each label). We follow the data preparation steps in RQ2
and run the SVM classifier that is available in WEKA. The PRC is the area under a graph
with recall on the x-axis and precision on the y-axis. The PRC ranges from 0 to 1. A PRC
of 1 denotes 100% precision and recall. As Table 8 demonstrates, certain labels perform
poorly compared to others. In particular, the response time, uninteresting content, and user
interface labels perform poorly.

We conclude that future research may be needed to accurately predict these ambiguous
issue types at a higher f-measure. Hence, for now we merge these three ambiguous issue
labels into the ‘other’ issue type. In doing so our average f-measure may improve as the
model is no longer burdened with the hard to identify issue types.

The fact that we removed the poor performing labels does not invalidate the results of
our other labels. We do not remove the data with poor performing labels. We replace the

15

Table 8: Performance of a classifier on single labelled user reviews from the Apple App
Store and Google Play Store

Issue F-Measure Precision-Recall
Curve Area

Additional Cost 78 84
Functional Complaint 64 69
Compatibility Issue 64 73

Crashing 89 94
Feature Removal 56 61
Feature Request 66 72

Network Problem 63 64
Other 52 54

Privacy and Ethical Issue 45 48
Resource Heavy 64 61
Response Time 23 27

Unintersting Content 19 18
Update Issue 53 49
User Interface 38 34

labels of the reviews with poor performing labels with the “other” label. The model must
predict the “other” label correctly the poor performing reviews. The better accuracy is due
to the reduced number of labels. An n− 1 label problem is easier to predict than an n label
problem just as a binary problem is easier for a model to predict than a 14 label problem.

Results for 11 labels: We now perform the multi-label classification on the 11 remaining
issue types. The results show that the f-measure macro (by label) measure increases by 56%
to up to 63%. The increase demonstrates that the merging of the ambiguous issue types with
the ‘other’ issue improved the performance of individual labels.

We find that the LibSVM classifier performs the best amongst the three different clas-
sifiers and that PSt performs the best amongst the multi-label approaches. Table 9 shows
the results of the various classifiers using the aforementioned cross-validation process on
the Google Play Store. We find that CC does not perform as well as BR in the f-measure
evaluation measures. The lower performance of CC is likely due to the low label cardinality
of 1.26 and the limited number of cross-label correlations for CC to take advantage of. We
perform the Kruskal-Wallis statistical test (x = 0.05) on the accuracy evaluation measure
to determine if the differences in the results are statistically significant 1) between the three
models: Naive Bayes, J48 Decision trees, and LibSVM 2) between the three approaches us-
ing LibSVM: BR, CC, and PSt and 3) between all nine multi-labelling model combinations.
The differences in performances are statistically significant. The findings hold even after
applying a bonferroni correction.

The approaches that we use in this study i.e., BR, CC, and PSt have known biases [15].
The performance of the BR and CC approaches favors label-based evaluation measures e.g.,
f-measure macro (by label) whereas the performance of the PSt approach favors review-
based evaluation measures [15].

Pst and BR have similar precision, recall and f-measure micro results using LibSVM.
PSt outperforms BR and CC according to the accuracy measure and exact match measure.
However, BR outperforms PSt and CC according to f-measure macro (by label). We ul-
timately, choose PSt as it has superior accuracy and exact match results compared to BR
which has only superior f-measure macro (by label).

16

Table 9: Performance of approaches on the user reviews from the Apple App Store and
Google Play Store

Aproaches Binary Relevance Classifier Chains Pruned Sets
with threshold
extension

Classifiers Naive
Bayes

Decision
Tree

SVM Naive
Bayes

Decision
Tree

SVM Naive
Bayes

Decision
Tree

SVM

Precision 17 38 66 17 53 75 32 47 66
Recall 76 55 65 82 51 54 38 49 65
F-Measure
Micro

28 45 65 28 52 63 35 48 65

F-Measure
Macro L

28 48 63 27 47 60 31 43 62

Accuracy 21 33 56 20 47 52 27 45 60
Exact Match 0.2 11 41 0.17 36 42 11 33 45

Our multi-labelled classification of mobile user reviews has a precision of up to 66%
and a recall of up to 65%.

3 Applications of our Multi-labelling Approach

As we have shown, we can label user reviews with 66% precision and recall of up to 65%.
Therefore, we wish to demonstrate the application of our approach. In other words, how
each of the three main stakeholders of mobile apps would benefit from the availability of
automatically labelled reviews. For future work, we wish to study the usefulness of our
proof-of-concept scenarios for stakeholders. For now, we address the applicability of our
approach. We pose the following research question:

RQ3: Are multi-label approaches useful for stakeholders?

To address RQ3, we define three proof-of-concept scenarios: app comparison, app store
overview, and anomaly detection. Each scenario requires the analysis of user reviews.

The datasets used in these proof-of-concept scenarios are separate from the reviews
downloaded in our manual analysis because the previous reviews were selected from 20
apps and our proof-of-concept scenarios require a much larger number of apps to generalize
our results.

We apply a PSt approach with an SVM model because the combination of PSt and SVM
exhibits the best performance (see RQ2).

Cross-validation has been shown to not be entirely reliable as an estimate [25]. There-
fore, to better understand the performance of our multi-labelling approach on the 601,221
Google Play store user reviews, we randomly select a statistical sample of these reviews
with a confidence level of 95% and a confidence interval of 5%. We select 384 user reviews.
An undergraduate student verified all the automatically labelled user reviews. The under-
graduate student (who is not a co-author) was a volunteer. The results of the undergraduate
student were verified by the first author to reduce any bias. If we disagreed we came to a
consensus. We disagreed on 7% of the user reviews. We build a model on the previously la-
belled data and test the model on the random sample. We achieve an accuracy, exact match,

17

Table 10: Performance of our multi-label approach on a random sample of the Google Play
Store user reviews

Evaluation Measure Pruned Sets with threshold extension - SVM

Precision 50%
Recall 62%

F-measure micro 55%
F-measure Macro (by label) 52%

Accuracy 49%
Exact Match 35%

precision micro, recall micro, f-measure micro, f-measure macro (by label) of 45%, 32%,
46%, 59%, 51%, 50% respectively as Table 10 demonstrates.

The drop in the performance of the model on the random sample compared to the pre-
vious performance of the model using cross-validation is expected. There are apps involved
that may have specific issues that were not encountered in the training data as well as new
apps with new problems. Increasing the size to consider additional apps and reviews in the
training data would improve the performance. These steps are left for future work. Addition-
ally, similar drops are reported in papers that contain a training set, a test set, and a validation
set [26, 27]. The common practice in machine learning is to train models using the training
set and adjust the parameters and types of machine learning techniques to produce a model
that performs best on the test set. The model’s performance is then tested on a validation
set that was not part of the model selection process. We follow this approach by selecting
the best model out of a possible nine models that performs best against the 10-fold cross
validation. The validation set in our case is the Google Play Store data that we used to apply
our three applications on.

The performance of our approach is suitable for the following three proof-of-concept
scenarios because for each scenario, we concentrate on spikes in data. We are not concerned
with small differences between issues in apps. We draw our results from significant differ-
ences in issues in comparison to other apps. Additionally, our approach is a prototype with
improvements to performance left for future work.

3.1 Scenario 1 - App Comparison

Motivation: Developers and users benefit from the ability to compare apps. Developers can
conduct competitive analysis and users can conduct comparative analysis [2, 3].

Competitive analysis is the comparison of competing apps with similar features and tar-
get user base. Competitive analysis is useful for developers. For example, if a developer
already has a weather app, competitive analysis would enable him to track the competition,
to observe what users are asking for in competing apps. Furthermore, if a mobile app devel-
oper wants to develop a new weather app, he could observe the problems faced by similar
apps and attempt to avoid them e.g., what features should be added, avoid privacy violations.

Comparative analysis is the comparison of the available information about a product
before making a purchase. For example, users may wish to download a weather app, but the
app store only offers rudimentary tools to compare the many available weather apps (the
store only shows raw ratings and user reviews). If two weather apps have the same rating,
e.g., 4.0, a user would turn to the user reviews to help inform their choice. However, a user
would be forced to read many user reviews to gain an understanding of the issue types that

18

users are having. If an app store has graphs of issue distributions then the issue distribution
would be helpful for a user to make an informed decision when purchasing/downloading an
app e.g., one app is reported by users to crash much more than the other. Graphs of issue
distributions are not currently available on app stores.

Data Collection: We collected 6,532 user reviews from three apps from the Google Play
Store in the weather category. We preprocess and retain only one-star and two-star user
reviews for a total of 536. We use an open source Google Play Store crawler to extract the
apps’ information and user reviews [28]. Each run collects the 500 newest submitted user
reviews. We ran the crawler four times between a period of about three weeks (August 20th
2013 to September 9th 2013) to allow time for the submission of new user reviews.

Approach: We select the three most popular apps from the weather category with similar
ratings between 4.1 and 4.4 and over 1 million downloads. We choose the weather category
because most of the apps have a similar feature set and purpose i.e., to show the current
weather and future weather forecasts. In total, there are 210, 89, and 237 one-star and two-
star user reviews for the ‘AccuWeather’, ‘WeatherBug’, and ‘The Weather Channel’ apps
respectively. We run our multi-labelling approach on the reviews of these selected apps.

Results: We find spikes in the frequency of occurrences of certain issue types between the
apps. Figure 6 gives a more detailed overview of all three weather apps. The spike in ‘feature
requests’ for ‘The Weather Channel’, compared to the other two apps, is due to the feature
request for the ability to turn off the notifications (e.g., “They added a notification to show
the current temp. Nice if you like it but you can’t turn it off and it stays there when if you
exit the app.”), which is not present in the other two apps. The spike in ‘network problem’
for ‘AccuWeather’ is due to the time that it takes to refresh the information in the app. An
example of a review is “This app stopped refreshing and would not upset weather info when
refreshing manually”. ‘AccuWeather’ also crashes at a higher frequency (e.g., “i like the
App info but beware, it crashes a lot!!!!”).

The most important issue types for users, measured by frequency, are different amongst
the three apps. Users of ‘The Weather Channel’ complain about (from most to least): func-
tional complaint, feature request and update issues. For ‘WeatherBug’, the issue types are
update issue, functional complaint and crashing. For ‘AccuWeather’, the issue types are
functional complaint, crashing and network problem. A developer could focus on the issue
types most pressing to their users as demonstrated in Figure 6.

There are not many ‘resource heavy’ issues. There are not many compatibility issues
either, the lack of compatibility issues means that the developers might not have to worry as
much about doing extensive testing across different phones and different operating system
versions [29].

Overall, a user might wish to avoid downloading the ‘AccuWeather’ app because it has
several spikes in ‘crashing’ and ‘network problem’ issues compared to the other two weather
apps. However, if one were to choose between ‘The Weather Channel’ and ‘WeatherBug’,
we observe that ‘WeatherBug’ crashes more but has many less feature requests suggesting
that the app is unstable but it might contain most of the features that users want. Our manual
analysis of ‘The Weather Channel’ reviews indicates that most of the feature requests are
about the notification bar such as “There is no option to turn off the persistent notification.”.

A user may prefer a more stable app to an app that is missing desirable features, while
another user may prefer the latest features and accept the instability. The knowledge of the
trade-off allows users to make an informed decision.

19

0

5

10

15

20

25

30

35

additional
cost

functional
complaint

compatibility
issue

crashing feature
removal

feature
request

network
problem

other privacy and
ethical issue

resource
heavy

update issue

P
e

rc
e

n
ta

ge
 o

f
is

su
e

s

WeatherBug The Weather Channel AccuWeather

Fig. 6: Comparison of 3 similar rated popular apps with similar ratings in the Weather cate-
gory

A developer of ‘The Weather Channel’ app can take action based on the knowledge
that the app has more feature request issues than its competitors. Also, the developer of the
‘AccuWeather’ app could prioritize fixes and stability issues because of the spikes in the
labelled network problems and crashing reviews.

3.2 Scenario 2 - App Store Overview

Motivation: Observing the distribution of issue types for an app store is beneficial to the
owners of the app stores. Owners would be able to observe the issue types with the most
user complaints. Owners could provide support in the form of Frequently Asked Questions
(FAQs), tools, guidelines and policy changes in proportion to the issue distributions occur-
ring in their app store. The market owner could investigate why an issue type occurred so
frequently relative to other issue types. The issues may be the fault of the app developers
but if they occur for many developers, the market owner could take action in the form of
software updates and API changes.

Developers would benefit from knowing if the user reviews of their app have differences
in the frequency of issue types between two different app stores (e.g., Apple App Store
versus Google Play Store). The ability to perform such cross-store comparisons is of great
value to developers, since the median number of platforms (stores) that developers develop
for is two [8]. For example, if an app on store A has more compatibility issues reported
by users than on store B, the app’s developer could investigate why their app had more
compatibility issues in store A and perform more compatibility testing in the future for store
A.

Data Collection: We collected 3.7 million user reviews from 12,000 apps from the Google
Play Store. We selected the top 400 apps in the USA across the 30 different categories (e.g.,
Photography, Sports and Education) based on Distimo’s ranking of apps. Distimo is an app
analytic company [5]. We again use the crawler mentioned in Section 3.1 to download 500
reviews of the top 400 apps across the 30 different categories of the Google Play Store. We
ran the crawler twice, several weeks apart, to allow time for new user reviews to appear.
Also some apps did not have 500 new reviews even after the second crawler run. Hence, the

20

0

20000

40000

60000

80000

100000

120000

140000

160000

Fig. 7: Distribution of issue types for 1 & 2 star user reviews in the Google Play Store dataset

actual amount of user reviews that we crawled is lower than the expected amount of user
reviews i.e., 6 million (500 reviews for each of the 12,000 studied apps).

We follow the same preprocessing steps as RQ2 (Section 2.3.1). From the initial 3.7
million user reviews, our selection of one-star and two-star reviews and preprocessing steps
reduce the amount of reviews to 601,221 user reviews.

Approach: We first run our multi-labelling algorithm on the 601,221 user reviews to deter-
mine the distribution of issue types across the store. We then separate the data into the 30
categories from the app store e.g., social, finance, and education.

Lastly, to observe if there are differences between the same app across different stores,
we compare two apps across both the Apple App Store and the Google Play Store. We select
all the one-star and two-star user reviews for the Facebook and Kindle apps in our dataset
for a total of 534 Facebook and 355 Kindle user reviews.

Results: Figure 7 shows that the dominant issue types for the Google Play store are func-
tional complaints, feature requests, and network problems. We also observed the issue dis-
tributions per category, e.g., business, comics, sports etc. Table 11 displays issue type per-
centages that are more or less than two standard deviations above the mean for each category
in one-star and two-star user reviews in the Google Play Store. We investigated several of
the categories. The finance category has higher ‘functional complaint’ issues than others,
e.g., mobile cheque processing does not work, login errors and unprocessed requests. The
Shopping category had a higher number of ’feature requests’ which included requests for
better payment options and improved ease of use. The Shopping category also had higher
‘privacy and ethical issues’ which included complaints relating to unredeemed coupons or
being asked to enter personal details before being able to claim a deal. The Cards category
contained higher ‘additional cost’ issues as many employ a free trial version, known as a
freemium model, that may disappoint users [30]. The Brain and Personalization categories
contained user reviews that complain about ads and notifications. The Weather and Pro-
ductivity categories contained user reviews that mention unnecessary background processes
that drained the battery. The Tools and ‘Libraries and Demo’ categories contained higher
compatibility issues. The reviews reported lack of compatibility with specific phones and
versions of the Android operating system.

21

Table 11: Store categories that have specific issue types above or below two standard devia-
tions of the mean in our Google Play Store data set

Issue Type Two Standard Devi-
ations Above Mean

Two Standard Devi-
ations Below Mean

Functional Complaint Finance Racing
Feature Request Shopping
Other Racing
Crashing Sports, News and

Magazines
Network Problem Personalization
Update Issue News and Magazines
Additional Cost Cards
Feature Removal Brain, Personalization
Compatibility Issue Libraries and Demo,

Tools
Privacy and Ethical Issue Shopping
Resource Heavy Productivity, Weather

0

10

20

30

40

50

60

P
e

rc
e

n
ta

ge
 o

f
is

su
e

s

Google Play Store Kindle Apple App Store Kindle

0

10

20

30

40

50

60

Google Play Store Kindle Apple App Store Kindle

Fig. 8: Comparison of the Kindle app for the Google Play and Apple App Stores

We did not find any major deviations between the Facebook app of the Apple App Store
and Google Play Store. However, there is a large spike for feature requests in the Kindle app
on the Apple App Store as Figure 8 demonstrates. We investigate the reason and find that
due to Apple’s store regulations, Amazon, the developer of the Kindle App, had to remove
the ability to buy books from within the Kindle app. The removal of this feature was a major
issue for many users. The Google Play Store hadn’t taken that step, hence the Google Play
version of the app didn’t have those feature requests.

3.3 Scenario 3 - Anomaly Detection

Motivation: App store owners have specific developer content policies [31] and core app
quality guidelines. For example, the Google Play Store has quality criteria for apps [32]
that developers must follow. App developers are strongly recommended to follow these
guidelines. These policies and guidelines are in place to ensure a certain baseline quality
experience for the users. If a developer does not follow the guidelines then an app store may
remove his app from the store. This is comparable to how grocery stores set a minimum

22

quality standard for their products e.g., removing spoiled products (e.g., rotten fruits) from
the customer’s potential choices. One solution is to read the user reviews in order to find
apps that might violate the quality criteria of a store. However, in order for an app store to
perform this task, the store needs to analyze and read through millions of reviews across
thousands of apps to find troublesome apps. Reading through the user reviews manually is a
time consuming task. Therefore, an automated approach to analyze the millions of reviews
would be helpful to app store owners.

The app store owner could analyze the issue distribution of all apps within their store
and automatically flag apps where one or more issue types occur above a threshold relative
to all other apps in the store. The app store owner could warn the developer or remove the
offending app. The app store owner could support their decision through evidence gathered
from user reviews.

Data Collection: We use the same data collected for scenario 2 in Section 3.2.

Approach: We analyze the issue distribution of our sample of the Google Play Store data
set in order to demonstrate the effectiveness of our anomaly detection approach for user re-
views. We use control chart theory, which was invented to monitor manufacturing processes
and detect deviations [33]. Control chart theory has been applied to software engineering
problems in other contexts (see [34, 35, 36]).

We calculate the average and standard deviation for each issue type across all the apps
(we exclude apps with less than 15 one-star and two-star user reviews to prevent apps with
few reviews from being detected as outliers). If an issue type Lj occurs in the user reviews
of an app with a frequency greater than x standard deviations of the average for all apps, we
flag the app as anomalous. Traditionally, in control chart theory three standard deviations are
used as the threshold for anomaly detection. We perform experiments on one, two and three
standard deviations and compare the results. The actual deviation level can be determined
by practitioners based on the amount of effort and time that they might wish to spend on this
type of analysis.

For example, if app A had 80% of its user reviews labelled as crashing while the average
amount of user reviews labelled as crashing was 30% and the standard deviation was 15%
for all apps across the store, then app A is above the average + two standard deviations and
will be flagged as anomalous.

flag(Lj) =

{
0 if Lj <= 2× std dev

1 if Lj > 2× std dev

Results: Our initial results are displayed in Table 12. The higher the standard deviation, the
more issues the apps have of a certain category. There are many more crashing apps than
resource heavy apps as flagged by our approach.

We select two standard deviations as our threshold to further analyze the apps. Our
choice of two standard deviations is arbitrary but can be adjusted by an analyst based on
their needs (e.g., the number of apps they can manually inspect, the severity of each issue
type). Our reasoning was that amounts of issues that occurred with 2 standard deviations
outside the mean were statistically rare and worth investigating.

Our approach flags 9 apps as anomalous for the ‘feature removal’ issue type, 36 for
‘privacy and ethical issues’, 3 for ‘resource heavy’, and 73 for ’crashing’. Table 13 provides
examples of anomalous apps for each issue type. We manually analyzed the reviews of the
most anomalous apps for feature removal, privacy and ethical issue, resource heavy and
crashing and highlight several example apps. Figure 9 demonstrates the number of apps that

23

Table 12: Percentage of anomalous apps that are inaccessible in the store (1 year later) and
anomalous apps flagged by our approach for 1, 2 and 3 standard deviations. N/A denotes
there were no apps at that range

1-std dev 2-std dev 3-std dev
Issue Type Inaccessible Total

Flagged
Inaccessible Total

Flagged
Inaccessible Total

Flagged
Privacy and Eth-
ical Issues

15% 93 13% 31 20% 5

Feature Re-
moval

23% 44 50% 8 100% 1

Resource Heavy N/A N/A N/A N/A 33% 3
Crashing 9% 192 15% 61 0% 12

Table 13: Most anomalous apps from the four categories that were flagged in our analysis
of the Google Play Store dataset

App Name Issue Comments

ESPN Bracket
Bound 2013

Crashing

“Constantly crashes and won’t let me look at my brackets. Thanks for
putting out another crappy app ESPN”
“This app crashes and has to restart literally every time I open it. This is
a worthless app. Sucks”
“Crashes about 10 times a day. Extremely annoying”
“This would be a great app if it didn’t crash every time I use it”

Pic Stitch Feature Removal

“It sends ads as notifications to my phone. And as others stated...too
many in app adds. Just downloaded last night and am now deleting.”
“1 minute in and my notifications is full of ads.... NO THANK YOU”
“THERE IS WAY TOO MUCH SPAM AND ADS TIED TO THIS APP.”
“Ads all over the place AND spam notifications on my
phone...DELETE!!”

Cabela’s Resource Heavy

“This app will run in your background and absolutely destroy your
battery life”
“This app uses the gps to know your location. It exhausted up my battery
in less than half a day. After removal of the battery usage was fine again”
“nice when shopping but eats up battery quick and you can’t stop it”
“Used 31% of my battery without even opening the app. Not worth
having in case I catch a tagged fish!”

Quote Rocket
Insurance

Privacy and Ethi-
cal Issue

“This app is a piece of crap they spam you all the time and telemarketers
call you all the time and it steals your information its called Quote
Rocket it didn’t give my quote this stupid app wastes your time it is just
a horrible piece of crap don’t get it I am warning you”
“Too much information needed to give out.”
“It just steals your information. You end up getting calls from stupid
telemarketers.”
“I go through everything & don’t get my crystals for my game & you
can’t help me with Insurance for my car”
“I did everything and filled it out correctly. Got an email with my quote
and a phone call still no coins. :(“

exceed our threshold. We note that an app store owner may define their own thresholds and it
is entirely dependent on how sensitive the app store owners are to each issue. We investigate
the user reviews of apps and find reports of direct violations of the policies and guidelines
of the Google Play Store.

The 9 apps that were anomalous for feature removal issues had user reviews that con-
tained many issues about ads. Users specifically mentioned frequent and obtrusive pop-up
ads and ads in the notification bar. The app ‘Pic Stitch’ had many reports of ads in the
notification bar and adding shortcuts and programs unknowingly to the user’s phone. This
reported behavior is not permitted under Google’s developer policy as it states “Apps and
their ads must not add homescreen shortcuts, browser bookmarks, or icons on the user’s de-

24

0
20

40
60

80
10

0

issue types

pe
rc

en
ta

ge
 o

f i
ss

ue
 ty

pe
s

crashing feature removal privacy and ethical issue resource heavy

●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●●●●
●
●●●
●●
●●●●
●
●●

●●
●
●
●
●
●

●
●
●
●

●
●●
●

●

●
●

●●
●

Fig. 9: Box-plots with the anomalous apps as points in the graph above two standard devia-
tions of the mean

vice as a service to third parties or for advertising purposes.” [31] Additionally, “Apps and
their ads must not display advertisements through system level notifications on the user’s
device.” [31]. The app ‘Pic Stitch’ could be removed based on its violation of Google’s
policies if true. In fact, it no longer exists in the Google Play Store as of July 2014.

The app ‘Quote Rocket Insurance’ flagged as anomalous for privacy and ethical issues
stated that if the user downloads the app and enters their contact information (for telemar-
keting purposes) then the user would be rewarded with an in-game currency for a videogame
app. However, user reviews contained reports that users did not receive the in-game currency
and that they were still contacted by telemarketers. The second app advertised that users
would be given a $20 gift card for free if they entered their information. Users reported
in their reviews that the gift cards turned out to be for two very expensive women’s cloth-
ing stores and that they were later targeted by telemarketers. Google has a policy that apps
cannot exist “where the primary functionality is to drive affiliate traffic to a website” [31].
Additionally “forcing the user to click on ads or submit personal information for advertising
purposes in order to fully use an app is prohibited.”[31].

‘Cabelas’, the anomalous app for the resource heavy issues had issues about the battery
life. Users reported that the app drained their battery while running as a background process,
even when not in use. Google states in their core app quality guidelines that apps should not
run background processes unless necessary to the function of the app.

25

Finally the user reviews on the anomalous apps associated with the crashing issues con-
tained issues about crashing and freezing. Crashing and freezing are basic criteria of the
core app quality guidelines.

In July 2014 (one year after our initial crawl) we test if the apps are still available in the
Google Play Store by accessing the webpage of each of the anomalous apps. If an app is no
longer accessible (i.e. removed from the store possibly due to the flagged issues) through its
webpage we mark the app as inaccessible. We find that the percentage of inaccessible apps
increases or remains the same for apps at higher standard deviations for three out of the four
amomalous issue types. Table 12 demonstrates the percentage of inaccessible apps for four
issue types that were one, two and three standard deviations away from the mean for that
issue type. In the table, if an app is anomalous at three standard deviations, it will not be part
of the apps at one or two standard deviations. Likewise, an app at two standard deviations
will not be present at one standard deviations.

We demonstrate that with our approach, app store owners can detect anomalous apps
and choose to pro-actively warn developers or remove such anomalous apps from their app
store.

We demonstrate through three proof-of-concept scenarios that our multi-labelling ap-
proach assists all three stakeholders of mobile apps in the following three proof-of-
concept scenarios: app comparison, market overview and anomaly detection.

4 Discussion

In this section, we justify our decision to combine the Apple App Store and Google Play
Store user reviews into one dataset. We also discuss the implications of the number of la-
bels to predict in our approach. We investigate poor performing issue types, and present
alternative approaches.

4.1 Combining Apple App Store and Google Play Store Data

In our multi-label approach, we wish to have as much labelled data as possible. However,
the labelled data came from 2 different stores since the data was from a previous study and
it wasn’t expected that the data is to be used as training data for our study. Our solution
was to combine the data and assume that they could be used as a single training dataset.
However, we need to ensure that the two datasets did not have major differences. We judge
their similarity by testing their respective prediction power on one another.

We randomly selected 1,066 user reviews from Apple App Store and an equal amount
of Google Play Store user reviews from our manually labelled data (see Section 2.2.2). We
built a model (we followed the approach in Section 2.3.1) on only the Apple App Store data
and tested our model on the Google Play Store and vice versa.

As Table 14 shows, the prediction power of both models remains the same. Thus, we
conclude that the user reviews are similar enough to be combined into a single data set.

4.2 Impact of Reducing the Number of Labels

We show in our previous single-labelled classification (see Section 2.3.4 where we can see
individual f-measures) that the classification of certain issue types perform poorly compared

26

Table 14: Comparison of training on Google Play Store and testing on Apple App Store and
vice versa

Train Test Train Test
Google
Play Store

Apple App
Store

Apple App
Store

Google
Play Store

Accuracy 34 34
Exact Match 20 20

Precision 40 44
Recall 43 40

F-1 Micro 41 42
F-1 Macro L 27 30

to others. We also see from merging these issue types into the ‘other’ issue that the overall
f-measure improves. Merging issue types demonstrates that as you decrease the number
of labels the performance is increased and if you remove the bad performing labels the
performance will increase even more.

Iacob & Harrison have proposed approaches to extract feature requests from the user
reviews of mobile apps [16]. Their proposed approach used a binary classifier. In other
words, they only cared if a review was or was not a feature request. The proposed approach
had 96% precision and 86% recall respectively. Their results support our aforementioned
observation that a smaller number of labels lead to improved classification performance.

The choice of issue types should be decided based on the interest of each stakeholder
and the specific analysis to ensure the best performing automated classification.

4.3 Poor performing issue types

We investigate the reason behind the poor automated classification performance of some of
the issue types. As Table 8 shows, certain issue types are more difficult to automatically
classify. In particular, response time, uninteresting content, and user interface performed
below a 50% f-measure.

The goal of this subsection is not to improve the classification accuracy but instead to
understand the reason for the low performance of some of the labels. Hence, we use Labelled
Latent Dirichlet allocation (LLDA) which showed that these labels are ambiguous (i.e., have
a common set of words).

LLDA is a supervised learning version of the unsupervised approach Latent Dirichlet Al-
location (LDA) [37]. LDA is a popular statistical topic model [38]. It generates topics from
the corpus of documents and then represents the documents as a set of topics with associ-
ated probabilities. A topic is a mixture of terms drawn from the documents with associated
probabilities for that topic. To generate the topic and term distributions, a generative process
is applied to learn the correct distributions such as Gibbs Sampling or Collapsed Variation
Bayes. A weakness of LDA is that the number of topics must be defined beforehand as LDA
makes no assumptions on the number of topics per document.

LLDA differs from LDA in that it requires documents to be labelled. LLDA constrains
the topics to only the labels assigned to the training documents. Hence, the labelled topics
correspond directly to the issue types. For example, LLDA will generate a list of words that
are most associated with each issue type and infer which documents are most associated
with each issue type. LLDA can handle multi-labelled problems inherently [37]. The output
of LLDA is a probability distribution for each label and for each document. The output

27

of LLDA can be used as a model to predict the label of user reviews. In order to make
predictions a threshold value is required to be optimized.

We build an LLDA model with the Stanford Topic Modeling Tool1. We use the same
settings as [39]. The topic and term smoothing parameters are set at 0.1 and 0.1 respectively.
The number of sampling iterations are 1,500. Document similarity is computed using the
cosine similarity measure. To infer the distributions of words and topics, we use collapsed
variational bayes (CVB) inference.

We investigate the three ambiguous issue types e.g., response time, uninteresting con-
tent, user interface, that we removed because of their poor performance for automated clas-
sification. We find that the most occurring words in response time are similar to network
problem e.g., ‘slow’,‘takes’,‘very’. We also find that user interface and uninteresting content
share similar words with functional complaint and feature request e.g., ‘out’,‘please’,‘like’.

The small number of manually labelled user reviews for a particular issue type didn’t
factor into the classification performance of individual issue types. The resource heavy is-
sue had comparably little training data (just 0.4 and 6 percent of the Apple App Store and
Google Play Store data respectively) yet its f-measure was near the average. We find the
most probable word associated with the resource heavy issue is the word ‘battery’ which
did not appear in any of the lists of most probable words associated with other issue types.

4.4 Alternative approaches

In this section we present and discuss unsupervised alternatives to our multi-labelling ap-
proach for labelling reviews and for performing anomaly detection. We first present an
overview of supervised learning vs. unsupervised learning, followed by the results of the
unsupervised alternatives.

Our approach uses supervised learning. Supervised learning builds a model that learns
the correlations between training examples and the example’s labels to predict future ex-
ample’s labels. An unsupervised approach is an alternative to a supervised approach. There
are no pre-specified labels. An unsupervised model infers correlations between the data
without any labelled training data. The benefit of an unsupervised approach is that it does
not require any labelling (a potentially time-consuming or otherwise impossible task). The
drawback of unsupervised learning is that the model may infer connections that otherwise
are unimportant or unwanted. Hence, is a trade-off between supervised and unsupervised
learning depending on the goal.

4.4.1 Unsupervised labelling

We first present an unsupervised approach to our multi-labelling approach. The approach
we use is topic modelling. Topic modelling associates topics to documents based on words
in the documents. This association is done in an unsupervised (i.e., discovery/exploration-
oriented fashion). As such, the topics are related by frequency and commonality instead
of the topics of interest for a particular research problem. In our case, we had a specific
research problem at hand (the concept of quality of an app). Hence, we did not consider
topic modelling, instead we chose a supervised approach. A manual process was followed
to identify issues and topics with our particular research problem in mind. The identified

1 http://nlp.stanford.edu/software/tmt/tmt-0.4/

28

Table 15: Examples of general topics about photo and videogames with LDA (14 topics)
and specific topics about gps and requesting help with LDA (150 topics)

Example topics in LDA
topic size: 14 topic size: 150

1 photo, app, picture, better, edit, adobe, use, good,
upload, pic, does, photoshop, quality, feature, like,
option, thing, useless, image, need

1 list, shop, search, recipe, result, disappear, click,
button, view, great, title, ingredient, does, icon, fea-
ture, box, bug, groceries, menu, differ

2 game, play, video, watch, movie, good, need, like,
great, money, sync, just, upgrade, time, star, coin,
farmville, fun, really, spend

2 locate, await, place, mile, area, say, show, find,
far, map, nearby, right, accuracy, check, state, try,
close, horrible, gp, tip

Table 16: Results for keyword search

Label Search Terms Accuracy Percentage

Network problem network 0
Compatibility issue compatibility 0.65

Resource heavy resource, heavy 4.54
Update issue update 62.9

Bug fix bug 6.81
Additional cost addtional, cost 7.1

Privacy and ethical issue privacy, ethical 3.1
Feature request feature, request 9.5
Feature removal remove 4.3

Crashing crash, crashing 79.9

problem-relevant topics were then fed into an automated classifier in order to locate other
occurrences of these topics.

To study the use of unsupervised learning, we perform a new experiment. In the new
experiment, we ran topic modelling (i.e., LDA) on our manually labelled data in order to
uncover unsupervised topics. We did two runs with the number of topics (K) equal to 14
and 150 topics. We chose 14 since that is the number of topics that were uncovered by our
manual supervised approach and we chose 150 topics to get a feel of how well LDA would
perform on a much large number of topics [40].

The topics recovered using K=150 are fine-grained app-specific topics instead of being
topics that talk about quality-related concerns (the focus of our research). Such examples
included topics on GPS or shopping lists as Table 15 shows. The topics created by the 14
topic run are too general to be useful. For example, one of the topics is about media e.g.,
game, play, video, watch and movie and another topic is about photos e.g., photo, app,
picture, better and edit. In Table 15 we see two examples of such topics.

The second unsupervised approach we perform is keyword search. Keyword search is
very simple. The approach searches for related words of a label in the review and if the
search words match, the review is considered a part of the label. The drawbacks of this
approach is that it requires extensive knowledge of how users report issues and an exhaustive
list of potential search terms. We select the label words as keywords and search within our
already labelled training data. If the label words are contained in a review then the approach
predicts the review to contain the label. As Table 16 shows, most labels perform poorly
with the exception of ‘crashing’ and ‘update issue’. Reviews with ‘crashing’ and ‘update
issue’ are likely to contain words like ‘crashing’ or ‘update’ in the review itself. ‘Privacy
and ethical issues’ contain more varied language to describe an issue.

29

0

100

200

300

400

500

600

700

800

900

1 30001 60001 90001 120001 150001 180001 210001 240001 270001 300001 330001

N
u

m
b

e
r

o
f

ap
p

s

Unique word id

frequency of occurrence in apps

Fig. 10: Distribution of the frequency of occurrence of anomalous words across all apps
(sorted by frequency).

Table 17: Top 20 most frequent anomalous (3 standard deviations) words across apps

Words as they appeared in reviews

isnt, thus, means, wouldnt, couldnt wonder, awhile, mostly, provide, deserve, besides, ty, recomend,
pleased, opinion, havent, putting, serious, appears, plain

4.4.2 Unsupervised anomaly detection

An unsupervised alternative to detecting anomalous apps with user reviews is a simple bag
of words approach. To study the applicability of such a simple approach, we perform the
following experiment. We find the average occurrence of every word that occurred in any of
the studied reviews. Next, find the 1,2 and 3 standard deviation of each word occurrence. We
then flag words that occur outside x standard deviations. We find that the words occurring
are not quality-related words. Instead they are simply words that appear in an app because
they are specific to an app such as “asl” for a sign language app. The top 20 words are
shown in Table 17. Furthermore, we find that the majority of anomalous words do not occur
across all apps and are focused in a small selection of apps as Figure 10 shows. The limited
coverage of the anomalous words would not be useful for our purposes of differentiating the
majority of apps.

5 Threats to Validity

Some threats could potentially limit the validity of our experiments. We now discuss poten-
tial threats and how we control or mitigate them.

5.1 Threats to Construct Validity

Since, we manually labelled our gold dataset of reviews with the different issue types, some
reviews may have been incorrectly labelled. To mitigate this threat, we performed this la-
belling in an iterative manner and went over each review multiple times to ensure correct
labelling of the reviews. To avoid any bias in the labelling process, one PhD student and a
post-doctoral fellow, who are not co-authors, verified the labelling again. If they disagreed
on a label they took the majority opinion, i.e., in total three votes, one from the person who

30

labelled the data and two from persons who verified the data. If the vote was a three way tie
they came to a consensus.

The labelled dataset was originally labelled for another purpose [41]. The study of multi-
labelled data in user reviews was not the original intention therefore there was no conflict of
interest when the labelling occurred to try and show multiple labels.

There was a different amount of Google Play Store and Apple App Store reviews in our
training data. This could result in a different number of labels. However, our approach is
independent of the number of labels.

5.2 Threats to Internal Validity

We have several parameters that need to be set in our study. The parameters for the SVM tool
were chosen based on the default values that experts in the field had determined [42]. We
elected to follow their recommendations. The selection of thresholds in our multi-labelling
approach could directly impact our results. To mitigate this threat, we selected the propor-
tional cut threshold algorithm to automatically determine the threshold. Proportional cut
thresholds for a classifier are determined automatically using the label distributions in the
training data. There are other threshold techniques however proportional cut algorithm is
shown to be efficient and performs as well as other more complex threshold algorithms [15].

The selection of one-star and two-star ratings could bias the results. We assumed that
one-star and two-star ratings contain negative issues. To mitigate this threat, we performed
sentiment analysis to confirm our assumptions. The results of sentiment analysis showed that
in majority of the cases, one-star and two-star star rated reviews are negative. We recognize
that three, four and five star reviews may contain an issue, e.g., feature requests, in an overall
positive review. We accept that we could have missed some more issues by eliminating all
the three, four, and five star ratings. However, our multi-labelling approach is rating inde-
pendent. Thus, adding more reviews and/or labels could produce similar results. However,
more experiments are needed to generalize our findings on all the star ratings. Also lower
ratings are of a much greater concern to developers since they decrease the overall rating of
their app in the app store and addressing the concerns of those users is of a greater priority
to developers than three, four and five star reviews [41].

The selection of multi-labelling approach, i.e., PSt, could directly impact our findings.
Our choice of PSt is based on its performance which we found to be superior to BR and CC.

5.3 Threats to External Validity

Our training set of labelled reviews data is composed of 20 mobile applications. Hence our
results may not generalize to all mobile applications. To mitigate this threat, we selected
apps from a diverse set of categories, by selecting apps from high and low-rated apps and
from the 2 most popular app stores. We employed a random sampling process for each app to
collect a representative sample with 95% confidence and 5% confidence interval. The exact
number of collected user reviews varies between apps as the total number of user reviews
varies per app.

To make our findings more generalizable, we attempted to collect a representative sam-
ple of the negative user reviews from the Google Play Store. Therefore, we chose to down-
load from the top 400 most popular apps from Distimo in 30 different categories. Distimo
determines popularity by download count and ratings. We acknowledge that this is not a

31

statistical sample but we required apps that are reviewed regularly and there was no feasible
way to generate a list of all Google Play Store apps from which we could select a random
sample.

6 Related Work

In this section, we survey the work related to our study. First we discuss some of the previous
work related to mobile apps and their reviews. Then we discuss some of the previous work
which used automated approaches to label software engineering data.

6.1 Work Related to Mobile User Reviews

Previous work has confirmed that reviews of mobile apps have a major impact on the success
of an app [43, 44, 45]. User reviews contain information that could help developers improve
the quality of their apps, and increase their revenue. Kim et al. [45] conducted interviews of
app buyers and discovered that reviews are one of the key determinants in the user’s purchase
of an app. Similarly, Mudambi et al. [44] showed user reviews have a major impact on the
sales of online products. Harman et al. [43] have shown a strong correlation between app
ratings and the total downloads of an app.

Khalid et al. manually analyzed and categorized one-star and two-star mobile app re-
views [13]. They manually identified the different issue types in mobile app user reviews.
They did not automatically label reviews nor did they identify the multi-labelled nature of
the reviews. We use their data as an oracle.

Fu et al. performed topic modelling on mobile app user reviews [46]. They identified
reviews that did not match the given rating, presented an approach to study the evolution
of an app’s reviews and compared different categories of apps in terms of the 10 topics
that they discovered using topic modelling. However, our approach is more concerned with
providing context to individual user reviews. Topic modelling may miss context in a topic
i.e., a review that refers to the word ‘feature’ may be negatively referring to the removal
of a feature versus adding a feature. Also, topic modelling may confuse issue types such as
when we found that ‘network problem’ and ‘response time’ share similar words (see Section
4.3). Pagano & Maalej manually labelled and analyzed mobile user reviews across all five
star rating levels [47]. They were concerned with questions such as how a labelled issue
type affects a user’s rating, how issue types affect the helpfulness of a review and how the
helpfulness affects the length of a review. Our work complements their work as both works
manually label user reviews. However, we chose to focus only on the negative complaints
of users since 4 and 5 star ratings are dominated by praise and helpfulness. Therefore, we
analyzed the distribution of issues that occur in one-star and two-star reviews only. Also we
only concern ourselves with complaints of users and not non-complaint oriented tags (e.g.,
praise, helpfulness, mentions other app) as included by Pagano & Maalej.

6.2 Work Related to Automated labelling

Automated labelling approaches are widely used for sentiment analysis, spam detection and
language detection. Melville et al. used Logistical Regression (LR) on text within blogs to
identify the sentiment of writers [48]. Jindal et al. used a LR model to find spam within

32

reviews of products [49]. Our work focuses on studying user reviews to help stakeholders
efficiently identify the various types of issues from their reviews of their apps.

Several researchers have explored the effectiveness of multi-labelling in software engi-
neering [50, 51]. Han et al. [50] used LDA and LLDA to understand Android fragmentation
identifying vendor-specific bugs of mobile device manufacturers. Ahsan et al. [51] demon-
strated SVM to be a very effective classifier for labelling multi-labelled software change
requests. Ramage et al. [37] showed that SVM and LLDA performed similarly on multi-
labelled data. The contents of bug reports and change requests are assumed to contain a
bug report or change request whereas the contents of user reviews is open-ended and no
assumptions can be made as to what a user review will contain.

Some researchers have reported that even developers incorrectly label bug reports and
feature requests [52, 53]. To label bug reports automatically, Antoniol et al. proposed an ap-
proach to label change requests as a bug or a feature request [53]. However, their approach
can only handle binary labelled data. In addition, they analyze change requests only. User
reviews are different from bug reports and change requests because bug reports and change
requests have more structured style and are often much longer. There is an ability to ex-
change messages with the reporter, the reporter may assign priority and type i.e., whether
it is an enhancement or defect report. Also the report can be filed into categories such as
‘accepted’, ‘closed’ and ‘duplicate’. There are no such mechanisms in user reviews on app
stores.

Carreño et al. [40] used opinion mining approaches and topic modeling to extract re-
quirements from user reviews. The authors use unsupervised approaches to cluster the re-
views into similar requirements. However, in a large dataset such as ours, consisting of mil-
lions of user reviews, the reviews will have far more variable wording for each issue which
may necessitate the creation of many topics. A practitioner would have to manually ana-
lyze the larger number of generated topics in order to find all the requirements and remove
duplicates.

Iacob & Harrison [16] built a rule-based automated tool to extract feature requests from
user reviews of mobile apps – their approach identifies whether a user review contains a
feature request or not. Our approach expands the number of issues to 13 as we are concerned
with multiple issue types. Iacob & Harrison’s approach would require new linguistic rules
for each new issue type which may be difficult to write given the amount of variable ways
that users report issues in our large dataset.

Saha et al. labelled Stack Overflow questions with a set of 83 word tags. They built
an SVM model for each tag, similar to a BR model in multi-labelling. Linares-Vasquez &
Poshyvanyk analyzed the issues developers had for mobile development on Stack Overflow.
Linares-Vasquez & Poshyvanyk used LDA to discover the topics that were discussed most
frequently.

6.3 Work Related to Opinion Mining

Opinion mining is the study of user’s sentiment. Opinion mining focuses on discovering the
positive, negative or neutral opinion expressed by a user in a review [54]. There are different
levels of analysis: document level, sentence level and aspect (word) level [55]. Document
level analysis assumes one sentiment [56]. Aspect level opinion mining concerns the pairing
of an opinion word such as “like” with an aspect such as “smartphone”.

33

Ganesan et al. [57] proposed an approach to automatically summarize users opinions.
Their approach generates a summary of users’ opinions; independent of different types of
opinions in a cluster.

Pak & Paroubek used Twitter as a corpus of data [58] which is similar in many respects
to the style of user reviews.

7 Conclusion

User reviews are an important indication of quality of an app. Labelling user reviews is
beneficial to stakeholders. However, user reviews are difficult to label considering the un-
structured noisy multi-labelled nature of the data. We demonstrate that even with such dif-
ficulties, we can effectively and automatically label the reviews to address real world prob-
lems of stakeholders. Our work is another step in moving towards leveraging user reviews
to improve the quality of mobile apps.

For future work we would like to improve the prediction performance for our multi-
labelling approach especially for the ambiguous issue types. We would also like to perform
user surveys of the major stakeholders to better understand how they would use the applica-
tions that we demonstrated in this paper.

References

1. M. Butler, “Android: Changing the mobile landscape,” Pervasive Computing, IEEE,
vol. 10, no. 1, pp. 4–7, 2011.

2. Flurry. (2014, May) Flurry. [Online]. Available: http://www.flurry.com/solutions/
analytics

3. A. Annie. (2014, May) App annie. [Online]. Available: http://www.appannie.com/
app-store-analytics/

4. K. Bostic. (2013, Jul.) Google play takes top spot in downloads, but apple’s app
store still tops revenue. [Online]. Available: http://appleinsider.com/articles/13/07/31/
google-play-takes-top-spot-in-downloads-but-apples-app-store-still-tops-revenue

5. Distimo. (2013, Sep.) Google play store, united states, top overall, free, week
35 2013. [Online]. Available: http://www.distimo.com/leaderboards/google-play-store/
united-states/top-overall/free

6. Adobe. (2014, May) Mobile analytics. [Online]. Available: http://www.adobe.com/ca/
solutions/digital-analytics/mobile-analytics.html

7. Google. (2014, May) Google analytics. [Online]. Available: http://www.google.ca/
analytics/mobile/

8. V. mobile, “Developer Economics Q1 2014: State of the Developer Nation,” Tech. Rep.,
05 2014.

9. D. Pagano and B. Bruegge, “User involvement in software evolution practice: a case
study,” in Proceedings of the 2013 International Conference on Software Engineering.
IEEE Press, 2013, pp. 953–962.

10. A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning
word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1.
Association for Computational Linguistics, 2011, pp. 142–150.

34

11. B. Pang and L. Lee, “A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts,” in Proceedings of the 42nd annual meeting on
Association for Computational Linguistics. Association for Computational Linguistics,
2004, p. 271.

12. M. Thelwall, K. Buckley, and G. Paltoglou, “Sentiment strength detection for the social
web,” J. Am. Soc. Inf. Sci. Technol., vol. 63, no. 1, pp. 163–173, Jan. 2012. [Online].
Available: http://dx.doi.org/10.1002/asi.21662

13. H. Khalid, “On identifying user complaints of ios apps,” in Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, 2013.

14. G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” International
Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3, pp. 1–13, 2007.

15. J. Read, “Scalable multi-label classification,” Ph.D. dissertation, University of Waikato,
2010.

16. C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature requests from
online reviews,” in Proceedings of the Tenth International Workshop on Mining Soft-
ware Repositories. IEEE Press, 2013, pp. 41–44.

17. M. F. Porter, “Snowball: A language for stemming algorithms.”
18. ——, “An algorithm for suffix stripping,” Program: electronic library and information

systems, vol. 14, no. 3, pp. 130–137, 1980.
19. J. Read. (2013, Sep.) Meka: A multi-label extension to weka. [Online]. Available:

http://meka.sourceforge.net/
20. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The

weka data mining software: an update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp.
10–18, Nov. 2009. [Online]. Available: http://doi.acm.org/10.1145/1656274.1656278

21. A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge University
Press, 2012.

22. J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label clas-
sification,” in Machine Learning and Knowledge Discovery in Databases. Springer,
2009, pp. 254–269.

23. R.-E. Fan and C.-J. Lin, “A study on threshold selection for multi-label classification,”
Department of Computer Science, National Taiwan University, 2007.

24. G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining multi-label data,” in Data mining
and knowledge discovery handbook. Springer, 2010, pp. 667–685.

25. K. H. Esbensen, D. Guyot, F. Westad, and L. P. Houmoller, Multivariate data analy-
sis: in practice: an introduction to multivariate data analysis and experimental design.
Multivariate Data Analysis, 2002.

26. L. Michielan, L. Terfloth, J. Gasteiger, and S. Moro, “Comparison of multilabel
and single-label classification applied to the prediction of the isoform specificity
of cytochrome p450 substrates,” Journal of Chemical Information and Modeling,
vol. 49, no. 11, pp. 2588–2605, 2009, pMID: 19883102. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/ci900299a

27. M. Brameier and W. Banzhaf, “A comparison of linear genetic programming and neural
networks in medical data mining,” Evolutionary Computation, IEEE Transactions on,
vol. 5, no. 1, pp. 17–26, Feb 2001.

28. Akdeniz. (2013, Sep.) Google play crawler. [Online]. Available: https://github.com/
Akdeniz/google-play-crawler

29. H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the devices to test
your app on: A case study of android game apps,” in 22nd ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE 2014). ACM, 2014.

35

30. M. F. Niculescu and D. J. Wu, “When should software firms commercialize new prod-
ucts via freemium business models,” Under Review, 2011.

31. Google. (2013, Sep.) Google play developer program policies. [Online]. Available:
https://play.google.com/about/developer-content-policy.html

32. ——. (2013, Sep.) Core app quality guidelines. [Online]. Available: http://developer.
android.com/distribute/googleplay/quality/core.html

33. W. A. Shewhart, Economic control of quality of manufactured product. ASQ Quality
Press, 1931, vol. 509.

34. T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora, “Au-
tomated detection of performance regressions using statistical process control tech-
niques,” in Proceedings of the third joint WOSP/SIPEW international conference on
Performance Engineering. ACM, 2012, pp. 299–310.

35. S. Ghaith, M. Wang, P. Perry, and J. Murphy, “Profile-based, load-independent anomaly
detection and analysis in performance regression testing of software systems,” in Soft-
ware Maintenance and Reengineering (CSMR), 2013 17th European Conference on.
IEEE, 2013, pp. 379–383.

36. A. M. Abubakar and D. N. Jawawi, “A study on code peer review process monitoring
using statistical process control,” in e-Proceeding of Software Engineering Postgradu-
ates Workshop (SEPoW), 2013, p. 136.

37. D. Ramage, D. Hall, R. Nallapati, and C. D. Manning, “Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume
1. Association for Computational Linguistics, 2009, pp. 248–256.

38. D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the Journal of
machine Learning research, vol. 3, pp. 993–1022, 2003.

39. D. Ramage and E. Rosen, “Stanford topic modeling toolbox,” 2011.
40. L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments: an approach for

software requirements evolution,” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp.
582–591.

41. H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile app users com-
plain about? a study on free ios apps,” pp. 1–1, 2014.

42. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka
data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11,
no. 1, pp. 10–18, 2009.

43. M. Harman, Y. Jia, and Y. Z. Test, “App store mining and analysis: Msr for app stores,”
in Proceedings of the 9th Working Conference on Mining Software Repositories (MSR
’12), Zurich, Switzerland, 2-3 June 2012.

44. S. M. Mudambi and D. Schuff, “What makes a helpful online review? a study of cus-
tomer reviews on amazon.com,” MIS Quarterly, vol. 34, no. 1, pp. 185–200, 2010.

45. H.-W. Kim, H. L. Lee, and J. E. Son, “An exploratory study on the determinants of
smartphone app purchase,” in The 11th International DSI and the 16th APDSI Joint
Meeting, Taipei, Taiwan, July 2011.

46. B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people hate your app:
Making sense of user feedback in a mobile app store,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’13. New York, NY, USA: ACM, 2013, pp. 1276–1284. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2488202

36

47. D. Pagano and W. Maalej, in Proceedings of the 21st. IEEE International Requirements
Engineering Conference. IEEE, 2013. [Online]. Available: http://mobis.informatik.
uni-hamburg.de/wp-content/uploads/2013/07/RE2013PaganoMaalej.pdf

48. P. Melville, W. Gryc, and R. Lawrence, “Sentiment analysis of blogs by combining
lexical knowledge with text classification,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2009, pp.
1275–1284.

49. N. Jindal and B. Liu, “Review spam detection,” in Proceedings of the 16th international
conference on World Wide Web. ACM, 2007, pp. 1189–1190.

50. D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Understanding an-
droid fragmentation with topic analysis of vendor-specific bugs,” in Reverse Engineer-
ing (WCRE), 2012 19th Working Conference on. IEEE, 2012, pp. 83–92.

51. S. N. Ahsan, J. Ferzund, and F. Wotawa, “Automatic classification of software change
request using multi-label machine learning methods,” in Software Engineering Work-
shop (SEW), 2009 33rd Annual IEEE. IEEE, 2009, pp. 79–86.

52. K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how misclassification im-
pacts bug prediction,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 392–401.

53. G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is it a bug or
an enhancement?: a text-based approach to classify change requests,” in Proceedings
of the 2008 conference of the center for advanced studies on collaborative research:
meeting of minds, ser. CASCON ’08. ACM, 2008, pp. 23:304–23:318.

54. B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations and trends
in information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

55. M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2004, pp. 168–177.

56. B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classification using
machine learning techniques,” in Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10. Association for Computational
Linguistics, 2002, pp. 79–86.

57. K. Ganesan, C. Zhai, and E. Viegas, “Micropinion generation: an unsupervised ap-
proach to generating ultra-concise summaries of opinions,” in Proceedings of the 21st
international conference on World Wide Web, ser. WWW ’12. New York, NY, USA:
ACM, 2012, pp. 869–878.

58. A. Pak and P. Paroubek, “Twitter as a corpus for sentiment analysis and opinion mining.”
in LREC, 2010.

37

