
Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Software Release Notes

Surafel Lemma Abebe, Nasir Ali,

and Ahmed E. Hassan

the date of receipt and acceptance should be inserted later

Abstract Release notes are an important source of information about a new soft-
ware release. Such notes contain information regarding what is new, changed,
and/or got fixed in a release. Despite the importance of release notes, they are
rarely explored in the research literature. Little is known about the contained
information, e.g., contents and structure, in release notes.

To better understand the types of contained information in release notes, we
manually analyzed 85 release notes across 15 different software systems. In our
manual analysis, we identify six different types of information (e.g., caveats and
addressed issues) that are contained in release notes. Addressed issues refer to new
features, bugs, and improvements that were integrated in that particular release.
We observe that most release notes list only a selected number of addressed issues
(i.e., 6-26% of all addressed issues in a release). We investigated nine different
factors (e.g., issue priority and type) to better understand the likelihood of an
issue being listed in release notes. The investigation is conducted on eight release
notes of three software systems using four machine learning techniques. Results
show that certain factors, e.g., issue type, have higher influence on the likelihood
of an issue to be listed in release notes. We use machine learning techniques to
automatically suggest the issues to be listed in release notes. Our results show that
issues listed in all release notes can be automatically determined with an average
precision of 84% and an average recall of 90%. To train and build the classification
models, we also explored three scenarios: (a) having the user label some issues
for a release and automatically suggest the remaining issues for that particular
release, (b) using the previous release notes for the same software system, and (c)
using prior releases for the current software system and the rest of the studied
software systems. Our results show that the content of release notes vary between
software systems and across the versions of the same software system. Nevertheless,
automated techniques can provide reasonable support to the writers of such notes

Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada
E-mail: {surafel,nasir,ahmed}@cs.queensu.ca

2 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

with little training data. Our study provides developers with empirically-supported
advice instead of simply relying on adhoc advice from on-line inquiries.

1 Introduction

Release notes are important software system trails [20]. Release notes are usually
produced when a new version of a software system is released. The notes serve
as a means of communication between the developers and the users of a software
system. In addition, they help to establish expectations by providing information
such as “known issues” [13,33]. Consulting release notes is an essential best prac-
tice that is advocated in order to avoid field problems [13]. The importance and
significance of release notes is echoed throughout several postings and news arti-
cles (e.g., [33]). Despite the important role of release notes in providing quick and
general information about a software release, little is known about release notes.
Earlier versions of the SWEBOK had planned to tackle the content of release notes
[7]. However, the most recent version of SWEBOK removed all references to the
topic release notes [3].

Nevertheless, the content of release notes and best practices remain an im-
portant topic that is of interest to release notes writers. For example, the top 20
results of a Google search, using the query “release notes” how to write, shows 12
web pages of different websites which describe best practices to write such notes.
Often, people ask about the best practices in writing release notes on question and
answering websites. For example, on StackOverflow, we found the question “How

should release notes be written?” [2], while on Programmers StackExchange, we found
questions about “good practices of writing release notes” [1]. The answers to these
questions, however, vary with each person sharing his or her own experiences and
views. In addition, there exists a Wikipedia page on the topic of release notes
[5]. While there are many listings of advices worldwide, they are ad-hoc personal
views without a strong empirical backing to them. The differences in the contents
of release notes could also be observed by looking at existing release notes. For
example, Figure 1 shows release notes which have differences in the contained in-
formation. In particular, we find that the release notes for Eclipse often provide
detailed information such as target operating environment, while the release notes
for ThunderBird are usually much more concise and contain less information. In
short, there appears to be little consensus on what is and what should be listed in
release notes.

Despite the variation in the contents of release notes, we believe that release
notes share the same objective and, hence, can be organized using a given set of
information types. Identifying the different information types that are communi-
cated in release notes is the first step to understand them. The identification of
the information types commonly used in the release notes will help us derive best
practices and guidelines to assist the writers of release notes. To the best of our
knowledge, this paper is a first attempt to understand the different information
types that are contained in release notes. We performed an empirical study on soft-
ware release notes in order to identify the different challenges related to writing
release notes.

In our empirical study, we explored the different information types that are
included in release notes. Our study shows that:

An Empirical Study of Software Release Notes 3

Six different information types exist based on the analysis of 85 release notes
taken from 15 software systems. Almost 70% of the manually evaluated re-
lease notes contain the title, system overview, addressed issues, and caveat
information types.

We also observed that all too often, the notes omit listing many of the issues
that were addressed in the release (i.e., only 6-26% of the addressed issues are listed
in eight release notes of the three software systems that we closely examined). In
the second part of our empirical study, we analyzed the different factors which are
related to issues and which could be used to explain the likelihood of an addressed
issue appearing in the release notes. We find that:

Issue type, number of comments, description size, days to address an issue, number

of modified files and reporter’s experience are important factors in explaining
the likelihood of an issue being listed in release notes.

The selection of issues requires a good knowledge of all addressed issues and
the relevance of these issues to the release notes readers. We believe that the
selection of the relevant addressed issues is one of the challenges that release notes
writers must tackle everytime they prepare such notes. To address this challenge,
we investigate automated approaches (through machine learning techniques) which
suggest issues that should be listed in release notes. We find that:

Issues listed in all studied release notes can be determined with an average
precision of 84% and an average recall of 90%.

Machine learning techniques use a training dataset to build a model. In our
study, we investigated three training scenarios that could be used to build a model
and suggest issues that should be listed in release notes. The training scenarios are:
(a) having the user label some issues for a release and automatically suggesting
the remaining issues for that particular release, (b) using a previous release notes
for the same software system, and (c) using prior releases for the current software
system and the rest of the studied software systems. The results show:

The first scenario, having the user label some issues for a release and auto-
matically suggesting the remaining issues for that particular release, gives the
best result as compared to the other training scenarios.

Our findings could be used as a starting point for further studies to create a
guideline for writing release notes. The results show that our approach could also
be used to help release notes writers automatically identify issues to be listed in
release notes.

Paper organization: Section 2 presents our exploratory study on the contents
of release notes. Sections 3 and 4 discuss factors that could be used to explain
the likelihood of an issue being listed in release notes. Section 5 explores different
scenarios that could be used to automatically suggest which issues should be listed
in the release notes of a particular release. Sections 6 and 7 present threats to
validity and related works, respectively. Section 8 discusses our conclusion and
higlights avenues for future work.

4 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

2 Information types that are included in release notes

We collected release notes from 15 open source software systems of various domains
(see Table 1). Table 1 shows the list of software systems, their type, release versions,
and total, average and median of the number of words in release notes for each
release type, i.e., major and minor. When there is only one version of a software
system, average and median values are not computed. The notes are collected from
the Websites of the respective software systems. We collected more release notes of
a software system if the release notes of that software system is small in terms of
the number of words in the release notes, e.g., Dropbox release notes. We believe
that the larger number of small release notes helps us observe possibly different
release notes contents for such systems.

From each studied software system, we examined the release notes for at least
one minor or one major release of the software system. To identify whether a
release is a minor or major, we consulted several on-line system documentation
and discussion forums.

We followed a grounded theory approach [16,30], to identify the types of in-
formation that is commonly included in the release notes. Grounded theory is a
systematic approach where one derives abstract concepts from the subjects under
observation. Grounded theory involves several steps where the observer incremen-
tally collects data and identifies concepts from the data. For our case, the concepts
are the types of information in the release notes. The concepts are then categorized
and refined as additional data is introduced in the study. For example, if a release
notes has information about caveats and caveats was not included in the list before
then we added caveats in the information type pool. We followed the same process
for all collected release notes. When related information types are found in the
pool of information types, we combined the related information types into a new
more general and representative information type. For example, the information
types new features, improvements and bug fixes are combined into addressed issues.
New features, improvements and bug fixes are usually found in different sections of
release notes.

To evaluate whether the identified information types could be associated with
the content of individual release notes, we manually classified the contents of 10
randomly selected release notes along the identified information types. We selected
10 release notes because we believed the results of the 10 release notes would give
a good picture of the association. The 10 release notes cover more than 65% of
the software systems that we studied. The classification was performed by the first
author and verified by the second author. When there was a disagreement between
the identified types, both authors held a discussion and consulted the third author
to resolve the disagreement. The disagreement occurred 6 times, which is only 10%
(6/60), while assigning the information types to release notes contents as shown in
Table 3. It took 20 minutes to 3 hours in order to read and categorize the contents
of one release notes.

2.1 Results and discussion

Six information types are identified in the release notes. In our study, we
identified the information types that are presented in Table 2, along with a brief

An Empirical Study of Software Release Notes 5

Eclipse Project Release Notes
Release 3.4.1
Last revised Sept 25, 2008

This software is OSI Certified Open Source Software.
OSI Certified is a certification mark of the Open Source Initiative.

1. Target Operating Environments
2. Compatibility with Previous Releases
3. Known Issues
4. Running Eclipse
5. Upgrading a Workspace from a Previous Release
6. Interoperability with Previous Releases
7. Defects Fixed since Previous Release

1. Target Operating Environments

In order to remain current, each Eclipse release targets reasonably current operating
environments.

Most of the Eclipse SDK is "pure" Java code and has no direct dependence on the
underlying operating system. The chief dependence is therefore on the Java Platform
itself. Portions of the Eclipse SDK (including the RCP base, SWT, OSGi and JDT core
plug-ins) are targeted to specific classes of operating environments, requiring their
source code to only reference facilities available in particular class libraries (e.g. J2ME
Foundation 1.0, J2SE 1.3 and 1.4, etc.).

In general, the 3.4 release of the Eclipse Project is developed on a mix of Java 1.4 and
Java5 VMs. As such, the Eclipse Project SDK as a whole is targeted at both 1.4 and Java5
VMs, with full functionality available for 1.4 level development everywhere, and new
Java5 specific capabilities available when running on a Java5 VM. Similarly, in cases
where support has been added for Java6 specific features (e.g. JSR-199, JSR-269, etc.)
Java6 VMs are required.

Appendix 1 contains a table that indicates the class library level required for each plug-in.

There are many different implementations of the Java Platform running atop a variety of
operating systems. We focus Eclipse SDK testing on a handful of popular combinations of
operating system and Java Platform; these are our reference platforms. Eclipse
undoubtedly runs fine in many operating environments beyond the reference platforms
we test, including those using Java6 VMs. However, since we do not systematically test
them we cannot vouch for them. Problems encountered when running Eclipse on a
non-reference platform that cannot be recreated on any reference platform will be given
lower priority than problems with running Eclipse on a reference platform.

The Eclipse SDK 3.4 is tested and validated on the following reference platforms

pdfcrowd.comopen in browser PRO version Are you a developer? Try out the HTML to PDF API

What’s New Try Thunderbird

Check »

Download »

Install »

Customize »

Thunderbird
Release Notes

v.16.0, released: October 9, 2012v.16.0, released: October 9, 2012

v.16.0, released: October 9, 2012

Check out what’s new and known issues for this version of Thunderbird below. AsCheck out what’s new and known issues for this version of Thunderbird below. As

Check out what’s new and known issues for this version of Thunderbird below. As

always, you’re encouraged to always, you’re encouraged to

always, you’re encouraged to

tell us what you thinktell us what you think

tell us what you think

, or , or

, or

file a bug in Bugzilla.file a bug in Bugzilla.

file a bug in Bugzilla.

We have now added box.com to the list of online
storage services that are available for use with
Thunderbird Filelink

NEW

Silent, background updates. Thunderbird will now
download and apply updates in the background
allowing you to start quickly the next time
Thunderbird starts up.

NEW

THUNDERBIRD ADD-ONS SUPPORT COMMUNITY ABOUT

pdfcrowd.comopen in browser PRO version Are you a developer? Try out the HTML to PDF API

OTHER LANGUAGES:THUNDERBIRD ADD-ONS SUPPORT COMMUNITY ABOUT

Known Issues

Want to get involved?
Did you know that most of the
content in Thunderbird Support
was written by volunteers?

Find out more »

Having Problems?
1. Search for answers on the

Thunderbird Support page »

2. Look at the known issues list
and see if we already know
about the problem »

3. If you can’t find reference to
your issue, please consider
filing a technical bug report »

Other Resources
The Thunderbird Blog »

No longer supporting MD5 as a hash algorithm in
digital signatures (650355)

FIXED

Various fixes and performance improvementsFIXED

Various security fixesFIXED

If you are unable to view content for your RSS feeds in
the Wide View Layout, you can switch to Classic View,
or you may need to disable the Lightning Calendar
add-on. In both cases, you'll need to restart
Thunderbird (see 531397).

UNRESOLVED

Fig. 1: Excerpts of the release notes for Eclipse 3.4.1 and ThunderBird 16.0.

6 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

Table 1: List of systems and versions for which we explored the release notes.
Average, median, and St. deviation are not computed when only one release version
is considered.

No. System System type Release Words in Release notes
Type Versions Total Average Median (St.

Dev.)
1 Debian-32bit PC OS Minor 3.1 8,862

Major 7 8,427
2 DropBox Cloud stor-

age service
Minor 2.0.2, 2.0.4, 2.0.5, 2.0.6,

2.0.7, 2.0.8, 2.0.10, 2.0.12,
2.0.16, 2.0.21, 2.0.22,
2.0.26, 2.2.0, 2.2.1, 2.2.2,
2.2.3, 2.2.8, 2.2.9, 2.2.10,
2.2.12, 2.2.13

1,047 50 28 (±52)

Major 2.0.0 22
3 Eclipse IDE Minor 3.4.1, 3.4.2, 3.5.1, 3.5.2,

3.6.1, 3.6.2, 3.7.1, 3.7.2,
127,608 15,951 16,033 (±1,012)

Major 3.3.0, 3.4.0, 3.5.0, 3.6.0,
3.7.0, 4.2.0, 4.3.0

92,704 13,243 13,045 (±839)

4 Fedora OS Major 18, 19 19,029 9,515 9,515 (±1,084)
5 Firebug Web de-

velopment
tool

Minor 1.12.2 1,433

Major 1.10.0, 1.11.0 2,623 1,312 1,312 (±450)
6 Firefox Browser Minor 23.0.1 1,267

Major 23, 24 2,322 1,161 1,161 (±62)
7 GCC Compiler Minor 3.1.1, 3.2.1, 3.2.2, 3.2.3,

3.3.1, 3.3.2, 3.3.3, 3.3.4,
3.3.5, 3.3.6

8,989 899 813 (±712)

Major 3.2, 3.3, 4.8 9,029 3,010 3,873 (±2,212)
8 GIMP Image edit-

ing tool
Major 2.4, 2.6, 2.8 5,634 1,878 1,529 (±689)

9 Hadoop Software
framework

Minor 0.18.0, 0.19.0, 0.20.0, 1.1.2 48,544 12,136 1,854 (±21,250)

10 JIRA Issue track-
ing tool

Minor 5.2 2,680

Major 6.0 1,880
11 LibreOffice Office suite Minor 4.0.4 627

Major 4.1.0 652
12 Lucene Information

retrieval
library

Major 3.4, 3.5 1,015 508 508 (±25)

13 Rubby
on
Rails

Web ap-
plication
framework

Major 3.0, 3.1, 3.2, 4.0 16,169 4,042 4,056 (±1,289)

14 Solr Search
platform

Minor 3.6.2, 4.2.1, 4.3.1 1,092 364 364 (±7)

Major 3.4, 3.5, 3.6 1,463 488 458 (±53)
15 Thunderbird Mail client Minor 17.0.7 344

Major 16 485

description of the information type and examples of each identified type. The
identified information types are not dependent on a given domain as the types
are identified using software systems taken from different domains. However, most
of the information types could be shared by systems from the same domain. For
example, the software systems from the OS domain, Debian-32bit PC and Fedora,
share most of the information types (see Table 3). DropBox, on the other hand,
has the least common information types with either Debian-32bit PC or Fedora.
In addition to the domain of the software systems, other characteristics of the
software systems (e.g., software size and user base) could impact what is included
in the release notes. Future studies should further investigate the information types
in release notes with respect to the characteristics of the software system.

At least 70% of the manually examined release notes contain the title, system

overview, addressed issues, and caveat information types. Table 3 shows the
result of our manual evaluation of the identified information types on the ten
randomly selected release notes. An information type corresponding to the release

An Empirical Study of Software Release Notes 7

Table 2: Information types in Release Notes

Information
type

Description Example

Title Title provides specific information about the
released version. Title is used to present unique
identifiers of the released software. The infor-
mation included in this information type are:
name and version of the released software. In
some release notes, the date on which the re-
lease notes is created, last updated, or revised
is also included in the title.

In Debian 7.0 the title
of the release notes is
Debian 7.0 “Wheezy”
released.
LibreOffice and
ThunderBird have
the created, last up-
dated, or revised
information as well.

System
overview

System overview provides general informa-
tion about the released software system. The
overview is used to present a summary of the
main functionalities of the software system. In
some release notes, it also includes information
about licenses and copyrights. In most release
notes, overview is one of the first sections of
the release notes. Some release notes do not
include this information type.

LibreOffice release
notes states that Li-
breOffice source code
is licensed under the
GNU Lesser Gen-
eral Public License
(LGPLv3).

Resource re-
quirement

Resource requirement provides information
about supported platform (i.e., hardware
and software requirements). The descriptions
about the environment or type of machine
required to install and use the software sys-
tem are categorized under this information
type. Resource requirement refers to informa-
tion such as the operating system, hardware,
or architecture of the machine supported by
the software. In addition no longer supported
platforms are described under this information
type.

Eclipse 3.7.1 release
notes indicates that
Eclipse 3.7.1 supports
x86 32-bit, x86 64-bit,
Power 64-bit, SPARC
32-bit, ia64 32-bit, Uni-
versal 32-bit, and Uni-
versal 64-bit hardware
platforms.

Installation Installation provides instructions on how to
make the released software operational. In-
structions, which are provided on how to in-
stall, configure, upgrade the software, are cat-
egorized under this information type. We ob-
served that such information is not always pro-
vided in release notes.

JIRA 6.0 release notes
provides instructions
on how to upgrade to
JIRA 6.0 from JIRA
5.2.x installations.

Addressed
issues

Addressed issues provides information about
the integrated changes, i.e., work done, in
the released software. Addressed issues include
new features, bug fixes, and improvements.

Firefox 23 release
notes describes two
new features: options
panel created for Web
Developer Toolbox,
and a user protection
mechanism from man-
in-the-middle attacks
and eavesdroppers on
HTTPS pages.

Caveat Caveat provides information about open issues
and problems of which a user should be aware.
Caveat information type usually indicates the
causes of the issues and problems, and future
plans to address them.

Eclipse 3.7.1 release
notes describes instal-
lation and configura-
tion issues that can
cause Eclipse to fail to
start.

8 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

notes is marked with a check mark (), if the release notes contain information
which in part or fully corresponds to the description of the information type.
Otherwise the information type corresponding to the release notes is left blank.

Table 3: Classification of release notes contents based on information types.

Release notes Title System Resource Installation Addressed Caveats
System Version Type overview requirement issues

Debian-
32bit PC

7 Major

DropBox 2.2.10 Minor

Eclipse 3.7.1 Minor

Fedora 18 Major

Firefox 23 Major

GCC 4.8 Major

Hadoop 0.19.0 Minor

JIRA 6.0 Major

LibreOffice 4.1.0 Major

ThunderBird 17.0.7 Minor

Percentage of 100 80 30 30 100 70

Addressed issues and title information types are found in all of the ten studied

release notes. In our manual analysis, we observed that all release notes have
a title and list either of the three types of addressed issues: new features, bug

fixes, or improvements. Resource requirement and installation information types
are found in only 30% of the manually analyzed release notes. The absence of such
information types are due to the fact that release notes are not the only sources of
information for software systems. When a software is released, additional sources
of information such as user manuals and README files which could contain such
information types are also prepared. Hence, the information types which are not
included in release notes of some software systems could be found in the additional
documents.

Release notes are user-oriented. In our manual evaluation, we observed that all
release notes are mainly written for users who would not read through the source
code of the software system. Only 30% of the manually analyzed release notes
have additional information for developers. The additionally provided informa-
tion for developers include newly introduced subroutines and debugging features,
and developer-relevant incompatibilities. The release notes which have additional
information for developers are Fedora 18, Firefox 23, and Hadoop 0.19.0.

The information types provided in major and minor releases differ from sys-

tem to system. While identifying the information types, we observed that release
notes of some software systems provide different information in their release notes
for major versus minor releases, while in others they provide the same information
types. For example, in the release notes for major releases of Eclipse, addressed
issues are not provided; while the release notes for minor releases provide such
information. However, both the release notes for the major and minor versions
of ThunderBird include the addressed issues information type. Looking into the
number of words in the release notes of major and minor versions of Eclipse, the
release notes for the minor versions have 38% more words than the release notes
for the major versions. For ThunderBird, however, the release notes for the mi-

An Empirical Study of Software Release Notes 9

nor version has 29% less words than the release notes for the major release (see
Table 1).

Table 4: Temporal changes of the information types across several release notes
for Eclipse. Other than Addressed issues, all types appear across all releases.

Eclipse release Information types
Version Type Title System

overview
Resource
req.

Installation Addressed
issues

Caveat

3.3.0 Major

3.4.0 Major

3.4.1 Minor

3.4.2 Minor

3.5.0 Major

3.5.1 Minor

3.5.2 Minor

3.6.0 Major

3.6.1 Minor

3.6.2 Minor

3.7.0 Major

3.7.1 Minor

3.7.2 Minor

4.2.0 Major

4.3.0 Major

Temporal changes of information are dependent on the type of release. To
investigate if there are temporal changes of information as the software is upgraded,
we analyzed GCC, Eclipse, and DropBox (see Table 1). The systems are selected
because we have a large number of versions for them. Table 4 shows the results for
Eclipse. In GCC and Eclipse, we observed that the information types contained in
the release notes rarely change between major and minor releases. For example,
Eclipse has addressed issues only in the minor releases (see Table 4). For DropBox,
however, no change of information type is observed across the versions investigated.

Release notes writers follow three different styles when describing the ad-

dressed issues. Addressed issues is one of the main information types in release
notes. The addressed issues information type incorporates information about three
types of addressed issues in the released software: new features, bug fixes, and im-

provements. While exploring the release notes, we observed that most release notes
writers follow three different styles when describing the addressed issues in a re-
lease. We describe each style below:

• Style I - Consolidated summary of selected issues: Release notes writers re-
phrase and summarize the addressed issues in the current release. In some re-
lease notes, writers consolidate the summaries of related issues into paragraphs
(e.g., GCC 4.3, JIRA 6.1 release notes), while in others they select issues and
provide a summary for each issue (e.g. DropBox 2.2.12 release notes). These
summaries do not include any references to the corresponding issues in the
repository where issues are tracked. In 80% of the release notes that are shown
in Table 3, release notes writers follow Style I when documenting the issues in
the release notes.

10 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

• Style II - List of selected issues: Release notes writers do not summarize
issues but simply list some selected issues that were addressed in the current
release. As a description of the issue, writers usually use the title of the issue
as provided in the issue repository (e.g., Hadoop 0.19.0 release notes). In 10%
of the release notes that are shown in Table 3, release notes writers follow Style

II when documenting the issues in the release notes.
• Style III - List of all issues: Release notes writers provide a list of all ad-

dressed issues in the current release without providing any information on a
selected list of addressed issues which are considered worth expanding on. An
example of release notes with such style is the release notes of Eclipse 3.4.1. In
this release notes, the writers list all the addressed issues with the issue ID and
title. Release notes which provide only a link to the issue repository without
any highlighting of the selected issues are also grouped under this style. In 10%
of the release notes that are shown in Table 3, the release notes writers follow
Style III when documenting the addressed issues in the release notes.

3 Why are only some of the issues listed in the release notes?

From our exploratory study in Section 2, we notice that, all too often, not all
addressed issues are listed in the release notes. Usually, adding all the addressed
issues in release notes, as described in Style III above, makes the release notes too
long. Consequently, lengthy release notes might be less useful for readers who are
interested in knowing the important addressed issues in the current release. Release
notes writers often try to list the most important issues in the release notes. A
reply to a good practice question about writing release notes on the Stack Exchange

supports our statement. The reply states the following: “The most important thing

about release notes is to be aware that every additional sentence loses another 10% of

the readers. So you must strictly prioritize what your current users need to know about

the release”[1].
To strike a balance between being informative and not too lengthy, release

notes writers commonly follow the aforementioned Style I and Style II. In these
styles, selected issues are listed or summarized in the release notes. From the ten
software release notes listed in Table 3, only the release notes for Eclipse 3.7.1
lists all addressed issues in the given version. The remaining nine release notes
provide information on a selected number of addressed issues in the corresponding
version. For example, for Lucene 3.5, 9 of 72 addressed issues are listed as highlights

in the corresponding release notes. Selecting which issues to list from a long list
of addressed issues in a given version is a non-trivial decision for the writers of
release notes. The selection process requires complete knowledge of the issues and
their importance from both the user and developer point of view.

3.1 Factors which influence the likelihood of addressed issues being listed in the
release notes

To the best of our knowledge, there are no studies which explores the rationale
for listing or not listing an addressed issue in the release notes. We define nine
different factors relating to issues in order to understand the rationale for an issue

An Empirical Study of Software Release Notes 11

being listed in the release notes. We, then, compute different analysis to see if the
factors could be used to explain the likelihood of an addressed issue being listed
in the release notes.

Table 5: Systems and number of listed issues in the corresponding release notes
(RN).

System Version Addressed Issues
Listed in Total Ratio of listed in

Release Notes Release Notes (%)
Hadoop 0.18.0 65 253 25.69

0.19.0 63 274 22.99
0.20.0 39 259 15.06

Lucene 3.4 7 50 14.00
3.5 9 72 12.50

Solr 3.4 6 44 13.64
3.5 5 40 12.50
3.6 7 113 6.19

Investigated factors: Table 6 shows the factors that are investigated in our study.
We selected factors which we felt could intuitively explain the importance of an
issue from different dimensions. The selected factors have also been studied to
address other software maintenance tasks [8,18,19,28,31,35,37,41]. The factors are
categorized along three dimensions: issue information, change effort, and experience

of people.
Issue information dimension refers to factors which are collected from an issue

report. The different values in the issue report could be used for different purposes,
such as prioritizing an issue [19,28,37,41]. For example, issues which are bug fixes
and have higher priority are likely to be addressed ahead of others. We investigate
if the factors under the issue information dimension can also be used to explain
the likelihood of an issue being listed in release notes.

Change effort represents the effort put in addressing an issue [8,18,31]. We
conjecture that issues which require more effort are more likely to be listed in the
release notes. We measure change effort using two proxy factors: days to address

an issue and number of modified files.
Experience of people dimension refers to the experience of the people involved in

reporting and addressing an issue [14,19,32,35]. People who are well-experienced
usually identify and address major issues which are more likely to be listed in
the release notes. We use reporter experience,i.e., the number of issues that are
reported by a reporter, committer experience, i.e., the number of files that are
committed by a developer, to quantify the experience of individuals.

Table 6 presents the factors that were collected for the three dimensions.

Studied release notes: For our study, we selected three release notes from Hadoop,
two release notes from Lucene, and three release notes from Solr (see Table 5).
These release notes are selected because they include the IDs of the addressed
issues that are listed in the release notes as described in the aforementioned Style

II. The issue IDs help to accurately map the addressed issues that are listed in
release notes to the corresponding issues in the issue repository. Release notes that
use Style I have a consolidated summary of selected issues that does not include

12 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

Table 6: Studied factors across the three dimensions along with the used measure
and the rationale for each factor.

Dimension Factor Measure Rationale
Issue in-
formation

Issue type count of New
features, bugs,
improvements

Different issue types are given different
importance and, hence, could influence
the likelihood of an issue to be listed in
release notes.

Priority count of
Blocker, crit-
ical, major,
minor, trivial

Issues with higher priorities are more
likely to be listed in release notes.

Number of
comments

Count of com-
ments per issue

Long discussions could indicate dif-
ficult or important issues which are
more likely to be listed in release notes.

Summary
size

Count of words When listing all the addressed issues,
one might actually opt for shorter ti-
tles to prevent the release notes from
getting too long.

Description
size

Count of words A long description could indicate a
complex and difficult issue that is
likely to be listed in release notes.

Change
effort

Days to ad-
dress an is-
sue

Number of
days

Issues which take longer time to be ad-
dressed could be a major and, hence,
important issue that are likely to be
listed in release notes.

Number of
modified
files

Count of modi-
fied files to ad-
dress an issue

Issues requiring modification of a num-
ber of files could be major ones, and
hence, important issues that are more
likely to be listed in release notes.

Experience
of people

Reporter
experience

Number of
issues reported
by a reporter

Issues reported by an experienced re-
porter are more likely to be listed in
the release notes.

Committer
experience

Number of files
committed

Experienced developers are likely to
work on important issues which are
more likely to be listed in the release
notes.

issue IDs. The absence of issue IDs makes mapping the selected issues with the
entries in the issue repository difficult. Release notes that use Style III, on the other
hand, list all addressed issues in the release notes which makes the notes unsuitable
for our investigation. From the studied release notes, only Hadoop, Lucene, and
Solr have IDs of addressed issues in their release notes. The existence of such
mapping ensures accurate and unbiased mapping of issues to the corresponding
content in the release notes. Table 5 presents the number of issues that are listed
in the release notes and the total number of addressed issues in the corresponding
version. The ratio of issues listed in the release notes ranges from 6 to 26%. All
the three systems use the Apache JIRA issue repository to manage their issues.

Data collection: To compute the factors for each issue, we mined the issue
repository of each system. The issue repository provides us with various details
about an issue, e.g., all comments for an issue, days to address an issue, and issue
priority. Some information about an issue, e.g., the number of modified files to
address an issue, are not available in issue repositories. All information regarding
added, modified, or deleted files is stored in the commit logs of the corresponding

An Empirical Study of Software Release Notes 13

Fig. 2: Comparison of issues in release notes (IRN) and not in release notes (NIRN)
for each factor. The x-axis labels correspond to the labels listed in Table 7 and
y-axis shows the average of measures.

version control system of the studied software systems. Thus, we link commit logs
with issue reports to gather more information about an issue.

Developers often add an issue tracking number in the commit log message
when they address an issue that is reported in the issue tracking system. We use
regular expressions, i.e., a simple text matching approach, to link an issue with a
commit log. On average, we accurately linked 89% of the issues to their commit
logs. Nevertheless, more complex linking techniques, such as [10,42], could be used.

After linking each issue with the commit logs, we collected the measures for
each factor related to an issue as described in Table 6. For issue types, e.g., feature
requests, and issue priority, e.g., major, we counted the number of occurrences of
each issue type and issue priority of an addressed issue listed in release notes and
not listed in release notes. We took the percentage of each issue type and issue
priority. For example, if there are ten issues in release notes and four of them are
feature requests then we divide four by ten, i.e., 0.4, to get the percentage of the
issue type of new features. For all other factors, we first normalize the values. For
example, we divided the total number of comments of an issue by the maximum
number of comments that are posted across all the issues in the same release of a
software system. Hence, the values of all the factors range between 0 and 1.

14 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

3.2 Results and discussion

Issue type, number of comments, description size, days to address an issue,

number of modified files and reporter experience explain the likelihood of list-

ing an addressed issue in the release notes. Figure 2 shows the distribution
of the measures in release notes (IRN) and not in release notes (NIRN) for each
factor. In comparison with issue type of bugs, issue types of new features and im-
provements have higher likelihood to be listed in a release notes. Issue priority type
major better explains if an issue will be listed in release notes. The higher value of
issue priority type major shows that developers tend to list issues with issue type
major in release notes more often than other issue priority types, e.g., minor or
blocker. Figure 2 shows that longer discussions, i.e., total number of comments,
and issue reporter’s experience tend to explain the likelihood of an issue being
listed in the release notes. The addressed issues by more experienced developers,
i.e., the developer who has made more commits than other developers, get listed in
release notes more often than the addressed issues by less experienced developers.

A factor is said to explain whether an issue will be listed in release notes or
not, if the difference between the IRN and NIRN average values is statistically
significant. A statistical test assures that a difference between two distributions is
not by chance or some extreme values. To test if the difference is significant, we
performed a paired, two sided Wilcoxon signed rank test for each factor across the
systems. A paired-wise statistical test compares two distribution to measure the
difference between them. A difference is considered statistically significant if the
p-value is less than 0.05. To test whether an issue will be listed in release notes,
we pose a null hypothesis, i.e., there is no statistical difference between the factor
measures for issues listed in release notes and the issues that are not listed, is
rejected.

Table 7 reports the p-values and the positive (+) and negative (-) likelihood
of listing an addressed issue in release notes. In 8/15 of the cases, we reject our
null hypothesis because the p-value is below the significance level, i.e., 0.05. For
example, the issue type of bugs has a negative (-) likelihood, hence issues that
address bugs are likely not be listed in release notes.
Different software systems have different trends for each factor. Some fac-
tors could better explain the likelihood of an issue to be listed in release notes
than others (see Figure 3). A higher bar shows that a factor explains better the
likelihood of an issue to be included in the release notes over other factors. For
example, major bugs are mostly included in a release notes. In addition, commit-
ters’ experience has more influence on including an issue in the release notes than
the experience of the issue reporter.

In the case of Hadoop, an issue was listed in the release notes if it belongs
to the new features/improvements issue type, it has major issue priority, it has
longer issue description size, and an issue took longer time, i.e., number of days, to
address. In contrast, release notes writers did not list an issue if the issue type or
priority was a bug or trivial respectively. Other factors, i.e., minor, critical, blocker
issue types, number of comments per issue, summary counts of an issue, number
of modified files to fix an issue, reporter experience, committer experience, do not
have consistent trend in the three releases of Hadoop.

In the case of Lucene, developers listed an issue in the release notes if it is
an improvement, it has higher number of comments, and long description. The

An Empirical Study of Software Release Notes 15

Table 7: Results of two sided Wilcoxon signed rank test and (+) and (-) likelihood
of an addressed issue. (+) likelihood represents if a release notes writer will use
the factor to list an addressed issue in the release notes. (-) likelihood represents
if release notes writer will use the factor to exclude an addressed issue from the
release notes.

Factor Labels Measures P-Values Likelihood

Issue Type
(a) Count of bugs 0.0078 (-)
(b) Count of new features 0.016 (+)
(c) Count of improvements 0.0078 (+)

Issue Priority

(d) Count of major 0.055
(e) Count of minor 0.074
(f) Count of critical 0.073
(g) Count of trivial 0.14
(h) Count of blocker 0.67

Number of comments (i) Count of comments per issue 0.021 (+)
Summary size (j) Count of words 0.11
Description size (k) Count of words 0.014 (+)
Days to address an issue (l) Number of days 0.0078 (+)
Number of modified files (m) Count of modified files 0.034 (+)

to address an issue
Reporter experience (n) Number of issues reported 0.042 (+)

by a reporter
Committer experience (o) Number of files committed 0.068

developers did not list bugs in the release notes. All other factors do not have any
consistent trend.

In the case of Solr, developers do not list bugs, and critical issues in the release
notes. The trivial issues and blocker type of issues have no consistent trends. Issues
related to all the other factors have higher likelihood of being listed in the release
notes.

4 Automatically suggesting issues to be listed in release notes

Release notes writers usually select and list only a subset of the addressed issues
in release notes (see Table 5). The selection of issues, however, requires a good
knowledge of all issues that were addressed in that particular release of the software
system and the relevance of these issues to the release notes readers. The selection
of issues is not a one time task, however it must be conducted for a new release of
a software system. Hence, we believe that automating this step helps to save the
time and efforts needed to create release notes.

The results in Section 3 show that factors that are related to the addressed
issues in the software system could be used to explain why some issues are selected
and listed in release notes. In this Section, we investigate if the factors (see Table 6)
can be used to build models that can automatically suggest issues to be listed in
the release notes. We select three software systems, i.e., Hadoop, Lucene, and
Solr, to automatically classify issues to be listed in the release notes. The selection
criteria is based on the availability of issue IDs in the studied release notes and
commit logs. The availability of issue IDs helps us link issue reports to commit
logs so we can compute our studied factors.

To automatically identify issues to be listed in release notes, we built models
using four machine learning techniques: two decision tree classifiers, simple logistics,

16 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

Fig. 3: Measures for each factor (IRN = in release notes, NIRN = not in release
notes). X-axis shows the factors and y-axis shows the measures for each factor.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

IRN 0.18 NIRN 0.18

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0

0.1

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IRN 0.18 NIRN 0.18 IRN 0.19 NIRN 0.19 IRN 0.20 NIRN 0.20Hadoop

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

IRN 3.4 NIRN 3.4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IRN 3.4 NIRN 3.4 IRN 3.5 NIRN 3.5Lucene

0.6
0.7

IRN 3.5 NIRN 3.5

0.6
0.7
0.8

IRN 3.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IRN 3.4 NIRN 3.4 IRN 3.5 NIRN 3.5 IRN 3.6 NIRN 3.6Solr

An Empirical Study of Software Release Notes 17

and support vector machine (SVM). We used the implementations of these tech-
niques that are provided in WEKA [21]. WEKA is a suite of tools for machine
learning techniques. The implementations of the decision tree classifier used in this
study are J48 [34] and Random Forest [15], while sequential minimal optimization

(SMO) [26] is used for SVM. The implementation used for simple logistics is de-
scribed in [40]. Below, we describe the variables and settings that we used to build
the models.

Independent variables: are the factors which are listed in Table 6. We collected
measures for each factor from the issue repositories and commit logs as described in
the Section 3. To see if the factors are independent of each other, we measured the
correlation between them. The correlation between the factors is measured using
the Spearman rank correlation. The results show that the correlation numbers are
low. Table 8 shows the Spearman rank correlation result for Hadoop 0.18.0. We
also computed the p-values for the Spearman rank correlation. The results show
that the correlation result for more than half of the 36 pairs is not significant.
Hence, we considered all factors as our independent variables.

Table 8: Spearman rank correlation results for Hadoop 0.18.0

Issue
type

Issue
prior-
ity

Number
of
com-
ments

Committer
experi-
ence

Number
of modi-
fied files

Summary
size

Description
size

Days to
address
an issue

Reporter
experi-
ence

Issue type 1
Issue prior-
ity

0.30 1

Number of
comments

0.22 -0.04 1

Committer
experience

0.02 -0.09 0.03 1

Number of
modified
files

0.31 -0.04 0.39 0.06 1

Summary
size

-0.04 0.04 0.09 0.20 -0.01 1

Description
size

-0.10 -0.11 0.33 -0.03 0.09 0.12 1

Days to ad-
dress an is-
sue

0.27 0.23 0.52 0.08 0.34 0.20 0.24 1

Reporter
experience

0.09 0.01 0.24 -0.14 0.13 -0.03 0.12 0.06 1

Dependent variable: is the dichotomous variable IRN (in release notes) which
indicates whether or not an addressed issue in a given version is listed in the
corresponding release notes. The values for the dependent variable are YES, if the
issue is listed in the release notes, and NO otherwise.

The distribution of the two values for the dependent variable is unbalanced.
Such data imbalance biases the model to the majority and affects the results
[11,36,37]. To address this problem, we used re-sampling. To carry out the re-
sampling, we used the supervised re-sampling implementation provided in WEKA.
The re-sampling technique gives a random balanced subsample of the dataset. The
implementation gives the option to do the sampling with or without replacement
and to bias the dependent class distribution towards a uniform distribution. In
our experiment, we used sampling without replacement and biased the dependent
class to a uniform distribution to balance the dataset. We did not re-sample the
testing data.

To build and test the models, we used a 10-fold cross validation.

18 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

4.1 Evaluation metrics

Classifying the value of a dichotomous dependent variable is a classification prob-
lem. Hence, to assess the classification capability of the models that are built
using the factors, we use the confusion matrix that is shown in Table 9. From the
confusion matrix we compute the precision (P), recall (R), and F-measure (F).

Table 9: Confusion matrix (TP=True positive, TN=True negative, FP=False pos-
itive, FN=False negative, IRN= in the release notes, NIRN= not in the release
notes).

Actual
IRN NIRN

Classified IRN TP FP
NIRN FN TN

Precision (P): measures the correctness of a model in classifying issues. A clas-
sification is considered correct, if an issue classifed to be in the release notes is
actually in the release notes. Precision is computed as the ratio of issues which
are correctly classified to the total number of classified issues to be in the release
notes P = TP/(TP +FP). A classification model is considered precise if all issues
that are classified to be in the release notes are actually in the release notes, i.e.
if P = 1.

Recall (R): measures the completeness of a model. A model is considered com-
plete, if all the issues which are actually in the release notes are classified to be
in the release notes. Recall is computed as the ratio of the number of correctly
classified issues (i.e., classified issues which are in the release notes) to the total
number of issues which are actually in release notes, R = TP/(TP + FN).

F-measure (F): is the harmonic mean of precision and recall (F = (2 ∗ P ∗
R)/(P + R)). F-measure is used to combine the inversely related precision and
recall values into a single value. Combining the two inversely related values into
one simplifies the comparison of the models that are used.

Precision, recall, and F-measure are computed for issues that are classified as
either to be or not to be in release notes. In addition, we computed the weighted
values of the two types of classifications, i.e., IRN and NIRN, for each model.
The weighted values are computed using the proportion of instances in each class
(IRN and NIRN) as a weight. A high precision and recall value of the classification
models indicates that release notes writers could identify most issues that need to
be included in the release notes with minimal effort.

To evaluate the degree of discrimination achieved by each model, we also com-
puted the ROC (Receiver Operating Characteristics) area. The ROC area is the
area below the curve plotted using the fraction of true positive rate (TP/(TP +
FP)) versus false positive rate (FP/(FP+TN)). The value of ROC area is between
0 and 1. An area greater than 0.5 shows that the classification model outperforms
random guessing.

An Empirical Study of Software Release Notes 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.18.0 0.19.0 0.20.0 3.4 3.5 3.4 3.5 3.6

Hadoop Lucene Solr

J48 Random forest Simple logistics SMO

Fig. 4: Weighted F-measures.

4.2 Results and discussion

Automatically suggesting issues that should be listed in release notes has a

precision of 84% and a recall of 90%, and almost all models have an F-

measure of at least 72% on average. Table 10 shows the precision, recall, and F-
measure achieved while using the classification models built using the four machine
learning techniques. The lowest F-measure, 58%, is obtained for Solr 3.5 while
using SMO to build the model. The F-measures and ROC area for Solr 3.5 are
always lower than the F-measures and ROC areas of the others when using the J48,
random forest, and SMO classification model. For simple logistics, however, the
F-measure for Solr 3.5 is higher than Hadoop 0.18.0, 0.19.0, and 0.20.0. Looking
closely into the datasets, we observe that Solr 3.5 has the smallest number of
addressed issues. Hence, the low F-measure for Solr 3.5 in the three models, could
be due to the small number of addressed issues in the release.

High precision and recall values are observed for both IRN and NIRN classi-

fications. We also computed the precision and recall for the classification of issues
that are not listed in the release notes (see Table 10). The results show that all
models classfied issues which are not listed in release notes with average precision
and recall of 90% and 83%, respectively. The high precision and recall values for
both types of classifications, i.e., IRN and NIRN, show that the models are not
biased. Similar to the obtained results for issues that are listed in release notes,
random forest gives the highest F-measure in all studied release notes except for
Hadoop 0.20.0. The weighted F-measures of both types of classifications, listed
in the release notes and not listed in the release notes, is also consistent to the
individual F-measures (see Figure 4).

All classification models have a ROC area greater than the area achieved by

random guessing. The SMO model built for Solr 3.5 release notes has the lowest
ROC area, i.e., 0.6. For the other models and release notes, the area is between 0.73
and 1. The area range shows that the models are better than a random guessing
in discriminating issues that are listed in release notes.

20 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

Table 10: Results of classification within the same version (NIRN=not in the
release notes, IRN=in the release notes).

S
y
st

e
m

V
e
r
si

o
n

M
e
tr

ic
J
4
8

R
a
n
d
o
m

F
o
r
e
st

S
im

p
le

lo
g
is

ti
c
s

S
M

O
N

IR
N

IR
N

W
e
ig

h
te

d
N

IR
N

IR
N

W
e
ig

h
te

d
N

IR
N

IR
N

W
e
ig

h
te

d
N

IR
N

IR
N

W
e
ig

h
te

d
H

a
d

o
o
p

0
.1

8
.0

P
r
e
c
is

io
n

.8
6

.8
4

.8
5

.9
5

.8
8

.9
1

.7
6

.8
1

.7
9

.7
3

.8
1

.7
7

R
e
c
a
ll

.8
2

.8
8

.8
5

.8
5

.9
6

.9
1

.7
9

.7
8

.7
9

.8
1

.7
3

.7
7

F
-M

e
a
su

r
e

.8
4

.8
6

.8
5

.9
0

.9
2

.9
1

.7
8

.8
0

.7
9

.7
7

.7
7

.7
7

R
O

C
A

r
e
a

.8
7

.9
7

.8
6

.7
7

.1
9
.0

P
r
e
c
is

io
n

.9
0

.8
5

.8
7

.9
3

.8
7

.9
0

.6
8

.8
0

.7
4

.7
0

.7
7

.7
4

R
e
c
a
ll

.8
2

.9
2

.8
7

.8
4

.9
5

.8
9

.8
1

.6
7

.7
3

.7
7

.7
1

.7
4

F
-M

e
a
su

r
e

.8
6

.8
8

.8
7

.8
8

.9
0

.8
9

.7
4

.7
3

.7
3

.7
3

.7
4

.7
4

R
O

C
A

r
e
a

.8
9

.9
6

.8
0

.7
4

.2
.0

P
r
e
c
is

io
n

.9
8

.8
8

.9
3

.9
8

.8
7

.9
3

.8
1

.7
8

.8
0

.7
9

.7
8

.7
9

R
e
c
a
ll

.8
9

.9
8

.9
3

.8
7

.9
8

.9
2

.8
1

.7
8

.8
0

.8
2

.7
5

.7
9

F
-M

e
a
su

r
e

.9
3

.9
3

.9
3

.9
2

.9
2

.9
2

.8
1

.7
8

.8
0

.8
1

.7
7

.7
9

R
O

C
A

r
e
a

.9
3

.9
9

.8
8

.7
9

L
u
c
e
n
e

3
.4

P
r
e
c
is

io
n

.9
0

.8
0

.8
5

.9
2

.9
2

.9
2

.8
8

.8
9

.8
8

.8
3

.8
5

.8
4

R
e
c
a
ll

.7
5

.9
2

.8
4

.9
2

.9
2

.9
2

.8
8

.8
9

.8
8

.8
3

.8
5

.8
4

F
-M

e
a
su

r
e

.8
2

.8
6

.8
4

.9
2

.9
2

.9
2

.8
8

.8
9

.8
8

.8
3

.8
5

.8
4

R
O

C
A

r
e
a

.8
0

.9
7

.9
2

.8
4

3
.5

P
r
e
c
is

io
n

.9
7

.8
4

.9
1

.9
7

.9
1

.9
5

.9
5

.8
8

.9
2

.9
1

.9
3

.9
2

R
e
c
a
ll

.8
5

.9
7

.9
0

.9
3

.9
7

.9
4

.9
0

.9
4

.9
2

.9
5

.8
8

.9
2

F
-M

e
a
su

r
e

.9
1

.9
0

.9
0

.9
5

.9
4

.9
5

.9
2

.9
1

.9
2

.9
3

.9
0

.9
2

R
O

C
A

r
e
a

.9
0

.9
8

.9
5

.9
1

S
o
lr

3
.4

P
r
e
c
is

io
n

1
.0

0
.8

9
.9

4
.9

6
1
.0

0
.9

8
.9

5
.9

2
.9

3
1
.0

0
.9

2
.9

6
R

e
c
a
ll

.8
6

1
.0

0
.9

3
1
.0

0
.9

6
.9

8
.9

1
.9

6
.9

3
.9

1
1
.0

0
.9

6
F

-M
e
a
su

r
e

.9
2

.9
4

.9
3

.9
8

.9
8

.9
8

.9
3

.9
4

.9
3

.9
5

.9
6

.9
5

R
O

C
A

r
e
a

.8
9

.9
8

.9
7

.9
5

3
.5

P
r
e
c
is

io
n

.8
1

.6
7

.7
4

1
.0

0
.7

6
.8

9
.9

3
.6

9
.8

2
.6

2
.5

8
.6

0
R

e
c
a
ll

.6
2

.8
4

.7
3

.7
1

1
.0

0
.8

5
.6

2
.9

5
.7

8
.6

2
.5

8
.6

0
F

-M
e
a
su

r
e

.7
0

.7
4

.7
2

.8
3

.8
6

.8
5

.7
4

.8
0

.7
7

.6
2

.5
8

.6
0

R
O

C
A

r
e
a

.7
5

.9
5

.7
9

.6
0

3
.6

P
r
e
c
is

io
n

1
.0

0
.9

5
.9

8
1
.0

0
.9

7
.9

8
1
.0

0
.8

6
.9

2
1
.0

0
.8

1
.9

0
R

e
c
a
ll

.9
4

1
.0

0
.9

7
.9

6
1
.0

0
.9

8
.8

1
1
.0

0
.9

1
.7

4
1
.0

0
.8

8
F

-M
e
a
su

r
e

.9
7

.9
8

.9
7

.9
8

.9
8

.9
8

.9
0

.9
2

.9
1

.8
5

.9
0

.8
7

R
O

C
A

r
e
a

.9
7

1
.0

0
.9

2
.8

7
M

e
d

ia
n

P
r
e
c
is

io
n

.9
4

(±
.0

7
)

.8
5

(±
.0

8
)

.8
9

(±
.0

7
)

.9
6

(±
.0

3
)

.9
0

(±
.0

7
)

.9
3

(±
.0

4
)

.9
0

(±
.1

1
)

.8
3

(±
.0

7
)

.8
5

(±
.0

7
)

.8
1

(±
.1

4
)

.8
1

(±
.1

1
)

.8
1

(±
.1

2
)

(±
st

a
n
d

a
r
d

R
e
c
a
ll

.8
4

(±
.1

0
)

.9
5

(±
.0

6
)

.8
9

(±
.0

8
)

.8
9

(±
.0

9
)

.9
7

(±
.0

3
)

.9
2

(±
.0

4
)

.8
1

(±
.0

9
)

.9
1

(±
.1

1
)

.8
4

(±
.0

8
)

.8
1

(±
.1

0
)

.8
0

(±
.1

5
)

.8
1

(±
.1

1
)

d
e
v
ia

ti
o
n

)
F

-M
e
a
su

r
e

.8
8
(±

.0
8
)

.8
9

(±
.0

7
)

.8
9

(±
.0

8
)

.9
2

(±
.0

5
)

.9
2

(±
.0

4
)

.9
2

(±
.0

4
)

.8
4

(±
.0

8
)

.8
4

(±
.0

8
)

.8
4

(±
.0

8
)

.8
2

(±
.1

1
)

.8
1

(±
.1

2
)

.8
1
(±

.1
1
)

R
O

C
A

r
e
a

.8
9
(±

.0
7
)

.9
7

(±
.0

2
)

.9
0

(±
.0

7
)

.8
1

(±
.1

1
)

An Empirical Study of Software Release Notes 21

0

5

10

Is
su

e
ty

pe

N
um

be
r

of
 c

om
m

en
ts

D
ay

s
to

 a
dd

re
ss

 a
n

is
su

e

R
ep

or
te

r
ex

pe
rie

nc
e

N
um

be
r

of
 m

od
ifi

ed
 fi

le
s

S
um

m
ar

y
si

ze

D
es

cr
ip

tio
n

si
ze

C
om

m
ite

r
ex

pe
rie

nc
e

Is
su

e
pr

io
rit

y

Fig. 5: Ranked list of important variables distribution. Issue type has the highest
rank, while issue pirority has the lowest rank.

Random forest has the best performance among the four used machine learn-

ing techniques. The highest F-measures in classifiying issues to be listed in release
notes is obtained by random forest, while most of the lowest scores are obtained
by SMO. The F-measures for random forest range between 86% and 98%. The
closest result to random forest is obtained using J48. The result shows that not all
machine learning techniques are equally good in identifying and learning impor-
tant characteristics from the factors. The result is also consistent with ROC area
measures which are above 0.95.

Issue type, days to address an issue, and number of comments are ranked

in the top five important factors in 75% of the release notes. The Beanplot
in Figure 5 shows the distribution of the rank for each factor between 1 and
9 (with 1 being the most important). Beanplots are boxplots which also show
the distribution of the data using the vertical curves. The horizontal black line
indicates the median rank. To identify the factors which play an important role

22 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.18.0 0.19.0 0.20.0 3.4 3.5 3.4 3.5 3.6

Hadoop Lucene Solr

10% 30% 50%

Fig. 6: F-measures of issues classified to be in the release notes while using only
10%, 30%, and 50% of the data for training using random forest.

in the classification, we computed conditional variable importance using varimp.
varimp computes conditional variable importance for the cforest implementation
of random forest in R [4]. The implementation of cforest is the same as the original
implementation of random forest [15], but differs on the base learners used and the
aggregation scheme. The base learners in cforest are conditional inference trees
[23] while the aggregation scheme averages observation weights extracted from
each of the trees built [24]. The number of modified files and reporter experience

are also identified as important factors in more than half of the release notes.
These results are consistent with what we found in Section 3. In both evaluations
issue type, days to address an issue, number of comments, and reporter experience are
identified to explain issues that are listed in release notes in the majority of the
release notes.

From the F-measure and ROC area values obtained for the majority of the
release notes, we can conclude that the factors are able to build models which
suggest issues that should be listed in release notes with reasonable accuracy.
Based on our results, we recommend the use of all the factors except issue priority,
summary size, and committer experience. The use of a random forest classifier
leads to the best performing models.

5 Different scenarios for training and building models

The training dataset that is used in building classification models can be created
by: (a) having the user label some issues for a release, (b) using the previous release
notes for the same software system, and (c) using prior releases for the current
software system and the rest of the studied software systems. Similar scenarios are
used in building different classification models in various studies. Kamei et al. and
Abebe et al. used infomation within the same version and previous releases to train
and build a classification model [6,25]. Bell et al. and D’Ambros et al. also used
historical data to train and build a classification model [12,17]. Using cross-project

An Empirical Study of Software Release Notes 23

data to train and build a classification model is investigated in several studies [22,
44,45]. Below we describe the obtained results while using the classification models
built following the three types of scenarios.

Table 11: Examples of correctly and incorrectly classified addressed issues which
are listed in release notes.

Training sce-
nario

Model System IssueID Correctly
classified?

10% of data for training Random Forest Hadoop 0.18.0 HADOOP-3336 No
HADOOP-3337 Yes

Previous version Simple Logistics Lucene 3.5 LUCENE-2215 Yes
LUCENE-2564 No

Previous versions and
the rest of the studied
systems

SMO Solr 3.5 SOLR-1023 No

SOLR-1926 Yes

5.1 Training using some labeled issues

Small training data could be used to train the model and classify issues to be

listed in the release notes with satisfactory accuracy. Figure 6 shows that the
F-measures obtained while using random forest to build a model using 10%, 30%,
and 50% of each release notes data collected for training. The data used in this
scenario is the same as what is used in the previous section. The results show that
while using only 10% of the release notes’ data for training, the model correctly
classifies more than 60% of the issues in seven of the eight studied release notes.
The first two rows in Table 11 show examples of incorrectly and correctly classified
issues. HADOOP-3336, for example, is actually listed in the release notes but the
issue is classified by the model as not listed in the release notes. Looking at the
classification models built using 30% and 50% of the release notes data collected
for training, HADOOP-3336 is classified correctly. Hence, for some issues to be
correctly classified, we need access to some additional information. HADOOP-3337,
on the other hand, is correctly classified by all classification models irrespective of
the size of the training data. The result indicates that the model can be trained
with a minimal effort and that it gives satisfactory results. Hence, in a real setting,
a release notes writer needs to manually classify a small number of issues that
should be listed in the release notes for training and use the model to suggest the
remaining issues.

To further understand why some issues are correctly classified while others are
not, we conducted a manual analysis. In our manual analysis, we observed that
for some issues the reporter name is the same as the name of the person who is
assigned to address the issue. In an issue, the same reporter and assignee name
could indicate that the issue is internal and release notes writers might not need
to have the issue reported in the release notes. To see if our conjuncture helps to
improve the classification, we added a boolean factor that tells if the issue reporter
name is the same as the assignee name and we built our models. We refer to such

24 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

Table 12: Median F-measure of 10 random run classification results.

System Version Without boolean factor With boolean factor
10% 30% 50% 10% 30% 50%

Hadoop 0.18.0 0.76 0.82 0.87 0.75 0.81 0.87
0.19.0 0.70 0.83 0.86 0.71 0.81 0.87
0.20.0 0.69 0.83 0.87 0.69 0.83 0.88

Lucene 3.4 0.60 0.88 0.90 0.67 0.92 0.95
3.5 0.60 0.82 0.86 0.63 0.83 0.89

Solr 3.4 0.70 0.89 0.93 0.69 0.82 0.91
3.5 0.63 0.77 0.82 0.57 0.79 0.86
3.6 0.82 0.89 0.94 0.80 0.90 0.93

models as models with boolean factor. The classification results of models with boolean

factor are then compared with results of models built with only the factors that
are listed in Table 6. We refer to the models built with only the factors that are
listed in Table 6 as models without boolean factor. To make sure that the results are
consistent, we performed 10 runs using 10%, 30%, and 50% of each release notes
data that is collected for training (30 training sets with two runs for each training
set (with and without boolean factor)). For each run, the training set is selected
randomly.

Overall, the results show that having the boolean factor in addition to the

factors listed in Table 6 did not help improve the model performance. Table 12
shows the median of the F-measures for each training set. We also found that the
median conditional variable importance rank of the boolean factor is 7 out of 10.
The conditional variable importance is computed using varimp. To see if there
is statistically significant difference between the results of the 10 runs for each
training set and versions, we performed a paired, two sided Wilcoxon signed rank
test. The p-value is less than 0.05 for only Solr 3.4 while using 30% of the data
for training. For all other versions and training sets the p-value is greater than
or equal to 0.05. Hence, we did not reject the null hypothesis, i.e., there is no
statistical difference between the performance of the model with boolean factor and
model without boolean factor.

5.2 Training using a previous release

On average, the classification models suggested issues to be listed in the next

version of a release notes with a precision of 30% and recall of 67%. We
conducted an experiment to see if a release notes writer can use the data from the
previous release notes in order to train a model and use it in the current version.
For example, we used Hadoop 0.18.0 data to train a model and classify the issues
to be listed in Hadoop 0.19.0. The results are shown in Table 13. The F-measures
obtained are low due to the low precision values. The low precision values indicate
that the models incorrectly suggested a high number of issues which are not listed
in release notes. However, all ROC values are above 0.5 which indicates that the
models are better than a random guess in discriminating issues that are listed
in the release notes. The result indicates that release notes writers who use data
from previous release notes to train their model can get most of the issues to be

An Empirical Study of Software Release Notes 25

Table 13: Results of classification on next version release notes.

Classification on Model Precision Recall F-Measure ROC Area
Hadoop 0.19.0 J48 .36 .76 .49 .72

Random Forest .39 .73 .51 .77
Simple Logistics .38 .84 . 52 .78
SMO 38 .79 .51 .70

Hadoop 0.20.0 J48 .27 .46 .34 .58
Random Forest .33 .36 .34 .72
Simple Logistics .33 .62 .43 .78
SMO 38 .56 .45 .70

Lucene 3.5 J48 .24 .78 .37 .72
Random Forest .28 .56 .37 .57
Simple Logistics .39 .56 .46 .79
SMO .46 .56 .50 .73

Solr 3.5 J48 .23 .60 .33 .66
Random Forest .29 .80 .42 .79
Simple Logistics .25 1.00 .40 .85
SMO .24 1.00 .39 .77

Solr 3.6 J48 .23 .60 .33 .66
Random Forest .13 .29 .18 .72
Simple Logistics .18 .71 .29 .71
SMO .20 .71 .31 .76

Median J48 .24 (±.05) .60 (±.13) .34 (±.07) 66 (±.06)
(± Standard Random Forest .29 (±.09) .56 (±.22) .37 (±.12) .72 (±.09)

deviation) Simple Logistics .33 (±.09) .71 (±.18) .43 (±.09) .78 (±.05)
SMO .38 (±.11) .71 (±.18) .45 (±.08) .73 (±.03)

listed however they need to remove a relatively high number of issues. Examples
of correctly and incorrectly classified issues are shown in Table 11 (middle rows).

5.3 Training using prior releases and other software systems

The classification using prior releases and other software systems is conducted us-
ing: (a) global model, and (b) ensemble model. To build the global model, we used
the datasets from previous releases and the rest of the studied software systems
to build a model. We merged the datasets because our earlier observations and
findings (see Sections 3.2 and 3.1) indicate high variance in the size of the data and
the factors that influence each release. The model is then used to classify issues
for the release notes of the current release.

Models built using different datasets are usually different because each dataset
could have different characteristics. To exploit the diversity and see the impact
on classification, we built ensemble model using majority voting (i.e., an ensemble
approach). To build the ensemble model, one model is built per dataset and the
classification of the models is combined using majority voting. A model is built
for each previous release of the current software system and the rest of the studied
systems, and is used to classify the issues to be listed in the remaining release notes.
An issue is to be listed in the release notes, if the issue is classified to be listed
in the release notes by majority of the models. We used an R package, ROCR, to
compute precision, recall, F-measure, and ROC area of the voting result [39].
Global models suggested issues to be listed in the release notes with an average

precision of 33% and an average recall of 67%. Table 14 shows the results of
the global models. The classification is conducted on the system and version that
are indicated in Table 14, while the data from previous versions and other systems

26 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

in the study are used for training. Despite the low F-measures, the ROC values
are above 0.5 which indicates that the models are better than random guessing.
Similar to classification on the next version, global models have low precision.
Hence, release notes writers who use across system dataset to construct one train-
ing dataset and build classification models need to conduct manual removal of a
relatively high number of issues. The last two rows of Table 11 show examples of
incorrectly and correctly classified issues.

Table 14: Results of classification models trained and built using prior releases and
other software systems.

System Version Metric J48 Random Forest Simple Logistics SMO
Hadoop 0.18.0 Precision .68 .71 .53 .59

Recall .32 .26 .45 .46
F-Measure .44 .38 .48 .52
ROC Area .60 .72 .68 .68

0.19.0 Precision .40 .48 .42 .43
Recall .52 .62 .78 .76
F-Measure .45 .54 .54 .55
ROC Area .67 .75 .79 .73

0.20.0 Precision .24 .39 .38 .36
Recall .59 .41 .69 .72
F-Measure .34 .40 .49 .48
ROC Area .63 .69 .85 .75

Lucene 3.4 Precision .20 .30 .24 .20
Recall .43 .43 .71 .57
F-Measure .27 .35 .36 .30
ROC Area .56 .64 .68 .60

3.5 Precision .24 .33 .36 .30
Recall .44 .67 .89 .89
F-Measure .31 .44 .52 .44
ROC Area .54 .79 .86 .79

Solr 3.4 Precision .25 .36 .22 .36
Recall .67 .67 .67 .83
F-Measure .36 .47 .33 .50
ROC Area .66 .72 .72 .80

3.5 Precision .18 .27 .26 .22
Recall .60 .80 1.00 1.00
F-Measure .27 .40 .42 .36
ROC Area .58 .81 .82 .74

3.6 Precision .14 .16 .15 .14
Recall .86 .86 1.00 1.00
F-Measure .25 .27 .26 .24
ROC Area .71 .86 .87 .79

Median Precision .24 (±.17) .35 (±.16) .31 (±.12) .33 (±.14)
(± Standard Recall .56 (±.16) .64 (±.20) .75 (±.19) .80 (±.19)

deviation) F-Measure .32 (±.08) .40 (±.08) .45 (±.10) .46 (±.11)
ROC Area .62 (±.06) .73 (±.07) .80 (±.08) .75 (±.07)

Classifying issues to be listed in a release notes using ensemble models has

an average precision of 38% and an average recall of 61%. Table 15 shows the
results of the approach which uses majority voting to classify issues to be listed
in the release notes. The results are similar to the classification by global models
and classification on the next version. On average, all models classified issues to be
listed in release notes with an F-measure below 44%. The models have high ROC
area (0.70 on average) which indicates that the models are better than random
guessing. The precision of the models, however, is relatively low which indicates

An Empirical Study of Software Release Notes 27

that release notes writers might need to conduct manual removal of a relatively
high number of issues.

Table 15: Classification performance for majority vote ensemble models.

Classification on Model Precision Recall F-Measure ROC Area
Hadoop 0.18.0 J48 .48 .35 .41 .61

Random Forest .81 .2 .32 .59
Simple Logistics .67 .22 .33 .59
SMO .71 .34 .46 .65

Hadoop 0.19.0 J48 .47 .62 .53 .71
Random Forest .62 .4 .49 .66
Simple Logistics .56 .52 .54 .7
SMO .54 .6 .57 .73

Hadoop 0.20.0 J48 .43 .51 .47 .7
Random Forest .59 .26 .36 .61
Simple Logistics .52 .41 .46 .67
SMO .36 .51 .43 .68

Lucene 3.4 J48 .27 .43 .33 .62
Random Forest .38 .43 .40 .66
Simple Logistics .25 .57 .35 .65
SMO .22 .57 .32 .62

Lucene 3.5 J48 .33 .89 .48 .82
Random Forest .46 .67 .55 .78
Simple Logistics .29 .56 .38 .68
SMO .42 .89 .57 .86

Solr 3.4 J48 .17 .50 .25 .55
Random Forest .31 .83 .45 .77
Simple Logistics .33 .67 .44 .73
SMO .33 .50 .40 .67

Solr 3.5 J48 .22 .80 .35 .70
Random Forest .31 .80 .44 .77
Simple Logistics .25 1.00 .40 .79
SMO .25 1.00 .40 .79

Solr 3.6 J48 .15 1.00 .26 .82
Random Forest .16 .71 .26 .73
Simple Logistics .18 .86 .29 .80
SMO .17 .86 .29 .79

Median J48 .30 (±.13) .57 (±.23) .38 (±.10) .70 (±.10)
(± Standard Random Forest .42 (±.21) .55 (±.25) .42 (±.09) .70 (±.08)

deviation) Simple Logistics .31 (±.18) .57 (±.25) .39 (±.08) .69 (±.07)
SMO .35 (±.18) .59 (±.23) .42 (±.10) .71 (±.08)

6 Threats to validity

Some threats limit the validity of our findings. To comprehend the strengths and
limitations of our empirical study, we now discuss the potential threats to the
validity of our findings and how we control or mitigate them.

Construct validity: We defined some factors (see Table 6) that could explain the
likelihood of an issue to be listed in release notes. However, it is quite possible
that using different factors and/or different methods to compute values for each
factor could yield different results. To mitigate the selection and measurement of
factors construct validity threat, we used nine different factors to measure the

28 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

likelihood of an issue to be listed in release notes. In addition, we also used a basic
normalization method to normalize the values for each factor (see Section 3.1).
The information types that are identified in Section 2 (see Table 3) are identified
manually, and hence are subject to bias. To mitigate the manual analysis threat,
one of the authors manually categorized contents of release notes for ten systems
(see Table 3), while another author verified all the results. When there was a
disagreement between the identified types, both authors held a discussion and
consulted third author to resolve the disagreement. We conjecture that helping
developers to write release notes could save some of the development/maintenance
effort. However, it is quite possible that the cost of release notes writing is lesser
than the other development/maintenance task. A more detailed study of software
development/maintenance effort is required to better understand the effort saved
in automatic release notes generation. Nevertheless our study is the first study
to ever shed some light into the rationale for including an issue in release notes.
Our study provides developers with empirically-supported advice instead of simply
relying on adhoc advice from on-line inquiries.

Internal validity: The software system size could directly impact our results in
Section 3. For example, a large software systems may have more commits to fix an
issue than a smaller software system. To mitigate the impact of software system
size on results, for issue types and issue priorities, we calculated the percentages
and for all other factors, we normalized the values of measures (see Section 3.1).
Another internal threat to validity could be the parameters tuning for classifica-
tion models. To mitigate this threat, we used default parameters of the machine
learning techniques and explicitly stated the non-default parameters that we used.
Using different optimized parameters could produce different results than the re-
sults achieved in this paper. Thus, more experiments are required to analyze the
impact of different parameters on our classification models. In addition, the fac-
tors that we used might not be the most optimal factors. For example, we use the
opening and closing dates of an issue to measure the days spent on issue. Develop-
ers spend adequate amount of time to understand an issue before assigning it to a
specific developer. Thus, using an assignment date as a starting date to compute
“days spend on an issue” could be less effective. Other factors that capture other
aspects might be explored and their impact by future research. However, the de-
fault parameters and proposed factors provide satisfactory results in our empirical
study. For example, adding a new boolean factor, that we observed during our
manual analsysis, did not improve the performance of the classification models.
The boolean factor tells if the issue reporter name is the same as the assignee
name.

External validity: In our exploratory study, we only analyzed 85 release notes
taken from 15 systems. To evaluate the identified information types, we used 10
randomly selected release notes that cover more than 65% of the systems we ana-
lyzed. The selection of the studied software systems could bias the results of our
study. However, the studied software systems vary in nature, e.g., software sys-
tem size, number of issues, commit logs, size of release notes. Thus, the selection
criteria mitigates this threat. In addition, the approach used to build the classifi-
cation models is applicable to any other system. However, we cannot claim that
the same results would be achieved with other systems. Different systems with
different values for the factor, e.g., comment size, number of modified files for an

An Empirical Study of Software Release Notes 29

issue etc., may lead to different results. The collected values for the factors of the
eight release notes are also different. Thus, the variation in our dataset reduces
the threat to external validity of our empirical study. We only identified six infor-
mation types of the studied software systems. There could be more information
types than the ones that we identified in this paper. To the best of our knowledge,
this paper is a first attempt to understand release notes. More studies could build
on this paper to generalize the results.

We do note that based on our case study results (i.e., within project models
have the best performance), it appears that the decision of including issues varies
between projects and even within releases. Hence, in lieu of seeking a global model
that supports developers, it is probably more valuable to support developer by
doing within release suggestions (i.e., given a small set of issues that are marked
for inclusion, we would provide the release notes writer with the other remaining
issue instead of her/him having to manually go through all the issues that were
integrated in that particular release).

7 Related work

Due to the rapidly changing user requirements and competition, many of the com-
panies are moving towards shorter release cycles [27]. The shorter releases of a
software system could leave more and rapid software trails [20], e.g., logs, docu-
mentation, and release notes. Thus, keeping track and managing all of the software
trails becomes an effort and a resource intensive task. The software repositories,
e.g., issue repositories, commit logs, and mailing lists, are used to keep track of
software trails. Thus, over time, software repositories become an important asset
for software developers to monitor the software trails. Several studies have been
conducted to characterize software system trails, extract information from them,
and automate their generation [9,29,37,38,43].

Release notes are one of the important software trails. Developers use release
notes to communicate with their software users about new changes/updates in the
software system. Developers could extract information from software repositories
to summarize the changes made in the new release, i.e., release notes. In this
paper, we also used some software trails extracted from issue repositories and
commit logs to identify issues listed in release notes.

Yu [43] conducted a study using release notes and software change logs to un-
derstand the evolution and maintenance of a software system. To support under-
standing, Yu proposed a keyword based mining technique to extract keywords from
release notes and change logs. The results of the study show that the majority of
maintenance and evolution activities are completed in one release. In addition, Yu
observed that the number of new maintenance and evolution activities are linearly
correlated with the number of recurring maintenance and evolution activities such
as updating a feature. Maalej and Happel [29] studied work descriptions which are
informal texts produced by developers. They, in particular, investigated personal
work notes, commit messages and code comments, and identified information enti-
ties and granularities used in these descriptions. This work has a similar objective
to our work, identifying general characteristics to support automation, but differs
on the type of data investigated and results obtained. They studied work descrip-
tions while we studied software release notes. The result of their study shows that

30 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

in different work descriptions there are many similarities in the way vocabular-
ies are used, most frequent terms, and categories of described works. Maalej and
Happel also observed that there are some recurrent description patterns. In our
study, we identified six different information types contained in release notes and
proposed an approach to automatically populate one of the information types,
i.e., addressed issues.

To the best of our knowledge, this paper is the first attempt towards under-
standing release notes, their characteristics, and automated recommendation of
the contents of release notes.

8 Conclusions

Release notes are an important source of information for users as well as developers
of a software system to get to know the new changes/updates of the software
system. Release notes writers provide important information about a software
system update in release notes. No specific guidelines for release notes writers
on how to write release notes. The lack of guidelines causes variations in release
notes contents of different software systems. Several people ask for such guidelines
over question and answering websites. However, responders to such questions only
answer based on their personal experience.

In this paper, we identify and summarize six information types that are con-
tained in release notes as a first step towards providing more concrete guidelines for
release notes writers. We find that release notes writers do not follow a consistent
pattern across the software systems to write release notes. Release notes writers
use different styles to list the addressed issues of a software system in the release
notes. In addition, information types that are listed in release notes vary from sys-
tem to system. The only common information types in all the release notes are the
addressed issues and title (see Table 3). To help release notes writers, we proposed
a machine learning approach to automatically suggest important addressed issues
to be listed in release notes.

To the best of our knowledge, this is the first study towards analyzing and
understanding the nature of release notes. Additional empirical studies are needed
to generalize our results and to better understand release notes.

Future studies should investigate the evolution of release notes. Such an evolu-
tion study will help us better understand whether developers produce more precise
and informative release notes over time or they follow the same strategy. More-
over, additional studies of more diverse software systems would help provide more
concrete guidelines to developers for writing release notes. A qualitative user study
is needed to understand the perspectives of developers and users regarding release
notes and what important information types should appear in release notes.

References

1. Good practices of writing release notes, http://programmers.stackexchange.com/questions/167578/good-
practices-of-writing-release-notes.

2. How should release notes be written, http://stackoverflow.com/questions/638423/how-
should-release-notes-be-written.

3. A new swebok guide, http://www.computer.org/portal/web/swebok/.

An Empirical Study of Software Release Notes 31

4. R project, http://www.r-project.org/.
5. Release notes, http://en.wikipedia.org/wiki/release notes.
6. Surafel Lemma Abebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and Yann-

Gael Gueheneuc. Can lexicon bad smells improve fault prediction? In Proceedings of
the 2012 19th Working Conference on Reverse Engineering, WCRE ’12, pages 235–244,
Washington, DC, USA, 2012. IEEE Computer Society.

7. Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and Leonard L. Tripp.
Guide to the Software Engineering Body of Knowledge - SWEBOK. IEEE Press, Piscat-
away, NJ, USA, 2004 version edition, 2004.

8. Syed Nadeem Ahsan, Javed Ferzund, and Franz Wotawa. Program file bug fix effort
estimation using machine learning methods for oss. In SEKE, pages 129–134, 2009.

9. A. Alali, H. Kagdi, and J.I. Maletic. What’s a typical commit? a characterization of
open source software repositories. In 16th IEEE International Conference on Program
Comprehension, 2008. ICPC 2008., pages 182–191, 2008.

10. Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and Abraham
Bernstein. The missing links: bugs and bug-fix commits. In Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering, pages
97–106. ACM, 2010.

11. Ricardo Barandela, José Salvador Sánchez, Vicente Garćıa, and E. Rangel. Strategies for
learning in class imbalance problems. Pattern Recognition, 36(3):849–851, 2003.

12. Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. Does measuring code change
improve fault prediction? In Proceedings of the 7th International Conference on Predictive
Models in Software Engineering, Promise ’11, pages 2:1–2:8, New York, NY, USA, 2011.
ACM.

13. Ray Bernard, PSP, and CHS-III. Convergence q&a: The answer is in black and white.
http://goo.gl/VMZG2k, 2012. Accessed September, 2014.

14. Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar De-
vanbu. Latent social structure in open source projects. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering, pages 24–35.
ACM, 2008.

15. Leo Breiman and E. Schapire. Random forests. In Machine Learning, pages 5–32, 2001.
16. J. W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Ap-

proaches. Sage Publications Ltd., 3 edition, 2008.
17. M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction

approaches. In Proceedings of the 7th IEEE Working Conference on Mining Software
Repositories (MSR), MSR ’10, pages 31–41, May 2010.

18. Nguyen Duc Anh, Daniela S Cruzes, Reidar Conradi, and Claudia Ayala. Empirical vali-
dation of human factors in predicting issue lead time in open source projects. In Proceed-
ings of the 7th International Conference on Predictive Models in Software Engineering,
page 13. ACM, 2011.

19. Jon Eyolfson, Lin Tan, and Patrick Lam. Do time of day and developer experience affect
commit bugginess? In Proceedings of the 8th Working Conference on Mining Software
Repositories, pages 153–162. ACM, 2011.

20. Daniel German. Using software trails to rebuild the evolution of software. Journal of
Software Maintenance and Evolution: Research and Practice, 2004.

21. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The weka data mining software: an update. SIGKDD Exploration Newslet-
ter, 11(1):10–18, November 2009.

22. Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. An investigation on the
feasibility of cross-project defect prediction. Automated Software Engg., 19(2):167–199,
2012.

23. Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical Statistics,
15(3):651–674, 2006.

24. Torsten Hothorn, Berthold Lausen, Axel Benner, and Martin Radespiel-Tröger. Bagging
survival trees. Statistics in Medicine, 23(1):77–91, Jan 2004.

25. Yasutaka Kamei, Shinsuke Matsumoto, Akito Monden, Ken-ichi Matsumoto, Bram
Adams, and Ahmed E. Hassan. Revisiting common bug prediction findings using effort-
aware models. In Proceedings of the 2010 IEEE International Conference on Software
Maintenance, ICSM ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Soci-
ety.

32 Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan

26. S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
platt’s smo algorithm for svm classifier design. Neural Comput., 13(3):637–649, 2001.

27. Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster releases im-
prove software quality? an empirical case study of mozilla firefox. In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on, pages 179–188. IEEE, 2012.

28. Kaiping Liu, Hee Beng Kuan Tan, and Hongyu Zhang. Has this bug been reported? In
Reverse Engineering (WCRE), 2013 20th Working Conference on, pages 82–91. IEEE,
2013.

29. W. Maalej and H.-J. Happel. Can development work describe itself? In 7th IEEE Working
Conference on Mining Software Repositories, pages 191–200, 2010.

30. Patricia Yancey Martin and Barry A. Turner. Grounded theory and organizational re-
search. The Journal of Applied Behavioral Science, 22(2):141–157, 1986.

31. Thilo Mende and Rainer Koschke. Effort-aware defect prediction models. In Software
Maintenance and Reengineering (CSMR), 2010 14th European Conference on, pages 107–
116. IEEE, 2010.

32. Audris Mockus and James D. Herbsleb. Expertise browser: A quantitative approach to
identifying expertise. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 503–512, New York, NY, USA, 2002. ACM.

33. LaTonya Pearson. The benefit of software release notes and why your company should
use them. http://goo.gl/lsCKtw, 2013. Accessed September, 2014.

34. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

35. Foyzur Rahman and Premkumar Devanbu. Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the 33rd International Conference on
Software Engineering, pages 491–500. ACM, 2011.

36. Jelber Sayyad Shirabad. Supporting software maintenance by mining software update
records. PhD thesis, Ottawa, Ont., Canada, Canada, 2003. AAINQ79317.

37. E. Shihab, A. Ihara, Y. Kamei, W.M. Ibrahim, M. Ohira, B. Adams, A.E. Hassan, and
K.-i. Matsumoto. Predicting re-opened bugs: A case study on the eclipse project. In 17th
Working Conference on Reverse Engineering (WCRE), pages 249–258, 2010.

38. Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira, Bram
Adams, Ahmed E. Hassan, and Ken ichi Matsumoto. Studying re-opened bugs in open
source software. Empirical Software Engineering, 18(5):1005–1042, 2013.

39. Tobias Sing, Oliver Sander, Niko Beerenwinkel, and Thomas Lengauer. Rocr: visualizing
classifier performance in r. Bioinformatics, 21(20):3940–3941, 2005.

40. Marc Sumner, Eibe Frank, and Mark Hall. Speeding up logistic model tree induction.
In Proceedings of the 9th European conference on Principles and Practice of Knowledge
Discovery in Databases, PKDD’05, pages 675–683, Berlin, Heidelberg, 2005. Springer-
Verlag.

41. Yuan Tian, David Lo, and Chengnian Sun. Drone: Predicting priority of reported bugs by
multi-factor analysis. In Software Maintenance (ICSM), 2013 29th IEEE International
Conference on, pages 200–209. IEEE, 2013.

42. Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink: recovering
links between bugs and changes. In Proceedings of the nineteen ACM SIGSOFT interna-
tional symposium on Foundations of software engineering, pages 15–25. ACM, 2011.

43. Liguo Yu. Mining change logs and release notes to understand software maintenance and
evolution. CLEI Electronic Journal, 12(2), 2009.

44. Feng Zhang, Audris Mockus, Iman Keivanloo, and Ying Zou. Towards building a univer-
sal defect prediction model. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 182–191, New York, NY, USA, 2014. ACM.

45. Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan
Murphy. Cross-project defect prediction: A large scale experiment on data vs. domain
vs. process. In Proceedings of the the 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 91–100, New York, NY, USA, 2009. ACM.

