
Noname manuscript No.
(will be inserted by the editor)

A Longitudinal Study of Popular Ad Libraries in the
Google Play Store

Md Ahasanuzzaman · Safwat Hassan ·
Cor-Paul Bezemer · Ahmed E. Hassan

Received: date / Accepted: date

Abstract In-app advertisements have become an integral part of the revenue
model of mobile apps. To gain ad revenue, app developers integrate ad libraries
into their apps. Such libraries are integrated to serve advertisements (ads) to
users; developers then gain revenue based on the displayed ads and the users’
interactions with such ads. As a result, ad libraries have become an essential
part of the mobile app ecosystem. However, little is known about how such ad
libraries have evolved over time.

In this paper, we study the evolution of the 8 most popular ad libraries
(e.g., Google AdMob and Facebook Audience Network) over a period of 33
months (from April 2016 until December 2018). In particular, we look at their
evolution in terms of size, the main drivers for releasing a new version, and
their architecture. To identify popular ad libraries, we collect 35,462 updates
of 1,840 top free-to-download apps in the Google Play Store. Then, we identify
63 ad libraries that are integrated into the studied popular apps. We observe
that an ad library represents 10% of the binary size of mobile apps, and that
the proportion of the ad library size compared to the app size has grown by
10% over our study period. By taking a closer look at the 8 most popular ad
libraries, we find that ad libraries are continuously evolving with a median
release interval of 34 days. In addition, we observe that some libraries have
grown exponentially in size (e.g, Facebook Audience Network), while other
libraries have attempted to reduce their size as they evolved. The libraries

Md Ahasanuzzaman · Safwat Hassan · Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, Ontario, Canada
E-mail: : {md.ahasanuzzaman, shassan, ahmed}@cs.queensu.ca

Cor-Paul Bezemer
Department of Electrical and Computer Engineering
University of Alberta
E-mail: : bezemer@ualberta.ca

2 Md Ahasanuzzaman et al.

that reduced their size have done so through: (1) creating a lighter version of
the ad library, (2) removing parts of the ad library, and (3) redesigning their
architecture into a more modular one.

To identify the main drivers for releasing a new version, we manually ana-
lyze the release notes of the eight studied ad libraries. We observe that fixing
issues that are related to displaying video ads is the main driver for releasing
new versions. We also observe that ad library developers are constantly up-
dating their libraries to support a wider range of Android platforms (i.e., to
ensure that more devices can use the libraries without errors). Finally, we de-
rive a reference architecture from the studied eight ad libraries, and we study
how these libraries deviated from this architecture in the study period.

Our study is important for ad library developers as it provides the first in-
depth look into how the important mobile app market segment of ad libraries
has evolved. Our findings and the reference architecture are valuable for ad
library developers who wish to learn about how other developers built and
evolved their successful ad libraries. For example, our reference architecture
provides a new ad library developer with a foundation for understanding the
interactions between the most important components of an ad library.

Keywords Android mobile apps · Ad library · Google Play Store ·
Longitudinal study · Software Engineering

1 Introduction

In-app mobile advertising is a growing market with a forecasted revenue of $201
billion by 2021 [17]. Since the majority of the apps are free-to-download [2],
app developers use in-app advertising as their primary revenue model [28]. In
this model, app developers display advertisements (ads) to app users and gain
revenue based on the number of displayed ads and the user’s interactions with
these ads.

Figure 1 shows an overview of the in-app advertising model. As shown
in Figure 1, the in-app advertising model contains three main components:
(1) advertiser companies (i.e., companies that pay to show advertisements to
promote their products), (2) integrating apps (i.e., apps that promote products
and earn revenue by displaying advertisements of products [45]), (3) mobile
ad networks that act as a bridge between the integrating apps and advertiser
companies.

To display advertisements, every ad network provides an ad library that
needs to be integrated into the integrating apps. The main functionality of
these ad libraries is to take care of the communication with the ad network
and to display ads to app users. To maximize app revenue, app developers often
integrate ad libraries from several ad networks [27, 40]. For example, Ruiz et
al. [61] observed that the number of ad libraries that are integrated into an
app could be as large as 28. Although ad libraries are an integral part for
app revenue, prior studies show that ad libraries can add to the development
effort for app developers and can have a negative impact on the integrating

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 3

has contract with

Advertiser
company

offersAd network offersAd library

integrates

displaysIntegrating app

Ad

installs

App user

Fig. 1: An overview of the in-app advertising model.

app (e.g., they can increase the energy consumption of the app [42], or they
can negatively affect the user-perceived quality [48]).

Despite the integral role of ad libraries in the mobile app ecosystem, there
have been no prior studies that analyze how these libraries evolve over time.
Understanding this evolution is important for ad library developers who wish
to build or evolve their own ad libraries.

To motivate our work, we conducted an initial study on the evolution of the
size of 1,840 popular app binaries and their integrated ad libraries as follows.
First, we identified the list of 63 ad libraries that are integrated into the
studied apps (Section 2.2 describes our process for identifying the integrated
ad libraries). Second, for each update of an app, we calculated the app binary
size and the combined size of the integrated ad libraries in such update. Then,
we calculated the app size in every month as the average of the app binary
size for all app updates that were deployed within that month. Similarly, we
calculated the monthly ad library size of an app as the average of the combined
size of the integrated ad libraries for all app updates that were deployed within
a month. Figure 2 shows the size of the studied app binaries and the combined
size of their integrated ad libraries during 18 months (from April 20th 2016
to September 20th 2017). As shown in Figure 2, both the app binary and the
combined ad library size increased over time.

An interesting observation is that the proportion of an app that consists
of ad libraries increased in the studied 18 months. We calculated the growth
ratio of this proportion for an app (A) as follows:

Ad library growth ratio (A) =
PALend(A)

PALstart(A)
(1)

Where PALstart(A) and PALend(A) are the proportion of ad libraries of app
A (i.e., the ratio of the ad libraries size and the app binary size) at the start
and the end of the studied 18 months. A growth ratio that is larger than

4 Md Ahasanuzzaman et al.

10000

20000

30000

40000

50000

A
pr

−
16

Ju
n−

16
A

ug
−

16
O

ct
−

16
D

ec
−

16
F

eb
−

17
A

pr
−

17
Ju

n−
17

A
ug

−
17

Time

B
in

ar
y

si
ze

 o
f a

pp
s

(K
B

)

(a) App binary size over time

2000

4000

6000

8000

A
pr

−
16

Ju
n−

16

A
ug

−
16

O
ct

−
16

D
ec

−
16

F
eb

−
17

A
pr

−
17

Ju
n−

17

A
ug

−
17

Time
B

in
ar

y
si

ze
 o

f a
d

lib
ra

rie
s

(K
B

)
(b) Ad library binary size over time

Fig. 2: The size of apps and ad libraries during a 1.5 year period.

one indicates that the proportion of ad libraries increased for app A during
the studied period. A growth ratio that is smaller than one indicates that the
proportion of ad libraries decreased for app A. We find that the median growth
ratio is 1.1, which indicates that the proportion of an app that consists of ad
libraries increased by 10% during the studied 18 months.

To learn more about the interesting phenomenon of ad library evolution,
and to investigate why the proportion of ad libraries in an app is increasing,
in this paper we conduct a longitudinal study of the eight most popular ad
libraries that are integrated by popular free-to-download apps in the Google
Play Store. In particular, we study the evolution of ad libraries over a period of
33 months (from April 2016 until December 2018) by addressing the following
three research questions (RQs):

RQ1: How often are ad libraries released, and how large are these releases?
Ad libraries have a median of one release per month. While the size of the
ad libraries is increasing, a few ad library developers are taking measures to
constrain the library growth since larger apps are less likely to be installed
by users [37,63]. The followings are some of the measures that we observed:
(1) releasing a lighter version of the ad library, (2) redesigning their archi-
tecture into a more modular architecture, and (3) removing components
from the ad library.

RQ2: What drives ad library developers to release a new version?
We manually read the release notes of the released versions of popular
ad libraries during our study period to identify the main drivers for each
version. We find that fixing issues that are related to displaying video
ads is the main driver to release new versions during our study period.
In addition, a common driver for releasing is to add support for a new
Android version, thereby increasing the range of users to which an app can
display ads using that particular library.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 5

RQ3: How did the architecture of ad libraries evolve over time?
In order to avoid common pitfalls, it is important for ad library develop-
ers who wish to build or evolve their own ad libraries to understand how
other ad libraries were designed. Therefore, we derived a reference archi-
tecture from the studied ad libraries. We show that as ad libraries evolve,
their architectures tend to converge towards this reference architecture. In
addition, we observe that ad libraries use different display components to
support the display of ads of various media types.

The main contributions of our study are as follows:

1. We are the first to conduct a longitudinal study of ad libraries. Our work
provides valuable insights into the evolution of ad libraries.

2. We provide an in-depth analysis of the main drivers for ad library develop-
ers to release a new version. These drivers can help researchers and software
developers better understand the challenges of developing ad libraries.

3. We propose the first reference architecture for ad libraries. This architec-
ture is helpful for developers who wish to build their own ad libraries to
understand the interactions of the most important components of an ad
library. In addition, as noted by prior work [14, 31, 41, 46, 47, 56, 57, 60], a
reference architecture for a domain provides a common vocabulary for a
domain, enabling developers and others (e.g., researchers) to discuss con-
cepts and concerns at a much higher level of abstraction (i.e., domain wide)
instead of being fixated with the peculiarities of particular implementations
(i.e., the naming of a package in a particular library).

The rest of the paper is organized as follows. Section 2 describes our data
collection process. Section 3 presents the results of our longitudinal study of
ad libraries. Section 4 describes the quality attributes of our derived reference
architecture for ad libraries. Section 5 discusses the implications of our work.
Section 6 describes the threats to validity of our findings. Section 7 presents
related work, and Section 8 concludes the paper.

2 Data Collection

In this section, we describe our data collection process. Our data collection
process contains three main steps. First, we collected data of the most popular
free-to-download apps in the Google Play Store. Then, we used the collected
data to identify the eight most popular ad libraries that are integrated into
apps. Finally, we downloaded the release notes and the bytecode (JAR files)
for all the versions of the identified popular ad libraries. Figure 3 gives an
overview of the main steps of our data collection process. We detail each step
below.

6 Md Ahasanuzzaman et al.

2.1 Collecting Updates of the Top Free-to-Download Apps

In this step, we collect the deployed updates (i.e., the APK files) of the top
free-to-download apps in the Google Play store. We focus on the top free-to-
download apps because these apps have a large number of active users, and
are therefore a good example of how ad libraries are integrated in successful
apps (as opposed to malicious apps which may overwhelm a user with ads).

We used App Annie’s report of popular apps in 2016 [18] to identify popular
apps. We selected the top 100 apps in each of the available 28 app categories
(e.g., the communication and game categories) in the Google Play store. We
found that 214 apps were repeated across app categories and 746 apps were
already removed from the store at the start of our study period. In total,
we selected 1,840 apps for our study. Then, we ran a custom crawler that is
based on Akdeniz’ Google Play crawler [15] for 18 months from April 20th

2016 to September 20th 2017 to collect all deployed updates of the selected
apps. At the end of this step, we collected 35,462 updates of 1,840 apps that
were deployed during our study period.

2.2 Identifying Popular Ad Libraries

To identify popular ad libraries, we followed a similar approach to the one
presented by Ruiz et al. [62]:

Step 1: Identify the integrated ad libraries in every update. First,
we converted the collected APKs to JARs using the dex2jar tool [3]. Then,
we used the BCEL tool [16] to extract the fully qualified class names (i.e., the
class name and the package name) of all classes in the generated JARs. Since
prior studies showed that an ad library’s packages or class names contain the
term “ad” or “Ad” [53], we filtered the fully qualified class names using the
regular expression “[aA][dD]”. However, this regular expression also matches
class names that are not related to ad libraries (e.g., com.fbox.load.ImageLoad).
Hence, to identify ad libraries, we followed Ruiz et al.’s [62] approach by man-
ually verifying the package name of the matching classes on the web. We man-
ually verified 303 packages on the web. In total, we identified 63 ad libraries.
The Appendix describes the list of 303 packages that we manually analyzed
on the web and the list of identified 63 ad libraries.

Step 2: Rank ad libraries based on their popularity. For each ad
library, we calculated the number of apps that integrates this particular library
to represent its popularity. Then, we ranked the 63 ad libraries based on their
popularity. We focused our study on the top ten popular ad libraries as these
are the most integrated libraries by the studied top free-to-download apps:
96% of the studied apps (with ad libraries) integrate one or more of these
libraries. Table 1 shows the top ten popular ad libraries.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 7

Add library data

Google Play
Store

35,462 updates
of the top 1,840

apps

1) Collecting Updates of the Top
Free-to-Download Apps

Crawl app
data

Select top
Android

apps

Identify the
integrated ad

libraries in every
update

List of the
identified 63 ad

libraries

Rank ad libraries
 based on their

popularity

List of popular
ad libraries

2) Identifying Popular Ad Libraries

Collect the release notes
from ad library's official

website

Release notes
of ad libraries

Download ad libraries

3) Collecting Data for the
Studied Ad Libraries

List of the
top 1,840

apps

List of JAR files
of ad libraries

Legend:
Process Output of

a process
Process flow

Fig. 3: An overview of our data collection process.

2.3 Collecting Data for the Studied Ad Libraries

To analyze the evolution of the identified popular ad libraries, we downloaded
the release notes and the bytecode (JAR files) of the libraries. We collected the
release notes and JAR files of all versions that were released during our study
period (from April 2016 to December 2018) from the official library website.
We could not find JAR files for all releases of the InMobi and Millennial Media
ad libraries. Therefore, we removed these two ad libraries from our analysis. In
total, we collected the release notes and the JAR files of 163 released versions
of the 8 most popular ad libraries during our study period.

In the following section, we describe the results of our analysis of the col-
lected data.

8 Md Ahasanuzzaman et al.

Table 1: Statistics for the identified top ten popular ad libraries (sorted by the
percentage of integrating apps).

Ad library
of apps integrating

this library
% of apps integrating

this library

Google AdMob 1,310 71.2%
Facebook Audience Network 513 27.9%
MoPub 292 15.9%
Amazon Mobile Ad 129 7.0%
Millennial Media∗ 118 6.4%
AdColony 111 6.0%
InMobi∗ 106 5.8%
Unity Ads 104 5.6%
Vungle 82 4.5%
Flurry 80 4.3%
∗These ad libraries were not included in our study because we could not locate
a JAR file for each of the releases of these libraries.

3 A Longitudinal Study of the Evolution of Ad Libraries

In this section, we present our longitudinal study of the evolution of ad li-
braries. For each research question, we discuss the motivation, approach, and
results.

3.1 RQ1: How Often are Ad Libraries Released, and How Large are These
Releases?

Motivation: In Section 3.1, we observed that the median size of the ad libraries
increased during our study period. The size of an app (and hence the libraries
it uses) is important, as prior studies show that larger apps are less likely
to be installed by users [37, 63]. Hence, we study the increase in size and
the frequency of ad library releases. Understanding how ad library developers
manage the size of their ad libraries can help developers who wish to develop
or evolve their own ad libraries to manage the size of their own libraries.
Approach: For every ad library version, we measured the number of days be-
tween releasing it and the following version (the release interval). Then, for
every ad library, we calculated the median release interval of all released ver-
sions of that library. Using release versioning rules [59], we also calculated the
number of major, minor, and patch versions of the studied ad libraries. Fi-
nally, to analyze the change in size of an ad library, we measured the size in
kilobytes (KB) of the released versions of that library.
Findings: The studied ad libraries had a median release interval of
approximately one month. Table 2 shows the number of released version,
the median release interval (in days), and the number of released major/mi-
nor/patch versions for the studied ad libraries. As shown in Table 2, all studied
libraries had at least five versions during the study period with a median re-
lease interval of 34 days.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 9

Table 2: Median release interval in days, and the number of versions of each
ad library (sorted alphabetically by ad library name).

Ad library

Median
release
interval

(in days)

Total
of

versions

of
major

versions

of
minor

versions

of
patch

versions

AdColony 30 18 0 4 14
Amazon Mobile Ad 81 5 0 1 4
Facebook Audience Network 34 31 1 18 12
Flurry 21 32 5 15 12
Google AdMob 30 21 7 9 5
MoPub 37 26 2 19 5
Unity Ads 23 20 1 3 16
Vungle 67 10 3 4 3

Overall 34 163 19 73 71

We observe that the majority of the released versions are minor and patch
versions. However, 75% of the studied libraries had at least one major version
during the study period.

The size of all the studied ad libraries (except Google AdMob
and Vungle) increases over time. Figure 4 shows the size of the studied
ad libraries during the study period. We identified four trends in the size
evolution of the studied ad libraries:

1. Explosive growth: Facebook Audience Network, Unity Ads
2. Stable growth: MoPub, Amazon Mobile Ad
3. Shrinkage: Google AdMob, Vungle
4. Fluctuating size: AdColony, Flurry

As shown in Figure 4, the size of the Facebook Audience Network library
increased by 297% during our study period. To understand the rationale for
the explosive growth, we studied the release notes of the Facebook Audience
Network library. We observed that the Facebook Audience Network library
added several video streaming features during the study period, which con-
tributed to its size increase. The other ad libraries also have video streaming
functionality; however, because the Facebook Audience Network ad library
started out relatively small compared to the other ad libraries, the impact of
the new features on the growth rate of this library was more prominent.

Table 3 shows the median size (in KB) of the ad libraries. Interestingly, the
Vungle ad library is considerably larger than most of the other ad libraries.
For example, the size of Vungle versions 4.0.3 (2,327 KB) and 5.1.0 (2,229
KB) is twice the median size of the other ad libraries (1,048 KB).

We analyzed the release notes and the source code of these Vungle versions.
We observe that the major increase in the release size occurred because Vungle
integrated the RxJava library [9] whose size of 924KB, is almost half of the
Vungle library size. The RxJava library is useful for applications that are
designed for reactive programming [8] (e.g., mobile apps that need to respond

1
0

M
d

A
h

a
sa

n
u

zza
m

a
n

et
a
l.

Facebook
Audience Network

Unity Ads

4.11.0

4.1
2.0

4.12.1

4.1
4.04.1

4.1

4.15.0

4.16.0
4.16.1

4.1
7.0 4.1

8.04.1
9.0

4.2
0.0

4.21.0 4.21.1

4.2
2.1

4.23.0

4.24.0
4.25.0

4.26.0
4.26.1

4.27.0

4.27.14.28.0

4.28.1
4.28.2 4.99.0

4.99.1
4.99.3

5.0.0

2.0.b1
2.0.b2

2.0.b3
2.0.b4

2.0.1
2.0.2

2.0.4
2.0.52.0.62.0.72.0.8

2.1.0

2.1.1

2.1.2

2.2.0
2.2.1 2.3.0

3.0.0

0

500

1000

1500

2000

2500

Ap
r-1

6
Ju

n-
16

Au
g-

16
O

ct
-1

6
D

ec
-1

6
Fe

b-
17

Ap
r-1

7
Ju

n-
17

Au
g-

17
O

ct
-1

7
D

ec
-1

7
Fe

b-
18

Ap
r-1

8
Ju

n-
18

Au
g-

18
O

ct
-1

8
D

ec
-1

8

Time

Bi
na

ry
 s

iz
e

(K
B)

(1)

Amazon Mobile Ad

MoPub

5.7.2 5.8.1 5.8.1.1

5.8.1.1

4.6
.0

4.6.1

4.7
.0

4.7
.1

4.8.0
4.9.0

4.10.0
4.11.0 4.12.0

4.13.0

4.14.0

4.15.0

4.16.1
4.17.0

4.1
8.0

4.19.0
4.2.0 5.0.0

5.1.0

5.2.0

5.3.0

4.4.0

4.4.1

0

500

1000

1500

2000

2500

Ap
r-1

6
Ju

n-
16

Au
g-

16
O

ct
-1

6
D

ec
-1

6
Fe

b-
17

Ap
r-1

7
Ju

n-
17

Au
g-

17
O

ct
-1

7
D

ec
-1

7
Fe

b-
18

Ap
r-1

8
Ju

n-
18

Au
g-

18
O

ct
-1

8
D

ec
-1

8

Time

Bi
na

ry
 s

iz
e

(K
B)

(2)

Google AdMob

Vungle

9.0.0

9.0
.1

9.2
.0

9.4
.0

9.6
.0

9.8
.0

10
.0.

1
10

.2.
0

11.0.0
11

.2.
0

11
.2.

2
11

.4.
0

8.4.0

11.6.0

11
.8.

0

17
.0.

0

16.0.0

15
.0.

0

12
.1.

0

12.0.0

17
.1.

0
17

.1.
1

17
.1.

2

4.0.3

4.1.0

5.1.0

5.3.0

5.3.2

6.2.5

6.3
.12

6.3
.17

6.3
.24

3.3.4

3.3.5

0

500

1000

1500

2000

2500

Ap
r-1

6
Ju

n-
16

Au
g-

16
O

ct
-1

6
D

ec
-1

6
Fe

b-
17

Ap
r-1

7
Ju

n-
17

Au
g-

17
O

ct
-1

7
D

ec
-1

7
Fe

b-
18

Ap
r-1

8
Ju

n-
18

Au
g-

18
O

ct
-1

8
D

ec
-1

8

Time

Bi
na

ry
 s

iz
e

(K
B)

(3)

AdColony

Flurry

3.0.4
3.0.5

3.0.6

3.0.7

3.1.0

3.1.1

3.1.2
3.2.0

3.2.13.0.1

3.3.0
3.3.2

3.3.3
3.3.4

3.3.5 3.3.6

3.3.7

6.3
.1 6.4

.0
6.4

.2

6.7
.0

6.8
.0

6.9
.1

6.9
.2

7.0.0

7.0
.1 7.1

.0
7.1

.1
7.2

.1
7.2

.0
7.2

.3
8.0

.0
8.0

.1
8.0

.3
8.1

.0

8.2.0

9.0
.0 10

.0.
0

10
.1.

0
11

.0.
0

11
.1.

0
11

.2.
0

11
.3.

0
11

.4.
0

0

500

1000

1500

2000

2500

Ap
r-1

6
Ju

n-
16

Au
g-

16
O

ct
-1

6
D

ec
-1

6
Fe

b-
17

Ap
r-1

7
Ju

n-
17

Au
g-

17
O

ct
-1

7
D

ec
-1

7
Fe

b-
18

Ap
r-1

8
Ju

n-
18

Au
g-

18
O

ct
-1

8
D

ec
-1

8

Time

Bi
na

ry
 s

iz
e

(K
B)

(4)

Fig. 4: The identified trends in the size evolution of the studied ad libraries: (1) Explosive growth, (2) Stable growth, (3)
Shrinkage, and (4) Fluctuating size.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 11

Table 3: The median size of the studied ad libraries (sorted by the median ad
library size).

Ad library
Median ad

library size (KB)

Vungle 1,792
MoPub 1,767
Flurry 1,202
Amazon Mobile Ad 1,137
Facebook Audience Network 941
AdColony 768
Google AdMob 664
Unity Ads 360

to user clicks). We observe that Vungle leveraged the RxJava library to improve
the communication between the ad library and the Vungle ad network.

Although the size of most ad libraries increased, ad library de-
velopers took measures to limit the growth in size. Figure 4 shows
that some ad library releases (such as version 9.0.0 of Google AdMob and
version 3.1.1 of AdColony) are considerably smaller than their predecessors.
To further understand this decrease in size, we investigated the code changes
(i.e., the changed classes and packages) and the release notes of the releases
that were smaller than their predecessors. We identified three approaches that
were used by ad library developers to reduce the size of their library:

1. Creating a lighter version of the ad library. Google provides a set of
APIs called the Google Play Services APK which are installed by default
on user devices. This APK contains the common features that are needed
to communicate with the Google Play Store. Starting from Google AdMob
version 9.0.0, Google introduced Google Ads Lite [4]. This lite version
does not contain the code that communicates with the store to fetch ads.
Rather, the Google Ads Lite library depends on the installed APK to
communicate with the Google Play Store which reduces the library size [4].
In our analysis, we observed that the newly-released lightweight version
decreased the library size by 70%. On the other hand, removing parts
of the ad library code creates a dependency on the installed APK when
retrieving advertisements. Hence, creating a lighter version of an ad library
may introduce new risks for integrators, as the lighter version adds a layer
of complexity to the integration of the ad library.

2. Extracting the functionality of an ad library into independent
modules. In version 4.9.0, MoPub introduced a modular architecture that
separates the functionality of the ad library into the following five different
modules: (1) the “banner ads” module that displays banner (i.e., image-
based) ads, (2) the “native ads” module that displays ads with the same
look and feel as the integrating apps, (3) the “video ads” module that
displays video ads, (4) the “interstitial ads” module that displays full-

12 Md Ahasanuzzaman et al.

screen ads, and (5) the “reward video ads” module that allows users to
receive rewards based on the displayed video ads.
The size of each module is smaller than the original size of the full MoPub
ad library. Hence, integrating apps can reduce their size by integrating
only the necessary modules. For example, if an integrating app displays
only banner advertisements, the app only has to integrate the banner ads
module. According to the MoPub website, their modular architecture al-
lows app developers to save up to 60% of the library size by including only
the needed modules [58].

3. Removing components from an ad library. The AdColony library
(version 3.0.2) introduced an additional component called Compass which
resulted in a 108% increase in the overall library size. To increase user’s en-
gagement with the displayed ads, Compass provides the following features:
(1) promoting other apps of the app developers, (2) engaging users with
in-app notifications, and (3) rewarding users for in-app purchases. Later,
the AdColony developers removed Compass from their ad library which
reduced the library size by 55%. Although we have no evidence that Com-
pass was removed to reduce the ad library size, the fact that the developers
did not opt to disable Compass (rather than remove it completely) could
be an indication that size played a role in the removal.
In another example, we observe that the design of the Vungle library (ver-
sion 6.2.5) was revised to handle ad events (e.g., an event to initialize an
ad) without using the RxJava features which reduced the size of ad library
by 77%.

Summary of RQ1

The studied ad libraries had a median release interval of a month during
the studied 33 months. Although the size of most ad libraries keeps on
increasing, ad library developers take measures to reduce the size of
their libraries, such as: (1) creating a lighter version of the ad library, (2)
extracting the functionality of an ad library into independent modules,
and (3) removing components from an ad library.

3.2 RQ2: What Drives Ad Library Developers to Release a New Version?

Motivation: In Section 3.1, we observed that ad libraries release new versions
quite frequently. In this section, we conduct a qualitative study to identify
what drives ad library developers to release a new version. Knowing such
drivers can help ad library developers understand the challenges of evolving
ad libraries.
Approach: To identify what drives ad library developers to release a new ver-
sion, we conducted a manual analysis of the release notes of the studied ad
libraries as follows.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 13

Table 4: The identified drivers for releasing ad library versions.

Driver
cate-
gory

Driver name Description (D) - Example (E)

Internal
code fix-
ing

Fix a crash
or exception

D: The version fixes a crash or exception in an ad li-
brary.

E: “Fixed crash when interacting with the screen af-
ter rewarded video finishes and before showing the end
card.”

API
refactoring

D: The version refactors (e.g., adds, removes, or mod-
ifies) methods or classes that are related to the ad li-
brary APIs.
E: “Removed the deprecated EventLis-
tener.onVideoView() API.”

Improve code
obfuscation

D: The version obfuscates the ad library code (e.g.,
using Proguard [13]).
E: “Resolves a ProGuard issue introduced in 9.0.0.”

Improve logging D: The version improves the logged information.
E: “Improved logging when attempting to show an ad
that is not ready.”

Managing
the

Manage orienta-
tion and layout

D: The version improves the layout of the displayed
ads.

displayed
content

E: “Support for vertical ads and improved ad orienta-
tion controls.”

Display video
streaming ad

D: The version adds new features for video streaming
or fixes issues that are related to video ads.
E: “Added support for rewarded video”

Accessing Fix privacy D: The version fixes users’ privacy issues.
user data issues E: “Removed collection of IMEI as per Google Play

Content Developer Policy”,“Removed MAC address
tracking.”

Improve D: The version improves ads analytics features
analytics E: “Improvements on analytics.”

Compati-
bility

Support user
device models

D: The version fixes issues that are related to the in-
teraction with user’ devices.
E: “Bug preventing MediaPlayer from resuming play-
back on certain devices.”

Support Android
platforms

D: The version provides support for new Android plat-
forms or fixes issues in the supported Android plat-
forms
E: “Added support for Android Nougat (Android
v7.0)”

Resource
opti-

Optimize
network

D: The version improves the communication with ad
networks.

mization resources E: “Replaced usage of NSURLConnection with
NSURLSession for optimizing ad server communica-
tion protocols.”

Optimize
memory

D: The version improves the memory management
(e.g., caching mechanism) of ad libraries.

resources E: “Fix Memory leak caused by LocalBroadcastReceiver
holding onto MediaView reference.”

Optimize energy
resources

D: The version improves the energy consumption (e.g.,
battery drain) of ad libraries.
E: “Improvements to reduce battery drain.”

Optimize device
storage resources

D: The version fixes issues that are related to using
device storage.
E: “Fixed storage overuse issue reported by a small
number of publishers upgrading from 2.x ->3.x.”

General
features

Integrate with
other

D: The version supports the communication with other
ad networks.

ad networks E: “Added and updated mediated network versions.”

Unspecified D: The release note does not contain detailed informa-
tion about the fixed issues or the added features.
E: “bug fixes”

14 Md Ahasanuzzaman et al.

Table 5: Statistics for the identified drivers for releasing an ad library version
(grouped by the driver category).

Driver
category

Driver name
of ad
libraries

of
versions

Internal
code fixing

Fix a crash or exception 6 38
API refactoring 6 33
Improve code obfuscation 4 10
Improve logging 4 6

Managing the
displayed content

Display video streaming ad 8 39
Manage orientation and layout 7 23

Accessing
user data

Improve analytics 6 16
Fix privacy issues 5 13

Resource
optimization

Optimize memory resources 6 24
Optimize network resources 3 7
Optimize device storage resources 3 3
Optimize energy resources 1 2

Compatibility
Support Android platforms 8 23
Support user device models 5 8

General features
Integrate with other
ad networks

4 5

Step 1: The first and the second author of this paper (as two coders) inde-
pendently followed an iterative approach that is similar to the open coding
method [50]. Each author manually read the release notes of every ad library
version and identified the drivers for releasing this version. For example, a ver-
sion with the release notes “Improved logging when attempting to show an ad
that is not ready” has a driver Improve logging. We identified multiple drivers
for a version where applicable. When a new driver is identified during the anal-
ysis of the release notes, it is added to the list of drivers, and all release notes
were reanalyzed using the new list of identified drivers. During this process,
we conducted 15 revisits of all release notes to identify all drivers. This pro-
cess terminated when all versions were analyzed and the list of the identified
drivers was finalized (i.e., the authors did not find any new drivers).

Step 2: For every studied release note, we compared the two lists of identi-
fied drivers. Conflicts were discussed until the coders agreed on the identified
drivers. We also calculated the agreement between both coders using Cohen’s
Kappa inter-rater agreement [26]. Cohen’s Kappa value ranges from -1 to +1.
A Cohen’s Kappa value of +1 means that both coders identified the same
drivers for all analyzed releases. To calculate the Cohen’s Kappa value, we
used the “psych” [7] library in R. In our study, the Cohen’s Kappa value is
0.83 which is an almost perfect agreement according to the interpretation of
the Cohen’s Kappa value which is proposed by Landis et al. [52]. At the end
of this step, we identified 16 drivers for releasing ad library versions. Table 4
shows the list of the identified drivers along with the description and an ex-
ample of each driver.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 15

Table 6: The main identified features for video streaming ads.

Category Description (D) - Example (E)

Offering
reward videos

D: Ad library developers implement or improve reward videos features
that give users rewards (e.g., points in game apps) after watching a
video ad.
E: “Rewarded video support from the MoPub Marketplace (Beta).”

Adding video
controls

D: Ad library developers allow users to control (e.g., pause, resume,
mute, and replay) the displayed video ads.
E: “Added new design for play/pause button in Rewarded Video.”

Handling
native video

D: Ad library developers improve or add features that display video
ads that have the same look and feel as the integrating app.

ads E: “Added the setAdChoicesPlacement() method to the NativeAdOp-
tions.Builder class, which app publishers can now use to specify the
location of their AdChoices in native ads.”

Prefetching
video ads

D: Ad library developers implement or improve prefetching techniques
to obtain video ads from ad networks and store these ads into a user’s
device to be displayed later.
E: “Video cache limit updated to 64mb for prefetching.”

Findings: Adding and improving the streaming video ad functional-
ity is the most occurring driver for releasing an ad library version.
Table 5 shows that we found 39 versions that add or improve the video stream-
ing ad functionality. All studied ad libraries release at least one version that
improved the displayed video ads. By carefully analyzing the versions that con-
cern the video streaming functionality, we identified the following four main
features that are related to video streaming ads: (1) offering reward videos,
(2) adding video controls, (3) handling native video ads, and (4) prefetching
video ads. Table 6 shows the description and an example of the identified video
streaming features.

We observe that ad library developers were constantly improving the video
streaming features of their libraries. For example, the Facebook Audience
Network ad library started supporting reward videos (“Added new design for
play/pause button in Rewarded Video”) in June 2017 [32]. The reason for the
large number of versions that improve the video streaming ad functionality
is probably that video ads lead to a better user engagement than static ad
images [22], and are therefore a popular feature amongst ad publishers.

Ad library developers tend to provide support for the latest ver-
sion of the Android platform. The Android platform is updated approx-
imately every six months [1]. Because most new Android versions offer new
features, app developers are keen to migrate to the latest version of Android
to make use of these new features [55]. As a result, ad library developers need
to keep up and make sure that their libraries support new versions of Android
as well.

To understand how fast ad libraries add support for the new version of
the Android platform, we calculated the difference between the release date
of a new Android version and the release date of the ad library version that
implements support for the latest Android version. We find that the median

16 Md Ahasanuzzaman et al.

Table 7: The main identified features that are offered in ad analytics.

Analytics
main

features

Collected
Data

Description (D) - Example (E)

Provide
metrics

Ad session
data

D: Collect the duration of user engagement with an ad
(i.e., how long users watch a video ad before closing it).

about the
displayed
ads

E: MoPub has a ExternalViewabilitySessionManager

class that provides methods (e.g., createVideoSession,
recordVideoEvent) to capture the session information.

Ad
revenue

D: Collect metrics (e.g., ad viewability ratio [6], click
through ratio [10]) that are useful for estimating ad rev-
enue.

metrics E: “Support for Moat 3rd party video viewability.” The
viewability metric captures how many of the displayed ads
are actually viewed by a user.

Select the
most
suitable
ads for

User
identifier

D: Collect the unique user identifier to tailor ads to a
user. The Google Play Store provides a unique identifier
for every app user (the advertising ID) that is useful for
fine-tuning the displayed ads for every user.

an app user E: Unity Ads collect advertising id with the method named
fetchAdvertisingId

Device
information

D: Collect data related to a user’s device information (e.g.,
device model) to improve the displayed ads.
E: “Reporting more device stats to serve better and better
ads.”

Demographic
data

D: Collect a user’s demographic data (e.g., language,
country, and location information) to display ads that are
suitable for that particular demographic.
E: “Added auto-population of location information for
apps that explicitly grant the location permission.”

number of days required to add support for the newer Android platform is
less than two months (49 days). Interestingly, we also observe that over time
many ad libraries lower their minimum supported Android version to support
older Android versions (e.g., “Lowered our library’s minimum SDK version to
fix build issues with apps that support earlier versions.”).

In addition to supporting new Android versions, ad library developers had
to perform maintenance on their libraries as well to ensure that they work
properly in the supported Android versions. For example, in 10 out of 23
release notes that mention the Android platform, the ad library developers
mention that they fix issues and bugs in the supported Android versions (e.g.,
“Fixed a crash if the app starts when a WebView update is in progress for
Android 5.0”).

Ad libraries leverage users’ information to provide analytics fea-
tures for integrating apps. As shown in Table 5, 75% of the studied ad
libraries mention ad analytics in their release notes. We observed that ad li-
braries collect user data (e.g., a user’s location) to offer two main features:
(1) to provide metrics (e.g., the number of clicked ads) about the performance
of the displayed ads, and (2) to select the most suitable ads for an app user.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 17

Table 7 shows the analytics features that were added or improved by the stud-
ied ad libraries during the studied 33 months, along with the collected user
data.

As shown in Table 7, ad analytics offer insights about the displayed ads.
The collected ad analytics metrics are useful for developers of integrating apps
who wish to increase their ads’ revenue. For example, the analytics provide
information about which ads, or which screen positions are the most successful
in terms of user engagement. Prior work showed that users mainly complain
about the size and the location of the displayed ads [43]. By leveraging the ad
analytics insights, integrators can improve the frequency, size, and location of
the displayed ads.

Ad library developers stop collecting user information to adhere
to policies and Google’s best practice guidelines. As shown in Table 7,
ad libraries collect user data to tailor the displayed ads to the app user. For
example, ad libraries leverage the user’s location to display ads for nearby
stores. However, some user data may reveal too much about the user’s identity.
For example, the IMEI and the MAC address of the user’s device can be
used to identify the physical user device, and therefore Google’s best practice
guidelines discourage developers from collecting this data [35]. We observed
during the study period that the MoPub, Vungle, and Flurry ad libraries
reduced the amount of user information that they collect.

An additional privacy-related concern for ad library developers is the Gen-
eral Data Protection Regulation (GDPR), which is a privacy-related law for
individuals in the European Union. While the GDPR was adopted after our
study period, we observed through manual inspection that ad library devel-
opers released versions to adhere to the GDPR law. For example, the Google
AdMob library added a form that requests a user’s consent for sharing user
information with the ad network.

Memory leaks are the most resolved resource handling-related
issues in the studied ad library versions. We observe that fixes for mem-
ory leak issues were mentioned in 8 out of 32 release notes that discuss re-
source handling. Since ad libraries continuously fetch ad contents, failure to
release the collected contents after displaying them can cause a memory leak.
A memory leak can cause a crash, but also an energy issue as it may lead
to unnecessary garbage collection calls [44]. Therefore, ad library developers
should follow the proper guidelines [36] to avoid memory leaks.

Summary of RQ2

Ad library developers are constantly updating their ad libraries to sup-
port the latest version of the Android platform and even to support
older versions of the platform enabling their libraries to work on as
many devices as possible. The most occurring driver for releasing an
ad library version is to add or improve the video streaming ad feature.
Memory leaks are the most resolved resource handling-related issue in
ad library versions.

18 Md Ahasanuzzaman et al.

3.3 RQ3: How Did the Architecture of Ad Libraries Evolve Over Time?

Motivation: To capture the evolution of an ad library at the architectural
level, we first need to derive a reference architecture for ad libraries. A refer-
ence architecture for a domain captures the fundamental components and their
relationships that are present in existing systems in the domain [41,49]. Iden-
tifying a reference architecture for ad libraries does not only help understand
the system, but also can serve as a template for creating a new or evolving an
existing ad library by reusing components at the design and implementation
level [47,57,60].

Approach: To derive the reference architecture, we followed an approach
that is similar to the one proposed by Hassan and Holt [46]. In particular, we
used the source code and API documentation of the ad libraries to derive the
reference architecture as follows.

Step 1: Generating a conceptual architecture of each ad library. In
this step, we built a conceptual architecture for each ad library based on our
domain knowledge and the available documentation for that library.

Step 2: Generating a concrete architecture of each ad library. In
this step, we used the Understand tool [11] to generate and visualize the de-
pendency call graph of each version of each studied ad library1. Then, we
analyzed the packages and classes of each ad library in the call graph. We
identified the packages that offer similar functionalities and grouped these
packages into a single architectural component. For example, in the Unity ad
library, we observed that the request package (com.unity3d.ads.request), the
broadcast package (com.unity3d.ads.broadcast), and the connectivity package
(com.unity3d.ads. connectivity) perform a similar functionality of commu-
nicating with the ad networks through the HTTP protocol. Therefore, we
grouped these packages into one architectural component which we named
Ad Network Connectivity. At the end of this step, we identified the concrete
architecture of the studied ad libraries.

Step 3: Refining the conceptual architectures of each ad library. We
analyzed the concrete architecture and refined the conceptual architecture of
every ad library.

Step 4: Deriving the reference architecture of the ad libraries. We
derived a reference architecture that is based on the commonalities between
the refined conceptual architectures of the studied ad libraries as proposed by
Hassan and Holt [46].

Figure 5 shows our proposed reference architecture, and Table 8 gives a
short description of each of the components of the architecture.

To study the architectural changes among ad libraries, we compared the
conceptual architecture of every studied ad library with our derived reference
architecture. In addition, we studied the differences between the architecture

1 The Understand projects of each of the studied ad libraries are available from
our supplementary data: https://github.com/SAILResearch/suppmaterial-18-ahsan-

ads_provider_libs.

https://github.com/SAILResearch/suppmaterial-18-ahsan-ads_provider_libs
https://github.com/SAILResearch/suppmaterial-18-ahsan-ads_provider_libs

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 19

Table 8: The identified components of the reference architecture of ad libraries.

Component
name

Component definition

Ad Lifecycle
Manager

The Ad Lifecycle Manager is the main entry point of an ad library. It
delegates all steps of an ad’s lifecycle to the appropriate components.
An ad’s lifecycle consists of four steps: (1) fetching the ad, (2) storing
the ad, (3) displaying the ad, and (4) deleting the ad. The Ad Lifecycle
Manager performs its functionality using two subcomponents (Interac-
tive Ad and Non-interactive Ad).
The Interactive Ad component displays an interactive ad format (e.g.,
Augmented Reality ad or Playable ad) on a user’s device. This ad format
increases the engagement of users with the displayed ads [5, 12]. For
example, the Playable ads promote other Android apps of the Google
Play Store, and users can play a demo of the promoted app (within the
displayed ads) without downloading the app.
In the Non-interactive Ad, users are allowed only to control (e.g., play or
close) the displayed ads. This component consists of the following four
subcomponents: (1) Banner, (2) Native, (3) Interstitial (full-screen),
and (4) Rewarded Video.

Ad Retrieval The Ad Retrieval component provides functionality to communicate
with ad networks and download ad data. In particular, the Ad Lifecycle
Manager sends messages to the Ad Retrieval component for fetching
ads from an ad network. Then, the Ad Retrieval component fetches ad
data (lightweight format such as JSON) from the ad networks by using
HTTP requests.

Ad Serving The main functionality of the Ad Serving component is to construct
displayable ad content (e.g., image or video content) by processing the
fetched ad data (e.g., JSON objects).

Analytics The Analytics component collects information about users (e.g., their
location) and leverages the collected data to: (1) select the most suitable
ads for every user, and (2) provide statistics about the displayed ads to
integrators. This component sends the collected information of a user
to the Ad Lifecycle Manager for fetching and displaying appropriate
ads for every user.

Util The Util component provides functionality related to cache manage-
ment, handles all configuration setup and provides logging functional-
ity with different log levels (e.g., debug, warning and error log levels).
This component contains three sub-components: (1) Cache Manager,
(2) Logger, and (3) Configuration/Properties.

of the studied ad libraries, and we analyzed the architectural evolution of every
ad library during our study period.

Findings: 7 out of 8 ad libraries offer an ad mediation component
that enables integrators to communicate with several ad networks
through a unified interface. Ruiz et al. [61] showed that integrators often
integrate more than one ad library to increase their potential revenue. Hence,
to display ads from different ad networks, integrators need to write code to
interact with several ad libraries which increases their app maintenance effort.

To reduce the needed effort for serving ads from multiple ad networks, ad
libraries nowadays commonly offer an ad mediation component. This compo-

20 Md Ahasanuzzaman et al.

Interactive
Ad

Non-interactive
Ad

Ad Lifecycle Manager

Analytics

Retrieve user data Retrieve ads from the ad
networks

Generate ad content

Legend:

Control flow All depend onReference
Component

Ad Serving

Image
Content

Video
Content

Ad Retrieval

Ad Mediation Ad Network
Connectivity

Util

Cache
Manager

Configurations/
Properties Logger

Fig. 5: Ad library reference architecture. A line between two components in-
dicates that there is a relationship between the components.

nent allows integrators to serve ads from several ad networks using a unified
interface.

While the ad mediation component reduces the required effort to serve
ads from multiple ad networks, integrators need to include all the dependent
libraries of these ad networks into their apps. Hence, the overall app size of
the integrating app increases considerably. To reduce the app size while using
ad mediation, Google AdMob offers an SDK-less mediation feature [39], for
which integrators do not need to include the dependent libraries of other ad
networks. Google AdMob’s SDK-less mediation feature automatically commu-
nicates with the supported ad networks through Google’s ad network servers.
Therefore, the app size remains small [39]. Hence, we recommend that other
ad library developers provide solutions to reduce the size of the integrating
apps as well, e.g., by handling communications with the other ad networks on
the ad network server.

Ad libraries have several interactive and non-interactive subcom-
ponents as they provide different ad media formats. We observe that
the non-interactive component supports four main formats of ads: (1) banner
ads, (2) native ads, (3) interstitial ads, and (4) rewarded video ads. Note that
image-based ads can be of the banner, native or interstitial format, and that

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 21

video-based ads can be of the native or interstitial format. A rewarded video
is a special format of a video ad.

On the other hand, the interactive component supports two main formats
of ads: (1) Playable ads and (2) Augmented Reality ads. Unlike non-interactive
ads, playable ads and augmented reality ads increase user-engagement by en-
abling users to directly interact with the displayed ads [5, 12].

We can use these components to identify the differences between ad li-
braries in terms of their supported ad formats. For example, Figure 6 shows
the architecture of the Vungle and the Amazon Mobile Ad library. In Fig-
ure 6, we highlight all components that exist in the reference architecture but
not in the particular ad library. As shown in Figure 6, the Vungle ad library
supports both interactive and non-interactive ads whereas the Amazon mobile
Ad library only supports non-interactive ads. In addition, we observe that the
Vungle ad library focuses only on video ads (e.g., native video, full-screen and
rewarded video ads) [19, 64]. Figure 6 also shows that the Amazon Mobile
Ad library focuses on image and video ad contents that are provided through
banner and interstitial ads.

All ad libraries support the automatic resizing of the displayed
ads based on the device model of a user. In our architectural analysis,
we observe that all ad libraries leverage the user’s device model information
(e.g., the screen size and resolution) to automatically adjust the layout of
the displayed ads. This information is collected by the Ad Lifecycle Manager,
which also manages the layout of the displayed ads. In addition, the Google
AdMob, Facebook Audience Network, and Amazon Mobile Ad ad libraries
allow integrators to adjust the size of the displayed ads. Prior research showed
that full-screen and frequently displayed ads can lead to negative reviews of
the integrating apps [43]. Hence, integrators and ad library developers should
be careful while adjusting the size and the frequency of the displayed ads.

Ad library developers are actively evolving the architecture of
their libraries. For example, Figure 7 shows the difference between the con-
ceptual architecture of the Vungle ad library at the start and at the end of our
study period. We find that the Vungle added the following new components
to its architecture:

1. Adding ads mediation component. The Vungle ad library added ad
mediation support for eight ad networks (e.g., MoPub and Google AdMob).

2. Adding native ads component. The developers of the Vungle ad library
added support for native video ads. Such ads are rendered and displayed
with the same look and feel as the integrating apps. As native ads are less
obtrusive to users, they can improve the clickthrough rate of the displayed
ads [54].

22 Md Ahasanuzzaman et al.

 (b) The conceptual architecture of Amazon 5.8.1.1 ad library

Interactive Ad Non-interactive Ad

Ad Lifecycle Manager

Retrieve user data Generate ad content

Banner Interstitial

UserInfo
Tracker

Analytics Ad Serving

Image Content
Image

Handler
Video

Handler

Video Content

Retrieve ads from the ad
networks

Ad Retrieval

Interactive Ad Non-interactive Ad

Ad Lifecycle Manager

Retrieve user data Generate ad content

Native Interstitial Rewarded
Video

Playable
Ad

(a) The conceptual architecture of Vungle 6.3.24 ad library

Moat
Analytics

Analytics Ad Serving

Image Content

VideoView

Video Content Ad Mediation

Vungle
Mediation

Retrieve ads from the ad
networks

Util
Configurations/

Properties
Config
Setting

Cache Manager

Cache
Manager

Logger

Logger

Ad Network
Connectivity

OkHttp
Connection

Ad Network
Connectivity

HttpURL
Connection

WebRequest

Ad Retrieval

Ad Mediation

Util
Configurations/

Properties
Config
Setting

Cache Manager

Cache
Manager

Logger

Logger

Control
flow

All
depend on

Legend:

Reference
Component

Existing
Component

Missing
Component

Fig. 6: The differences between the ad library architectures of the Vungle and
Amazon ad libraries. A bold box with a bold font shows a new component
that appears in the version of the ad library.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 23

Ad Retrieval

(a) The conceptual architecture of Vungle 3.3.5 ad library

Interactive Ad Non-interactive Ad

Ad Lifecycle Manager

Retrieve user data Generate ad content

Native Interstitial Rewarded
Video

Playable
Ad

(b) The conceptual architecture of Vungle 6.3.24 ad library

Interactive Ad Non-interactive Ad

Ad Lifecycle Manager

Retrieve user data Generate ad content

Interstitial Rewarded
Video

Moat
Analytics

Analytics Ad Serving

Image Content

VideoView

Video Content Ad Mediation

Vungle
Mediation

Retrieve ads from the ad
networks

Util
Configurations/

Properties
Config
Setting

Cache Manager

Cache
Manager

Logger

Logger

Ad Serving

Image Content

VideoView

Video Content

Retrieve ads from the ad
networks

Ad Retrieval
Ad

Mediation
Ad Network
Connectivity

HttpURL
Connection

Moat
Analytics

Analytics

Util
Configurations/

Properties
Config
Setting

Cache Manager

Cache
Manager

Logger

Logger

Control
flow

All
depend on

Legend:

Reference
Component

Existing
Component

Missing
Component

Ad Network
Connectivity

OkHttp
Connection

Fig. 7: Evolution of the architecture of the Vungle ad library during our study
period. A bold box with a bold font shows a new component that appears in
the version of the ad library.

24 Md Ahasanuzzaman et al.

3. Adding interactive ad component. The Vungle ad library added the
Playable Ad as an interactive ad component. The playable ads are displayed
on a device to promote other Android Apps. In particular, these ads allow
users to play a demo version of the promoted apps (within the displayed
ads) without installing the apps on the user’s device. Such interaction with
the ads improves user-engagement [12].

We observed that the other studied ad libraries were all converging towards
our reference architecture during the study period. This convergence suggests
that our derived reference architecture is capturing shared aspects across the
domain.

Summary of RQ3

We propose a reference architecture for ad libraries. During our study
period, ad library developers actively evolved the architecture of their
libraries, as they added new functionality to the libraries. All ad li-
braries appear to be slowly converging to offer similar features with
their architectures mapping well to our derived reference architecture.

4 Quality Attributes of the Derived Reference Architecture of Ad
Libraries

An ad library architecture needs to satisfy several quality attributes to over-
come common challenges (e.g., continuous improvements of the offered ad
formats) across ad libraries. We briefly discuss below some quality attributes
and how our derived reference architecture satisfies.

4.1 Evolvability of the Supported Ad Formats

Developers of ad libraries are always in search of ways to evolve their displayed
ad formats to make them interesting and intricate in an effort to attract users
into interacting with such ads. In particular, we observe that 31% of the studied
library versions note improvements in the display of ads.

For instance, we observed that ad library developers have recently intro-
duced more interactive ad formats (e.g., Playable ad and Augmented Reality
ad) to improve user-engagement with the displayed ads. Our derived reference
architecture enables such an evolutionary pattern where the other components
of the reference architecture remain relatively stable over the years, with the
internals of the Interactive Ad and Non-interactive Ad components exhibiting
a large amount of changes while the impact of such changes being localized to
the Ad Lifecycle Manager component. In the future, we envision ad libraries
supporting voice-over ads (e.g., users can listen to streaming audio ads and

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 25

interact with an ad using their voice commands); our current reference archi-
tecture would support such ads as well.

4.2 Flexibility of Integrating Multiple Ad Libraries

App developers usually prefer to integrate more than one ad library to ensure
that they can always display an ad (since ad libraries do not guarantee that
they would always provide an ad to display when an ad is requested by an
app) [61]. To facilitate the ease of integrating multiple ad libraries, our refer-
ence architecture offers the Ad Mediation component. This component allows
integrators to serve ads from different ad networks through a unified interface.

For example, an app that integrates only Google AdMob to serve ads can
easily serve ads from other ad networks (e.g., Facebook and MoPub) that are
supported by Google AdMob through the Ad Mediation component of the
Google AdMob library. Therefore, it is possible to retrieve ads from the other
ad networks with the Google AdMob library.

4.3 Efficiency of Ads at Run-time

Ads need to provide an interactive user experience while minimizing their
resource consumption. The Cache Manager component in the reference archi-
tecture pre-fetches ads, which improves the responsiveness of ads. However,
this caching mechanism brings into play its own slew of challenges, as we
observe that eight versions of the studied ad libraries mention memory leak
issues.

4.4 Minimizing the Size of the Ad Library

The size of an app is negatively associated with the number of installations of
an app [63]. Hence, app developers aim to keep the size of their apps as small
as possible. In return, we observe the same phenomena being reflected at the
architecture level for the ad libraries that we studied. Over the years, we note
that several instances of ad libraries replaced components of their reference
architecture with external components (either ones provided by the Android
platform, or by other companies) instead of including all the components. For
example, we observed that Google gutted the Analytics component, replac-
ing it with a thin façade that interfaces directly with the Google Analytics
that is already offered by the Android platform. While on the other hand, we
observed that Vungle removed the same component from its code base and
points developers to where to download that component, enabling developers
to avoid including the same components twice if they need its functionality
for their own app.

Furthermore, we note that the developers of some ad libraries have worked
on modularizing the different ad formats so integrator apps would only include

26 Md Ahasanuzzaman et al.

the required modules. For example, if an integrating app displays only banner
ads, the app only has to integrate the banner ads module. According to the
MoPub website [58], their modular architecture allows app developers to save
up to 60% of the library size by including only the needed modules.

5 Implications

In this section, we describe the implications of our longitudinal analysis of ad
libraries for ad library developers and ad library integrators.

5.1 Implications for Ad Library Developers

To reduce the size of an ad library, ad library developers should
offer a modular version of their libraries. The size of an app is negatively
associated with the number of installations of an app [63]. Hence, it is necessary
to keep app size (and therefore the size of all its libraries) as small as possible.
As described in Section 3.1, refactoring the MoPub architecture into a more
modular one reduced the library size by 60%. Hence, we recommend that
ad library developers rethink their designs and offer a modular version of
their libraries to integrators who do not require the full functionality of the
library. One additional practice that can reduce the size of ad libraries is to
offer an SDK-less mediation feature. As described in Section 3.3, the SDK-less
mediation feature of Google AdMob allows integrators to communicate with
several ad networks without integrating the dependent ad libraries of these ad
networks. Hence, we recommend that ad library developers offer an SDK-less
mediation feature in their libraries.

Ad library developers should be careful about memory leaks in
their libraries. In section 3.2, we observed that memory leaks are the most
often fixed resource-related issue. Because ad libraries continuously fetch and
display ads, these libraries are vulnerable to memory leaks when the ads are
not correctly released. As memory leaks may cause performance and energy
issues for app users [44], ad library developers should be extra careful and
follow proper guidelines [36] to avoid memory leaks. For example, ad library
developers should leverage existing memory profiling tools, such as Memory
Profiler [38] to identify memory leaks.

5.2 Implications for Ad Library Integrators

Integrators should be aware that there is a median delay of 49 days
after a new version of the Android platform before an ad library
supports that version. In Section 3.2, we show that ad libraries have a
release interval of approximately one month. However, providing support for
a new Android version takes a median of 49 days. Hence, integrators should
be cautious when they support a new version of Android before the ad library

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 27

supports that version, as it is possible that their app will not be able to display
ads correctly during that period leading to lost revenue.

6 Threats to Validity

External Validity: In our study, we analyzed the evolution of eight of the
most popular ad libraries. Future studies should investigate whether our find-
ings hold for other ad libraries. In addition, we focused our study on ad libraries
that are integrated in free-to-download Android apps. Future studies should
broaden the scope of our study and investigate how our findings apply to ad
libraries that are integrated in other types of apps, such as paid or iOS apps.
Internal Validity: In our study of what drives ad library developers to re-
lease a new version of an ad library, we manually analyzed the release notes
and identified the drivers in every release note. As we are not the ad library
developers, it is possible that we misinterpreted the drivers for releasing a
new version. To mitigate this threat, the first and the second author individu-
ally identified the drivers from the release notes and consolidated their result.
However, future studies should consider consulting ad library developers to
identify the drivers for releasing a new version of the ad library.

Our assumption that apps that integrate an ad library actually display
ads is another threat to validity. However, since the size of an app is a major
concern for app developers (as larger apps are less likely to be installed by
users) and the main objective of integrating ad libraries is to earn revenue
based on the displayed ads, we assume that an app only integrates an ad
library if it actually displays ads.

7 Related Work

There have been several studies on ad libraries in the mobile app analysis
research area. Prior work mainly focused on the updates of ad libraries, the
cost of ad libraries and the security issues of ad libraries. All of the prior
work focuses on the impact of ad libraries. However, our study is the first to
investigate the evolution of the ad libraries themselves. We discuss the related
work below.

7.1 The Updating of Ad Libraries

Ruiz et al. [62] performed an empirical study on the frequency of ad library
updates in mobile apps. The authors analyzed 120,981 free-to-download apps
from the Google Play Store. To determine ad library updates, Ruiz et al. gen-
erated class signatures and compared the signatures between two consecutive
updates of classes using the software bertillonage approach. The result showed
that app developers actively update their ad libraries, as Ruiz et al. found that
ad libraries were updated in 48% of the apps.

28 Md Ahasanuzzaman et al.

Derr et al. [29] studied what drives app developers to update third-party
libraries (including their ad libraries) in Android apps. The authors first sur-
veyed 203 app developers to better understand third-party library usage in
apps. The authors also performed a large-scale updatability analysis on 1.2M
apps from the Google Play Store. Derr et al. concluded from the survey that
bug-fixes and security fixes would motivate developers to update a third-party
library. The result of the updatability analysis showed that 60% of the app
developers regularly update their third-party libraries.

While prior research focuses on analyzing the updatability of ad libraries
(e.g., how frequent app developers update their ad libraries), the objective of
our work is to understand how ad libraries evolve over time from the perspec-
tive of the developers of such libraries. In particular, we analyze the frequency
of ad library releases and their size. We also investigate what drives ad library
developers to release a new version of ad libraries. Finally, we study how the
architecture of ad libraries evolves over time. Our study is important for ad
library developers and researchers as it provides the first in-depth analysis on
how successful ad libraries have evolved during the study period.

7.2 The Cost of Ad Libraries

Ruiz et al. [61] analyzed the impact of ad libraries on the rating of mobile
Android apps. Ruiz et al. mined 236K mobile apps and 519K updates of these
mobile apps to study the relationship between the number of ad libraries
that are integrated into an app and the app’s user rating. The result showed
that the number of integrated ad libraries is not related to the app’s rating.
However, using certain ad libraries could result in poor app ratings. Ruiz et
al. suggested that developers need to be careful and selective about the ad
libraries that they choose to integrate.

Gui et al. [42] investigated the hidden costs of mobile advertising by ana-
lyzing 21 real-world apps from the Google Play Store. The result showed that
hidden cost of ads manifests itself in performance, memory usage, network
usage, maintenance of ad-related code and the app rating.

Gao et al. [34] investigated 104 popular Android apps and identified 12 ad
schemes for which the authors studied the cost of using ads. In particular, Gao
et al. measured the performance cost of these identified ad schemes in terms
of memory, network traffic, and battery consumption. Based on the study,
the authors suggested that app developers should use the Google AdMob ad
library as it consumes less CPU overhead than the Mopub ad library and
developers should use a full-banner scheme to display ads due to its low-
performance cost and its association with a higher rating of the integrating
apps.

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 29

7.3 The Security of Ad Libraries

Prior work shows that privacy and security are emerging issues in mobile
apps [20, 21, 24, 25, 33, 65]. Since ad libraries are widely integrated in mobile
apps, researchers study the impact of using ad libraries on app security. For
example, Book et al. [23] analyzed 1,14,000 apps to understand the evolution
of the requested permissions of ad libraries. They observed that the use of
permissions has increased over time, and they conclude that most of the per-
missions that are requested by ad libraries are risky in terms of user privacy
and security.

Kim et al. [51] analyzed the protective measurements of the Google Ad-
Mob, MoPub, AirPush, and AdMarvel ad libraries against malicious adver-
tising. They found that these ad libraries require permissions, such as the
WRITE EXTERNAL STORAGE and READ EXTERNAL STORAGE per-
missions, that could make apps users vulnerable to attacks.

Li et al. [53] investigated 1.5 million apps using 1,113 third-party libraries
and 240 ad libraries to investigate which libraries are commonly used in An-
droid apps. The study showed that the most used library is Google’s ad library
(AdMob). Li et al. also observed that a significant portion of apps that used
ad libraries are apps that are flagged by virus scanners.

Dong et al. [30] conducted an exploratory study on ad fraud (e.g., cheating
advertisers with fake ad clicks) in mobile apps and proposed an automated ap-
proach for detecting these ad frauds in mobile apps. Their automated approach
achieves 92% recall and 93% precision on the manually validated data set of
100 apps. To further study ad frauds in mobile apps, they analyzed 12,000
ad-supported apps that use 20 unique ad libraries. They observed that no ad
libraries were exempt from fraudulent behaviours and that the AppBrain ad
library is the most targeted ad library for ad frauds.

8 Conclusions

Ad libraries have become an integral part of the mobile app economy. Even
though ad libraries play an essential role in the app ecosystem, there has been
no prior study on how these ad libraries evolve over time. In this paper, we
conduct a longitudinal analysis of eight popular ad libraries over a period of 33
months (from April 2016 until December 2018). The most important findings
of our study are:

1. Ad libraries are continuously evolving and have a median release interval
of 34 days.

2. As a large app size is negatively associated with the number of installations
of an app, it is essential that third-party libraries are as small as possible.
Ad library developers are reducing their library sizes by: (1) creating a
lighter version of the ad library, (2) removing functionality from the ad
library, and (3) redesigning the ad library into a more modular architecture.

30 Md Ahasanuzzaman et al.

3. Ad library developers tend to integrate support for new Android platforms.
However, there is median delay of 49 days after a new Android version.
Therefore, ad library integrators should be cautious when updating their
own apps to the latest Android version, as their integrated ad libraries may
not yet support that version (leading to lose ad revenue).

4. Memory leaks are the most often resolved resource handling-related issues
in the studied ad libraries. Hence, ad library developers should carefully
examine memory leak issues in their libraries.

5. We derived a reference architecture for ad libraries. We observed that dur-
ing our study period, all ad libraries were slowly converging towards this
reference architecture.

Our study is useful for developers who wish to build and evolve their own
ad libraries. In particular, these developers can leverage our derived reference
architecture as a starting point and blueprint for building and evolving their
own ad libraries.

References

1. Android version history. https://en.wikipedia.org/wiki/Android_version_history.
(Last accessed: July 2019).

2. AppBrain Intelligence. https://www.appbrain.com/stats/. (Last accessed: July 2019).
3. dex2jar. http://sourceforge.net/projects/dex2jar/. (Last accessed July 2019).
4. Google Mobile Ads Lite SDK. https://developers.google.com/admob/android/lite-

sdk. (Last accessed: July 2019).
5. How Virtual and Augmented Reality Ads Improve Consumer Engagement.

http://www.econtentmag.com/Articles/News/News-Feature/How-Virtual-and-

Augmented-Reality-Ads-Improve-Consumer-Engagement-117710.htm. (Last accessed:
July 2019).

6. Measuring Ad Viewability. https://www.thinkwithgoogle.com/feature/

viewability/. (Last accessed: July 2019).
7. psych: Procedures for Psychological, Psychometric, and Personality Research. https:

//cran.r-project.org/web/packages/psych/index.html. (Last accessed: July 2019).
8. ReactiveX. http://reactivex.io/intro.html. (Last accessed: July 2019).
9. RxJava. https://github.com/ReactiveX/RxJava. (Last accessed: July 2019).

10. The Simple Guide to Understand Facebook Ads Metrics. https://adespresso.com/

blog/understand-facebook-ads-metrics-guide/. (Last accessed: July 2019).
11. Understand Tool. https://scitools.com/. (Last accessed: July 2019).
12. Why Playable Ads are the Key to Engaged Users. https://applift.com/blog/

playable-ads-2. (Last accessed: July 2019).
13. ProGuard. https://www.guardsquare.com/en/products/proguard, 2013. (Last ac-

cessed: July 2019).
14. I. D. Addo, S. I. Ahamed, S. S. Yau, and A. Buduru. A reference architecture for improv-

ing security and privacy in internet of things applications. In 2014 IEEE International
Conference on Mobile Services, pages 108–115, 2014.

15. Akdeniz. Google Play Crawler. https://github.com/Akdeniz/google-play-crawler.
(Last accessed: July 2019).

16. Apache Software Foundation. Download Apache Commons BCEL. https://archive.

apache.org/dist/commons/bcel/, 2018. (Last accessed July 2019).
17. AppAnnie. In-App Advertising Spend to Triple, Reach $201 Billion by 2021. https:

//www.appannie.com/en/insights/market-data/app-advertising-spend-2021/,
2017. (Last accessed: July 2019).

18. AppAnnie. App Annie. https://www.appannie.com/, 2018. (Last accessed July 2019).

https://en.wikipedia.org/wiki/Android_version_history
https://www.appbrain.com/stats/
http://sourceforge.net/projects/dex2jar/
https://developers.google.com/admob/android/lite-sdk
https://developers.google.com/admob/android/lite-sdk
http://www.econtentmag.com/Articles/News/News-Feature/How-Virtual-and-Augmented-Reality-Ads-Improve-Consumer-Engagement-117710.htm
http://www.econtentmag.com/Articles/News/News-Feature/How-Virtual-and-Augmented-Reality-Ads-Improve-Consumer-Engagement-117710.htm
https://www.thinkwithgoogle.com/feature/viewability/
https://www.thinkwithgoogle.com/feature/viewability/
https://cran.r-project.org/web/packages/psych/index.html
https://cran.r-project.org/web/packages/psych/index.html
http://reactivex.io/intro.html
https://github.com/ReactiveX/RxJava
https://adespresso.com/blog/understand-facebook-ads-metrics-guide/
https://adespresso.com/blog/understand-facebook-ads-metrics-guide/
https://scitools.com/
https://applift.com/blog/playable-ads-2
https://applift.com/blog/playable-ads-2
https://www.guardsquare.com/en/products/proguard
https://github.com/Akdeniz/google-play-crawler
https://archive.apache.org/dist/commons/bcel/
https://archive.apache.org/dist/commons/bcel/
https://www.appannie.com/en/insights/market-data/app-advertising-spend-2021/
https://www.appannie.com/en/insights/market-data/app-advertising-spend-2021/
https://www.appannie.com/

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 31

19. AppBrain. Video ads. https://www.appbrain.com/stats/libraries/tag/video-ads/

video-ads, 2016. (Last accessed: July 2019).
20. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing the Android

Permission Specification. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 217–228, 2012.

21. M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber. On Demys-
tifying the Android Application Framework: Re-visiting Android Permission Specifica-
tion Analysis. In Proceedings of the 25th USENIX Conference on Security Symposium,
SEC’16, pages 1101–1118, 2016.

22. D. Belanche, C. Flavián, and A. Pérez-Rueda. Understanding interactive online ad-
vertising: Congruence and product involvement in highly and lowly arousing, skippable
video ads. Journal of Interactive Marketing, 37:75–88, 2017.

23. T. Book, A. Pridgen, and D. S. Wallach. Longitudinal Analysis of Android Ad Library
Permissions. Computing Research Repository, abs/1303.0857, 2013.

24. P. Calciati and A. Gorla. How do apps evolve in their permission requests?: A prelim-
inary study. In Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, pages 37–41, 2017.

25. P. Calciati, K. Kuznetsov, X. Bai, and A. Gorla. What did really change with the new
release of the app? In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR ’18, pages 142–152, 2018.

26. J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement, 20(1):37–46, 1960.

27. D. Davidson, M. Fredrikson, and B. Livshits. MoRePriv: Mobile OS Support for Ap-
plication Personalization and Privacy. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC ’14, pages 236–245, 2014.

28. J. L. M. de la Iglesia and J. E. L. Gayo. Doing business by selling free services. In Web
2.0, pages 1–14. Springer, 2009.

29. E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes. Keep Me Updated: An Empirical
Study of Third-Party Library Updatability on Android. In Proceedings of the 24th ACM
SIGSAC Conference on Computer and Communications Security, CCS ’17, pages 2187–
2200, 2017.

30. F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyandé, T. Liu, G. Xu, and J. Klein. Fraud-
Droid: Automated Ad Fraud Detection for Android Apps. In Proceedings of the 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE’18, pages 257–268, 2018.

31. J. C. Dueñas, W. L. d. Oliveira, and J. A. d. l. Puente. A software architecture eval-
uation model. In Proceedings of the Second International ESPRIT ARES Workshop
on Development and Evolution of Software Architectures for Product Families, pages
148–157, 1998.

32. Facebook. Introducing Rewarded Video for Game Developers. https://www.facebook.
com/audiencenetwork/news-and-insights/introducing-rewarded-video, 2017. (Last
accessed: July 2019).

33. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demysti-
fied. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 627–638, 2011.

34. C. Gao, J. Zeng, F. Sarro, M. R. Lyu, and I. King. Exploring the effects of ad schemes
on the performance cost of mobile phones. In Proceedings of the 1st International
Workshop on Advances in Mobile App Analysis, A-mobile ’18, pages 13–18, 2018.

35. Google. Best practices for unique identifiers . https://developer.android.com/

training/articles/user-data-ids. (Last accessed: July 2019).
36. Google. Manage your app’s memory. https://developer.android.com/topic/

performance/memory. (Last accessed: July 2019).
37. Google. Playtime 2018: Helping you build better apps in a smaller bundle. https://

android-developers.googleblog.com/2018/10/playtime-2018.html. (Last accessed:
July 2019).

38. Google. View the Java heap and memory allocations with Memory Profiler. https:

//developer.android.com/topic/performance/memory. (Last accessed: July 2019).

https://www.appbrain.com/stats/libraries/tag/video-ads/video-ads
https://www.appbrain.com/stats/libraries/tag/video-ads/video-ads
https://www.facebook.com/audiencenetwork/news-and-insights/introducing-rewarded-video
https://www.facebook.com/audiencenetwork/news-and-insights/introducing-rewarded-video
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/topic/performance/memory
https://developer.android.com/topic/performance/memory
https://android-developers.googleblog.com/2018/10/playtime-2018.html
https://android-developers.googleblog.com/2018/10/playtime-2018.html
https://developer.android.com/topic/performance/memory
https://developer.android.com/topic/performance/memory

32 Md Ahasanuzzaman et al.

39. Google. SDK-less Mediation: An easier way to mediate. https://www.blog.google/

products/admob/sdk-less-mediation/, 2016. (Last accessed: July 2019).
40. M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe Exposure Analysis of Mobile

In-app Advertisements. In Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, ACSAC ’14, pages 101–112, 2012.

41. A. Grosskurth and M. W. Godfrey. A Reference Architecture for Web Browsers. In
Proceedings of the 21st International Conference on Software Maintenance, ICSM ’05,
pages 661–664, 2005.

42. J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth in Advertising: The
Hidden Cost of Mobile Ads for Software Developers. In Proceedings of the 37th Inter-
national Conference on Software Engineering, ICSE ’15, pages 100–110, 2015.

43. J. Gui, M. Nagappan, and W. G. Halfond. What Aspects of Mobile Ads Do Users
Care About? An Empirical Study of Mobile In-app Ad Reviews. arXiv preprint
arXiv:1702.07681, 2017.

44. C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang. Characterizing and Detecting
Resource Leaks in Android Applications. In Proceedings of the 28th International Con-
ference on Automated Software Engineering, ASE ’13, pages 389–398, 2013.

45. L. Hao, H. Guo, and R. F. Easley. A mobile platform’s in-app advertising contract under
agency pricing for app sales. Production and Operations Management, 26(2):189–202,
2017.

46. A. E. Hassan and R. C. Holt. A Reference Architecture for Web Servers. In Proceedings
of the 7th Working Conference on Reverse Engineering, WCRE ’10, pages 150–160,
2000.

47. A. E. Hassan and R. C. Holt. Architecture recovery of web applications. In Proceedings
of the 24th International Conference on Software Engineering, ICSE ’02, pages 349–359,
2002.

48. S. Hassan, C. Bezemer, and A. E. Hassan. Studying Bad Updates of Top Free-to-
Download Apps in the Google Play Store. IEEE Transactions on Software Engineering,
pages 1–21, 2018.

49. S. Hassan, W. Shang, and A. E. Hassan. An Empirical Study of Emergency Updates
for Top Android Mobile Apps. Empirical Software Engineering, 22(1):505–546, 2017.

50. S. H. Khandkar. Open coding. http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/
CPSC681/open-coding.pdf, 2009. (Last accessed July 2019).

51. D. Kim, S. Son, and V. Shmatikov. What Mobile Ads Know About Mobile Users. In
Proceedings of the 23rd Annual Network and Distributed System Security Symposium,
NDSS ’16, pages 1–14, 2016.

52. J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 33, 1977.

53. L. Li, T. F. Bissyandé, J. Klein, and Y. L. Traon. An Investigation into the Use of
Common Libraries in Android Apps. In Proceedings of the 23rd Software Analysis,
Evolution, and Reengineering, SANER ’16, pages 403–414, 2016.

54. M. Manic. The rise of native advertising. Bulletin of the Transilvania University of
Brasov. Economic Sciences. Series V, 8(1):53, 2015.

55. T. McDonnell, B. Ray, and M. Kim. An Empirical Study of API Stability and Adoption
in the Android Ecosystem. In Proceedings of the 29th IEEE International Conference
on Software Maintenance, ICSME ’13, pages 70–79, 2013.

56. N. Medvidovic and V. Jakobac. Using software evolution to focus architectural recovery.
Automated Software Engineering, 13(2):225–256, 2006.

57. N. Medvidovic and R. N. Taylor. A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineering,
26(1):70–93, 2000.

58. MoPub. Customize the MoPub SDK for only the formats you use. https://www.mopub.
com/2016/09/15/customize-the-mopub-sdk-for-only-the-formats-you-u. (Last ac-
cessed: July 2019).

59. T. Preston-Werner. Semantic versioning 2.0.0. https://semver.org/, 2013. (Last
accessed: July 2019).

60. B. Roy, A. K. Mondal, C. K. Roy, K. A. Schneider, and K. Wazed. Towards a reference
architecture for cloud-based plant genotyping and phenotyping analysis frameworks. In

https://www.blog.google/products/admob/sdk-less-mediation/
https://www.blog.google/products/admob/sdk-less-mediation/
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
http://pages.cpsc.ucalgary.ca/~saul/wiki/uploads/CPSC681/open-coding.pdf
https://www.mopub.com/2016/09/15/customize-the-mopub-sdk-for-only-the-formats-you-u
https://www.mopub.com/2016/09/15/customize-the-mopub-sdk-for-only-the-formats-you-u
https://semver.org/

A Longitudinal Study of Popular Ad Libraries in the Google Play Store 33

IEEE International Conference on Software Architecture, pages 41–50, 2017.
61. I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. E. Hassan. Impact

of Ad Libraries on Ratings of Android Mobile Apps. IEEE Software, 31(6):86–92, 2014.
62. I. J. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. E. Hassan. Ana-

lyzing Ad Library Updates in Android Apps. IEEE Software, 33(2):74–80, 2016.
63. Segment. Effect of Mobile App Size on Downloads. https://segment.com/blog/mobile-

app-size-effect-on-downloads/. (Last accessed: July 2019).
64. Vungle. Generate more revenue. https://vungle.com/monetize/. (Last accessed: July

2019).
65. H. Wang, H. Li, and Y. Guo. Understanding the evolution of mobile app ecosystems: A

longitudinal measurement study of google play. In The World Wide Web Conference,
WWW ’19, pages 1988–1999, 2019.

https://segment.com/blog/mobile-app-size-effect-on-downloads/
https://segment.com/blog/mobile-app-size-effect-on-downloads/
https://vungle.com/monetize/

34

Appendices

Identified Ad Libraries

Table 9 shows the list of identified 63 ad libraries. In addition, Table 10 shows
the list of 303 packages that we manually analyzed over the web.

Table 9: List of identified 63 ad libraries.

Ad Library Package Name

AdColonoy com.jirbo.adcolony / com.adcolony
AdinCube com.adincube
AdMarvel com.admarvel
Admob com.admob
AdServ com.adserv.sdk
AdTech com.adtech
AdUWant com.aduwant.ads
AdWhirl com.adwhirl
AerServ com.aerserv.sdk
Altamob com.altamob.sdk
Amazon Mobile Ad com.amazon.device.ads
Amobee com.amobee.adsdk
AOL com.aol
Appbrain com.appbrain
AppInTop com.appintop
Applovin com.applovin
AppNext com.appnext
Appodeal com.appodeal.ads
Avocarrot com.avocarrot.sdk
Bee7 com.bee7
Calldorado Mobile SDK com.calldorado
Chartboost com.chartboost.sdk
CMAdSDK com.cmcm
DoApp com.doapps
DU Ads platform com.duapps
Facebook Audience Network com.facebook.ads
Flurry com.flurry.android.ads
FreeWheel tv.freewheel
Fyber com.fyber
Google AdMob com.google.android.gms.ads
HeyZap com.heyzap
InMobi com.inmobi
Inneractive com.inneractive.api.ads
Integral Ad com.integralads
ironSource com.ironsource
JumpTap com.jumptap
JustAd tv.justad
Kuala Ad com.xinmei
Loopme com.loopme
Medialets com.medialets
Millennialmedia com.millennialmedia
MobFox com.mobfox.sdk
MobiMagic com.mobimagic

35

Ad Library Package Name

MobVista com.mobvista
MoPub com.mopub
myTarget com.my.target
Openex com.openx
Qihoo 360 com.qihoo
RevMob com.revmob
Rovio com.rovio
Smaato com.smaato
Smart AdServer com.smartadserver.android
SmartCross com.smartcross
Smato com.smaato
Sponorpay com.sponsorpay
StartApp com.startapp
Supersonic com.supersonic
Tapdaq com.tapdaq
Tapit com.tapit
Tapjoy com.tapjoy
Unity3d Ads com.unity3d.ads
Verve Wireless com.vervewireless
Vungle com.vungle

Table 10: List of 303 packages that we manually search on the web for ad
library identification.

Package name

adyen.com com.cyberlink com.medialets com.ucweb
android.databinding com.daimajia com.microsoft com.unity3d
antistatic.spinnerwheel com.devbrackets com.mikepenz com.univision
app.teamv com.dexati com.milkmangames com.upalytics
com.acb com.dianxinos com.millennialmedia com.upsight
com.ad stir com.digitalchemy com.miniclip com.urbanairship
com.ad4screen com.disney com.mobfox com.usage
com.adapter com.doapps com.mobile com.uservoice
com.adapters com.dotc com.mobimagic com.vdopia
com.adclient com.dreamsocket com.mobimento com.vervewireless
com.adcolony com.drew com.mobisystems com.video
com.addlive com.droid27 com.mobsandgeeks com.virgo
com.adincube com.duapps com.mobvista com.visa
com.adjust com.ducaller com.moodstocks com.vungle
com.admarvel com.ea com.my com.wantu
com.admob com.ensighten com.nbc com.wsi
com.admob mediation com.espn com.nbcuni com.xinmei
com.adobe com.etiennelawlor com.newrelic com.xlabz
com.ads com.etsy com.nextplus com.xtify
com.adsbase com.everyplay com.nq com.xvideostudio
com.adsdk com.exacttarget com.ntracecloud com.yahoo
com.adsmob com.example com.onelouder com.yandex

36

Package name

com.adtech com.expedia com.onemobile com.yinzcam
com.adtoapp com.facebook com.ooyala com.yume
com.aduwant com.flurry com.openx com.zenjoy
com.adwhirl com.flymob com.outfit7 com.zeus
com.adxcorp com.fotoable com.ovuline com.zooz
com.adyen com.fusepowered com.parbat CoronaProvider.ads
com.aerserv com.fw com.passportparking de.guj
com.airwatch com.fyber com.pinger emoji.keyboard
com.altamob com.gismart com.pingstart gov.nih
com.amazon com.github com.pinsightmediaplus imoblife.luckad
com.amazonaws com.glow com.pocketprep in.ubee
com.amobee com.gokeyboard com.pop io.presage
com.androidnative com.google com.prime31 io.smooch
com.antivirus com.googlecode com.publisheriq javazoom.jl
com.anvato com.greedygame com.purplebrain jp.co
com.aol com.h6ah4i com.qbiki jp.wasabeef
com.apalon com.hannesdorfmann com.qihoo kankan.wheel
com.appboy com.helpshift com.qisi kotlin.reflect
com.appintop com.heyzap com.qq ks.cm
com.applicaster com.hp com.radaee ly.kite
com.applovin com.hudomju com.rcplatform me.dingtone
com.appnext com.iconology com.revmob me.everything
com.appnexus com.ihandysoft com.rfm me.iwf
com.appodeal com.ihs com.riffsy me.tango
com.apprupt com.iinmobi com.rjfun mobi.charmer
com.appsflyer com.ijinshan com.rovio mobi.infolife
com.apptentive com.ijoysoft com.scoompa mobi.wifi
com.apptracker com.imo com.seatgeek mono.com
com.apus com.inlocomedia com.seattleclouds nativesdk.ad
com.arlib com.inmobi com.sec net.adways
com.asherjunk com.inneractive com.segment net.afpro
com.att com.inqbarna com.sgiggle net.hockeyapp
com.auditude com.intentsoftware com.sileria net.pubnative
com.avast com.intercom com.smartcross org.adw
com.avg com.ironsource com.sololearn org.andengine
com.avg com.ironsource com.sololearn org.andengine
com.avocarrot com.jakewharton com.sponsorpay org.apache
com.babycenter com.jb com.sports org.droidparts
com.badoo com.jirbo com.startapp org.holoeverywhere
com.bamnetworks com.jiubang com.supersonic org.jdom
com.bee7 com.jumio com.sygic org.jivesoftware
com.behance com.jumptap com.taobao org.lds
com.box com.kika com.tapdaq org.mozilla
com.braintreepayments com.kikatech com.tapit org.restlet
com.burstly com.krux com.tapjoy org.robobinding
com.calldorado com.layer com.tapsense org.saturn
com.chad com.lemon com.tesolutions psm.advertising
com.cleanmaster com.library com.textmeinc retrofit2.adapter
com.cloudtech com.life360 com.tme roboguice.adapter
com.cmcm com.lifestreet com.tools ru.mail
com.commerce com.liverail com.tremorvideo tv.freewheel
com.commonsware com.longtailvideo com.trulia
com.contextlogic com.loopme com.turner
com.conviva com.lyrebirdstudio com.uber
com.cootek com.magic com.ubercab
com.cube com.mapmyfitness com.uc

	1 Introduction
	2 Data Collection
	3 A Longitudinal Study of the Evolution of Ad Libraries
	4 Quality Attributes of the Derived Reference Architecture of Ad Libraries
	5 Implications
	6 Threats to Validity
	7 Related Work
	8 Conclusions
	Appendices

