
Noname manuscript No.
(will be inserted by the editor)

A Study of How Docker Compose is Used to
Compose Multi-component Systems

Md Hasan Ibrahim · Mohammed
Sayagh · Ahmed E. Hassan

Received: date / Accepted: date

Abstract Many modern software applications are composed of several com-
ponents (e.g., a web application is composed of a web server component and
a database component). Each of these components can be instantiated as a
container from a Docker image. Each Docker image corresponds to a software
package (e.g, Apache or MySQL) along with various configuration details. Such
containerization simplifies, speeds up, and enables the systematic deployment
and maintenance of components at scale. As a natural progression of Docker,
applications are now using “Docker Compose” to compose multi-component
(aka. multi-container) applications by specifying the various components and
their relations – in turn simplifying the deployment and maintenance of com-
plex multi-component applications. This paper reports on a study of 4,103
open-source Github projects that use Docker Compose. Our primary goal is
to better understand how it is used in the wild. We observe that over a quar-
ter (26.8%) of the studied projects use Docker Compose for single-component
applications. The Docker Compose file for an application is infrequently up-
dated with 30% of such files never changed. We also observe that most of the
composed applications leverage basic Docker Compose options instead of us-
ing advanced options (e.g., just 4.3% of the multi-component applications use
a security related option). While Docker Compose has evolved over the years
(it is currently at version 3), applications rarely adopt the new versions and
2.4% of the studied projects downgraded to an earlier version due to platform
and option compatibility issues. Our study highlights that while applications

Md Hasan Ibrahim · Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University
Kingston, ON, Canada
E-mail: {ibrahim.mdhasan, ahmed}@cs.queensu.ca

Mohammed Sayagh
ÉTS - Québec Unviersity
Montréal, Canada
E-mail: {mohammed.sayagh}@etsmtl.ca

2 Md Hasan Ibrahim et al.

are using Docker Compose, they appear to be content with its basic options
and earlier versions in many instances. Future studies are needed to better un-
derstand how to improve the uptake of the more advanced aspects of Docker
Compose, if they are needed at all.

Keywords Docker · Docker Compose · Multi-component applications ·
Containerization

1 Introduction

Docker [8] enables the containerization of a software package along with as-
sociated configuration and setup details. Such containers can be easily and
rapidly deployed while avoiding compatibility issues. In fact, a recent study
reports that Docker can speed up the deployment of software components by
10-15 folds [23].

Docker is one of the most popular containerization technologies nowadays.
Docker has captured 83% of the containerization market [24] – a market with
an estimated revenue of $2.7 billion [1] by 2020. Datadog [5] (an emerging
cloud service monitoring startup) reported in 2018 that around a quarter of
their customers have already adopted Docker [6].

Much of today’s applications are multi-component (i.e., multi-container)
applications. For instance, a simple web application would require a web server
and a database component. Docker Compose, a natural progression of Docker,
enables practitioners to compose such complex applications [10]. Applications
transcribe such compositions in a Docker Compose file, where components
are specified by describing their Docker image and associated configuration
as well as the relations between components. For example, one can specify a
database component that uses a MySQL Docker image and stores data in a
given directory. Furthermore, one can specify various actions to follow when a
component fails.

Prior studies of Docker mostly focused on Docker images without consid-
ering the use of such images in multi-component applications. For example,
Tak et al. [26], Shu et al. [25], and Zerouali et al. [27] studied the security of
Docker images, while Cito et al. [4], and Zhang et al. [29] studied the evolution
of Dockerfiles (i.e., the specification files for Docker images).

This paper reports on a study of 4,103 Github open-source projects that
use Docker Compose. Our goal is to gain a solid empirical understanding of
how applications use Docker Compose. We structure our study along with the
following research questions:

RQ1. How do applications leverage Docker Compose?
Over a quarter (26.8%) of the studied projects use Docker Compose but
just for single-component applications. Among the multi-component appli-
cations, 23% of them compose only local images, 40.2% of them compose
both local and registry-hosted images, and the remaining 36.8% compose
only registry-hosted images.

A Study of How Docker Compose is Used to Compose Multi-component Systems 3

RQ2. What are the most used Docker Compose options?
22.6% of the available Docker Compose options are not used in any studied
application. Advanced options like the ones for security and logging are
rarely used. The security and logging options are used by 4.3% and 1.7%
of the studied projects respectively.
RQ3. How do Docker Compose files evolve?
Docker Compose files change infrequently. Changes primarily occur to im-
age related options (33.9% of changes), i.e., how to build an image, and
data management options (24.9% of changes), i.e., how to store the data.
Applications opt to pin the version of their composed images after facing
compatibility issues between images and their applications (e.g., due to
library version updates).
RQ4. How do applications use different versions of Docker Com-
pose?
21.5% of the studied applications are still using version 1 of Docker Com-
pose which will become deprecated in the very near future. A small number
(8.5%) of the projects upgraded their Docker Compose version. 2.44% of the
projects downgraded their Docker Compose version – many of the down-
grades are due to applications wanting to use options that are no longer
available in the new version of Docker Compose. An upgrade/downgrade
requires changing a median of 10 lines of Docker Compose file code, which
is double the typical number of changed lines in a regular change.

Our study highlights that while applications are using Docker Compose,
they appear to be content with its basic options and earlier versions of Docker
Compose in many instances. Future studies are needed to better understand
how to improve the uptake of the more advanced aspects of Docker Compose,
if they are needed at all. Our replication package is available online 1.

The rest of this paper is organized as follows: Section 2 provides background
and related work about our study. Section 3 presents our data collection ap-
proach. Section 4 presents the observations of our study. Section 6 discusses
the threats to validity of our observations. Finally, Section 7 concludes the
paper.

2 Background and Related Work

One can compose a multi-component application from a set of components,
each of which is defined as a Docker image and a set of options that configure
the component’s behaviour. In this section, we first discuss how to create an
image and how to instantiate it, then how to connect components to compose
a multi-component application.

1 https://github.com/SAILResearch/replication-21-ibrahim-dockercompose

4 Md Hasan Ibrahim et al.

Developer

Dockerfile Docker Imagewrites builds
Docker Engine

outputs runs
Docker

Container

Fig. 1: Building a Docker Image and instantiating it.

local image

Image from
online registry

Component 1

Component 2

Named
volume

Network

Exposed
port mapping

Used
volume

Connected
network

Fig. 2: Components and options in a Docker Compose file.

2.1 Docker Images and Containers

Figure 1 gives a high level overview of how Docker containers are created. A
Docker container is an instance of a Docker image, which is created by the
Docker Engine using a Dockerfile as input. A Dockerfile contains information
about the software package, along with the required configurations for the
package to function correctly. Such configurations include operating system
versions, and other required software packages. One can instantiate local im-
ages or online registry images. Online registry images are ones that have been
published on an online registry such as DockerHub [16], which allows other
developers to reuse published images.

2.2 Docker Compose

One can compose a multi-component application using Docker Compose which
composes a set of components, each of which is an image and a set

A Study of How Docker Compose is Used to Compose Multi-component Systems 5

of options that specify how the component should behave. One can
reuse the same image for different components; the reused images will result
in different containers once instantiated.

Such composition of components is specified using a configuration file such
as docker-compose.yml. Figure 2 shows an example of a Docker Compose
file, which composes a multi-component application from the web and redis
components. The web component is represented by a local image. The redis
component is created from the “redis” image, which is hosted on online registry
(e.g., DockerHub [16]). Additionally, both components (in Figure 2) have addi-
tional options that configure their environment. The web component exposes
the port 5000, stores its data in an external volume (stored in the “/code” path
in the host machine), and uses the common-network specification to access
other components of the same multi-component application.

2.3 Related Work on Docker

Prior studies focus on the quality and the evolution of Docker images. They
examine such images independent of their global context and do not consider
how such images are composed together to create more complex applications.
For example, Tak et al. [26] reported that 92% of DockerHub images con-
tain security vulnerabilities and compliance issues, Shu et al. [25] developed a
vulnerability analysis tool named DIVA (Docker Image Vulnerability Analy-
sis) which can discover, download, and analyze images from DockerHub and
identify security vulnerabilities, Zerouali et al. [27] analyzed the outdated and
most updated DockerHub images and reported that even the most up-to-date
images can contain severe security vulnerabilities, Cito et al. [4] reported that
Dockerfiles (i.e., the specification files for Docker images) change a median of
3.11 times per year, and Zhang et al. [28] identified that Dockerfiles follow
six different evolutionary patterns. Henkel et al. [20] leverage existing Dock-
erfiles to mine rules, which are used to better parse Dockerfiles and provide
better semantic support for Dockerfile developers. Horton et al. [21] proposed
an approach that builds Docker specifications for gist scripts, as many of these
scripts do not get executed due to missing dependencies.

3 Data Collection

We wish to study a large number of non-trivial applications which are com-
posed using Docker Compose. Hence, we follow the following steps:

• We first queried the Github database in Google Big Query [18] to re-
trieve projects that contain at least one docker-compose.yml
file. We obtained an initial list of 21,269 projects.

• We then removed deleted projects (since they are no longer avail-
able) and forked projects (to avoid any bias due to the dupli-
cated maintenance activities of such projects). We obtained the list

6 Md Hasan Ibrahim et al.

0

5000

10000

15000

1 10 100 1000 10000

of commits

of

 p
ro

je
ct

s

Fig. 3: Number of commits in the collected projects.

of deleted and forked project from the GHTorrent database [19]
(updated until April, 2019). We ended up with a list of 16,283
projects.

• To avoid studying trivial (e.g., toy or personal) projects, we filtered
out projects with less than 100 commits, so we ended up with 5,139
projects as shown in Figure 3.

• We then cloned these projects from Github. However, we could
only obtain 4,917 projects since the remaining projects are no
longer available on Github (e.g., made private or deleted after
April 2019).

• We limited our dataset to projects that contain a single docker-
compose.yml file since it is not feasible to know which Docker
Compose file is used. We ended up with 4,327 projects.

• We also removed any projects with an empty Docker Compose file,
which resulted in a dataset with 4,136 projects

• While parsing the Docker Compose files (using our own parser avail-
able in our replication package) we could not parse 33 files due
to the incorrect syntax of these files. Hence, we removed these
projects which resulted in a final dataset of 4,103 projects.

4 Results

The goal of this paper is to better understand how developers compose their
applications using Docker images. To achieve this goal, we address the follow-
ing four research questions:

RQ1. How do applications leverage Docker Compose?
RQ2. What are the most used Docker Compose options?

A Study of How Docker Compose is Used to Compose Multi-component Systems 7

1

5

25

100

200

500

1000
1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 29 32 36 37 78

of components

of

 p
ro

je
ct

s

Fig. 4: The number of projects for a given number of components.

RQ3. How do Docker Compose files evolve?
RQ4. How do applications use different versions of Docker Compose?

RQ1. How do applications leverage Docker Compose?

Motivation: The goal of this research question is to understand how applica-
tions are composed using Docker Compose. Such an empirical understanding
of how Docker Compose, a relatively new approach, is used for automating
the composition of multi-component applications would help researchers and
practitioners understand common practices and help identify open research
and practical challenges.

Approach: To understand how applications are composed using Docker Com-
pose, we parse the Docker Compose file of each of the selected projects to find
out the images that they use. In this regard, we examine the build and
image options for each defined component in the parsed Docker Compose
files (as shown in Figure 2). For instance, we identify local images and online
registry images that are hosted on online registries such as DockerHub.

We also investigate the commonly used online registries. To identify images
that are hosted on online registries, we identified images that are specified using
the following four patterns [3]:

• index.docker.io/{repository}/{image_name}
• docker.io/{repository}/{image_name}
• {repository}/{image_name}
• {image_name}

Furthermore, we also identify official DockerHub-hosted images by search-
ing for images that are specified using the following patterns [3]:

8 Md Hasan Ibrahim et al.

• library/{image_name}
• {image_name}

Results: The studied applications are composed from a median of
two components and as much as 78 components (as shown in Fig-
ure 4). Based on our manual analysis of all the 110 projects that have at least
10 components, we observe that just 51 projects are multiple component soft-
ware systems. 14 among these 51 projects claim to implement a micro-service
architecture. We observe 5 repositories that are toolkits for a certain field. For
example, the repository “dceoy/docker-bio” represents a set of tools for the
biometric field. The “instedd/nuntium” repository provides different compo-
nents to send messages, each of these components is dedicated to one type
of message such as SMS, emails and twitter. 4 repositories provide develop-
ment environments for other projects. For example, the “Codewars/codewars-
runner-cli” project provides a set of components, each of which is “to execute
small sets of code within various languages, using various testing frameworks”.
Among the components of our 110 manually studied projects with more than
10 components, we observe that 13 repositories have components that provide
environments for testing. For example, the “dustinleblanc/veccs” repository
has components for the needed infrastructure software such php and nginx,
and components to test these infrastructures such as testphp and testnginx.
That repository also uses the component “wernight/phantomjs”, which is a
testing framework.

15.6% of the studied multi-component applications specify com-
ponents which reuse the same Docker image. We observe that some im-
ages are reused by as little as one component and as much as 51 components in
the same multi-component application. With many applications having many
components that reuse the same Docker image; we observe that definitions
of such components have a large amount of duplication (as the definitions of
these components are often quite similar modulo some minor differences).

29 out of the 110 projects use the same Docker image for different compo-
nents. While these projects use the same images for different components, each
component has a different configuration such as storing a dataset in different
data volumes, or having different values for environment variables. We also ob-
serve cases where the unique difference between the components is the version
of the used image. For example, the “rstiller/inspector-metrics” project has 15
components that are identical for the compilation and tests, the unique differ-
ence is the version of the NodeJS that is used by each component. The last
example is the “vlam321/Inf191BloomFilter” project, which implements the
sharding pattern (i.e., having different database environments, each of which
stores a subset of the data). The project has the same component repeated,
where each component corresponds to a shard.

Over a quarter (26.8%) of the studied applications use Docker
Compose for single-component applications, even though the pri-
mary motivation behind Docker Compose is to compose multi-component
applications [10]. (65%) of these single component applications specify the

A Study of How Docker Compose is Used to Compose Multi-component Systems 9

mapping of the virtual storage in a component to an actual physical location
on the host machine. 35% of the single-component applications do not specify
any virtual storage. Based on a manual analysis of a representative random
sample (with a 95% confidence level and 5% confidence interval) of 284 single
component projects, we identified three reasons for using docker-compose with
just one component. (1) A project can provide docker-compose for other con-
tributors as a means to set up an environment and quickly execute a project,
rather than using docker-compose to connect different components. (2) One
can use docker-compose for quickly setting up a testing environment. (3) We
also observe that some projects use docker-compose to codify all the command
line parameters that one would have to consider when building an image us-
ing just a Dockerfile. For example, one has to execute a simple command like
“docker-compose up -d .” instead of “docker run -d -p 10086:10086 -v /var/run/-
docker.sock:/var/run/docker.sock tobegit3hub/seagull”. All those “docker run”
parameters are codified within the docker-compose file. Note that we were able
to identify the reasons for using docker-compose with one component for 58
projects, by leveraging these projects’ readme file and the commit messages
that changed the docker-compose file. For instance, commit messages are often
not explicit about the reason behind using docker-compose. For example, the
“smartystreets/smartystreets-php-sdk” project mentions as a commit message
“Added docker-compose.yml” when they started using docker-compose.

Multi-component applications leverage components that are built
from local Docker images as well as registry-hosted (mostly Docker-
Hub) images. Among the multi-component applications, 23% of them com-
pose only local images, 40.2% of them compose both local and registry-hosted
images, and the remaining 36.8% compose only registry-hosted images. Fi-
nally, 1.7% (134) of the multi-component applications are built dynamically.
Such applications receive their image name as a command line parameter.

DockerHub is the most used online registry for remote images.
95.2% of the identified registry-hosted images are hosted on DockerHub, while
the remaining 4.8% of the registry-hosted images are hosted on registries such
as Quay (124 images) or Google Container Registry (21 images). 53.5% of the
identified DockerHub images are official images, while the remaining (46.5%)
images are either community or private images on DockerHub. We had ex-
pected more prominent use of official images. Future research is needed to
investigate the rationale for applications not using official images as promi-
nently in an effort to improve such official images.

The most popular DockerHub images are related to infrastruc-
ture images. Most of the popular images are related to infrastructure com-
ponents such as databases (e.g., Postgres, Redis, Mongo, MySQL) and web
servers (e.g., Nginx), as shown in Figure 5. Several popular combinations of
images exist that are co-used in a considerable number of applications. For ex-
ample, the most popular combination of images is Postgres and Redis, which
accounts for 5.9% (99 applications) of the multi-component applications that
use more than one registry-hosted image (1,686 applications) as shown in Fig-
ure 6.

10 Md Hasan Ibrahim et al.

2.0%

2.7%

5.3%

5.4%

5.5%

7.7%

12.2%

15.9%

19.4%

24.1%

zookeeper

node

rabbitmq

elasticsearch

mariadb

nginx

mysql

mongo

redis

postgres

% of projects using online registry images

Fig. 5: The top 10 most used images by the percentage of projects.

5.9%

1.8%

1.2%

1.2%

1.1%

0.9%

0.7%

0.7%

0.6%

0.5%gradle
node

mongo
nginx

postgres
rabbitmq

nginx
postgres

mysql
nginx

mysql
postgres

kafka
zookeeper

mysql
redis

mongo
redis

postgres
redis

% of projects using online resgistry images

Fig. 6: Top 10 most popular image combinations used by the percentage of the
multi-component applications that use more than one image from an online
registry.

: Summary of RQ1

26.8% of the studied applications use Docker Compose to create single-
component applications. Multi-component applications are being com-
posed from local and registry hosted components with most of the
registry hosted components from DockerHub.

A Study of How Docker Compose is Used to Compose Multi-component Systems 11

Table 1: Categories of options in Docker Compose across all versions.

Category # of
Options Description Example

Accessibility 12 These options define different accessibil-
ity methods for components and devices.

external_links,
ports

Component
Management 2 These options manage components by

distributing and replicating them.
placement,
replicas

Components
Relation 1 This option helps applications reuse con-

figurations across components. extends

Data
Management 9 These options manage the volumes for

components.
volume_driver,
volume_from

Image
Config 7 These options define how a component

will be built. build, image

Logging 3 These options help applications log the
activities of components.

log_driver,
log_opt

Network
Config 17 These options are related to configuring

the network for components.
network_mode,
dns

Process Spec 14 These options specify how different tasks
will be carried out.

restart_policy,
priority

Resource
Management 25

These options are related to managing
computing resources such as CPU and
RAM.

cpu_quota,
mem_limit

Security 11 These options are related to the security
policy of a component.

isolation,
cap_drop

System
Config 5 These options set the environment of a

component.
environment,
platform

Utility 9 These options provide different utility
functions for running components.

healthcheck,
tty

RQ2. What are the most used Docker Compose options?

Motivation: The goal of this research question is to identify the commonly
used Docker Compose options and the ones that are not used. Follow up
research is needed to better understand the rationale for such usage patterns
and the impact of such patterns on the evolution of Docker Compose itself.

Approach: To identify the commonly used Docker Compose options, we first
collect the keywords for the existing Docker Compose options that are available
across the three major versions of Docker Compose [12, 14, 15]. Then, we
parse our dataset of Docker Compose files to determine the usage frequency
for these options. To better understand how these options are used, we also use
association rule mining to identify the co-occurrence of options [2]. Finally, we
classified Docker Compose options based on their goals to identify the common
reasons for using different options.

Results: Applications mostly use basic Docker Compose options,
while advanced options like the ones for security and logging are
rarely used. We categorized the 115 existing options into 12 categories as
shown in Table 1. The most used Docker Compose options are related to
building a component (Image Config options), accessing it (Accessibil-

12 Md Hasan Ibrahim et al.

0.9% (39)

1.7% (68)

2.1% (86)

3.1% (128)

4.3% (178)

15.5% (635)

44.6% (1831)

49.9% (2047)

67.9% (2787)

75.5% (3098)

87.5% (3589)

99.4% (4079)

Component Management

Logging

Components Relation

Resource Management

Security

Network Config

Process Spec

Utility

System Config

Data Management

Accessibility

Image Config

% of projects (# of projects)

(a) Percentage of projects using different categories of Docker Compose options.

Resource Management (25)

Network Config (17)

Process Spec (14)

Accessibility (12)

Security (11)

Data Management (9)

Utility (9)

System Config (5)

Image Config (7)

Logging (3)

Component Management (2)

Components Relation (1)

5 10 25 50 100
% of options used by the projects

(b) Distribution of proportion of used options across each option category. The number
inside parentheses in the y-axis indicates the number of options in that category.

Fig. 7: Usage of different option categories in Docker Compose files.

ity options), and managing its data (Data Management options). On the
other hand, sensitive options, such as security or logging options are rarely
used. The security and logging options are used by only 4.3% and 1.7% of the
studied projects respectively, as shown in Figure 7a. Even when applications
use a category of options, they use a small portion of its options as shown in
Figure 7b. For example, applications use a median of 9% of the Security
options and 11% of the Data Management options.

22.6% of the total options that were introduced in major versions
of the Docker Compose were never used in our studied projects.
22.4%, 24%, and 9% of the options of the first, second, and third docker-

A Study of How Docker Compose is Used to Compose Multi-component Systems 13

20.8%

23.0%

32.2%

33.6%

40.4%

62.3%

62.9%

73.8%

82.4%

83.3%

restart

context

depends_on

links

command

environment

build

volumes

image

ports

% of projects

Fig. 8: The top 10 most used options across the studied projects.

compose version are not used, respectively. The unused options are listed in
Table 2: 12 options are for resource management, 5 options are security re-
lated, 4 options are for network configuration, and 3 options are for process
specification. For example, no studied project uses the rollback_config
option, although it is important to specify the rollback action to be taken
when a component fails.

ports is the most used option (used by 83.3% of the studied projects).
ports exposes an internal port of an image so other images and external
resources can access it. The options image and build are within the top
4 most used options (as shown in Figure 8) since these options are the core
Docker Compose options – they are used to create and compose images.

73.8% of the applications manage their resources outside their components,
as shown in Figure 8. The volumes option helps export data outside a compo-
nent. Since components are stateless and the data is destroyed once a compo-
nent is destroyed, one must use the volumes option to make the application
data accessible on the host machine, and to enable the sharing of the data
with other components as well.

14 Md Hasan Ibrahim et al.

Table 2: Options in Docker Compose that are never used. Note that the clas-
sification of these options is based on our own analysis.

Category Options Supported
versions

Description

Data
Management

storage_opt 2 Sets the option for using a stor-
age driver in a component.

volume_driver 1, 2
Specifies the default volume
driver for all used volumes in a
component.

Network
Config

dns_opt 2 Lists the custom DNS options for
a component.

link_local_ips 2 Lists the link-local IPs for a net-
work used by a component.

mac_address 2 Sets the mac address that will be
used by a component.

Process Spec
oom_kill_disable 2

Boolean value to enable or dis-
able OOM (Out Of Memory)
killer for a component.

pids_limit 2 Sets the PID limits for a compo-
nent.

priority 2

Specifies the order in which com-
ponents will be connected to the
networks in case of multiple net-
work connections.

rollback_config 3 Specifies the procedure to roll-
back in case of an update failure.

Resource
Management

blkio_config 2 Sets the limits for block IO in a
component.

cpu_count 2

Sets the allocated number of
CPUs for a component to run
(option is only available for Win-
dows systems).

cpu_period 2
Sets the period for the CPU CFS
(Completely Fair Scheduler) used
by a component.

cpu_rt_period 2 Sets the CPU real-time period for
a component.

cpu_rt_runtime 2 Sets the real-time runtime for a
component.

device_read_bps 2
Sets the limit in bytes per second
for read operations on a given de-
vice.

device_read_iops 2
Sets the limit in operations per
second for read operations on a
given device.

device_write_bps 2
Sets the limit in bytes per second
for write operations on a given
device.

device_write_iops 2
Sets a limit in operations per
second for write operations on a
given device.

mem_swapiness 2
Specifies the total memory limit
including the swap memory of a
component.

weight 2
Sets the proportion of allocated
bandwidth of a component with
respect to other components.

weight_device 2
Sets the relative bandwidth allo-
cation of a device by a compo-
nent.

Security

isolation 2, 3 Specifies the isolation technology
of a component.

userns_mode 2, 3 Used to disable user namespace
in a component.

device_cgroup_rules 2 Used to add rules in the devices
that allow cgroup.

group_add 2 Adds groups of which the compo-
nent user should be a member.

credential_spec 3
Sets the credentials for the man-
aged components in a Windows
environment.

A Study of How Docker Compose is Used to Compose Multi-component Systems 15

1.0

0.2

0.5

0.5

0.4

0.2

0.1

0.2

0.0

0.2

0.6

1.0

0.5

0.7

0.4

0.3

0.5

0.3

0.0

0.2

0.7

0.2

1.0

0.5

0.4

0.2

0.4

0.2

0.0

0.2

0.6

0.3

0.5

1.0

0.4

0.2

0.4

0.2

0.0

0.2

0.7

0.3

0.6

0.6

1.0

0.3

0.3

0.2

0.0

0.2

0.6

0.4

0.6

0.6

0.5

1.0

0.5

0.2

0.0

0.3

0.2

0.3

0.5

0.6

0.4

0.3

1.0

0.3

0.0

0.2

0.5

0.3

0.6

0.6

0.5

0.2

0.5

1.0

0.0

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

1.0

0.0

0.8

0.2

0.5

0.6

0.5

0.3

0.3

0.2

0.0

1.0

image

command

ports

volumes

environment

depends_on

build

links

context

restart

im
ag

e

co
m

m
an

d
po

rts

vo
lum

es

en
vir

on
m

en
t

de
pe

nd
s_

on
bu

ild
lin

ks

co
nt

ex
t

re
sta

rt

0.00

0.25

0.50

0.75

1.00
Confidence

Fig. 9: Confidence metric values of co-occurrence of the top 10 most used
options appearing in the same component.

We do not observe a clear pattern of how options are used as
few options co-occur together. Although some options are used to config-
ure other options, we observe that such options do not co-occur (as shown in
Figure 9). For example, in just 20% image options configure their restart
option – even though one should ideally configure how to restart a component
in case of a failure. While 50% of the components that use the image option
use the ports option. That said either components are not exposing their
ports or their Docker images have already exposed a port through their Dock-
erfile – highlighting that a few options are configurable at the Dockerfile level
or the Docker Compose level leading to inconsistencies and making it impos-
sible to simply examine the Docker Compose file to gain a complete view of
how a multi-component application is connected.

: Summary of RQ2

22.6% of the available Docker Compose options are not used in any
studied application. Advanced options like the ones for security and
logging are rarely used.

RQ3. How do Docker Compose files evolve?

16 Md Hasan Ibrahim et al.

0

25

50

75

100

1 2 5 10 25 50 100

of commits

%
 o

f f
ile

s
C

D
F

(a) Number of commits

0

25

50

75

100

0 1 5 10 25 50 100

of revision per year

%
 o

f f
ile

s
C

D
F

(b) Number of revisions per year

Fig. 10: The frequency of change for Docker Compose files. The y-axes rep-
resents the cumulative percentage of Docker Compose files. For example, in
Figure 10a, 18.4% of the Docker Compose files have at least 10 commits.

Motivation: The goal of this research question is to examine the type of
changes that occur on Docker Compose files in order to better understand the
stability of such files and the complexity of their evolution.

Approach: To understand the evolution of Docker Compose files, we study
the change history of each of the studied Docker Compose files. We measure
the amount of changes that these files exhibited, as well as changes to their
usage of the different Docker Compose options. These options are obtained
using an approach that is similar to the one that was used in the previous
research question, but on each revision of the studied Docker Compose files.
Note that we do not consider merged commits to avoid double counting.

We extended our investigation of the reasons behind such changes by man-
ually investigating the commit messages and the changes for the top two most
frequently changed options. In this regard, we randomly selected a statistical
representative weighted sample of 370 commits that either added, removed, or
modified those two options (out of 10,143 commits with a 95% confidence level
and a 5% confidence interval). Our random sample consists of 197 changes to
the volume feature and 173 changes to the image feature.

Results: Docker Compose files are revised infrequently. The median
number of commits in a Docker Compose file is just three commits including
the initial commit. As shown in Figure 10a, around 30% of the projects never
changed their Docker Compose files after the initial commit. Moreover, Docker
Compose files were updated just once during the whole life-cycle of 1% of the
projects. Furthermore, the median number of revisions of a Docker Compose
file is only two revisions per year as shown in Figure 10b, which is similar
to the finding of Cito et al. [4] on the evolution of Dockerfiles. The number
of revisions of a Docker Compose file is moderately positively correlated with
the number of lines of code in that Docker Compose file (Spearman’s rank

A Study of How Docker Compose is Used to Compose Multi-component Systems 17

0

25

50

75

100

0 1 5 10 20 40 60

of lines of code

%
 o

f r
ev

is
io

ns
 C

D
F

Added Removed Total change

Fig. 11: Number of changed lines across the proportion of revisions. The y-axis
represents the cumulative proportion of revisions, while the x-axis represents
the number of affected lines of code. For example, 50% of the revisions have
changed at least five lines of code.

correlation coefficients rs = 0.49). Note that our finding is similar to prior
studies on the frequency of changing other builds artifacts [17].

Docker Compose files exhibit small changes. The median number
of added lines in a Docker Compose file per revision is just two, while the
median number of removed lines is just one per revision. Overall, the median
number of changed lines in a revision of a Docker Compose file is five as shown
in Figure 11. We do not observe any correlation between the size (number of
lines) of Docker Compose file and its number of changed lines on each commit
(Spearman’s rank correlation coefficients (rs) = -0.01) as shown in Figure 12.

10.2% of the projects moved from a single-component to multi-component
applications, 5.1% of the projects moved from a multi-component to single-
component application. Our initial investigations on 10 Docker Compose files
shows that applications removed components to cleanup their Docker Compose
files, particularly, we observe five cases where applications removed images that
were used for development purposes and which are no longer needed.

Most of the studied changes are related to image and data man-
agement options. 33.9% and 24.9% of the studied changes are related to
the basic configuration (Image Config and Data Management) as shown
in Figure 13a. Indeed, 27.6% and 24% of the changes modify the image and
volumes options respectively as shown in Figure 14a.

On the other hand, a median of 47.7% (considering all used options) of
the projects changed their used options. For example, 50.8% of the projects
changed their used networks option as shown in Figure 14b. Furthermore,
61.6% of the 86 projects that used Components Relation category options,

18 Md Hasan Ibrahim et al.

0

5

10

15

20

0 200 400 600
of LOC

of

 c
ha

ng
ed

 L
O

C

max median min

Fig. 12: Correlation between the number of lines of code and the number
changed lines of code.

Table 3: Options that never changed in any revision of the studied Docker
Compose files.

Category Option Supported
versions

Description

Network
Config

ipv6_address 2 Sets the IPV6 address of a net-
work used by a component.

enable_ipv6 2 Boolean value to enable or dis-
able IPV6 addresses.

Resource
Management cpu_quota 1, 2

Sets the number of allowed CPU
CFS (Completely Fair Sched-
uler).

Process Spec endpoint_mode 3 Sets the method for component
discovery.

order 3 Sets the order of operations dur-
ing an update or rollback.

changed those options. Similarly, 58.8% of the 68 projects that used logging
category options, changed those options as shown in Figure 13b.

Applications are made more stable by pinning the versions of
the used images. Most of the image related changes (85.7%) modify the
version of the used image, while just 14.3% of those changes switch from one
image to another one, as shown in Figure 15. 3.7% of these modifications
remove the image’s version, which is not a good practice [7]. In fact, version
pinning is a better practice which is recommended by Docker for specifying an
image in a Dockerfile [7], which is also applicable for writing Docker Compose
files since applications also need to specify an image to build a component.
Version pinning avoids any unintentional version upgrades of an image which
may break the application. For instance, we observe 11 cases in our manual

A Study of How Docker Compose is Used to Compose Multi-component Systems 19

33.9%

24.9%

21.8%

21.0%

16.2%

8.7%

3.6%

0.8%

0.8%

0.4%

0.4%

0.1%Component Management

Components Relation

Logging

Resource Management

Security

Network Config

Process Spec

Utility

System Config

Accessibility

Data Management

Image Config

% of revisions

(a) Percentage of revisions that change the different categories of Docker Compose options.

36.8%

17.9%

61.6%

43.3%

34.8%

58.8%

48.3%

37.5%

55.5%

52.8%

39.0%

46.0%

Component Management

Image Config

Accessibility

Process Spec

System Config

Data Management

Utility

Network Config

Security

Resource Management

Logging

Components Relation

% of relevant projects

(b) Percentage of projects that use a category of options and revise it.

Fig. 13: The frequency of the changes of different option categories based
on the analysis of 2,316 projects that revised at least one Docker Compose
option. Note that in Figure 13b, the relevant projects are the projects that
use a specific option category.

analysis where applications pined the exact version of their used images to fix
issues that were introduced due to an update of the image.

Interestingly, we observe 10 cases where applications tag a version of their
image similarly to tagging source code releases, which is a fundamental con-
tinuous integration principle where stable and reproducible infrastructure im-
ages are stored similarly to the source code [22]. For example, when the
’meenakommo64/squid’ project releases a new version such as ’3.3.8-
23’, it also releases a similar version for the infrastructure image such as

20 Md Hasan Ibrahim et al.

27.6%

24.0%

19.3%

14.5%

12.6%

7.0%

6.3%

6.2%

2.6%

2.5%env_file

networks

build

depends_on

links

command

ports

environment

volumes

image

% of revisions

(a) Most frequently revised options based on the percentage of revisions.

50.8%

49.7%

46.7%

43.8%

41.1%

38.4%

37.4%

34.7%

32.7%

24.6%build

ports

image

depends_on

environment

links

volumes

command

env_file

networks

% of relevant projects

(b) Most frequently revised options based on the percentage of relevant projects.

Fig. 14: Top 10 most frequently revised options in Docker Compose files based
on the analysis of 2,316 projects that revised at least one Docker Compose
option. Note that in Figure 14b, the relevant projects are the projects that
use a specific option.

’3.3.8-23’. The goal of this tagging is to associate an infrastructure ver-
sion to the release version so that applications can be easily re-built from a
previous release using the appropriate infrastructure and environment.

The volumes option is the second most frequently changed option
since it is changed in 60.6% of the studied revisions and by 24% of
the studied projects. Applications commonly modify the way that their
data is managed by modifying the volumes option. We observe three typical
changes related to the volumes option: (1) 51.9% of the changes modify the

A Study of How Docker Compose is Used to Compose Multi-component Systems 21

Version changed
72.1%

Image changed
14.3%

Version removed
3.7%

Version added
9.9%

Fig. 15: Types of modification done on images.

volumes configuration, (2) 32.3% of the changes add a volumes to their
components, and (3) 15.8% of the changes remove the volumes option. We
discuss below each of these types of changes.

Our manual study of the 197 changes to the volumes option shows dif-
ferent reasons for which applications modify that option. We observe that
applications modify the synchronization method of the mounted volumes, for
example, whether the change in the component data will immediately be syn-
chronized with the physical host or whether the data will be synchronized at
the time of destroying the component as shown in Figure 16a. Applications
also modify the values of volumes option to fix incorrect paths. Other modi-
fications are related to the refactoring of the data and the path (11 cases) such
as restructuring the files or variable substitution [9].

We also observe through our manual analysis three reasons for adding
a volume: (1) persisting data in the host machine, (2) sharing data between
components, and (3) improving the performance of an application. (1) Through
our manual analysis, we observe that applications (22 out of the 58 volume
addition cases that we were able to classify) add one or more entries to the
volumes option to keep data persistent between the host and the component,
as shown in Figure 16b. (2) They (8 out of the 58 volume addition cases) add
the same named volume to multiple components to share the data among
these components. (3) Finally, instead of uploading data from the host to the
component, applications (35 out of 58 volume addition cases) add a volume
that is directly accessible from components. That avoids uploading data into
the component at each start-up or restart of the component, which can be time
consuming for large datasets. For example, instead of cloning a project at each
start-up or restart of a component, developers stored the cloned project in a
volume that is shared with the container, as shown in Figure 16c. However, we
observe cases that just intend to share certain configuration files and security
files (e.g., Nginx SSL) with Docker containers when leveraging the volumes
feature. Such a practice might be risky when these shared files do not have

22 Md Hasan Ibrahim et al.

(a) volumes modified

(b) volumes added

(c) volumes added to share data from the host to the container

(d) volumes removed

Fig. 16: Examples of different types of changes to the volumes option.

A Study of How Docker Compose is Used to Compose Multi-component Systems 23

41.3%

30.3%

26.4%

24.8%

18.0%json

md

sh

yml

dockerfile

% of revisions changing more than one file

Fig. 17: Top five types of files that co-evolve the most with the Docker Compose
file.

the appropriate permissions as they can be accidentally modified or removed
from a running Docker component. We observe an interesting commit that
replaced a path in the volumes with several other paths since there is “no
way to exclude a directory, the only way to make this work is to share multiple,
smaller directories”2.

Finally, applications remove the volumes options in 15.8% of the changes
related to that option in order to remove unnecessary resources from their
components so that the components become more lightweight as shown in
Figure 16d. In addition, applications replace volumes option with tmpfs
option to use the data temporarily without writing it in the file-system.

Docker Compose files are coupled with other files that are often
used to configure the infrastructure of an application as well. In 70.4%
of the revisions to the Docker Compose file, the file is changed with a median of
two other files. While Dockerfile is the most co-evolving (41.3% of the 70.4%
of the changes) file with Docker Compose as shown in Figure 17. We also
observe that .yml files co-evolve in 30.3% of the revisions suggesting that ap-
plications also revise additional Docker Compose files other than their primary
Docker Compose files. Note that we just studied the docker-compose.yml
file which is the default file that is considered by Docker Compose when com-
posing an application.

Based on a manual analysis of a representative random sample (out of
7,592 commits with a 95% confidence level and a 5% confidence interval) of
366 co-evolution of a Dockerfile and a Docker-compose file, we observe differ-
ent patterns that are straightforward or project specific, making it hard to
predict when a Dockerfile would co-change with a Docker-compose
file and vice-versa. Among the straightforward co-changes is the addition
or removal of a component with its Dockerfile, changing the path location of

2 https://github.com/startnayit/warehouse/commit/116962abc6437c35056f3fb4c9c0a66fca6c2790

24 Md Hasan Ibrahim et al.

a Dockerfile and updating the Docker-compose with the new path, co-changes
where practitioners upgrade all of their dependencies including the depen-
dencies defined in the Dockerfile as well as the Docker-compose, and opening
a port in the Dockerfile and using it in the Docker-compose. We also ob-
serve project specific cases such as moving the declaration of certain resources
from the Dockerfile to the Docker-compose or vise-versa and overriding in the
Docker-compose an environment variable that is defined in the Dockerfile. In
fact, deciding which environment variable to override depends on the context
of the project.

: Summary of RQ3

Docker Compose files are quite stable with very few lines of code
changed when such files change. In addition, applications are made
more stable by pinning the used versions of the images that are used
by their components. Finally, applications adjust their volumes in
order to synchronize the data outside the components.

RQ4. How do applications use different versions of Docker Com-
pose?

Motivation: The goal of this research question is to identify how applications
upgrade/downgrade the version of their Docker Compose, and the challenges
that they face as they perform such activities, so the developers of Docker
Compose would have a better understanding of how applications are adopting
their versions.

Approach: There are currently three main versions of Docker Compose. Ver-
sion 1 was released on November, 2015, while version 2 was released on April,
2016 and version 3 was released on January, 2017. Docker Compose team has
announced that Version 1 will become deprecated in a future release. Each
version adds support for new options while removing rarely used options.

To better understand the versions of Docker Compose that applications use
and how often they upgrade/downgrade across these versions, we collected the
used Docker Compose version for each studied project by parsing the value of
the version option. For the first version of Docker Compose, no version
option existed hence files with no version option are considered as using
version 1.

We also studied the upgrade/downgrade of Docker Compose versions by
analyzing all code changes that modified the version option. We also man-
ually investigated all of the changes that downgraded the Docker Compose
Version (107 commits) to better understand the rationale behind such down-
grades.

Results: Most projects (∼ 90%) stick to their initial Docker Compose
version. 9.8% of the studied projects changed their used Docker Compose

A Study of How Docker Compose is Used to Compose Multi-component Systems 25

1.3%

0.7%

0.9%

1.6%

1.8%

1.9%

1.6%

25.9%

0.2%

0.6%

0.7%

3.6%

37.8%

21.5%

version 3.7

version 3.6

version 3.5

version 3.4

version 3.3

version 3.2

version 3.1

version 3.0

version 2.4

version 2.3

version 2.2

version 2.1

version 2.0

version 1.0

% of projects

Fig. 18: Exact versions of Docker Compose used by the percentage of projects.

version. Such a change to the version line is often associated with additional
changes. In particular, a median of 10 lines of code are changed when a Docker
Compose version is changed – double the number of changed lines of code in
a regular revision (as discussed in RQ2). Such additional changes might be
due to the major syntactical differences between the different versions, the
configuration of new options that are offered by the new version, or to deal
with the removal of options in the new version.

8.5% of the projects upgraded their Docker Compose version
while 2.4% of the projects downgraded their Docker Compose ver-
sion. Several (59.9%) of the upgrades/downgrades are between major versions,
although some upgrades/downgrade occur between sub-versions. Almost all
(99%) changes between major versions are between versions 2 and 3. We only
find three cases where the version change (upgrade/downgrade) was between
versions 1 and 2. Since the structure of Docker Compose has gone through
major changes between these two versions, moving between these two versions
might take a considerable amount of effort.

21.5% of the studied projects use Docker Compose version 1
which will be deprecated soon according to the documentation of
Docker Compose [13] (as of August, 2019). Docker Compose should con-
sider developing a migration support plan for these projects given the large
differences between version 1 and the versions 2 and 3. 35.6% of the projects
used the latest versions of Docker Compose file (version 3 and its sub-versions),
while 42.9% of the projects used version 2 of Docker Compose and its sub-
versions as shown in Figure 18. Although Docker Compose documentation

26 Md Hasan Ibrahim et al.

Downgraded
version

Not supported
in version 3

Fig. 19: An example of a Docker Compose version downgrade. This change
downgraded the Docker Compose version from version 3 to version 2.

recommends applications to specify the used minor version of Docker Com-
pose [11], 79.2% of the studied projects that use version 2 or 3 of Docker
Compose, do not specify the minor Docker Compose version.

Many unused options have been removed in the latest versions
of Docker Compose. 21 out of the 26 options that were never used in our
studied projects (as per RQ1) are no longer supported by the latest Docker
Compose version (i.e., version 3), 19 of these options were introduced in version
2 and are no longer supported in version 3 of Docker Compose. On the other
hand, 15 other currently-in-use options in version 2 have been removed from
version 3. These 15 options are used by a median of two projects (minimum
of one and a maximum of 206 projects per option).

Platform and option compatibility are the main drivers for down-
grading the Docker Compose version. We manually studied all of the
107 commits that downgraded the Docker Compose version. We read through
each commit message, examined the changed code and studied the official
documentation of Docker Compose versions to identify the rationale for such
downgrades. We identified two major reasons for downgrading the version: (1)
platform (e.g., AWS and Travis CI) compatibility, and (2) option compatibil-
ity.

A Study of How Docker Compose is Used to Compose Multi-component Systems 27

Cloud platforms, like AWS, on which applications are deployed might not
support the latest version of Docker Compose, forcing a version downgrade
(e.g., from Docker-Compose 3.6 to 2.4 for AWS incompatibility). Also, ap-
plications downgraded their Docker Compose version to be compatible with
Travis CI (e.g., from version 3 to 2). Finally, applications downgrade to an
older version (version 2) to use options that were removed in a later version
(version 3) of Docker Compose as shown in Figure 19.

: Summary of RQ4

Many applications are using the oldest version of Docker Compose
(even though such version will be deprecated in a near future release).
Migrating from one version to another is not straightforward due to
compatibility issues with the host (e.g., AWS) or due to the removal of
options in new releases of Docker Compose.

5 Implications

We observe through our study that applications use Docker Compose in much
more basic ways than envisioned. In fact, applications use Docker Compose
without composing multiple images (RQ1), and they use (RQ2) and change
(RQ3) just the basic options of Docker Compose, and they hardly upgrade
their versions (RQ4). Even when they do so, applications face compatibil-
ity issues. Therefore, to improve Docker Compose and help applications fully
benefit from its options, we recommend the following suggestions:

We recommend Docker to consider how developers use Docker-
compose to better design new versions of Docker-compose. While the
primary goal of Docker-compose is to compose multi-component applications,
26.8% of the applications that use it are just single-component applications.
Among these single-component applications, Docker-compose is just to sim-
plify the Docker command line, which suggests that Docker should investigate
how to simplify the usage of Docker. We also observe that multi-component
applications use images from DockerHub, while the DockerHub images are
different from each other even for the same software system according to [23],
which suggests that Docker-compose should recommend appropriate images
when composing a multi-component application.

We also observe that there is a need for better mechanisms to manage
volumes. For instance, there is a need for a mechanism to exclude paths from
the volumes that are shared between a host and components. Additionally,
we observe that a volumes are not used solely to synchronize data between a
component and its host (e.g., storing a database in a host outside a component
so data is kept after restarting or removing a component), but also to share
data in one-way fashion from the host to the component. Such practice might
be risky as a component might accidentally modify or even remove data from

28 Md Hasan Ibrahim et al.

the host; so Docker should consider a clear separation between the two main
usages of the volumes feature. While Dockerfile has the COPY feature, no
similar feature exists for Docker-compose.

We recommend Docker to consider how projects use Docker-
compose, so Docker can add needed options. Developers commonly have
many components that use the same Docker image; leading to many definitions
of components with a large amount of duplication (as these components are
often quite similar modulo some minor differences). Instead Docker Compose
should consider adding the option to create component templates to reduce
duplication. Surprisingly, versions 1 and 2 of Docker Compose had an ex-
tends option which helped with the reuse of the configuration of components
(similar to inheritance in object oriented programming). However, that option
is no longer supported in version 3 of Docker Compose.

We recommend Docker to investigate unused options. 22.6% of
the studied options were never used in our studied applications. We observe
that developers focus primarily on the basic options of Docker Compose, while
other advanced options are not used much. These options might be important
since they can have an impact on the security and the quality of an application.
Therefore, we suggest Docker-compose to investigate the need for these options
and whether they should be removed.

We recommend Docker to consider how its options are used by
practitioners before removing them. We observe that a typical upgrade/-
downgrade of Docker Compose versions takes twice the effort of a regular
revision since Docker Compose removes a large number of options from one
version to another. For example, Docker Compose removed 36 options in the
version 3. However, 15 currently-in-use options, by a median of 2 and up to
206 projects, are removed from version 3.

We recommend Docker to propose options to use in earlier stages
to prevent errors. We observe that developers change volumes to improve
the performance of their applications, while such performance degradation
could be prevented earlier. Similarly, we observe 11 cases in which developers
pin an image version after an incompatibility issue.

We recommend Docker to consider incompatibility issues when
releasing a new version of Docker-compose. We observe cases where
developers downgraded their Docker-compose version due to incompatibility
issues with a Cloud platform or a CI pipeline, such as AWS and Travis CI.

6 Threats to Validity

6.1 External Validity

Our external threat to validity concerns the generalization of our results. We
cannot generalize our results to multi-component applications that configure
the Docker Compose using other files than docker-compose.yml and other

A Study of How Docker Compose is Used to Compose Multi-component Systems 29

projects. However, our analysis considers a large number (4,103) of open source
Github projects.

6.2 Internal Validity

Our first internal threat to validity concerns the maturity of the projects that
we studied. In fact, some projects might be just personal projects (e.g., in
which one learns how to use Docker Compose). To mitigate this risk, we se-
lected projects that have at least 100 commits.

A second internal threat to validity concerns the analysis of the right
Docker Compose file, which is used by a studied project. A project might
define multiple Docker Compose files and studying the not used file might
lead to incorrect conclusions. To mitigate this risk, we focus on projects that
use just one docker-compose.yml file.

A third internal threat to validity concerns the threshold of 10 components
that we consider for large multi-component systems, which we qualitatively
studied. While our threshold leads to a large number of 110 manually studied
large multi-component systems, we encourage future studies to investigate a
different threshold.

7 Conclusion

In this paper, we conduct an empirical study to better understand the use
of Docker Compose. We observe that applications do not fully benefit from
the available options nor versions of Docker Compose. Indeed, 26.8% of the
projects build their applications from a single image, while the primary goal of
Docker Compose is to compose a multi-component application. In addition, we
observe that applications use and maintain just the basic options of Docker
Compose, while more advanced options are almost ignored by applications.
Finally, we observe that few projects upgrade their version of Docker Compose.
Future studies are needed to better understand how to improve the uptake of
the more advanced aspects and versions of Docker Compose, if they are needed
at all.

References

1. 451research. 451 research. https://451research.com, 5 2019. [Online;
last accessed: 23 May, 2019].

2. R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In Sigmod Record, pages 207–216, June
1993.

3. Brown. Referencing docker images. https://windsock.io/
referencing-docker-images, 4 2015. [Online; last accessed: 26 August,
2019].

https://451research.com
https://windsock.io/referencing-docker-images
https://windsock.io/referencing-docker-images

30 Md Hasan Ibrahim et al.

4. J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall. An empirical analysis of the docker container ecosystem on github.
In 14th International Conference on Mining Software Repositories, pages
323–333, May 2017.

5. Datadog. Datadog. https://www.datadoghq.com, 5 2019. [Online; last
accessed: 23 May, 2019].

6. Datadog. Docker adoption. https://www.datadoghq.com/
docker-adoption, 5 2019. [Online; last accessed: 23 May, 2019].

7. Docker. Best practices for writing dockerfiles. https://docs.docker.
com/develop/develop-images/dockerfile_best-practices, 2 2017.
[Online; last accessed: 22 August, 2019].

8. Docker. Docker. https://www.docker.com, 5 2019. [Online; last accessed:
23 May, 2019].

9. DockerCompose. Environment variables in compose. https://docs.
docker.com/compose/environment-variables, 2 2017. [Online; last ac-
cessed: 27 August, 2019].

10. DockerCompose. Overview of docker compose. https://docs.docker.
com/compose, 2 2017. [Online; last accessed: 23 August, 2019].

11. DockerCompose. Compose file versions and upgrading. https:
//docs.docker.com/compose/compose-file/compose-versioning, 10
2018. [Online; last accessed: 23 August, 2019].

12. DockerCompose. Docker compose version 1. https://docs.docker.com/
v17.09/compose/compose-file/compose-file-v1, 6 2019. [Online; last
accessed: 16 July, 2019].

13. DockerCompose. Docker compose version 1. https://docs.docker.com/
v17.09/compose/compose-file/compose-versioning/#version-1, 6
2019. [Online; last accessed: 16 July, 2019].

14. DockerCompose. Docker compose version 2. https://docs.docker.
com/compose/compose-file/compose-file-v2, 6 2019. [Online; last ac-
cessed: 16 July, 2019].

15. DockerCompose. Docker compose version 3. https://docs.docker.com/
v17.09/compose/compose-file/compose-versioning, 6 2019. [Online;
last accessed: 16 July, 2019].

16. DockerHub. Build and ship any application anywhere. https://hub.
docker.com, 5 2019. [Online; last accessed: 23 May, 2019].

17. K. Gallaba and S. McIntosh. Use and misuse of continuous integration
features: An empirical study of projects that (mis)use travis ci. In IEEE
Transactions on Software Engineering, pages 1–1, 2018.

18. Google. Google big query. https://console.cloud.google.com/
bigquery?p=bigquery-public-data, 8 2019. [Online; last accessed: 23
August, 2019].

19. G. Gousios. The ghtorrent dataset and tool suite. In 10th Working Con-
ference on Mining Software Repositories, pages 233–236, 2013.

20. J. Henkel, C. Bird, S. K. Lahiri, and T. Reps. Learning from, understand-
ing, and supporting devops artifacts for docker. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE), pages 38–49.

https://www.datadoghq.com
https://www.datadoghq.com/docker-adoption
https://www.datadoghq.com/docker-adoption
https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://www.docker.com
https://docs.docker.com/compose/environment-variables
https://docs.docker.com/compose/environment-variables
https://docs.docker.com/compose
https://docs.docker.com/compose
https://docs.docker.com/compose/compose-file/compose-versioning
https://docs.docker.com/compose/compose-file/compose-versioning
https://docs.docker.com/v17.09/compose/compose-file/compose-file-v1
https://docs.docker.com/v17.09/compose/compose-file/compose-file-v1
https://docs.docker.com/v17.09/compose/compose-file/compose-versioning/#version-1
https://docs.docker.com/v17.09/compose/compose-file/compose-versioning/#version-1
https://docs.docker.com/compose/compose-file/compose-file-v2
https://docs.docker.com/compose/compose-file/compose-file-v2
https://docs.docker.com/v17.09/compose/compose-file/compose-versioning
https://docs.docker.com/v17.09/compose/compose-file/compose-versioning
https://hub.docker.com
https://hub.docker.com
https://console.cloud.google.com/bigquery?p=bigquery-public-data
https://console.cloud.google.com/bigquery?p=bigquery-public-data

A Study of How Docker Compose is Used to Compose Multi-component Systems 31

IEEE, 2020.
21. E. Horton and C. Parnin. Dockerizeme: Automatic inference of environ-

ment dependencies for python code snippets. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pages 328–338,
2019.

22. J. Humble and D. Farley. Continuous delivery: Reliable software releases
through build. In Test, and Deployment Automation, pages 2013–01, 2010.

23. N. Muhtaroglu, B. Kolcu, and İ. Arı. Testing performance of application
containers in the cloud with hpc loads. In 5th International Conference
On Parallel, Distributed, Grid And Cloud Computing For Engineering.
Civil-Comp, 2017.

24. Serverwatch. Container revenue growing to 2.7b by 2020. https://www.
serverwatch.com/server-news/container-revenue-growing-to-2.
7b-by-2020.html, 5 2019. [Online; last accessed: 23 May, 2019].

25. R. Shu, X. Gu, and W. Enck. A study of security vulnerabilities on dock-
erhub. In 7th ACM on Conference on Data and Application Security and
Privacy, pages 269–280, 2017.

26. B. Tak, H. Kim, S. Suneja, C. Isci, and P. Kudva. Security analysis of
container images using cloud analytics framework. In Web Services, pages
116–133, 2018.

27. A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona. On the
relation between outdated docker containers, severity vulnerabilities, and
bugs. In 26th International Conference on Software Analysis, Evolution
and Reengineering, pages 491–501, Feb 2019.

28. Y. Zhang, H. Wang, and V. Filkov. A clustering-based approach for min-
ing dockerfile evolutionary trajectories. In Science China Information Sci-
ences, volume 62, pages 19101:1–19101:3, 2019.

29. Y. Zhang, G. Yin, T. Wang, Y. Yu, and H. Wang. An insight into the
impact of dockerfile evolutionary trajectories on quality and latency. In
42nd Annual Computer Software and Applications Conference, volume 01,
pages 138–143, July 2018.

https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html
https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html
https://www.serverwatch.com/server-news/container-revenue-growing-to-2.7b-by-2020.html

	Introduction
	Background and Related Work
	Data Collection
	Results
	Implications
	Threats to Validity
	Conclusion

