Noname manuscript No.
(will be inserted by the editor)

Identifying gameplay videos that exhibit bugs in computer
games

Dayi Lin - Cor-Paul Bezemer -
Ahmed E. Hassan

Received: date / Accepted: date

With the rapid growing market and competition in the gaming industry, it is chal-
lenging to develop a successful game, making the quality of games very important.
To improve the quality of games, developers commonly use gamer-submitted bug re-
ports to locate bugs in games. Recently, gameplay videos have become popular in the
gaming community. A few of these videos showcase a bug, offering developers a new
opportunity to collect context-rich bug information.

In this paper, we investigate whether videos that showcase a bug can automati-
cally be identified from the metadata of gameplay videos that are readily available
online. Such bug videos could then be used as a supplemental source of bug informa-
tion for game developers. We studied the number of gameplay videos on the Steam
platform, one of the most popular digital game distribution platforms, and the dif-
ficulty of identifying bug videos from these gameplay videos. We show that naive
approaches such as using keywords to search for bug videos are time-consuming and
imprecise. We propose an approach which uses a random forest classifier to rank
gameplay videos based on their likelihood of being a bug video. Our proposed ap-
proach achieves a precision that is 43% higher than that of the naive keyword search-
ing approach on a manually labelled dataset of 96 videos. In addition, by evaluating
1,400 videos that are identified by our approach as bug videos, we calculated that
our approach has both a mean average precision at 10 and a mean average precision
at 100 of 0.91. Our study demonstrates that it is feasible to automatically identify
gameplay videos that showcase a bug.

Keywords gameplay videos - bug report - computer games - Steam

Dayi Lin - Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)
Queen’s University, Kingston, ON, Canada
E-mail: {dayi.lin, ahmed} @cs.queensu.ca

Cor-Paul Bezemer

Department of Electrical and Computer Engineering
University of Alberta, Edmonton, AB, Canada
E-mail: bezemer@ualberta.ca

2 Dayi Lin et al.

1 Introduction

The gaming industry is a rapidly growing industry with a predicted market of over
90 billion U.S. dollars by 2020 [34]]. In this competitive market, creating a successful
game is an expensive and daunting task. It is necessary to invest a tremendous amount
of effort to deliver high quality games, resulting in a crunch culture which pressures
game developers into working long hours [33}137].

Despite the large efforts that are spent on the development process of a game, it
is not possible to discover or fix all bugs in a game before releasing it to the mar-
ket. Our prior work shows that 80% of the Steam games release urgent updates to fix
issues such as feature malfunctions or game crashes [23]. A common practice to en-
sure the user-perceived quality of a game is to allow gamers to submit bug reports that
describe any encountered bugs during gameplay. Many studios employ discussion fo-
rums or specific features in their games for gamers to report bugs (e.g., Blizzard [38]],
EVE Online [4], League of Legends [335]]). The discussion forums and in-game bug
reporting features usually require gamers to provide a title for the bug, a detailed
description of the bug, and the necessary steps to reproduce the bug. Unfortunately,
to learn about bugs from bug reports, game developers are dependent on gamers to
submit such reports.

One possibility to learn more about the problems that gamers encounter is by
studying gameplay videos [22]]. In recent years, gameplay videos have become popu-
lar in the gaming community. Two of the top five YouTube channels with the highest
number of worldwide subscribers are related to gaming [8]]. The Steam platform, one
of the most popular online distribution platforms for games [26], also allows gamers
to share a link to and discuss their YouTube gameplay videos on the Steam Commu-
nity website [43]]. Gamers share gameplay videos that cover several topics including
game tutorials, game play-throughs (i.e., a video of playing a game from start to fin-
ish), and game bugs. These bug videos open up a new opportunity for developers to
collect information about bugs. Several studios have realized the value of bug videos,
and encourage gamers to submit relevant screenshots or videos along with their bug
report [4, 35, 138]], especially for bugs in the game’s graphics (“should probably al-
ways have a screenshot” [38]]) and general functionality bugs (which “may only be
visible in movies” [38]]).

In this paper, we conduct an in-depth study of gameplay videos that are posted by
gamers. In addition, we study how bug videos can be identified automatically. We first
conducted a preliminary study of 1,785,366 gameplay videos on the Steam platform,
to understand the number of gameplay videos and the difficulty of distinguishing bug
videos from other gameplay videos. We found that 21.4% of the games on the Steam
platform receive more than 50 game videos, and up to a median of 13 hours of video
runtime per day, and that a naive keyword searching approach for identifying videos
that showcase a game bug only achieves a precision of 56.25%. To help developers
better leverage such bug videos, this paper proposes an approach that uses a ran-
dom forest classifier to further rank the videos with their likelihood of showcasing
a game bug, using features that are extracted from the metadata of videos (such as
their length). Our evaluation shows that our proposed approach achieves a precision
of 0.80, which is 43% higher than that of the naive keyword searching approach, on

Identifying gameplay videos that exhibit bugs in computer games 3

a manually labelled dataset of 96 videos. In addition, by evaluating 1,400 videos that
are identified by our approach as bug videos, we calculated that our proposed ap-
proach has both a mean average precision at 10 and a mean average precision at 100
of 0.91. Our study makes the following contributions:

— The first approach that showcases how to automatically identify bug videos with
high precision.

— An analysis of the characteristics of videos that showcase a game bug.

— A labelled dataset and the metadata of 1,496 bug videos [25] to enable further
studies in this important research direction.

Paper Organization. The rest of this paper is organized as follows. Section
provides a brief description of the Steam platform and YouTube Gaming channels.
Section [3] presents our methodology. Section[d] presents the results of our preliminary
study. Section [5] describes our proposed approach to determine the likelihood of a
gameplay video showcasing a game bug. Section [6] discusses our results and gives
directions for future work. Section [7] discusses related work. Section [§] discusses the
threats to validity of our study. Finally, Section 0] concludes the paper.

2 Background

In this section, we briefly describe YouTube and YouTube Gaming, and the Steam
platform.

2.1 YouTube and YouTube Gaming

YouTube is one of Google’s subsidiaries, and serves as the largest video-sharing web-
site and the second-most popular website in the world [1]. YouTube allows users
to view, upload, comment, rate, and share videos on various topics, such as video
blogging, music videos, educational videos, and gameplay videos. When uploading a
video to YouTube, the user will provide the title, description, keywords, and category
of the video. YouTube provides a pre-defined set of categories for users to choose
from, such as “Sports”, “Education”, and “Gaming”. If a user selects “Gaming” as
the category of the video, YouTube would ask the user to enter the title of the game
that is associated with the video.

Videos on YouTube are aggregated into channels. Each user has their own YouTube
channel, which contains the videos that they uploaded. In addition, YouTube automat-
ically aggregates videos into system-generated channels, such as YouTube Gaming
channels [46]. YouTube Gaminﬂis a site under YouTube that is dedicated to gaming
videos and channels. When a user uploads a video under the “Gaming” category, and
provides the title of the associated game, YouTube automatically adds the video into
the YouTube-generated gaming channel for that game, and labels the viewing page
of the video with the title of the game, with a link to the YouTube Gaming channel of
the game. However, unlike user-owned channels, the system-generated channels for
specific games do not provide an exhaustive list of all the videos under the channels.

! https://gaming.youtube.com/

https://gaming.youtube.com/

4 Dayi Lin et al.

Table 1: Gameplay video dataset description

of studied Steam games 16,252
of unique video posts in the Steam Community 1,785,366
of Steam videos that are available on YouTube 1,636,689

of non-Steam games for verification 4
of YouTube videos for non-Steam games 20,754

2.2 The Steam Platform

Steam is a PC game distribution platform that is developed by Valve Corporation, and
is considered as one of the largest digital distribution platforms for PC games [26],
with more than 23,000 games available [44]. The Steam platform has two major com-
ponents: the Steam Store [44]], and the Steam Community [43]], which provide digital
rights management (DRM) and social networking services respectively.

The Steam Store allows a gamer to purchase games or activate games that are
purchased through third-party vendors. Such games are stored in the gamer’s Steam
library, and can be launched through the Steam client.

In addition, the Steam Community provides gamers with social network-like fea-
tures, including friends lists, game reviews, discussion forums, and markets for in-
game items. The Steam Community also allows gamers to share audiovisual content,
such as screenshots and videos, under each game’s community page. It is worth not-
ing that the Steam platform does not provide a video storage service. To post a video
for a game on the Steam Community, a gamer needs to upload the video to YouTube
first, then authorize the Steam platform to access the gamer’s YouTube account for
the list of potential videos for posting. The gamer can then select videos that they
wish to share, and associate the videos with games. The videos are then posted on the
gamer’s profile page on Steam. Gamers are allowed to edit the title and the descrip-
tion of a video post, which are filled by default with the video’s YouTube title and
description.

3 Methodology

In this section, we describe our methodology. First, we describe how we extracted
and processed our data. In general, we collected metadata of videos for games on the
Steam platform (i.e., Steam games) and for games that are not on the Steam platform
(i.e., non-Steam games). Table [T] presents the description of our collected dataset.
Figure |1| gives an overview of our data collection process. Second, we describe the
statistical and classification techniques that we use throughout our study.

Identifying gameplay videos that exhibit bugs in computer games 5

()
Collecting videos for Steam games
—
—
Steam Store » Game list Video posts | ——
_T— _T—
—
—
Steam a| Collecting video Extracting Preliminary
Community g posts YouTube links study
(Section 4)
Y
YouTube links
for Steam
games
/
- J
(- o N | . -
Collecting videos Collecting video metadata o
ode
for non-Steam construction
games (Section 5.1)
—
Metadata for
videos of 1
YouTube JV Steam games
| Collecting video
I "| metadata
YouTube links * Metadata for Evaluation
for non-Steam videos of non- —p (Section 5.2)
games Steam games
- J J

Fig. 1: Overview of the data collection process for our study of gameplay videos

3.1 Collecting videos for Steam games

To collect videos for Steam games, we first collected a list of all Steam games from
the Steam Store. We took a snapshot of all the 16,252 games that were available in
the Steam Store on August 1st, 2017, using a customized crawler (i.e., a tool that
automatically collects the required data).

We then developed a customized crawler that collects video posts for each Steam
game in the Steam Community. For each Steam game in the collected game list, the
crawler visited its Steam Community page, and collected all the video posts on the
Steam Community for that game. Specifically, the crawler collected the following
information for each video post: title, description, and the YouTube link of the video.
The crawler also recorded the specific Steam game to which a video post belongs.
Table 2] gives an example of a video post.

In total, we collected 1,989,140 video posts on the Steam Community for all the
games. We noticed that there were some video posts with the same YouTube links

6 Dayi Lin et al.

Table 2: An example of a video post

Title Fallout New Vegas Hardest punch
Description I hit him so hard he broke
YouTube link https://youtu.be/-TiTf5G4wpg

Associated Steam game Fallout: New Vegas'

'https://store.steampowered.com/app/22380/

(i.e., different video posts for the same video). We observed that the video posts with
duplicated YouTube links are posted by the same Steam accounts under the same
game, potentially by mistake. We removed such duplicate video posts. We collected
a total of 1,785,366 unique YouTube links for videos of Steam games.

3.2 Collecting videos for non-Steam games

To evaluate the generalizability of our results, we used a customized crawler to collect
the YouTube videos for games that were not released on the Steam platform. This
crawler is available in the supplementary material of our paper [25]. We focused on
games that were published by Electronic Arts (EA), as many recent AAA gamesE]
from EA were exclusively released on EA’s own online distribution platform for PC
games, the Origin platform [9] (and hence not on Steam). We selected 4 EA Origin
exclusive games that have a large number of gameplay videos on YouTube, i.e., FIFA
16, FIFA 17, NHL 16, and NHL 17. As the YouTube Gaming channels do not provide
a comprehensive list of all videos under a game’s channel, the crawler first used the
search function provided by YouTube to search for videos with keywords being the
title of the game, then it visited the page of each video in the search result to confirm
whether the video is associated with the target game. In total, we collected 20,754
videos for the 4 studied games that are not on the Steam platform.

3.3 Collecting video metadata

For each YouTube video collected in Section and Section [3.2] we used a cus-
tomized crawler to collect the video’s metadata on YouTube. In particular, we col-
lected the title, category, description, tags, and length (in seconds) for each video.
We noticed that 148,677 YouTube links from the Steam Community were not
accessible on YouTube at the time of crawling, due to the following reasons:

The uploader deleted the video

The video violated copyright from a third party company
The video is being processed (e.g., transcoded)

The video is private

The video violated YouTube’s Terms of Service

2 Games with the highest budgets for development and promotion.

https://youtu.be/-TiTf5G4wpg
https://store.steampowered.com/app/22380/

Identifying gameplay videos that exhibit bugs in computer games 7

— The video is not available in the country from which our crawler ran (i.e., Canada)
— The YouTube account that is associated with the video has been terminated

In total, we collected the metadata for 1,657,443 YouTube videos (1,636,689 for
Steam games and 20,754 for non-Steam games), which were uploaded by 323,325
Steam accounts. For the videos of the Steam games, we linked each video’s metadata
from YouTube to the specific video post on the Steam Community.

To the best of our knowledge, there is no explicit rule in Steam’s Terms of Ser-
vice and Copyright that forbids the crawling of publicly available pages on the Steam
Store/Steam Community. We also did not crawl any sub-urls that are explicitly dis-
allowed by Steam’s robots.txt. All information from YouTube was collected through
their API, following their regulations about data collection.

3.4 Used classification techniques

In our study, we use a classifier to determine the likelihood that a game video show-
cases a bug in a game. In Section 4] we use a keyword search ‘classifier’ as a naive
approach for identifying bug videos. In Section [5] we compare the performance of
the logistic regression, neural network and random forest classifiers for identifying
bug videos. We explain the concept of the classifiers that we used below.

— Keyword search: A naive classifier that searches for the occurrence of certain
keywords in the video metadata.

— Logistic regression: A logistic regression classifier captures the relation between
one or more independent variables (i.e., the metadata) and one dependent variable
(i.e., bug video or non-bug video) using a polynomial expression and a sigmoid
function.

— Neural network: A neural network classifier mimics the brain at a small scale. A
neural network consists of an input and output layer with multiple hidden layers
in between. The hidden layers contain neurons, which are connected to each other
through weighted connections. During the supervised training of the network, the
weights on the connections are optimized for the classification task for which
the network is trained. A neural network decides on the value of the dependent
variable by following the connections between the input and output layers based
on the input data and the connection weights.

— Random forest [16]: A random forest consists of multiple decision trees that are
based on randomly-selected subsets of the training data and features. A decision
tree traverses a tree structure from the root to a leaf to make a decision based on
the input data and the conditions in the tree. Each leaf node in a decision tree
corresponds to a value of the dependent variable. A random forest decides on the
value of the dependent variable by taking a majority vote across the decision trees
in the forest.

8 Dayi Lin et al.

3.5 Used statistical techniques

In our study we use the Wilcoxon rank sum test to compare distributions of val-
ues. The Wilcoxon rank sum test is an unpaired, non-parametric statistical test of
which the null hypothesis is that two input distributions are identical. We use a non-
parametric test as it does not require the input distributions to be normally distributed.
We use a threshold of 0.05 for the Wilcoxon rank sum test’s p-value to decide whether
the null hypothesis is rejected. If the p-value of the test is smaller than 0.05, the null
hypothesis is rejected and we conclude that the distributions are significantly differ-
ent.

While the Wilcoxon rank sum test indicates whether two distributions are sig-
nificantly different, it does not quantify the magnitude of the difference. To further
quantify the magnitude of the difference of the two distributions, we computed Cliff’s
delta d [28] effect size. We used the following threshold for interpreting d, as pro-
posed by Romano et al. [36]]:

negligible(N), if |d| <0.147.

. small(S), if 0.147 < |d] < 0.33.
Effect size = .
medium(M), if 0.33 < |d| < 0.474.
large(L), if 0.474 < |d| < 1.

For example, a Cliff’s delta of 0.1 indicates that while the difference between two
distributions may be significant, it has a negligible magnitude (and may not be that
relevant in practice). In contrast, a Cliff’s delta of 0.5 indicates that the magnitude of
the difference is large.

4 Preliminary Study of Gameplay Videos on the Steam Platform

As there exists no prior research on mining gameplay videos from the Steam plat-
form, in this preliminary study, we aim at providing an overview of such videos. In
addition, as shown in prior work [22]], gameplay videos contain valuable information
for game developers, such as game bugs. In our preliminary study, we examined the
effort that is needed for developers to identify gameplay videos that showcase a game
bug (i.e., bug videos) on the Steam platform.

Approach: We examined the effort that is required from developers to identify
bug videos using two naive approaches:

1. Watch all videos of a game. To identify bug videos from the pool of all posted
videos of a game on the Steam platform, the most accurate way is to manually
watch all the videos of a game. As the bug may show up at the end of the video, it
is necessary to watch the whole video to locate the bug. Hence, we calculated the
number of videos and the accumulated video length for each game, to understand
the effort that would be needed by developers to watch all the videos of their
games.

Identifying gameplay videos that exhibit bugs in computer games 9

Table 3: Confusion matrix for identifying bug videos

Predicted

Bug videos Not bug videos

True Positive (TP) False Negative (FN)
False Positive (FP) True Negative (TN)

Bug videos

Actual Not bug videos

2. Search for keywords. Another naive approach to identify bug videos is to search
for the occurrence of certain keywords in the video metadata (e.g., in the title,
description, and tags). Hence, we applied a naive keyword searching approach to
game videos to evaluate its performance, and to understand if such an approach
would be effective for developers.

We consider the problem of identifying bug videos as a binary classification prob-
lem, i.e., we classify all the videos of a game into two classes: bug videos (True), or
not bug videos (False). Hence, we have the confusion matrix as shown in Table E}

The precision of an approach to identify bug videos can be calculated as 7 PTfF 5
We use precision instead of recall to evaluate the performance of an approach be-
cause we consider bug videos as a supplemental source of bug reports (in addition to
textual issue reports). Therefore, we prefer missing actual bug videos over wrongly
identifying videos as bug videos, so that developers would not waste time watching
non-bug videos.

There are five text fields in the metadata we collected for videos that are used for
the keyword search: the Steam video post title and description, and the YouTube title,
description, and tags. Note that the Steam and YouTube title and description are not
always the same.

To find suitable keywords to search for bug videos, we used the following process:

1. Removing stop words. Stop words (e.g., “the”) have a high occurrence in the
studied text and are irrelevant to the study. We removed the stop words from
the text fields in the metadata using the stop word list provided by the Natural
Language Toolkit (NLTK) [32]. The NLTK provides a collection of tools that can
be used to preprocess natural language data.

2. Stemming. To avoid different forms of the same word (e.g., “argue”, “argued”,
“argues”, “arguing”’) being recognized as different words, we stemmed (e.g., “argu’)
all the words in the text fields in the metadata using NLTK. As the stop word list
from NLTK is not stemmed, we apply stemming after removing the stop words.

3. Removing uncommon words. Words occurring in a very small number of videos
may be game-specific and hence not helpful for identifying bug videos across all
games. For each remaining word, we counted the number of videos that contain
the word in their metadata. Then we kept the words that occur in more than 1,636
videos (0.1% of the number of collected videos that are available on YouTube).

4. Selecting bug-related keywords. We manually checked each of the words and
selected a list of keywords that are related to bugs in games. Table (4| shows the
keywords that we selected (lower case, singular form).

10 Dayi Lin et al.

Table 4: Selected keywords for matching

Groups Keywords (# of videos) Description

Bug bug (32,166), glitch (28,025) Directly related to bugs

Hack hack (28,459), hacker (8,405), Hackers / cheaters in a game make
cheat (21,639), cheater (6,336) use of game bugs

10° 10t 10 10° 10* 10°

of videos for each game

Fig. 2: The distribution of the number of videos of each game. The vertical line shows
the median value of the distribution.

When selecting the keywords, we noticed an interesting keyword “wtf”, which
occurs in 16,649 videos’ metadata. “Wtf” is a unique label for gameplay videos that
record surprising moments in the gameplay, either an unexpected event or an impres-
sive operation. We did not include “wtf” in our keyword list, as we observed that it
is very noisy for identifying game bug videos. However, it may be interesting for de-
velopers to include this keyword, if their resources for watching these videos permit
to do so. The “hack” and “cheat” keywords are often used to indicate a loophole in
the game. As we show in our prior work [23], loopholes are one of the main reasons
for releasing an urgent update (to fix the loophole) and hence are considered bugs by
game developers.

Findings: 21.4% of the studied games have more than 50 videos on the Steam
platform. Figure 2| shows the distribution of the number of videos for each game.
Games on the Steam platform have a median of 9 videos. 3,483 (21.4%) games have
each received more than 50 game videos. The game with the most game videos on
the Steam platform is the Counter-Strike: Global Offensive game, for which 352,443
game videos were posted.

26.2% of the games on the Steam platform received an accumulated length
of more than 10 hours of game video, with the longest accumulated length for
a particular game reaching over 3 years. Figure [3] shows the distribution of the
accumulated length of game videos for each game. Games on the Steam platform
received a median accumulated length of 136 minutes (2.3 hours) of game videos.
We calculated that 3,026 (26.2%) games receive an accumulated length of more than
10 hours, and 1,926 (16.7%) games receive an accumulated length of more than 24

Identifying gameplay videos that exhibit bugs in computer games 11

1072 10° 10° 10* 10°

Accumulated length of videos for each game
(minutes)

Fig. 3: The distribution of the accumulated length of videos of each game. The verti-
cal line shows the median value of the distribution.

0.01 0.1 1 10 100 1000

Median accumulated length of videos
for each game per day (minutes)

Fig. 4: The distribution of the accumulated length of videos of each game per day.
The vertical line shows the median value of the distribution.

hours (1 day) of game videos. The longest accumulated length of game videos that
was received by a single game is 1,593,005 minutes (3.03 years — for the Counter-
Strike: Global Offensive game).

To further demonstrate the workload for developers to watch gameplay videos
everyday, we calculated the accumulated length of videos for each game per day.
Figure [shows the distribution of the median accumulated length of videos per day.
The median value of the distribution is 16.38 minutes, with a maximum of 13.27
hours, suggesting that in general developers of a game will receive around 16 minutes
of videos in a day; and in extreme cases, developers can receive up to 13 hours of
gameplay videos on median in a day.

Using keywords to identify bug videos has a precision of 56.25%. We applied
the keyword searching approach to all 1,636,689 gameplay videos for Steam games
that are available on YouTube. In total, the keywords matched 83,321 videos. We ran-
domly selected a statistically representative sample of 96 videos from the videos that
matched the keywords (with 95% confidence level and 10% confidence interval), and
manually verified whether they are bug videos, by watching the full video. The total
runtime of the 96 videos in the sample is 14.97 hours, which underlines the value

12 Dayi Lin et al.

T I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Ratio of the # of videos by the top 3 Steam accounts
to the total # of videos of each game

Fig. 5: The distribution of the ratio of the number of videos by the top 3 Steam
accounts to the total number of videos of each game.

O Games with < 100 videos
B Games with >= 100 videos

0.01 0.1 1
Ratio of the # of videos by the top 3 Steam accounts
to the total # of videos of each game

Fig. 6: The distribution of the ratio of the number of videos by the top 3 Steam
accounts to the total number of videos of games with less than 100 videos and at least
100 videos.

of automatically identifying bug videos. In total, 54 out of these 96 videos are bug
videos. Hence, the precision of a naive keyword searching approach for identifying
bug videos is 56.25%. We manually checked the false positives to understand the rea-
sons behind the low precision of the keyword searching approach, and we extracted
the following cases for the false positives:

— Advertising other bug videos under the same channel in the description

— Stuffing irrelevant keywords [[11] in the description that include our keywords

— Videos about games that themselves involve the keywords (e.g. Age of Barbarian:
a “hack and slash” gameﬂ; Bug Butcher: a game about catching bug

The majority of videos of most games are posted by a few Steam accounts,
while each account only posts videos for a few games. For each game, we sum
up the number of video posts that are posted by the top 3 Steam accounts with the
highest number of video posts, and calculated the ratio of the sum to the total number
of video posts the game received. Figure [5|shows the distribution of the ratio.

3 https://www.youtube.com/watch?v=W9in3AEYuJk
4 https://www.youtube.com/watch?v=pnFuzq8Ii8o

https://www.youtube.com/watch?v=W9in3AEYuJk
https://www.youtube.com/watch?v=pnFuzq8Ii8o

Identifying gameplay videos that exhibit bugs in computer games 13

Fn(x)
00 0.2 04 06 0.8 1.0

I I I I I I I I
1 5 10 50 100 500 1000 5000

of video posts per Steam account

Fig. 7: The empirical cumulative distribution function (Fn(x)) of the number of video
posts per Steam account.

As shown in Figure[5] games receive a median of 75% of videos from their top 3
Steam accounts. We further calculated the number of games for which each account
posted videos. We found that 81% of the Steam accounts only posts videos of one
game, and 96% of the accounts posts videos of no more than 5 games.

We compared the ratio between the games with at least 100 videos (which is
14% of the studied games), and the games with less than 100 videos. Figure [6]shows
that the top 3 Steam accounts contributed a median of 83% of the videos of a game
with less than 100 videos, and a median of 29% of the videos of a game with at
least 100 videos. In addition, we applied the Wilcoxon rank sum test [45]] on the two
distributions. As the p-value of the test is smaller than 0.05, we concluded that the
ratio of the games with at least 100 videos and the games with less than 100 videos
are significantly different. We calculated that the difference of these two distributions
has a large Cliff’s Delta effect size.

The GameGlitches account contributes the most videos to the Steam Com-
munity. Figure[7shows the empirical cumulative distribution function of the number
of videos contributed by each account. 62% of the Steam accounts posted only one
video to the Steam Community. We calculated that 92% of the Steam accounts posted
at most 10 videos. The account with the highest number of videos is GameGlitchesﬂ
with 4,413 videos. The majority of the videos under the GameGlitches account fo-
cuses on the glitches of games.

5 http://steamcommunity.com/id/GamesGlitches/

http://steamcommunity.com/id/GamesGlitches/

14 Dayi Lin et al.

—

R —
Step C1: Removing Logistic Regression Step A1: Evaluating Classifier
Gameplay Correlated and 9 Factors Classifier the Classifiers performance

videos Redundant Factors
ﬁ_/ ? _/r_\ Neural Network Step A2: Evaluating RF classifier
Classifier the Ranking performance

96 labelled

Keyword Gameplay vid Step C2:
maﬂin > a,ﬂfﬁ ay §°S | Constructing the Random Forest Step A3: Identifying Important
9 with keywords Classifiers (RF) Classifier Important Factors factors

il

Fig. 8: Overview of the approach to determine the likelihood that a gameplay video
showcases a game bug

Summary: Game videos may contain important information for game devel-
opers (e.g., showcases of a bug). However, 21.4% of the games on the Steam
platform receive more than 50 game videos in total, and up to a median of
13 hours of video runtime per day. Hence, manually watching through game-
play videos daily requires a considerable amount of resources. In addition,
using a naive keyword searching approach to identify bug videos only has a
precision of 56.25%. Hence, a more advanced approach is needed to identify
bug videos. In addition, it may be worthwhile for game developers to monitor
the videos that are posted by certain Steam accounts.

5 Determining the Likelihood that a Gameplay Video Showcases a Game Bug

In our preliminary study, we showed that naive approaches do not perform well in
identifying bug videos. To help game developers leverage the valuable information
in gameplay videos such as showcases of bugs in the games, in this section, we study
whether more advanced classifiers can improve the performance of the naive keyword
searching approach.

We train logistic regression, neural network and random forest classifiers to de-
termine the likelihood that a game video showcases a bug of a game, based on the
results of the keyword searching approach. We then evaluate the performance of these
three classifiers and select the best-performing one (the random forest classifier) for
a deeper investigation. In particular, we evaluate our random forest classifier on a
larger data set and we use the classifier to understand which factors are correlated
with a higher likelihood of a game video showcasing a game bug. By automatically
determining the likelihood that a game video showcases a game bug, developers can
watch game videos that have a high likelihood and avoid wasting time on videos that
do not showcase a game bug. Figure 8 shows an overview of our approach.

5.1 Selecting the best-performing classifier for identifying bug videos
5.1.1 Approach

To train the classifiers, we used factors that measure the contents of video posts and
the metadata of the YouTube video. Table [5 defines each factor and the rationale

Identifying gameplay videos that exhibit bugs in computer games 15

Spearman |p|
06 0.2
h_|

%
c _ _ e T3 -~ L - g- «
g =g
o & g=
o (] [0 £ o
— E [| [| [| 2 L(;-g
cc £ <£ < = c co g0 5 €85
w8 e © ©® © E E o o
nis BDE NnE NE ©
oo 0o £ < = S Q0+ Ogq > 5>
T £ 2 o o L 52 S8 5 =
28 €9 @ @ ¢ ¢ £8 €32 ¢ =
ST S g = = o o = % [0)
Etc Ev ® = £ B EZ EJ X
0y Q0 @ 2 = = 0T 9> 5
o o O 3] S ©sS O
58 55 & 2 D a5 5 3+
= o S] g
g 23 8 38 T T & =
g3 2> 3 g & x x
5 o £ ® ©
** ** o) o **
S >
S

Fig. 9: The hierarchically clustered Spearman |p| values of factors. The dotted red
line represents |p| = 0.7, our threshold for deciding whether two factors are strongly
correlated

behind our choice of that factor. We used the identified keywords in our preliminary
study (i.e., “bug”, “glitch”, “hack”, “hacker”, “cheat”, “cheater”) for features that
concern keywords in this section. We did not include context factors (e.g., the game
that the video is about) to ensure that our approach can be adapted by newly-released
games. In addition, we did not include factors that are related to the account that
uploads the video (e.g., the number of videos that were uploaded) to ensure that our
approach works for videos from both newly-created and old accounts.

We built logistic regression, neural network and random forest classifiers to deter-
mine the likelihood that a game video showcases a game bug. These three classifiers
represent three families of classifiers (respectively generalized linear models, neural
nets and decision trees). We conducted two steps (C1, C2) to construct the classifiers,
and one step (A1) to analyze the constructed classifiers. We conducted two additional
steps (A2 and A3) to further analyze the best-performing classifier (i.e., the random
forest).

Step C1 - Removing correlated and redundant factors Correlated factors in a model
can lead to the misinterpretation of factor importance [41]. To mitigate correlated
factors, we used the Spearman rank correlation to calculate how strongly two factors
are correlated. If two factors have a Spearman |p| > 0.7, we remove one of them from
our model. We used Spearman rank correlation because we observed our data to be
skewed, and Spearman rank correlation does not assume a normal distribution of the
data. Figure E] shows the hierarchically clustered Spearman |p| values.

We found that the corresponding factors across YouTube and Steam (e.g., video
post title length and YouTube title length) are all highly correlated. As stated in Sec-

Dayi Lin et al.

Table 5: Factors used in the built classifiers

Factor Description (d) - Rationale (r)
d: The length of the video in seconds.

Video length r: Bug videos could be shorter, as they may only show the bug
instead of a full gameplay session.
d: The number of characters in the title of the video post.

Video post title length r: A longer title of the video post could contain a description of

Video post description length

YouTube title length

YouTube description length

of YouTube tags

of keyword matches
video post title

of keyword matches
video post description

of keyword matches
YouTube title

of keyword matches
YouTube description

of keyword matches
YouTube tags

in

in

in

in

in

a game bug.

d: The number of characters in the description of the video post.
r: A long description could contain stuffed keywords [[11], which
are usually irrelevant to the content of the video and hence de-
crease the likelihood of the video showcasing a bug.

d: The number of characters in the YouTube title.
r: A longer YouTube title could contain a description of a game
bug.

d: The number of characters in the YouTube description.

r: A long YouTube description could contain stuffed key-
words [11], which are usually irrelevant to the content of the
video and hence decrease the likelihood of the video showcasing
a bug.

d: The number of YouTube tags.

r: A video with a large number of YouTube tags could contain
stuffed keywords [[11], which are usually irrelevant to the con-
tent of the video and hence decrease the likelihood of the video
showcasing a bug.

d: The number of occurrences of the keywords in the title of the
video post.

r: A video post with more keyword matches in the title could
have a higher likelihood of being a bug video.

d: The number of occurrences of the keywords in the description
of the video post.

r: A video post with more keyword matches in the description
could have a higher likelihood of being a bug video.

d: The number of occurrences of the keywords in the YouTube
title.

r: A video with more keyword matches in the YouTube title
could have a higher likelihood of being a bug video.

d: The number of occurrences of the keywords in the YouTube
description.

r: A video with more keyword matches in the YouTube descrip-
tion could have a higher likelihood of being a bug video.

d: The number of occurrences of the keywords in the YouTube
tags.

r: A video with more keyword matches in YouTube tags could
have a higher likelihood of being a bug video.

Identifying gameplay videos that exhibit bugs in computer games 17

tion[2} although the video posts on the Steam platform are hosted on YouTube, Steam
allows gamers to customize the title and description of the video posts. We found that
most of the video post titles are the same as their YouTube titles. In fact, only 167,486
(1.0%) video posts have different titles compared to their YouTube titles. We man-
ually looked into the videos with different titles for the video post and on YouTube,
and identified the following common reasons:

— Steam filtered inappropriate words, while YouTube did not
— Gamers did not enter a title for the Steam video post
— Gamers added a prefix to their YouTube titles (e.g. their YouTube channel name)

In addition, only 192,998 (1.2%) videos have different descriptions on Steam and
on YouTube. The most common differences are:

— Copyright disclaimers for the background music or other part of the videos in the
YouTube description

— Stuffed keywords at the end of the YouTube description

— Descriptions in different languages

To ensure that our approach can be applied to game videos that are not on the
Steam platform, we kept the factors from the YouTube metadata, and removed the
video post title length, # of keywords matches in the video post title, video post
description length and the # of keywords matches in the video post description from
our classifier.

To further remove redundant factors (i.e., factors that can be explained by a com-
bination of other factors), we performed a redundancy analysis using the redun func-
tion in the Hmisc package in R. We found that after removing the correlated factors,
there are no redundant factors.

Step C2 - Constructing the classifiers We used the manually labelled data set of 96
videos from Section [to train the classifiers. We used the following parameters for
the classifiers:

— Logistic regression: We used the default parameters for the logistic regression
classifier.

— Neural network: We employed a grid search to find the following optimal pa-
rameters for our neural network classifier: a single hidden layer with 6 nodes and
a decay of 0.1.

— Random forest: We used a default value of 3 for the mtry parameter (the number
of variables that are randomly sampled as candidates at each split).

Step Al - Evaluating the classifiers To compare the performance of the classifiers
to the naive keyword search approach and each other, we used the out-of-sample
bootstrap validation technique [42]. The out-of-sample bootstrap validation technique
consists of two steps:

1. For the given original dataset of size N, we randomly draw a bootstrap sample of
size N with replacement.

18 Dayi Lin et al.

Table 6: The performance of the studied classifiers on the labelled data set of 96
videos.

Classifier AUC Precision
Keyword search - 0.56
Logistic regression 0.79 0.79
Neural network 0.70 0.70
Random forest 0.84 0.80

*As the keyword search does not return probabilities
its AUC cannot be calculated.

2. We train classifiers using the bootstrap sample, and test the classifiers using the
rows that are not drawn in the first step. As the bootstrap sample is drawn with
replacement, on average 36.8% of the rows will not be drawn in the first step [7].

In our study, N is 96, since we are using the manually labelled 96 videos to train
our classifier. The out-of-sample bootstrap process was repeated 1,000 times, and the
average out-of-sample precision and AUC were calculated.

5.1.2 Result

Our random forest classifier achieves the best performance. Table [6] shows the
performance of the classifiers. The out-of-sample bootstrap validation shows that on
average, the Random Forest classifier has an AUC of 0.84, and a precision of 0.80 on
the manually labelled data, which is higher than the precision of the naive keyword
approach (0.56, see Section[d) and the other classifiers. The performance of the logis-
tic regression classifier comes closest to that of the random forest. The performance
of the neural network classifier is considerably lower. We expect that the used data
set is too small for the neural network to perform well. However, it is important to
keep in mind that manually labelling videos is extremely time-consuming. Therefore,
an important requirement of a classifier for identifying bug videos is that it performs
well after being trained with a small training data set. Hence, in the rest of the paper,
we focus on the random forest classifier.

5.2 A deeper investigation of the random forest classifier
5.2.1 Step A2 - Evaluating the provided ranking by the random forest classifier

As we aim at using the random forest classifier to provide a list of videos ranked
by their likelihood of being a bug video, only using precision and AUC to evaluate
the performance of the approach will ignore the order in which the bug videos are
presented. Hence, in addition to the out-of-sample bootstrap validation, we further
quantify the performance of our approach using the following set of metrics:

Identifying gameplay videos that exhibit bugs in computer games 19

Table 7: Games that are used for the evaluation of our approach

. # of videos
of videos . .
. . identified by \dentified by
Title # of videos random
keyword
matching forest
classifier
Steam games
Counter-Strike: Global Offensive 352,443 12,495 9,376
Dota 2 65,023 841 650
Garry’s Mod 37,245 945 617
Arma 3 32,049 825 507
Grand Theft Auto V 31,127 2,310 1,386
Counter-Strike 26,377 728 537
DayZ 20,234 1,590 968
Rocket League 19,759 264 166
Counter-Strike: Source 17,691 1,046 574
ARK: Survival Evolved 17,080 639 198
Non-Steam games
FIFA 16 5,701 396 161
FIFA 17 6,008 464 200
NHL 16 4,624 400 226
NHL 17 4,421 382 205

Precision at n (P@n) [21] is commonly used to evaluate the performance of an
information retrieval system. For our approach, we have P@n = %, where r is the
number of actual bug videos at rank .

Average Precision at n (AP@n) [21] is a variant of the well-known average pre-
cision measure. While precision at n ignores the positions of the result, average pre-
cision at n takes into account both the number of bug videos in the top » and the

positions of those bug videos. The average precision at n is defined as:

n o rel(i) x P@i
NF

AP@n =

Where rel(i) = 1 if the i video in the ranked list is a bug video, and rel(i) = 0
otherwise, and NF is the normalization factor. Although it is common to normalize
by the total number of bug videos, here we use the number of correctly identified bug
videos as the normalization factor, as proposed by Baeza-Yates and Ribeiro-Neto [2].
This normalization is called Average Precision at Seen Relevant Documents, and it
avoids the problem in precision-oriented evaluation, where one may not have judged
enough documents to know the recall. In the remainder of the paper, we use AP@n
to refer to Average Precision at Seen Relevant Documents.

Mean Average Precision at n (MAP @n) [21]] is the arithmetic mean of all average
precision at n.

We selected 10 games from the Steam platform with the highest number of videos,
and calculated the metrics for each of the games. We also selected 4 games that were

20 Dayi Lin et al.

Table 8: Result of the evaluation

Title P@100 AP@100 Apelo

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Steam games
Counter-Strike: Global Offensive 0.83 0.84 0.84 0.81 094 091 1.00 0.58 1.00 0.77 0.79 0.89
Dota 2 0.93 0.96 1.00 1.00 0.88 1.00 1.00 098 0.88 1.00 0.73 0.96
Garry’s Mod 0.74 081 098 075 096 056 09 099 073 073 046 0.74
Arma 3 0.93 097 1.00 1.00 1.00 1.00 092 091 0.99 1.00 0.98 0.84
Grand Theft Auto V 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Counter-Strike 0.89 0.85 0.54 1.00 0.83 1.00 .00 0.99 1.00 091 1.00 0.93
DayZ 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00
Rocket League 0.65 0.90 1.00 1.00 1.00 095 091 029 053 034 033 0.91
Counter-Strike: Source 0.72 083 075 096 098 096 082 1.00 081 092 050 0.11
ARK: Survival Evolved 0.92 097 1.00 1.00 1.00 088 1.00 075 1.00 1.00 0.57 0.93
MAP@100 for Steam games 091
Non-Steam games
FIFA 16 0.91 0.88 0.70 1.00 1.00 1.00 1.00 0.93 .00 0.75 1.00 0.97
FIFA 17 0.96 0.96 0.99 1.00 1.00 0.88 1.00 1.00 1.00 1.00 0.96 0.96
NHL 16 0.90 0.99 1.00 1.00 1.00 1.00 095 1.00 1.00 1.00 0.55 0.46
NHL 17 0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00 .00 090 0.76 0.44
MAP@100 for non-Steam games 091

not released on the Steam platform, and collected their game videos on the YouTube
platform, to evaluate the generalizability of our approach. Table [/| shows the games
we used for our evaluation.

For each of the games, we calculated the P@n and AP@n for n = 100. Hence,
we manually verified whether 1,400 game videos showcase a bug. In addition, to
simulate the process of developers using our proposed approach as they go through
pages of results, with each page displaying 10 videos, we calculated the AP@10 of
each page of results for each game. Lastly, we calculated the MAP@n for n = 100,
for the Steam games and non-Steam games respectively.

5.2.2 Step A3 - Identifying the important factors

To understand the importance of each factor in a random forest classifier, we calcu-
lated the mean decrease accuracy [29] for each factor. The mean decrease accuracy
is commonly used in prior studies for measuring factor importance of random forest
classifiers [[19] and is calculated as follows: for each tree in the random forest, the er-
ror rate on the out-of-bag portion of the data is recorded, and compared with the error
rate after permuting each factor. The bigger the difference is, the more important that
factor is deemed. We used the importance function in the RandomForest package
in R to calculate the mean decrease accuracy.

5.2.3 Results

Our random forest classifier achieves a mean average precision at 100 of 0.91. We
manually checked the 100 gameplay videos with the highest likelihood of showcasing
a game bug for the 14 games for evaluation. In total, we manually checked 1,400
gameplay videos. Table [8| shows the performance metrics for each of the evaluated
games.

Identifying gameplay videos that exhibit bugs in computer games 21

1.00-

0.75-
o
o .
. P s
Q 050 2 .
< L4]
L °
(]
0.25-
L]
1 2 3 4 5 6 7 8 9 10

Page

Fig. 10: AP@10 against the page of results (with 10 videos per page). The blue lines
are fitted using Local Polynomial Regression [[6]. The grey areas show the approxi-
mate 95% confidence bands.

Table |8 shows that for both the 10 Steam games and the 4 non-Steam games
that are used for evaluation, the classifier obtained a mean average precision at 100
of 0.91. For the Garry’s Mod game, the Rocket League game and the Counter-
Strike: Source game, we observed a relatively low P@100 (below 0.8). However,
the AP@100 for these three games are all higher than their P@100 (all above 0.8,
up to 0.25 higher than their P@100), suggesting that our random forest classifier is
able to assign a higher likelihood of showcasing a bug to bug videos than to non-bug
videos.

To further understand the false positive cases, we manually checked the 168
videos that were wrongly identified by our classifier as bug videos. The false pos-
itive cases were mainly introduced by the ambiguity of keywords, specifically, the
keyword “hack”. We noticed that in the Counter-Strike community (i.e., the Counter-
Strike game, the Counter-Strike: Source game, and the Counter-Strike: Global Offen-
sive game), based on context, the term “hack” can be used to describe gameplay that
is so skilled that it looks like hacking (e.g., http://youtu.be/RG78hWtY5Mo). An-
other common reason was that gamers’ usernames contain “hack” while the videos
are not about hacking. In addition, we also noticed cases in which the videos were
about hacked gamer accounts. We calculated that by excluding the keyword “hack”
and “cheat”, 23% of the false positive cases would not be labelled as bug videos.
Hence, developers can choose to exclude the keyword “hack” to further increase the
precision of our approach, if desired. Other reasons for the false positive cases in-
clude videos about how to patch a bug, gamers using the word “buggy” to refer to
motor vehicles, gamers’ usernames containing keywords, and keyword stuffing.

The average precision at 10 of each page of results remains high, even after
already having seen 10 pages of results. Figure[I0]shows the relationship between
AP@10 and the page of results, with each page containing 10 videos. Even for page
10, the classifier obtains an average AP@10 of 0.80, and a MAP@10 of 0.92. Al-
though more study may be needed to evaluate how well the classifier performs after

http://youtu.be/RG78hWtY5Mo

22 Dayi Lin et al.

of keywords matches in
YouTube title o

YouTube description length o

of keywords matches in
YouTube description

video length (@)
of YouTube tags o)

of keywords matches in| . 4
YouTube tags

YouTube title length | O

I I I I I
5 10 15 20 25

Mean Decrease Accuracy

Fig. 11: The mean decrease accuracy for each factor in the classifier

9 1.00- 9 1.00-

g - s 2 . T

> 075- 8 ‘3 ® > 075-), ° o« °

=2 =2 LN]

3 (] $ o 3 3

0.50- 050- ® e

S ks O ...‘ Se

B o02s- B o0.25- . :

o o

£ l < * o S8 %6 s 0 T

3 0.00- ¥ . g 000- , T) T ; 5

X 0 1 2 3 = 0 1000 2000 3000 4000 5000
of keywords matches in YouTube title YouTube description length (characters)

(@ b

1.00-

0.75-

0.50-

s
L]
L3
s
L]
L
0.25- '

0.00-

Likelihood of bug video

0 1 2 3 4 5
of keywords matches in YouTube description
()

Fig. 12: The predicted likelihood of bug videos against the three most important fac-
tors for deciding the likelihood of a video being a bug video. The blue lines are fitted
using Local Polynomial Regression [6]. The grey areas show the approximate 95%
confidence bands.

10 pages, the classifier still has a high performance even after having seen 10 pages
of results already.

The most important factor for identifying bug videos is having a keyword in
the YouTube title. Figure |1 1| shows the mean decrease accuracy of each factor that
is used in our random forest classifier.

As Figure [IT] shows, the number of keyword matches in YouTube title has the
highest mean decrease accuracy, with the length of the YouTube description, and the
number of keyword matches in the YouTube description being the second and the

Identifying gameplay videos that exhibit bugs in computer games 23

third respectively. Hence, the number of keyword matches in the YouTube title is the
most important factor for identifying bug videos.

To understand how changes in the three most important factors’ values affect the
likelihood of a game video being a bug video, we plotted the predicted likelihood
against the three aforementioned factors. Figure [I2] shows the impact of the three
most important factors on the likelihood of a game video being a bug video.

For the number of keyword matches in the YouTube title, Figure[I2|a) shows that
the likelihood of the video showcasing a bug is higher when there is at least one occur-
rence of a keyword, but the likelihood does not go higher as the occurrence increases.
For the number of keywords matches in the YouTube description, Figure[I2]c) shows
that the likelihood decreases as the occurrence of keywords in YouTube description
increases. A possible explanation is that, as stated in Section[d] people may stuff ir-
relevant keywords in the videos’ YouTube descriptions as an attempt of search engine
optimization. In addition, Figure [[2|b) shows that the likelihood of a video being a
bug video is higher when the length is either very short or very long.

Summary: The proposed random forest classifier achieves a mean average
precision at 100 of 0.91, and a precision (0.80) that is 43% higher than
the naive keyword searching approach (0.56). Videos with at least one oc-
currence of a keyword (i.e., “bug”, “glitch”, “hack”, “hacker”, “cheat”,
“cheater”) in their YouTube title, a shorter YouTube description, and lower
occurrence of keywords in their YouTube description, are more likely to be
bug videos.

6 Discussion

Nowadays, gameplay videos are extremely popular, as demonstrated by the popu-
larity of the Twitclﬂ service for broadcasting gameplay sessions. Prior work show-
cases the usefulness of gameplay videos for game developers. For example, Lewis et
al. [22] showed that there exist many videos that exhibit a bug in a game. However,
to identify these bug videos, developers would have to watch through all gameplay
videos of their games. In this paper we showed that it is possible to automatically
identify bug videos, solely based on their metadata. Our random forest approach can
be trained with a small data set of labelled videos, achieving a mean average preci-
sion of 0.91 at 100. Moreover, our approach is not game-specific and as a result, it
can be applied to new games, or games with relatively few gameplay videos as well.

An interesting question is how useful these bug videos are to game developers.
One issue is that bug videos usually do not explicitly describe the steps to reproduce
a bug, which is essential for developers who wish to fix that bug [48]]. It is important
to realize that while these videos may not lead directly to bug fixes, it does allow
developers to learn more about the occurrence of bugs. In some cases these bugs may
be completely unknown, and in these cases the developer could reach out to the poster
of the video to acquire more details about the bug (or even, to ask the video poster

% https://www.twitch.tv/

https://www.twitch.tv/

24 Dayi Lin et al.

to submit an actual bug report to help fix the bug). In other cases, developers may
already know about the bugs but chose not to fix them. In these cases, bug videos
could help to see more instantiations of the same bug, making it easier to reproduce
or fix hard-to-fix bugs.

The research presented in this paper is the first important step towards automat-
ically extracting useful information for game developers from gameplay videos. In
the remainder of this section, we discuss several directions for future work.

6.1 Future work direction 1: Leveraging gameplay video contents to identify useful
videos for game developers

The presented approach in this paper is solely based on the metadata of gameplay
videos. However, in many cases this metadata is either not available or not meaning-
ful. For example, a play-through video, which is much longer than most of the bug
videos studied in this paper, could exhibit one or more bugs in a game. However,
it is less likely that these bugs are identified explicitly in the video’s metadata. In
such cases, it would be helpful to identify the exact bug video segments by analyz-
ing the contents of a gameplay video. We envision several research challenges in this
direction:

— Automatically distinguishing buggy behaviour from regular game behaviour
in a gameplay video. Future work could leverage existing work on extracting
game logs automatically from gameplay videos [[18],130] by mining such logs for
anomalies which could represent bugs.

— Precisely pinpointing the start and end times of the bug video segment. Sim-
ply knowing that a video exhibits a bug is not helpful if the video is long, as it
would still require the game developer to watch the full video. Instead, future
work should investigate how to precisely pinpoint the start and end times of a
bug video segment in a longer video (such as a Twitch playing session), possibly
through the analysis of the spoken words in the video.

— Identifying other types of useful videos for game developers. We focused on
bug videos, but there exist many other types of gameplay videos that are useful for
game developers. For example, game developers could leverage gameplay videos
to identify performance issues or confusing storylines of the game.

6.2 Future work direction 2: Automatically appending textual bug reports with bug
videos

Although most bug videos do not explicitly describe the steps to reproduce a bug,
a bug video can clarify the way in which a bug manifests itself. Therefore, bug
videos can clarify existing textual bug reports. Future work should investigate how
bug videos can be linked automatically with existing textual bug reports. For exam-
ple, future work could combine prior work in the game understanding field (e.g., by
Luo et al. [30]) to identify the game objects in a bug video and map these objects to
bug reports.

Identifying gameplay videos that exhibit bugs in computer games 25

7 Related Work

In this section, we discuss prior work that is related to our study. Rather than pro-
viding an exhaustive overview of all studies that leverage gameplay videos, which is
outside the scope of our paper, we discuss the most important studies. The contribu-
tion of our study in comparison to prior work is that to the best of our knowledge,
we are the first to propose an approach for identifying game videos that showcase a
game bug.

7.1 Studies on Gameplay Videos

Lewis et al. [22]] explored the software engineering aspect of gameplay videos. Lewis
et al. summarized a taxonomy of video game bugs by observing patterns from bug
videos on YouTube. They identified YouTube’s bug videos as “a rich resource ...
provide a startling amount of coverage; far more than any single research group
could ever hope to expose personally”.

Another usage of gameplay videos that is relevant to software engineers is to
automatically extract game logs. These game logs can be used by game designers to
study the field usage of a game or the field behaviour of its players. For example,
Jacob et al. [18] used image processing techniques and predefined image patterns
to extract game logs from gameplay videos of the Super Mario Bros. game. Luo et
al. [30] used convolutional neural networks and transfer learning to extract game logs
from gameplay videos of the Super Mario Bros., Megaman and Skyrim games.

Several studies investigated why people watch gameplay videos. For example,
Sjblom and Hamari [39] and Hilvert-Bruce et al. [15] found that Twitch users watch
Twitch videos for different types of gratification, such as social integrative reasons
and tension release.

Several studies use gameplay videos in combination with machine learning to
learn how to play a game. For example, Mnih et al. [31] used gameplay videos as the
input to a convolutional neural network to learn how to play Atari games. Mnih et
al.’s study laid the foundation for the automated gameplay of more advanced games
such as the Doom game [20]. Guzdial et al. [13]] proposed a search-based approach to
learn the game engine of a game from gameplay videos. In another study, Guzdial et
al. [14] propose a framework for automatically creating commentaries for gameplay
videos. Fulda et al. [10] automatically detect interaction modes in gameplay videos,
i.e., situations that require a certain interaction. Their approach recommends whether
the identified objects in a screenshot are a threat or require exploration, bartering or
solving a puzzle (such as picking a lock).

Finally, several studies focus on using gameplay videos to automatically generate
game levels. Guzdial and Ried]l [12] designed an unsupervised machine learning pro-
cess that can automatically generate full video game levels from gameplay videos,
using K-Means and probabilistic graphical models. Summerville et al. [40] proposed
a machine learning technique that uses Long Short-Term Memory Recurrent Neural
Networks (LSTM RNNs) to generate levels based on latent play styles learnt from
the Super Mario Bros gameplay videos.

26 Dayi Lin et al.

7.2 Studies on Improving Bug Report Quality

Several studies have focused on the quality of bug reports. Zimmermann et al. [48§]]
conducted a survey among the community of Apache, Eclipse and Mozilla to un-
derstand the characteristics of high quality bug reports, and revealed the mismatch
of information between what developers need and what bug reporters provide. The
study highlights that for developers, the most needed information is the steps to repro-
duce, which is considered by users as difficult to provide. In addition, the most severe
problem is not wrong information, but absent information. The study also highlights
the potential value of video bug reports, using the “Best of Bugzilla” bug report,
Eclipse bug 113206 as an example. This bug report includes a video to demonstrate
the complicated steps to reproduce the bug. Hooimeijer and Weimer [17] analyzed
over 27,000 bug reports for Mozilla Firefox to model the bug report quality. The
analysis showed that attachment count and comment count have the highest impact
on the quality of a bug report. Linstead and Pierre [27] proposed a new measure
of bug report quality called latent topic coherence, by modelling Gnome bug reports
with Latent Dirichlet Allocation (LDA). Zimmermann et al. [47]] proposed four broad
directions for enhancing the current bug tracking systems to collect bug reports with
higher quality, one of which suggests the bug reporting tool to integrate capture/re-
play functionality or a screenshot.

7.3 Mining Online Gaming Distribution Platforms

Mining data from online gaming distribution platforms (such as the Steam platform)
is an area that has been actively researched recently. Chambers et al. [5] collected
various game-related data from both servers of games and the Steam platform. The
study demonstrated that it is difficult to provide enough resources at launch time
of a game. In addition, the study also claimed that gamers are extremely difficult
to satisfy. Blackburn et al. [3] analyzed more than 12 million player profiles on the
Steam Community, with 700,000 profiles being flagged as cheaters. They showed
that whether a player has cheating friends plays an important role in whether a player
becomes a cheater.

In our prior work, we analyzed the Steam platform to study multiple aspects of
Software Engineering practice in game development [23| 24} |26]. We studied urgent
updates of popular games on the Steam platform to help developers avoid unneces-
sary stress during game development, and produce games with higher user-perceived
quality [23]]. One of our major findings is that games using frequent update strategy
tend to require more urgent updates. In addition, we analyzed the early access games
on the Steam platform [24]], and suggested game developers to use the early access
model as a way to build up positive reputations, and avoid relying on the sales dur-
ing early access stage for game development. Recently, we conducted a large-scale
empirical study of the game reviews on the Steam platform [26]. We concluded that
game reviews are different from mobile app reviews along several aspects, and that
prior studies on mobile app reviews may need to be revisited.

Identifying gameplay videos that exhibit bugs in computer games 27

8 Threats to Validity

This section presents the threats to the validity of our findings.

8.1 Internal Validity

A threat to the validity of our findings is that we only collected videos that are ex-
plicitly linked to specific games, on both the Steam platform, and YouTube. This
constraint ensures that the number of videos of a game is an accurate lower bound.
However, as it is not mandatory for gamers to link videos to games in either the Steam
platform or on YouTube, there may exist more videos related to studied games that
were not collected.

In both Section 4| (96 videos) and Section E](l ,400 videos), we manually verified
whether a gameplay video is a bug video, for a total of 1,496 gameplay videos. While
this process was manual, it was straightforward (though time-consuming). We would
like to emphasize that our model is necessary to reduce the required time to identify
bug videos, not to reduce the difficulty of the identification process. Because of the
low degree of difficulty of the identification, we did not cross-validate the identifica-
tion process.

In this paper, we built a universal model to predict the likelihood that a gameplay
video showcases a game bug across all games. However, the gamer community of
different games may have different patterns when posting bug videos. In this case,
game-specific models may outperform a universal model. In practice, newly-released
games may not have enough historical data to train a game-specific model. Nonethe-
less, our approach can be adopted for building game-specific models as well.

It is possible that in some rare instances a person has multiple Steam accounts.
Hence, the reported numbers in our findings are a high estimate of the actual number
of gamers for which those findings hold.

8.2 External Validity

In our preliminary study (Section[d)), we focused on the gameplay videos on the Steam
platform. The findings of our preliminary study may not be generalizable to other
games on different distribution platforms. However, as stated in Section [2] Steam is
the largest online distribution platform for PC games. Hence, the games on the Steam
platform are representative for a large number of games. Future studies are necessary
to investigate how our results apply to games from other platforms, such as the Xbox.

In Section[5] we evaluated the generalizability of our approach using four games
that are not on the Steam platform. Future studies are needed to examine the general-
izability of the approach on a larger number of games.

28 Dayi Lin et al.

9 Conclusion

The user-perceived quality is crucial to the success of a game. Hence, it is necessary to
efficiently and effectively deal with bugs in a game. In recent years gameplay videos
have become popular in the gaming community to showcase the problems of a game
to other gamers. However, there have been no studies of how developers can leverage
such gameplay videos as an additional source for learning about bugs in their games.

In this paper, we explored the practicality of using gameplay videos that are avail-
able online as a supplementary source of learning about bugs in games. We first con-
ducted a preliminary study on gameplay videos on the Steam platform, and found
that naive approaches to identify bug videos, such as keyword searching, are ineffi-
cient and imprecise. In particular, the naive keyword searching approach only has a
precision of 56.25%. We then proposed an approach that uses the metadata of game-
play videos to train logistic regression, neural network and random forest classifiers,
to determine the likelihood that a gameplay video showcases a game bug. We further
evaluated the best-performing classifier, the random forest classifier, on 10 Steam
games and 4 non-Steam games. Overall, the approach achieves both a mean average
precision at 10 and a mean average precision at 100 of 0.91, and shows a good gen-
eralizability. We also identified the impact of different factors on the likelihood of a
video related to bugs. Our study makes the following contributions:

— The first to showcase that it is practical to automatically identify bug videos with
high precision.

— An analysis of the characteristics of bug videos.

— A labelled dataset and the metadata of 1,496 bug videos [25] to enable further
studies in this important research direction.

Our paper takes the first important step to automatically identify gameplay videos
that contain useful information for game developers. In future work, researchers
should extend our approach to identify useful information in longer gameplay videos.
For example, a future approach could pinpoint the exact locations of useful infor-
mation in long gameplay videos on the Twitch service, a service for broadcasting
gameplay sessions. The challenge of identifying useful information in Twitch game-
play sessions is that (1) they are often several hours long and (2) they contain less
metadata than the videos that we studied in this paper. Another future direction is to
automatically append existing textual bug reports with video snippets in which the
particular bug is exhibited.

References

1. Alexa (2018) Youtube.com traffic, demographics and competitors - alexa.
https://www.alexa.com/siteinfo/youtube.com, (last visited: Mar 25,
2019)

2. Baeza-Yates R, Ribeiro-Neto B, et al (1999) Modern information retrieval, vol
463. ACM press New York

https://www.alexa.com/siteinfo/youtube.com

Identifying gameplay videos that exhibit bugs in computer games 29

3.

10.

11.

12.

13.

14.

15.

16.

18.

19.

Blackburn J, Kourtellis N, Skvoretz J, Ripeanu M, Iamnitchi A (2014) Cheating
in online games: A social network perspective. ACM Transactions on Internet
Technology (TOIT) 13(3):9

CCP Habakuk (2017) Bug reporting - eve community. https://community.
eveonline.com/support/test-servers/bug-reporting/, (last visited:
Mar 25, 2019)

Chambers C, Feng Wc, Sahu S, Saha D (2005) Measurement-based character-
ization of a collection of on-line games. In: Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, USENIX Association, pp 1-14

. Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to

regression analysis by local fitting. Journal of the American statistical association
83(403):596-610

Efron B (1983) Estimating the error rate of a prediction rule: improvement on
cross-validation. Journal of the American statistical association 78(382):316—
331

Ekaterina Petrova, Netta Gross (2017) 4 reasons people watch gaming content
on Youtube. https://www.thinkwithgoogle.com/consumer-insights/
statistics-youtube-gaming-content/, (last visited: Mar 25, 2019)
Electronic Arts Inc (2018) Origin. https://www.origin.com, (last visited:
Mar 25, 2019)

Fulda N, Ricks D, Murdoch B, Wingate D (2018) Threat, explore, barter, puz-
zle: A semantically-informed algorithm for extracting interaction modes. In: The
Workshops of the 32nd AAAI Conference on Artificial Intelligence, pp 1-5
Google (2018) Irrelevant keywords - search console help. https://support.
google.com/webmasters/answer/66358, (last visited: Mar 25, 2019)
Guzdial M, Riedl M (2016) Game level generation from gameplay videos. In:
Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference
Guzdial M, Li B, Riedl MO (2017) Game engine learning from video. In: Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence (1J-
CAD), pp 3707-3713

Guzdial M, Shah S, Riedl M (2018) Towards automated let’s play commentary.
CoRR abs/1809.09424

Hilvert-Bruce Z, Neill JT, Sjblom M, Hamari J (2018) Social motivations of
live-streaming viewer engagement on Twitch. Computers in Human Behavior
84:58-67

Ho TK (1995) Random decision forests. In: Proceedings of the 3rd International
Conference on Document Analysis and Recognition, IEEE, vol 1, pp 278-282

. Hooimeijer P, Weimer W (2007) Modeling bug report quality. In: Proceedings of

the 22nd IEEE/ACM international conference on Automated software engineer-
ing, ACM, pp 34-43

Jacob LB, Kohwalter TC, Machado AFV, Clua EWG, d Oliveira D (2014) A
non-intrusive approach for 2d platform game design analysis based on prove-
nance data extracted from game streaming. In: Brazilian Symposium on Com-
puter Games and Digital Entertainment, pp 41-50

Kabinna S, Bezemer CP, Shang W, Syer MD, Hassan AE (2018) Examining the
stability of logging statements. Empirical Software Engineering 23(1):290-333

https://community.eveonline.com/support/test-servers/bug-reporting/
https://community.eveonline.com/support/test-servers/bug-reporting/
https://www.thinkwithgoogle.com/consumer-insights/statistics-youtube-gaming-content/
https://www.thinkwithgoogle.com/consumer-insights/statistics-youtube-gaming-content/
https://www.origin.com
https://support.google.com/webmasters/answer/66358
https://support.google.com/webmasters/answer/66358

30

Dayi Lin et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Kempka M, Wydmuch M, Runc G, Toczek J, Jakowski W (2016) ViZDoom: A
Doom-based Al research platform for visual reinforcement learning. In: IEEE
Conference on Computational Intelligence and Games (CIG), pp 1-8

Larson RR (2010) Introduction to information retrieval. Journal of the American
Society for Information Science and Technology 61(4):852-853

Lewis C, Whitehead J, Wardrip-Fruin N (2010) What went wrong: a taxonomy
of video game bugs. In: Proceedings of the 5th International Conference on the
Foundations of Digital Games, ACM, pp 108-115

Lin D, Bezemer CP, Hassan AE (2017) Studying the urgent updates of popular
games on the Steam platform. Empirical Software Engineering 22(4):2095-2126
Lin D, Bezemer CP, Hassan AE (2018) An empirical study of early access games
on the Steam platform. Empirical Software Engineering 23(2):771-799

Lin D, Bezemer CP, Hassan AE (2019) Supplementary material for our paper.
https://github.com/SAILResearch/suppmaterial-19-dayi-game_
video, (last visited: Mar 25, 2019)

Lin D, Bezemer CP, Zou Y, Hassan AE (2019) An empirical study of game re-
views on the Steam platform. Empirical Software Engineering 24(1):170-207
Linstead E, Baldi P (2009) Mining the coherence of GNOME bug reports with
statistical topic models. In: 6th IEEE International Working Conference on Min-
ing Software Repositories, IEEE, pp 99-102

Long JD, Feng D, CIliff N (2003) Ordinal Analysis of Behavioral Data. John
Wiley & Sons, Inc.

Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Understanding variable im-
portances in forests of randomized trees. In: Advances in Neural Information
Processing Systems, pp 431-439

Luo Z, Guzdial M, Liao N, Riedl M (2018) Player experience extraction from
gameplay video. In: AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, pp 1-7

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller MA (2013) Playing Atari with deep reinforcement learning. CoRR
abs/1312.5602

NLTK Project (2017) Natural Language Toolkit. https://www.nltk.org/,
(last visited: Mar 25, 2019)

Phillips T (2018) The human cost of Red Dead Re-
demption 2. https://www.eurogamer.net/articles/
2018-10-25-the-human-cost-of-red-dead-redemption-2, (last
visited: Mar 25, 2019)

PwC (2016) Value of the global video games market from 2011 to 2020
(in billion u.s. dollars). https://www.statista.com/statistics/246888/
value-of-the-global-video-game-market/, (last visited: Mar 25, 2019)
Riot Afic (2015) How to report a game bug. |https:
//boards.na.leagueoflegends.com/en/c/bug-report/
3mQGBEjA-how-to-report-a-game-bug, (last visited: Mar 25, 2019)
Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring
methods for evaluating group differences on the NSSE and other surveys: Are the
t-test and Cohen’s d indices the most appropriate choices. In: Annual meeting of

https://github.com/SAILResearch/suppmaterial-19-dayi-game_video
https://github.com/SAILResearch/suppmaterial-19-dayi-game_video
https://www.nltk.org/
https://www.eurogamer.net/articles/2018-10-25-the-human-cost-of-red-dead-redemption-2
https://www.eurogamer.net/articles/2018-10-25-the-human-cost-of-red-dead-redemption-2
https://www.statista.com/statistics/246888/value-of-the-global-video-game-market/
https://www.statista.com/statistics/246888/value-of-the-global-video-game-market/
https://boards.na.leagueoflegends.com/en/c/bug-report/3mQGBEjA-how-to-report-a-game-bug
https://boards.na.leagueoflegends.com/en/c/bug-report/3mQGBEjA-how-to-report-a-game-bug
https://boards.na.leagueoflegends.com/en/c/bug-report/3mQGBEjA-how-to-report-a-game-bug

Identifying gameplay videos that exhibit bugs in computer games 31

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

the Southern Association for Institutional Research

Schreier J (2018) Inside Rockstar Games’ culture of crunch. https://kotaku.
com/inside-rockstar-games-culture-of-crunch-1829936466, (last
visited: Mar 25, 2019)

Sixen (2010) How to write a good bug report. https://us.battle.net/
forums/en/sc2/topic/188789092, (last visited: Mar 25, 2019)

Sjblom M, Hamari J (2017) Why do people watch others play video games?
An empirical study on the motivations of Twitch users. Computers in Human
Behavior 75:985-996

Summerville A, Guzdial M, Mateas M, Riedl MO (2016) Learning player tai-
lored content from observation: Platformer level generation from video traces
using Istms. In: 12th Artificial Intelligence and Interactive Digital Entertainment
Conference

Tantithamthavorn C, Hassan AE (2018) An experience report on defect mod-
elling in practice: Pitfalls and challenges. In: In Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP18), ACM, pp 286-295

Tantithamthavorn C, Mclntosh S, Hassan AE, Matsumoto K (2017) An empirical
comparison of model validation techniques for defect prediction models. IEEE
Transactions on Software Engineering 43(1):1-18

Valve (2018) Steam community. https://steamcommunity.com/, (last vis-
ited: Mar 25, 2019)

Valve (2018) Steam store. https://store.steampowered. com/, (last visited:
Mar 25, 2019)

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics bul-
letin 1(6):80-83

YouTube (2018) Auto-generated topic channels - youtube help. https:
//support.google.com/youtube/answer/2579942, (last visited: Mar 25,
2019)

Zimmermann T, Premraj R, Sillito J, Breu S (2009) Improving bug tracking
systems. In: 31st International Conference on Software Engineering-Companion
Volume, IEEE, pp 247-250

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010)
What makes a good bug report? IEEE Transactions on Software Engineering
36(5):618-643

https://kotaku.com/inside-rockstar-games-culture-of-crunch-1829936466
https://kotaku.com/inside-rockstar-games-culture-of-crunch-1829936466
https://us.battle.net/forums/en/sc2/topic/188789092
https://us.battle.net/forums/en/sc2/topic/188789092
https://steamcommunity.com/
https://store.steampowered.com/
https://support.google.com/youtube/answer/2579942
https://support.google.com/youtube/answer/2579942

	Introduction
	Background
	Methodology
	Preliminary Study of Gameplay Videos on the Steam Platform
	Determining the Likelihood that a Gameplay Video Showcases a Game Bug
	Discussion
	Related Work
	Threats to Validity
	Conclusion

