
Noname manuscript No.
(will be inserted by the editor)

How Do Developers Utilize Source Code from Stack

Over�ow?

Yuhao Wu · Shaowei Wang · Cor-Paul
Bezemer · Katsuro Inoue

Received: date / Accepted: date

Abstract Technical question and answer Q&A platforms, such as Stack Over-
�ow, provide a platform for users to ask and answer questions about a wide
variety of programming topics. These platforms accumulate a large amount of
knowledge, including hundreds of thousands lines of source code. Developers
can bene�t from the source code that is attached to the questions and answers
on Q&A platforms by copying or learning from (parts of) it. By understand-
ing how developers utilize source code from Q&A platforms, we can provide
insights for researchers which can be used to improve next-generation Q&A
platforms to help developers reuse source code fast and easily.

In this paper, we �rst conduct an exploratory study on 289 �les from 182
open-source projects, which contain source code that has an explicit reference
to a Stack Over�ow post. Our goal is to understand how developers utilize
code from Q&A platforms and to reveal barriers that may make code reuse
more di�cult. In 31.5% of the studied �les, developers needed to modify source
code from Stack Over�ow to make it work in their own projects. The degree of
required modi�cation varied from simply renaming variables to rewriting the
whole algorithm. Developers sometimes chose to implement an algorithm from
scratch based on the descriptions from Stack Over�ow answers, even if there
was an implementation readily available in the post. In 35.5% of the studied
�les, developers used Stack Over�ow posts as an information source for later
reference.

To further understand the barriers of reusing code and to obtain sugges-
tions for improving the code reuse process on Q&A platforms, we conducted
a survey with 453 open-source developers who are also on Stack Over�ow. We

Yuhao Wu · Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University, Japan
E-mail: {wuyuhao,inoue}@ist.osaka-u.ac.jp

Shaowei Wang (B) · Cor-Paul Bezemer
SAIL, Queen's University, Canada
E-mail: {shaowei,bezemer}@cs.queensu.ca

2 Yuhao Wu et al.

found that the top 3 barriers that make it di�cult for developers to reuse
code from Stack Over�ow are: (1) too much code modi�cation required to �t
in their projects, (2) incomprehensive code, and (3) low code quality.

We summarized and analyzed all survey responses and we identi�ed that
developers suggest improvements for future Q&A platforms along the follow-
ing dimensions: code quality, information enhancement & management, data
organization, license, and the human factor. For instance, developers suggest
to improve the code quality by adding an integrated validator that can test
source code online, and an outdated code detection mechanism. Our �ndings
can be used as a roadmap for researchers and developers to improve code reuse.

1 Introduction

Technical question and answer (Q&A) platforms such as Stack Over�ow have
become more and more important for software developers to share knowledge.
Developers can post questions on these Q&A platforms, which in turn are an-
swered by other developers. These answers often contain source code snippets.
As of August 2017, Stack Exchange reports that there are approximately 7.6
million users and 14 million questions with 23 million answers on Stack Over-
�ow (Stack Exchange, 2017). Among those answers, 15 million (75%) have
at least one source code snippet attached, which forms a huge code base for
developers to reuse source code from.

However, reusing source code is not easy (Gamma et al., 1995). For exam-
ple, these are two of the challenges that developers face when reusing source
code from Q&A platforms:

(1) It is di�cult for developers to �nd suitable source code based on their
particular needs, such as language, functionality, and performance (Wang
et al., 2014a). To address this challenge, a number of studies have been
done to help developers to locate more relevant source code snippets (Pon-
zanelli et al., 2014a,b; Wang et al., 2014a,c).

(2) Even if developers are able to �nd suitable source code, it may be dif-
�cult to integrate the code in their own projects. For example, parame-
ters may need to be adjusted, or additional source code may need to be
added (Cottrell et al., 2008). To address the challenge of code integration,
various techniques have been proposed (Cottrell et al., 2008; Meng et al.,
2011; Yellin and Strom, 1997; Meng et al., 2013; Hua et al., 2015), such
as automatically renaming variables to make the code �t in the required
context.

Prior studies (Gharehyazie et al., 2017; Treude and Robillard, 2017; Xia
et al., 2017; Barzilay, 2011) on reusing source code from Q&A platforms have
mostly focused on helping developers to locate relevant source code, and on
integrating that source code into their own project. In this study, we build
upon these studies by investigating how developers utilize code from Q&A
platforms. Such knowledge will help us better understand the potential barriers

How Do Developers Utilize Source Code from Stack Over�ow? 3

that developers face when reusing code from Q&A platforms. In this paper,
we use this knowledge to provide a roadmap for improving source code reuse
on next-generation Q&A platforms.

We �rst conduct an exploratory study of 289 source code �les from 182
open-source projects, which contain at least one link to a Stack Over�ow post.
We manually study each �le and its linked Stack Over�ow post, to investigate
how developers reuse code from Stack Over�ow. We found that:

� In 44% of the studied �les, source code had to be modi�ed before it could be
used in the developer's own project. The required modi�cation varied from
simple refactorings to a complete reimplementation. This �nding provides
empirical evidence for the importance of prior studies on automatic code
integration (Feldthaus and Møller, 2013; Alnusair et al., 2016; Wang et al.,
2016b).

� In 12.5% of the studied �les, developers reimplemented code based on the
idea of a Stack Over�ow answer, which suggests that Q&A platforms should
consider to summarize key points that are discussed in a post to give de-
velopers a quick overview of a question and its answers.

� Developers reuse source code from non-accepted answers (26%) for several
reasons, such as the simplicity and performance of the source code. Some
developers even adopt answers that are total opposites from what the orig-
inal asker wanted but meet their needs. Hence, Q&A platforms should
consider to improve the way of organizing answers, so that developers can
�nd the most suitable answers based on their requirements easily, such as
voting on the di�erent aspects (e.g., readability or performance) of answers
or adding tags for answers.

To further understand the barriers that developers face when reusing code
and to collect suggestions for improving the code reuse process on Q&A plat-
forms, we conducted a survey of 453 open-source developers who are also on
Stack Over�ow. We highlight our �ndings as follows:

� Slightly more participants prefer reimplementing source code
over reusing source code from Q&A platforms. The reasons are
the di�culty of having to make the code �t in their own projects,
and a low comprehension or low quality of the code from Q&A
platforms. These �ndings provide empirical evidence for the importance
of research on code integration and code comprehension, and highlight the
need of providing code quality indicators on next-generation Q&A plat-
forms.

� 80% of the participants do not have a good understanding of the
licenses of the Q&A platforms. In addition, 57% of the partici-
pants think that having more information about the code license
is important. These �ndings suggest that next-generation Q&A platforms
should make code licensing information more visible to developers.

� The most popular suggestion category for improving code reuse
on next-generation Q&A platforms was code quality (35% of the

4 Yuhao Wu et al.

suggestions). We categorized the suggestions for next-generation Q&A
platforms into �ve categories: code quality, information enhancement &
management, data organization, license, and human factor. A large part
of the code quality suggestions were about adding an online code validator
(42.2%) and a detection mechanism for outdated source code (29.7%).

In summary, the di�culty of �tting code in their own projects, a low com-
prehension and a low quality of the code are the top barriers that prevent
developers from reusing code. Lacking a good understanding of code license is
also an important barrier for code reuse. Thus, future studies are encouraged
to address these barriers to better facilitate code reuse for developers.

The rest of this paper is organized as follows. Section 2 introduces the
background and related work of our study. Section 3 introduces our research
questions and describes our data collection process. Our exploratory study is
described in Section 4. Section 5 presents the survey design. Section 6 sum-
marizes and analyzes the survey results, and presents our roadmap for next-
generation Q&A platforms. Section 7 describes the threats to validity. And
�nally, Section 8 concludes the paper.

2 Background & Related Work

In this section, we give background information and discuss related work about
one of the most popular technical Q&A platforms, Stack Over�ow. We discuss
Stack Over�ow along four dimensions: leveraging knowledge, understanding
the quality of posts, source code reuse, and code licensing.

2.1 Leveraging Knowledge from Stack Over�ow

Nowadays, technical Q&A platforms, with Stack Over�ow being the most
prominent, have become an important way for researchers and practitioners
to obtain knowledge about and �nd solutions to their programming problems
(Treude et al., 2011; Abdalkareem et al., 2017; Wang et al., 2017c). Develop-
ers are allowed to post questions, answer questions and vote on questions or
answers on Q&A platforms. When posting questions or answers, developers
often attach snippets of source code to explain their questions or answers along
with the textual description. For example, Figure 1 shows an example of an
answer that contains source code on Stack Over�ow. The asker asked how to
get the HTML of a selected object with the jQuery library, and the answerer
posted an answer that provides a solution in the form of the attached source
code.

During the process of asking and answering questions, Stack Over�ow ac-
cumulates a large amount of knowledge. To leverage the vast amount of knowl-
edge on Stack Over�ow, several approaches have been proposed. Treude and
Robillard (2016) presented a machine learning based approach, SISE, to aug-
ment API documentation using answers on Stack Over�ow. Gao et al. (2015)

How Do Developers Utilize Source Code from Stack Over�ow? 5

Listing 1: Source code reuse example.

1 //http :// stackoverflow.com/questions /2419749/get -

2 // selected -elements -outer -html

3 jQuery.fn.outerHTML = function (s) {

4 return s

5 ? this.before(s).remove ()

6 : jQuery("<p>").append(this.eq(0).clone()).html();

7 };

proposed an automated approach to �x recurring crash bugs by leveraging in-
formation (e.g., questions with similar crash traces) on Stack Over�ow. Azad
et al. (2017) proposed an approach to extract API call rules from version
history and Stack Over�ow posts. Chen et al. (2017) proposed an automatic
approach to build a thesaurus that contains morphological forms of software
engineering terms. These studies make use of the text and code information on
Stack Over�ow to automatically generate or enrich existing software artifacts
and show promising results. Our paper is di�erent from these studies as we
are interested in studying how developers utilize knowledge (i.e., source code)
from Stack Over�ow.

2.2 Understanding the Quality of Posts on Stack Over�ow

Stack Over�ow allows askers to mark at most one answer as the �accepted
answer� to indicate whether the answer meets their requirement (see Figure 1).
Stack Over�ow allows developers to upvote or downvote a post (e.g., a question
or an answer) to express whether the post is useful. The total number of up
and downvotes that a post receives is displayed as a score next to the post.
For example, the score of the question in Figure 1 is 673. In general, answers
and questions with a high score are usually regarded as high-quality ones.

Several studies have been done to investigate the quality of questions and
answers on Q&A platforms (Sillito et al., 2012; Treude et al., 2011; Ponzanelli
et al., 2014c; Wang et al., 2017b). Sillito et al. (2012) performed an empirical
study on factors that make a good source code example on Stack Over�ow.
They found that explaining important elements and presenting a solution step-
by-step make a good example. Treude et al. (2011) performed a study on
Stack Over�ow to explore which questions are answered well and which ones
remain unanswered. They found that source code is an important factor for
�code review� questions to get a good answer. Ponzanelli et al. (2014c) studied
the factors that potentially a�ect the quality of questions on Stack Over�ow.
They showed that the attached source code is an important factor for question
quality. In this paper we study whether developers tend to reuse source code
from a high-quality answer (i.e., a high-voted answer).

6 Yuhao Wu et al.

Fig. 1: An example of a question and its accepted answer on Stack Over�ow.

2.3 Source Code Reuse from Stack Over�ow

Source code reuse can be commonly observed (An et al., 2017). Listing 1 shows
an example of code reuse. This source code snippet, which is taken from a
GitHub project1 , is reused from the Stack Over�ow post shown in Figure 1.

To help developers reuse source code, several approaches have been pro-
posed. Rigby and Robillard (2013) proposed an approach to extract code ele-
ments from various documents such as Stack Over�ow posts. They evaluated
their approach on 188 Stack Over�ow posts containing 993 code elements.
Their technique achieved an average 0.92 precision and 0.90 recall. Ponzanelli
et al. (2013) proposed an Eclipse plugin named Seahawk that helps develop-
ers search and import code snippets from Stack Over�ow. Then they proposed
an Eclipse plugin named Prompter which automatically searches and identi-
�es Stack Over�ow discussions, evaluates their relevance based on the given
the code context in the IDE, and noti�es the developer if a user-de�ned con�-
dence threshold is surpassed (Ponzanelli et al., 2014a,b). Armaly and McMil-
lan (2016) presented a novel reuse technique that allows programmers to reuse

1 https://goo.gl/X84SFi

https://goo.gl/X84SFi

How Do Developers Utilize Source Code from Stack Over�ow? 7

functions from a C or C++ program, by recording the state of the dependen-
cies during one program's execution, and replaying them in the context of a
di�erent program.

Di�erent from prior studies which focused on proposing approaches to re-
trieve code for developers to reuse, we are interested in studying how develop-
ers utilize the source code from Q&A platforms and which barriers they face
when doing so.

2.4 Code Licensing on Stack Over�ow

Understanding the license of a source code snippet is an important part of code
reuse. Developers need to adhere to certain licenses (e.g., MIT and CC BY-
SA 3.0) when reusing code from Q&A platforms. For example, developers may
copy-and-paste source code from Stack Over�ow posts into their own projects
as long as they adhere to the Creative Commons Attribute-ShareAlike (CC
BY-SA 3.0) license2, according to an o�cial Stack Over�ow blog post (Atwood,
2009). One of the requirements of this license is that attribution is needed from
the developers by putting a link to the original Stack Over�ow post in their
source code comments.

A signi�cant number of studies have been performed on code licensing.
An et al. (2017) studied whether developers respect license restrictions when
reusing source code from Stack Over�ow in Android apps or vice versa. With
a case study of 399 Android apps, they found 232 code snippets in 62 Android
apps which were potentially reused from Stack Over�ow, while 1,226 Stack
Over�ow posts contained code from 68 Android apps. In total, An et al. ob-
served 1,279 potential license violations. Almeida et al. (2017) performed a
survey among developers on open-source licenses and found that developers
struggle when multiple licenses were involved. The results indicate a need for
tool support to help guide developers in understanding this critical informa-
tion about the license that is attached to software components. In this study,
we would like to understand (1) whether developers are aware about the code
license of Stack Over�ow and (2) whether this code license forms a barrier for
code reuse from Q&A platforms for developers.

3 Research Questions & Data Collection

In this section, we present our research questions and their motivation. In
addition, we describe how we collected the datasets that we use to answer our
research questions.

2 https://creativecommons.org/licenses/by-sa/3.0/

https://creativecommons.org/licenses/by-sa/3.0/

8 Yuhao Wu et al.

3.1 Research Questions

We focus on the following �ve research questions. The �rst two research ques-
tions are answered through an exploratory study on code reuse, in which we
collect empirical evidence about code reuse from Stack Over�ow in open-source
projects. The last three research questions are answered through a survey, in
which we contact developers of open-source projects who are active on Stack
Over�ow as well.

RQ1: To what extent do developers need to modify source code
from Stack Over�ow in order to make it work in their own projects?
Prior research has proposed several ways to utilize the source code from
Stack Over�ow (Rigby and Robillard, 2013; Ponzanelli et al., 2013, 2014a,b).
For example, Ponzanelli et al. (2013) presented an approach to automat-
ically construct queries from the current context in the Eclipse IDE and
retrieve relevant code and its corresponding discussions from Stack Over-
�ow. However, there is no empirical evidence about the process of how
developers are reusing the source code, e.g., whether they copy-and-paste
the original source code without any modi�cation or they need to mod-
ify it considerably. Knowing how developers reuse source code from Q&A
platforms will give us insights on how to make source code reuse easier in
next-generation Q&A platforms.

RQ2: From which part of the Stack Over�ow post does the reused
source code come?
Intuitively, we may expect that accepted answers, or answers with a high
score are the most useful. In this RQ, we study whether this intuition is
correct. In particular, we investigate why developers chose to reuse code
from non-accepted or low-scored answers. By understanding why develop-
ers chose non-accepted or low-scored answers, we can provide insights to
help Q&A platforms organize their answers better so that developers can
�nd solutions more easily.

RQ3: Do developers prefer reusing or reimplementing source code?
Intuitively, reusing source code will consume less e�ort than reimplement-
ing, especially if the source code is well-tested. In this RQ, we survey de-
velopers about the correctness of this intuition. We also investigate which
factors make developers prefer reimplementing source code over reusing it.

RQ4: Is code license a barrier for code reuse for developer?
A prior study shows that the amount of code reuse from Q&A platforms
(i.e., Stack Over�ow) is low (1.70%) (Abdalkareem et al., 2017). One possi-
ble reason for this low percentage is that developers might not attribute the
Q&A platforms from which a source code snippet comes (even though re-
quired by its license). Another possible reason is that some Q&A platforms
(e.g., Stack Over�ow) have a relatively restrictive code license, which might
hinder developers from reusing source code in their own projects. Hence, in
this RQ, we survey developers about their knowledge and understanding

How Do Developers Utilize Source Code from Stack Over�ow? 9

4,878 source
files

Search with
keyword

“stackoverflow”
289 files

Filter out false
positives, small

projects and
duplicates

searchcode.
com

Fig. 2: An overview of our data collection of the exploratory study.

of the code licenses of Q&A platforms, to �nd out whether code license
forms a barrier for code reuse from Q&A platforms for developers.

RQ5: How can code reuse be improved in next-generation Q&A
platforms?
In this RQ, we elicit suggestions from the surveyed developers for improving
next-generation Q&A platforms. We analyze and synthesize their sugges-
tions to de�ne a roadmap for researchers and developers of next-generation
Q&A platforms.

3.2 Data Collection

In the remainder of this section, we describe our data collection process for the
exploratory study (to answer RQ1 and RQ2) and our survey (RQ3�RQ5). All
our studied data and the corresponding analysis are available from our online
appendix (Wu et al., 2017).

3.2.1 Collecting Data for the Exploratory Study

The steps of our data collection process for our exploratory study on code
reuse from Stack Over�ow in open-source projects (Section 4) are shown in
Figure 2. First, we collected source �les that contain an explicit reference to
a Stack Over�ow post from searchcode.com (Searchcode, 2016b), a source
code search website. Then, we removed irrelevant �les such as false positives
and duplicate �les.

Collecting Source Code Files from Open-Source Project Repositories: As ex-
plained in Section 2.4, developers must cite a Stack Over�ow post when they
reuse code or ideas from that post. Hence, to obtain source �les that con-
tain a source code snippet that is reused from a Stack Over�ow post (either
a question or an answer), we search for source �les that contain at least one
hyperlink to a Stack Over�ow post.

To search for such source �les, we use searchcode.com (Searchcode, 2016b)
as our search engine. searchcode.com has indexed over 20 billion lines of
source code from 7 million open-source projects. With its API (Searchcode,
2016a), we were able to collect 4,878 �les in total using �stackover�ow� as the
search keyword. We focused on �les that are written in the �ve most popular

10 Yuhao Wu et al.

51 (19.8%)

95 (36.8%)

18 (7%)

57 (22.1%)

37 (14.3%)

0

25

50

75

100

Java JavaScript Objective C PHP Python

Programming language

co
un

t

Fig. 3: The distribution of the studied Stack Over�ow links over the �ve pro-
gramming languages.

programming languages on Stack Over�ow (Stack Over�ow, 2016) (JavaScript,
Python, Java, PHP, and Objective-C).

Removing Irrelevant Files: The �stackover�ow� keyword can match source �les
that contain the �stackover�ow� keyword outside of a link to a post, e.g.,
in an API name. We manually removed such false positives in this step. In
addition, not all projects in open-source repositories are interesting from a
software engineering point of view. For example, GitHub contains many toy
projects, from which we cannot extract knowledge that is representative of
other projects (Kalliamvakou et al., 2014a). Therefore, to mitigate the e�ects
from small projects, we removed �les that belong to projects with less than
1,000 commits and 10 contributors. We then removed the �les that are du-
plicates of each other (e.g., because they come from forked projects). Finally,
we ended up with 289 unique �les, which belong to 182 open-source projects.
Within these �les, 321 Stack Over�ow hyperlinks were found. Figure 3 shows
the distribution of the studied Stack Over�ow links over the �ve studied pro-
gramming languages.

3.2.2 Collecting Participants for our Survey

We used the dataset provided by Vasilescu et al. (2013) to get candidate par-
ticipants. This dataset includes 93,771 email addresses from the intersection of
users of GitHub and Stack Over�ow. We took a random sample of 6,000 users
from this dataset and sent them email invitations for our online survey. 1,935
of the emails did not reach the survey candidates because the email address
did not exist any more. In the end, we received 453 responses which equals a
response rate of 11.1%.

How Do Developers Utilize Source Code from Stack Over�ow? 11

1.1% (5/453)

70.0% (317/453)

1.3% (6/453)
1.8% (8/453)
2.4% (11/453)

5.5% (25/453)

4.6% (21/453)

5.1% (23/453)
4.9% (22/453)

3.3% (15/453)

1
2
3
4
9
6
8
7
5

10+

0 100 200 300 400
Number of responses

S
.E

. e
xp

er
ie

nc
e

(y
ea

rs
)

Fig. 4: Distribution of the software engineering experience of the participants
in years.

73.5% (333/453)

72.6% (329/453)

77.7% (352/453)

20.3% (92/453)

7.5% (34/453)Other

Academic

Personal

Open Source

Industrial

0 200 400
Number of responses

Fig. 5: Distribution of the types of projects that the participants are working
on.

Figure 4 shows that 87.9% of the participants are experienced software
engineers with more than 5 years experience. Industrial, open-source, and per-
sonal projects are the dominant project types that the participants are involved
in, followed by academic projects (see Figure 5). Note that a participant can
work on more than one type of project.

4 An Exploratory Study of Source Code Reuse from Stack
Over�ow in Open-Source Projects

In this section, we present and discuss the results of our exploratory study of
321 Stack Over�ow links in 289 source code �les of 182 open-source projects.
For each research question in our exploratory study, we discuss the used ap-
proach and results.

12 Yuhao Wu et al.

4.1 RQ1: To what extent do developers need to modify source code
from Stack Over�ow in order to make it work in their own
projects?

Approach: To understand how developers utilize source code from Stack Over-
�ow, we manually analyzed the collected source code and the referenced Stack
Over�ow posts. We manually extracted and categorized the type of code uti-
lization from Stack Over�ow posts for each collected source �le. We performed
a lightweight open coding-like process (Seaman, 1999; Seaman et al., 2008) for
identifying the type of the code utilization. This process involved 3 phases and
was performed by the �rst three authors (i.e., P1�P3) of this paper:

� Phase I: P1 extracted a draft list of types of source code utilization from
Stack Over�ow based on 50 source �les and the linked Stack Over�ow
post. Then, P1 and P2 use the draft list to categorize the same source �le
collaboratively, during which the types were revised and re�ned. At the
end of this phase, we obtained �ve types of source code utilization.

� Phase II: P1 and P2 applied the resulting types of Phase I to independently
categorize all 289 collected source �les. They took notes regarding the
de�ciency or ambiguity of the types for categorizing certain source �les.

� Phase III: P1, P2, and P3 discussed the coding results obtained in Phase II
to revolve the disagreements until a consensus was reached. No new types
were added during this discussion. The inter-rater agreement of this coding
process had a Cohen's kappa of 0.91.

Table 1 shows the �nal categorization of the types of source code utilization
from Stack Over�ow. In our study, one source code �le-Stack Over�ow post
pair could only be categorized as one type. We did not run into con�icts
because of this limitation.

Results: 31.5% of the reused source code was modi�ed in one way
or another. Table 1 shows that 20.5% of the studied �les reused source code
without modi�cation (C1). In 31.5% (C2 and C3) of the �les, the source code
required modi�cation before it could be used. Type C4 (12.5%) indicates that
it is not exceptional that developers converted the ideas written in natural
language to source code from scratch. Type C5 (35.5%) indicates that there
exist developers who use Stack Over�ow as a �programming manual�. The
�nding that 31.5% of the source code reuse required additional modi�cation
implies that �nding the code is only the �rst step for code reuse. More e�ort
is needed to facilitate code reuse from Q&A platforms after retrieving relevant
code from them, such as making the source code work in the required context.
Prior studies have addressed the problem of integrating source code in a target
context automatically (Feldthaus and Møller, 2013; Alnusair et al., 2016; Wang
et al., 2016b). Our �ndings provide empirical support for the importance of
such studies, and suggest that it may be promising to integrate the proposed
code integration techniques into Q&A platforms.

How Do Developers Utilize Source Code from Stack Over�ow? 13

Table 1: The identi�ed types of source code utilization from Stack Over�ow.

ID Name De�nition Count Perc.

C1 Exact Copy Developers copy-and-pasted source code
from Stack Over�ow without any modi-
�cation.

66 20.5%

C2 Cosmetic
Modi�cation

Developers copy-and-pasted source code
from Stack Over�ow with modi�cations
which do not alter the functionality of
that source code (e.g., renaming identi�er
names to make it more readable).

32 10.0%

C3 Non-
cosmetic
Modi�cation

Developers copy-and-pasted source code
from Stack Over�ow with modi�cations
which alter the functionality of that
source code (e.g., adding arguments to a
function prototype).

69 21.5%

C4 Converting
Ideas

Developers did not copy-and-paste any
source code from Stack Over�ow. Instead,
they wrote the source code from scratch by
applying the ideas in the answers.

40 12.5%

C5 Providing
Information

Developers did not reuse any source code
from Stack Over�ow. Instead, they treated
the Stack Over�ow post as an informa-
tion source related to the issue they are
addressing.

114 35.5%

55.1% (38)

1.4% (1)

18.8% (13)

13.0% (9)

11.6% (8)

20.9% (24)

25.2% (29)

30.4% (35)

7.0% (8)

16.5% (19)

23.8% (5)

9.5% (2)

28.6% (6)

4.8% (1)

33.3% (7)

38.2% (26)

2.9% (2)

16.2% (11)

14.7% (10)

27.9% (19)

43.8% (21)

12.5% (6)

8.3% (4)

8.3% (4)

27.1% (13)

0%

25%

50%

75%

100%

Java Javascript Objective C PHP Python

Ty
pe

 o
f s

ou
rc

e
co

de
 u

til
iz

at
io

n

Category
C1: Exact Copy

C2: Cosmetic Modification

C3: Non−cosmetic Modification

C4: Converting Ideas

C5: Providing Information

Fig. 6: The distribution of each type of source code utilization for each of the
studied programming languages.

14 Yuhao Wu et al.

Listing 2: Code snippet from the project.3

1 hours = TimeUnit.MILLISECONDS.toHours(elapsedTimeMilliseconds)

↪→ ;

2 minutes = TimeUnit.MILLISECONDS

3 .toMinutes(elapsedTimeMilliseconds - TimeUnit.HOURS.toMillis

↪→ (hours));

4 seconds = TimeUnit.MILLISECONDS

5 .toSeconds(elapsedTimeMilliseconds - TimeUnit.HOURS.toMillis

↪→ (hours)

6 - TimeUnit.MINUTES.toMillis(minutes));

Listing 3: Code snippet from the Stack Over�ow answer.4

1
2 final long hr = TimeUnit.MILLISECONDS.toHours(l);

3 final long min = TimeUnit.MILLISECONDS

4 .toMinutes(l - TimeUnit.HOURS.toMillis(hr));

5 final long sec = TimeUnit.MILLISECONDS

6 .toSeconds(l - TimeUnit.HOURS.toMillis(hr)

7 - TimeUnit.MINUTES.toMillis(min));

In 10.0% of the studied �les, developers make cosmetic modi�ca-
tions when reusing source code, which may improve the readability
or simplicity of the source code. In the Cosmetic Modi�cation category,
developers copy-and-paste the source code from a Stack Over�ow post and
make modi�cations to the source code which may not be necessary to make
the source code work in the target project. In the example shown in Listing 2
and 3, the developer copied three lines of source code in the accepted answer
from the Stack Over�ow post and renamed the variable name from hr, min,
and sec to hours, minutes, and seconds, respectively.

In 12.5% of the �les, developers wrote the source code from
scratch based on the descriptions of the algorithm. In the example
shown in Listing 4 and Listing 5, developers implemented a function to detect
whether a line intersects with a rectangle (Listing 4), based on an answer from
the Stack Over�ow post shown in Listing 5.

Another example is shown in Listing 6 and 7, where the developers wrote
a regular expression that extracts all Youtube video ids in a string (see List-
ing 6). This source code snippet was modi�ed based on the source code from
the Stack Over�ow post shown in Listing 7, which was written in PHP. In
this example, developers actually rewrote the regular expression in JavaScript

3 https://goo.gl/9ouSz1
4 https://goo.gl/74oVBu
5 https://goo.gl/4ezMUr
6 https://goo.gl/1Wn9vF
7 https://goo.gl/HK5kyV
8 https://goo.gl/eq1Dnk

https://goo.gl/9ouSz1
https://goo.gl/74oVBu
https://goo.gl/4ezMUr
https://goo.gl/1Wn9vF
https://goo.gl/HK5kyV
https://goo.gl/eq1Dnk

How Do Developers Utilize Source Code from Stack Over�ow? 15

Listing 4: Type C5: An example of converting descriptions into source code:
code snippet from the project5 is implemented based on the description of the
algorithm from Stack Over�ow (see Listing 5).

1 Rect.prototype.collideLine = function(p1 , p2) {

2 var x1 = p1[0];

3 var y1 = p1[1];

4 var x2 = p2[0];

5 var y2 = p2[1];

6
7 function linePosition(point) {

8 var x = point [0];

9 var y = point [1];

10 return (y2-y1)*x + (x1 -x2)*y + (x2*y1 -x1*y2);

11 }

12
13 var relPoses = [[this.left , this.top],

14 [this.left , this.bottom],

15 [this.right , this.top],

16 [this.right , this.bottom]

17].map(linePosition);

18
19 var noNegative = true;

20 var noPositive = true;

21 var noZero = true;

22 relPoses.forEach(function(relPos) {

23 if (relPos > 0) {

24 noPositive = false;

25 } else if (relPos < 0) {

26 noNegative = false;

27 } else if (relPos === 0) {

28 noZero = false;

29 }

30 }, this);

31
32 if ((noNegative || noPositive) && noZero) {

33 return false;

34 }

35 return !((x1 > this.right && x2 > this.right) ||

36 (x1 < this.left && x2 < this.left) ||

37 (y1 < this.top && y2 < this.top) ||

38 (y1 > this.bottom && y2 > this.bottom)

39);

40 };

based on the PHP source code from the Stack Over�ow post. We categorized
this �le under the Converting Ideas type since developers cannot reuse the
source code directly from another language, instead, they have to convert the
idea and rewrite it from scratch.

Developers used Stack Over�ow posts in 35.5% of the �les as an
information source for later reference. In 35.5% of the �les, developers
did not reuse any source code from Stack Over�ow. Instead, they put a Stack

16 Yuhao Wu et al.

Listing 5: Description of the algorithm in the Stack Over�ow answer.6

1 Let the segment endpoints be p1=(x1 y1) and p2=(x2 y2).

2 Let the rectangle 's corners be (xBL yBL) and (xTR yTR).

3
4 Then all you have to do is

5
6 A. Check if all four corners of the rectangle are on the

7 same side of the line. The implicit equation for a line

8 through p1 and p2 is:

9
10 F(x y) = (y2 -y1)x + (x1-x2)y + (x2*y1-x1*y2)

11
12 If F(x y) = 0, (x y) is ON the line.

13 If F(x y) > 0, (x y) is "above" the line.

14 If F(x y) < 0, (x y) is "below" the line.

15
16 Substitute all four corners into F(x y). If they 're all

17 negative or all positive , there is no intersection. If

18 some are positive and some negative , go to step B.

19
20 B. Project the endpoint onto the x axis , and check if the

21 segment 's shadow intersects the polygon 's shadow. Repeat

22 on the y axis:

23
24 If (x1 > xTR and x2 > xTR), no intersection (line is to

25 right of rectangle).

26 If (x1 < xBL and x2 < xBL), no intersection (line is to

27 left of rectangle).

28 If (y1 > yTR and y2 > yTR), no intersection (line is

29 above rectangle).

30 If (y1 < yBL and y2 < yBL), no intersection (line is

31 below rectangle).

32 else , there is an intersection. Do Cohen -Sutherland or

33 whatever code was mentioned in the other answers to

34 your question.

35
36 You can , of course , do B first , then A.

Listing 6: Code snippet from the project in JavaScript.7

1 YOUTUBE_REGEXP: new RegExp(

2 '(?: https ?://)?' + // Optional scheme. Either ...

3 '(?:www \\.)?' + // Optional www subdomain

4 '(?:' + // Group host alternatives

5 'youtu \\.be/' + // Either youtu.be,

6 [...]

7 ')' // End negative lookahead assertion.

8),

How Do Developers Utilize Source Code from Stack Over�ow? 17

Listing 7: Code snippet from the Stack Over�ow answer in PHP.8

1 // Linkify youtube URLs which are not already links

2 function linkifyYouTubeURLs($text) {

3 $text = preg_replace ('~(?#!js YouTubeId Rev :...

4 # Match non -linked youtube URL in the wild ...

5 https ?:// # Required scheme ...

6 (?:[0 -9A-Z -]+\.)? # Optional subdomain.

7 (?: # Group host alternatives.

8 youtu\.be/ # Either youtu.be,

9 [...]

10 $text);

11 return $text;

12 }

Over�ow hyperlink in their source code to provide background information
about the issue or solution. For example, there is a �le9 in which the developer
gave a warning that the usage of dict can be dangerous if multiple headers are
set in the Set-Cookie header and the developer also provided the link to the
Stack Over�ow post which discussed this issue in the source code.

Developers are the most likely to reuse code or ideas in JavaScript.
Figure 6 shows the distribution of each type of source code utilization for each
studied programming language. We observe that code and idea reuse was the
highest in JavaScript (79.1% of the studied JavaScript �les). One possible ex-
planation is that Stack Over�ow provides an online running environment for
JavaScript, which may make developers more con�dent about reusing code or
ideas in JavaScript from Stack Over�ow than in other languages.

31.5% of the reused source code required additional modi�cation, which
shows the importance of studies on automatic code integration. In 12.5%
of the studied �les, developers reimplemented code based on an idea, which
suggests that Q&A platforms should consider to summarize the key points
that are discussed in a post to give developers a quick view of the question
and its answers.

4.2 RQ2: From which part of the Stack Over�ow post does the
reused source code come?

Approach: We manually inspected from which part (e.g., accepted answer,
non-accepted answer, or question) of the Stack Over�ow post the reused source
code originates. We also check whether the answer is the highest-scored one.
Two of the authors manually examined each source code �le and the linked
post (including the question, all answers, and all comments to the answers)
individually and categorized it. Discrepancies were discussed until a consensus
was reached. The discrepancies were due to the di�culty of identifying the

9 https://goo.gl/KKbPWk

https://goo.gl/KKbPWk

18 Yuhao Wu et al.

Table 2: Where does the reused source code come from?

Source Highest-voted Non-highest-voted Total Perc.

Accepted Answer 144 11 155 48%
Non-Accepted Answer 35 48 83 26%
Question - - 5 2%
NOT REUSE - - 78 24%

Total - - 321 100%

Listing 8: Code snippet in the project that implements a method to generate
GUIDs.10

1 // http :// stackoverflow.com/questions /105034/how -to-

2 // create -a-guid -uuid -in-javascript

3 function generateID () {

4 return "avalon"

5 + Math.random ().toString (36).substring (2, 15)

6 + Math.random ().toString (36).substring (2, 15)

7 }

exact answer that was reused (in particular, when only the idea of a code
snippet was reused). After identifying the reused answer, the categorization
was straightforward. The inter-rater agreement of this categorization had a
Cohen's kappa of 0.85.

Results: In 26% of the studied �les developers chose a non-accepted
answer and in 58%, those non-accepted answers were not the highest-
scored ones. The results of the categorization are shown in Table 2. As we
can see from the results, not all reused source code came from an accepted an-
swer. In 48% of the studied �les, developers chose source code from an accepted
answer. However, there are still a considerable number (26%) of �les where de-
velopers choose the source code from non-accepted answers. Moreover, among
those non-accepted answers, 58% were not the highest-scored ones, which in-
dicates that developers certainly did not always choose source code from the
accepted or highest-scored answer. In the remainder of this section, we discuss
the situations in which developers reused source code from a non-accepted
answer in more detail.

4.2.1 Di�erent Requirements than the Question Asker

Description: Developers chose source code from a non-accepted answer be-
cause they had di�erent requirements than the original question asker.

Example: A developer wanted to implement a method to generate GUIDs. The
source code in this example is shown in Listing 8. This source code snippet is

10 https://goo.gl/Z1pRMS

https://goo.gl/Z1pRMS

How Do Developers Utilize Source Code from Stack Over�ow? 19

Listing 9: Code snippet in the accepted answer on Stack Over�ow.12

1 function guid() {

2 function s4() {

3 return Math.floor ((1 + Math.random ())

4 * 0x10000).toString (16)

5 .substring (1);

6 }

7 return s4() + s4() + '-' + s4() + '-' + s4()

8 + '-' +s4() + '-' + s4() + s4() + s4();

9 }

actually from a non-accepted answer11 on Stack Over�ow which has 37 votes,
while the accepted answer has 1290 votes. The source code provided by the
accepted answer is shown in Listing 9.

According to the description in the answer that contains the source code,
the algorithm in Listing 8 is simpler and has very good performance, but
not compliant with the RFC 4122 standard. The author of this answer also
attached a performance test result in which several algorithms that are men-
tioned in other answers of the Stack Over�ow post are compared, which shows
that the algorithm in Listing 8 outperforms the others. Hence, one possible ex-
planation is that the developer who adopted this low-scored answer prioritizes
performance and simplicity over other factors, such as whether the generated
result is compliant with a standard.

4.2.2 Fixing Bugs

Description: Developers adopted source code that improves on the accepted
answer (e.g., by �xing a bug or handling additional cases).

Example: A developer was looking for a method to draw a dashed line around
a selection area in JavaScript13. The non-accepted answer14 improves the ac-
cepted answer by utilizing the built-in transformation functionality of Canvas,
and also handles special cases where the line is vertical, which was not ad-
dressed in the accepted answer.

4.2.3 Improving Speed

Description: Developers adopted source code with a better performance.

Example: A developer was looking for an algorithm that sorts an array by
the Levenshtein Distance in JavaScript. According to the comments below the

11 https://goo.gl/aC4auZ
12 https://goo.gl/xpAcga
13 https://goo.gl/gzMCgy
14 https://goo.gl/8foVXq

https://goo.gl/aC4auZ
https://goo.gl/xpAcga
https://goo.gl/gzMCgy
https://goo.gl/8foVXq

20 Yuhao Wu et al.

accepted answer, the implementation in the accepted answer performed better
than the one provided by the original asker. However, a non-accepted answer
provided an improved version of the accepted answer which was described as
�Most speed was gained by eliminating some array usages�, which was reused
by the developers in their project. Thus we believe this developers gave per-
formance a higher priority.

Unsurprisingly, we found that developers have di�erent requirements for
their solutions. Even if answers that are provided in the post do not meet the
requirements of the asker, other developers may �nd them useful (e.g., a solu-
tion with higher performance). For developers who are looking for solutions on
Stack Over�ow, it is better to go through all the answers of a relevant question
instead of focusing on the accepted answers. Q&A platforms should improve
the way of organizing answers, so that developers can �nd the most suitable
answers based on their requirements faster. For example, Q&A platforms may
allow users to vote on di�erent aspects, such as the readability or performance
of the source code in an answer. The results from our user survey con�rm the
need for this improvement (see Section 6.2).

Developers reused code from a non-accepted or low-scored answer for various
reasons, such as the simplicity and performance of the source code. Some
even reused code from an answer that delivered a total opposite from what
the asker wanted. Hence, Q&A platforms should improve the way in which
answers are organized, so that developers can �nd the most suitable answers
based on their requirements easily.

5 A Survey on Code Reuse from Stack Over�ow

Survey Design: Two of the authors posited the survey questions that cover
the three research questions (see Section 3.1). The third author checked the
questions to eliminate any ambiguity from the wording of the survey. Before
sending the survey to the 6000 participants that we collected in Section 3.2.2,
we sent a draft version of the survey to 20 participants (excluded from the
6000 participants). We received feedback from seven of them, and re�ned the
survey based on this feedback. The questions in the survey are available in the
Appendix. The survey is divided into three parts:

1. Demography (Q1 - Q7): these questions collect information about the
software engineering background of the participants.

2. Barriers (Q8 - Q17): these questions collect information about the bar-
riers that the participants face when reusing source code from Q&A plat-
forms. We included only the responses from participants who have ever
reused source code from Q&A platforms (i.e., those who answered yes to
Q7, which were 380 (83.9%) participants).

3. Suggestions (Q18 - Q19): these questions collect suggestions for next
generation Q&A platforms. Every participant could answer these two ques-

How Do Developers Utilize Source Code from Stack Over�ow? 21

5.3% (20/380)
1.8% (7/380)

25.0% (95/380)
15.0% (57/380)

33.2% (126/380)
29.2% (111/380)

35.5% (135/380)
52.6% (200/380)

1.1% (4/380)
1.3% (5/380)

Daily

Weekly

Monthly

Less frequent than monthly

Not sure

0 100 200 300
Number of responses

Type
Reimplement

Reuse

Fig. 7: Comparison of frequency of reusing and reimplementing source code.

tions, regardless of whether they ever reused source code from Q&A plat-
forms.

Data Analysis: The responses of the survey are available in our online ap-
pendix (Wu et al., 2017). The survey contained 12 open-ended questions in
which participants could choose to input their own responses in free-form text.
For each of these questions, we used an open coding-like approach to let the
coding schema emerge during the analysis (Glaser, 2017). We adopted a three
phase coding process:

� Phase I: two of the authors coded the responses of each open-ended question
individually. As a result, both authors had their own set of codes for the
answers. Then, these two authors discussed their draft code schema and
made a revised version of the code schema.

� Phase II: the two authors used the revised schema to code the answers.
Then, they discussed and resolved con�icts. The Cohen's Kappa value for
this coding result was 0.92. As a result, a uni�ed coding schema was de-
veloped and applied to all the answers.

� Phase III: three of the authors discussed the coding results obtained in
Phase II to revolve disagreements until a consensus was reached. The in-
terrater agreement of this coding process had a Cohen's kappa of 0.79.

We answer RQ3 and RQ4 in the remainder of this section and RQ5 in
Section 6.

5.1 RQ3: What are the preferences of developers when it comes to
reusing code?

Developers reimplement source code slightly more frequently (i.e.,
for daily, weekly, and monthly cases) than that they reuse source
code. Figure 7 shows the comparison of frequency of reimplementing source
code and reusing source code from Q&A platforms. The number of participants

22 Yuhao Wu et al.

Table 3: Reasons for choosing reimplementing over reusing source code. (Multi-
selection allowed, hence the sum of the percentages is larger than 100%.)

Category Description Perc.

Context The code should be written according to its context. 65%
Comprehension Do not understand the source code to be reused. 44%
Quality The quality of the source code is too low. 32%
Time consuming Reusing source code takes more time. 17%
Other Other reasons. 7%

who reimplement source code monthly (33.2%) and those who reuse source
code monthly (29.2%) are close, while the di�erence increases to 25.0% vs.
15.0% at a weekly frequency.

A majority of developers (65%) prefer reimplementing source
code, due to the code modi�cation that is required to make the code
from the post work in their own project. Table 3 shows the reasons for
choosing reimplementation over the reuse of source code. The top reason that
makes developers prefer reimplementing source code is the code modi�cation
that is required to make the code from the post work in their own projects. This
�nding is consistent with our �nding in RQ1 (i.e., most code needs modi�cation
before reusing) and also provides empirical evidence for the importance of
research on code integration. Several studies have been done on automatically
retrieving and integrating code in a user's project context (Alnusair et al.,
2016; Galenson et al., 2014; Wang et al., 2016b). However, these approaches
are not widely adopted by developers. Future studies should investigate which
factors prevent such tools from being applied in practice.

Code comprehension ranks as the second most important reason that pre-
ferring reimplementation over code reuse. This �nding is in line with the work
by Xin et al. (2017), which showed that developers spend 58% of their time
on program comprehension activities. Hence, next-generation Q&A platforms
should investigate how to improve comprehension of the source code in a post
to facilitate its reuse. Approximately one-third (32%) of the participants com-
plained about the low code quality on Stack Over�ow, which highlights the
need for next-generation Q&A platforms to improve or verify the code quality
of source code snippets.

An interesting observation was that 17% of the participants stated that
reusing source code takes more time than reimplementing it, which is against
the common wisdom. One possible reason is that if the source code snippet is
large or complex, it could take more time to comprehend it than to make it
work in another context.

How Do Developers Utilize Source Code from Stack Over�ow? 23

21.1% (80/380)

32.9% (125/380)

30.5% (116/380)

11.8% (45/380)

3.7% (14/380)

Yes (fully understand)

Yes (a little)

No (want to know more)

No (do not care)

Other

0 50 100 150 200
Number of responses

Fig. 8: Participants' awareness of the licenses of Q&A platforms.

Developers reimplement source code slightly more frequently than that they
reuse source code. The primary reason is that it would take longer to adapt
the source code to work in their own projects, than to simply reimplement it.
Our observations provide empirical evidence for the importance of research
on automated code integration and code comprehension, and highlight the
need of improving the quality of code snippets on next-generation Q&A
platforms.

5.2 RQ4: Is code license a barrier for code reuse for developers?

In 75.2% of the cases, participants do not have a good understanding
of the license terms of Q&A platforms, which indicates that there
may be license violation issues when developers reuse source code
from Q&A platforms. Figure 8 shows the results of participants' aware-
ness of the licenses of Q&A platforms. An et al. (2017) studied code reuse on
Android apps and observed 1,279 potential license violation cases where devel-
opers reused source code from Q&A platforms in Android apps, or vice versa.
Our survey results give a possible explanation for such violations. The �Other�
category in Figure 8 includes cases in which the participants did not give a
concrete answer, e.g., �Depends on the platform. Stack Over�ow is attribution-
required, but the requirements of most other sites are vague or not generally
known.�

In 39.2% of the cases, participants are not sure whether the
license of a Q&A platform is compatible with that of their own
project. Figure 9 shows that an additional 12.1% of the participants (strongly)
disagrees that the license of a Q&A platform is compatible with that of their
own project. Hence, 51.3% of the participants may experience di�culties (or
cause a violation) when reusing code from Q&A platforms due to their li-
cense. These di�culties were noticeable from the survey responses when the
participants were asked why they preferred reimplementing over reusing source
code. For example, one participant mentioned that �licensing is sometimes an
issue.�.

24 Yuhao Wu et al.

3.7% (14/380)

8.4% (32/380)

39.2% (149/380)

30.8% (117/380)

17.9% (68/380)

Strongly disagree

Disagree

Not sure

Agree

Strongly agree

0 50 100 150 200 250
Number of responses

Fig. 9: Participants' opinion about license compatibility between Q&A plat-
forms and their projects.

6.6% (25/380)

12.1% (46/380)

23.9% (91/380)

27.1% (103/380)

30.3% (115/380)

Very unimportant

Unimportant

Not sure

Important

Very important

0 50 100 150 200
Number of responses

Fig. 10: Importance of having more information on license.

More than half of the participants (57.4%) think that having
more information about the code license is (very) important (see
Figure 10). Together with the �nding that most participants do not have a
good understanding of the code license of Q&A platforms, these �ndings reveal
a need for clearer information about the code license of Q&A platforms.

Generally speaking, participants did not have a good understanding of the
code license on Q&A platforms. More than half of the participants believed
that, or were unsure whether, there exist incompatibilities between the code
license of their own project and Q&A platforms. Almost 60% of the par-
ticipants thought that Q&A platforms should give more information about
their code license. Based on these observations, next-generation Q&A plat-
forms should have clearer license information and make that information
more visible to developers.

6 A Roadmap for Next-Generation Q&A platforms

In this section, we summarize and analyze the results for RQ5 (How can code
reuse be improved in next-generation Q&A platforms?). In total, we collected

How Do Developers Utilize Source Code from Stack Over�ow? 25

Table 4: The categorization of code quality suggestions � 64 out of 183
(35.0%).

Category Description (D) � Example (E) Perc. Count

Integrated validator D: Integrated validator that can test the code
snippets on Q&A platforms.
E: �An inbuilt REPL environment for as
many languages/environments as possible.�

42.2% 27

Outdated code D: Answers (including source code) on Q&A
platforms su�er from out-of-date problems.
Participants are seeking for a solution to this
problem.
E: �make date important in marking outdated
code, and deprecate those snippets via the
community�

29.7% 19

Answer quality D: Classi�er that helps distinguish high and
low quality answers.
E: �Better support for answers that are good,
but out of date.�

17.2% 11

Code review D: Integrated code review tool that helps im-
prove the code quality.
E: �In-browser code review and commenting
similar to that provided by commercial code
review tools.�

10.9% 7

150 responses for Q19 in the survey. 22 of these responses were not actually
suggestions for next-generation Q&A platforms (e.g., �Not much, quite happy
with Stack Over�ow.�) and were excluded from the following analysis. Each
response can contain multiple suggestions. In total, we extracted 183 sugges-
tions from the responses. Using our open coding-like approach (see Section 5),
each suggestion was categorized into one of these �ve categories: code qual-
ity, information enhancement & management, data organization, license, and
human factors. We categorized suggestions that did not fall into one of these
categories into a sixth �other� category. We highlight the �ndings and discuss
implications on future research of next-generation Q&A platforms of each cat-
egory in the remainder of this section.

6.1 Suggestions on Code Quality

Next-generation Q&A platforms should integrate mechanisms for
online code validation and detecting outdated code. Code quality is the
most popular type of suggestion (35.0%) from the participants. Table 4 shows
the categorization of the suggestions that participants made on improving the
code quality on Q&A platforms. The two most important suggestions from
developers on improving code quality were adding (1) an integrated validator
(27 participants) that can test source code online and (2) an outdated code
detection mechanism (19 participants) that can identify code for old software
versions.

26 Yuhao Wu et al.

An integrated validator is a convenient way of testing source code snippets
online to ensure the quality of the source code. Participants described such a
tool for example as follows: �The ability to interact with and run the code ex-
amples written in answers and questions�. Several Q&A platforms have started
to integrate online validation into their websites. For example, Stack Over�ow
can validate three web-languages: HTML, CSS, and JavaScript (Stack Over-
�ow, 2014). However, Stack Over�ow does not support online validation of
other languages, such as Java and C++, which are also very popular on Stack
Over�ow. There are several challenges when it comes to online validation of
all languages.

One of the biggest challenges is to make an incomplete code snippet run
correctly, since code snippets on Q&A platforms are usually not minimal work-
ing examples (MWEs). Often the answerer only needs to implement the core
part of a solution and may leave out necessary context information (e.g., the
required software version). To address this problem, prior studies have pro-
posed several approaches to extend incomplete code snippets (not limited to
those on Q&A platforms) into compilable ones based on program analysis and
machine learning techniques (Wang et al., 2016a; Nguyen et al., 2012; Raychev
et al., 2014). However, none of these approaches can guarantee the correctness
of the extended code. For example, there is a function called �foo� in a code
snippet. To make this code snippet compilable, Q&A platforms need to infer
where this function comes from and then import the corresponding library.
However, it is di�cult to automatically infer the exact library based on the
source code snippet only. This problem may be solvable in Q&A platforms
by leveraging the description that comes with the source code. Hence, future
research should investigate whether the description of the source code can be
used to improve the correctness of the automatic code extension.

Providing an outdated code detection mechanism is the second most pop-
ular suggestion in the code quality category. Many of the participants men-
tioned that source code on Q&A platforms is often outdated and not suitable
for current technologies or situations. For example, one participant suggested:
�Have explicit mechanisms for dealing with content that goes out of date due
to platform or language changes.� Some participants suggested a mechanism
that clari�es the API version of the source code: �Clear associates between the
code snippets the versions of the API under which it will work. This is par-
ticularly when working with APIs that change frequently, like iOS and Unity.�
Some also suggested deprecating outdated answers: �Make date important in
marking outdated code, and deprecate those snippets via the community.� This
problem was recognized by various developers on Stack Over�ow (Krumia,
2014) and received wide attention from the Stack Over�ow communities.

However, as far as we know, no existing study has investigated outdated
source code or solutions on Q&A platforms so far. Hence, there is a need for
future research on developing mechanisms to deal with outdated source code
or solutions. There are two primary directions to deal with outdated code
or solutions. First, future studies should propose approaches to automatically
identify outdated source code or solutions in Q&A platforms using machine

How Do Developers Utilize Source Code from Stack Over�ow? 27

Table 5: The categorization of Information enhancement & management sug-
gestions � 43 out of 183 (23.5%).

Category Description (D) � Example (E) Perc. Count

Answer tagging D: Better tagging-like information system
for answers.
E: �Provide/require tagging of the version
number(s) of the language [...]�

37.2% 16

Code evolution D: Better management of the evolu-
tion/revisions of code snippets.
E: �where does the code come from and
copied to, and also the revisions inside the
platform.�

14.0% 6

Resources linking D: Q&A platforms should suggest for
other resources (e.g., books, API docu-
ments, libraries etc.)
E: �Books suggestions based on ques-
tions.�

11.6% 5

Answer writing support D: Support for writing better question-
s/answers.
E: �[...] it would be nice if it would be
easier to ask a good question [...]�

9.3% 4

Other D: Other aspects of information enhance-
ment & management.
E: �Built in support within an IDE to
make it faster to get the answer you are
interested in.�

27.9% 12

learning techniques. Second, future research should investigate how incentive
systems can motivate communities to identify and update outdated source
code or solutions.

6.2 Suggestions on Information Enhancement & Management

Next-generation Q&A platforms should allow tagging for answers.
Information enhancement & management (23.5%) is the second most popular
suggestion for developers on Q&A platforms. Table 5 presents the results of
suggestions related to information enhancement and management. Based on
the observations, future studies should focus on recommending the tagging-like
information for answers. These recommendations could be made automatically
using, e.g., machine learning techniques (Wang et al., 2017a, 2014b; Zhou et al.,
2017), or aspect-mining techniques (Wong et al., 2008; Wang et al., 2010; Yu
et al., 2011; Liu et al., 2015; Zhao and Li, 2009).

6.3 Suggestions on Data Organization

Next-generation Q&A platforms should better organize their data,
for example by providing a better searching and indexing mechanism

28 Yuhao Wu et al.

Table 6: The categorization of data organization suggestions � 21 out of 183
(11.5%).

Category Description (D) � Example (E) Perc. Count

Code searching/indexing D: Support for easier code search.
E: �Source Code indexing for easier re-
trieval. It could also give the possibility
to �nd example of usage functions.�

47.6% 10

Duplicate posts D: An automatic way of clustering du-
plicate questions/answers.
E: �Auto-suggest similar questions, par-
ticularly for questions that don't have
answers.�

38.1% 8

Comments D: Support on utilizing the comments of
posts.
E: �Code in *comments* must be ex-
pressed better, than on Stack Over�ow.�

14.3% 3

and better duplicate detection. As shown in Table 6, ten participants sug-
gested that Q&A platforms should have a better way to index and search code.
For example, one of the participants mentioned: �Ability to search questions
based on the version of the framework or language I'm working with�. Eight
participants suggested that Q&A platforms should have an automatic way
to detect duplicate or similar posts and be organized in a better way. Three
participants suggested to improve the utilization of the comments on posts.

In prior studies (Wang et al., 2014a; McMillan et al., 2011; Lv et al., 2015;
Bajracharya et al., 2006; Searchcode, 2016b), researchers have studied code
search engines to help developers to improve their search e�ciency on source
code. Our �ndings support these studies, and it would be interesting to inte-
grate such code search engines into Q&A platforms.

Researchers proposed various approaches to help Q&A platforms detect
duplicate questions automatically (Zhang et al., 2015; Ahasanuzzaman et al.,
2016; Wang et al., 2017d; Zhang et al., 2017). The common way to identify du-
plicate questions is to measure such questions' similarity in terms of semantic
meaning. Recently, deep learning has proven its power of capturing semantic
meaning from natural language in several studies (Ganguly et al., 2015; Lai
et al., 2015; Bian et al., 2014; Chen et al., 2016). Hence, future research could
consider to employ deep learning to detect duplicate or �nd similar questions.

6.4 Suggestions on Code License

Next-generation Q&A platforms should make their code licensing
information clearer and more visible. In 12.6% of the cases, participants
suggested to improve license-related issues, in particular to make the license
more clear (16 participants). This percentage is in line with our earlier �nding
that 75.2% of the participants did not have a good understanding of the license

How Do Developers Utilize Source Code from Stack Over�ow? 29

Table 7: The categorization of code license suggestions � 23 out of 183
(12.6%).

Category Description (D) � Example (E) Perc. Count

Clearer license D: Q&A platforms should make their license
terms clearer.
E: �By far the most important requirement is
clear licensing. Much of the code provided on
such platforms is not currently usable because
the license is unclear.�

69.6% 16

Permissive license D: Q&A platforms should use a more permis-
sive license.
E: �Let the user choose a more re-user-friendly
license (e.g. copy without reference).�

30.4% 7

terms of Q&A platforms (see Section 5.2). Table 7 shows the suggestions about
the code license of Q&A platforms.

Participants requested that Q&A platforms provide a clearer explanation
of their license terms: �By far the most important requirement is clear licensing.
Much of the code provided on such platforms is not currently usable because the
license is unclear.� If developers would neglect the license of Q&A platforms
and reuse source code from these platforms, they are under the risk of license
violation which may cause legal problems later. The scale of license violation
has been studied by An et al. (2017). An et al. investigated code reuse in
Android apps and observed a signi�cant number of potential license violation
cases when developers reused source code from Q&A platforms in Android
apps, and vice versa.

Seven participants suggested that Q&A platforms should use a more per-
missive license, which has fewer restrictions on source code reuse. In the ex-
ample of Stack Over�ow, CC BY-SA 3.0 was the original license for the source
code on this platform. CC BY-SA 3.0 is a copyleft (non-permissive) license
which requires the derivative work to be licensed under the same license (CC
BY-SA 3.0). This means that when developers reuse the source code from
Stack Over�ow into their projects, they have to license these projects under
the CC BY-SA 3.0 license as well. Otherwise, they are under the risk of license
violation.

It is also worth noting that, although Stack Over�ow has announced this
license change in a post on Stack Exchange (Stack Exchange, 2015), the change
is not re�ected on their homepage (Stack Over�ow, 2017), which still says
�user contributions licensed under cc by-sa 3.0 with attribution required�. As
such mismatches will further deepen developers' misunderstanding of license
terms. Therefore, we suggest that next-generation Q&A platforms explicitly
describe their license terms for source code reuse in a consistent manner.

30 Yuhao Wu et al.

Table 8: The categorization of human factor suggestions � 19 out of 183
(10.4%).

Category Description (D) � Example (E) Perc. Count

Better curator D: Better curators are needed to help im-
prove the quality of the posts.
E: �De�nitely curators for speci�c languages
to rate answers in speci�c areas.�

63.2% 12

Gami�cation-related D: Suggestions on improving the gami�ca-
tion system of Q&A platforms.
E: �Base reputation on number of answers
up-voted by others, not on personal activity.�

36.8% 7

6.5 Suggestions on the Human Factor

Next-generation Q&A platforms should assign human experts to
curate knowledge on the platform. In 10.4% of the cases, participants
suggested to improve Q&A platforms in terms of the human factor. Table 8
shows that twelve participants suggested to have better curators to improve
the quality of posts and help with marking good answers. One participant sug-
gested: �Pay some vetted, experienced developers to check the answers, instead
of relying on gami�cation.� Another suggestion emphasized the importance
of collaboration within the community: �Arriving at a 'most correct' solu-
tion should be a more collaborative e�ort with a clearly shown path of how it
was arrived at by multiple people, not necessarily just one user who takes all
the credit.� Zagalsky et al. (2017) revealed a shift within the R community
from knowledge creation to knowledge curation. Hence, we suggest that next-
generation Q&A platforms study other communities to improve the knowledge
curation and collaboration processes.

Seven participants suggested to improve the gami�cation system of Q&A
platforms. The usage of gami�cation on Q&A platforms has been proven ef-
fective before (Anderson et al., 2013; Cavusoglu et al., 2015). However, par-
ticipants revealed several �aws in this system. For example, one participant
wrote: �Base reputation on number of answers up-voted by others, not on per-
sonal activity. (Stack Over�ow has too many nit-pickers gaining reputation by
down-voting legitimate questions.)�

Our �ndings suggest that future studies on how to improve the gami�cation
mechanism of Q&A platforms are necessary.

6.6 Other Suggestions

Table 9 shows the 13 suggestions that did not fall into the other categories.
There were four suggestions that suggested that Q&A platforms are open-
sourced. In addition, there were three suggestions that were related to AI
techniques. For example, one of them suggested the use of an AI technique
that can automatically produce source code while developers only need to

How Do Developers Utilize Source Code from Stack Over�ow? 31

Table 9: The categorization of other suggestions � 13 out of 183 (7.0%).

Category Description (D) � Example (E) Perc. Count

Open source D: Open sourced/community-hosted Q&A plat-
forms.
E: �Open source to be competitive, self-hosted and
easy to deploy (even without requiring docker or sim-
ilar, to be usable in low end containers or even in
hosting platforms).�

30.8% 4

AI D: Include AI-related techniques into the Q&A plat-
forms.
E: �Let AI write code, we do code review.�

23.0% 3

Other D: Cross-language support. Q&A platforms.
E: �When the clone is written in a di�erent language,
a language translation is automatically performed if
not with some manual assistance�

46.2% 6

review the source code. These suggestions support the current research on
code generation, in which tools are developed to automatically generate code
based on a natural language input (Yin and Neubig, 2017; Gu et al., 2016). The
rest of the suggestions in the �other� category talk about di�erent topics. For
example, one of them suggests the integration of a tool that can automatically
translate a source code snippet across programming languages.

In summary, based on the �ndings from our survey, we observe that the
di�culty in �tting code in their own projects, a low comprehension and low
quality of the code are the top barriers that prevent developers from reusing
code. Lacking a good understanding of the code license is also a signi�cant
barrier for code reuse. Thus, future studies are encouraged to address these
barriers to better facilitate code reuse for developers.

7 Threats to Validity

External validity. Threats to external validity relate to the generalizability
of our �ndings. In this study, we used searchcode.com as our search engine
and found 4,878 source �les in total that contained links to Stack Over�ow
posts. After removing the small projects and duplicate �les, there were 321
Stack Overfow links and 289 �les left. The number of �les may not be large
enough to represent all the cases in the real world. The reason for restricting
our study to these 321 Stack Over�ow links is that we want to ensure that
we study code reuse in serious software projects only. Kalliamvakou et al.
(2014b) showed that many open source projects are toy projects which do not
adequately re�ect software engineering practices. Hence, when studying open
source projects, it is important to ensure those toy projects are removed from
the data set. We ensure that such projects are removed by imposing strict
selection criteria on our data (i.e., we only study �les from projects that have
at least 1000 commits and 10 contributors). We are con�dent that the studied

32 Yuhao Wu et al.

number is large enough for our exploratory study to identify the core issues
that are involved in the process of code reuse from Q&A platforms.

For the survey, we only invited developers who are in the intersection of
users of GitHub and Stack Over�ow. Hence, our results may not generalize
to software developers who are not in this intersection, such as developers of
closed-source software. Future studies should extend our exploratory study
and survey to developers from other domains.

We focused the �rst part of our study on the �ve most popular program-
ming languages, and as a result, our �ndings may not generalize to other
languages. Future work is necessary to investigate whether our �ndings hold
for other languages.

Most of our �ndings are general in nature and seem to apply to code reuse
in general. However, as we have no solid evidence, we cannot make de�nite
claims about the generalizability of our �ndings outside Q&A platforms. Fu-
ture studies should investigate whether our �ndings are valid outside Q&A
platforms.

Internal validity. Threats to internal validity relate to the experimenter bias
and errors. In this paper, we heavily rely on manual analysis. For example,
we manually inspected the source code in the projects and in Stack Over�ow
posts, we manually categorized each case of how developers are reusing the
source code, and we manually categorized the survey responses. Unfortunately,
these tasks are extremely di�cult to automate. For example, it is very hard to
automatically identify the Non-cosmetic Modi�cation, Converting Ideas, and
Providing Information types. Latent Dirichlet allocation (LDA) will not work
because LDA heavily relies on the similarity of the used terminology in two
�les. In the aforementioned types, the used terminology across two �les tends
to be di�erent. Other techniques, such as clone detection techniques cannot
capture the Non-cosmetic Modi�cation, Converting Ideas, and Providing In-
formation types either. Hence, we had no option other than to perform our
analysis in a manual fashion. To mitigate the threat of bias during the manual
analysis, two of the authors conducted the manual analysis and discussed any
con�icts with a third author until a consensus was reached. We used Cohen's
kappa (Gwet et al., 2002) to measure the inter-rater agreement. The kappa
values ranged from 0.79 to 0.92, which implies a high level of agreement. In
addition, to improve the replicability of our study, we made our studied data
and results (including the coding results of our exploratory study and survey)
available in our online appendix Wu et al. (2017).

Another threat is that our �ndings in RQ2 may not exactly re�ect the
intent of a user who reused code from Stack Over�ow, since the code provided
in the post to which the link points may not exactly be what the developer
needs. To mitigate this threat, we tried contacting the developers about their
intent, but received no response.

Construct validity. A threat to the construct validity of this study is that we
used mostly closed-ended questions in our survey, which may a�ect the richness
of the responses collected from participants. However, open-ended questions

How Do Developers Utilize Source Code from Stack Over�ow? 33

have several disadvantages (Reja et al., 2003): (1) Open-ended questions take
much longer for participants to �ll out, making it more likely that they do not
�ll out the survey at all. (2) Open-ended questions have the problem of missing
data, i.e., participants skipping or doing a poor job at answering a question
(i.e., by giving an incomplete or invalid answer). (3) Open-ended questions
are much more di�cult to code than closed-ended questions. We felt that
for most of our survey, the advantages of closed-ended questions outweighed
the disadvantages. Therefore, we chose to use mostly closed-ended questions,
together with an �Other.� �eld. Another threat is that Question 18 (see the
appendix for details) could in�uence the participants' answer to Question 19.
We used Question 18 as an �icebreaker�, so that the participants could start
their thought process from there. Future studies should consider this e�ect
when performing user surveys.

8 Conclusion

Prior studies on code reuse from Q&A platforms have focused on locating
and integrating source code in a required context automatically. However,
no studies have been done on how developers utilize source code from Q&A
platforms. In this paper, we studied how developers reuse code from Q&A
platforms and we identi�ed the barriers that they faced during the code reuse
process. The most important �ndings of our study are:

1. Our exploratory study shows that 78.2% of the reused source code from
Stack Over�ow had to be modi�ed in order to work in the required context.
The required modi�cation ranged from simple refactoring to a complete
reimplementation.

2. Developers reuse source code snippets from non-accepted answers as well
(26% of the studied cases).

3. Developers prefer reimplementing source code over reusing source code
because of the di�culty of integrating the code into their own project, and
low comprehension or low quality of the code.

4. The most suggested improvements for next-generation Q&A platforms are
about improving the quality of source code snippets.

5. Many developers do not understand, or do not seem to care much about
the code license of Q&A platforms.

Our study shows that Q&A platforms are evolving beyond their traditional
use of asking and answering questions. From our survey, we can conclude that
code reuse from Q&A platforms is a real challenge for developers: judging by
the suggestions that we extracted from the survey, many developers face sim-
ilar barriers during the code reuse process. Next-generation Q&A platforms
should integrate existing solutions that improve the quality, comprehension
and organization of source code snippets to better facilitate code reuse. Re-
searchers can leverage the roadmap that is presented in this paper to remove
many of these barriers in code reuse.

34 Yuhao Wu et al.

References

Abdalkareem, R., Shihab, E., and Rilling, J. (2017). What do developers use
the crowd for? a study using Stack Over�ow. IEEE Software, 34(2), 53�60.

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., and Schneider, K. A.
(2016). Mining duplicate questions in Stack Over�ow. In Proceedings of
the 13th International Conference on Mining Software Repositories (MSR),
pages 402�412.

Almeida, D. A., Murphy, G. C., Wilson, G., and Hoye, M. (2017). Do software
developers understand open source licenses? In Proceedings of the 25th
International Conference on Program Comprehension (ICPC), pages 1�11.
IEEE.

Alnusair, A., Rawashdeh, M., Hossain, M. A., and Alhamid, M. F. (2016). Uti-
lizing semantic techniques for automatic code reuse in software repositories.
In Quality Software Through Reuse and Integration, pages 42�62. Springer.

An, L., Mlouki, O., Khomh, F., and Antoniol, G. (2017). Stack Over�ow: A
code laundering platform? In Proceedings of the 24th IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 283�293. IEEE.

Anderson, A., Huttenlocher, D., Kleinberg, J., and Leskovec, J. (2013). Steer-
ing user behavior with badges. In Proceedings of the 22nd International
Conference on World Wide Web (WWW), pages 95�106. ACM.

Armaly, A. and McMillan, C. (2016). Pragmatic source code reuse via execu-
tion record and replay. Journal of Software: Evolution and Process, 28(8),
642�664.

Atwood, J. (2009). Attribution required � Stack Over�ow blog. https://

stackoverflow.blog/2009/06/25/attribution-required/. (last visited:
Aug 25, 2017).

Azad, S., Rigby, P. C., and Guerrouj, L. (2017). Generating API call rules from
version history and stack over�ow posts. ACM Transactions on Software
Engineering and Methodology (TOSEM), 25(4), 29.

Bajracharya, S., Ngo, T., Linstead, E., Dou, Y., Rigor, P., Baldi, P., and
Lopes, C. (2006). Sourcerer: A search engine for open source code sup-
porting structure-based search. In Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), pages 681�682. ACM.

Barzilay, O. (2011). Example embedding. In Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and Re�ections on Programming
and Software, Onward! 2011, pages 137�144.

Bian, J., Gao, B., and Liu, T.-Y. (2014). Knowledge-Powered Deep Learning
for Word Embedding , pages 132�148. Springer Berlin Heidelberg.

Cavusoglu, H., Li, Z., and Huang, K.-W. (2015). Can gami�cation motivate
voluntary contributions?: The case of StackOver�ow Q&A community. In
Proceedings of the 18th ACM Conference Companion on Computer Sup-
ported Cooperative Work & Social Computing , pages 171�174. ACM.

https://stackoverflow.blog/2009/06/25/attribution-required/
https://stackoverflow.blog/2009/06/25/attribution-required/

How Do Developers Utilize Source Code from Stack Over�ow? 35

Chen, C., Gao, S., and Xing, Z. (2016). Mining analogical libraries in Q&A
discussions - incorporating relational and categorical knowledge into word
embedding. In IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 338�348. IEEE.

Chen, C., Xing, Z., and Wang, X. (2017). Unsupervised software-speci�c mor-
phological forms inference from informal discussions. In Proceedings of the
39th International Conference on Software Engineering (ICSE), pages 450�
461. IEEE.

Cottrell, R., Walker, R. J., and Denzinger, J. (2008). Semi-automating small-
scale source code reuse via structural correspondence. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT), pages 214�225. ACM.

Feldthaus, A. and Møller, A. (2013). Semi-automatic rename refactoring for
javascript. In Proceedings of the 2013 ACM SIGPLAN International Confer-
ence On Object Oriented Programming Systems Languages & Applications,
volume 48, pages 323�338. ACM.

Galenson, J., Reames, P., Bodik, R., Hartmann, B., and Sen, K. (2014). Code-
hint: Dynamic and interactive synthesis of code snippets. In Proceedings
of the 36th International Conference on Software Engineering , ICSE 2014,
pages 653�663.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Ganguly, D., Roy, D., Mitra, M., and Jones, G. J. (2015). Word embedding
based generalized language model for information retrieval. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR), pages 795�798.

Gao, Q., Zhang, H., Wang, J., Xiong, Y., Zhang, L., and Mei, H. (2015). Fixing
recurring crash bugs via analyzing Q&A sites. In Proceedings of the 30th
International Conference on Automated Software Engineering (ASE), pages
307�318.

Gharehyazie, M., Ray, B., and Filkov, V. (2017). Some from here, some from
there: Cross-project code reuse in github. In Proceedings of the 14th In-
ternational Conference on Mining Software Repositories, MSR '17, pages
291�301.

Glaser, B. (2017). Discovery of grounded theory: Strategies for qualitative
research. Routledge.

Gu, X., Zhang, H., Zhang, D., and Kim, S. (2016). Deep API learning. In
Proceedings of the 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE), pages 631�642. ACM.

Gwet, K. et al. (2002). Inter-rater reliability: dependency on trait prevalence
and marginal homogeneity. Statistical Methods for Inter-Rater Reliability
Assessment Series, 2, 1�9.

Hua, L., Kim, M., and McKinley, K. S. (2015). Does automated refactoring
obviate systematic editing? In IEEE/ACM 37th IEEE International Con-
ference on Software Engineering (ICSE), volume 1, pages 392�402. IEEE.

36 Yuhao Wu et al.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and
Damian, D. (2014a). The promises and perils of mining GitHub. In Pro-
ceedings of the 11th Working Conference on Mining Software Repositories
(MSR), pages 92�101. ACM.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and
Damian, D. (2014b). The promises and perils of mining GitHub. In Pro-
ceedings of the 11th Working Conference on Mining Software Repositories
(MSR), pages 92�101.

Krumia (2014). Introduce an �obsolete answer" vote.
https://meta.stackoverflow.com/questions/272651/

introduce-an-obsolete-answer-vote. (last visited: Aug 25, 2017).
Lai, S., Xu, L., Liu, K., and Zhao, J. (2015). Recurrent convolutional neural
networks for text classi�cation. In Proceedings of the 29th AAAI Conference
on Arti�cial Intelligence, pages 2267�2273. AAAI Press.

Liu, P., Joty, S. R., and Meng, H. M. (2015). Fine-grained opinion mining
with recurrent neural networks and word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1433�1443. The Association for Computational Linguis-
tics.

Lv, F., Zhang, H., Lou, J.-g., Wang, S., Zhang, D., and Zhao, J. (2015).
CodeHow: E�ective code search based on API understanding and extended
boolean model. In Proceedings of the 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pages 260�270. IEEE.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu, C. (2011).
Portfolio: Finding relevant functions and their usage. In Proceedings of the
33rd International Conference on Software Engineering (ICSE), pages 111�
120.

Meng, N., Kim, M., and McKinley, K. S. (2011). Systematic editing: Gen-
erating program transformations from an example. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 329�342.

Meng, N., Kim, M., and McKinley, K. S. (2013). Lase: locating and applying
systematic edits by learning from examples. In Proceedings of the 2013
International Conference on Software Engineering , pages 502�511. IEEE.

Nguyen, A. T., Nguyen, T. T., Nguyen, H. A., Tamrawi, A., Nguyen, H. V.,
Al-Kofahi, J., and Nguyen, T. N. (2012). Graph-based pattern-oriented,
context-sensitive source code completion. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE), pages 69�79.

Ponzanelli, L., Bacchelli, A., and Lanza, M. (2013). Leveraging crowd knowl-
edge for software comprehension and development. In Proceedings of the 17th
European Conference on Software Maintenance and Reengineering (CSMR),
pages 57�66. IEEE.

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., and Lanza, M. (2014a).
Mining stackover�ow to turn the IDE into a self-con�dent programming
prompter. In Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, pages 102�111. ACM.

https://meta.stackoverflow.com/questions/272651/introduce-an-obsolete-answer-vote
https://meta.stackoverflow.com/questions/272651/introduce-an-obsolete-answer-vote

How Do Developers Utilize Source Code from Stack Over�ow? 37

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., and Lanza, M. (2014b).
Prompter: A self-con�dent recommender system. In ICSME , pages 577�580.

Ponzanelli, L., Mocci, A., Bacchelli, A., and Lanza, M. (2014c). Understanding
and classifying the quality of technical forum questions. In Proceedings of the
14th International Conference on Quality Software (QSIC), pages 343�352.

Raychev, V., Vechev, M., and Yahav, E. (2014). Code completion with statisti-
cal language models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 419�
428.

Reja, U., Manfreda, K. L., Hlebec, V., and Vehovar, V. (2003). Open-ended
vs. close-ended questions in web questionnaires. Developments in Applied
Statistics (Metodolo²ki zvezki), 19, 159�77.

Rigby, P. C. and Robillard, M. P. (2013). Discovering essential code elements
in informal documentation. In Proceedings of the 2013 International Con-
ference on Software Engineering (ICSE), pages 832�841. IEEE.

Seaman, C. B. (1999). Qualitative methods in empirical studies of software
engineering. IEEE Transactions on Software Engineering (TSE), 25(4),
557�572.

Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L., Guo,
Y., and Godfrey, S. (2008). Defect categorization: making use of a decade
of widely varying historical data. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measure-
ment , pages 149�157. ACM.

Searchcode (2016a). searchcode - API. https://searchcode.com/api/. (last
visited: Aug 25, 2017).

Searchcode (2016b). searchcode - Homepage. https://searchcode.com/.
(last visited: Aug 25, 2017).

Sillito, J., Maurer, F., Nasehi, S. M., and Burns, C. (2012). What makes a
good code example?: A study of programming Q&A in StackOver�ow. In
Proceedings of the 2012 IEEE International Conference on Software Main-
tenance (ICSM), pages 25�34.

Stack Exchange (2015). The MIT license � clarity on using code on
Stack Over�ow and Stack Exchange. https://meta.stackexchange.com/
q/271080/337948. (last visited: Aug 25, 2017).

Stack Exchange (2017). All sites - Stack Exchange. https://stackexchange.
com/sites. (last visited: Aug 25, 2017).

Stack Over�ow (2014). Feedback requested: Runnable
code snippets in questions and answers. https:

//meta.stackoverflow.com/questions/269753/

feedback-requested-runnable-code-snippets-in-questions-and-answers.
(last visited: Aug 25, 2017).

Stack Over�ow (2016). Stack Over�ow developer survey results 2016. http:
//stackoverflow.com/research/developer-survey-2016. (last visited:
Aug 25, 2017).

Stack Over�ow (2017). Stack Over�ow - Homepage. https://

stackoverflow.com/. (last visited: Aug 25, 2017).

https://searchcode.com/api/
https://searchcode.com/
https://meta.stackexchange.com/q/271080/337948
https://meta.stackexchange.com/q/271080/337948
https://stackexchange.com/sites
https://stackexchange.com/sites
https://meta.stackoverflow.com/questions/269753/feedback-requested-runnable-code-snippets-in-questions-and-answers
https://meta.stackoverflow.com/questions/269753/feedback-requested-runnable-code-snippets-in-questions-and-answers
https://meta.stackoverflow.com/questions/269753/feedback-requested-runnable-code-snippets-in-questions-and-answers
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
https://stackoverflow.com/
https://stackoverflow.com/

38 Yuhao Wu et al.

Treude, C. and Robillard, M. P. (2016). Augmenting API documentation
with insights from Stack Over�ow. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), pages 392�403. ACM.

Treude, C. and Robillard, M. P. (2017). Understanding stack over�ow code
fragments. In 2017 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2017, Shanghai, China, September 17-22,
2017 , pages 509�513.

Treude, C., Barzilay, O., and Storey, M.-A. (2011). How do programmers ask
and answer questions on the web? (NIER track). In Proceedings of the 33rd
International Conference on Software Engineering (ICSE), pages 804�807.

Vasilescu, B., Filkov, V., and Serebrenik, A. (2013). StackOver�ow and
GitHub: Associations between software development and crowdsourced
knowledge. In Proceedings of 2013 International Conference on Social Com-
puting (SocialCom), pages 188�195. IEEE.

Wang, H., Lu, Y., and Zhai, C. (2010). Latent aspect rating analysis on
review text data: A rating regression approach. In Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 783�792.

Wang, S., Lo, D., and Jiang, L. (2014a). Active code search: Incorporating
user feedback to improve code search relevance. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering
(ASE), pages 677�682.

Wang, S., Lo, D., Vasilescu, B., and Serebrenik, A. (2014b). EnTagRec: An
enhanced tag recommendation system for software information sites. In
Proceedings of the 2014 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 291�300.

Wang, S., Lo, D., and Jiang, L. (2016a). Autoquery: automatic construction
of dependency queries for code search. Automated Software Engineering ,
23(3), 393�425.

Wang, S., Lo, D., Vasilescu, B., and Serebrenik, A. (2017a). EnTagRec ++:
An enhanced tag recommendation system for software information sites.
Empirical Software Engineering .

Wang, S., Chen, T.-H., and Hassan, A. E. (2017b). Understanding the factors
for fast answers in technical Q&A websites. Empirical Software Engineering ,
pages 1�42.

Wang, X., Pollock, L. L., and Vijay-Shanker, K. (2014c). Automatic segmenta-
tion of method code into meaningful blocks: Design and evaluation. Journal
of Software: Evolution and Process, 26(1), 27�49.

Wang, X., Pollock, L. L., and Vijay-Shanker, K. (2017c). Automatically gener-
ating natural language descriptions for object-related statement sequences.
In IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2017, Klagenfurt, Austria, February 20-24, 2017 ,
pages 205�216.

Wang, Y., Feng, Y., Martins, R., Kaushik, A., Dillig, I., and Reiss, S. P.
(2016b). Hunter: next-generation code reuse for java. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software

How Do Developers Utilize Source Code from Stack Over�ow? 39

Engineering , pages 1028�1032. ACM.
Wang, Z., Hamza, W., and Florian, R. (2017d). Bilateral multi-perspective
matching for natural language sentences. CoRR, abs/1702.03814.

Wong, T.-L., Lam, W., and Wong, T.-S. (2008). An unsupervised framework
for extracting and normalizing product attributes from multiple web sites.
In Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR), pages 35�42.

Wu, Y., Wang, S., Bezemer, C.-P., and Inoue, K. (2017). Online appendix
of manuscript "How Do Developers Utilize Source Code from Stack Over-
�ow?". https://zenodo.org/record/1116508.

Xia, X., Bao, L., Lo, D., Kochhar, P. S., Hassan, A. E., and Xing, Z. (2017).
What do developers search for on the web? Empirical Software Engineering .

Xin, X., Lingfeng, B., David, L., Zhenchang, X., Ahmed, E. H., and Shanping,
L. (2017). Measuring program comprehension: A large-scale �eld study with
professionals. IEEE Transactions on Software Engineering (TSE), 99(26).

Yellin, D. M. and Strom, R. E. (1997). Protocol speci�cations and compo-
nent adaptors. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(2), 292�333.

Yin, P. and Neubig, G. (2017). A syntactic neural model for general-purpose
code generation. CoRR, abs/1704.01696.

Yu, J., Zha, Z.-J., Wang, M., and Chua, T.-S. (2011). Aspect ranking: Identify-
ing important product aspects from online consumer reviews. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies - Volume 1 , pages 1496�1505.

Zagalsky, A., German, D. M., Storey, M.-A., Teshima, C. G., and Poo-
Caamaño, G. (2017). How the R community creates and curates knowledge:
an extended study of Stack Over�ow and mailing lists. Empirical Software
Engineering .

Zhang, W. E., Sheng, Q. Z., Lau, J. H., and Abebe, E. (2017). Detecting
duplicate posts in programming qa communities via latent semantics and
association rules. In Proceedings of the 26th International Conference on
World Wide Web (WWW), pages 1221�1229.

Zhang, Y., Lo, D., Xia, X., and Sun, J.-L. (2015). Multi-factor duplicate
question detection in Stack Over�ow. Journal of Computer Science and
Technology , 30(5), 981�997.

Zhao, L. and Li, C. (2009). Ontology Based Opinion Mining for Movie Reviews,
pages 204�214. Springer Berlin Heidelberg, Berlin, Heidelberg.

Zhou, P., Liu, J., Yang, Z., and Zhou, G. (2017). Scalable tag recommenda-
tion for software information sites. In Proceedings of the 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 272�282. IEEE.

https://zenodo.org/record/1116508

40 Yuhao Wu et al.

Appendix

Below are the questions and options in our online survey. Single-selection options are marked
with circle marks (◦) in front; multi-selection options are marked with box marks (2) in
front. When participants choose the option �Other�, they are allowed to input a free text as
an additional answer.

Part I
1. How many years of software engineering experience do you have?
◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦ 5
◦ 6 ◦ 7 ◦ 8 ◦ 9 ◦ 10+
2. What type of project(s) are you working on?
2 Open source 2 Personal 2 Industrial 2 Academic 2 Other
3. Which programming language(s) do you use in your projects?
2 Java 2 C/C++ 2 C# 2 Python 2 Visual Basic .Net
2 JavaScript 2 Assembly 2 PHP 2 Perl 2 Ruby
2 Other
4. How often do you use Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never
5. What do you use Q&A platforms for?
2 Learning new techniques/methodologies
2 Refreshing the knowledge of old techniques/methodologies
2 Solving a speci�c programming issue
2 Finding references that I can refer to in my source code to make future maintenance
easier
2 Answering questions
2 Other
6. Which Q&A platforms do you use to look for solutions to programming-related issues?
2 Stack Over�ow
2 Quora
2 Product-speci�c support forums
2 Language-speci�c support forums
2 I do not use Q&A platforms for this purpose
2 Other
7. Have you ever reused source code from a Q&A platform?
◦ Yes ◦ No

Part II
8. How often do you *reuse* source code from Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never
9. How often do you *reimplement* source code from Q&A platforms?
◦ Every day ◦ Once a week ◦ Once a month
◦ Once every few months or less ◦ Never

10. If you prefer reimplementing the source code over reusing existing code, why?

2 Code should be written in relation to the context.
2 I don't want to reuse source code that I don't fully comprehend.
2 The quality of the existing source code is too low.
2 Re-implementing the source code takes less time than reusing.
2 Other
11. What do you consider the most important factors when deciding when to reuse code
from a Q&A platform?
2 Correctness (i.e., bug-free)
2 Performance (i.e., e�cient)
2 Readability (i.e., easy to read/understand)
2 Simplicity (i.e., less lines of code)

How Do Developers Utilize Source Code from Stack Over�ow? 41

2 Compatibility (e.g, support more platforms)
2 Whether the answer is accepted by the questioner.
2 Whether the answer has the highest number of upvotes.
2 Other
12. Which aspects cause you di�culty when reusing source code from Q&A platforms?
2 Syntax errors need to be �xed to make the source code runnable.
2 Bugs (e.g., index out of bounds) need to be �xed.
2 Readability needs to be improved.
2 Performance needs to be improved.
2 The code snippet is not in the programming language I need.
2 Code needs to be adapted to my speci�c use case.
2 The license terms of the Q&A platform are unclear.
2 Other
13. Do you always refer to the Q&A platform post from which you reused source code in
your documentation or code comments? Why (not)?
◦ Yes, I add a link to the post/answer to show my respects/appreciation to the original
author.
◦ Yes, because it is required by the license terms of that Q&A platform (e.g., CC-BY-SA
3.0 in the case of Stack Over�ow).
◦ Yes, to make it easier for future maintenance.
◦ No, I would like to, but always forget.
◦ No, I don't do that. (Please elaborate the reason below if you could)
◦ Other
14. Are you aware of the license terms of reused source code from a Q&A platform?
◦ Yes, I fully understand the license terms.
◦ Yes, I know about the existence of such terms, but I am not sure what obligations I have.
◦ No, I did not know about them, but I would like to learn more about them.
◦ No, I did not know about them, neither do I care about them.
◦ Other
15. Which license(s) do the projects into which you reused code from a Q&A platform use?
2 GPL family (any version of LGPL, GPL or AGPL) 2 MIT License
2 Apache License 2 BSD License
2 A proprietary license 2 No license
2 I don't know 2 Other
16. In general, would you say that the license(s) of these project(s) are compatible with
the license of the Q&A platform from which you reused source code?
◦ Strongly disagree ◦ Disagree ◦ Neutral
◦ Strongly agree ◦ Agree
17. How important is it to have more detailed information about the license terms and
legal obligations of reusing source code from Q&A platforms?
◦ Very unimportant ◦ Unimportant ◦ Neutral
◦ Very important ◦ Important

Part III
18. How useful would it be to let other users tag answers on Q&A platforms with labels
that describe the source code in an answer as 'performant', 'correct', 'readable', etc.?
◦ Very unuseful ◦ Unuseful ◦ Neutral
◦ Very useful ◦ Useful
19. If you could give any suggestions (regardless of whether they are feasible) for a
next-generation code Q&A platform, what would you suggest?

