
1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-018-9595-8

Studying software logging using topic
models

Heng Li, Tse-Hsun (Peter) Chen, Weiyi
Shang & Ahmed E. Hassan

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Empir Software Eng
https://doi.org/10.1007/s10664-018-9595-8

Studying software logging using topic models

Heng Li1 ·Tse-Hsun (Peter) Chen2 ·Weiyi Shang2 ·
Ahmed E. Hassan1

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Software developers insert logging statements in their source code to record
important runtime information; such logged information is valuable for understanding sys-
tem usage in production and debugging system failures. However, providing proper logging
statements remains a manual and challenging task. Missing an important logging statement
may increase the difficulty of debugging a system failure, while too much logging can
increase system overhead and mask the truly important information. Intuitively, the actual
functionality of a software component is one of the major drivers behind logging decisions.
For instance, a method maintaining network communications is more likely to be logged
than getters and setters. In this paper, we used automatically-computed topics of a code snip-
pet to approximate the functionality of a code snippet. We studied the relationship between
the topics of a code snippet and the likelihood of a code snippet being logged (i.e., to con-
tain a logging statement). Our driving intuition is that certain topics in the source code are
more likely to be logged than others. To validate our intuition, we conducted a case study on
six open source systems, and we found that i) there exists a small number of “log-intensive”

Communicated by: Miryung Kim

� Heng Li
hengli@cs.queensu.ca

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca

Weiyi Shang
shang@encs.concordia.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, Ontario, Canada

2 Department of Computer Science and Software Engineering, Concordia University, Montreal,
Quebec, Canada

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-018-9595-8&domain=pdf
mailto:hengli@cs.queensu.ca
mailto:peterc@encs.concordia.ca
mailto:shang@encs.concordia.ca
mailto:ahmed@cs.queensu.ca

Empir Software Eng

topics that are more likely to be logged than other topics; ii) each pair of the studied systems
share 12% to 62% common topics, and the likelihood of logging such common topics has
a statistically significant correlation of 0.35 to 0.62 among all the studied systems; and iii)
our topic-based metrics help explain the likelihood of a code snippet being logged, provid-
ing an improvement of 3% to 13% on AUC and 6% to 16% on balanced accuracy over a set
of baseline metrics that capture the structural information of a code snippet. Our findings
highlight that topics contain valuable information that can help guide and drive developers’
logging decisions.

Keywords Software logging · Topic model · Mining software repositories

1 Introduction

Developers depend heavily on logging statements for collecting valuable runtime informa-
tion of software systems. Such information can be used for a variety of software quality
assurance tasks, such as debugging and understanding system usage in production (Chen
et al. 2016a, 2017a; Mariani and Pastore 2008; Oliner et al. 2012; Syer et al. 2013; Xu et al.
2009; Yuan et al. 2010). Logging statements are inserted by developers manually in the
code to trace the system execution. As there exists no standard guidelines nor unified poli-
cies for software logging, developers usually miss including important logging statements
in a system, resulting in blind code spots (i.e., cannot recover system execution paths) when
debugging (Yuan et al. 2011, 2014).

However, adding logging statements excessively is not an optimal solution, since adding
unnecessary logging statements can significantly increase system overhead (Zeng et al.
2015) and mask the truly important information (Fu et al. 2014). Prior studies proposed
approaches to enhance the information that is contained in logging statements through static
analysis (Yuan et al. 2011, 2014) and statistical models (Lal and Sureka 2016; Li et al.
2017a, b; Zhu et al. 2015). These approaches help developers identify code locations that
are in need of additional logging statements, or in need of log enhancement (e.g., requiring
the logging of additional variables).

However, the aforementioned approaches do not take into account the functionality of a
code snippet when making logging suggestions. We believe that code snippets that imple-
ment certain functionalities are more likely to require logging statements than others. For
example, Listings 1 and 2 show two code snippets from the Qpid-Java1 system. These two
methods are of similar size and complexity, yet the method shown in Listing 1 has a log-
ging statement to track a connection creation event, while the method shown in Listing 2
has no logging statements. The different logging decisions in these two code snippets might
be explained by the fact that these two code snippets are related to different functionalities:
the first code snippet is concerned with “connection”, while the second code snippet is con-
cerned with “string builder”. In addition, in Section 2, we show real-life requirements for
adding logging statements in the context of “connection”.

Prior research (Linstead et al. 2008; Liu et al. 2009a; Maskeri et al. 2008; Nguyen et al.
2011) leverage statistical topic models such as latent Dirichlet allocation (Blei et al. 2003)
to approximate the functionality of a code snippet. Such topic models create automated
topics (using co-occurrences of words in code snippets), and these topics provide high-level

1https://qpid.apache.org/components/java-broker

Author's personal copy

https://qpid.apache.org/components/java-broker

Empir Software Eng

Listing 1 A logged method that is related to the “connection” topic

representations of the functionality of code snippets (Baldi et al. 2008a; Chen et al. 2016b;
Thomas et al. 2010).

We conjecture that source code that is related to certain topics is more likely to contain
logging statements. We also want to determine if there exist common topics that are simi-
larly logged across software systems. In particular, we performed an empirical study on the
relationship between code topics and logging decisions in six open source systems: Hadoop,
Directory-Server, Qpid-Java, CloudStack, Camel and Airavata. We focus on the following
research questions:

RQ1: Which topics are more likely to be logged?
A small number of topics are more likely to be logged than other topics. Most

of these log-intensive topics capture communication between machines or interac-
tion between threads. Furthermore, we observe that the logging information that is
captured by topics is not statistically correlated to code complexity.

RQ2: Are common topics logged similarly across different systems?
Each studied system shares a portion (12% to 62%) of its topics with other sys-

tems, and the likelihood of logging the common topics has a statistically significant
correlation of 0.35 to 0.62 among these studied systems. Therefore, developers of
a particular system can consult other systems when making their logging decisions
or when developing logging guidelines.

RQ3: Can topics provide additional explanatory power for the likelihood of a code
snippet being logged?

Our topic-based metrics provide additional explanatory power (i.e., an improve-
ment of 3% to 13% on AUC and an improvement of 6% to 16% on balanced
accuracy) to a baseline model that is built using a set of metrics that capture
the structural information of a code snippet, for explaining the likelihood of a
code snippet being logged. Five to seven out of the top ten important metrics for
determining the likelihood of a method being logged are our topic-based metrics.

Listing 2 A method that is related to the “string builder” topic

Author's personal copy

Empir Software Eng

Table 1 Examples of JIRA issues of the Qpid-Java system that are concerned with the logging of
“connections”

Issue IDa Issue report summary

QPID-4038 Log the connection number and associated local and remote address after

each successful [re]connection

QPID-7058 Log the current connection state when connection establishment times out

QPID-7079 Add connection state logging on idle timeout to 0–10 connections

QPID-3740 Add the client version string to the connection establishment logging

QPID-7539 Support connection and user level logging

QPID-2835 Implement connections (CON) operational logging on 0–10

QPID-3816 Add the client version to the connection open log messages

QPID-7542 Add connection and user info to log messages

QPID-5266 The client product is not logged in the connection open message

QPID-5265 The client version is only logged for 0-8/9/9-1 connections if a clientid is also set

aFor more details about each issue, the readers can refer to its web link which is “https://issues.apache.org/
jira/browse/” followed by the issue ID. For example, the link for the first issue is “https://issues.apache.org/
jira/browse/QPID-4038”

Our paper is the first work that studies the relationship between topics and logging deci-
sions. Our findings show that source code related to certain topics is more likely to contain
logging statements. Future log recommendation tools should consider topic information in
order to help researchers and practitioners in deciding where to add logging statements.

Paper Organization Section 2 uses examples to motivate the study of software logging
using topic models. Section 3 provides a brief background about topic models. Section 4
describes our case study setup. Section 5 presents the answers to our research questions.
Section 6 discusses potential threats to the validity of our study. Section 7 surveys related
work. Finally, Section 8 concludes the paper.

2 Motivation Examples

In this section, we use several real-life examples to motivate our study of the relationship
between code topics and logging. Table 1 lists ten JIRA issue reports of the Qpid-Java
system that we fetched from the Apache JIRA issue repository.2

A closer examination of these ten issue reports shows that all these issue reports are
concerned with logging in the context of “connections”. For example, issue report QPID-
40383 proposes to log certain connection details (e.g., local and remote addresses) after each
successful connection, as “it will provide useful information when trying to match client
application behavior with broker behavior during incident analysis”. The developer fixed
this issue by adding the required logging information. Listing 3 gives a code snippet that is
part of the code fix4 for this issue. The code snippet shows that it is concerned with the topics

2https://issues.apache.org/jira
3https://issues.apache.org/jira/browse/QPID-4038
4Qpid-Java git commit: d606368b92f3952f57dbabd8553b3b6f426305e1

Author's personal copy

https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/
https://issues.apache.org/jira/browse/QPID-4038
https://issues.apache.org/jira/browse/QPID-4038
https://issues.apache.org/jira
https://issues.apache.org/jira/browse/QPID-4038

Empir Software Eng

Listing 3 A code snippet that is part of the fix for issue QPID-4038, showing that a logging statement was
added to a code snippet within the context of “connections”

that are related to “connections” (i.e., connection setting, connecting, get user ID, etc.). In
fact, in RQ1 we found that “connection management” is one of the most log-intensive topics
for the Qpid-Java system.

From these examples, we observed that software practitioners tend to use logs to record
certain functionalities (or topics), for example, “connections”. However, we cannot manu-
ally investigate all the topics that need logging. Therefore, in this paper, we propose to use
topic modeling to understand the relationship between software logging and code topics in
an automated fashion. Specifically, we want to study whether certain topics are more likely
to be logged (RQ1). We also want to study whether there exist common topics that are
similarly logged across systems (RQ2). Finally, we want to study whether topics can help
explain the likelihood of a code snippet being logged (RQ3).

3 Topic Modeling

In this section, we briefly discuss the background of latent Dirichlet allocation (LDA),
which is the topic modeling approach that we used in our study.

Our goal is to extract the functionality of a code snippet; however, such information is not
readily available. Thus, we used the linguistic data in the source code files (i.e., the identifier
names and comments) to extract topics of the code snippet in order to approximate the
functionality in an automated and scalable fashion. We leveraged topic modeling approaches
to derive topics (i.e., co-occurring words). Topic modeling approaches can automatically
discover the underlying relationships among words in a corpus of documents (e.g., classes
or methods in source code files), and group similar words together as topics. Unlike using
words directly, topic models provide a higher-level overview and interpretable labels of the
documents in a corpus (Blei et al. 2003; Steyvers and Griffiths 2007).

In this paper, we used latent Dirichlet allocation (LDA) (Blei et al. 2003) to derive topics.
LDA is a probabilistic topic model that is widely used in Software Engineering research
for modeling topics in software repositories (Chen et al. 2016b). Moreover, LDA generated
topics are less likely to overfit and are easier to interpret, in comparison to other topic
models such as probabilistic latent semantic analysis (PLSA), and latent semantic analysis
(LSA) (Blei et al. 2003).

In LDA, a topic is a collection of frequently co-occurring words in the corpus. Given
a corpus of n documents f1, ..., fn, LDA automatically discovers a set Z of topics, Z =
{z1, ..., zK }, as well as the mapping θ between topics and documents (see Fig. 1). The
number of topics, K , is an input that controls the granularity of the topics. We use the

Author's personal copy

Empir Software Eng

(a) (b)

Fig. 1 An example result of topic models, where three topics are discovered from four files. a The three
discovered topics (z1, z2, z3) are defined by their top (i.e., highest probable) words. b The four original source
code files (f1, f2, f3, f4) are represented by the topic membership vectors (e.g., {z1 = 0.2, z2 = 0.8, z3 =
0.0} for file f1)

notation θij to describe the topic membership value of topic zi in document fj . In a nutshell,
LDA will generate two matrices—a topic-word matrix and a document-topic matrix. The
topic-word matrix shows the most probable words in each topic, and the document-topic
matrix shows the most probable topics in each document.

Formally, each topic is defined by a probability distribution over all of the unique words
in the corpus (e.g., all source code files). Given two Dirichlet priors (used for computing
Dirichlet distributions), α and β, LDA will generate a topic distribution, called θj , for each
file fj based on α, and generate a word distribution, called φi , for each topic zi based on β.
We exclude the mathematical details of LDA since they are out of the scope of this paper.
Interested readers may refer to the original paper on LDA (Blei et al. 2003) for the details.

4 Case Study Setup

This section describes the studied systems and the process that we followed to prepare the
data for our case study.5

4.1 Studied Systems

We performed a case study on six open source Java systems: Hadoop, Directory-Server,
Qpid-Java, CloudStack, Camel and Airavata (Table 2). The studied systems are large
and successful systems across different domains with years of development. Hadoop is a
distributed computing platform; Directory-Server is an embeddable directory server; Qpid-
Java is a message broker; CloudStack is a cloud computing platform; Camel is a rule-based
routing and mediation framework; and Airavata is a framework for executing and manag-
ing computational jobs and workflows on distributed computing resources. The Java source
code of these systems uses standard logging libraries such as Log4j,6 SLF4J,7 and Com-
mons Logging.8 We excluded test files from our analysis, since we are interested in the
logging practices in the main source code files of these systems, and we expect that logging
practices will vary between main and test code.

5We share our replication package online: http://sailhome.cs.queensu.ca/replication/LoggingTopicModel
6http://logging.apache.org/log4j
7http://www.slf4j.org
8https://commons.apache.org/logging

Author's personal copy

http://sailhome.cs.queensu.ca/replication/LoggingTopicModel
http://logging.apache.org/log4j
http://www.slf4j.org
https://commons.apache.org/logging

Empir Software Eng

Ta
bl
e
2

O
ve

rv
ie

w
of

th
e

st
ud

ie
d

sy
st

em
s

Sy
st

em
R

el
ea

se
L

O
C

N
um

be
r

of
N

um
be

r
of

N
um

be
r

of
Fi

lte
re

d
lo

gg
ed

N
um

be
r

of
R

em
ai

ni
ng

m
et

ho
ds

lo
gg

ed
m

et
ho

ds
fi

lte
re

d
m

et
ho

ds
m

et
ho

ds
re

m
ai

ni
ng

m
et

ho
ds

lo
gg

ed
m

et
ho

ds

H
ad

oo
p

2.
5.

0
1,

19
4K

42
.7

K
2.

9K
(6

.7
%

)
25

.6
K

15
6

(0
.6

%
)

17
.1

K
2.

7K
(1

5.
9%

)

D
ir

ec
to

ry
-S

.
2.

0.
0-

M
20

39
9K

7.
9K

88
3

(1
1.

2%
)

3.
3K

46
(1

.4
%

)
4.

5K
83

7
(1

8.
4%

)

Q
pi

d-
Ja

va
6.

0.
0

47
6K

20
.0

K
1.

3K
(6

.6
%

)
13

.1
K

62
(0

.5
%

)
6.

9K
1.

2K
(1

8.
2%

)

C
lo

ud
St

ac
k

4.
8.

0
82

0K
40

.1
K

4.
4K

(1
0.

9%
)

28
.4

K
25

1
(0

.9
%

)
11

.7
K

4.
1K

(3
5.

1%
)

C
am

el
2.

17
.0

1,
34

2K
41

.1
K

2.
9K

(7
.0

%
)

21
.4

K
12

6
(0

.6
%

)
19

.8
K

2.
7K

(1
3.

8%
)

A
ir

av
at

a
0.

15
44

6K
29

.4
K

1.
8K

(6
.1

%
)

11
.1

K
26

(0
.2

%
)

18
.4

K
1.

8K
(9

.6
%

)

Author's personal copy

Empir Software Eng

Fig. 2 An overview of our data extraction approach

4.2 Data Extraction

Our goal is to study the relationship between logging decisions and the topics of the source
code. We use topics to approximate the functionality of a code snippet. Therefore, we
applied LDA at the granularity level of a source code method, since a method usually
implements a relatively independent functionality. We did not apply LDA at the class level
granularity because a class typically implements a mixture of functionalities. For example,
a calculator class may implement input, internal calculation, and output functionalities.

Figure 2 presents an overview of our data extraction approach. We fetched the source
code files of the studied systems from their Git repositories. We used the Eclipse Java
development tools (JDT9) to analyze the source code and extract all the methods. Small
methods usually implement simple functionalities (e.g., getters and setters, or initialize
fields of a class object). Intuitively, such methods are less likely to have logging statements.
For example, 95% of the logged methods are among the top 40% (17.1K out of 42.7K)
largest methods, while only 5% of the logged methods in the Hadoop system are among the
rest 60% (25.6K out of 42.7K) of the methods. Moreover, topic models are known to per-
form poorly on short documents. Therefore, for each system, we filtered out the methods
that are smaller, in terms of LOC, than a predefined threshold. We defined the threshold for
each system as the LOC of the 5% smallest methods that contain a logging statement. The
thresholds are 8, 8, 8, 5, 8 and 4 for Hadoop, Directory-Server, Qpid-Java, Camel, Cloud-
Stack and Airavata, respectively. Table 2 also shows the effect of our filtering process, i.e.,
the number of methods that are filtered and kept, as well as the portions of them being
logged, respectively. Section 5.3.4 discusses the effect of such filtering on our modeling
results.

In order to study the relationship between logging decisions and the topics of methods,
we removed all the logging statements from the logged methods before we performed the
topic modeling. The use of standard logging libraries in these systems brings uniform for-
mats (e.g., logger.error(message)) to the logging statements, thus we used a set of regular
expressions to identify the logging statements. Finally, we preprocessed the log-removed
methods and applied topic modeling on the preprocessed corpus of methods (see Section 4.3
“Source Code Preprocessing and LDA”).

9http://www.eclipse.org/jdt

Author's personal copy

http://www.eclipse.org/jdt

Empir Software Eng

4.3 Source Code Preprocessing and LDA

In this subsection, we discuss our source code preprocessing approach, and how we apply
LDA on the preprocessed source code.

We extracted the linguistic data (i.e., identifier names, string literals, and comments)
from the source code of each method, and tokenized the linguistic data into a set of words,
similar to an approach that was proposed by Kuhn et al. (2007) and used in many prior
studies (Chen et al. 2016b). With the set of words for each method, we applied common
text preprocessing approaches such as removing English stop words (e.g., “a” and “the”)
and stemming (e.g., from “interruption” to “interrupt”). We also removed programming
language keywords (e.g., “catch” and “return”) from the set of words for each method.
An open source implementation by Thomas (2012) eased our preprocessing of the source
code. Finally, we applied LDA on both unigram (i.e., single word) and bigram (i.e., pairs of
adjacent words) in each method, since including bigrams helps improve the assignments of
words to topics and the creation of more meaningful topics (Brown et al. 1992).

Running LDA requires specifying a number of parameters such as K , α, and β (as
explained in Section 3), as well as the number of Gibbs sampling iterations (II) for com-
puting the Dirichlet distributions (i.e., per-document topic distributions and per-topic word
distributions). These LDA parameters directly affect the quality of the LDA generated top-
ics. However, choosing the optimal parameters values can be a computational expensive task
(Panichella et al. 2013), and such optimal values may vary across systems and tasks (Chang
et al. 2009; Panichella et al. 2013; Wallach et al. 2009). As a result, we applied hyper-
parameter optimization to automatically find the optimal α and β when applying LDA using
the MALLET tool (McCallum 2002). A prior study by Wallach et al. (2009) found that
using optimized hyper-parameters can improve the quality of the derived topics. We also set
the number of Gibbs sampling iterations II to a relatively large number (10,000) such that
LDA can produce more stable topics (Binkley et al. 2014).

We chose our K to be 500 when applying LDA on each studied system. As suggested by
prior studies (Chen et al. 2016b; Wallach et al. 2009) using a larger K does not significantly
affect the quality of LDA generated topics. The additional topics would have low topic
membership values (i.e., noise topics), and can be filtered out. On the other hand, choosing a
smaller K can be more problematic, since the topics cannot be separated precisely. We also
tried other values of K in our study. However, we did not notice any significant differences
in our findings (Section 6).

5 Case Study Results

In this section, we present the results of our research questions. For each research question,
we present the motivation behind the research question, the approach that we used to answer
the research question, and our experimental results.

5.1 RQ1: Which Topics are More Likely to be Logged?

5.1.1 Motivation

In this research question, we study the relationship between topics in the source code and
logging decisions. By studying this relationship, we can verify our intuition that the source

Author's personal copy

Empir Software Eng

code related to certain topics is more likely to contain logging statements. We are also inter-
ested in understanding which topics are more likely to contain logging statements. Since
topics provide a high-level overview of a system, studying which topics are more likely to
contain logging statements may provide insights about the logging practices in general.

5.1.2 Approach

We applied LDA on each of our studied systems separately to derive the topics for individual
systems. In order to quantitatively measure how likely a topic is to be logged, we define the
log density (LD) for a topic (zi) as

LD(zi) =
∑n

j=1 θij ∗ LgN(mj)
∑n

j=1 θij ∗ LOC(mj)
. (1)

where LgN(mj) is the number of logging statements of method mj , LOC(mj) is the number
of lines of code of method mj , n is the total number of source code methods, and θij is the
topic membership of topic zi in method mj . A topic with a higher LD value is more likely
to be logged.

As the LD metric does not consider the popularity of a topic, i.e., how many times a topic
is logged, we also follow the approach of prior studies (Chen et al. 2012, 2017b) and define
a cumulative log density (CumLD) for a topic (zi) as

CumLD(zi) =
n∑

j=1

θij ∗ LgN(mj)

LOC(mj)
, (2)

A topic with a higher CumLD value is logged more often than a topic with a lower CumLD
value. While the LD metric indicates the likelihood of a method of a particular topic being
logged, the CumLD metric captures the overall relationship between a topic and logging. A
topic might have a very high LD value, but there might only be a small number of methods
that have a membership of such a topic; in contrast, such a topic would have a low CumLD
value. Therefore, we consider both LD and CumLD metrics when we determine the top-log-
density topics for detailed analysis. We define a topic as a log-intensive topic if the topic
has both a high LD value and a high CumLD value.

We analyzed the statistical distribution of the log density values for all 500 topics in each
system, to verify the assumption that some topics are more likely to be logged than other
topics. We also manually studied the topics that have the highest log density values, i.e., the
log-intensive topics, to find out which topics are more likely to be logged. For each log-
intensive topic, we not only analyzed the top words in this topic, but also investigated the
methods that have the largest composition (i.e., large θ value) of the topic, as well as the
context of the methods, to understand the meaning and context of that particular topic.

5.1.3 Results

A Small Number of Topics are Much More Likely to be Logged Table 3 shows the
five number summary and the skewness of the log density (LD) values of the 500 topics for
each studied system. The LD distribution is always positively skewed in every studied sys-
tem. Taking the Hadoop system as an example, the minimal LD value for a topic is 0.00, the
inter-quantile-range (the range from the first quantile to the third quantile) ranges from 0.01
to 0.02, while the maximum LD value for a topic is 0.07. The LD distribution for the Hadoop
system has a skewness of 0.98 (a skewness of 1 is considered highly skewed (Groeneveld

Author's personal copy

Empir Software Eng

Table 3 The five number summary and the skewness of the LD values of the 500 topics in each of the six
studied systems

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.01 0.01 0.02 0.07 0.98

Directory-S 0.00 0.00 0.01 0.02 0.10 2.10

Qpid-Java 0.00 0.00 0.01 0.01 0.06 1.72

Camel 0.00 0.01 0.01 0.02 0.10 1.61

Cloudstack 0.00 0.02 0.03 0.04 0.14 0.88

Airavata 0.00 0.00 0.01 0.02 0.16 2.32

and Meeden 1984)). Other studied systems have similar or more skewed distributions of the
LD values, i.e., skewness ranges from 0.88 to 2.32. The high positive skewness indicates that
a small number of topics are much more likely to be logged than other topics. Table 4 shows
the five number summary and the skewness of the cumulative log density (CumLD) values
of the 500 topics for each studied system. The CumLD values also present a highly skewed
distribution, i.e., with a skewness of 2.64 to 13.49. The high skewness of the CumLD values
implies that a small number of topics are logged more often than other topics.

Most of the Log-Intensive Topics in the Studied Systems can be Generalized to
Topics that are Concerned with Communication BetweenMachines or Interaction
Between Threads Table 5 list the top six log-intensive topics for each system. In order
to ensure that the six topics for each system have both the highest LD and CumLD values,
we used an iterative approach to get these topics. Initially, we chose the intersection of the
six topics with the highest LD values and the six topics with the highest CumLD values.
If the number of topics in the intersection set is less than six, we chose the intersection of
the seven topics with the highest LD values and the seven topics with the highest CumLD
values. We continued expanding our search scope until we got the top six log-intensive top-
ics. By manually studying the log-intensive topics in the studied systems, we labeled the
meaning of each of these log-intensive topics in Table 5. 61% (22 out of 36) of the top
log-intensive topics capture communication between machines, while 14% (5 out of 36)
of the top log-intensive topics capture interactions between threads. We use a ∗ symbol in
Table 5 to mark topics that are concerned with communication between machines, and use
a † symbol in Table 5 to mark topics that are concerned with interactions between threads.
For instance, the first log-intensive topic in the Directory-Server system, as well as the third

Table 4 The five number summary and the skewness of the CumLD values of the 500 topics in each of the
six studied systems

System Min 1st Qu. Median 3rd Qu. Max. Skewness

Hadoop 0.00 0.11 0.24 0.44 3.55 2.90

Directory-S 0.00 0.01 0.04 0.10 3.68 9.76

Qpid-Java 0.00 0.01 0.05 0.16 7.58 13.49

Camel 0.00 0.11 0.25 0.57 5.95 3.65

CloudStack 0.00 0.16 0.42 0.82 5.14 2.64

Airavata 0.00 0.01 0.06 0.20 15.69 10.53

Author's personal copy

Empir Software Eng

Table 5 Top six log-intensive topics in each system

System LD CumLD Top words Topic label

Hadoop 0.07 1.32 attr, file, client, nfsstatu, handl network file system ∗
0.05 3.55 thread, interrupt, except, interrupt except, thread interruption †

sleep

0.05 1.04 write, respons, verifi, repli, channel handling write request ∗
0.04 1.85 deleg, token, deleg token, number, delegation tokens ∗

sequenc

0.04 2.31 event, handl, handler, event handler, event handling †

handler handl

0.04 1.07 command, shell, exec, executor, execut OS command execution †

Directory-S 0.09 0.48 statu, disconnect, connect, replic statu, connection management ∗
replic

0.08 0.78 target, target target, mojo, install, installer target

command

0.08 0.84 session, messag, session session, session management ∗
session write, write

0.08 0.41 ldap, permiss, princip, permiss except, LDAPa permission ∗
ldap permiss

0.06 2.17 contain, decod except, except, decod, decoder exception

length

0.06 3.68 close, debug, inherit, except, close except cursor operation

Qpid-Java 0.06 7.58 except, messag, error, except except, message exception ∗
occur

0.06 0.73 activ, spec, endpoint, handler, factori Qpid activation

0.05 1.15 connect, manag, manag connect, info, connection management ∗
qpid

0.05 1.21 resourc, except, resourc except, JCAb ∗
resourc adapt, adapt

0.05 0.66 interv, heartbeat, setup interv, heartbeatc ∗
heartbeat interv, setup

0.05 0.78 locat, transact manag, manag, transact, transaction management

manag locat

Camel 0.10 2.63 level, level level, info, warn, messag customized logging

0.07 2.09 header, event, transact, event header, event header ∗
presenc agent

0.07 2.41 interrupt, sleep, thread, reconnect, except thread interruption †

0.06 2.52 file, gener, gener file, except, fail remote file operation ∗
0.06 4.23 channel, close, channel channel, futur, channel operation ∗

disconnect

0.05 2.30 send, messag, send messag, websocket, sending message ∗
messag send

CloudStack 0.10 1.75 result, router, execut, control, root router operation ∗
0.09 2.68 agent, host, attach, disconnect, transfer agent connection ∗
0.08 1.84 wait, except, timeout, interrupt, thread thread interruption †

Author's personal copy

Empir Software Eng

Table 5 (continued)

System LD CumLD Top words Topic label

0.08 1.92 command, citrix, base, resourc base, citrix connection ∗
citrix resourc

0.07 2.64 context, context context, overrid context, VM context operation

overrid, manag

0.07 3.02 host, hyper, hyper host, context, vmware host command request ∗
Airavata 0.16 9.21 object, overrid, object object, format, customized logging

format object

0.13 15.69 type, resourc, except, resourc type, registri resource operation

0.10 2.14 channel, except, queue, connect, exchang channel operation ∗
0.09 1.40 except, client, airavata, airavata client, client connection ∗

except airavata

0.09 1.85 server, derbi, start, jdbc, except server operation exception ∗
0.08 2.63 server, port, transport, except, server port server operation ∗

The listed topics have the highest LD values and highest CumLD values. A topic label is manually derived
from the top words in each topic and its corresponding source code methods. We use underscores to concate-
nate words into bigrams. A topic label marked with a “∗” symbol or a “†” symbol indicates that the topic is
concerned with communication between machines or interaction between threads, respectively
aLightweight directory access protocol
bJava EE Connector Architecture (JCA) is a solution for connecting application servers and enterprize
information systems
cA heartbeat is a periodic signal sent between machines to indicate normal operations

log-intensive topic in the Qpid-Java system, are concerned with “connection management”.
Developers tend to log the management operations, such as connecting, refreshing, closing,
and information syncing, of a connection between two machines. As the communication
process between two machines cannot be controlled or determined by a single machine,
logging statements provide a way for developers, testers, or users to monitor the communi-
cation processes and provide rich information for debugging such processes. Similarly, the
interaction between threads cannot be controlled by a single thread, thus developers may
also use logging statements more often to track such interactions between threads. As an
example, the second log-intensive topic in Hadoop is about “thread interruption”.

Most Top Log-Intensive Topics Only Appear in One Individual System, But a Few
Topics Emerge Across Systems As we applied LDA on each studied system separately,
it is not surprising that we generate mostly different topics for different systems, likewise
for top log-intensive topics. For example, the first log-intensive topic in Hadoop is related to
“network file system” (NFS). Developers use logging statements to track various operations
on a network file system, such as creation, reading, writing and lookup. Although we know
that such a topic is concerned with communication, the topic itself is not a general topic for
all systems. Systems that do not use network file systems would not consider logging such
a topic. Another example is the fourth log-intensive topic “LDAP permission” in Directory-
Server. If a party is accessing a directory but it does not have the permission to access that
particular directory, such a behavior would be logged as an error. Only the systems that
use LDAP need to consider logging such a topic. However, a few topics do emerge across

Author's personal copy

Empir Software Eng

systems. For example, the second log-intensive topic in Hadoop, the third log-intensive
topic in Camel and the third log-intensive topic in CouldStack are all concerned with “thread
interruption”. For another example, the fifth log-intensive topic in Camel and the third log-
intensive topic in Airavata are both related to “channel operation”. The findings motivate
us to study how common topics (i.e., topics shared by multiple systems) are logged
across different systems (see RQ2).

5.1.4 Discussion

Impact of Choosing a Different Number of Topics In this RQ, we use LDA to identify
500 topics for each system and study the distribution of log density among these topics. We
now explore how the choice of the number of topics impacts our analysis in this RQ. In this
sub-section, we consider the Hadoop system as an example, and vary the number of topics
between 100 and 1,000. Tables 6 and 7 summarize the distributions of the LD values and the
CumLD values for the Hadoop system when varying the number of topics. As we increase
the number of topics, the skewness of the LD values and the skewness of the CumLD values
both increase. This phenomenon can be explained by the intuition that using a larger number
of topics can better distinguish log-intensive topics from other topics. However, both the
LD values and the CumLD values still present highly positive-skewed distributions when
we vary the number of topics, which supports our observation that a small number of topics
are much more likely to be logged.

Table 8 lists the top six log-intensive topics in the Hadoop system when choosing a differ-
ent number of topics (i.e., 100, 500, and 1,000). The top log-intensive topics do not remain
the same when we vary the number of topics, because using different number of topics gen-
erates topics at different granularity. However, some topics, such as “thread interruption”,
“event handling”, “network file system”, and “OS command execution”, do appear among
the top log-intensive topics when varying the number of topics. We highlight these common
topics in bold font in Table 8. Moreover, even when we vary the number of topics, most
of the log-intensive topics are still about communication between machines or interaction
between threads. We also have similar observations in the other studied systems.

Relationship Between Topics and Structural Complexity In this RQ, we found that
a few topics are more likely to be logged than other topics. However, it is possible that
these differences are related to the differences of the code structures. In this sub-section, we
examine the relationship between the topics and the structural complexity of a method.

We use McCabe’s cyclomatic complexity (McCabe 1976) (CCN) to measure the
structural complexity of a method. We define two metrics, topic diversity (TD) and topic-
weighted log density (TWLD), to measure the diversity of topics in a method (i.e., cohesion)
and the log density of a method which is inferred from its topics, respectively. The topic
diversity, which is also called topic entropy (Hall et al. 2008; Misra et al. 2008), of a method

Table 6 The five number summary and the skewness of the LD values of the topics in the Hadoop system

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.00 0.01 0.01 0.02 0.04 0.71

500 0.00 0.01 0.01 0.02 0.07 0.98

1,000 0.00 0.01 0.01 0.02 0.07 1.29

Author's personal copy

Empir Software Eng

Table 7 The five number summary and the skewness of the CumLD values of the topics in the Hadoop
system

Number of topics Min 1st Qu. Median 3rd Qu. Max. Skewness

100 0.30 0.87 1.37 2.35 8.66 1.99

500 0.00 0.11 0.24 0.44 3.55 2.90

1,000 0.00 0.02 0.08 0.23 3.56 4.21

is defined as TD(mj) = −∑T
i=0 θij log2θij , where θij is the membership of topic i in

method j and T is the total number of topics. A larger topic diversity means that a method is
more heterogeneous, while a smaller topic diversity means that a method is more coherent.

The topic-weighted log density of a method j is defined as TWLD(mj) =
∑T

i=0 θij LDi,−j , where LDi,−j is the log density of topic i that is calculated from (1) con-
sidering all the methods except for the method j . When calculating the TWLD value of a
method, we excluded that particular method from (1) to calculate the log density of topics,
in order to avoid bias. A large TWLD value means that a method contains a large proportion
of log-intensive topics.

Figure 3 shows the pairwise Spearman rank correlation between cyclomatic complexity
(CCN), topic diversity (TD), and topic-weighted log density (TWLD) of all the methods
in our studied systems. We use the Spearman rank correlation because it is robust to non-
normally distributed data (Swinscow et al. 2002). In fact, the Shapiro-Wilk normality test

Table 8 Top six log-intensive topics in the Hadoop system, using different number of topics

Number of topics Top words Topic label

100 thread, except, interrupt, interrupt except, wait thread interruption †

servic, server, stop, start, handler server operation ∗
event, event event, handl, event type, handler event handling †

block, replica, datanod, pool, block block work node operation ∗
resourc, request, contain, prioriti, node resource allocation ∗
contain, contain contain, statu, launch, contain statu container allocation ∗

500 attr, file, client, nfsstatu, handl network file system ∗
thread, interrupt, except, interrupt except, sleep thread interruption †

write, respons, verifi, repli, channel handling write request ∗
deleg, token, deleg token, number, sequenc delegation tokens ∗
event, handl, handler, event handler, handler handl event handling †

command, shell, exec, executor, execut OS command execution †

1000 attr, file, client, nfsstatu, handl network file system ∗
bean, mbean, info, object, info bean bean object

node, path, node path, data, path node work node operation ∗
thread, interrupt, except, interrupt except, wait thread interruption †

state, deleg, master, secret manag, manag delegation tokens ∗
command, shell, exec, exit, exit code OS command execution †

A topic label marked with a “∗” symbol or a “†” symbol indicates that the topic is concerned with communi-
cation between machines or interaction between threads, respectively. The bold font highlights the common
topics that appear among the top log-intensive topics when varying the number of topics

Author's personal copy

Empir Software Eng

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

hadoop

1 0.08

1

0.27

0.24

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

directory−server

1 0.15

1

0.37

0.22

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

qpid−java

1 −0.15

1

0.22

0.29

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

cloudstack

1 0.21

1

0.34

0.16

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

camel

1 0.15

1

0.39

0.19

1

*** *** ***

*** ***

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CCN TWLD TD

CCN

TWLD

TD

airavata

1 0.09

1

0.31

0.5

1

*** *** ***

*** ***

Fig. 3 Pairwise Spearman correlation between cyclomatic complexity (CCN), topic diversity (TD), and
topic-weighted log density (TWLD). The symbols below the correlation values indicate the statistical
significance of the respective correlation: o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

shows that the distributions of these three metrics are all statistically significantly different
from a normal distribution (i.e., p-value < 0.05). Topic diversity and cyclomatic complex-
ity have a positive correlation of 0.22 to 0.39 in the studied systems. In other words, more
structurally complex methods tend to have more diverse topics, which matches prior find-
ings (Liu et al. 2009b). On the other hand, the topic-weighted log density of a method has a
very weak (−0.15 to 0.21) correlation (Swinscow et al. 2002) with the cyclomatic complex-
ity of a method, which means that the log intensity of the topics is unlikely to be correlated
with the cyclomatic complexity of the code. Therefore, even though structurally complex
methods tend to have diverse topics, the logging information that is captured by these
topics is not correlated with code complexity.

5.2 RQ2: Are Common Topics Logged Similarly Across Different Systems?

5.2.1 Motivation

In RQ1, we applied LDA on each system separately and we got mostly different top log-
intensive topics for different systems. However, we did find a few top log-intensive topics
that emerge across different systems. Therefore, in this research question, we quantitatively

Author's personal copy

Empir Software Eng

study how common topics are logged across different systems. If common topics are sim-
ilarly logged across different systems, we might be able to provide general suggestions on
what topics should be logged across systems; otherwise, developers should make logging
decisions based on the context of their individual system.

5.2.2 Approach

Cross-system Topics In order to precisely study the logged topics across different sys-
tems, we combined the methods of the studied systems together into one corpus, and applied
LDA using K = 3, 000. We use 3,000 topics as we hope to identify topics that have the
same granularity as the topics that we identified in RQ1 (i.e., 500 topics ∗ 6 systems). We
used the same preprocessing and topic modeling approach as we had applied to individual
systems in RQ1. We refer to the resulting topics as “cross-system topics”. With the cross-
system topics, we firstly need to determine whether a topic exists in each studied system. If
a topic exists in multiple systems, then this topic is common among multiple systems.

Topic Assignment in a System We use the topic assignment to measure the total presence
of a topic in a system. The assignment of a topic in a system is the sum of that topic’s
memberships in all the methods of that system. A higher topic assignment means that a
larger portion of the methods is related to the topic (Baldi et al. 2008b; Thomas et al. 2014).
The assignment of topic zi in system sk is defined as

A(zi, sk) =
Nk∑

j=0

θij , (3)

where Nk is the number of methods in system sk , and θij is the topic membership of topic
zi in method mj .

As different systems have different number of methods, it is unfair to compare the assign-
ment of a topic in different systems. Therefore, we instead use a normalized definition of
assignment:

AN(zi, sk) =
Nk∑

j=0

θij /Nk, (4)

The normalized assignment values of all the topics sum up to 1 for each individual system.
We refer to normalized assignment as “assignment” hereafter.

Common Topics Shared Across Systems Figure 4 shows the cumulative assignments
of all the topics in each system when sorting the topics by their assignments. For each sys-
tem, a small portion of topics (208 to 696 out of 3,000 topics) account for 90% of the
total assignment of each system. In other words, only a small portion of topics are signifi-
cantly assigned in each system. For each system, we define its important topics as its most
assigned topics that account for 90% of the total assignment of that particular system. For
example, 696 out of 3,000 topics are important topics in the Hadoop system.

We define a topic to be a common topic if the topic is important in multiple systems.
For example, if a topic is important in two systems, then this topic is commonly shared
between the two systems. If a topic is important in all the studied systems, then this topic is
commonly shared across all the studied systems.

Author's personal copy

Empir Software Eng

0.9

6960.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Hadoop

0.9

2990.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Directory−server

0.9

4270.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Qpid−java

0.9

5260.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Cloudstack

0.9

6640.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Camel

0.9

2080.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
Number of topics

C
um

m
ul

at
iv

e
as

si
gn

m
en

t

Airavata

Fig. 4 The cumulative assignment of all the topics in each studied system. The topics are sorted by their
assignments from high to low

Log Density Correlation In order to study whether common topics are logged similarly
across different systems, we measured the pairwise correlation of the log density of the com-
mon topics that are shared among different systems. Specifically, for each pair of systems,
we first calculated their respective log density values for their common topics, so we calcu-
late two sets of log density values for the same set of common topics. We then calculated the
Spearman rank correlation between these two sets of log density values. A large correlation
value indicates that the common topics are logged similarly across these two systems. As
discussed in RQ1, the log density values of the topics have a skewed distribution. In fact,
the Shapiro-Wilk test shows that the distributions of the log density values are statistically
significantly different from a normal distribution (i.e., p-value < 0.05). Therefore, we chose
the Spearman rank correlation method because it is robust to non-normally distributed data
(Swinscow et al. 2002). Prior studies also applied Spearman ranking correlation to measure
similarity (e.g. Goshtasby 2012).

5.2.3 Results

All the studied Systems Share a Portion (i.e., 12% to 62%) of Their Topics with
Other Systems Table 9 lists the number of topics that are shared by N ∈ {1, 2, ..., 6}

Table 9 Number of topics that are shared by N ∈ {1, 2, ..., 6} systems

Systems N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

Shared topics 1,359 (45%) 1,130 (38%) 203 (7%) 109 (4%) 77 (3%) 83 (3%) 39 (1%)

Author's personal copy

Empir Software Eng

systems. Among all the 3,000 topics, around half (1,641) of them are important in at least
one system, while the rest of them (1,359) are not important in any system. Around one-sixth
(511 topics) of the topics are shared by at least two systems, among which only 39 topics
are shared by all the six studies systems. Figure 5 lists the numbers of common topics that
are shared between each pair of systems. For each system, Fig. 5 also shows the percentage
of its topics that are shared with each of the other systems. As shown in the figure, each
studied system shares 12% to 62% of its topics with each of the other systems. In general,
Hadoop and Camel share the most topics with other systems, possibly because they are
platform or framework applications that contain many modules of various functionalities.
In comparison, Airavata share the least topics with other systems. Specifically, Hadoop and
Camel share the most topics (296) between them, while Directory-server and Airavata share
the least topics (51).

The Likelihood of Logging the Common Topics has a Statistically Significant Cor-
relation of 0.35 to 0.62 Among All the Studied Systems Figure 6 shows the Spearman
correlation of the log density between each pair of systems on their common topics. For
each pair of systems, their log density values of the common topics have a statistically sig-
nificant (i.e., p-value < 0.05) correlation of 0.35 to 0.62. In other words, the likelihood
of logging the common topics is statistically significantly correlated between each pair of
the studied systems. The Hadoop system and the Cloudstack system have the largest log

696

169

239

233

296

83

169

299

140

130

164

51

239

140

427

185

266

73

233

130

185

526

227

71

296

164

266

227

664

80

83

51

73

71

80

208

hadoop
directory−serve

r

qpid−java

cloudstack

camel
airavata

hadoop

directory−server

qpid−java

cloudstack

camel

airavata

(24%) (34%) (33%) (43%) (12%)

(57%) (47%) (43%) (55%) (17%)

(56%) (33%) (43%) (62%) (17%)

(44%) (25%) (35%) (43%) (13%)

(45%) (25%) (40%) (34%) (12%)

(40%) (25%) (35%) (34%) (38%)

Fig. 5 The number of topics that are shared between each pair of systems. The numbers in the diagonal cells
show the number of important topics per system. The percentage values show the percentage of topics in the
system indicated by the row name that are shared with the system indicated by the column name

Author's personal copy

Empir Software Eng

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
ha
do
op

di
re
ct
or
y−
se
rv
er

qp
id
−j
av
a

cl
ou
ds
ta
ck

ca
m
el

ai
ra
va
ta

hadoop

directory−server

qpid−java

cloudstack

camel

airavata

0.5 0.47

0.46

0.51

0.42

0.42

0.62

0.43

0.45

0.48

0.49

0.46

0.39

0.46

0.46

0.42

0.53

0.35

0.43

0.49

0.44

*** *** *** *** ***

*** *** *** ***

*** *** **

*** ***

Fig. 6 The Spearman correlation of the log density of the common topics that are shared between each pair
of systems. The values in the diagonal cells show the average log density correlation between each system
and other systems on the shared topics. The symbols below the correlation values indicate the statistical
significance of the respective correlation: o p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

density correlation (0.62) on their common topics. As a distributed computing platform
and a cloud computing platform, respectively, these two systems are likely to share similar
logging needs for their common topics. The Qpid-Java system and the Airavata system have
the smallest log density correlation (0.35) on their common topics. As a message broker
and a framework for managing and executing computational jobs, respectively, these two
systems are less likely to have similar logging needs.

5.2.4 Discussion

How Do Similar Systems Log Common Topics? In our case study, we chose six sys-
tems from different domains. We found that each system shares a portion (12% to 62%) of
topics with other systems, and that the likelihood of logging the common topics is statisti-
cally significantly correlated among these systems. It is interesting to discuss how similar
systems log their common topics. Therefore, we analyzed the common topics that are shared
by two similar systems: Qpid-Java and ActiveMQ. Both systems are popular open source
message brokers implemented in Java. Specifically, we added the ActiveMQ system into our
cross-system topic modeling. We still set the number of topics to be 3,000, as we found that
adding the new system into our cross-system topic modeling does not significantly change
the number of important topics of the existing systems.

Table 10 shows the number of common topics between these two systems and their log
density correlation. As shown in the table, ActiveMQ has a wider range of topics than Qpid-
Java. The former has 675 important topics while the later has 432 important topics. The
larger number of important topics in ActiveMQ is likely because ActiveMQ is not only a

Author's personal copy

Empir Software Eng

Table 10 Common topics between two similar systems: Qpid-Java and ActiveMQ. The symbols below a
correlation value indicate the statistical significance of the correlation: *** p < 0.001

System # Important topics # Common topics Log density correlation

Qpid-Java 432 294 (68%) 0.45

ActiveMQ 675 294 (44%) ***

message broker, but it also supports many other features such as enterprize integration pat-
terns.10 These two systems share 294 common topics. The Qpid-Java system shares 68%
(the largest percentage for each pair of systems) of its topics with the ActiveMQ system.
The respective log density values of these common topics have a statistically significant
correlation of 0.45, which is not the highest correlation value between each pair of systems.
In summary, for similar systems such as Qpid-Java and ActiveMQ, they may share a rela-
tively large portion of common topics; however, their likelihood of logging such common
topics does not necessarily have a larger correlation than a pair of systems from different
domains.

Topics Shared by All the Studied Systems As shown in Table 9, there are only 39 top-
ics that are commonly shared among all the studied systems. We measured each system’s
log density for these 39 topics and calculated their pairwise Spearman correlations. The log
density values of the studied systems have a statistically significant correlation of 0.38 to
0.70. In other words, the likelihood of logging these common topics is statistically corre-
lated among all the studied systems. Table 11 also lists the six most log-intensive topics and
the six least log-intensive topics among the 39 common topics. After manual analysis and
labeling, we found that these two groups of topics have very distinguishable patterns. Most
of the top-logged topics are concerned with communication between machines or interac-
tions between threads, such as “stopping server” and “finding host”. In comparison, most
of the least-logged topics are concerned with low-level data structure operations, such as
“hash coding” and “string indexing”.

Impact of Choosing a Different Number of Topics In this RQ, we chose 3,000 topics
for the cross-system topic modeling. We now examine whether our choice of the number
of topics impacts our results. Using the Hadoop system as an example, Table 12 shows the
cross-system topic modeling results when varying the number of topics from 3,000 to 2,000
and 1,000. As we decrease the number of topics from 3,000 to 1,000, the number of impor-
tant topics for the Hadoop system also decreases from 696 to 384, at a lower decreasing
ratio. The median number of common topics that are shared between Hadoop and other
systems also decreases from 233 to 148. However, the percentage of the common topics
increases from 33% to 39%. In other words, as we decrease the number of topics, the top-
ics become more coarse-grained and they are more likely to be shared by multiple systems.
Finally, the log density correlation of the common topics between the Hadoop system and
other systems does not change significantly when we vary the number of topics from 3,000
to 1,000; in fact, the median correlation values remain around 0.5 and the correlations are
always statistically significant while we vary the number of topics. Similar observations

10http://activemq.apache.org

Author's personal copy

http://activemq.apache.org

Empir Software Eng

Table 11 The common topics that are shared by all of the six studied systems: The six most log-intensive
topics and the six least log-intensive topics

Top words Topic label

Most stop, except, overrid, stop except, overrid stop, servic, stopping server ∗
likely except stop, shutdown, servic stop, stop servic

logged except, except except, error, thrown, except thrown, throwing exception

topics param, occur, error occur, except error, thrown error

host, host host, list host, find, host type, list, host list, finding host ∗
host find, type host, find host

connect, connect connect, except, except connect, connection management ∗
connect except, close, connect close, creat connect,

connect host, creat

event, event event, handl, event type, type, event handler, event handling †

handler, handler handl, overrid, event applic

messag, messag messag, except, except messag, message exception ∗
messag except, messag param, param messag,

object messag, overrid, object

Least hash, code, hash code, overrid, overrid hash, code result, hash coding

likely prime, prime result, result prime, code hash

logged equal, object, overrid, equal object, overrid equal, equal operation

topics result equal, equal equal, object equal, equal type, type equal

append, append append, builder, builder builder, overrid, string builder

builder append, overrid builder, length append,

time append, type append

system, println, system println, print, usag, except system, printing

println system, exit, println usag, usag system

index, index index, substr, start index, param, substr index, string indexing

length, length index, size, list index

node, node node, node list, list node, param node, graph node management

type node, except node, node type, node param, param

A topic label marked with a “∗” symbol or a “†” symbol indicates that the topic is concerned with
communication between machines or interaction between threads, respectively

Table 12 Cross-system topic modeling results when varying the number of topics, using the Hadoop system
as an example

System # Topics # Important topics # Common topics Log density

(median) correlation (median)

Hadoop 3,000 696 233 (33%) 0.49

2,000 584 213 (36%) 0.45

1,000 384 148 (39%) 0.53

Author's personal copy

Empir Software Eng

also hold to the other studied systems. Overall, our results in this research question are not
sensitive to the number of topics that is used in the cross-system topic modeling.

5.3 RQ3: Can Topics Provide Additional Explanatory Power for the Likelihood
of a Code Snippet Being Logged?

5.3.1 Motivation

In RQ1, we observed that source code that is related to certain topics is more likely to be
logged. In this RQ, we further studied the statistical relationship between topics and logging.
We are interested in knowing whether our code topics can offer a different view of logging.
Namely, we want to study whether adding topic-based metrics to a set of baseline metrics
can provide additional explanatory power for the likelihood of a code snippet being logged.

5.3.2 Approach

To answer this research question, we built regression models to study the relationship
between the topics in a method and the likelihood of a method being logged. The response
variable of our regression models is a dichotomous variable that indicates whether a method
should have a logging statement or not, and the explanatory variables are represented by a
set of baseline metrics and topic-based metrics. The baseline metrics capture the structural
information of a method, while the topic-based metrics capture the semantic information of
a method.

Baseline Metrics We used 14 baseline metrics, as listed in Table 13, to capture the struc-
tural information of a method. Prior studies (Fu et al. 2014; Yuan et al. 2012a; Zhu et al.
2015) found that the structure of a code snippet exhibits a strong relation with its logging
needs. Table 13 also briefly explains the rationale behind studying each of these baseline
metrics.

Topic-Based Metrics The topic modeling results give us the membership (θ) assigned for
each of the topics in each method. We consider the membership values that are assigned to
the topics as the topic-based metrics, denoted by T0-T499. Prior studies also used similar
topic-based metrics to predict or understand the relationship between topics and software
defects (Chen et al. 2012; Nguyen et al. 2011). We filtered out topic membership values
that are less than a threshold (we use 0.01 as the threshold) to remove noise topics for each
method (Chen et al. 2012; Wallach et al. 2009).

Model Construction We built LASSO (least absolute shrinkage and selection operator
(Tibshirani 1996)) models to study the relationship between the explanatory metrics of a

Author's personal copy

Empir Software Eng

Table 13 Selected baseline metrics and the rationale behind the choices of these metrics

Metric Definition (d) — Rationale (r)

LOC d: Number of lines of code in a method.

r: Large methods are likely to have more logging statements.

CCN d: McCabe’s cyclomatic complexity (McCabe 1976) of a method.

r: Complex methods are likely to have more logging statements.

NUM TRY d: Number of try statements in a method.

r: A try block indicates developers’ uncertainty about the execution outcome

of code, thus developers tend to use logging statements for monitoring

or debugging purposes.

NUM CATCH d: Number of catch clauses in a method.

r: Exception catching code is often logged (Yuan et al. 2012a; Fu et al. 2014;

Zhu et al. 2015; Microsoft-MSDN 2016; Apache-Commons 2016).

NUM THROW d: Number of throw statements in a method.

r: A logging statement is sometimes inserted right before a throw statement

(Fu et al. 2014); developers also sometimes re-throw an exception instead

of logging an exception.

NUM THROWS d: Number of throws clauses in a method declaration.

r: Methods that throw exceptions are likely to have logging statements.

NUM IF d: Number of if statements in a method.

r: Developers tend to log logic-branch points for understanding

execution traces (Fu et al. 2014).

NUM ELSE d: Number of else clauses in a method.

r: Developers tend to log logic-branch points for understanding

execution traces (Fu et al. 2014).

NUM SWITCH d: Number of switch statements in a method.

r: Developers tend to log logic-branch points for understanding

execution traces (Fu et al. 2014).

NUM FOR d: Number of for statements in a method.

r: Logging statements inside loops usually record the execution

path or status of the loops.

NUM WHILE d: Number of while statements in a method.

r: Logging statements inside loops usually record the execution

path or status of the loops.

NUM RETURN d: Number of return statements in a method.

r: More return statements indicates a more complex method (i.e.,

more possible execution outcomes); such a method is more likely

to be logged for monitoring or debugging purposes.

NUM METHOD d: Number of method invocations in a method.

r: Developers tend to check and log a return value from a method

invocation (Fu et al. 2014).

FANIN d: The number of classes that depend on (i.e., reference) the

containing class of a method.

r: High fan-in classes like libraries might have less logging

statements to avoid the generation of too much logging.

Author's personal copy

Empir Software Eng

method and a response variable that indicates whether a method should have a logging state-
ment or not. We use a LASSO model because it uses regularization to penalize a complex
model that leads to over-fitting and it conducts feature selection simultaneously (Kuhn and
Johnson 2013; Tibshirani 1996). An over-fitted model performs very well on the data on
which the model was built, but usually has poor accuracy on a new data sample (Kuhn and
Johnson 2013). It is generally true that more complex models are more likely to lead to
over-fitting (Kuhn and Johnson 2013). The LASSO model uses a λ parameter to penalize
the complexity of a model: the larger the λ value, the simpler the model (Tibshirani 1996).
Among the 500 topic-based metrics, many of them have little or no contribution for deter-
mining the logging likelihood of a method. A LASSO model, with a proper setting of the
λ parameter, enables us to significantly reduce the number of variables in the model and
reduce the possibility of over-fitting (Tibshirani 1996).

We used the stratified random sampling method (Kuhn and Johnson 2013; Witten and
Frank 2005) to split the dataset of a system into 80% of training dataset and 20% of testing
dataset, such that the distributions of logged methods and unlogged methods are properly
reflected in both the training and testing datasets. We used the 80% training dataset to con-
struct the model and tune the λ parameter, and left the 20% testing dataset only for testing
purpose using the already tuned λ parameter. Similar “80%:20%” splitting approaches were
also used by prior studies (Kuhn and Johnson 2013; Martin et al. 2012). Splitting the dataset
into distinct sets for model construction (including parameter tuning) and model evalua-
tion ensures that we avoid over-fitting and that we provide an unbiased sense of model
performance (Kuhn and Johnson 2013).

We used 10-fold cross validations to tune the λ value in a LASSO model, using only
the training dataset. For each λ value, we used a 10-fold cross validation to measure the
performance of the model (represented by AUC) using the λ value, and repeated for different
λ values until we find a λ value with the best model performance. In this way, we got a
LASSO model with the best cross-validated performance and we can avoid over-fitting. We
used the “cv.glmnet” function in the “glmnet” R package (Friedman et al. 2010; Simon et al.
2011) to implement our model tuning process.

Model Evaluation We used balanced accuracy (BA) as proposed by a prior study (Zhu
et al. 2015) to evaluate the performance of our LASSO models. BA averages the probability
of correctly identifying a logged method and the probability of correctly identifying a non-
logged method. BA is widely used to evaluate the modeling results on imbalanced data
(Cohen et al. 2004; Zhang et al. 2005; Zhu et al. 2015), since it avoids over optimism on
imbalanced data sets. BA is calculated by (5):

BA = 1

2
× T P

T P + FN
+ 1

2
× T N

FP + T N
(5)

where TP, FP, FN and TN represent true positive, false positive, false negative and true
negative, respectively.

We also used the area under the ROC (receiver operating characteristic) curve (AUC) to
evaluate the performance of the LASSO models. While the BA provides a balanced measure
on our models’ accuracy in classifying logged methods and non-logged methods, the AUC
evaluates our models’ ability of discrimination, i.e., how likely a model is able to correctly
classify an actual logged method as a logged method, rather than classify an actual unlogged
method as a logged method. The AUC is the area under the ROC curve which plots the
true positive rate (T P/(T P + FN)) against false positive rate (FP/(FP + T N)). The

Author's personal copy

Empir Software Eng

AUC ranges between 0 and 1. A high value for the AUC indicates a classifier with a high
discriminative ability; an AUC of 0.5 indicates a performance that is no better than random
guessing.

Evaluating the Effect of the Metrics on the Model Output We evaluated the effect
of the metrics (i.e., the explanatory variables) on the model output, i.e., the likelihood of a
method being logged, by comparing the metrics’ standardized regression coefficients in the
LASSO models. Standardized regression coefficients describe the expected change in the
response variable (in standard deviation units) for a standard deviation change in a explana-
tory variable, while keeping the other explanatory variables fixed (Bring 1994; Kabacoff
2011). A positive coefficient means that a high value of that particular variable is associated
with a higher probability of a method being logged, while a negative coefficient means that
a high value of that particular variable is associated with a lower probability of a method
being logged. For example, a topic-based metric with a positive coefficient means that a
method with a greater membership of that particular topic has a higher chance to be logged.
The standardized regression coefficients are not biased by the different scale of different
variables in the model. In this work, we calculate the standardized regression coefficients
by standardizing each of the explanatory variables to a mean of 0 and a standard deviation
of 1, before feeding the data to the LASSO models.

5.3.3 Results

Table 14 shows the performance of the models that are built using the baseline metrics, and
the models that are built using both the baseline and topic-based metrics. A high AUC indi-
cates that our LASSO models are able to discriminate logged methods versus not-logged
methods. A high BA implies that our LASSO models are able to provide accurate classifi-
cation for the likelihood of a method being logged. The results highlight that developers are
able to leverage a model to aid their logging decisions.

Adding Topic-Based Metrics to the Baseline Models Gives a 3% to 13% Improve-
ment on AUC and a 6% to 16% Improvement on BA for the LASSO Models In
order to evaluate the statistical significance of adding the topic-based metrics to our baseline
models, we used a Wilcoxon signed-rank test to compare the performance of the models that
only use the baseline metrics and the performance of the models that use both the baseline
and topic-based metrics. The Wilcoxon signed-rank test is the non-parametric analog to the
paired t-test. We use the Wilcoxon signed-rank test instead of the paired t-test because the
former does not assume a normal distribution of the compared data. We use a p-value that
is below 0.05 to indicate that the alternative hypothesis (i.e., the performance change is sta-
tistically significant) is true. The test on the AUC values and the test on the BA values both
result in a p-value of 0.02, which means that adding the topic-based metrics statistically
significantly improves the performance of our LASSO models. We also computed Cliff’s δ

effect size (Macbeth et al. 2011) to compare the performance of the models that only use
the baseline metrics versus the performance of the models that use both the baseline metrics
and the topic-based metrics. Cliff’s δ also has no assumption on the normality of the com-
pared data. The magnitude of Cliff’s δ is assessed using the thresholds that are provided by
Romano et al. (2006), i.e., δ < 0.147 “negligible”, δ < 0.33 “small”, δ < 0.474 “medium”,
and δ >= 0.474 “large”. As shown in Table 14, the effect size of the AUC improvement
is 0.72 (large), and the effect size of the BA improvement is 0.69 (large). Therefore, topic-
related metrics provide additional explanatory power to the models that are built using the

Author's personal copy

Empir Software Eng

Table 14 Performance of the LASSO models, evaluated by AUC and BA

Project Baseline metrics Baseline + Topics

AUC BA AUC BA

Hadoop 0.82 0.72 0.87 (+6%) 0.78 (+7%)

Directory-Server 0.86 0.75 0.94 (+9%) 0.86 (+16%)

Qpid-Java 0.80 0.74 0.90 (+13%) 0.82 (+10%)

Camel 0.86 0.78 0.90 (+4%) 0.82 (+6%)

CloudStack 0.83 0.76 0.88 (+6%) 0.80 (+6%)

Airavata 0.96 0.88 0.99 (+3%) 0.95 (+8%)

Cliff’s δ – – 0.72 (large) 0.69 (large)

P-value (Wilcoxon) – – 0.02 (sig.) 0.02 (sig.)

structural baseline metrics. In other words, topics can provide additional explanatory power
for the likelihood of a method being logged.

Both our baseline and topic-based metrics play important roles in determining the likeli-
hood of a method being logged. Table 15 shows the top ten metrics for each LASSO model
that uses both the baseline metrics and the topic-based metrics. These metrics are ordered
by the absolute value of their corresponding standardized coefficients in the models. In each
model, five to seven of the top ten important metrics for determining the likelihood of
a method being logged are our topic-based metrics.

The baseline metrics NUM TRY, NUM METHOD, and NUM CATCH have a strong
relationship with the likelihood of a method being logged. Each of these three metrics
appears at least four times in the top ten metrics and has a positive coefficient in the LASSO
models for all studied systems. Developers tend to log try blocks as they are concerned
about the uncertainty during the execution of try blocks; developers log method invocations
as developers usually need to check and record the return values of such method invoca-
tions; developers log catch blocks as a mean to handle exceptions for debugging purposes
(Apache-Commons 2016; Microsoft-MSDN 2016). The baseline metrics NUM THROW,
NUM THROWS and FANIN each appears twice in the top ten metrics. The NUM THROW
metric has a negative coefficient in both of these two occurrences, indicating that devel-
opers tend not to throw an exception and log it at the same time; instead, they tend to log
when they are catching an exception. In contrast, the NUM THROWS metric has a positive
coefficient, showing that developers tend to add logging statements in methods that spec-
ify potential exceptions that might be thrown in that particular method or callee methods
(with the latter case being more usual). The FANIN metric has a negative coefficient, indi-
cating that high fan-in code tends to be associated with less logging statements, possibly for
reducing logging overheads when called by other methods. Both the LOC and CNN metrics
appear only once in the top ten metrics. The LOC metric has a positive coefficient, which
is obvious as larger methods are more likely to require logging statements. The CCN met-
ric also has a positive coefficient, indicating that developers tend to log complex methods
which may need future debugging (Shang et al. 2015).

The Topic-Based Metrics Play Important Roles in the LASSO Models; in Partic-
ular, the Log-Intensive Topics have a Strong and Positive Relationship with the
Likelihood of a Method Being Logged As shown in Table 15, we manually derived
the topic label for each topic-based metric, by investigating the top words in the topic,

Author's personal copy

Empir Software Eng

Table 15 The top ten important metrics for determining the likelihood of a method being logged and their
standardized coefficients

Metric Coef Metric Coef Metric Coef

Hadoop Directory-Server Qpid-Java

NUM METHOD 0.72 NUM METHOD 0.73 T (message exception ‡) 0.77

NUM CATCH 0.42 NUM TRY 0.58 LOC 0.62

T (prototype builder) −0.31 T (cursor operation ‡) 0.43 NUM RETURN −0.54

CCN 0.28 T (decoder exception ‡) 0.31 T (list iteration) −0.49

T (server protocal) −0.26 T (cursor exception) −0.28 NUM IF −0.26

NUM TRY 0.25 T (string builder) −0.24 T (connection management ‡) 0.25

NUM THROW −0.22 T (naming exception) −0.22 NUM CATCH 0.25

T (client protocal) −0.21 FANIN −0.18 T (object attribute) −0.20

T (equal operation) −0.15 T (state transition) −0.18 T (write flag) −0.19

T (string builder) −0.14 T (tree operation) 0.15 T (session management ‡) 0.17

Camel CloudStack Airavata

NUM METHOD 1.13 NUM TRY 0.80 NUM TRY 2.09

NUM TRY 0.29 NUM METHOD 0.62 FANIN −0.83

NUM THROWS 0.28 NUM CATCH 0.44 T (Thrift code - object reader) −0.69

T (JSON schema) −0.22 T (search parameter) −0.25 T (Thrift code - object writer) −0.69

NUM CATCH 0.22 T (search entity) −0.25 NUM THROWS 0.39

NUM THROW −0.17 T (server response) −0.20 NUM METHOD 0.37

T (string builder) −0.16 T (legacy transaction) −0.16 T (result validation) −0.33

T (model description) −0.15 T (search criteria) −0.15 T (resource operation ‡) 0.31

T (REST configuration) −0.13 NUM RETURN 0.14 T (customized logging ‡) 0.23

T (event handling ‡) 0.11 T (equal operation) −0.14 T (result transfer) 0.17

A letter “T” followed by a parenthesis indicates a topic-based metric and the manually derived topic label.
A topic label followed by a ‡ symbol indicates that the particular topic is a log-intensive topic as listed in
Table 5

the methods that have the largest membership of the topic, and the containing classes of
these methods. We use a ‡ symbol to mark the log-intensive metrics that we uncovered in
RQ1. The metrics based on the log-intensive topics that are labeled as “cursor operation”,
“decoder exception”, “message exception”, “session management”, “connection manage-
ment”, “event handling”, “resource operation” and “customized logging”, have positive
coefficients in the LASSO models, indicating that these topics have a positive relationship
with the likelihood of a method being logged.

In particular, the topic labeled as “message exception” has the strongest relationship
with the likelihood of a method being logged in the Qpid-Java system. The topics that are
labeled as “cursor operation” and “decoder exception”, also play the most important roles
in determining the likelihood of a method being logged in the Directory-Server system.
The “tree operation” topic in the Directory-Server system and the “result transfer” topic
in the Airavata system also have a positive relationship with the likelihood of a method
being logged. We found that the “tree operation” topic has an LD value of 0.03; and the
“result transfer” topic has an LD value of 0.07. These two topics are also considered as
log-intensive topics. Other topics that are listed in Table 15 have a negative relationship with

Author's personal copy

Empir Software Eng

the likelihood of a method being logged. These topics have an LD value of 0.00 to 0.01,
which are much smaller than the log density values of the log-intensive topics (i.e., methods
related to these topics most likely do not have any logging statements).

5.3.4 Discussion

Cross-System Evaluation In this research question, we evaluated the performance of
our log recommendation models in a within-system setting. It is also interesting to study
the performance of the models in a cross-system evaluation, i.e., train a model using one
system (i.e., the training system) then use the trained model to predict the likelihood of
logging a method in another system (i.e., the testing system). Like what we did in RQ2, we
applied cross-system topic modeling on a combined corpus of the six studied systems and
set the number of topics to be 3,000. Then we derived topic-based metrics that are used as
explanatory variables in our LASSO models.

As discussed in RQ2, however, different systems have different sets of important topics.
This issue poses a challenge to our cross-system evaluation, i.e., the training system and the
testing system have different variable settings, which results in the poor performance of the
cross-system models that leverage topic-based metrics.

Even though we cannot fully overcome the fact that different systems have different sets
of important topics which leads to the poor performance of cross-system models, we took
two strategies to alleviate the issue:

– When training a LASSO model, we used the common topics between the training sys-
tem and the testing system as our topic-based topics. We used the method mentioned in
RQ2 to get the common topics of each pair of systems.

– When training the LASSO model, we assigned more weight to the methods in the train-
ing system that have a larger membership of the important topics in the testing system.
Specifically, for each method in the training system, we gave it a weight that is its total
membership of all the important topics in the testing system.

Tables 16 and 17 list the performance (AUC) of the cross-system models that use the
baseline metrics and the performance (AUC) of the cross-system models that use both the
baseline and topic-based metrics, respectively. For each system, we also calculated the aver-
age performance (AUC) of the models that were trained using other systems and tested on
that particular system. The average AUC values increase by 1% to 7% when topic-based
metrics are added to the baseline models. We also used a Wilcoxon singed-rank test and
computed Cliff’s δ effect size to compare the average AUC values when using baseline met-
rics and when using both the baseline and topic-based metrics. The Wilcoxon signed-rank
test got a p-value of 0.02, which indicates that the topic-based metrics bring statistically sig-
nificant improvement to the baseline models. The Cliff’s δ effect size is 0.44, which means
that the improvement is considered as “medium”.

The Effect of Choosing a Different Number of Topics In this paper, we derived 500
topics from the source code of a software system and leveraged these topics to study the
relationship between the topics of a method and the likelihood of a method being logged.
In order to evaluate the impact of the choice of number of topics on our findings, we con-
ducted a sensitivity analysis to quantitatively measure how the different number of topics
influence the topic model’s ability to explain the likelihood of a code snippet being logged.
Specifically, we changed the number of topics that we used in RQ3 from 500 to various
numbers (i.e., from 20 to 3,000), and built LASSO models that leverage both the baseline

Author's personal copy

Empir Software Eng

Table 16 The performance (AUC) of the cross-system models using baseline metrics

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata

Hadoop – 0.80 0.66 0.82 0.86 0.88

Directory-Server 0.74 – 0.61 0.74 0.78 0.91

Qpid-Java 0.60 0.69 – 0.53 0.43 0.61

CloudStack 0.78 0.80 0.61 – 0.84 0.93

Camel 0.80 0.81 0.65 0.82 – 0.90

Airavata 0.74 0.81 0.61 0.80 0.78 –

Average 0.73 0.78 0.63 0.74 0.74 0.85

The row names indicate the training systems and the column names indicate the testing systems

metrics and the topic-based metrics. Table 18 shows the performance (evaluated using AUC)
of these LASSO models that leverage the baseline metrics and the topic-based metrics that
are derived from different number of topics. As we increase the number of topics from 20 to
3,000, the AUC values of the LASSO models increase until they reach a plateau. The AUC
values of the LASSO models stay at or slightly fluctuate around the maximum point as we
continue to increase the number of topics. Taking the Directory Server system for exam-
ple, the AUC values of the LASSO models increase from 0.88 to 0.94 as we increase the
number of topics from 20 to 500. However, as we continue to increase the number of top-
ics, the AUC values stay around 0.94. As observed by Wallach et al. (2009), the reason may
be that as the number of topics increases, the additional topics are rarely used in the topic
assignment process. Thus, these additional topics are removed by the LASSO models.

The AUC values reach their maximum points (highlighted in bold) when using 50 to 800
topics for the studied systems. In particular, four out of the six systems reach their maximum
AUC values when using 300 topics or less. The LASSO models that leverage both the
baseline metrics and topic-based metrics that are derived from 300 topics achieve an 3% to
13% improvement of AUC over the LASSO models that only leverage the baseline metrics.

Table 18 also shows the Cliff’s δ effect sizes of comparing the performance of the models
that only use the baseline metrics versus the performance of the models that use both the
baseline metrics and the topic-based metrics. Using 20 or 50 topics improves the AUC of

Table 17 The performance (AUC) of the cross-system models using both baseline and topic-based metrics

Hadoop Directory-Server Qpid-Java CloudStack Camel Airavata

Hadoop – 0.82 0.67 0.83 0.86 0.90

Directory-Server 0.78 – 0.63 0.79 0.81 0.92

Qpid-Java 0.74 0.69 – 0.71 0.67 0.82

CloudStack 0.79 0.80 0.70 – 0.84 0.90

Camel 0.82 0.82 0.69 0.82 – 0.90

Airavata 0.74 0.81 0.67 0.80 0.80 –

Average 0.77 0.79 0.67 0.79 0.79 0.89

(+5%) (+1%) (+6%) (+7%) (+7%) (+5%)

The row names indicate the training systems and the column names indicate the testing systems

Author's personal copy

Empir Software Eng

Table 18 Performance (AUC) of the LASSO models that leverage the baseline metrics and the topics-based
metrics derived from different numbers of topics

Project Baseline Baseline + 20–3,000 topics

20 50 100 300 500 800 1,000 1,500 2,000 2,500 3,000

Hadoop 0.82 0.83 0.84 0.84 0.86 0.87 0.88 0.88 0.86 0.86 0.87 0.86

Directory-S. 0.86 0.88 0.87 0.90 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.93

Qpid-Java 0.80 0.83 0.85 0.88 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89

Camel 0.86 0.87 0.88 0.88 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.90

Cloudstack 0.83 0.85 0.86 0.86 0.89 0.88 0.88 0.88 0.88 0.87 0.88 0.88

Airavata 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.99

Cliff’s δa – 0.33M 0.44M 0.56L 0.67L 0.72L 0.72L 0.72L 0.67L 0.67L 0.72L 0.67L

aThe superscripts S, M, and L represent small, medium, and large effect sizes, respectively

the baseline models with a medium effect size; using 100 or more topics improves the AUC
of the baseline models with a large effect size.

The Impact of Filtering Out Small Methods In this paper, we filtered out small meth-
ods for each studied system (Section 4.2), as intuitively small methods usually implement
simple functionalities (e.g., getters and setters) and are less likely to need logging state-
ments. We now examine the effect of filtering out small methods on our models. Table 19
shows the performance of the LASSO models without the filtering process. Without filter-
ing out small methods, both the models that leverage baseline metrics and the models that
leverage baseline and topic-based metrics have better performance in terms of AUC and BA.
Yet the topic-based metrics still bring a 1% to 7% improvement on AUC and a 4% to 14%
improvement on BA, over the baseline metrics, for the LASSO models. The AUC improve-
ment has an effect size of 0.53 (large) and the BA improvement has an effect size of 0.72
(large), both of which are statistically significant.

However, the additional explanatory power (i.e., 1% to 7% improvement on AUC and
4% to 14% improvement on BA) is smaller than it is when a filtering process is applied (i.e.,

Table 19 Performance of the LASSO models (without filtering out small methods), evaluated by AUC and
BA

Project Baseline metrics Baseline + Topics

AUC BA AUC BA

Hadoop 0.92 0.81 0.94 (+2%) 0.84 (+4%)

Directory-Server 0.89 0.78 0.95 (+7%) 0.89 (+14%)

Qpid-Java 0.89 0.79 0.93 (+4%) 0.84 (+6%)

Camel 0.92 0.83 0.93 (+1%) 0.86 (+4%)

CloudStack 0.95 0.82 0.96 (+1%) 0.89 (+9%)

Airavata 0.97 0.92 0.99 (+2%) 0.97 (+5%)

Cliff’s δ – – 0.53 (large) 0.72 (large)

P-value (Wilcoxon) – – 0.02 (sig.) 0.02 (sig.)

Author's personal copy

Empir Software Eng

3% to 13% improvement on AUC and 6% to 16% improvement on BA). These results can
be explained by the fact that the filtered small methods are much less likely to have logging
statements. Taking the Hadoop system for example, the filtered small methods make up
60% of all the methods, but they only contain 5% of all the logged methods. The structural
metrics (e.g., LOC) can simply be used to predict such small methods as being not logged.
In other words, topic-based metrics are less likely to bring additional explanatory power to
the small methods. However, such methods are far less likely to be logged.

6 Threats to Validity

External Validity Different systems are concerned with different topics. The discussions
on the specific topics in this paper may not be generalized to other systems. Findings from
additional case studies on other systems can benefit our study. However, through a case
study on six systems that are of different domains and sizes, we expect that our general
findings (i.e., the answers to the research questions) can stand for other systems. We believe
that developers can leverage the specific topics in their own systems to help understand and
guide their logging decisions.

Our study focused on the source code (i.e., production code) of the studied systems
and excluded the testing code. We are more interested in the production code because the
logging in the source code directly impacts the customer’s experience about the performance
and diagnosability of a system. On the other hand, testing code is mainly used for in-house
diagnosis, and the impact of logging is usually less of a concern. However, it is interesting to
study the differences between the logging statements in the production code and the testing
code. We expect future studies to explore the differences between production code logging
and testing code logging.

Internal Validity The regression modeling results present the relation between the likeli-
hood of a method being logged and a set of software metrics. The relation does not represent
the casual effects of these metrics on the likelihood of a method being logged.

In RQ3, we used 14 structural metrics to form the baseline of our models. The selected
metrics do not necessarily represent all the structural information of a method. However,
we used both the general information (e.g., LOC and CCN) and the detailed information
(e.g., the number of if-statements and the number of catch blocks), trying to cover a large
spectrum of structural information about a method.

In this paper, we studied the relationship between logging decisions and the underlying
topics in the software systems. Our study was based on the assumption that the logging
practices of these projects are appropriate. However, the logging practices of these projects
may not always be appropriate. In order to avoid learning bad practices, we chose several
successful and widely-used open source systems.

Author's personal copy

Empir Software Eng

Construct Validity Interpreting LDA-generated topics may not always be an easy task
(Hindle et al. 2014), and the interpretation may be subjective. Thus, the first author of the
paper tried to first understand the topics and derive topic labels, and the second author
validated the labels. In case a topic that is hard to interpret, we study the source code (i.e.,
both classes and methods) that are related to the topic.

As suggested by prior studies (Chen et al. 2016b; Wallach et al. 2009), we chose 500
topics for the topic modeling of individual systems in RQ1. However, determining the
appropriate number of topics to be used in topic modeling is a subjective process. As our
primary purpose of using topic models is for interpretation, the appropriateness of a choice
of topic number should be determined by how one plans to leverage the resulting topics for
interpreting the meaning of the source code. We found that using 500 topics for each stud-
ied system provides reasonable and tractable results for us to interpret the generated topics.
Besides, we discuss how the different numbers of topics influence the observations of each
RQ.

When running LDA, we applied MALLET’s hyper-parameter optimization to automat-
ically find the optimal α and β values. However, the optimization heuristics are designed
for natural language documents instead of source code files. As the source code is different
from natural language, we may not get the optimal topics. Future in-depth studies are needed
to explore this wide-ranging concern across the multitude of uses of LDA on software data
(Chen et al. 2016b).

Topic models create automated topics that capture the co-occurrences of words in meth-
ods. However, one may be concerned about the rationale of studying the logging practices
using topics instead of simply using the words that exist in a method. We use topics instead
of words for two reasons: 1) topic models provide a higher-level overview and interpretable
labels of a code snippet (Blei et al. 2003; Steyvers and Griffiths 2007); 2) and using words
in a code snippet to model the likelihood of a code snippet being logged is very computa-
tionally expensive and the resulting model is more likely to over-fit. Our experiments show
that there are 2,117 to 5,474 different words (excluding English stop words and program-
ming language keywords) in our studied systems, hence one would need to build a very
expensive model (2,117 to 5,474 metrics) using these words. Our experiments also show
that using 2,117 to 5,474 words as explanatory variables provides 3% to 10% (with a median
of 4%) additional explanatory power (in terms of AUC) to the baseline models. In compar-
ison, using only 300 topics as explanatory variables provides 3% to 13% (with a median of
6%) additional explanatory power to the baseline models.

7 Related Work

In this section, we discuss two areas of prior studies that are related to our paper.

7.1 Software Logging

Empirical Studies of Software Logging Researchers have performed empirical studies
on various aspects of software logging practices, including where to log (Fu et al. 2014), log
change behaviors (Kabinna et al. 2016; Li et al. 2017a; Yuan et al. 2012b), verbosity level
of logging (Li et al. 2017b), log evolution (Shang et al. 2014), anti-patterns in the logging
code (Chen and Jiang 2017), and logging practices in industry (Fu et al. 2014; Pecchia
et al. 2015). However, there exists no research that studies the relationship between logging
decisions and the underlying topics behind the logged source code.

Author's personal copy

Empir Software Eng

Improving Software Logging Prior research also proposed approaches to improve log-
ging statements. Errlog (Yuan et al. 2012a) analyzes the source code to detect unlogged
exceptions (abnormal or unusual conditions) and automatically insert the missing logging
statements. A recent tool named LogAdvisor (Zhu et al. 2015) aims to provide developers
with suggestions on where to log. LogAdvisor extracts contextual features (such as textual
features) of a code snippet and leverages the features to suggest whether a logging state-
ment should be added to a code snippet. However, they only focus on the exception snippets
and the return-value-check snippets which together cover 41% of the logging statements
(Fu et al. 2014). The tool cannot suggest inserting logging statements outside the exception
snippets and the return-value-check snippets, such as the logging statement in Listing 1.
Their text features count the frequencies of each word that appear in a code snippet. In com-
parison, our topic-based metrics provide a better explanation of the semantic meanings of
a code snippet. All these tools try to improve software logging by adding additional logged
information or suggesting where to log. Based on our reported results in this paper, these
tools should also consider the topics of a code snippet when providing logging suggestions.

7.2 Applying Topic Models on Software Engineering Tasks

Topic models are widely used in the Software Engineering research for various tasks (Chen
et al. 2016b; Sun et al. 2016), such as concept location (Cleary et al. 2008; Poshyvanyk
et al. 2007; Rao and Kak 2011), traceability linking (Asuncion et al. 2010), understanding
software evolution (Hu et al. 2015; Thomas et al. 2011), code search (Tian et al. 2009),
software refactoring (Bavota et al. 2014), and software maintenance (Sun et al. 2015a, b).
Recent studies explored how to effectively leverage topic models in software engineering
tasks (Panichella et al. 2013, 2016). However, there is no study of software logging using
topic models (Chen et al. 2016b). Some prior studies (Chen et al. 2012; Nguyen et al. 2011)
successfully show that topics in source code are correlated to some source code metrics (e.g.,
quality). Thus in this paper, we followed up on that intuition and we studied the relationship
between code topics and logging decisions.

Prior studies (De Lucia et al. 2012, 2014) also found that most LDA-generated topics
are easy for developers to understand, and these topics can be useful for developers to get
a high-level overview of a system (Thomas et al. 2011). In this paper, we also conducted a
manual study on the topics, and our study provides a high-level overview of which topics
are more likely to need logging statements in our studied systems.

8 Conclusion

Inserting logging statements in the source code appropriately is a challenging task, as both
logging too much and logging too little are undesirable. We believe that the code snippets of
different topics have different logging requirements. In this paper, we used LDA to extract
the underlying topics from the source code, and studied the relationship between the logging
decisions and the recovered topics. We found that a small number of topics, in particu-
lar, the topics that can be generalized to communication between machines or interaction
between threads, are much more likely to be logged than other topics. We also found that
the likelihood of logging the common topics has a significant correlation across all the stud-
ied systems, thus developers of a particular system can consult other systems when making
their logging decisions or developing logging guidelines. Finally, we leveraged the recov-
ered topics in regression models to provide additional explanatory power for the likelihood

Author's personal copy

Empir Software Eng

of a method being logged. Our case study on six open source software systems suggests that
topics can statistically help explain the likelihood of a method being logged.

As code topics contain valuable information that is correlated with logging decisions,
topic information should be considered in the logging practices of practitioners when they
wish to allocate limited logging resources (e.g., by allocating more logging resources to
log-intensive topics). Future work on logging recommendation tools should also consider
topic information in order to help software practitioners make more informed logging deci-
sions. Furthermore, our findings encourage future work to develop topic-influenced logging
guidelines (e.g., which topics need further logging).

This work suggests that there is a strong relationship between the topics of a code snippet
and the likelihood of a code snippet containing logging statements. As different log levels
(e.g., “debug” or “warning”) indicate different logging purposes (e.g., for debugging or for
revealing problems), we also encourage future work to study the relationship between code
topics and different log levels (i.e., different logging purposes).

References

Apache-Commons (2016) Best practices—logging exceptions. https://commons.apache.org/logging/guide.
html

Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling. In: Proceedings
of the 32nd international conference on software engineering. ICSE ’10, pp 95–104

Baldi PF, Lopes CV, Linstead EJ, Bajracharya SK (2008a) A theory of aspects as latent topics. In: Proceed-
ings of the 23rd ACM SIGPLAN conference on object-oriented programming systems languages and
applications. OOPSLA ’08, pp 543–562

Baldi PF, Lopes CV, Linstead EJ, Bajracharya SK (2008b) A theory of aspects as latent topics. In: ACM
Sigplan notices, vol 43. ACM, pp 543–562

Bavota G, Oliveto R, Gethers M, Poshyvanyk D, Lucia AD (2014) Methodbook: recommending move
method refactorings via relational topic models. IEEE Trans Softw Eng 40(7):671–694

Binkley D, Heinz D, Lawrie D, Overfelt J (2014) Understanding LDA in source code analysis. In:
Proceedings of the 22nd international conference on program comprehension, pp 26–36

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
Bring J (1994) How to standardize regression coefficients. Am Stat 48(3):209–213
Brown PF, deSouza PV, Mercer RL, Pietra VJD, Lai JC (1992) Class-based n-gram models of natural

language. Comput Linguist 18:467–479
Chang J, Gerrish S, Wang C, Boyd-graber JL, Blei DM (2009) Reading tea leaves: how humans interpret

topic models. Adv Neural Inf Process Syst 22:288–296
Chen B, Jiang ZM (2017) Characterizing and detecting anti-patterns in the logging code. In: Proceedings of

the 39th international conference on software engineering. ICSE ’17, pp 71–81
Chen T-H, Thomas SW, Nagappan M, Hassan A (2012) Explaining software defects using topic models.

In: Proceedings of the 9th working conference on mining software repositories. MSR ’12, pp 189–
198

Chen T-H, Shang W, Hassan AE, Nasser M, Flora P (2016a) Cacheoptimizer: helping developers configure
caching frameworks for hibernate-based database-centric web applications. In: Proceedings of the 24th
ACM SIGSOFT international symposium on foundations of software engineering. FSE ’16, pp 666–
677

Chen T-H, Thomas SW, Hassan AE (2016b) A survey on the use of topic models when mining software
repositories. Empir Softw Eng 21(5):1843–1919

Chen T-H, Syer MD, Shang W, Jiang ZM, Hassan AE, Nasser M, Flora P (2017a) Analytics-driven load
testing: an industrial experience report on load testing of large-scale systems. In: Proceedings of the 39th
international conference on software engineering: software engineering in practice track. ICSE-SEIP
’17, pp 243–252

Chen T-H, Shang W, Nagappan M, Hassan AE, Thomas SW (2017b) Topic-based software defect
explanation. J Syst Softw 129:79–106

Cleary B, Exton C, Buckley J, English M (2008) An empirical analysis of information retrieval based concept
location techniques in software comprehension. Empir Softw Eng 14(1):93–130

Author's personal copy

https://commons.apache.org/logging/guide.html
https://commons.apache.org/logging/guide.html

Empir Software Eng

Cohen I, Goldszmidt M, Kelly T, Symons J, Chase JS (2004) Correlating instrumentation data to system
states: a building block for automated diagnosis and control. In: Proceedings of the 6th conference on
symposium on opearting systems design & implementation, pp 16–16

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2012) Using IR methods for labeling
source code artifacts: is it worthwhile? In: Proceedings of the 20th international conference on program
comprehension. ICPC ’12, pp 193–202

De Lucia A, Di Penta M, Oliveto R, Panichella A, Panichella S (2014) Labeling source code with information
retrieval methods: an empirical study. Empir Softw Eng 19(5):1383–1420

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Softw 33(1):1–22

Fu Q, Zhu J, Hu W, Lou J-G, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? An empirical
study on logging practices in industry. In: Companion proceedings of the 36th international conference
on software engineering. ICSE Companion ’14, pp 24–33

Goshtasby AA (2012) Similarity and dissimilarity measures. In: Image registration: principles, tools and
methods. Springer London, London, pp 7–66

Groeneveld RA, Meeden G (1984) Measuring Skewness and Kurtosis. J R Stat Soc D (Stat) 33(4):391–399
Hall D, Jurafsky D, Manning CD (2008) Studying the history of ideas using topic models. In: Proceedings

of the 2008 conference on empirical methods in natural language processing. EMNLP ’08, pp 363–371.
Association for Computational Linguistics

Hindle A, Bird C, Zimmermann T, Nagappan N (2014) Do topics make sense to managers and developers?
Empir Softw Eng

Hu J, Sun X, Lo D, Li B (2015) Modeling the evolution of development topics using dynamic topic mod-
els. In: Proceedings of the 22nd IEEE international conference on software analysis, evolution, and
reengineering. SANER’15, pp 3–12

Kabacoff R (2011) R in action. Manning Publications Co., Greenwich
Kabinna S, Bezemer C-P, Hassan AE, Shang W (2016) Examining the stability of logging statements. In: Pro-

ceedings of the 23rd IEEE international conference on software analysis, evolution, and reengineering.
SANER ’16

Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, Berlin
Kuhn A, Ducasse S, Gı́rba T (2007) Semantic clustering: identifying topics in source code. Inf Softw Technol

49:230–243
Lal S, Sureka A (2016) Logopt: static feature extraction from source code for automated catch block log-

ging prediction. In: Proceedings of the 9th India software engineering conference. ISEC ’16, pp 151–
155

Li H, Shang W, Zou Y, Hassan AE (2017a) Towards just-in-time suggestions for log changes. Empir Softw
Eng 22(4):1831–1865

Li H, Shang W, Hassan AE (2017b) Which log level should developers choose for a new logging statement?
Empir Softw Eng 22(4):1684–1716

Linstead E, Lopes C, Baldi P (2008) An application of latent Dirichlet allocation to analyzing software
evolution. In: Proceedings of seventh international conference on machine learning and applications.
ICMLA ’12, pp 813–818

Liu Y, Poshyvanyk D, Ferenc R, Gyimothy T, Chrisochoides N (2009a) Modeling class cohesion as mixtures
of latent topics. In: Proceedings of the 25th international conference on software maintenance. ICSE ’09,
pp 233–242

Liu Y, Poshyvanyk D, Ferenc R, Gyimothy T, Chrisochoides N (2009b) Modeling class cohesion as mixtures
of latent topics. In: Proceedings of the 25th IEEE international conference on software maintenance.
ICSM ’09, pp 233–242

Macbeth G, Razumiejczyk E, Ledesma RD (2011) Cliff’s delta calculator: a non-parametric effect size
program for two groups of observations. Univ Psychol 10(2):545–555

Mariani L, Pastore F (2008) Automated identification of failure causes in system logs. In: Proceedings of the
2008 19th international symposium on software reliability engineering, pp 117–126

Martin TM, Harten P, Young DM, Muratov EN, Golbraikh A, Zhu H, Tropsha A (2012) Does rational selec-
tion of training and test sets improve the outcome of qsar modeling? J Chem Inf Model 52(10):2570–
2578

Maskeri G, Sarkar S, Heafield K (2008) Mining business topics in source code using latent Dirichlet
allocation. In: Proceedings of the 1st India software engineering conference, pp 113–120

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320
McCallum AK (2002) Mallet: a machine learning for language toolkit
Microsoft-MSDN (2016) Logging an exception. https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.

50).aspx

Author's personal copy

https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx
https://msdn.microsoft.com/en-us/library/ff664711(v=pandp.50).aspx

Empir Software Eng

Misra H, Cappé O, Yvon F (2008) Using lda to detect semantically incoherent documents. In: Proceed-
ings of the 12th conference on computational natural language learning. CoNLL ’08. Association for
Computational Linguistics, pp 41–48

Nguyen TT, Nguyen TN, Phuong TM (2011) Topic-based defect prediction. In: Proceedings of the 33rd
international conference on software engineering. ICSE ’11, pp 932–935

Oliner A, Ganapathi A, Xu W (2012) Advances and challenges in log analysis. Commun ACM 55(2):55–61
Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013) How to effectively use topic

models for software engineering tasks? An approach based on genetic algorithms. In: Proceedings of the
2013 international conference on software engineering. ICSE ’13, pp 522–531

Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2016) Parameterizing and
assembling ir-based solutions for se tasks using genetic algorithms. In: Proceedings of the 23rd IEEE
international conference on software analysis, evolution, and reengineering. SANER ’16

Pecchia A, Cinque M, Carrozza G, Cotroneo D (2015) Industry practices and event logging: assessment of a
critical software development process. In: Proceedings of the 37th international conference on software
engineering. ICSE ’15, pp 169–178

Poshyvanyk D, Gueheneuc Y, Marcus A, Antoniol G, Rajlich V (2007) Feature location using probabilis-
tic ranking of methods based on execution scenarios and information retrieval. IEEE Trans Softw Eng
33(6):420–432

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: a comparative study of
generic and composite text models. In: Proceeding of the 8th working conference on mining software
repositories. MSR ’11, pp 43–52

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’sd for evaluating group differences on the nsse and other surveys. In:
Annual meeting of the Florida association of institutional research, pp 1–33

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014) An exploratory study
of the evolution of communicated information about the execution of large software systems. J Softw:
Evol Process 26(1):3–26

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empir Softw Eng 20(1):1–27

Simon N, Friedman J, Hastie T, Tibshirani R (2011) Regularization paths for cox’s proportional hazards
model via coordinate descent. J Stat Softw 39(5):1–13

Steyvers M, Griffiths T (2007) Probabilistic topic models. In: Handbook of latent semantic analysis, vol
427(7), pp 424–440

Sun X, Li B, Leung H, Li B, Li Y (2015a) Msr4sm: using topic models to effectively mining software
repositories for software maintenance tasks. Inf Softw Technol 66:1–12

Sun X, Li B, Li Y, Chen Y (2015b) What information in software historical repositories do we need to
support software maintenance tasks? An approach based on topic model. In: Computer and information
science. Springer International Publishing, Cham, pp 27–37

Sun X, Liu X, Li B, Duan Y, Yang H, Hu J (2016) Exploring topic models in software engineering data anal-
ysis: a survey. In: Proceedings of the 17th IEEE/ACIS international conference on software engineering,
artificial intelligence, networking and parallel/distributed computing. SNPD’, vol. 16, pp 357–362

Swinscow TDV, Campbell MJ et al (2002) Statistics at Square One. BMJ, London
Syer MD, Jiang ZM, Nagappan M, Hassan AE, Nasser M, Flora P (2013) Leveraging performance counters

and execution logs to diagnose memory-related performance issues. In: Proceedings of the 29th IEEE
international conference on software maintenance. ICSM 13’, pp 110–119

Thomas SW (2012) A lightweight source code preprocesser. https://github.com/doofuslarge/lscp
Thomas S, Adams B, Hassan AE, Blostein D (2010) Validating the use of topic models for software evolution.

In: Proceedings of the 10th international working conference on source code analysis and manipulation.
SCAM ’10, pp 55–64

Thomas SW, Adams B, Hassan AE, Blostein D (2011) Modeling the evolution of topics in source code
histories. In: Proceedings of the 8th working conference on mining software repositories, pp 173–182

Thomas SW, Adams B, Hassan AE, Blostein D (2014) Studying software evolution using topic models. Sci
Comput Program 80:457–479

Tian K, Revelle M, Poshyvanyk D (2009) Using latent Dirichlet allocation for automatic categorization of
software. In: Proceedings of the 6th international working conference on mining software repositories.
MSR ’09, pp 163–166

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Series B (Methodological)
58(1):267–288

Wallach HM, Mimno DM, McCallum A (2009) Rethinking lda: why priors matter. In: Advances in neural
information processing systems. NIPS ’09, pp 1973–1981

Author's personal copy

https://github.com/doofuslarge/lscp

Empir Software Eng

Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann,
San Mateo

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles.
SOSP ’09, pp 117–132

Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: error diagnosis by connecting clues
from run-time logs. SIGARCH Comput Architect News 38(1):143–154

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log enhance-
ment. In: Proceedings of the sixteenth international conference on architectural support for programming
languages and operating systems. ASPLOS ’11, pp 3–14

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012a) Be conservative: enhancing
failure diagnosis with proactive logging. In: Proceedings of the 10th USENIX conference on operating
systems design and implementation. OSDI’12, pp 293–306

Yuan D, Park S, Zhou Y (2012b) Characterizing logging practices in open-source software. In: Proceedings
of the 34th international conference on software engineering. ICSE ’12, pp 102–112

Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain PU, Stumm M (2014) Simple testing
can prevent most critical failures: an analysis of production failures in distributed data-intensive sys-
tems. In: Proceedings of the 11th USENIX conference on operating systems design and implementation.
OSDI’14, pp 249–265

Zeng L, Xiao Y, Chen H (2015) Linux auditing: overhead and adaptation. In: Proceedings of 2015 IEEE
international conference on communications. ICC ’15, pp 7168–7173

Zhang S, Cohen I, Symons J, Fox A (2005) Ensembles of models for automated diagnosis of system per-
formance problems. In: Proceedings of the 2005 international conference on dependable systems and
networks. DSN ’05, pp 644–653

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: helping developers make informed
logging decisions. In: Proceedings of the 37th international conference on software engineering, vol 1.
ICSE ’15, pp 415–425

Heng Li is a PhD student in the Software Analysis and Intelligence Lab (SAIL) at Queen’s University,
Canada. He obtained his BE from Sun Yat-sen University, China, and MSc from Fudan University, China. He
worked at Synopsys as a full-time R&D Engineer before starting his PhD at Queen’s University. His research
interests lie within Software Engineering, in particular, software log analysis, mining software repositories,
and program analysis.

Author's personal copy

Empir Software Eng

Tse-Hsun (Peter) Chen is an Assistant Professor in the Department of Computer Science and Software
Engineering at Concordia University, Montreal, Canada. He obtained his BSc from the University of British
Columbia, and MSc and PhD from Queen’s University. Besides his academic career, Dr. Chen also worked
as a software performance engineer at BlackBerry for over four years. His research interests include per-
formance engineering, database performance, program analysis, log analysis, testing, and mining software
repositories. Early tools that are developed by Dr. Chen are integrated into industrial practice for ensuring
the quality of large-scale enterprise systems. More information at: http://petertsehsun.github.io/.

Weiyi Shang is an assistant professor in the Department of Computer Science and Software Engineering
at Concordia University, Montreal. His research interests include big-data software engineering, software
engineering for ultra-large-scale systems, software log mining, empirical software engineering, and software
performance engineering. Shang received a PhD in computing from Queen’s University, Canada. Contact
him at shang@encs.concordia.ca.

Author's personal copy

http://petertsehsun.github.io/

Empir Software Eng

Ahmed E. Hassan is a Canada Research Chair in Software Analytics and the NSERC/Blackberry Industrial
Research Chair at the School of Computing in Queen’s University. Dr. Hassan serves on the editorial board
of the IEEE Transactions on Software Engineering, the Journal of Empirical Software Engineering, and
PeerJ Computer Science. He spearheaded the organization and creation of the Mining Software Repositories
(MSR) conference and its research community.

Early tools and techniques developed by Dr. Hassan’s team are already integrated into products used
by millions of users worldwide. Dr. Hassan industrial experience includes helping architect the Blackberry
wireless platform, and working for IBM Research at the Almaden Research Lab and the Computer Research
Lab at Nortel Networks. Dr. Hassan is the named inventor of patents at several jurisdictions around the world
including the United States, Europe, India, Canada, and Japan. More information at: http://sail.cs.queensu.ca/.

Author's personal copy

http://sail.cs.queensu.ca/

	Studying software logging using topic models
	Abstract
	Introduction
	Paper Organization

	Motivation Examples
	Topic Modeling
	Case Study Setup
	Studied Systems
	Data Extraction
	Source Code Preprocessing and LDA

	Case Study Results
	RQ1: Which Topics are More Likely to be Logged?
	Motivation
	Approach
	Results
	A Small Number of Topics are Much More Likely to be Logged
	Most of the Log-Intensive Topics in the Studied Systems can be Generalized to Topics that are Concerned with Communication Between Machines or Interaction Between Threads
	Most Top Log-Intensive Topics Only Appear in One Individual System, But a Few Topics Emerge Across Systems

	Discussion
	Impact of Choosing a Different Number of Topics
	Relationship Between Topics and Structural Complexity

	RQ2: Are Common Topics Logged Similarly Across Different Systems?
	Motivation
	Approach
	Cross-system Topics
	Topic Assignment in a System
	Common Topics Shared Across Systems
	Log Density Correlation

	Results
	All the studied Systems Share a Portion (i.e., 12% to 62%) of Their Topics with Other Systems
	The Likelihood of Logging the Common Topics has a Statistically Significant Correlation of 0.35 to 0.62 Among All the Studied Systems

	Discussion
	How Do Similar Systems Log Common Topics?
	Topics Shared by All the Studied Systems
	Impact of Choosing a Different Number of Topics

	RQ3: Can Topics Provide Additional Explanatory Power for the Likelihood of a Code Snippet Being Logged?
	Motivation
	Approach
	Baseline Metrics
	Topic-Based Metrics
	Model Construction
	Model Evaluation
	Evaluating the Effect of the Metrics on the Model Output

	Results
	Adding Topic-Based Metrics to the Baseline Models Gives a 3% to 13% Improvement on AUC and a 6% to 16% Improvement on BA for the LASSO Models
	The Topic-Based Metrics Play Important Roles in the LASSO Models; in Particular, the Log-Intensive Topics have a Strong and Positive Relationship with the Likelihood of a Method Being Logged

	Discussion
	Cross-System Evaluation
	The Effect of Choosing a Different Number of Topics
	The Impact of Filtering Out Small Methods

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Software Logging
	Empirical Studies of Software Logging
	Improving Software Logging

	Applying Topic Models on Software Engineering Tasks

	Conclusion
	References

