
1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256

Empir Software Eng
DOI 10.1007/s10664-017-9518-0

Examining the stability of logging
statements

Suhas Kabinna, Cor-Paul Bezemer,
Weiyi Shang, Mark D. Syer & Ahmed
E. Hassan

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Empir Software Eng
DOI 10.1007/s10664-017-9518-0

Examining the stability of logging statements

Suhas Kabinna1 ·Cor-Paul Bezemer1 ·Weiyi
Shang2 ·Mark D. Syer1 ·Ahmed E. Hassan1

© Springer Science+Business Media New York 2017

Abstract Logging statements (embedded in the source code) produce logs that assist in
understanding system behavior, monitoring choke-points and debugging. Prior work show-
cases the importance of logging statements in operating, understanding and improving
software systems. The wide dependence on logs has lead to a new market of log processing
and management tools. However, logs are often unstable, i.e., the logging statements that
generate logs are often changed without the consideration of other stakeholders, causing
sudden failures of log processing tools and increasing the maintenance costs of such tools.
We examine the stability of logging statements in four open source applications namely: Lif-
eray, ActiveMQ, Camel and CloudStack. We find that 20–45% of their logging statements
change throughout their lifetime. The median number of days between the introduction of a
logging statement and the first change to that statement is between 1 and 17 in our studied
applications. These numbers show that in order to reduce maintenance effort, developers of
log processing tools must be careful when selecting the logging statements on which their
tools depend. In order to effectively mitigate the issues that are caused by unstable logging

Communicated by: Mark Grechanik

� Suhas Kabinna
kabinna@cs.queensu.ca

Cor-Paul Bezemer
bezemer@cs.queensu.ca

Weiyi Shang
shang@encs.concordia.ca

Mark D. Syer
mdsyer@cs.queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

1 Software Analysis and Intelligence Lab (SAIL), Queen’s University, Kingston, ON, Canada

2 Department of Computer Science and Software Engineering, Concordia University, Montreal,
QC, Canada

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9518-0&domain=pdf
http://orcid.org/0000-0003-0784-7725
mailto:kabinna@cs.queensu.ca
mailto:bezemer@cs.queensu.ca
mailto:shang@encs.concordia.ca
mailto:mdsyer@cs.queensu.ca
mailto:ahmed@cs.queensu.ca

Empir Software Eng

statements, we make an important first step towards determining whether a logging state-
ment is likely to remain unchanged in the future. First, we use a random forest classifier
to determine whether a just-introduced logging statement will change in the future, based
solely on metrics that are calculated when it is introduced. Second, we examine whether a
long-lived logging statement is likely to change based on its change history. We leverage
Cox proportional hazards models (Cox models) to determine the change risk of long-lived
logging statements in the source code. Through our case study on four open source appli-
cations, we show that our random forest classifier achieves a 83–91% precision, a 65–85%
recall and a 0.95–0.96 AUC. We find that file ownership, developer experience, log density
and SLOC are important metrics in our studied projects for determining the stability of log-
ging statements in both our random forest classifiers and Cox models. Developers can use
our approach to determine the risk of a logging statement changing in their own projects, to
construct more robust log processing tools, by ensuring that these tools depend on logs that
are generated by more stable logging statements.

Keywords Logging statements · Log file stability · Log processing tools

1 Introduction

Developers use logging statements to yield useful information about the state of an applica-
tion during its execution. Such information is collected into files (logs) and contains details
which would otherwise be difficult to collect, such as the values of variables. Logs support
various development activities such as fixing bugs (Xu et al. 2009; Lou et al. 2010; Fu et al.
2009), analyzing load tests (Malik et al. 2013), monitoring performance (Yuan et al. 2011)
and transferring knowledge (Shang et al. 2014a). Logging statements make use of logging
libraries (e.g., Log4j)1 or more archaic methods such as print statements. Every logging
statement contains a textual part indicating the event, a variable part providing contextual
information about the event and a log level indicating the verbosity of the logging statement.
An example of a logging statement is shown in Fig. 1.

The rich knowledge and the wide dependence on logs has lead to the development of
many log processing tools such as Splunk (Carasso 2012), Xpolog,2 Logstash (Xu et al.
2013) and research tools, such as Salsa (Tan et al. 2008) and Chukwa (Boulon et al. 2008),
that are designed to analyze logs. However, when logging statements are changed, the asso-
ciated log processing tools may also need to be updated. For example, Fig. 2 demonstrates
a case in which a developer removes the elapsed time for an event. Removing informa-
tion from a logging statement can affect log processing tools that rely on the removed
information in order to monitor the health of the application.

Knowing whether a logging statement is likely to change in the future helps reduce the
effort that is required to maintain log processing tools. If a developer of a log processing
tool knows that a logging statement is likely to change, the developer can opt not to depend
on the logs that are generated by this logging statement. Instead, the developer can let the
log processing tool depend on output generated by logging statements that are likely to
remain unchanged. Depending on logging statements that remain unchanged will reduce
the maintenance effort that is required for keeping the log processing tool consistent with

1http://logging.apache.org/log4j/2.x/
2http://www.xpolog.com/

Author's personal copy

http://logging.apache.org/log4j/2.x/
http://www.xpolog.com/

Empir Software Eng

Fig. 1 An example of a logging statement

the ever-changing logs (Shang et al. 2014a). Even if the tool must depend on a particular
log line, having a good idea about the stability of that log line would ensure that developers
factor in the realistic maintenance cost associated with such a tool. For example, a developer
who must rely on an unstable logging statement could:

– Make the rest of the development team aware that there may be issues with the part of
the log processing tool that processes the unstable logging statement in the future,

– Implement additional error handling functionality for the code that processes the
unstable logging statement,

– Interact with the development team that is responsible for the logging statement, in
order to try and make that important logging statement more stable, or introduce a new
logging statement that provides the required information in a more stable way.

We study the risk of a logging statement changing in the future by studying the following
set of metrics:

M1 The content of the logging statement (i.e., number of variables, log level, length of
log text),

M2 The context of the logging statement (i.e., where the statement resides in the source
code and the characteristics of the code changes at the time of the introduction of the
logging statement),

M3 The characteristics of the developer who introduced the logging statement into the
source code.

In this paper, we present an approach that uses this set of metrics to determine the risk
of a logging statement changing in a project. First, we present a preliminary study which
was done to get a better understanding of the changes made to logging statements in the
four studied open source applications (ActiveMQ, Camel, Cloudstack and Liferay). Our
preliminary study finds that 20–45% of the logging statements are changed at least once
during their lifetime in the studied applications. Therefore, developers of log processing
tools have to carefully select the logging statements on which to depend (or at minimum,
factor in the unstable nature of logs in the maintenance efforts of their log processing tools).

Fig. 2 Modification of a logging statement

Author's personal copy

Empir Software Eng

Second, we present our approach for determining the risk of a logging statement chang-
ing. By leveraging a random forest classifier, we can provide early advice to log processing
tool developers about the stability of logging statements as soon as they are introduced into
the source code. For long-lived logging statements which have already been in the appli-
cation for several releases, we use the same metrics (M1 to M3). However, the metrics are
collected at every release of the application to construct Cox proportional hazards (Cox)
models. These Cox models help developers of log processing tools identify the stable long-
lived logging statements for future releases of the application. Our most important results
are:

1. We model the likelihood of a just-introduced logging statement changing in the future
using a random forest classifier with a precision of 83–91%, a recall of 65–85% and an
AUC of 0.95–0.96.

2. Developer experience is an important metric for determining the change risk of a log-
ging statement for both just-introduced and long-lived logging statements in our studied
projects.

3. Logging statements that are introduced by developers who have little ownership of the
file that contains the logging statement, have a higher risk of being changed in our
studied projects. We find that 27–67% of all changes are done on logging statements
that are introduced by developers who own (i.e., contributed) less than 20% of the
file.

4. Logging statements that are recently introduced into large files (i.e., files with SLOC
that is twice to three times the median SLOC of a project) with a low log density are
more likely to be changed than logging statements in well-logged files in our studied
projects.

Our previous work (Kabinna et al. 2016a) focused on examining whether a just-introduced
logging statement will change in the future. In this paper, we extend our prior work to
cover long-lived logging statements that have already been in the application for several
releases. The presented work in this paper can be used 1) preventively, as log processing
tool developers can be more selective in picking logging statements on which their log
processing tools depend and 2) proactively, if log processing tool developers have to depend
on a particular logging statement, they are aware of the associated risks of doing so for
future releases (i.e., the expected maintenance costs of such tools).

In order to reap the benefits of the approach described in this paper, developers of open
source software can apply the approach as described. Developers of tools that process logs
of proprietary software often do not have access to the source code history of that software.
Hence, they cannot directly apply our approach as described in this paper. A possible solu-
tion is that proprietary software vendors use our approach as described and publish the risk
factors, i.e., the change risk, of each log line with every release of their software. These risk
factors can then be used to build robust log processing tools.

The remainder of this paper is organized as follows. Section 2 gives background infor-
mation on log processing tools and discusses related work. Section 3 discusses several
real-world examples of changes to logging statements that break log processing tools
to motivate our work. Section 4 presents our experimental setup. Section 5 presents
the preliminary analysis that motivates our study. Section 6 describes the random for-
est classifier and the analysis results. Section 7 describes the construction of the Cox
models and the obtained results. Section 8 describes the important metrics from both
models. Section 9 discusses the threats to validity. Section 10 concludes the paper and

Author's personal copy

Empir Software Eng

Fig. 3 Overview of a log processing tool

finally, Appendix A presents background information about survival analysis and Cox
models.

2 Background

In this section, we give a brief overview of how a log processing tool works, and how it is
affected by changes to a logging statement. In addition, we discuss related work.

2.1 Log Processing Tools

Figure 3 gives an overview of how a log processing tool works. Log files are generated by
logging statements during the execution of a software system. Often, these log files become
large and tedious to interpret manually. Therefore, developers employ log processing tools
that transform the log into more readable output, such as an aggregated report or graph.

For example, assume that a software system generates the log file that is shown in
Listing 1. Lines 1–5 contain information about the number of messages that are delivered by
a service that is provided by the software system. Sudden changes in the number of deliv-
ered messages (such as in the fifth line) indicate that there is a problem with the service.
Hence, the developer of the software system uses the information in the log file to mon-
itor the service. The developer builds a log processing tool that searches for the log lines
that contain the words ‘execute’, and extracts the name of the service and the number of
delivered messages from these lines. Then, the extracted information is used to generate the
graph in Fig. 4 that shows the number of delivered messages of the service over time.

2.1.1 How Different Types of Changes Affect Log Processing Tools

Even though a log processing tool may be designed carefully, changes to a logging statement
may break the tool. Li et al. (Li et al. 2016b) identified three groups of reasons for changing
a logging statement. For each group, we discuss whether such a change can affect a log
processing tool, if that log processing tool is not updated accordingly.

Listing 1 Example log file (the red line indicates a problem with the service)

Author's personal copy

Empir Software Eng

200

400

600

800

1000

20:03 20:04 20:05 20:06 20:07

Time

D
e
li
v
e
r
e
d
 m
e
s
s
a
g
e
s

Fig. 4 The graph that can be generated by a log processing tool from the log file in Listing 1

– Log improvement. These changes are made to improve the output that is generated by
the logging statement. For example, the debugging capability of the logging statement
can be improved by adding variables to the generated output. Log improvement changes
are very likely to break log processing tools, as these changes involve changes to the
format of the generated log file.

– Dependency-driven change. These changes are made to reflect changes to the code
in the log file. For example, a variable or method name is updated. Dependency-driven
changes are likely to break a log processing tool when the return type of a method or
the unit of a variable changes. An example of such a breaking change was made in the
Apache Hadoop project,3 where the unit of a variable was changed from kilobytes to
bytes.

– Logging issues. These changes are made to fix an issue with a logging statement.
For example, the logging level needs to be downgraded from info to debug. Such
changes are very likely to break a log processing tool, as the changes may restrict the
amount of information that is generated in the log file.

To summarize, there are many changes to logging statements possible that can break a log
processing tool. The symptoms, frequency and severity of the failures of a log processing
tool depend on the purpose of the log processing tool. Log processing tools can be used in
all stages of software development. For example, a log processing tool can be used to collect
information about program exceptions during development, or a log processing tool can be
used to collect information about the execution of a program during production. In both
cases, the log processing tool may break by throwing an exception when parsing the log file,
or by not generating a correct report. The severity of the failure of the log processing tool is
difficult to define without domain knowledge. For example, a failure of the log processing
tool in the development phase can be catastrophic, if the broken log processing tool causes
a developer to overlook a program exception which later ends up in the production code.

In this paper, we present an approach that developers can use to decide whether a logging
statement is likely to change in the future. In the remainder of this section, we first discuss
related work.

3http://svn.apache.org/viewvc/hadoop/core/trunk/src/test/org/apache/hadoop/util/
TestProcfsBasedProcessTree.java?r1=722760&r2=722759&pathrev=722760

Author's personal copy

http://svn.apache.org/viewvc/hadoop/core/trunk/src/test/org/apache/hadoop/util/TestProcfsBasedProcessTree.java?r1=722760&r2=722759&pathrev=722760
http://svn.apache.org/viewvc/hadoop/core/trunk/src/test/org/apache/hadoop/util/TestProcfsBasedProcessTree.java?r1=722760&r2=722759&pathrev=722760

Empir Software Eng

2.2 Related Work

2.2.1 Log Maintenance Tools

Prior research has explored various approaches in order to assist developers in maintaining
logs. Research by Fu et al. (Fu et al. 2014) explores where developers put logging statements
in their code and provides guidelines for more effective logging. A recent work by Zhu et al.
(Zhu et al. 2015) helps developers log effectively by informing developers where to log and
presents a tool named Log Advisor, to assist in logging. Yuan et al. (Yuan et al. 2011) show
that logs need to be improved by providing additional information and present a tool named
Log Enhancer can automatically provide additional control and data flow parameters into
the logs thereby improving the logs and avoiding the need for later changes. Follow-up work
done by Yuan et al. (Yuan et al. 2012) shows that logs can be effectively used to diagnose
system failures and provides a tool named Errlog, to pro-actively add logging statements to
diagnose failures before occurring. A recent work by Ding et al. (Ding et al. 2015) presents
a tool named Log2 that condenses the number of irrelevant logs that are generated while
preserving the useful logs. Though prior work focuses on introducing effective logging
statements in software, prior work does not provide any insight into the stability of logging
statements. Our paper presents an approach for determining which logging statements have
a higher likelihood of being changed such that developers of log processing tools can avoid
depending on such logging statements in their tools.

2.2.2 Empirical Studies on Logging Statements and Logs

Prior work performs empirical studies to understand the characteristics of logging state-
ments. Li et al. (2016b) study the types of changes that are made to logging statements,
and they propose an approach that suggests changes to logging statements when changes to
the code are committed. In addition, Li et al. (2016a) propose an approach for suggesting
which log level should be used for a logging statement. Yuan et al. (2012) study the logging
characteristics of four open source systems and find that logging statements are changed 1.8
times more than regular code. Pecchia et al. (2015) study the importance of event logging
in industry and find that event logging statements change due the specific needs of the code
and that such changes are rarely communicated to the different teams within the company.
Shang et al. (2014a, 2015) performed an empirical study on the evolution of both logging
statements and the logs that are outputted at run-time. They find that logging statements are
changed as software systems mature. However, these changes are done by developers with-
out considering the needs of operators which negatively impacts the log processing tools.
Shang et al. highlight the fact that there is a gap between operators and developers of soft-
ware systems when leveraging logging statements (Shang 2012). Furthermore, Shang et al.
(2014b) find that understanding logs is challenging. They examine user mailing lists from
three large open-source projects and find that users of the systems that are produced by
these projects have various issues in understanding logs outputted by the system.

The work described above shows that logs continuously evolve and that changes to log-
ging statements are made by developers without consideration for other stakeholders, which
affects practitioners and end users. These findings highlight the need for a better under-
standing of the metrics to determine the likelihood of a logging statement changing. The
approach that is presented in this paper facilitates this understanding, as it allows developers
to understand which metrics can be used to determine the likelihood of a logging statement
changing in their own projects.

Author's personal copy

Empir Software Eng

3 Two Real-World Examples

In this section, we discuss two real-world examples in which a change to a logging statement
breaks a log processing tool.

The first example is issue report HADOOP-41904 for the Apache Hadoop5 project.
Hadoop is an open-source software framework for storing data and running applications
on clusters of commodity hardware. Hadoop allows the user to store and process very
large amounts of data through the execution of tasks (or jobs). The JobHistory log file
can be processed using a log processing tool (i.e., a parser) that is included in the Hadoop
project.

Issue report HADOOP-4190 explains that the format of the log file was updated, and
that the log processing tool was updated accordingly to process only lines that end with
a dot (‘.’). However, lines in older versions of the log file do not necessarily end with
a dot. Therefore, the log processing tool will not function as expected when processing
older versions of the log file. The HADOOP-4190 issue is an example of how a seemingly
simple-looking change to a logging statement, i.e., adding a dot to the end of the line, can
break a log processing tool. To resolve the reported issue, a 65 Kb patch6 had to be made
to check whether changes made to the log file format affect the Hadoop log processing
tool.

The second example is issue report WICKET-39197 for the Apache Wicket8 project.
Apache Wicket is a Java framework for building web applications. The Wicket project
has a request logger which logs requests that are made to the application. However, issue
report WICKET-3919 describes that the log files that are generated by this logger can-
not be automatically processed, because of inconsistencies in the format. For example, the
[ResourceStreamRequestTarget[[]] log line contains an unbalanced number of
brackets. Issue report WICKET-3919 shows that (1) developers use automated tools for
processing logs and (2) developers care about the format of logging statements, which
implies that they care about changes to this format.

In this paper, we present an approach that can help to prevent issues in log processing
tools, by helping developers understand which logging statements are likely to change in
the future.

4 Experimental Setup

In this paper we study the changes that are made to logging statements in open source
applications. The goal of our study is to determine the risk of a logging statement changing
in the future.

Hence, in this section, we present our process for selecting the studied applications and
the modeling techniques used for the analysis of the four studied applications.

4https://issues.apache.org/jira/browse/HADOOP-4190
5http://hadoop.apache.org/
6https://issues.apache.org/jira/browse/HADOOP-4191
7https://issues.apache.org/jira/browse/WICKET-3919
8https://wicket.apache.org/

Author's personal copy

https://issues.apache.org/jira/browse/HADOOP-4190
http://hadoop.apache.org/
https://issues.apache.org/jira/browse/HADOOP-4191
https://issues.apache.org/jira/browse/WICKET-3919
https://wicket.apache.org/

Empir Software Eng

Listing 2 Counting logging statements

4.1 Studied Applications

We selected four applications (ActiveMQ, Camel, Cloudstack and Liferay). ActiveMQ9 is
an open source messaging protocol for delivering messages between two nodes in a network.
Camel10 is an open source source routing engine for constructing route between two nodes
in a network. CloudStack11 is an open source application for deploying and managing large
networks of virtual machines. Liferay12 is an open source platform for building websites and
web portals. Table 1 presents an overview of the studied applications. These applications
share the following three characteristics:

– Usage of logging statements. The applications extensively use logging statements in
their source code (i.e., the source code contains more than 1,000 logging statements).

– Application activity. The applications have a mature development history (i.e., more
than 10,000 commits).

– Used technology. To simplify the implementation of our study, we opted to only select
applications that are written in Java and are available through a Git repository.

We counted the number of logging statements in all the *.java files of the application
using the grep command in Listing 2. Listing 2 counts the invocations of a logging library
(e.g., log or logger) followed by the specification of a log level in Java files. We sum
the number of invocations in all files of an application to get the total number of logging
statements shown in Table 1.

4.2 Modeling Techniques

We use two methods for studying the likelihood of a logging statement changing in the
future namely 1) Random forest classifiers and 2) Cox proportional hazard (Cox) models
(Cox) models.

4.2.1 Random Forest Classifier

A random forest classifier is a collection of decision trees in which the produced classifi-
cations of all trees are combined to form a global classification. We use a random forest
classifier due to its strong performance in comparison to other classifiers such as SVM,
boosted trees, bayes or logistic regressions (Ghotra et al. 2015). Random forest classifiers
take a single snapshot of the data as input. Hence, they are ideal for providing early advice
on determining the likelihood of a logging statement changing based solely on the metrics
that are available when the logging statement is just-introduced.

9http://activemq.apache.org/(last checked April 2016)
10http://camel.apache.org/(last checked April 2016)
11https://cloudstack.apache.org/(last checked April 2016)
12http://www.liferay.com/(last checked April 2016)

Author's personal copy

http://activemq.apache.org/
http://camel.apache.org/
https://cloudstack.apache.org/
http://www.liferay.com/

Empir Software Eng

Table 1 An overview of the studied applications (all metrics are calculated based on the main branch of the
repository on September 2015)

ActiveMQ Camel CloudStack Liferay

of logging statements 5.1K 6.1K 9.6K 1.8K
of commits 11K 21K 29K 143K
of years in repository 8 8 4 4
of contributors 41 151 204 351
of releases 15 25 31 21
of added lines of code 261K 505K 1.09M 3.9M
of deleted lines of code 114K 174K 750K 2.8M
of added logging statements 4.5K 5.1K 24K 10.4K
of deleted logging statements 2.3K 2.4K 17K 8.1K
% of logging-related changes 1.8% 1.1% 2.3% 0.3%

4.2.2 Cox Proportional Hazards Model

As an application evolves, the code around the logging statements also evolves which can
destabilize logging statements overtime. As random forest classifiers are not capable of
using data across different time snapshots for such long-lived logging statements, we lever-
age survival analysis techniques. We construct Cox models to better understand the change
risk of long-lived logging statement that has been in the code for some time.

The Cox model is a popular survival analysis model (see Appendix A) that captures the
risk of an event, e.g., the changing of a logging statement, in relation to the elapsed time. As
Cox models are built from snapshots of the data that are collected throughout the lifetime of
an application, we can use Cox models to examine the stability of logging statements that
have been in the code for some time. As a result, Cox models allow us to calculate the risks
of depending on a certain logging statement.

A limitation of Cox models is that when a logging statement is introduced into the appli-
cation, (i.e., time ‘0’) it will not have any prior observation periods and the calculated risk at
time ‘0’ can be erroneous. In such cases it is necessary to use a modeling technique which
does not require prior knowledge to determine if a just-introduced logging statement will
change in the future. Hence, in the first part of our work we first explore random forest clas-
sifiers to determine the change risk of just-introduced logging statements and in the second
part, we use Cox models to determine the change risk of long-lived logging statements.

4.3 Data Extraction Approach

Our data extraction approach for the random forest classifiers and Cox models consists of
four steps, which are explained further in this section:

1. We extract the change history of each source code file by cloning the Git repository of
each studied application. We then identify logging statements in the repository.

2. We track the changes that are made to each logging statement across commits.
3. We collect the metrics for each logging statement when it is introduced in order to build

random forest classifiers.
4. We collect the metrics for each logging statement at each official release of the

application in order to build Cox models.

Author's personal copy

Empir Software Eng

We use the R (Ihaka and Gentleman 1996) statistical analysis tool to perform our anal-
ysis. Figure 5 shows a general overview of our approach and we detail below each of the
aforementioned steps.

4.3.1 Extracting the Change History of Java Files

To examine the changes that are made to logging statements, we must first obtain a complete
history of each Java file in the latest version of the main branch. We collect all the Java files
in the four studied applications and we use the Git repositories of the applications to obtain
all the changes that are made to the files. We use Git’s follow option to track a file even
when it is renamed or relocated. We include only the changes to logging statements that are
made in the main branch of the applications as changes made to logging statements in other
branches are unlikely to affect log processing tools.

4.3.2 Identifying Logging Statements

From the extracted change history of each Java file, we identify all the logging statements.
First, we manually examine the documentation of each studied application to identify the
logging libraries that are used to generate logs. We find that the studied applications use

Fig. 5 Overview of the data extraction and empirical study approach

Author's personal copy

Empir Software Eng

Log4j (Shang et al. 2015), Slf4j13 and logback.14 Using this information, we manually
identify the common method invocations that invoke the logging library. For example, in
ActiveMQ and Camel, a logging library is invoked by a method named LOG as shown
below.

As an application can use multiple logging libraries throughout its lifetime (Kabinna
et al. 2016b), we use regular expressions to search for all the common log invocation pat-
terns (i.e., LOG, log, logger, LOGGER, Log). We identify every successful match of this
regular expression that is followed by a log level (info, trace, debug, error, warn) as a
logging statement.

We find that applications can migrate from one logging library to another during devel-
opment (Kabinna et al. 2016b). However, such changes do not affect the log processing tools
as only the log invocation patterns are changed. Hence, we exclude the logging statement
changes that only have the invoker (e.g., the variable LOG) changed.

4.3.3 Tracking Changes to Logging Statements

After identifying all the logging statements, we track the changes that are made to these
statements after their introduction. We extract the change information from the Git commits,
which show a diff of added and removed code. To distinguish between changes in which
a new logging statement is introduced and a change to an existing logging statement, we
must track the changes made to a logging statement starting from the first commit. Because
there may be multiple changes to logging statements in a commit, we must map changes to
existing logging statements.

We first collect all the logging statements in the initial commit as the initial set of logging
statements. Then, we analyze the next commit to find changes to logging statements until
we reach the latest commit in the repository. To distinguish between just-introduced, deleted
and changed logging statements and to map the change to an existing logging statement, we
use the Levenshtein ratio (Mednis and Aurich 2012).

We leverage the Levenshtein ratio for both random forest classifiers and Cox models
because in both random forest classifiers and Cox models we track a logging statement
to observe if the logging statement changes or not. We use the Levenshtein ratio instead
of string comparison, because the Levenshtein ratio quantifies the difference between the
strings on a continuous scale between 0 and 1 (the more similar the strings are, the closer the
ratio approaches 1). This continuous scale is necessary to decide between multiple logging
statements which can have a similar match to a change.

Selecting the best matching logging statement is demonstrated by the example in
Listing 3. In this example, there are two changes made to logging statements: one change
and one addition. To identify the change to logging statements, we calculate the Levenshtein
ratio between each deleted and all the introduced logging statements and select the pair that
has the highest Levenshtein ratio. This calculation is done iteratively to find all the changes
within a commit. In our example, we find that the Levenshtein ratio between the deleted
statement and statement a1 is 0.86 and between the deleted statement and statement a2 is

13http://www.slf4j.org/(last checked April 2016)
14http://logback.qos.ch/(last checked April 2016)

Author's personal copy

http://www.slf4j.org/
http://logback.qos.ch/

Empir Software Eng

Listing 3 Selecting the best matching logging statement

0.76. Hence, we consider a1 as a change. If there are no more deleted logging statements,
a2 is considered a just-introduced instead of a changed logging statement. We extend the
initial set of logging statements with every just-introduced logging statement.

For the random forest classifiers, we do not have change information for logging state-
ments that are introduced at the end of the lifetime of a repository. Hence, we exclude these
logging statements from our analysis. We find that in the studied applications, the maxi-
mum number of commits between the addition of a logging statement and its first change is
390, as shown in Fig. 6 (we exclude 110 outliers from Cloudstack to make the graph more
readable). We exclude all logs that are introduced into the application 390 commits before
the last commit when building a random forest classifier. We do not exclude any logging
statements for our Cox models.

4.3.4 Collecting Content, Context and Developer Metrics

We collect metrics that measure the context, the content and the developers of the logging
statements to train the random forest classifier and Cox models. For the random forest clas-
sifier we collect these metrics at the time of the introduction of each logging statement,
whereas for the Cox models we collect these metrics at every release.

Context metrics measure the file context and the code changes at the time of adding a
logging statement. Content metrics collect information about the logging statement. Devel-
oper metrics collect information about the developer who introduced the logging statement.
Tables 2, 3, and 4 define each collected metric and the rationale behind our choice of each
metric. We use the Git repository to extract the context, content and developer metrics for
the studied applications.

Fig. 6 Number of commits before a just-introduced logging statement is changed in the studied applications
(Cloudstack has outliers that are not shown due to their large numbers)

Author's personal copy

Empir Software Eng

Table 2 The investigated context metrics in our random forest classifier and Cox model

Metric Values Definition (d) – Rationale (r)

Total Numerical d: Total number of commits made to the file before the

revision logging statement is added. This value is 0 for logging

count statements introduced in the initial commit of the

application but not for logging statements introduced

over time

r: Logging statements present in a file which is often

changed, have a higher risk of being changed

(Yuan et al. 2012). Hence, the more prior commits to

a file, the higher the change risk of a logging

statement

Code churn Numerical d: The amount of code churn in the commit in

in a commit which a logging statement is added

r: The change risk of a logging statement that is

introduced during large code changes, such as feature

addition, can be different from that of a logging statement

that is introduced during bug fixes, which have less code

changes

Declared Numerical d: The number of variables which are declared before the

variables logging statement in that function

r: When a large number of variables are declared, there is

a higher chance that any of the variables will be added to

or removed from the logging statement throughout its

lifetime

SLOC Numerical d: The source lines of code in the file.

r: Large files have more functionality and are more prone

to changes (Zhang et al. 2009) and to changes to logging

statements (Yuan et al. 2012; Shang et al. 2015)

Log context Categorical d: The block (i.e., if, if-else, try-catch, exception, throw,

new function) in which a logging statement is introduced

r: The stability of logging statements used in logical

branching and assertion checks, i.e., if-else blocks, may be

different from the stability of logging statements in

try-catch, exception blocks

4.3.5 Collecting Survival Analysis Data

To construct survival models we have to collect data for all observation periods, i.e., all
application releases as shown in Fig. 5. We collect the metrics at the start of the observation
period (i.e., introduction of logging statement) and every subsequent release of the applica-
tion, till the end of the study period. Our study period covered four years of development
from January 2010 till September 2015 and the statistics of the studied releases are shown
in Table 1.

Author's personal copy

Empir Software Eng

Table 3 The investigated developer metrics in our random forest classifier and Cox model

Metric Values Definition (d) – Rationale (r)

File Numerical d: Percentage of the file that is written by the developer

ownership who introduced the logging statement. In random forest

classifiers File ownership is calculated when the log is

introduced and in Cox models it is calculated at every

release of the application

r: The owner of the file is more likely to add stable logging

statements than a developer who has not previously edited

the file

Developer experience Numerical d: The number of commits that the developer has made

prior to this commit. In both random forest classifiers and

Cox models, developer experience is calculated when the

log is introduced and the value is not re-calculated

r: More experienced developers may introduce more stable

logging statements than a less experienced developer

Log modification experience Numerical d: The number of logging statements modified by

the developer who introduces the new logging

statement, prior to the addition of this logging

statement

r: Developers who frequently changed logging

statements in the past are more likely to change

logging statements in future changes

As an example of survival analysis data, Table 5 shows the metrics that are collected
for logging statement L1 for release 1 and the logging statement is changed in release 2.
However, L2 which is introduced into the application at release 2 is never changed. Hence,
this logging statement is tracked till the end of the study period.

Similarly, we extract the metrics that are described in Tables 2–4 at every official release
of an application for all logging statements. We exclude minor releases and release candi-
dates and other ‘hotfixes’. However, we find that all the applications have nightly and beta
releases within 5-10 days of one-another which cannot be counted as actual releases of the
applications. Hence, we ensure a time difference of 30 days between any two consecutive
releases to avoid the nightly and beta releases in between.

If there is a change made to a logging statement, we tag it as a log change event and stop
collecting data for that particular logging statement. We do not consider recurrent changes to
logging statements in our analysis because we observe from Table 6 that recurrent changes
are infrequent to logging statements.

5 Preliminary Analysis

In our experimental setup we explain the process for collecting and tracking logging state-
ment changes in the studied applications. In this section, we perform a preliminary analysis,
in which we examine how often logging statements change, to motivate our work. Figure 5

Author's personal copy

Empir Software Eng

Table 4 The investigated content metrics in our random forest classifier and Cox model

Metric Values Definition (d) – Rationale (r)

Log addition Boolean d: Check if the logging statement was introduced

to the file after creation or if it was introduced

when the file was created

r: Logging statements that are introduced at file

creation might be essential statements that are

less likely to change

Log variable count Numerical d: Number of logged variables in a logging statement

r: Over 62% of logging statement changes add

new variables (Yuan et al. 2012). Hence, fewer

variables in the initial logging statement might

result in the addition of new variables later

Log density Numerical d: Ratio of the number of logging statements to

the source code lines in the file

r: Files that are well logged (i.e., with a higher

log density) may not need additional logging

statements and are less likely to be changed

Log level Categorical d: The level (verbosity) of the introduced logging

statement, i.e., info, error, warn, debug and trace

r: Research has shown that developers spend a

significant amount of time in adjusting the

verbosity of logging statements (Yuan et al. 2012).

Hence, the verbosity level of a logging statement may

affect its stability

Log text count Numerical d: The number of text phrases that are logged. We

count all text present between a pair of quotes as

one phrase

r: Over 45% of logging statements have

modifications to their textual content

(Yuan et al. 2012). Logging statements with fewer

phrases might be subject to changes later to

provide a better explanation

Log churn in commit Numerical d: The number of logging statements changed in

the commit

r: Logging statements can be introduced as part

of a specific change or part of a larger change

Log churn ratio Numerical d: The ratio of total number of logging statement

changes to total code changes in a commit

r: Logging statements which were introduced as a

part of large code changes might be different from

logging statements that are introduced in a strategical

fashion (i.e., changes which introduce many logging

statements relative to the introduced code)

Author's personal copy

Empir Software Eng

Table 5 Example data for survival analysis

Log - ID Start release Stop release Log change Number of

logged variables

L1 1 2 0 2

L1 2 3 1 4

L2 2 3 0 1

L2 3 4 0 1

L2 4 5 0 1

provides an overview of our approach for collecting and tracking logging statement changes
for the preliminary analysis.

We observe that 20–45% of the logging statements are changed in the studied appli-
cations, during their lifetime. The observed values show that logging statements change
extensively throughout the lifetime of an application, which can affect the maintenance
efforts and costs of log processing tools that depend on such logging statements.

From Fig. 7, we observe that 75% of the changes to logging statements are done within
223 days after the log is introduced. In fact, the largest median number of days between the
addition of a logging statement and its first change is 17 days in our studied applications.
This number shows that, all too often, the changes to logging statements happen in a short
time after the logging statement being introduced. This result suggests that developers of
log processing tools should be cautious when selecting just-introduced logging statements
in their log processing tools.

6 Determining Whether a Just-Introduced Logging Statement will
Change

In our preliminary analysis, we find that 20–45% of the logging statements are changed in
our studied applications. These logging statement changes affect the log processing tools
that depend on the logs that are generated by these statements, forcing developers to spend
more time on maintaining their tools. By analyzing the metrics which can have a strong

Table 6 Recurrent changes to logging statements

Changed once Changed twice Changed three times or more

ActiveMQ 25% 4% 0.7%

Camel 31% 2% 1%

Cloudstack 45% 12% 3%

Liferay 20% 4% 2%

Author's personal copy

Empir Software Eng

Fig. 7 Number of days before a just-introduced logging statement is changed in the studied applications.
The gray lines represent the first, second (median), third and fourth quantiles within each application

relationship with the risk of a logging statement changing, log processing tools can be more
cautious and select more stable logging statements that are likely to remain unchanged.

6.1 Approach

We train a random forest classifier for determining whether a just-introduced logging state-
ment will change in the future, then we evaluate the performance of our random forest
classifier. In our classifier, the context, content and developer metrics (see Table 2–4) are the
explanatory variables and the dependent class variable is a boolean variable that represents
whether the logging statement ever changed or not (i.e., False for not changed and True for
changed).

Figure 8 provides an overview of the construction steps (C1 and C2) for constructing
a random forest classifier and the analysis step (A1) for analyzing the results. We use the
statistical tool R to model and analyze our data using the RandomForest package.

6.2 Step C1 - Removing Correlated and Redundant Metrics

Correlation analysis is necessary to remove highly correlated metrics from our dataset
(Cohen et al. 2013). Correlated metrics can lead to incorrect determination of the impor-
tance of a particular metric in the random forest classifier, as small changes to one correlated
metric can affect the values of the other correlated metrics.

We use the Spearman square rank correlation (Kendall 1948) to find correlated metrics
in our data. Spearman rank correlation assesses how well two metrics can be described by
a monotonic function. We use the Spearman square rank correlation instead of the Pearson
correlation (Serfling 2009) because the Spearman square correlation is resilient to data that
is not normally distributed. We use the function varclus in R to perform the correlation
analysis.

Figure 9 shows the hierarchically clustered Spearman ρ2 values for the ActiveMQ appli-
cation. A solid horizontal line indicates the correlation value of the two metrics that are
connected by the vertical branches that descend from it. We keep only one metric from the
sub-hierarchies which have correlation |ρ2| > 0.7. The blue dotted line indicates our cutoff

Author's personal copy

Empir Software Eng

Fig. 8 Overview of random forest classifier construction (C), analysis (A) and the flow of data in the random
forest construction

value (|ρ2| = 0.7). We use a cutoff value of (|ρ2| = 0.7) as it represents highly correlated
metrics as shown by prior research (Bigliardi et al. 2014).

We find that total revision count is highly correlated with code churn in commit, log
churn ratio and log churn in commit. We exclude total revision count, log churn ratio and
log churn in commit and retain code churn in commit as it is a simpler metric to compute.
Similarly, we also find that developer experience is highly correlated with log modification
experience. We retain developer experience as it is a simpler metric to compute.

Fig. 9 Hierarchical clustering of variables according to Spearman’s ρ2 in ActiveMQ (the blue dotted line
indicates our cutoff value (|ρ2| = 0.7))

Author's personal copy

Empir Software Eng

Correlation analysis does not indicate redundant metrics, i.e, metrics that can be
explained by a combination of other explanatory metrics. The redundant metrics can inter-
fere with one another and the relation between the explanatory and dependent metrics would
become distorted. We perform redundancy analysis to remove such metrics. We use the
redun function that is provided in the rms package to perform the redundancy analysis. We
find after removing the correlated metrics, that there exist no redundant metrics.

6.3 Step C2 - Construction of the Random Forest Classifier

After removing the correlated metrics, we construct the random forest classifier. Random
forest is an ensemble classifier, which operates by constructing several decision trees using
the training set and uses these trees to classify the testing set.

6.4 Step A1 - Random Forest Validation

After we construct the random forest classifier, we evaluate the performance of our classifier
using precision, recall, F-measure and AUC. These measures are functions of the confusion
matrix and are explained below.

Precision (P) measures the correctness of our classifier in determining whether a just-
introduced logging statement will change in the future. Precision is defined as the number
of just-introduced logging statements which were correctly classified as changed (CC) over
all just-introduced logging statements that have changed (TC) as detailed in (1).

P = CC

T C
(1)

Recall (R) measures the ability of our classifier to successfully classify the changed
logging statements. A classifier is said to have perfect recall if the classifier can correctly
classify all the just-introduced logging statements which change. Recall is defined as the
number of just-introduced logging statements which were classified as changed (CC), over
the number of all logging statements which are changed (TL) as explained in (2).

R = CC

T L
(2)

F 1-Score also known as F-measure (F) (Van Rijsbergen 1979), is the harmonic mean
of precision and recall, combining the inversely related measure into a single descriptive
statistic as shown in (3) (Hripcsak and Rothschild 2005).

F = 2 × P × R

P + R
(3)

Area Under Curve (AUC) is used to measure how well our classifier can discriminate
between changed logging statements and unchanged logging statements. AUC is the area
below the curve plotting the true positive rate against the false positive rate. The value of
AUC ranges between 0.5 (worst) for random guessing and 1 (best) where 1 means that
our classifier can correctly classify every logging statement. We calculate AUC using the
roc.curve function from the pROC package in R.

Author's personal copy

Empir Software Eng

6.4.1 Removing Optimism in Performance Measures using Bootstrapping

The previously-described performance measures may overestimate the performance of the
classifier due to overfitting. To account for the overfitting in our classifier, we use the opti-
mism measure, as used by prior research (McIntosh et al. 2016; Harrell 2015; Kabinna et al.
2016a). The optimism of the performance measures is calculated as follows:

1. From the original dataset with m records, we select a bootstrap sample with m records
with replacement.

2. Construct a random forest classifier as described in (C2) using the bootstrap sample.
3. Apply the classifier built from the bootstrap sample on both the bootstrap sample and

the original data sample, calculating the precision, recall, F-measure and AUC for both
data samples.

4. Calculate optimism by subtracting the performance measures of the bootstrap sample
from the original sample.

The above process is repeated 1,000 times and the average (mean) optimism is calcu-
lated. Finally, we calculate optimism-reduced performance measures for precision, recall,
F-measure and AUC by subtracting the averaged optimism of each measure, from their cor-
responding measure for the original data sample. The smaller the optimism values, the less
the chances that the original classifier overfits the data and the more likely that the observed
performance on our testing data would generalize to unseen testing data (e.g., data from
other applications).

6.5 Results

Figure 10 shows the optimism-reduced values of precision, recall, F-measure and AUC
for each studied application. The classifier achieves an AUC of 0.95-0.96. A random classi-
fier, which randomly (p = 0.5) determines whether a logging statement will change in the
future, has an AUC of 0.5. Our results show that random forest classifiers can accurately
determine whether a just-introduced logging statement will change in the future, with high
precision and recall.

7 Determining Whether a Long-Lived Logging Statement will Change

Using a random forest classifier we could determine whether a just-introduced logging
statement will change in the future. However, the random forest classifier was constructed
solely using data that is collected when the logging statement was introduced. Subsequent
changes to the file in which the logging statement resides are not considered. Hence, for
logging statements that have a change history we leverage survival analysis techniques.

Using survival analysis we aim to determine the most stable logging statements at any
give time and explore the relationship of each metric on the change risk of long-lived log-
ging statements. This knowledge can help developers of log processing tools avoid using

Author's personal copy

Empir Software Eng

Precision Recall F−measure AUC

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ActiveMQ

Precision Recall F−measure AUC

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Camel

Precision Recall F−measure AUC

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cloudstack

Precision Recall F−measure AUC

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Liferay

Fig. 10 The optimism-reduced performance measures of the studied applications

unstable long-lived logging statements, thereby reducing the effort spent of maintaining
their log processing tools. It also helps in proactive analysis, where developers can use sur-
vival analysis to be aware of the associated risks of using a particular logging statement if
an alternative, more stable logging statement cannot be found.

In this section, we explain our approach for constructing our survival analysis model and
the additional metrics that are collected for this model. Next, we evaluate the performance
of our survival analysis model and use the model to explore the relationship of each metric
with the change risk of long-lived logging statements.

Author's personal copy

Empir Software Eng

7.1 Approach

We construct a Cox proportional hazards (Cox) model (Elbers and Ridder 1982) to deter-
mine the change risk of long-lived logging statements. Figure 11 provides an overview of
construction steps (C1 to C4) for constructing a Cox model, the step (V1) for the validation
of our model and identifying the statistically significant metrics. We use the statistical tool
R to model our data using the survival package.

7.2 Step C1: Remove Correlated Metrics

Similar to our random forest classifier, we use the Spearman square rank correlation to
find correlated metrics in our data. As Cox models use data that is collected from differ-
ent releases of the applications, we merge all the releases together and find the correlation
between metrics across all releases. Figure 12 shows the hierarchically clustered Spearman
ρ2 values for the ActiveMQ application in Cox models. Similar to random forests we find
that the hierarchically clustered Spearman ρ2 values are similar between developer expe-
rience and log modification experience and log churn in commit and log churn ratio and
we retain developer experience and log churn in commit respectively from our Cox models.
However, we find that total revision count and log churn in release are not highly correlated
as observed in random forest classifiers and hence we retain both these metrics.

Fig. 11 Overview of Cox model construction (C), validation (V) and flow of data in the Cox model

Author's personal copy

Empir Software Eng

Fig. 12 Hierarchical clustering of variables according to Spearman’s ρ2 in ActiveMQ for Cox models
(the blue dotted line indicates our cutoff value (|ρ2| = 0.7))

7.3 Step C2: Transform the Collected Metrics into the Cox Model Format

Before constructing a Cox model, we collect the metrics at every release for every existing
logging statement. When a logging statement is changed we identify the release at which the
logging statement is changed (i.e., the event) and stop collecting metrics for that changed
logging statements. Each observation for a logging statement consists of the following
fields:

1. UID: We give a unique identifier for each logging statement that is introduced into the
application.

2. Start time: The end time of the previous release or ‘0’ for the first release of the
application.

3. End time: The start time of the release plus one, i.e., if the start time is the 11th release
of an application, the end time is 12.

4. Event: If the logging statement is changed we set event as true, ie., 1 or 0 if the logging
statement did not change.

5. Metrics: Metrics that are calculated at every release of the application.

7.4 Step C3: Validation of the Cox Model Assumptions

Before constructing a Cox model it is essential to validate if the Cox models can be applied
to our dataset. To check if Cox models are applicable to our dataset, we verify if the dataset
satisfies the Cox model assumptions. The first assumption of a Cox model is the existence
of a linear relation between each collected metric in Tables 2–4 and the change risk of the
logging statements in the dataset, i.e., the change risk of a logging statement is linearly
dependent on the difference between the values of the metrics and this linear relation holds
for all time. The second validation is to check for overly influential observations i.e., outliers
within the data which can influence the model. We validate these two assumptions prior to
the construction of our Cox model.

Author's personal copy

Empir Software Eng

To assess the existence of a linear relation between each collected metric and the change
risk of the logging statements, we employ graphical techniques as they help in visually ana-
lyzing the linear relationship as numerical methods are widely considered to be insufficient
(Syer et al. 2015; Koru et al. 2007). We leverage Schoenfeld residuals (Syer et al. 2015; Koru
et al. 2007; Hosmer and Lemeshow 1999), which plot only the changed logging statements
to assess the existence of a linear relation between each collected metric and the change
risk of the logging statement. Schoenfeld residuals can be thought of as the observed val-
ues minus predicted values for each collected metric of a changed logging statement. If the
Schoenfeld residuals have a random pattern against time, i.e., the slope of the Schoenfeld
residuals is ‘0’, the linear relation is not violated. However, if a metric is dependent on time,
the observed values minus the predicted values for each collected metric can increase or
decrease with time. In such a case, the slope of the Schoenfeld residual is non-zero, which
implies that the Cox model assumption is violated. For example, in Fig. 13 we see that for
metric SLOC, the Schoenfeld residuals is nearly constant throughout time (the dotted lines
indicate a conference interval of 95%), implying that SLOC is independent of time. We plot
the Schoenfeld residuals using the cox.zph function from the R rms package.

Overly influential observations can skew the coefficients of our final model and can
affect the validity of Cox models. Hence, to identify the existence of overly influential
observations we calculate dfbeta residuals as proposed by prior research (Syer et al. 2015;
Koru et al. 2007). Dfbeta residuals calculate the influence of each observation by fitting a
Cox model with and without the observation. The difference between the coefficients for
the metrics with and without the observation shows the influence of that observation in the
Cox model. Overly influential observations will have dfbeta residuals greater than twice the
inverse of the square root of the number of logging statements in the application. We plot
dfbeta residuals for each metric using the residuals function within the R stats packages and
we use the abline function to demarcate the overly influential observations. For example,
we observe that in Fig. 14 many metrics have overly influential observations (i.e., points
outside the area marked by the red lines) which suggests that these observations are overly
influential (absence of red lines indicates that the metric has no overly influential observa-
tions). However, upon further analysis we find that these outliers are valid observations and
we do not exclude these observations in our Cox models.

7.5 Step C4: Cox Model Construction

After transforming the collected metrics into the Cox model format and ensuring the Cox
model assumptions are met, Cox models are constructed using the cph() function from the
R rms package.

7.6 Step V1: Validation of the Goodness of Fit of the Cox Model

In the previous steps we validated the metrics that are used for building the Cox models.
However, to validate the goodness of fit of the Cox models, we leverage the Martingale
residuals. Martingale residuals are widely used in the field of biometrics and cancer research
to measure the goodness of fit of the Cox models (Therneau et al. 1990; Ren et al. 2004;
Collett 2015). A Martingale residual considers both unchanged and changed logging state-
ments and the plot ranges between (−∞, 1) on the Y-axis and the logging statements on
the X-axis. If the Martingale residuals plot has more negative values below −1 or positive
values close to 1 it indicates that our Cox model is not a good fit. We use the cph() function
from the R rms package to plot the Martingale residuals for the studied applications.

Author's personal copy

Empir Software Eng

Fig. 13 Three of the scaled
Schoenfeld residuals for the
Camel application. We did not
include all residuals to avoid
cluttering the paper

2.3 3 4.6 6.3 7.7 9.7 12 15

−
0
.0
0
5

0
.0
0
0

0
.0
0
5

0
.0
1
0

Time

B
e
ta
(
t)
 o
f
S
L
O
C

Author's personal copy

Empir Software Eng

Fig. 14 Three of the dfbeta
residuals for the Camel
application. We did not include
all residuals to avoid cluttering
the paper

Author's personal copy

Empir Software Eng

The residuals can be interpreted as the difference between the observed number of log-
ging statement changes in the data and the number of predicted logging statement changes
by our Cox model. If a logging statement is changed and our Cox model accurately classi-
fies the change, the Martingale residual has a value of 1. If a logging is not changed and our
Cox models accurately classifies the logging statement as not changed, the Martingale resid-
ual has value 0. However, if there is a mismatch, i.e., the Cox model classifies the logging
statement as not changed but the logging statement is changed, the Martingale residual has
values lower than 0. For Cox models to be a good fit to the dataset, the Martingale residuals
should have an asymmetric distribution between (−1,1) with minimal mismatches.

7.7 Results

Our Cox models satisfy the linear relation between each collected metric and the change risk
of logging statements. The scaled Schoenfeld residuals in Fig. 13 show a random pattern
against time except for file ownership and declared variables (similar results were found
for metrics in other applications). This result suggests that file ownership and declared vari-
ables do not satisfy the linear relation between each collected metric. Hence, we transform
those metrics by making them time dependent in our Cox model (i.e., we multiply file own-
ership and declared variables by the number of releases that a logging statement has existed)
as proposed by prior research (Fisher and Lin 1999) and re-plot the scaled Schoenfeld
residuals. Figure 15 shows the scaled Schoenfeld residuals after we transformed these two
metrics and we observe that the Cox model assumptions are now validate for both metrics.
Therefore both file ownership and declared variables can be used to build Cox models.

The built Cox models are a good fit for the studied applications. The Martingale residuals
shown in Fig. 16 are asymmetrically distributed in between (−1,1). These residuals plots
show that our Cox models can accurately determine the change risk of long-lived logging
statements and that our Cox models are a good fit for our survival data.

8 Important Metrics from Random Forest Classifiers and Cox Models

In our previous sections (i.e., Sections 6 and 7), we find that a random forest classifier
can accurately determine the change risk of a just-introduced logging statement and that
Cox models are able to model the change risk of long-lived logging statements. Hence, in
this section we analyze the random forest classifier and Cox models to better understand
the important metrics which help in determining the risk of a logging statement changing.
By analyzing the impact of the important metrics, developers can better understand what
drives the random forest classifiers and Cox models and get a better understanding of the
phenomenon of changing logging statements in their own projects.

8.1 Important Metrics in our Random Forest Classifier

To find the importance of each metric in a random forest classifier, we use a permutation
test (Strobl et al. 2008). In this test, the classifier built using the training data is applied to
the test data during bootstrapping (see Section 6.4.1). Then, in order to find the importance
of the Xth

i metric, the values of the metric are randomly permuted in the test dataset and
the accuracy of the classifier is recomputed (Hastie et al. 2005). The change in the accuracy
as a result of this permutation is averaged over all trees, and is used as a measure of the
importance of the Xth

i metric in the random forest. We use the importance function defined

Author's personal copy

Empir Software Eng

Fig. 15 Transformed scaled Schoenfeld residuals for file ownership and variables declared in the Camel
application

in the RandomForest package of R, to calculate the importance of each metric. We call the
importance function during the bootstrapping process explained in Section 6.4.1 to obtain
1,000 importance scores for each metric in our dataset.

As we obtain 1,000 data sets for each metric from the bootstrapping process, we use the
Scott-Knott Effect size clustering (SK-ESD) to group the metrics based on their effect
size (Tantithamthavorn et al. 2015). The SK-ESD algorithm groups metrics based on their
importance in determining the change risk of a just-introduced logging statement. The SK-
ESD algorithm uses effect sizes that are calculated using Cohen’s delta (Kampenes et al.
2007), to merge any two statistically indistinguishable groups. We use the SK.ESD function
in the ScottKnottESD package of R and set the effect size threshold parameter to negligible,
(i.e., < 0.2) to cluster the two metrics into the same groups as seen in Table 8.

8.2 Selecting Statistically Significant Metrics in a Cox Model

After validating the Cox model assumptions and goodness of fit, we finally identify the
statistically significant metrics in our Cox models. We use the backward selection method

Author's personal copy

Empir Software Eng

Fig. 16 Martingale residuals to validate the fit of the Cox models for the studied applications

(Harrell 2015) for selecting the statistically significant metrics in our Cox model since the
backward selection method outperforms forward selection methods (Harrell 2015). In back-
ward selection, multiple Cox models are built and in each successive model the statistically
insignificant metrics are eliminated until only statistically significant metrics are left in the
final Cox model. If a metric has a p-value that is greater than 0.05, the metric is excluded
from the next model while metrics that have a p-value that is less than 0.05 are retained in
successive models. We use the validate.cph() method from the rms package to identify the
statistically significant metrics in our Cox models.

8.3 Important Metrics in a Cox Model

To determine the importance of each metric in Cox models, we use the chunk test/ANOVA
test (Hoaglin and Welsch 1978). In this test, the Cox model is constructed using the statis-
tically significant metrics after backward selection and the chi-squared values (Greenwood
and Nikulin 1996) are computed using the residuals obtained from the Cox model for
each metric. By ordering the metrics based on their chi-squared values, we determine the
importance of each metric with respect to our Cox model, i.e., the metric with the highest
chi-squared value is the most important metric in our Cox model. As chi-squared values are
computed from residuals obtained from statistical models, this method is not applicable for
random forest classifiers. We use the anova function defined in the stat package of R, to
calculate the chi-squared values of each metric.

Author's personal copy

Empir Software Eng

8.4 Plotting the Important Metrics

After identifying the important metrics in both random forest classifiers and Cox models, it
is crucial to plot these important metrics to determine how the metrics affect the change risk
of logging statements, i.e., to determine direction of the effect of the metrics. To identify
how a metric affects the change risk of a logging statement statement we plot each metric
against the predicted risk of whether a just-introduced logging statement will change for ran-
dom forest classifiers and against the relative risk (i.e., risk of logging statement changing)
for Cox models.

To plot the predicted value of whether a just-introduced logging statement will change,
we first construct a random forest classifier as explained in Section 6 with training data (i.e.,
two-thirds of entire data). Next, using the predict function in R, we determine whether a
just-introduced logging statement will change for our training data set (i.e., remaining one-
thirds of the data). We then plot the predicted value of whether a just-introduced logging
statement will change against the significant metrics for our random forest classifier. Using
the qplot function in R, we fit a curve through the plotted data points by setting the geom
variable and set the confidence interval to 95% by configuring the span variable in qplot
function as seen in Fig. 17.

For the Cox models we use a similar approach and use the predict.cph function from rms
package in R, instead of predict as used for the random forest classifiers. The predict.cph
function returns the relative risk (i.e., risk of logging statement changing) for each row in our
test dataset and we plot the risk against each metric. Next, we fit a curve through the plotted
data points using qplot function the same as for random forest classifiers. An example of this
is seen in Fig. 18, where we observe the that relative risk of a logging statement changing
is higher for those logging statements present in files having lower logging density (i.e., the
relative risk is higher than 1), than for logging statements in well logged files.

Fig. 17 Showing the change risk of logging statement against log density for random forest classifiers.
Change risk varies between 0 to 1, where ‘1’ implies that the change risk of a logging statement is 100% and
‘0’ implies that the change risk of a logging statement is 0%. Note that there were no files with a log density
larger than 0.20

Author's personal copy

Empir Software Eng

Fig. 18 Showing the relative risk of depending on a logging statement against the log density for Cox
models. A relative risk value over ‘1’ implies that these logging statements have a higher risk of being
changed than those logging statements with a relative risk lower than ‘1’. Note that there were no files with
a log density larger than 0.20

8.5 Results

From Tables 8 and 9 we see that developer experience is one of the four most important
metrics in our studied applications for both the random forest classifiers and Cox models
for determining the change risk of just-introduced and long-lived logging statements. From
our analysis we find that logging statements introduced by more experienced developers
are more likely to be changed in both random forest classifiers and Cox models for the
ActiveMQ, Cloudstack and Liferay applications. From Fig. 19 we observe that with increase
experience (i.e., number of commits) in ActiveMQ and Cloudstack there is a drastic increase
in the change risk of a logging statement.

However, we observe that logging statements introduced by the top developers are less
likely to be changed as seen by the downward trend in Fig. 19 for the ActiveMQ, Camel
and Cloudstack applications. This downward trend may be explained by the fact that in the
studied applications the top developers are responsible for introducing more than 59% of the
logging statements as seen in Table 7 and up to 70% of the logging statements introduced
by these top developers never change.

From Tables 8 and 9, we see that file ownership (i.e., the number of lines of code in
a file that are introduced by a developer) is one of the top four metrics after developer

Author's personal copy

Empir Software Eng

Fig. 19 Comparing the probability of changes to just-introduced and long-lived logging statement against
the experience of the developer who introduces that logging statement

Author's personal copy

Empir Software Eng

Fig. 20 Comparing the probability of changes to just-introduced and long-lived logging statement against
ownership of the file

Author's personal copy

Empir Software Eng

Table 7 Percentage of all logging statements in an application that are 1) introduced by the top 3 developers,
2) changed by the top 3 developers and 3) the total number of developers that introduce logs in an application

Introduced logging Changed logging Total # of

statements statements developers

ActiveMQ 956 (50.4%) 301 (31.4%) 41

Camel 3,060 (63.1%) 1,460 (47.7%) 151

Cloudstack 5,982 (35.7%) 2,276 (38.0%) 204

Liferay 3,382 (86.7%) 609 (18.0%) 351

experience in determining the change risk of just-introduced and long-lived logging state-
ments. From Fig. 20 we observe in three of the studied applications, logging statements
introduced by developers who own more than 75% of the file are less likely to be changed.
We also observe that developers who own less than 15% of the file are responsible for 27–
67% of the changes to logging statements in the studied applications, which is seen as an
upward trend from 0 to 0.15 in Figure 20 for the ActiveMQ, Camel and Cloudstack applica-
tions. These results suggest that developers of log processing tools should be more cautious
when using a logging statement written by a developer who has contributed less than 15%
of the file.

Log density is defined as the number of logging statements to the total lines of code
within a file. From Tables 8 and 9, we observe that log density has the highest importance
in the Liferay and Cloudstack applications for just-introduced logging statements and in
the Camel application for long-lived logging statements. We find that in random forests,
changes to just-introduced logging statements are in files that have a lower log density
than the files containing unchanged logging statements. When we measure the median file
sizes, we find that logging statements with a higher change risk are present in files with a
significantly higher SLOC (2×–3× higher) than logging statements with a lower change
risk. We find similar results for the Cox models where long-lived logging statements have
a higher change risk in files where log density reduces over time than in files where log
density increases over time.

Though there are common patterns observed across different applications, our analysis
reveals that some metrics are important only in few of the studied applications. For example,
from Tables 8 and 9, we observe that the number of variables logged is ranked in the top 3 for
determining the change risk of long-lived logging statements. However, for just-introduced
logging statements the same metric is ranked in the bottom 3 of the table. This discrepancy
suggests that, developers of log processing tools should analyze their respective applications
and produce risk tables from their analysis at each release of the application.

9 Threats to Validity

External Validity Our empirical study is performed on Liferay, ActiveMQ, Camel and
CloudStack. Though these studied applications have years of history and a large number of

Author's personal copy

Empir Software Eng

developers, these applications are all Java-based. Other languages may not use logging state-
ments as extensively. More studies on other domains, with other programming languages
are needed to see whether our findings can be generalized.

Our approach works well on projects that maintain a source code history, and explicitly
specify logging statements in their code that can be extracted using a regular expression (as
explained in Section 4.1). To employ our approach on projects that dynamically generate
logging statements, a more advanced data collection method (e.g., using an abstract syntax
tree) is needed.

We extract the necessary metrics at every official release of an application. The official
release excludes minor releases, release candidates and any other ‘hotfixes’. This precau-
tionary measure is taken to ensure that we only consider logging statement changes which
occur in different releases for our Cox models. However, if a logging statement is intro-
duced and changed within the same release, the change is not collected as such a change
would not affect log processing tools.

Construct Validity In our study, we only explore the first change after the introduction
of a logging statement. While the first change is sufficient for deciding whether a logging
statement will change, we need more information to determine how likely it is going to be
changed again. In future work, we will extend our study to give more specific details about
stability of logs (i.e., how likely will a changed log be changed again and why do some
logging statements exhibit a large number of changes in their lifetime).

Table 8 The most important metrics in random forest classifier, divided into homogeneous rank groups
using the Scott-Knott Effect Size clustering

Rank Metric Importance Rank Metric Importance

ActiveMQ Camel

1 Developer experience 0.246 1 Developer experience 0.272

2 Ownership of file 0.175 2 Ownership of file 0.151

3 Log density 0.163 3 Log level 0.138

4 Log variable count 0.101 4 SLOC 0.112

5 Log context 0.069 5 Log addition 0.090

6 Log level 0.063 Log density 0.088

7 Declared variables 0.048 6 Log variable count 0.063

8 Log text length 0.022 7 Log context 0.052

8 Declared variables 0.051

CloudStack Liferay

1 Log density 0.224 1 Developer experience 0.195

2 Ownership of file 0.215 Log density 0.192

3 SLOC 0.192 2 Ownership of file 0.190

4 Developer experience 0.182 SLOC 0.188

5 Log text length 0.120 3 Log variable count 0.162

6 Log variable count 0.115 4 Log level 0.148

7 Log level 0.102 5 Log context 0.091

8 Declared variables 0.092 6 Declared variables 0.080

9 Log context 0.061 7 Log text length 0.071

Author's personal copy

Empir Software Eng

Table 9 The most important metrics in the Cox model ranked using the chunk test

Rank Metric Importance Rank Metric Importance

ActiveMQ Camel

1 Log variable count 12.55 1 Log density 4.05

2 File Ownership 11.55 2 Declared variables 3.37

3 Declared variables 8.73 3 File Ownership 3.10

4 Developer experience 4.82 4 Log variable count 0.29

CloudStack Liferay

1 Log variable count 85.31 1 Log text length 41.01

2 SLOC 85.12 2 SLOC 20.79

tba:coxChunk3 File ownership 65.02 tba:coxChunk3 Developer experience 8.38

4 Developer experience 47.96 4 Total revision count 4.85

5 Code churn in commit 20.96 5 Log density 4.59

6 Log text length 8.73

7 Log density 0.63

Our heuristic for matching logging statements in code also matches logging statements
that are inside code comments. We verified the matched logging statements and found
that less than 1% of the logging statements in each studied application was inside code
comments. Therefore, such logging statements will not affect the results of our study.

Internal Validity Our study is based on the data that is collected from the Git repositories
of all the studied applications. The quality of the data that is contained in the repositories can
impact the internal validity of our study. For example, rewriting the history of the repository
(i.e., by rebasing the history) may affect our results (Bird et al. 2009).

Our results are not impacted by any threshold of Levenshtein distance used in identifying
the modification of logging statements.

We collect and study only a subset of the available metrics in our random forest classifiers
and Cox models. More metrics should be leveraged and studied in depth in future studies.

Our analysis of the relationship between metrics that are important factors in determin-
ing the stability of logging statements cannot claim causal effects, as we are investigating
correlation but not causation. The important metrics from our random forest models and
Cox models only indicate that there exists a relationship which should be studied in depth
in future studies.

Our study utilizes two-thirds of the training data for drawing the plots for risk factors for
Cox models and change risk for random forest classifiers. More exhaustive methods should
be used in future studies to use all the training data for drawing the plots.

10 Conclusion

Logging statements are snippets of code, introduced by developers to yield valuable infor-
mation about the execution of an application. Logging statements generate their output
in logs, which are used by a plethora of log processing tools to assist in software test-
ing, performance monitoring and system state comprehension. These log processing tools

Author's personal copy

Empir Software Eng

are completely dependent on the logs and hence are affected when logging statements are
changed.

In order to reduce the effort that is required for the maintenance of such log processing
tools, we examine changes to logging statements in four open source applications. The
goal of our work is to help developers of log processing tools select more stable logging
statements by providing early advice about the stability of a logging statement. We consider
our work an important first step towards helping developers to construct more robust log
processing tools, as knowing whether a log will change in the future allows developers to
let their log processing tools rely on logs generated by logging statements that are likely to
remain unchanged (or at least factor such instability into the maintenance costs of their log
processing tools). The highlights of our work are:

– We find that 20–45% of the logging statements are changed at least once.
– We find that our random forest classifier for determining the change risk of a just-

introduced logging statement achieves a precision of 83–91%, a recall of 65–85% and
an AUC of 0.95–0.96.

– We find that just-introduced and long-lived logging statements added by a developer
who owns more than 75% of a file are less likely to change in the future in our studied
applications.

– Well-logged files are less likely to have changes to both just-introduced and long-lived
logging statements in our studied applications.

– We find that our random forest classifiers and Cox models show that developer experi-
ence, file ownership, log density and SLOC play an important role in determining the
change risk of both just-introduced and long-lived logging statements in our studied
applications.

Our findings help in determining the risk of whether a logging statement will change
and calculate the relative stability of using a particular logging statement. Developers of
tools that process logs of proprietary software often do not have access to the source code
history of that software. Hence, they cannot directly apply our approach as described in
this paper. A possible solution is that proprietary software vendors use our approach as
described and publish the risk factors, i.e., the change risk, for each log line with every
release of their software. These risk factors can then be used to build robust log processing
tools.

Developers of log processing tools can use the knowledge about the change risk of log-
ging statements for conducting preventative analysis by calculating the relative stability of
each logging statement in a release and selecting the most stable logging statements when
building their log processing tools. If developers have no alternative choices but have to use
unstable logging statements, they can leverage the risk factors calculated from survival anal-
ysis techniques for proactive analysis, such that they are more aware of the risks of using
that logging statement in their log processing tools.

Appendix A: Background on Survival Analysis

Survival analysis comprises a set of statistical modeling techniques that model the time
taken for an event to occur (Miller 2011). These modeling techniques can be parametric,
semi-parametric or non-parametric in form. However, they share the common goal of mod-
eling the time that it takes between the start of an observation period (i.e., logging statement
introduction) and an event (i.e., logging statement change) to occur i.e., they model the

Author's personal copy

Empir Software Eng

survival time of a logging statement. Survival analysis also helps in identifying the important
metrics that affect the survival time of a logging statement. The following section discusses
the crucial aspect of survival analysis as described in Syer et al. (2015): survival analysis
data and measuring time to event.

Survival Analysis Data and Measuring Time to Event

Survival analysis uses the data that is collected at specific time intervals to observe the
relation between how a subject changes over time and the occurrence of an event of inter-
est (e.g., whether a log statement changes). We explain survival analysis using the stability
of logging statements as an example.To model the time to change of a logging statement,
we collect the data about content, context and developers (metric) for each release (obser-
vation period) after a logging statement (subject) is introduced into the application. Each
observation in the survival data contains the following fields:

1. UID: Unique number of each logging statements.
2. Start: Time of introduction of a logging statement.
3. Stop: the time at which the logging statement changes.
4. Event: (1) if the logging statement was changed or (0) if the logging statement was not

changed at the end of observation period.
5. Metrics: The content, context and developer metrics.

Table 10 shows the survival data for a logging statement (Log-1), where the observa-
tions are recorded at the beginning of a release. If a logging statement is changed (event
occurs), the logging statement is not tracked and the study halted for that particular logging
statement. However, some logging statements may never be changed and in such cases it is
impractical to track them. Hence, the logging statements are tracked for a certain period of
time (e.g., 3 years), during which they may or may not be changed.

To conduct the survival analysis we need to define how we measure the introducing event
(i.e., the first release after introduction of a logging statement), the censored event (i.e., the
subsequent months where the logging statement is not changed) and the terminating event
(i.e., month the logging statement is changed). From Table 10, we find that the logging
statement is changed in the second release, which makes it the terminating event. In the
prior releases, the event of interest does not occur which makes the observations censored
events. In addition, when a logging statement is not changed during the period of study (i.e.,
3 years), their survival is considered equal to the period of study. We include both censored
and terminating events for our survival analysis as the models can handle both censored
and terminating events and can produce effective survival models without bias (Hosmer and
Lemeshow 1999).

Table 10 Data for survival analysis

ID Start Stop Log change (event) Number of

logged variables

Log − 1 0 1 0 3

Log − 1 1 2 1 1

Log − 2 0 1 0 3

Log − 2 1 2 0 4

Author's personal copy

Empir Software Eng

References

Bigliardi L, Lanza M, Bacchelli A, D’Ambros M, Mocci A (2014) Quantitatively exploring non-code soft-
ware artifacts. In: 14th international conference on quality software (QSIC), 2014. IEEE, pp 286–
295

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining
git. In: 6th IEEE international working conference on mining software repositories, 2009. MSR’09.
IEEE, pp 1–10

Boulon J, Konwinski A, Qi R, Rabkin A, Yang E, Yang M (2008) Chukwa, a large-scale monitoring system.
In: Proceedings of cloud computing and its applications, vol 8, pp 1–5

Carasso D (2012) Exploring splunk. CITO Research, New York, USA. ISBN, p 978
Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the

behavioral sciences. Routledge
Collett D (2015) Modelling survival data in medical research. CRC Press
Ding R, Zhou H, Lou J-G, Zhang H, Lin Q, Fu Q, Zhang D, Xie T (2015) Log2: a cost-aware logging

mechanism for performance diagnosis. In: 2015 USENIX annual technical conference (USENIX ATC
15), pp 139–150

Elbers C, Ridder G (1982) True and spurious duration dependence: the identifiability of the proportional
hazard model. Rev Econ Stud 49(3):403–409

Fisher LD, Lin DY (1999) Time-dependent covariates in the cox proportional-hazards regression model.
Annu Rev Public Health 20(1):145–157

Fu Q, Zhu J, Hu W, Lou J-G, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? An empirical
study on logging practices in industry. In: Proceedings of ICSE companion 2014: the 36th international
conference on software engineering, pp 24–33

Fu Q, Lou J-G, Wang Y, Li J (2009) Execution anomaly detection in distributed systems through unstructured
log analysis. In: Proceedings of the ICDM 2009, ninth IEEE international conference on data mining.
IEEE, pp 149–158

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-
mance of defect prediction models. In: Proceedings of the 37th international conference on software
engineering, vol 1. IEEE Press, pp 789–800

Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing, vol 280. Wiley
Harrell F (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal

regression, and survival analysis. Springer
Hastie T, Tibshirani R, Friedman J, Franklin J (2005) The elements of statistical learning: data mining,

inference and prediction. Math Intell 27(2):83–85
Hoaglin DC, Welsch RE (1978) The hat matrix in regression and anova. Am Stat 32(1):17–22
Hosmer DW Jr, Lemeshow S (1999) Applied survival analysis: regression modelling of time to event data
Hripcsak G, Rothschild AS (2005) Agreement, the f-measure, and reliability in information retrieval. J Am

Med Inform Assoc 12(3):296–298
Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–

314
Kabinna S, Shang W, Bezemer C-P, Hassan AE (2016a) Examining the stability of logging statements. In:

SANER 2016: proceedings of IEEE international conference on the software analysis, evolution and
re-engineering. IEEE

Kabinna S, Shang W, Bezemer C-P, Hassan AE (2016b) Logging library migrations: a case study for the
apache software foundation projects. Mining Software Repositories. page To appear

Kampenes VB, Dybå T, Hannay JE, Sjøberg DIK (2007) A systematic review of effect size in software
engineering experiments. Inf Softw Technol 49(11):1073–1086

Kendall MG (1948) Rank correlation methods. Oxford, England: Griffin Rank correlation methods.
http://psycnet.apa.org/psycinfo/1948-15040-000

Koru AG, Zhang D, Liu H (2007) Modeling the effect of size on defect proneness for open-source software.
In: Proceedings of the third international workshop on predictor models in software engineering. IEEE
Computer Society, p 10

Li H, Shang W, Hassan AE (2016a) Which log level should developers choose for a new logging statement?
Empir Softw Eng. page To appear

Li H, Shang W, Zou Y, Hassan AE (2016b) Towards just-in-time suggestions for log changes. Empir Softw
Eng. page To appear

Lou J-G, Fu Q, Yang S, Xu Y, Li J (2010) Mining invariants from console logs for system problem
detection. In: Proceedings of the 2010 USENIX conference on USENIX annual technical conference,
USENIXATC’10, Berkeley, CA, USA. USENIX Association, p 24

Author's personal copy

http://psycnet.apa.org/psycinfo/1948-15040-000

Empir Software Eng

Malik H, Hemmati H, Hassan AE (2013) Automatic detection of performance deviations in the load test-
ing of large scale systems. In: Proceedings of (ICSE) 2013, 35th international conference on software
engineering, pp 1012–1021

McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An empirical study of the impact of modern code review
practices on software quality. Empirical Softw Eng 21(5):2146–2189. doi:10.1007/s10664-015-9381-9

Mednis M, Aurich MK (2012) Application of string similarity ratio and edit distance in automatic metabolite
reconciliation comparing reconstructions and models. Biosyst Info Technol 1(1):14–18

Miller RG Jr (2011) Survival analysis, vol 66. Wiley
Pecchia A, Cinque M, Carrozza G, Cotroneo D (2015) Industry practices and event logging: assessment of a

critical software development process. In: Proceedings of the 37th international conference on software
engineering, vol 2. IEEE Press, pp 169–178

Ren H, Tang X, Lee JJ, Feng L, Everett AD, Hong WK, Khuri FR, Mao L (2004) Expression of hepatoma-
derived growth factor is a strong prognostic predictor for patients with early-stage non–small-cell lung
cancer. J Clin Oncol 22(16):3230–3237

Van Rijsbergen CJ (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, Newton, MA, USA. ISBN
0408709294

Serfling RJ (2009) Approximation theorems of mathematical statistics, vol 162. Wiley
Shang W (2012) Bridging the divide between software developers and operators using logs. In: Proceedings

of the 34th international conference on software engineering. IEEE, pp 1583–1586
Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014a) An exploratory study

of the evolution of communicated information about the execution of large software systems. Journal of
Software: Evolution and Process 26(1):3–26

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014b) Understanding log lines using development knowl-
edge. In: Proceedings of ICSME 2014, the international conference on software maintenance and
evolution. IEEE, pp 21–30

Shang W, Nagappan M, Hassan AE (2015) Studying the relationship between logging characteristics and the
code quality of platform software. Empir Softw Eng 20(1):1–27

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random
forests. BMC Bioinforma 9(1):307

Syer M, Nagappan M, Adams B, Hassan AE (2015) Replicating and re-evaluating the theory of relative
defect-proneness. IEEE Trans Softw Eng 41(2):176–197

Tan J, Pan X, Kavulya S, Gandhi R, Narasimhan P (2008) Salsa: Analyzing logs as state machines. In:
WASL’08: proceedings Of the 1st USENIX conference on analysis of system logs. USENIX Association,
p 6

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2015) An empirical comparison of
model validation techniques for defect prediction model. http://sailhome.cs.queensu.ca/replication/kla/
model-validation.pdf. Under Review at Transactions on Software Engineering (TSE)

Therneau TM, Grambsch PM, Fleming TR (1990) Martingale-based residuals for survival models.
Biometrika 77(1):147–160

Log4j Last visited March’16. http://logging.apache.org/log4j/2.x/
Xpolog. http://www.xpolog.com/
Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining

console logs. In: Proceedings of the ACM SOPS 2009, 22nd symposium on operating systems principle,
pp 117–132

Xu X, Weber I, Bass L, Zhu L, Wada H, Teng F (2013) Detecting cloud provisioning errors using an annotated
process model. In: Proceedings of MW4NG 2013, the 8th workshop on middleware for next generation
internet computing. ACM, p 5

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S (2012) Be conservative: enhancing
failure diagnosis with proactive logging. In: OSDI 2012, USENIX Symposium on operating systems
design and implementation, pp 293–306

Yuan D, Zheng J, Park S, Zhou Y, Savage S (2011) Improving software diagnosability via log enhance-
ment. In: Proceedings of ASPLOS 2011, the 16th conference on architectural support for programming
languages and operating systems, pp 3–14

Yuan D, Park S, Zhou Y (2012) Characterizing logging practices in open-source software. In: Proceedings
of ICSE 2012, the 34th international conference on software engineering. IEEE Press, pp 102–112

Zhang D, El Emam K, Liu H (2009) An investigation into the functional form of the size-defect relationship
for software modules. IEEE Trans Softw Eng 35(2):293–304

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: helping developers make
informed logging decisions. In: Proceedings of ICSE 2015, the 37th international conference on software
engineering, vol 1. IEEE Press, Piscataway, NJ, USA, pp 415–425

Author's personal copy

http://dx.doi.org/10.1007/s10664-015-9381-9
http://sailhome.cs.queensu.ca/replication/kla/model-validation.pdf
http://sailhome.cs.queensu.ca/replication/kla/model-validation.pdf
http://logging.apache.org/log4j/2.x/
http://www.xpolog.com/

Empir Software Eng

Suhas Kabinna is a M.Sc graduate from the Software Analysis and Intelligence Lab at Queen’s University
(Canada). He obtained his Bachelor’s degree from MSRIT, Bangalore India. His research interests include
mining software repositories (MSR), software logs, large-scale data analysis, machine learning, source code
duplication and reverse engineering.

Cor-Paul Bezemer currently works as a postdoctoral research fellow in the Software Analysis and Intelli-
gence Lab (SAIL) at Queen’s University in Kingston, Canada. His research interests cover a wide variety of
software engineering and performance engineering-related topics, including repository mining and perfor-
mance regression analysis. His work has been published at premier software engineering venues such as the
ESEC-FSE, ICSME and ICPE conferences and the EMSE journal. He was born in The Hague (Den Haag) in
the Netherlands. Before moving to Canada, he studied at Delft University of Technology, where he received
his BSc (2007), MSc (2009) and PhD (2014) degree in Computer Science. The title of his PhD thesis was
“Performance Optimization of Multi-Tenant Software Systems”. More about Cor-Paul can be read on his
website: http://sailhome.cs.queensu.ca/∼corpaul.

Author's personal copy

http://sailhome.cs.queensu.ca/~corpaul

Empir Software Eng

Weiyi Shang is an assistant professor in the Department of Computer Science and Software Engineering
at Concordia University, Montreal. He has received his PhD and MSc degrees from Queen’s University
(Canada) and he obtained BEng from Harbin Institute of Technology. His research interests include big
data software engineering, software engineering for ultra-largescale systems, software log mining, empiri-
cal software engineering, and software performance engineering. His work has been published at premier
venues such as ICSE, FSE, ASE, ICSME, MSR and WCRE, as well as in major journals such as TSE, EMSE,
JSS, JSEP and SCP. His work has won premium awards, such as a SIGSOFT Distinguished paper award
at ICSE 2013 and best paper award at WCRE 2011. His industrial experience includes helping improve
quality and performance of ultra-large-scale systems in BlackBerry. Early tools and techniques devel-
oped by him are already integrated into products used by millions of users worldwide. Contact him at
shang@encs.concordia.ca; http://users.encs.concordia.ca/∼shang.

Mark D. Syer is a Data Scientist at Maple Leaf Sports and Entertainment. He received his PhD and MSc
from the Software Analysis and Intelligence Lab at Queen’s University. His research interests include soft-
ware and systems engineering, software performance engineering, mining software repositories and empirical
software engineering. He is also committed to the rigorous application of statistics and machine learning to
software engineering and systems research. His work has been published at premier venues such as ICSE and
ICSME and in major journals such as TSE, EMSE and ASE. His industrial experience includes improving
the scalability, reliability and performance of large-scale software systems at SAP, BlackBerry and Dragonfly
IT. Early tools and techniques developed by him are already used in daily industrial practice.

Author's personal copy

mailto:shang@encs.concordia.ca
http://users.encs.concordia.ca/~shang

Empir Software Eng

Ahmed E. Hassan is the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of Computing at Queen’s University, Canada. His research interests
include mining software repositories, empirical software engineering, load testing, and log mining. Hassan
received a PhD in Computer Science from the University of Waterloo. He spearheaded the creation of the
Mining Software Repositories (MSR) conference and its research community. Hassan also serves on the
editorial boards of IEEE Transactions on Software Engineering, Springer Journal of Empirical Software
Engineering, Springer Journal of Computing, and PeerJ Computer Science. Contact ahmed@cs.queensu.ca.
More information at: http://sail.cs.queensu.ca/.

Author's personal copy

http://sail.cs.queensu.ca/

	Examining the stability of logging statements
	Abstract
	Introduction
	Background
	Log Processing Tools
	How Different Types of Changes Affect Log Processing Tools

	Related Work
	Log Maintenance Tools
	Empirical Studies on Logging Statements and Logs

	Two Real-World Examples
	Experimental Setup
	Studied Applications
	Modeling Techniques
	Random Forest Classifier
	Cox Proportional Hazards Model

	Data Extraction Approach
	Extracting the Change History of Java Files
	Identifying Logging Statements
	Tracking Changes to Logging Statements
	Collecting Content, Context and Developer Metrics
	Collecting Survival Analysis Data

	Preliminary Analysis
	Determining Whether a Just-Introduced Logging Statement will Change
	Approach
	Step C1 - Removing Correlated and Redundant Metrics
	Step C2 - Construction of the Random Forest Classifier
	Step A1 - Random Forest Validation
	Removing Optimism in Performance Measures using Bootstrapping

	Results

	Determining Whether a Long-Lived Logging Statement will Change
	Approach
	Step C1: Remove Correlated Metrics
	Step C2: Transform the Collected Metrics into the Cox Model Format
	Step C3: Validation of the Cox Model Assumptions
	Step C4: Cox Model Construction
	Step V1: Validation of the Goodness of Fit of the Cox Model
	Results

	Important Metrics from Random Forest Classifiers and Cox Models
	Important Metrics in our Random Forest Classifier
	Selecting Statistically Significant Metrics in a Cox Model
	Important Metrics in a Cox Model
	Plotting the Important Metrics
	Results

	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity

	Conclusion
	Appendix A A: Background on Survival Analysis
	Survival Analysis Data and Measuring Time to Event
	References

