
Empir Software Eng
https://doi.org/10.1007/s10664-017-9551-z

Analyzing a decade of Linux system calls

Mojtaba Bagherzadeh1 ·Nafiseh Kahani1 ·
Cor-Paul Bezemer1 ·Ahmed E. Hassan1 ·
Juergen Dingel1 · James R. Cordy1

© Springer Science+Business Media, LLC 2017

Abstract Over the past 25 years, thousands of developers have contributed more than 18
million lines of code (LOC) to the Linux kernel. As the Linux kernel forms the central part of
various operating systems that are used by millions of users, the kernel must be continuously
adapted to the changing demands and expectations of these users. The Linux kernel provides
its services to an application through system calls. The combined set of all system calls
forms the essential Application Programming Interface (API) through which an application
interacts with the kernel. In this paper, we conduct an empirical study of 8,770 changes that
were made to Linux system calls during the last decade (i.e., from April 2005 to December
2014). In particular, we study the size of the changes, and we manually identify the type of
changes and bug fixes that were made. Our analysis provides an overview of the evolution
of the Linux system calls over the last decade. We find that there was a considerable amount
of technical debt in the kernel, that was addressed by adding a number of sibling calls (i.e.,
26% of all system calls). In addition, we find that by far, the ptrace() and signal handling

Communicated by: Harald Gall

� Cor-Paul Bezemer
bezemer@cs.queensu.ca

Mojtaba Bagherzadeh
mojtaba@cs.queensu.ca

Nafiseh Kahani
kahani@cs.queensu.ca

Ahmed E. Hassan
ahmed@cs.queensu.ca

Juergen Dingel
dingel@cs.queensu.ca

James R. Cordy
cordy@cs.queensu.ca

1 School of Computing, Queen’s University, Kingston, Ontario, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9551-z&domain=pdf
http://orcid.org/0000-0002-0474-5718
mailto:bezemer@cs.queensu.ca
mailto:mojtaba@cs.queensu.ca
mailto:kahani@cs.queensu.ca
mailto:ahmed@cs.queensu.ca
mailto:dingel@cs.queensu.ca
mailto:cordy@cs.queensu.ca

Empir Software Eng

system calls are the most challenging to maintain. Our study can be used by developers who
want to improve the design and ensure the successful evolution of their own kernel APIs.

Keywords Linux kernel · System calls · Empirical software engineering · API evolution ·
Software evolution

1 Introduction

Since its introduction in 1991, the Linux kernel has evolved into a project that plays a central
role in the computing industry. In addition to its usage on desktop and server systems, the
Linux kernel forms the foundation of the Android operating system that is used on almost
1.5 billion mobile devices (Gartner 2015).

Over the past 25 years, thousands of developers have contributed more than 18 million
lines of code (LOC) to the Linux kernel. The kernel source code and its development process
have been thoroughly analyzed by software engineering researchers (e.g., Godfrey and Tu
(2000), Godfrey and Qiang (2001), Livieri et al. (2007), Izurieta and Bieman (2006), Israeli
and Feitelson (2010), Merlo et al. (2002), Antoniol et al. (2002), Lotufo et al. (2010), Passos
et al. (2012), Palix et al. (2011), Padioleau et al. (2006), Lu et al. (2014), Spinellis (2015),
and Spinellis et al. (2016)).

As the Linux kernel forms the central part of various operating systems, it must be con-
tinuously adapted to fulfill the changing demands and expectations of users (Lehman 1980).
As a result, many changes to the kernel were driven by changing or increasing demands
from the users of the operating systems that use the kernel, or by hardware evolution and
innovation. Analysis of the evolution of the Linux kernel can provide us with a window into
how the demands of both operating system users and the computing industry have evolved.

The Linux kernel provides its services to an application through system calls. All system
calls combined form the essential Application Programming Interface (API) through which
an application interacts with the kernel. Even the simplest Linux application uses system
calls to fulfill its goals. For example, the ls command exercises 20 system calls more than
100 times to list the contents of a directory.

Studying the evolution of the API of a system can lead to valuable insights for developers
of the APIs of other systems. For example, Bogart et al. (2016) interviewed developers
of the R, Eclipse and npm ecosystems to understand the practices that are followed by
each ecosystem for breaking the backwards compatibility of an API, and found that each
ecosystem has its own way of handling and communicating breaking API changes. Such
knowledge can be leveraged by API developers to make decisions about the way in which
their own system handles breaking API changes.

In this paper, we conduct an empirical study on 8,770 changes that were made to the
Linux system calls during the last decade, to sketch an overview of the changing landscape
of the Linux kernel API. We are the first to focus on system calls rather than on the Linux
kernel as a whole. The main contributions of our study are:

1. An overview of the evolution of the Linux system calls over the last decade in terms of
the size and type of changes that were made to the system calls.

2. A study of the type of bug fixes that were made to the system calls over the last decade.

Our study can be used by developers who want to improve the design and ensure the
successful evolution of their own kernel APIs.

Empir Software Eng

The outline of the rest of this paper is as follows. Section 2 gives background information
about system calls. Section 3 discusses related work. Section 4 presents the methodology of
our empirical study. Sections 5, 6 and 7 discuss the results of our empirical study. Section 8
discusses the implications of our results. Section 9 discusses threats to the validity of our
study. Section 10 concludes the paper.

2 System Calls

The kernel provides low-level services, e.g., network or file system-related, which need to be
executed in kernel mode. In addition, the kernel enforces an isolated execution environment
for each process. Therefore, it is necessary to continually make a back-and-forth context
switch between the kernel and user mode. System calls are the primary method through
which user space processes call kernel services.

Figure 1 outlines the (simplified) execution sequence of a system call. In this paper, we
consider a system call as the combination of the handler and service in the kernel mode.
While it is possible to invoke a system call directly from a process, in most cases the
call goes through a wrapper function (step 1) in the C standard library (i.e., glibc Free
Software Foundation (2016)). Thus we focus on explaining the sequence for library calls
here.

The glibc wrapper function traps the kernel into kernel mode and invokes the system
call handler (step 2). The system call handler is a kernel function that retrieves the system
call parameters from the appropriate registers and calls the required kernel services (step 3).
Finally, the required kernel services are executed and the result is returned to the application
(steps 4-6). There are two ways to trap into kernel mode, which we briefly discuss below.

2.1 The Old-Fashioned Way

Every available Linux system call has a unique identifier number (Kerrisk 2015a). In the
old-fashioned way (i.e., before Linux kernel 2.5), the glibc wrapper function copies the
identifier number of the system call that it wraps into the %eax register and copies the
parameters into the other registers. The wrapper function then sends an interrupt, which
causes the kernel to switch into the kernel mode and read the %eax register to identify the
appropriate service that must be called (step 2).

Fig. 1 The sequence of a system call

Empir Software Eng

2.2 The Modern Way

Hayward reported that the old-fashioned way of executing system calls was slow on Intel
Pentium 4 processors (Hayward 2002). To solve this problem, an alternative way of exe-
cuting system calls was added to the kernel. The alternative way uses Intel’s SYSENTER
and SYSEXIT (or AMD’s SYSCALL and SYSRET) instructions (Intel Corporation 2016).
These instructions allow fast entry and exit to and from the kernel space without the use of
expensive interrupts.

In the remainder of the paper, we present our empirical study of the system calls over the
last decade.

3 Related Work

In this section, we discuss prior related work. In particular, we first discuss related work on
API evolution, then we discuss related work on the evolution of the Linux kernel.

3.1 API Evolution

There have been many studies on API evolution. In this section, we give an overview of the
most relevant prior work. The main contribution of our work in comparison to prior work
on API evolution is that we are the first to deliver an in-depth study of the evolution of the
kernel API of an operating system with a very long maintenance history.

3.1.1 Refactoring in APIs

Dig and Johnson (2005, 2006) studied breaking changes in an API. They confirmed that
refactoring plays an important role in API evolution. In particular, they found that more
than 80% of breaking API changes are refactorings. Their conclusion is that many of these
refactorings can and should be automated. In a large-scale study, Xavier et al. (2017) showed
that almost 28% of the API changes are breaking, which emphasizes the need for automation
of API refactoring.

Several tools were proposed to automate API evolution (e.g., Henkel and Diwan (2005),
Xing and Stroulia (2007), and Perkins (2005)). For example, the CatchUp! tool (Henkel and
Diwan 2005) uses the existing refactoring support of modern IDEs to record and replay API
evolution. The Diff-CatchUp tool (Xing and Stroulia 2007) uses differences between APIs
to automatically suggest plausible replacements in the code that uses a broken API method.

3.1.2 The effect of API Evolution on Developers

Robbes et al. (2012) studied how developers in the Pharo ecosystem react to deprecation of
specific API calls. Hora et al. (2015) later extended Robbes et al.’s study by studying the
reaction of developers to all types of API changes in the Pharo ecosystem. Hora et al. found
that developers often do not react to API changes that are not because of deprecation. One
of the main reasons is that developers are not notified of such API changes, while the use of
a deprecated method yields a warning message. In addition, both Robbes et al. and Hora et
al. found that it takes relatively long (i.e., a median adoption time of 14 days for deprecation
changes and 34 days for all changes) to react to an API change.

Empir Software Eng

Linares-Vásquez et al. (2013) studied how the fault and change-proness of the Android
API affects mobile apps that use this API. They found that Android apps that depend on
fault and change-prone APIs are less successful. McDonnell et al. (2013) found that the
adoption time for a changed API in the Android ecosystem is around 14 months.

In our study, we found that it can take very long (i.e., years) for system call changes
to ‘ripple through’ to different system architectures (see Section 5.1), which indicates that
even within one system, it takes time for API changes to be applied throughout the system.

3.2 Evolution of the Linux Kernel

The evolution of several aspects of the Linux kernel has been empirically studied over
the years. We are the first to study the evolution of system calls in depth, despite their
importance. In this section, we discuss the most relevant related work.

Evolution of the Linux kernel as a whole: Godfrey and Tu (2000) and Godfrey and Qiang
(2001) conducted a quantitative study of the evolution of 96 versions of the Linux kernel.
They found that the Linux kernel code grows at a geometric rate. In addition, Godfrey and
Tu found that code cloning is a common practice in the Linux kernel, which was confirmed
by Livieri et al. (2007). Izurieta and Bieman (2006) re-analyzed the evolution of the Linux
kernel and concluded that the growth rate is similar to that of industrial systems.

Israeli and Feitelson (2010) studied 810 versions of the Linux kernel, released over a
period of 14 years. They found that the average complexity of functions is decreasing due
to the addition of a large number of small functions.

Merlo et al. (2002) defined four metrics to study the similarity of 365 Linux kernel
versions. They found that code removal is much higher in consecutive releases of unstable
releases than for consecutive releases of stable releases. In a different study, Antoniol et al.
(2002) studied code clones in the Linux kernel and found that code duplication remains
stable across releases.

Lotufo et al. (2010) and Passos et al. (2012) explained that the Linux kernel offers its
features and configuration options as an explicit variability model. Lotufo et al. studied the
evolution of this model and concluded that the evolution was small for the Linux kernel.
Passos et al. presented several evolution patterns for variability models that were extracted
from a case study of the Linux kernel.

Li et al. (2006) and Tan et al. (2014) studied bug characteristics in open source projects,
including Linux. Both studies found that semantic bugs, i.e., bugs that require domain
knowledge to be solved, are by far the most common.

Atlidakis et al. (2016) studied the usage of POSIX in Android, Mac OS and Ubuntu
Linux. POSIX is a set of standards and abstractions for operating system design, such as the
design of the shell scripting language, file structure and environment variables. Atlidakis et
al. found that while new abstractions are taking form, these abstractions are not converging
into a new standard, which increases fragmentation across Linux-based operating systems.

The Unix operating system and the Linux kernel are very similar. Spinellis (2015, 2016)
contributed the Unix GitHub repository, which contains 44 years of Unix evolution. In addi-
tion, Spinellis et al. (2016) studied the evolution of C programming practices using the Unix
operating system. They found, for example, that Unix developers evolved their coding style
in tandem with advancements in hardware technology.

Evolution of a specific component of the Linux kernel: Tsai et al. (2016) studied the usage
of the Linux API across all applications and libraries in the Ubuntu Linux 15.04 distribution.
They identified important APIs by calculating the probability that an installation includes

Empir Software Eng

at least one application that requires the given API. Tsai et al. found that many APIs are not
used in practice.

Palix et al. (2011) used static analysis techniques to study the fault rate of parts of the
kernel in versions 1.0 through 2.4.1 of Linux. The fault rate expresses the number of faults
compared to the amount of code. Although kernel drivers comprise a large part of the kernel
code and contain the majority of the faults, the fault rate of drivers is lower than the fault
rate of the architecture-specific code and the file systems. In addition, Palix et al. found
that while faults are continually being introduced, the overall quality of the kernel code is
improving.

Padioleau et al. (2006) studied co-evolution of the Linux kernel and kernel drivers in ver-
sions 2.2 through 2.6 of Linux. From one version to the next one, co-evolution can account
for up to 35% of the changed source code.

Lu et al. (2014) studied 8 years of Linux file system changes through 5,079 commits, of
which 1,800 are bug fixes. They found that the number of bug fixes did not decrease over
time. In addition, they showed that semantic bugs, which require an understanding of file
system semantics to find or fix, are the dominant bug category (over 50% of all bugs).

4 Methodology

This section introduces our approach for collecting and analyzing the evolution of system
calls over the last decade. Figure 2 gives an overview of the steps of our data collection, and
Fig. 3 gives an overview of our empirical study.

Fig. 2 An overview of our data collection

Empir Software Eng

Fig. 3 An overview of our empirical study

4.1 Collecting Data

4.1.1 Extracting System Calls

We extracted the list of existing system calls from the system call tables of each sup-
ported architecture (e.g., the Intel x86 and AMD64 x86 64-architectures). For example,
we studied the syscall*.tbl and syscall*.S files, respectively for the x86 and
s390-architectures, in the arch file system in Linux. There exist 393 system calls as of
Linux kernel 3.7. However, since not all architectures support all system calls, the num-
ber of available system calls differs per architecture (Mauerer 2010). 6 out of 393 system
calls were removed from the kernel since earlier versions and 17 out of 393 system calls are
architecture-specific, e.g., the ppc rtas system call for PowerPC. Throughout this paper,
we will study the full list of 393 system calls.

The first and third author manually classified all existing system calls into the system call
categories that are proposed by Mauerer (2010). After both authors independently finished
the classification, they compared the classifications and discussed and resolved differences.
Table 1 shows the number of system calls for each system call category.

4.1.2 Extracting Commits

To study changes that were made to the system calls, we extracted system call-related com-
mits from the official Linux kernel Git repository (Linus Torvalds 2017). We considered a
commit to be system call-related when it changes (1) code of the service provided by the
system call, or (2) system call handler code. We did not study commits that did not fall
into (1) or (2), e.g., commits that changed code in which a system call was called only. We
extracted commits, using the --no-merges option to avoid duplicate commits, between
April 16, 2005 (i.e., the creation of the Git repository) and December 31, 2014. We did not
include commits from 2015, because we started our study in September 2015. Therefore,

Empir Software Eng

Table 1 An explanation of the system call categories (ordered by the number of calls in each category). The
last five columns show the number of system calls that were added to and removed from each category over
the last decade

Number of system calls

Code Category Example Total New NewF1 Sibling Arch2 Rem3

FS File system & I/O Reading and writing a file. 147 37 9 28 − 2

PM Process management Creating, cloning or debugging
a process.

71 9 5 4 2 −

IPC IPC4 & network Sharing memory between pro-
cesses.

51 9 5 4 − −

MM Memory management Mapping pages in memory. 27 7 7 − 3 2

SH Signal handling Killing a process. 24 3 1 2 − 2

TO Time operations Setting and querying the time. 23 4 4 − − −
SI System info & settings Retrieving information about

the system.
21 1 − 1 − −

SC Scheduling Thread prioritization. 14 2 2 − − −
SEC Security & capabilities Performing security checks. 8 3 3 − − −
MO Modules Loading a module. 6 1 − 1 − −
All system calls 393 76 36 40 5 6

1NewF = the number of added system calls that provide new functionality
2Arch = the number of added system calls that are architecture-specific
3Rem = the number of removed system calls
4IPC = Interprocess Communication

we did not have access to a set of all commits of 2015 at that time. We extracted all commits
of which the commit message matches one or more of the following keywords: the names
of all system calls, and the terms “system call”, “syscall” and “vdso”.1 The keywords were
identified based on our experience and studying the instructions for making changes in the
Linux kernel (Linux Kernel Documentation 2016; Mauerer 2010).

We extracted 88,178 commits in total using our keywords. Not all of these commits
are system call-related, because (1) system calls can be used in other parts of the kernel,
and (2) some system calls have names that are common English words (e.g., write()).
To extract commits that are truly system call-related, we applied a set of heuristics that
were based on the location of the changed file(s). For example, we ignored commits that
were extracted by the read keyword that did not change a file in the /fs (file system)
folder. A full description of the heuristics that we applied is available in our online appendix
(Bagherzadeh et al. 2017). After applying our heuristics, we had a set of 12,328 commits.

As a final filtering step, we manually went through the commits to remove all commits
that were not related to system calls. After the final step, our data set contained 8,770 system
call-related commits, covering all versions between 2.6.12-rc2 and 3.19-rc2 of the Linux
kernel. 7828 out of 8,770 (89%) studied commits changed code of the service provided by
the system call and 942 (11%) studied commits changed system call handler code.

1A vDSO is a shared object that can be accessed in the kernel and user mode without switching context.
Hence, vDSOs are often employed by system calls (Davis 2012).

Empir Software Eng

We manually verified the change history of two randomly-selected system calls
(reboot() and fork()) and found that our keyword-matching missed respectively 0%
and 4% of the commits for those system calls.

Our intention was not to study all system call-related commits. We did a manual esti-
mation of the number of system call-related commits that were not included in our study.
We randomly selected a sample (95% confidence level and 5% confidence interval) of 384
commits from all 463,853 Linux commits in our study period. We manually went through
all commits in the random sample and identified 14 system call-related commits. 3 out of
these 14 system call-related commits were not in our final data set. Hence, we estimate that
we did not include 21% of the system call-related commits in our data set.

4.2 Analysis

Figure 3 shows the steps taken in our empirical study. Our empirical study consisted of the
following steps:

1. A quantitative analysis of system call-related commits (Section 5).
2. A manual classification and qualitative analysis of:

(a) System call-related commits (Section 6).
(b) System call bug fix commits (Section 7).

In the remainder of this paper, we present the results of each step of our empirical study
in detail.

5 The Evolution of System Calls over the Last Decade

Motivation: We first conducted a study on the number and size of the Linux system calls.
We studied the evolution of system calls over the last decade in three dimensions: (1) the
number of system calls, (2) the size of a commit (in terms of the number of lines of code
and the number of files that were changed), and (3) the number of developers who worked
on the system calls. We detail the approach and findings for each dimension below.

5.1 The Number of System Calls

Approach: We began with a quantitative study of the number of system calls that were
added and removed from the kernel over the last decade, and the number of commits that
were required to do so. We identified these commits through a manual classification process
which is described in Section 6.

A new system call must be activated on a system architecture before it can be used on that
architecture. Therefore, we studied the integration delay for a system call on the supported
system architectures to get a better understanding of whether all architectures are equally
supported by the Linux kernel.

Finally, we conducted a qualitative study on the system calls that were added during
the last decade. In this qualitative study, we first focused on sibling calls and then on the
functionality that was added by new system calls.

Findings: 76 system calls were added to and 6 system calls were removed from the ker-
nel, through 482 of the 8,770 (5%) studied system call-related commits. Table 2 shows

Empir Software Eng

Table 2 System calls that were removed in the last decade

System call Removed Reason

set zone reclaim() 2006 Had a flawed design and was therefore never
made accessible in user mode and ultimately
removed.

perfctr() 2010 Replaced by the perf open system call.

nfsservctl() 2011 Replaced by a set of files that can be used to
control the nfsd filesystem (Kerrisk 2015b).

remap file pages() 2014 Had few users in practice and required 600+
lines of non-trivial code in the kernel (Corbet
2014).

fast syscall xtensa() 2014 Had issues when called with invalid arguments
and was not used by anybody (Filippov 2014).

fast spill registers() 2014 Had issues when called with invalid arguments
and was not used by anybody (Filippov 2014).

the system calls that were removed in the last decade, together with the reason for removing
them. Removing a system call is always done in one or two commits. However, to add a sys-
tem call, an average of 6.3 commits, 352 days and 5.4 developers are needed. The relatively
large number of commits needed to add a system call demonstrates that adding a system
call to the kernel is time-consuming and complex. To add a new system call, first, a service
function is implemented which provides the main interface to the kernel. Then, the system
call is activated (wired up) for the 31 system architectures that are currently supported by
the Linux kernel. A system call can be activated by assigning a unique number to the call
and adding its name and number to the system call table. Each supported architecture has
its own system call table. Depending on the functionality of the system call, the system call
may require an architecture-specific implementation.

A new system call is usually not activated for all architectures at the same time.
We manually studied the 76 added system calls and observed that there may be a delay in
activating a system call in architectures that ranges from a day to several years. For example,
the accept4 system call, which was introduced in November 2008, was activated on the
same day for the Sparc64-architecture, in August 2010 for the ARM-architecture and in
2013 for the Xtensa-architecture (even though the kernel has supported this architecture
since 2005 (Zankel 2005)).

40 out of 76 (53%) new system calls were sibling calls, which provide functionality
that is similar to that of an existing system call. Table 1 shows the number of new system
and sibling calls for each category over the last decade. A sibling call is a system call that is
similar in functionality, and often in name, to another system call. In most cases, sibling calls
are a repayment of technical debt in the Linux kernel API, i.e., the introduction of a sibling
call indicates that the original system call was not designed with the required extensions in
mind.

Additionally, our study shows that 102 of the 393 (26%) currently existing system calls
are sibling calls. We identified six types of sibling calls, which can be distinguished by the
name of the sibling call. Table 3 shows the number of sibling calls of each type and the
pattern through which each type can be identified. In the following paragraphs, we explain
each type of sibling call.

Empir Software Eng

Table 3 The number of sibling calls of each type

Type of sibling Pattern # of calls Example

Parameter extension *[1..4] 12 dup(), dup2()

Architecture *[32—64] 32 truncate(),

truncate64()

Working directory *at 14 open(), openat()

Backwards compatibility *old 6 vm86(), vm86old()

Real time rt* 8 sigreturn(),

rt sigreturn()

Others − 30 waitpid(), wait4()

Total number 102

1. Parameter extension-sibling calls: The parameter extension-sibling calls are wrapper
functions for the original system call. These sibling calls can be recognized by the
number [1..4] after the system call name, which indicates the number of arguments that
the sibling call takes. This type of sibling call emerged from extended knowledge of
how the original system call is used in practice. To prevent endless extension of the
list of system calls with siblings for every new argument (e.g., the dup(), dup2()
and dup3() system calls), the flags and a flexible structure pointer argument were
introduced (Linux Kernel Documentation 2005). The bits of the flags argument can
be used to select behaviour in the system call. The usage of the flags argument was
officially included in the guidelines for adding a system call in 2015 (Drysdale 2015),
but the flags argument was used much earlier, e.g., in 2006 (Drepper 2006). The
flexible structure pointer allows to pass a struct object with the function arguments
enclosed, which can be extended as required.

While the flags and flexible struct arguments introduced some additional com-
plexity inside the system call (i.e., to handle the arguments), the impact on the kernel
interface itself and dependent applications was smaller than when new arguments are
continually added to the system calls. Figure 4 shows that the percentage of new system
calls that are sibling calls has considerably decreased over the past few years, which
suggests that the strategy of using a flexible flags and struct argument is effective

New functionality Sibling

0

25

50

75

100

05 06 07 08 09 10 11 12 13 14 05 06 07 08 09 10 11 12 13 14

Year

%
 o

f
s
y
s
te

m
 c

a
ll
s

Fig. 4 The percentage of new system calls that provide new functionality and the number of sibling system
calls. The red line is a LOESS regression fit line (Fox and Weisberg 2010)

Empir Software Eng

for avoiding the introduction of new sibling calls. An example of a system call that uses
the struct argument is the perf event open() system call.

2. Architecture-sibling calls: The architecture-sibling calls add support for 32 and 64-bit
arguments to the original system call. For example, the truncate64() system call
supports truncating larger files than the truncate() system call does.

3. Working directory-sibling calls: The working directory-sibling calls were all
added in 2006 to implement a virtual current working directory, which is necessary for,
e.g., a multi-threaded backup (Drepper 2005). The difference between an original sys-
tem call and its working directory-sibling is the way in which the parameters are treated.
For example, the open() and openat() system calls have the following signatures:

If pathname contains a relative path, the open() system call will interpret the
path relative to the current working directory of the calling process. The openat()
system call will interpret the path relative to the directory referred to by file descrip-
tor dirfd. Aside from how the parameters are treated, the open() and openat()
system calls provide the same functionality.

4. Backwards compatibility-sibling calls: In six cases, a system call was replaced by a
newer version. The old version was renamed (e.g., from vm86() to vm86old())
to provide backwards compatibility. The glibc wrapper function takes care of the
backwards compatibility, so that developers who wish to remain using the old system
call do not need to change their applications.

5. Real time-sibling calls: The eight real time-siblings add support for real-time operations
to the system call. The main difference between the original system call and its real
time-sibling is that the sibling can handle larger signal sets as argument.

6. Other sibling calls: There exist 30 sibling calls that cannot easily be grouped based on
their naming scheme. An example of these sibling calls is the waitpid() system call,
which suspends execution of the calling process until the child process specified by the
pid argument terminates. The waitpid() system call is a sibling of the wait4()
system call, which suspends the execution of the calling process until one of its children
terminates.

Sibling calls provide a batch execution of the original system call. These sibling calls
allow the user to repeatedly execute a system call without having to make the expensive con-
text switch between execution modes. For example, the sendmmsg() system call allows
the user to send multiple messages, rather than the sendmsg() system call which allows
to send only one at a time. The first batch sibling call in our studied dataset was added in
2009 (de Melo 2009). However, earlier examples of batch sibling calls exist. For example,
the writev() and readv() sibling calls were introduced as batch sibling calls for the
write() and read() system calls in 4.2BSD in 1983 (Kerrisk 2017).

Most functionality that was added by new system calls during the last decade is to
support monitoring and synchronization. We grouped the new functionality system calls
from the last decade based on the type of newly-added functionality. Table 4 shows the
functionality groups and the number of system calls that provide such functionality.

Empir Software Eng

Table 4 The number of new system calls in the last decade that provide new functionality, grouped by
functionality and ordered by the number of system calls

Functionality # of system calls Example

Monitoring 8 inotify(), getcpu()
Synchronization 7 eventfd(), signalfd()
Hardware-specific 6 cacheflush(), move pages()

Message passing 5 process vm readv(), tee()
Security 3 bpf(), seccomp()
Other1 7 setns(), clock adjtime()

Total number 36

1
The “other” functionality group contains system calls that provide functionality which could not be grouped

5.2 The Size of System Call Commits

Approach: We conducted a quantitative study on the number of lines of code and the number
of files that were changed by system call-related commits and kernel commits. We extracted
the system call-related commits as described in Section 4. We extracted the kernel commits
by retrieving all 463,853 commits that were made in the study period (including the system
call-related commits) from the Git repository of the Linux kernel.

We used the Wilcoxon signed-rank test to compare commits that were made to the system
calls with commits that were made to the kernel. The Wilcoxon signed-rank test is a non-
parametrical statistical test, of which the null hypothesis is that the two input distributions
are identical. If the p-value of the Wilcoxon test was smaller than 0.05, we rejected the null
hypothesis and concluded that the input distributions are significantly different. To quantify
the difference between two distributions, we calculated Cliff’s delta effect size (Long et al.
2003). Cliff’s delta returns a real number d between -1 and 1. The absolute value of the
returned number is used to assess the magnitude of the effect size. We used the following
thresholds for d, which were provided by Romano et al. (2006):

Effect size =

⎧
⎪⎪⎨

⎪⎪⎩

negligible, if |d| ≤ 0.147.

small, if 0.147 < |d| ≤ 0.33.

medium, if 0.33 < |d| ≤ 0.474.

large, if 0.474 < |d| ≤ 1.

Findings: There were on average 25 lines of code (LOC) that were added to the system
calls per day. Compared to the average number of LOC that were added to the Linux kernel
(approximately 3,500 in 2012 (Pingdom 2012)), the growth of the system call code was
relatively slow. The slow growth implies the following: (1) the system calls are relatively
stable and (2) it is feasible for system call developers to keep track of the daily commits and
evolution of the system calls.

Empir Software Eng

1 1

10

1000

System call commit Kernel commit

#
 o

f
fi
le

s
 c

h
a

n
g

e
d

Fig. 5 The number of files that were changed in a system call-related commit and in a kernel commit. The
number in the boxplot is the median value. Note that the axis is in logarithmic scale

The commits that are made to system calls are slightly more scattered than kernel
commits. Figure 5 shows the distribution of the number of files that were changed in a
system call-related commit and in a kernel commit. We found that 58% of the system call-
related commits made changes to one file, while 75% of the commits made changes to
at most two files. The Wilcoxon signed-rank test shows that the difference between the
number of files that were changed in a system-call related commit and a kernel commit is
significant, but with an effect size of 0.05, which is negligible.

5.3 The Developers of System Calls

Approach: We conducted a quantitative study on the system call developers and kernel
developers. We computed the skewness of the distribution of the number of commits made
by a developer to study whether the contributions were equally spread over the community.
The skewness of a distribution captures the symmetry of that distribution around the mean
and median. A positive skew means that most developers contributed a small number of
commits, while a negative skew means that most developers contributed a large number of
commits.

Findings: The majority of developers who worked on the system calls during the last
decade provided a single fix or extension. Figure 6 shows the number of commits that
were made by each developer to the system calls and the Linux kernel during the last decade.
The median number of commits made by a developer was 1, compared to 2 for the Linux
kernel. In both cases, the distribution of the number of commits was heavily right-skewed
(i.e., a skewness of 16.27 and 37.11 for the system calls and kernel respectively). The high
skewness indicates that while there was a small group of very active developers, the majority
of system call developers committed only once.

Empir Software Eng

1

2

10

1000

System call developers Kernel developers

#
 o

f
c
o

m
m

it
s

Fig. 6 The number of commits that were made by each developer in the last decade. The number in the
boxplot is the median value. Note that the axis is in logarithmic scale

6 Classifying a Decade of System Call Commits

Motivation: In the previous section we studied how much system calls changed over the
last decade. However, we did not study in depth why and how system calls evolved. In this
section, we classified system call-related changes from the last decade based on the driver
for committing them.

Approach: The first two authors manually and independently classified the commit mes-
sages of all 8,770 system call-related commits that were extracted from 2005 to 2015 into
one or more of the following commit categories:

1. Add/remove: The commit was made to add or remove one or more system calls.
2. Bug fix: The commit was made to fix a bug.
3. Improvement: The commit was made to make an improvement.
4. Restructuring: The commit was made to conduct code restructuring, such as cleaning

up comments or refactoring.

After classifying all commits, the first author identified 686 out of 8,770 (8%) conflicting
classifications. To resolve these conflicts, the first two authors discussed the differences
until an agreement was reached.
Findings: 8,288 of the 8,770 studied commits (95%) were made to maintain, improve
and fix bugs in system calls. 4,498 (50%) of these commits were made to only 25 (6%)
of the 393 system calls. Table 5 shows the system calls for which more than 150 commits
were made during the last decade. The ptrace() and signal() system calls required
by far the most commits. The high number of bug fixes demonstrates the complexity of the
ptrace() and signal() system calls, which is caused by their conceptual complex-
ity and dependence on the underlying architecture. The ptrace() system call is used in
debuggers or system call tracing applications. The signal() system call is used to install
a new signal handler. As both the ptrace() and signal() system calls trigger excep-
tional cases in context switching, such as the system call restart mechanism (Corbet 2002;
Torvalds 2002), their internals are complex by nature. The complexity of the ptrace()
and signal() system calls (especially when they are interacting) is acknowledged on the
Linux kernel mailing list by one of the main kernel developers (Viro 2012).

Empir Software Eng

Table 5 The system calls with the most commits during the last decade

System call ALL Restructuring1 Bug fix Improvement

ptrace() 743 46% 35% 21%

signal() 714 53% 33% 18%

ioctl() 438 44% 32% 25%

futex() 257 35% 43% 23%

ipc() 253 51% 23% 30%

mmap() 213 30% 43% 31%

perf event open() 199 10% 46% 45%

readdir() 169 46% 41% 14%

splice() 166 30% 40% 25%

1
Note that since a commit can be classified into multiple categories, the percentages in a row for a system

call may not add up to 100%

35% of the system call-related commits were made to conduct code restructuring.
Table 6 shows the number of commits per commit category. The large portion of restruc-
turing commits emphasizes the importance of refactoring to improve the readability and
maintainability of the source code of the system calls. The restructuring activities consist
of writing helper functions, cleaning dead or duplicate code, merging code, generalizing
functionality, relocating files and formatting code.

36% of the system call-related commits were made to fix bugs. Figure 7 shows the
trends of the number of commits per commit category for the last 10 years. The number
of bug fixes has been steadily increasing over the last decade. Lu et al. (2014) observed a
similar number of bug fixes (approximately 35% of the commits) and a similar trend when
studying eight years of Linux file system-related commits. In Section 7 we study the bug
fixes in more detail.

Restructuring of the ptrace() and signal handling system calls caused restruc-
turing peaks in 2008 and 2012. As shown in Fig. 7, there were peaks in the number of
restructuring commits in 2008 and 2012. In 2008, the peaks were caused by restructuring to
the ptrace() and signal handling system calls.

The ptrace() system call is highly dependent on the underlying system architecture
(Sandeep 2002). Hence, applications that rely on the ptrace() system call, such as gdb
and strace, are not easily portable. In 2008, 101 out of 485 (21%) restructuring commits
were made to make the ptrace() system call less dependent on the underlying system
architecture.

Table 6 The number of commits
per commit category, ordered by
the number of commits

Commit category # of commits % of commits

Restructuring 3,164 35

Bug fix 3,247 36

Improvement 2,131 24

Add/remove 482 5

Total # of classifications1 9,024 100

1
Note that this number is higher

than the total number of studied
commits, as we classified some
commits into multiple categories

Empir Software Eng

AddRemove BugFix

Improvement Restructuring

0

100

200

300

400

500

0

100

200

300

400

500

'05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14

Year

#
 o

f
c
o
m

m
it
s

Fig. 7 The number of commits made in each commit category over the last decade. The red line is a LOESS
regression fit line

140 out of 485 (29%) restructuring commits were made in 2008 to signal handling system
calls. Most of these commits are made to unify the source code of the 32-bit, 64-bit and real-
time versions of the signal handling system calls. For example, the source code of the 32
and 64-bit version of the signal() system call was merged into one file. Within that file,
the preprocessors #ifdef CONFIG X86 64 and #ifdef CONFIG X86 32 are used
to execute the required version of the system call.

In 2012, 164 out of 448 (37%) restructuring commits were made to signal handling
system calls. The majority of those commits were made to change the sigaltstack(),
sigprocmask(), sigsuspend(), sigaction(), rt sigprocmask(),
rt sigpending(), rt sigqueueinfo() and rt sigaction() from architec-
ture-specific into generic system calls.

In 2009, 45 commits were made to improve the robustness of system calls towards
a reported security issue. Vulnerability report CVE-2009-0029 (National Institute of
Standards and Technology 2009) describes a security issue in which system calls of the
s390, PowerPC, sparc64 and MIPS 64-bit architecture rely on the user-mode applica-
tion to do sign extension when using 32-bit arguments in a 64-bit register. The system calls
did not verify that the sign extension was done correctly, allowing malicious users to crash
the kernel or gain privileges through a crafted system call. 45 commits were required to
make the architectures in question robust to this security issue.

The perf event open() system call had 87 changes in 2009, of which 28 were
bug fixes. The perf event open() system call was added in December 2008 and
provides an abstraction for accessing performance counters. Since this abstraction is

Empir Software Eng

10.5
9

24 23

10

1000

AddOrRemove Bug Improvement Restructuring

C
o
m

m
it
 s

iz
e
 (

L
O

C
 a

d
d
e
d
 +

 r
e
m

o
v
e
d
)

Fig. 8 The size of the commits that were made in each commit category over the last decade. The number
in the boxplot is the median value. Note that the commit size is in logarithmic scale

architecture-specific, its implementation is complex and bug-prone, which is demonstrated
by the high number of bug fixes for this system call in 2009.

In 2014, there is an increase in bug fixes related to file system & I/O calls. However, we
were unable to identify a specific system call as the culprit for the increase.

Bug fixes had the smallest commit size. We calculated the size of a commit by counting
the number of lines of code that were added and removed by the commit. Figure 8 shows the
distributions of the commit size for the commits in the four commit categories. The median
commit size of a bug fix is 9. The largest commits were made for improvements (median
commit size 23) and restructuring (median commit size 24).

7 Classifying a Decade of Bug Fixes for System Calls

Motivation: In Section 6, we observed that one-third of the system call-related commits
were made to fix one or more bugs. In this section, we studied these bug fixes in more
depth to gain an insight into what type of bugs were prevalent in system calls during the
last decade. Such insights can help system call developers to better understand what are the
most bug-prone and therefore, more difficult to develop, system calls.

Approach: To conduct a qualitative study of the bug fixes for system calls, we classified all
bug fix commits into bug fix categories, based on the type of bug that the commit was fixing.

Empir Software Eng

We used the same process for classifying the bug fix commits as we did for the commits in
Section 6. The first two authors manually and independently classified the commit message
of all 3,067 bug fix commits into one or more of the following bug fix categories:

1. Compatibility: Compatibility-related bugs are caused by compatibility issues between
architectures (e.g., 32-bit versus 64-bit).

2. Concurrency: Concurrency-related bugs are caused by issues with atomicity, execu-
tion order, synchronization or locking, and lead to problems such as deadlock or race
conditions (Lu et al. 2008).

3. Error code: Error code-related bugs are caused by returning the wrong error code or
handling a returned error code incorrectly.

4. Memory: Memory-related bugs are caused by incorrect usage of the memory, thereby
introducing an issue such as a memory leak.

5. Semantic: Semantic bugs are bugs in the implementation of the system call-specific
behaviour, such as the logic of the service provided by the system call.

We used the same bug fix categories as Lu et al. in their study of bug fixes for Linux
file systems (Lu et al. 2014), but we added the compatibility category as we found during
our study that compatibility bugs were a recurring issue for system calls. After classifying
the bug fix commits, we identified 62 out of 3,247 (2%) conflicting classifications. These
conflicts were resolved in the same way as described as in Section 6.

In addition, we calculated the number of bug fixes per system call by dividing the number
of bug fixes for all system calls in a system call category (see Table 1) by the number of
system calls in that category. For example, there were 69 compatibility-related bug fixes and
147 system calls in the file system & I/O category. Hence, there were 0.47 compatibility-
related bug-fixes per file system & I/O system call.

Finally, we calculated the normalized static entropy (Hassan 2009) of each system call to
express its bugginess as a value between 0 and 1. The entropy helps us to understand how
the bug fixes were spread over the study period. A system call has an entropy of 0 when all
its bug fixes were made in the same year. Likewise, a system call has an entropy of 1 when
its bug fixes were evenly spread over the studied years. We calculated the normalized static
entropy for each system call as follows:

entropys = −
n∑

k=1

(pk ∗ lognpk)

where n is the number of studied years and pk is the probability of having a bug fix in year
k for system call s. For example, if there were 10 bug fixes in total in 10 years for a system
call s, of which 2 were made in 2005 and 8 in 2012, the entropy of s is 0.22:

entropys = − 2

10
∗ log10

2

10
+ 8

10
∗ log10

8

10
= 0.22

Findings:Developers make mistakes in the seemingly trivial activation process of a sys-
tem call. The steps that are required to activate a system call, such as assigning the unique
number and updating the system call table, are performed manually. As a result, developers
make mistakes in the activation process. For example, a mistake in the system call number
of the migrate pages() system call caused the migrate pages(), select6()
and ppoll() system calls to malfunction (McMartin 2007). Similar typographical errors

Empir Software Eng

Table 7 The median entropy of
a system call for each system call
category, ordered by median
entropy

Category Median entropy

Memory management 0.74

File system & I/O 0.45

Process management 0.45

System info & settings 0.44

IPC & network 0.43

Security & capabilities 0.38

Time operations 0.30

Signal handling 0.30

Scheduling 0.30

Modules 0.00

caused problems in other cases (Skinnemoen 2008a, b;Torvalds 2014; Deller 2013, 2014;
Chase Douglas 2009).

Clearly there is value in automating the activation process of a system call. In particular,
automation can help developers to adhere to the DRY-principle (Don’t Repeat Yourself)
(Hunt 2000), as the activation process is the same for all system calls. Currently, the only
automated assistance is given by the Linux/scripts/checksyscalls.sh script,
which lists the missing system calls for a specific architecture, as compared to the i386-
architecture.

Memory management system calls have the highest bug fix entropy. Table 7 shows
the median entropy of a system call for each system call category. Memory management
system calls have the highest median entropy (0.74), which indicates that most memory
management system calls had bug fixes throughout the study period. There are six sys-
tem calls that have an entropy of 0.95 or higher: the ptrace(), mbind(), signal(),
umount(), symlink(), fork() and fcntl() system calls. The entropy of the
ptrace() and signal() system calls emphasizes their complexity, as the number of
bug fixes made for those system calls is very high as well (see Table 5). The high number of
bug fixes and entropy indicate that every year a large number of bug fixes is made to these
system calls.

58% of the bug fix commits were made to fix semantic bugs. Table 8 shows that
semantic bugs are by far the most common for system calls. This observation is in line with
Lu et al. (2014) findings for Linux file systems.

The portion of bug fixes that fixed memory-related bugs remained constant
throughout the last decade. Figure 9 shows the portion of all bug fixes that fit in a specific

Table 8 The number of commits
per bug fix category, ordered by
the number of commits

Bug fix category # of commits % of commits

Semantic 1,922 58

Concurrency 521 16

Memory 339 10

Compatibility 285 9

Error code 221 7

Total # of classifications1 3,288 100

1
Note that this number is higher

than the total number of studied
commits, as we classified some
commits into multiple categories

Empir Software Eng

Compatibility Concurrency Errorcode

Memory Semantic

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

'05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14

Year

%
 o

f
b

u
g

s

Fig. 9 The % of bugs made in each bug category over the last decade. The red line is a LOESS regression fit
line

bug category over the last decade. Interestingly, the proportions remain relatively constant
over the years. In their study on bugs in open source software, Li et al. (2006) reported a
downward trend for memory-related bugs from 1991 to 2006, due to the use of automated
detection tools of memory-related bugs.

A manual review of the memory-related bug fixes for system calls shows that most fixes
are for “simple” issues, such as memory leaks or null-pointer dereferences. The majority of
the memory leaks are caused by (1) not properly releasing memory after entering a failure
path and (2) not initializing a variable properly. The majority of the null-pointer dereferences
are caused by not validating a returned value or function argument.

The downward trend for memory bugs does not appear to apply or continue for system
calls, which suggests that existing tooling is not powerful enough to automatically detect
memory-related bugs in system calls, or that such tooling is not used by inexperienced
system call developers.

Signal handling system calls have the highest number of semantic (9.33) and
compatibility-related (1.70) bug fixes per system call (Fig. 10). The high number of
compatibility-related bug fixes emphasizes the dependency of signal handling system calls
on the underlying system architecture. The majority of these bugs were related to the
signal() system call.

Signal handling system calls have by far the highest number of semantic bugs per system
call, which confirms the complexity of these system calls. A manual review shows that
concepts such as the system call restart mechanism (Corbet 2002; Torvalds 2002), signal
handling and the signal stack are challenging for developers to grasp. For example, when
a system call is interrupted during its execution and queued, it needs to be restarted later.
However, the system call should not always be completely restarted, which causes confusion
with developers. There were 36 bug fixes that added support for handling exceptional cases
in the system call restart mechanism. These bug fixes were often fixes for the same problem
on different architectures.

Memory management system calls have the highest number (1.81) of concurrency-
related bug fixes per system call (Fig. 10). Most of these bug fixes addressed race
conditions that occur between system calls. A race condition occurs when two system calls,
or application code in kernel or user mode, are executed simultaneously and the output of

Empir Software Eng

Compatibility Concurrency ErrorCode

Memory Semantic

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

category

B
u
g
 f
ix

e
s

p
e
r
 s

y
s
te

m
 c

a
ll

File System (FS) Intraprocess Communication (IPC) Memory Management (MM) Modules (MO) Process Management (PM)

Scheduling (SC) Security (SEC) Signal Handling (SH) System Info & Settings (SI) Time Operations (TO)

Fig. 10 The number of bug fixes per system call in each bug category over the last decade

the system is dependent on the execution order. As a result, race conditions can lead to non-
deterministic behavior and should be avoided. To understand and prevent race conditions,
developers must understand interactions between system calls and other parts of the system,
which is difficult.

We extracted all race conditions between memory management system calls that were
fixed during the last decade and showed them in Fig. 11. Each node is a system call and
a connection between two nodes indicates that a race condition between these system calls
was fixed during the last decade. Figure 11 shows that the mmap() system call is the mem-
ory management system call with the most fixed race conditions during the last decade. The
full graph of all fixed race conditions can be found online (Bagherzadeh et al. 2017). The
graph of fixed race conditions is valuable for system developers, as it gives an overview of
which interactions between a system call and the system may occur, and hence require extra
testing.

8 Discussion

In this section, we discuss the implications of our findings. First, we discuss the generaliz-
ability of our findings through a study on the FreeBSD operating system. Then, we discuss
the implications of our findings with regards to maintenance effort and the support of mul-
tiple architectures in an open source operating system. Finally, we give suggestions for
opportunities for automation of reoccurring tasks that are conducted during the evolution of
the Linux kernel API.

Empir Software Eng

Fig. 11 All race conditions for memory management system calls (the purple nodes) that were fixed during
the last decade. The thick lines indicate two fixed race conditions

8.1 Generalizability of Our Findings

This paper focuses on the evolution of the Linux kernel API (i.e., the system calls). Studying
the Linux kernel API is important because nowadays, many systems depend on this kernel
API. For example, almost 1.5 billion mobile devices run on the Android operating system
(Gartner 2015), which is derived from Linux. To verify the generalizability of our findings,
we performed a sanity check to ensure that the system call mechanism in other UNIX-based
operating systems is similar, by studying the latest version (at the time of writing) of the
documentation2 and source code3 of the FreeBSD operating system.

There exist 447 system calls in FreeBSD. FreeBSD allows the activation of system
calls through configurations, mainly to provide backwards compatibility by keeping old
system calls activated. 386 system calls are activated by default in all configurations in
BSD. Through a manual study, we found that 199 (52%) of the FreeBSD system calls
have the same signature as their Linux counterparts. Approximately 164 (42%) system
calls in FreeBSD have a different signature but provide very similar functionality as their
Linux counterparts (either system calls or glibc methods). For example, the epoll *()
(Linux) and kqueue() (FreeBSD) system calls provide similar functionality, but were
implemented in different ways, because the kqueue() system call was designed in a more
abstracted fashion to achieve generality (Han 2012).

The process of handling and maintaining system calls in FreeBSD and Linux is similar
and includes managing system call tables and context switching. The needed steps to add a

2https://www.freebsd.org/
3https://github.com/freebsd/freebsd/commit/67f6441

https://www.freebsd.org/
https://github.com/freebsd/freebsd/commit/67f6441

Empir Software Eng

system call are similar. However, the process of managing the system call table and adding
the system call number in the related header files is automated in FreeBSD, while it is ma-
nual in Linux.

The different types of sibling calls in FreeBSD are similar to those in Linux. For
example, we observed the parameter extension sibling system calls such as thr kill()
and thr kill2(), pipe() and pipe2(); working directory system calls such as
mkdirat() and mkdir(); and batch operation system calls such as mlock() and
mlockll(). There are no sibling calls of the backwards compatibility and real-time
type in FreeBSD. The existence of sibling calls in both FreeBSD and Linux suggests that
UNIX-based operating systems deal with technical debt in a similar fashion.

Our findings on the FreeBSD operating system confirm that other UNIX-based operating
systems use a system call mechanism that is similar to that of Linux. Therefore, we can
safely assume that our findings are of value to other UNIX-based operating systems.

8.2 Maintenance Effort

In Sections 6 and 7, we studied the maintenance effort in terms of commits and bugs in
system calls over the last decade. In this section, we compare our findings with similar
studies on Linux (Li et al. 2006; Tan et al. 2014) and the Linux file system (Lu et al. 2014).

Lu et al. (2014) classified 5,200 commits that were made during the maintenance of
6 Linux file systems. While their and our classification resulted in mostly the same divi-
sion of maintenance effort, we found a higher percentage of commits that were related to
improvement of the studied system (i.e., 25% compared to 10% in Linux file systems). In
addition, we found that 5% of the commits were done to add or remove system calls, which
is naturally not necessary for file systems. Our findings show that more maintenance effort
is spent on improving the reliability, performance and functionality of the existing system
calls, thereby confirming the importance of the core component of Linux that the system
calls form together.

Li et al. (2006) and Tan et al. (2014) automatically classified bugs in open source
systems, including Linux. In addition, Lu et al. (2014) classified bugs in the Linux file sys-
tem. All three studies found that semantic bugs were by far the most common, which is
confirmed by our study.

An interesting observation is that Li et al. (2006) and Tan et al. (2014) found a downward
trend in memory bugs in open source systems, while we did not observe such a down-
ward trend, as explained in Section 7. One possible explanation is that the available tools
for detecting memory bugs, such as valgrind,4 are not capable of crossing the boundary
between kernel and user mode, which is required to debug system calls. Another possible
explanation is that it is difficult to systematically test the Linux kernel in all possible con-
figurations, as many of these configurations can be tested only on specific combinations
of hardware. Hence, our recommendations for future researchers are that existing memory
bug detection tools (1) should be made compatible with testing system calls, and (2) should
better support testing different kernel configurations.

Several implications can be derived based on our findings with regards to the effort for
maintaining system calls.

4http://valgrind.org/

http://valgrind.org/

Empir Software Eng

Implication 1: Compared to regular software systems, kernel APIs require an addi-
tional type of maintenance that involves adding and removing system calls. In Section 7,
we found that this additional type of maintenance is susceptible to bugs. However, as shown
by FreeBSD, most of the maintenance required to add and remove system calls can be auto-
mated. Therefore, we recommend the automation of the process of adding and removing
system calls in Linux as well.

Implication 2: 11% of the system-call related changes were made to the system call
handler mechanism. We observed that 89% of the system-call related changes were made
to maintain the actual system call, while 11% of the changes were related to the system call
handler mechanism, including context switching, vDSO and vsyscall (two mechanisms
to accelerate system call execution). Our finding implies that approximately 11% of the
maintenance effort of a kernel API is assigned to the infrastructure for providing the API.

8.3 Supporting Multiple System Architectures

Because an operating system’s kernel operates close to the hardware, a large part of the
system-call related changes are architecture-dependent. We classified all changes that were
made to files in (a subfolder of) the /arch folder as architecture-dependent, and found that
41% of the changes were architecture-dependent. Several implications for an open source
operating system that supports multiple architectures can be extracted (see below).

Implication 3: There are likely to exist inconsistencies between supported features
across different architectures. As we found in Section 5, system calls are usually not acti-
vated in all architectures at the same time. In addition, as we found in Section 7, different
bugs may exist across architectures. An additional burden of supporting multiple architec-
tures is that system calls that are architecture-dependent need to be reimplemented for each
architecture, which results in a considerable amount of code duplication.

Implication 4: Architecture-dependent code may prevent a large number of devel-
opers from contributing to that code. In Section 5, we found that a small group of
developers works on system calls, as compared to the Linux operating system in gen-
eral. In addition, we observed that 653 developers contributed to the architecture-dependent
code, while 1,002 developers contributed to the architecture-independent code. However, a
smaller number of contributors does not necessarily mean weak support for an architecture.
The combination of low cost of an x86-server that runs Linux, and its similarity to a Unix-
server, have made the combination of the x86 server and Linux attractive to industry. Intel
recognized this attraction, and contributed a large part of the code for x86 support in Linux,
thereby increasing the popularity of their own x86 architecture (Gillen and Bozman 2013).
Hence, despite the lower number of developers that work on architecture-dependent code,
support for a particular architecture can still be strong in an open source operating system
even if a small group of developers is active.

The above implications show that future research should focus on propagating changes
that are made to architecture-dependent code across other architectures. In addition, future
research should focus on methods for checking functional consistency across architectures,
to assist with the prevention and detection of architecture-dependent bugs.

8.4 Suggestions for Applying Automation in the Linux Kernel API Evolution

During our study, we encountered several cases in the evolution of the Linux kernel API
where automation would have been beneficial. In the remainder of this section, we give our
suggestions on where to apply automation.

Empir Software Eng

8.4.1 Automated Testing

System call developers make heavy use of fuzz testing, a technique that calls system calls
at random and in parallel, with random arguments. Two fuzz testing tools for system calls
are Trinity (Jones 2016) and Syzkaller (Google 2017), which detected respectively 42 and
422 bugs over the last years. The input of such fuzz testing tools is a set of system calls
that are called during the fuzz test. Currently, system call developers specify this set based
on their knowledge of and experience with interaction (e.g., sharing resources) between
system calls. Such knowledge is difficult to gain, despite the small growth of the system
call API per day (Section 5.2). However, as we showed in Section 7, we can use historical
information to identify interactions between system calls.

Suggestion 1: Our race graph can be used to guide the fuzz testing process to
identify more bugs. One of the deliverables of our study (i.e., in the online appendix
(Bagherzadeh et al. 2017)) is the race graph in which historical race bugs are visualized.
This race graph can be used to identify interactions between system calls, but also to identify
patterns of race bugs, which can in turn be used to guide the fuzz testing process. Many of
these patterns can be identified using the system call names or by reading their man-pages.
We extracted four main patterns from the race graph:

1. Pattern 1: reader-writer or writer-writer. This pattern describes the case in which
two system calls read from and write to the same resource. Often, file system and
memory management system calls are susceptible to such bugs. System calls that inter-
act following this pattern can often be identified by their name (e.g., recvmsg()
& sendmsg() and readv() & writev()). Other examples of system calls that
follow this pattern are mmap() & truncate(), read() & truncate() and
move pages() & mmap().

2. Pattern 2: admin-admin. Some system calls are used for administrative tasks in Linux.
These system calls may race with each other during their execution. For example,
open() & close(), ptrace() & signal(), swapon() & swapoff(),
inotify rm watch() & inotify add watch(), mount() & umount()
and umount() & close().

3. Pattern 3: (reader or writer)-admin. This pattern occurred between administra-
tive system calls and other system calls that try to read from or write to the
resource that is targeted by the administrative system calls (e.g, mprotect()
& migrate pages(), inotify watch() & umount() and close() &
write()).

4. Pattern 4: self-race. Multiple instances of the same system call may race together
(e.g., mmap(), swapon(), and swapoff()). This pattern may happen for any
writer or administrative system call that is executed several times simultaneously.

The above patterns can be used to select system calls for fuzz testing, thereby leading to
better results and increasing the efficiency of the existing tools. In addition, the patterns can
be used for regression testing of system calls.

Suggestion 2: Existing automated testing tools should be extended to support system
call testing. There exist several automated testing tools, such as valgrind, which are
currently not capable of crossing the boundary between kernel and user mode. These tools
should be extended to support system call testing.

Empir Software Eng

8.4.2 Automated Refactoring

We found in Section 6 that 35% of the system call-related changes were done to restruc-
ture/refactor code. In our manual review, we found that the majority of these changes were
done to reduce duplication in the code by extracting duplicate code into a helper function,
or by replacing architecture-dependent code with architecture-independent code.

Suggestion 3: Automated refactoring tools should be used when restructuring the
Linux kernel API. Dig and Johnson (2005, 2006) already stressed the importance of auto-
mating refactoring more than 10 years ago. However, we did not find evidence that automa-
ted refactoring tools are systematically applied to refactor the Linux kernel API. Hence, our
suggestion is to use existing tools to assist with the restructuring of the Linux kernel API.

9 Threats to Validity

One of the threats to the external validity of our findings is generalization. In this paper we
study Linux system calls in depth. Linux is one of the oldest, most well-developed open
source projects and studies of Linux have led to numerous interesting findings (e.g., Godfrey
and Tu (2000), Godfrey and Qiang (2001), Livieri et al. (2007), Izurieta and Bieman (2006),
Israeli and Feitelson (2010), Merlo et al. (2002), Antoniol et al. (2002), Lotufo et al. (2010),
Passos et al. (2012), Palix et al. (2011), Padioleau et al. (2006), Lu et al. (2014), Spinellis
(2015), and Spinellis et al. (2016)). As explained in the previous section, we are certain
that our findings apply to other Unix-based operating systems. However, it is possible that
system calls in non-Unix-based operating systems have different characteristics than Linux
system calls. More research is needed to make claims about the further generalizability of
our findings.

A second external threat comes from the quality of the classified commit messages. We
use the commit messages to classify commits and understand the drivers of developers for
performing such changes. Hence, we rely on the quality of the description of the commit
(i.e., the commit message).

The most important threat to the internal validity of our results is the manual classifica-
tion process that we used to classify commits and bug fixes. To mitigate this threat, two of
the authors independently conducted the classification. The low percentage of conflicting
classifications (i.e., 5% of the commits and 2% of the bugs) suggests that the classification
task was not overly susceptible to subjectivity. We made all our classifications available in
an online appendix (Bagherzadeh et al. 2017).

We found that it is extremely difficult to fully automate the commit extraction pro-
cess. Hence, we applied a set of heuristics to semi-automate the extraction of commits that
are related to system calls, in combination with a final manual analysis step. We do not
claim that we studied all system call-related commits. However, our studied data set is still
considerably large with 8,770 system call-related commits.

10 Conclusion

The Linux kernel provides its services to the application layer using so-called system calls.
All system calls combined form the Application Programming Interface (API) of the kernel.

Empir Software Eng

Hence, system calls provide us with a window into the development process and design
decisions that are made for the Linux kernel.

We conducted an empirical study of the changes that were made to the system calls dur-
ing the last decade (i.e., from April 2005 to December 2014). The most important findings
of our study are:

1. There is a considerable amount of technical debt in the kernel, that is addressed by an
increase in the number of sibling system calls. Guidelines were introduced in 2015 to
avoid technical debt of this type in the future by using more flexible function arguments
for system calls.

2. There exists a small group of very active system call developers and the growth of the
system calls is slow (i.e., 25 LOC per day).

3. The ptrace() and signal handling system calls are by far the most difficult ones to
maintain and fix.

Our findings can be used by kernel API developers to learn about the challenges and
problems that come with the long term maintenance of an kernel API, such as the long-
lived Linux kernel API. In particular, we make several important suggestions in our paper.
First, we suggest the automation of simple, reoccurring tasks in Linux, such as adding and
removing system calls. Our study on FreeBSD shows that such tasks can successfully be
automated. Second, we suggest that historical information about the evolution of a kernel
API should be used to guide the testing process. Finally, we suggest that existing automated
testing tools are extended, so that they can be used for testing system calls.

References

Antoniol G, Villano U, Merlo E, Penta MD (2002) Analyzing cloning evolution in the Linux kernel. Inf
Softw Technol 44(13):755–765

Atlidakis V, Andrus J, Geambasu R, Mitropoulos D, Nieh J (2016) Posix abstractions in modern operat-
ing systems: The old, the new, and the missing. In: Proceedings of the 11th European conference on
computer systems (EuroSys), pp 19:1–19:17. ACM

Bagherzadeh M, Kahani N, Bezemer C-P, Hassan AE, Dingel J, Cordy JR (2017) Analyzing a decade of
Linux system calls: online appendix. https://github.com/corpaul/decade of systemcalls. (Last visited:
June 19, 2017)

Bogart C, Kästner C, Herbsleb J, Thung F (2016) How to break an API: Cost negotiation and community
values in three software ecosystems. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), pp 109–120. ACM

Corbet J (2002) A new system call restart mechanism. https://lwn.net/Articles/17744/. (Last visited: June 19,
2017)

Corbet J (2014) The possible demise of remap file pages(). https://lwn.net/Articles/597632/. (Last visited:
June 19, 2017)

Intel Corporation (2016) Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2:
Instruction Set Reference, A-Z. https://goo.gl/1cFOvB. (Last visited: June 19, 2017)

Davis M (2012) Creating a vDSO: the Colonel’s Other Chicken. http://www.Linuxjournal.com/content/
creating-vdso-colonels-other-chicken. (Last visited: June 19, 2017)

de Melo CA (2009) net: Introduce recvmmsg socket syscall. https://github.com/torvalds/linux/commit/
a2e2725541. (Last visited: June 19, 2017)

Deller H (2013) Correctly wire up mq functions for compat case. https://github.com/torvalds/Linux/commit/
fee707b45. (Last visited: June 19, 2017)

Deller H (2014) Fix epoll pwait syscall on compat kernel. https://github.com/torvalds/Linux/commit/
ab3e55b11, (Last visited: June 19, 2017)

Dig D, Johnson R (2005) The role of refactorings in API evolution. In: Proceedings of the 21st International
Conference on Software Maintenance (ICSM), pp 389–398. IEEE

https://github.com/corpaul/decade_of_systemcalls
https://lwn.net/Articles/17744/
https://lwn.net/Articles/597632/
https://goo.gl/1cFOvB
http://www.Linuxjournal.com/content/creating-vdso-colonels-other-chicken
http://www.Linuxjournal.com/content/creating-vdso-colonels-other-chicken
https://github.com/torvalds/linux/commit/a2e2725541
https://github.com/torvalds/linux/commit/a2e2725541
https://github.com/torvalds/Linux/commit/fee707b45
https://github.com/torvalds/Linux/commit/fee707b45
https://github.com/torvalds/Linux/commit/ab3e55b11
https://github.com/torvalds/Linux/commit/ab3e55b11

Empir Software Eng

Dig D, Johnson R (2006) How do APIs evolve? a story of refactoring. J Softw Maint Evol Res Pract 18(2):83–
107

Chase Douglas (2009) Add compat truncate. https://github.com/torvalds/Linux/commit/dd90bbd5f. (Last
visited: June 19, 2017)

Drepper U (2005) *at syscalls: Intro. http://lwn.net/Articles/164584/. (Last visited: June 19, 2017)
Drepper U (2006) [PATCH] Implement AT SYMLINK FOLLOW flag for linkat. https://github.com/

torvalds/Linux/commit/45c9b11a1. (Last visited: June 19, 2017)
Drysdale D (2015) Documentation: describe how to add a system call. https://github.com/torvalds/Linux/

commit/4983953d. (Last visited: June 19, 2017)
Filippov M (2014) Xtensa: deprecate fast xtensa and fast spill registers syscalls. https://github.com/torvalds/

Linux/commit/9184289. (Last visited: June 19, 2017)
Fox J, Weisberg S (2010) Nonparametric regression in R. https://socserv.socsci.mcmaster.ca/jfox/Books/

Companion/appendix/Appendix-Nonparametric-Regression.pdf. (Last visited: June 19, 2017)
Free Software Foundation (2016) The GNU C library. https://www.gnu.org/software/libc/. (Last visited: June

19, 2017)
Gartner (2015) Gartner says tablet sales continue to be slow in 2015. http://www.gartner.com/newsroom/id/

2954317. (Last visited: June 19, 2017)
Gillen A, Bozman JS (2013) Running mission-critical workloads on enterprise Linux x86 servers. IDC

Whitepaper
Godfrey MW, Tu Q (2000) Evolution in open source software: A case study. In: Proceedings of the

International Conference on Software Maintenance (ICSM), pp 131–142. IEEE
Godfrey MW, Qiang T (2001) Growth, evolution, and structural change in open source software. In: Pro-

ceedings of the 4th international workshop on principles of software evolution (IWPSE), pp 103–106.
ACM

Google (2017) Syzkaller: Linux syscall fuzzer. https://github.com/google/syzkaller. (Last visited: Apr 18,
2017)

Han S (2012) Scalable event multiplexing: epoll vs. kqueue. http://people.eecs.berkeley.edu/sangjin/2012/
12/21/epoll-vs-kqueue.html. (Last visited: Apr 18, 2017)

Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st
International Conference on Software Engineering (ICSE), pp 78–88. IEEE

Hayward M (2002) LKML: Mike Hayward: Intel P6 vs P7 system call performance. https://lkml.org/lkml/
2002/12/9/13. (Last visited: June 19, 2017)

Henkel J, Diwan A (2005) Catchup!: Capturing and replaying refactorings to support API evolution. In:
Proceedings of the 27th International Conference on Software Engineering (ICSE), pp 274–283. ACM

Hora A, Robbes R, Anquetil N, Etien A, Ducasse S., Valente MT (2015) How do developers react to API
evolution? The Pharo ecosystem case. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), pp 251–260. IEEE

Hunt A (2000) The pragmatic programmer. Pearson Education India, London
Israeli A, Feitelson DG (2010) The Linux kernel as a case study in software evolution. J Syst Softw

83(3):485–501
Izurieta C, Bieman J (2006) The evolution of FreeBSD and Linux. In: Proceedings of the ACM/IEEE

International Symposium on Empirical Software Engineering (ESEM), pp 204–211. ACM
Jones D (2016) Trinity: A Linux system call fuzz tester. https://codemonkey.org.uk/projects/trinity/. (Last

visited: Apr 18, 2017)
Kerrisk M (2015a) Linux programmer’s manual: Linux system calls. http://www.man7.org/Linux/

man-pages/man2/syscalls.2.html. (Last visited: June 19, 2017)
Kerrisk M (2015b) Linux programmer’s manual: nfsservctl. http://man7.org/Linux/man-pages/man2/

nfsservctl.2.html. (Last visited: June 19, 2017)
Kerrisk M (2017) Linux programmer’s manual: writev. http://www.man7.org/Linux/man-pages/man2/writev.

2.html, (Last visited: June 19, 2017)
Lehman MM (1980) Programs, life cycles, and laws of software evolution. Proc IEEE 68(9):1060–1076
Li Z, Tan L, Wang X, Shan L, Zhou Y, Zhai C (2006) Have things changed now?: An empirical study of bug

characteristics in modern open source software. In: Proceedings of the 1st workshop on architectural and
system support for improving software dependability, pages 25–33. ACM

Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D (2013) API change
and fault proneness: A threat to the success of Android apps. In: Proceedings of the 9th joint meeting on
foundations of software engineering (ESEC-FSE), pages 477–487, New York, NY, USA. ACM

Linux Kernel Documentation (2005) Adding a new system call. https://www.kernel.org/doc/html/latest/
process/adding-syscalls.html. (Last visited: June 19, 2017)

https://github.com/torvalds/Linux/commit/dd90bbd5f
http://lwn.net/Articles/164584/
https://github.com/torvalds/Linux/commit/45c9b11a1
https://github.com/torvalds/Linux/commit/45c9b11a1
https://github.com/torvalds/Linux/commit/4983953d
https://github.com/torvalds/Linux/commit/4983953d
https://github.com/torvalds/Linux/commit/9184289
https://github.com/torvalds/Linux/commit/9184289
https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Nonparametric-Regression.pdf
https://socserv.socsci.mcmaster.ca/jfox/Books/Companion/appendix/Appendix-Nonparametric-Regression.pdf
https://www.gnu.org/software/libc/
http://www.gartner.com/newsroom/id/2954317
http://www.gartner.com/newsroom/id/2954317
https://github.com/google/syzkaller
http://people.eecs.berkeley.edu/ sangjin/2012/12/21/epoll-vs-kqueue.html
http://people.eecs.berkeley.edu/ sangjin/2012/12/21/epoll-vs-kqueue.html
https://lkml.org/lkml/2002/12/9/13
https://lkml.org/lkml/2002/12/9/13
https://codemonkey.org.uk/projects/trinity/
http://www.man7.org/Linux/man-pages/man2/syscalls.2.html
http://www.man7.org/Linux/man-pages/man2/syscalls.2.html
http://man7.org/Linux/man-pages/man2/nfsservctl.2.html
http://man7.org/Linux/man-pages/man2/nfsservctl.2.html
http://www.man7.org/Linux/man-pages/man2/writev.2.html
http://www.man7.org/Linux/man-pages/man2/writev.2.html
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html
https://www.kernel.org/doc/html/latest/process/adding-syscalls.html

Empir Software Eng

Linux Kernel Documentation (2016) Submitting patches: the essential guide to getting your code into the ker-
nel. https://www.kernel.org/doc/Documentation/process/submitting-patches.rst. (Last visited: June 19,
2017)

Livieri S, Higo Y, Matsushita M, Inoue K (2007) Analysis of the Linux kernel evolution using code clone
coverage. In: 4th international workshop on mining software repositories (MSR), pp 22–22. IEEE

Long JD, Feng D, Cliff N (2003) Ordinal analysis of behavioral data. Handproceedings of psychology
Lotufo R, She S, Berger T, Czarnecki K, Wȧsowski A (2010) Evolution of the Linux kernel variability model.

In: International Conference on Software Product Lines, pages 136–150. Springer
Lu L, Arpaci-Dusseau AC, Arpaci-Dusseau RH, Lu S (2014) A study of Linux file system evolution. Trans

Storage 10(1):3:1–3:32. ISSN 1553-3077
Lu S, Soyeon P, Eunsoo S, Zhou Y (2008) Learning from mistakes: A comprehensive study on real world

concurrency bug characteristics. SIGOPS Operating Syst Rev 42(2):329–339
Mauerer W (2010) Professional Linux kernel architecture. Wiley, New York
McDonnell T, Ray B, Kim M (2013) An empirical study of API stability and adoption in the android

ecosystem. In: Proceedings of the International Conference on Software Maintenance (ICSM), pp 70–79
McMartin K (2007) Reorder syscalls to match. https://github.com/torvalds/Linux/commit/1e67685b1. (Last

visited: June 19, 2017)
Merlo E, Dagenais M, Bachand P, Sormani JS, Gradara S, Antoniol G (2002) Investigating large software

system evolution: the Linux kernel. In: Proceedings of the 26th International Computer Software and
Applications Conference (COMPSAC), pp 421–426. IEEE

National Institute of Standards and Technology (2009) National Vulnerability Database: CVE-2009-0029.
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0029. (Last visited: June 19, 2017)

Padioleau Y, Lawall JL, Muller G (2006) Understanding collateral evolution in Linux device drivers. In:
ACM SIGOPS Operating Systems Review, volume 40, pp 59–71. ACM

Palix N, Thomas G, Saha S, Calvès C, Lawall J, Muller G (2011) Faults in Linux: ten years later. In: ACM
SIGPLAN Notices, volume 46, pages 305–318. ACM

Passos L, Czarnecki K, Wȧsowski A (2012) Towards a catalog of variability evolution patterns: the Linux
kernel case. In: Proceedings of the 4th international workshop on feature-oriented software development,
pp 62–69. ACM

Perkins JH (2005) Automatically generating refactorings to support API evolution. In: Proceedings of the 6th
ACM SIGPLAN-SIGSOFT workshop on program analysis for software tools and engineering (PASTE),
pp 111–114. ACM

Pingdom (2012) Linux kernel development by the numbers. http://royal.pingdom.com/2012/04/16/
Linux-kernel-development-numbers/. (Last visited: June 19, 2017)

Robbes R, Lungu M, Röthlisberger D (2012) How do developers react to API deprecation?: The case of
a Smalltalk ecosystem. In: Proceedings of the ACM SIGSOFT 20th international symposium on the
foundations of software engineering (FSE), pp 56:1–56:11. ACM

Romano J, Kromrey JD, Coraggio J, Skowronek J, Devine L (2006) Exploring methods for evaluating group
differences on the NSSE and other surveys: Are the t-test and Cohen’s d indices the most appropriate
choices. In: Annual meeting of the southern association for institutional research

Sandeep S (2002) Process tracing using ptrace. http://www.tldp.org/LDP/LGNET/81/sandeep.html. (Last
visited: June 19, 2017)

Skinnemoen H (2008a) Fix sys sync file range call convention. https://github.com/torvalds/Linux/commit/
73d4393d1. (Last visited: June 19, 2017)

Skinnemoen H (2008b) Fix timerfd breakage on avr32. https://github.com/torvalds/Linux/commit/
46a56c5a0. (Last visited: June 19, 2017)

Spinellis D (2015) A repository with 44 years of Unix evolution. In: Proceedings of the 12th working
conference on mining software repositories (MSR), pages 462–465. IEEE Press

Spinellis D (2016) A repository of Unix history and evolution. Empirical Software Engineering
Spinellis D, Louridas P, Kechagia M (2016) The evolution of C programming practices: A study of the

Unix operating system 1973–2015. In: Proceedings of the 38th International Conference on Software
Engineering (ICSE), pp 748–759. ACM

Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics in open source software. Empir
Softw Eng 19(6):1665–1705

Torvalds L (2002) Compatibility syscall layer (lets try again). https://lwn.net/Articles/17746/. (Last visited:
June 19, 2017)

Torvalds L (2014) Renameat2 does not need (or have) a separate compat system. https://github.com/torvalds/
Linux/commit/9abd09acd. (Last visited: June 19, 2017)

Linus Torvalds (2017) Linux Git repository. https://github.com/torvalds/Linux/, 2016. (Last visited: June 19

https://www.kernel.org/doc/Documentation/process/submitting-patches.rst
https://github.com/torvalds/Linux/commit/1e67685b1
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0029
http://royal.pingdom.com/2012/04/16/Linux-kernel-development-numbers/
http://royal.pingdom.com/2012/04/16/Linux-kernel-development-numbers/
http://www.tldp.org/LDP/LGNET/81/sandeep.html
https://github.com/torvalds/Linux/commit/73d4393d1
https://github.com/torvalds/Linux/commit/73d4393d1
https://github.com/torvalds/Linux/commit/46a56c5a0
https://github.com/torvalds/Linux/commit/46a56c5a0
https://lwn.net/Articles/17746/
https://github.com/torvalds/Linux/commit/9abd09acd
https://github.com/torvalds/Linux/commit/9abd09acd
https://github.com/torvalds/Linux/

Empir Software Eng

Tsai C-C, Jain B, Abdul NA, Porter DE (2016) A study of modern Linux API usage and compatibility:
What to support when you’re supporting. In: Proceedings of the 11th European conference on computer
systems (EuroSys), pp 16:1–16:16. ACM

Viro A (2012) [braindump][rfc] signals and syscall restarts. https://lkml.org/lkml/2012/12/6/366. (Last
visited: June 19, 2017)

Xavier L, Brito A, Hora A, Valente MT (2017) Historical and impact analysis of API breaking changes: A
large-scale study. In: Proceedings of the 24th international conference on software analysis, evolution
and reengineering (SANER), pp 138–147. IEEE

Xing Z, Stroulia E (2007) API-evolution support with diff-catchup. IEEE Trans Softw Eng 33(12):818–836
Zankel C (2005) [PATCH] xtensa: Architecture support for Tensilica Xtensa Part 1. https://github.com/

torvalds/Linux/commit/8e1a6dd2. (Last visited: June 19, 2017)

Mojtaba Bagherzadeh is a PhD candidate in the School of Computing at Queen’s University in Canada. He
obtained his Masters in E-commerce and Bachelors in software engineering. Mojtaba has several years of
experience working as a software developer at IBM and leader at a startup company. His research areas of
interest are real-time systems design, software analysis and model-driven development.

Nafiseh Kahani is a PhD Student in the School of Computing at Queen’s University. She received her
bachelor’s degree in Software Engineering, and her master’s degree in Information Technology. Her research
areas of interest are: self-adaptive systems, model-driven development, and software analysis.

https://lkml.org/lkml/2012/12/6/366
https://github.com/torvalds/Linux/commit/8e1a6dd2
https://github.com/torvalds/Linux/commit/8e1a6dd2

Empir Software Eng

Cor-Paul Bezemer currently works as a postdoctoral research fellow in the Software Analysis and Intelli-
gence Lab (SAIL) at Queen’s University in Kingston, Canada. His research interests cover a wide variety of
software engineering and performance engineering-related topics, including repository mining and perfor-
mance regression analysis. His work has been published at premier software engineering venues such as the
ESEC-FSE, ICSME and ICPE conferences and the EMSE journal. He was born in The Hague (Den Haag) in
the Netherlands. Before moving to Canada, he studied at Delft University of Technology, where he received
his BSc (2007), MSc (2009) and PhD (2014) degree in Computer Science. More about Cor-Paul can be read
on his website: http://sailhome.cs.queensu.ca/∼corpaul.

Ahmed E. Hassan is the Canada Research Chair (CRC) in Software Analytics, and the NSERC/BlackBerry
Software Engineering Chair at the School of Computing at Queen’s University, Canada. His research interests
include mining software repositories, empirical software engineering, load testing, and log mining. Hassan
received a PhD in Computer Science from the University of Waterloo. He spearheaded the creation of the
Mining Software Repositories (MSR) conference and its research community. Hassan also serves on the
editorial boards of IEEE Transactions on Software Engineering, Springer Journal of Empirical Software
Engineering, Springer Journal of Computing, and PeerJ Computer Science. Contact ahmed@cs.queensu.ca.
More information at: http://sail.cs.queensu.ca/.

http://sailhome.cs.queensu.ca/~corpaul
http://sail.cs.queensu.ca/

Empir Software Eng

Juergen Dingel received an M.Sc. from Berlin University of Technology in Germany and a Ph.D. in Com-
puter Science from Carnegie Mellon University (2000). He is Professor in the School of Computing at
Queen’s University where he leads the Modeling and Analysis in Software Engineering group. His research
interests include model driven engineering, formal methods, and software engineering.

James R. Cordy is Professor and past Director of the School of Computing at Queen’s University in
Kingston, Ontario, Canada. As leader of the TXL source transformation project with hundreds of academic
and industrial users worldwide, he is the author of more than 200 refereed contributions in programming
languages, software engineering and artificial intelligence. Dr. Cordy is an ACM Distinguished Scientist, a
senior member of the IEEE, and an IBM CAS faculty fellow.

	Analyzing a decade of Linux system calls
	Abstract
	Introduction
	System Calls
	The Old-Fashioned Way
	The Modern Way

	Related Work
	API Evolution
	Refactoring in APIs
	The effect of API Evolution on Developers

	Evolution of the Linux Kernel

	Methodology
	Collecting Data
	Extracting System Calls
	Extracting Commits

	Analysis

	The Evolution of System Calls over the Last Decade
	The Number of System Calls
	The Size of System Call Commits
	The Developers of System Calls

	Classifying a Decade of System Call Commits
	Classifying a Decade of Bug Fixes for System Calls
	Discussion
	Generalizability of Our Findings
	Maintenance Effort
	Supporting Multiple System Architectures
	Suggestions for Applying Automation in the Linux Kernel API Evolution
	Automated Testing
	Automated Refactoring

	Threats to Validity
	Conclusion
	References

