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Abstract Predicting the required time to fix an issue (i.e., a new feature, bug fix, or
enhancement) has long been the goal of many software engineering researchers. However,
after an issue has been fixed, it must be integrated into an official release to become visi-
ble to users. In theory, issues should be quickly integrated into releases after they are fixed.
However, in practice, the integration of a fixed issue might be prevented in one or more
releases before reaching users. For example, a fixed issue might be prevented from integra-
tion in order to assess the impact that this fixed issue may have on the system as a whole.
While one can often speculate, it is not always clear why some fixed issues are integrated
immediately, while others are prevented from integration. In this paper, we empirically study
the integration of 20,995 fixed issues from the ArgoUML, Eclipse, and Firefox projects.
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Our results indicate that: (i) despite being fixed well before the release date, the integration
of 34% to 60% of fixed issues in projects with traditional release cycle (the Eclipse and
ArgoUML projects), and 98% of fixed issues in a project with a rapid release cycle (the
Firefox project) was prevented in one or more releases; (ii) using information that we derive
from fixed issues, our models are able to accurately predict the release in which a fixed
issue will be integrated, achieving Areas Under the Curve (AUC) values of 0.62 to 0.93;
and (iii) heuristics that estimate the effort that the team invests to fix issues is one of the
most influential factors in our models. Furthermore, we fit models to study fixed issues that
suffer from a long integration time. Such models, (iv) obtain AUC values of 0.82 to 0.96
and (v) derive much of their explanatory power from metrics that are related to the release
cycle. Finally, we train regression models to study integration time in terms of number of
days. Our models achieve R2 values of 0.39 to 0.65, and indicate that the time at which
an issue is fixed and the resolver of the issue have a large impact on the number of days
that a fixed issue requires for integration. Our results indicate that, in addition to the back-
log of issues that need to be fixed, the backlog of issues that need to be released introduces
a software development overhead, which may lead to a longer integration time. Therefore,
in addition to studying the triaging and fixing stages of the issue lifecycle, the integration
stage should also be the target of future research and tooling efforts in order to reduce the
time-to-delivery of fixed issues.

Keywords Integration time · Integration delay · Software maintenance · Mining software
repositories

1 Introduction

Prior studies have explored several approaches that help developers to estimate the time that
is needed to fix issues (Anvik et al. 2005; Anbalagan and Vouk 2009; Giger et al. 2010;
Kim and Whitehead 2006; Marks et al. 2011; Weiß et al. 2007; Zhang et al. 2013). We use
the term issues to broadly refer to bugs, enhancements, and new features. Such studies are
useful for project managers who need to allocate development resources effectively in order
to deliver new releases on time without exceeding budgets.

On the other hand, users and contributors care most about when an official release of
a software project will include a fixed issue rather than the time needed to fix that issue.
Although an issue may have been fixed, it might take some time before shipping that fix
through an official release. For instance, Jiang et al. (2013) find that a reviewed code change
might take an additional 1–3 months to be integrated into the Linux kernel. In this paper,
we use the term integration time to refer to the time that a fixed issue takes to be officially
released.

Although one can often speculate, it is not always clear why a fixed issue would not be
integrated into an upcoming official release. When the reasons for a long integration time
are unclear, users and contributors may become frustrated. For example, on a Firefox issue
report, a stakeholder asks: “So when does this stuff get added? Will it be applied to the next
FF23 beta? A 22.01 release? Otherwise?”1

To investigate the integration time of fixed issues, we perform an empirical study of
20,995 issues that are collected from the ArgoUML, Eclipse, and Firefox projects. We

1https://bugzilla.mozilla.org/show bug.cgi?id=883554.
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investigate (1) how long the integration time of fixed issues typically is—in terms of number
of releases and number of days—and (2) which issues suffer from a long integration time in
a given project. To that end, this paper addresses six research questions that are structured
along two dimensions of integration time as described below.

1.1 Concrete Integration Time

– RQ1: How often are fixed issues prevented from being released? 34% to 60% of fixed
issues within traditional release cycles (the ArgoUML and Eclipse projects) skip at
least one release. Furthermore, the delivery of 98% of the fixed issues skip at least one
release in the rapidly released Firefox project.

– RQ2: Does the stage of the release cycle impact integration time? We observe that
issues that are fixed during more stable stages of a release cycle tend to have a shorter
integration time. We also observe that fixed issues are unlikely to skip releases solely
because they were fixed near a code freeze period.

– RQ3: How well can we model the integration time of fixed issues? Our models that
are fit to study the integration time in terms of number of releases obtain AUC values
of 0.62 to 0.93. Our models that are fit to study the integration time in terms of number
of days obtain R2 values of 0.39 to 0.65.

– RQ4: What are the most influential attributes for modeling integration time? We find
that the total fixing time that is spent per resolver in the release cycle plays an influential
role in modeling the integration time in terms of releases of a fixed issue. On the other
hand, we find that the time at which an issue is fixed and the resolver of the issue have
a large influence on the integration time in terms of days. Moreover, attributes that are
related to the state of the project are the most influential in both kinds of integration
time.

1.2 Prolonged Integration Time

– RQ5: How well can we identify the fixed issues that will suffer from a long integra-
tion time? Our models outperform naı̈ve models like random guessing, achieving AUC
values of 0.82 to 0.96.

– RQ6:What are the most influential attributes for identifying the issues that will suffer
from a long integration time? Attributes that are related to the state of the project, such
as the integration workload, the period during which issues are fixed, and the fixing
time that is spent per resolver are the most influential attributes for identifying the issues
that will suffer from a long integration time.

Our results suggest that the total time that is invested per resolver in fixing the issues
of a release cycle has a large influence later in the integration stage. Also, the number of
issues that are waiting to be integrated can influence integration time. Such results warn
us that in addition to studying the triaging and fixing stages of the issue life cycle, the
integration stage should also be the target of research and tooling efforts in order to reduce
the time-to-delivery of fixed issues.

1.3 Paper Organization

We report our work based on the guidelines that are provided by Singer (1999). In Section 2,
we describe the necessary concepts to understand our research. In Section 3, we present
the methodology of our empirical study. In Sections 4 and 5, we present the results with
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respect to the integration time and prolonged integration time dimensions. In Section 6,
we discuss and relate our observations along the studied integration time dimensions. We
perform an exploratory analysis on the backlog of issues of each studied project in Section 7.
In Section 8, we discuss the threats to the validity of our conclusions, while we position our
work with respect to previous studies (including our own prior work (Costa et al. 2014),
which is a precursor to this extended study) in Section 9. Finally, we draw conclusions and
proposes avenues for future work in Section 10.

2 Background & Definitions

In this section, we present the main concepts necessary to understand our study.

2.1 Issue Reports

One of the main factors that drives software evolution are the issues that are filed by users,
developers, and quality assurance personnel. Below, we describe what issues are and the
major steps that are involved in fixing and integrating them.

We use the term issue to broadly refer to bugs, enhancements, and feature requests. Issues
can be filed by users, developers, or quality assurance personnel. Software teams use Issue
Tracking Systems (ITS) to track development progress. Examples of ITSs are Bugzilla2 and
JIRA.3

Each issue in an ITS has a unique identifier, a brief description of the nature of the issue,
and a variety of other metadata. Large software projects receive plenty of issue reports
every day. For example, the Eclipse and Firefox projects respectively received an average
of 65 and 89 issue reports daily (from January to October 2016) on their respective ITSs.4,5

The number of filed issues is usually greater than the size of the development team. After
an issue has been filed, project managers and team leaders triage them, i.e., assign them
to developers, while denoting the urgency of the issue using priority and severity fields
(Anvik et al. 2006).

After being triaged, issues are then fixed, i.e., solutions to the described issues are pro-
vided by developers. Generally speaking, an issue may be in an open or closed state. An
issue is marked as open when a solution has not yet been found. We consider UNCON-
FIRMED, CONFIRMED, and IN PROGRESS as open states. An issue is considered closed
when a solution has been found. Usually, a resolution is provided with a closed issue. For
example, if a developer made code changes to fix an issue, the state and resolution combi-
nation should be RESOLVED-FIXED. However, if the developer could not reproduce the
bug, then the state and resolution may be RESOLVED-WORKSFORME.6 The lifecycle of
an issue is documented in detail on the Bugzilla website.7

Finally, fixed issues must be integrated into an official release (i.e., releases that are
intended for end users) to make them available. The releases that contain such fixed issues

2https://www.bugzilla.org/.
3https://www.atlassian.com/software/jira.
4https://bugs.eclipse.org/bugs.
5https://bugzilla.mozilla.org/.
6https://bugzilla.mozilla.org/page.cgi?id=fields.html.
7https://www.bugzilla.org/docs/4.2/en/html/lifecycle.html.
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could be made available every few weeks or months, depending on the project release policy.
Releasing every few weeks is typically referred to as a rapid release cycle, while releasing
monthly or yearly is typically referred to as a traditional release cycle (Mantyla et al. 2013).

2.2 Integration Time

Integration time refers to the time between the moment at which an issue is fixed (i.e.,
changed to the RESOLVED-FIXED status) to the time at which such a fix is shipped to
end users. In this study, we analyze two dimensions of integration time. The first dimension
is comprised of two kinds of integration time, which are: (i) integration time in terms of
number of releases and (ii) integration time in terms of days. As for the second dimension,
we study (iii) prolonged integration time.

Definition 1—Integration time in terms of releases. Figure 1 provides an example of
how we measure delivery delay. To compute the delivery delay in terms of number of
releases, we count the number of releases that a given addressed issue is prevented from
integration. In Fig. 1, Issue #1 is reported at time t1, addressed at t3, and shipped at time
t5. The delivery delay in terms of releases for Issue #1 is the number of official releases
that are shipped between t3 and t5. Therefore, Issue #1 has a delivery delay of one release.
Definition 2—Integration time in terms of days. We compute integration time in terms
of days using an approach that is similar to Definition 1. However, instead of counting
the number of official releases, we count the number of days between t3 and t5 (see
Fig. 1). For example, if the number of days between ti and t(i+1) in Fig. 1 is 30 days, the
integration time of issue #1 would be 60 days.
Definition 1—Prolonged integration time. Prolonged integration time occurs when the
integration time in terms of days (see Definition 2) for a given fixed issue is above one
Median Absolute Deviation (MAD) of the median integration time of a studied project.
MAD is the median of the absolute deviations from one distribution’s median. The higher
the MAD, the greater is the variation of a distribution with respect to its median (Howell
2005; Leys et al. 2013).

Issue
#1

Time

T1
Issue #1 is 
reported

T2
A release 
is shipped

R1 R2 R3

T4
A release
is shipped

T3
Issue #1
is fixed

T5
A release
is shipped

Issue
#1

Shipped After 1 release

Fig. 1 An illustrative example of how we compute integration time
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3 Method

In this section, we describe the studied projects, explain how the data was collected and how
we study the kinds of integration time that are presented in Section 2.2.

3.1 Subjects

To study integration time, we analyze three subject projects: Firefox, ArgoUML, and
Eclipse, which are from different domains and sizes. ArgoUML is a UML modeling tool
that includes support for all standard UML 1.4 diagrams.8 Eclipse is a popular open-source
IDE, of which we study the JDT core subproject.9 Firefox is a popular Web browser.10

Figure 2 shows an exploratory analysis of our studied projects. We plot the proportion of
issues per priority and severity level, as well as the proportion of issues that were fixed and
not fixed (e.g., resolution is WONTFIX or WORKSFORME). We observe that for the major-
ity of the issues, the priority and severity levels remain at the default value. For example,
the vast majority of the priority values are set to P3 (in the Eclipse and ArgoUML projects)
or “- -” (in the Firefox project). We also observe that Firefox is the project with the highest
proportion of fixed issues.

Table 1 shows the studied period and range of releases, as well as the number of releases
and issue reports. We focus our study on the releases for which we could recover a list
of issue IDs from the release notes. We collected a total of 20,995 issue reports from the
three studied projects. Each issue report corresponds to an issue that was fixed and could be
mapped directly to a release.

In our analyses regarding integration time of fixed issues, we also investigate the release
cycle stages of our subject projects in which a given issue is fixed. To perform this inves-
tigation, we study the release engineering process of each subject project. In the following
subsections, we provide an overview of the release engineering processes of our subject
systems.

3.1.1 Eclipse Release Engineering

The release engineering process of the Eclipse project is composed by nightly/integration
builds followed by milestones builds and release candidate builds. Nightly or integration
builds are the least stable builds and are tested by the early adopters who are following
the eclipse developer mailing lists. For example, integration builds are not supposed to be
announced through links, blogs, or wikis that are related to the respective Eclipse project.11

Milestone and release candidate builds are more stable and can be announced by external
links. The goal is to reach external early-adopters from outside the developer mailing lists.
However, the external links that refer to such builds should warn that they are not as stable
as official releases. The main difference between a release candidate build and a milestone
build is that a release candidate is followed by a rigorous test pass.12

8http://argouml.tigris.org/.
9https://www.eclipse.org/.
10https://www.mozilla.org.
11https://eclipse.org/projects/dev process/development process.php#6 Development Process.
12https://www.eclipse.org/eclipse/development/plans/freeze plan 4 4.php.
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Fig. 2 Exploratory analysis of the studied projects. We present the ratio of fixed issues per priority, severity,
and the ratio of fixed vs. not fixed yet issues (e.g., WONTFIX or WORKSFORME)

The test process consists of intensive testing activities that are performed by the devel-
opment team and community to find regression and stop-ship bugs. If stop-ship bugs are
found late in the process, the release schedule may be slipped to accommodate the fixes for
such bugs.12

After the test pass stage, a fix pass stage starts. The fix pass stage consists on prioritizing
and fixing the most severe bugs that are found at the test pass stage. By the end of a fixing
pass stage, another release candidate is produced. The process of performing test passes and
fix passes is done through several iterations (i.e., many release candidates are produced).
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Table 1 Overview of the studied projects

Project Studied period Releases # of # fixed Median time between

releases issues releases (weeks)

Eclipse (JDT) 03/11/2003–12/02/2007 2.1.1–3.2.2 11 3344 16

Firefox 05/06/2012–04/02/2014 13–27 15 3121 6

ArgoUML 18/08/2003–15/12/2011 0.14–0.34 17 14530 26

We present the number of studied releases, issues, the studied period and the median time between releases

The last release candidate is submitted to a code freeze stage. The code freeze is a period
during which the rules to integrate changes in the software project becomes more strict. For
example, new changes may be integrated only if they are solving special requirements such
as translations or documentation fixing.12 Such a period is important because it helps the
development team to stabilize the project just before creating an official release.

Official releases are categorized as major, minor, and service releases.13 Major releases
include API changes. Minor releases add new functionalities but are compatible with the
API of prior versions. Finally, service releases include bug fixes only (i.e., without signifi-
cant addition of new functionality). Both major and minor releases have to pass through a
release review process. A release review aims at getting feedback about the release cycle
that was performed. The main goal is to find areas of improvement and if the development
process is being open and transparent.14

3.1.2 Firefox Release Engineering

The release engineering process of the Firefox project uses a rapid (or a short) release cycle,
i.e., a release cycle of 6 weeks duration. In addition, the process also include pipelining
releases (also known as release training) as a means to stabilize the official release, so that
they can be shipped to end users.

The pipelining process consists on developing releases through several channels. As the
release progresses through these channels, the stability of the release increases and less
severe bugs are likely to be found. The Firefox project team uses four channels to develop
releases: NIGHTLY, AURORA, BETA, and RELEASE channels.15

The NIGHTLY channel produces a release every night (i.e., as soon as features are
ready). This nightly release is built from the mozilla-central repository and has the low-
est stability of the channels.16 The AURORA channel produces a release every six weeks.
However, some new features may be disabled if they are not stable enough. At the end of
the cycle of the AURORA channel (the sixth week), the release management team decides
which issues that were further stabilized are good enough to migrate to the BETA channel.
Again, the goal of the BETA channel is to stabilize the new features and disable the fea-
tures that are not stable enough by the end of the cycle. Finally, the features that are stable

13https://www.eclipse.org/projects/handbook/#release.
14https://www.eclipse.org/projects/handbook/#release-review.
15http://mozilla.github.io/process-releases/draft/.
16https://hg.mozilla.org/mozilla-central/.
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enough to survive at the BETA channel are moved further to the RELEASE channel, from
which an official major release is produced.15

In the Firefox release engineering process, the release schedule is not changed to accom-
modate issues that are not stable enough by the end of the release cycle. Instead, the
development team holds such issues back to be shipped in future releases when a greater
degree of stability is achieved.15 Also, an issue may be integrated directly into the AURORA
or BETA channels (i.e., the issue is uplifted), but such cases are exceptions (e.g., a very
critical security issue should be solved).15

The Firefox project also ships Extended Support Releases (ESR) that are based on
prior official Firefox releases. ESRs are meant for institutions such as business organiza-
tions, schools, and universities that must manage their Firefox desktop client. ESRs provide
one year of support for security and bug fixes of prior Firefox official releases. ESRs
are important for organizations that cannot follow the pace that the Firefox major release
evolves.17

3.1.3 ArgoUML Release Engineering

In the ArgoUML release engineering process, there are five kinds of releases: development,
alpha, beta, stable, and stable patch releases. Development releases are the least stable,
while stable releases are the official releases intended to the users.18

Development releases are generated during the development stage. The development
stage may take from one to several months. During this stage, the development team strives
to produce a development release each month. Development releases are not supposed to
be used by end users. Such releases are only advertised to users if there is a purpose of
recruiting new developers to implement and test new features.18

After the development stage, the alpha stage starts. The alpha stage is also referred to as
the enhancement freeze point. All of the enhancements that are not stable enough before the
start of the alpha stage are not included into the stable release. According to the ArgoUML
documentation, the alpha stage usually takes a “couple of weeks” and the development team
strives to make a release each week.18

The alpha stage is followed by the beta stage. The beta stage is also referred to as the
bug-fix freeze point, i.e., all of the (less severe) bug-fixes that could not be completed before
the start of the beta stage are omitted from the stable release. Such remaining bugs are listed
on the “known problems” document that is to be published along with the stable release.
Beta releases are more stable than alpha releases and are also referred as release candidates.
For example, beta releases should not contain high priority bugs (i.e., issues for which the
priority is either P1 or P2). The beta stage is supposed to last for a couple of weeks with a
beta release being generated each week. Finally, the beta stage is marked by intense testing
activities after each release candidate. When the team is confident that the beta release is
stable enough, the official stable release is generated with no code changes from the last
beta release.18

The last kind of ArgoUML release is the stable patch release. Stable patch releases are
generated if critical bugs are found after the publication of the stable release. The stable

17https://www.mozilla.org/en-US/firefox/organizations/faq/.
18http://argouml.tigris.org/wiki/How to Create a Stable Release.
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Fig. 3 Data collection. An overview of our approach to collect the needed data for studying integration time

patch release contains the fixes for the eventual critical bugs that are found upon stable
releases.18 The ArgoUML team strives to ship a stable release every 8 months.19

3.2 Study Procedures

Figure 3 provides an overview of our data collection approach—how we collect and orga-
nize the data to perform our empirical study. We create a relational database that describes
the integration of fixed issues in the studied projects. We briefly describe our data sources,
and each step involved in the database construction process.

3.2.1 Step 1: Fetch Integrated Issue IDs

In Step 1, we consult the release notes of each studied project to identify the release into
which an fixed issue was integrated. A release note is a document that describes the content
of a release. For example, a release note might provide information about the improvements
that are included in a release (with respect to prior releases), the new features, the fixed
issues, and the known problems. The Eclipse, ArgoUML, and Firefox projects publish their
release notes on their respective websites.20

Unfortunately, release notes may not mention all of the fixed issues that have been inte-
grated into a release. This limitation hinders the possibility of studying issues that were
fixed but have not been integrated because we cannot claim that an issue that is not listed
in a release note was not integrated (e.g., the development team may forget to list some
integrated fixed issues). However, the fixed issues that are listed in a release note are more
likely to have been shipped to the end users (i.e., it is unlikely that a release note would
mention a fixed issue that was not integrated). Hence, we choose to use release notes as a
means of linking fixed issues to releases in our database, despite the incompleteness of such
release notes—the release where we claim that an issue has been integrated is more likely
to be correct (we elaborate more on this point in Section 8).

The output of Step 1 is a list of the issue IDs that have been fixed and integrated. To
retrieve such a list for the Eclipse and Firefox projects, we wrote a script to extract the
listed issue IDs from all the release notes and insert them into our database. The retrieved

19http://argouml.tigris.org/wiki/Strategic Planning.
20https://www.mozilla.org/en-US/firefox/releases/.
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issue IDs are used to fetch the issue report meta-data from the corresponding ITSs. In our
database, we also store the dates and version number of each release.

3.2.2 Step 2: Fetch Issue Data

We use the collected issue IDs from Step 1 to retrieve information from their corresponding
issue reports, which are recorded in the ITSs. Not all release notes of the ArgoUML project
list the fixed issues of an official release. When they do, only a few issues are listed (e.g.,
1–4).21 To increase our sample of fixed issues for the ArgoUML project, we rely on its ITS.
We use the milestone field of the issue reports to approximate the release into which an issue
was integrated. Development milestones are counted towards the next official releases. For
example, the development milestone 0.33.722 is counted towards the official release 0.34.
The output of Step 2 is the raw issue report data that is collected from ITSs.

Finally, to determine when an issue was fixed, we use the latest change to the
RESOLVED-FIXED status of that issue. For example, if an issue has its status changed
from RESOLVED-FIXED to REOPENED at t1 and the status changes back to RESOLVED-
FIXED at t2 (without changing again), we consider the corresponding date of t2 as the
fix date. Also, we use the RESOLVED-FIXED status rather than the VERIFIED-FIXED
status because we found that all of the issues that are mapped to releases went through
the RESOLVED-FIXED state before being integrated, while only a small percentage went
through the VERIFIED-FIXED state. For example, only 17% of fixed issues in the Firefox
project went through the VERIFIED-FIXED state. We focus on issues that were resolved as
RESOLVED-FIXED because they involve changes to the source and/or test code that must
be integrated into a release before becoming visible to end users.

3.2.3 Step 3: Compute Metrics

After collecting the release date for each fixed issue, we compute all of the attributes that
may share a relationship with the kinds of integration time that are presented in Section 2.2.

We first compute the integration time of fixed issues in terms of number of releases (see
Definition 1). We group this kind of integration time into four buckets: next, after-1, after-2,
and after-3-or-more. The next bucket contains fixed issues that are integrated immediately.
The after-1, after-2, and after-3-or-more buckets contain fixed issues for which integration is
skipped by one, two, or three or more releases, respectively. Figure 4 shows the distribution
of the fixed issues among buckets for each studied project. The ArgoUML project has the
highest percentage of fixed issues that fall into the next bucket (66%), whereas next accounts
for only 2% and 38% of fixed issues in the Firefox and Eclipse projects, respectively.

Next, we compute the integration time in terms of number of days (see Definition 2).
Figure 5 shows the distribution of integration time in terms of days for each studied project.
The Firefox project has the least skewed distribution of integration time. We use both
Definitions 1 and 2 of integration time to address RQ1–RQ4.

Finally, we identify issues that have a long integration time in each studied project (see
Definition 3). We group fixed issues into long time and normal time buckets. Fixed issues,
of which integration time is at least one MAD above the median integration time of a subject
project, fall into the long time bucket. Figure 5 shows that a long integration time in one

21http://argouml.tigris.org/wiki/ReleaseSchedule/Past Releases in Detail.
22http://argouml.tigris.org/issues/show bug.cgi?id=4914.
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Fig. 4 Distribution of fixed issues per bucket. The issues are grouped into next, after-1, after-2, and after-3-
or-more buckets

project may be a normal integration time in another project (e.g., the ArgoUML project vs.
the Firefox project). This figure highlights the importance of performing this analysis for
each project individually. We use this data to address RQ5 and RQ6.

We use exploratory models to study the relationship between attributes of fixed issues
(e.g., severity and priority) and integration time. Our goal is to understand which attributes
are important for modeling the integration time of fixed issues.

3.3 Research Questions

In this subsection, we present the research questions of our study. We present the motivation
and research approach for each RQ.

Fig. 5 Integration time in terms
of days. The medians are 166,
107, and 146 days for the
Eclipse, Firefox, and ArgoUML
projects, respectively
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3.3.1 RQ1: How Often are Fixed Issues Prevented from Being Released?

RQ1: Motivation Users and contributors care most about the time for a fixed issue to
become available rather than the time duration to fix it. In this regard, it is important to
investigate whether fixed issues are being integrated immediately (e.g., in the next possible
release) or not because a long integration time may frustrate users. In RQ1, we investigate
how often fixed issues are being prevented from integration. The analysis of RQ1 is our first
step toward understanding how long is the integration time of fixed issues.

RQ1: Approach We compute the integration time of fixed issues in terms of number of
releases and number of days (as shown in Definitions 1 and 2). Next, we analyze if fixed
issues are being prevented from being released solely because their fix occurs in the end
of their release cycle. For example, Rahman and Rigby (2015) observe a rush-to-release in
which many issues are fixed near the release date. For each fixed issue, we compute the fix
timing metric, which is the ratio between (i) the remaining number of days—after an issue
is fixed—for an upcoming release over (ii) the duration in terms of days of its respective
release cycle (see (1)). The fix timing values range from 0 to 1. A fix timing value close
to 1 indicates that an issue is fixed early in the release cycle because the numerator and
denominator of (1) would be close to each other.

# days that is remaining for a release

release cycle duration
(1)

3.3.2 RQ2: Does the Stage of the Release Cycle Impact Integration Time?

RQ2: Motivation An issue that is fixed before the production of a release candidate may
receive more attention, which may lead to a shorter integration time. Analysis of the impact
of integration phase may help researchers and practitioners to reflect on how to reduce
integration time or to increase awareness about it.

RQ2: Approach For each studied project, we tag fixed issues according to the stage dur-
ing which they were fixed. For example, if an issue was fixed during the beta stage of the
Firefox project (i.e., at the BETA channel), we tag such issue as being “fixed during beta”.
We then compare the distributions of integration time in terms of days (Definition 2) among
the different stages of a release cycle. For example, in the Firefox project, we compare the
distributions of integration time between the NIGHTLY, ALPHA, and BETA stages, since
the RELEASE stage corresponds to the official release itself.

To check whether there is at least one statistically significant difference among distribu-
tions of integration time, we use the Kruskal-Wallis test (Kruskal and Wallis 1952), which
checks if two or more samples are likely to come from the same population (null hypothe-
sis). However, when there are three or more distributions, the Kruskal-Wallis test does not
indicate which distribution is statistically different with respect to the others. For specific
comparisons between distributions, we use the Dunn test (Dunn 1964). The Dunn test shows
which distribution is statistically different from the others. To counteract the problem of
multiple comparisons (Dunn 1961), we use the Bonferroni correction to adjust our obtained
p-values.

Finally, we use Cliff’s delta to check the magnitude of the observed differences (Cliff
1993). For example, two distributions may be statistically different, but the magnitude of
such a difference may be negligible. The higher the value of the Cliff’s delta, the greater
the magnitude of the difference between distributions. We use the thresholds provided by
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Romano et al. (2006) to perform our comparisons: delta < 0.147 (negligible), delta < 0.33
(small), delta < 0.474 (medium), and delta >= 0.474 (large).

We also compute the fix timing metric (as in RQ1). However, this time we check whether
fixed issues are being prevented mostly because they were performed near a code freeze
date—rather than the upcoming release date. Equation (2) shows how we adapt (1) to com-
pute the fix timing metric to account for the code freeze date. For the Eclipse project, we
consider the date of the last release candidate as the code freeze stage, while we consider
the date of a beta stage as the code freeze stage in the ArgoUML project.

# days that is remaining for a code freeze

release cycle duration
(2)

3.3.3 RQ3: How Well Can We Model the Integration Time of Fixed Issues?

RQ3: Motivation Several studies have proposed approaches to investigate the time that is
required to fix an issue (Anbalagan and Vouk 2009; Giger et al. 2010; Kim and Whitehead
2006; Marks et al. 2011; Weiß et al. 2007; Zhang et al. 2013). These studies could help to
estimate when an issue will be fixed. However, we find that a fixed issue may be prevented
from integration before reaching users. Even though most issues are fixed well before the
next release date, many of them are not integrated until a future release. For users and
contributors, however, knowing the integration time of fixed issues is of great interest. In
RQ3, we investigate if we can accurately model integration time in terms of number of
releases and days (i.e., Definitions 1 and 2 of integration time). Our explanatory models
are important to understand which attributes may impact integration time of fixed issues.
Moreover, such kind of models could be used by practitioners to estimate when a fixed issue
will likely be integrated.

RQ3: Approach To study when a fixed issue is integrated, we collect information from
both the ITSs and VCSs of the studied systems. We train models using attributes that are
grouped in the following families: reporter, resolver, issue, project, and process.

– Reporter: refers to the attributes regarding an issue reporter. Issues that are reported
by a reporter who is known to report important issues may receive more attention from
the integration team.

– Resolver: refers to team members that fix issues. Issues that are fixed by experienced
resolvers may be easier to integrate and ship to end users.

– Issue: refers to the attributes of issues reports. Project teams use this information to
triage, fix, and integrate issues. For example, integrators may not be able to properly
assess the importance and impact of poorly described issues, which may increase
integration time.

– Project: refers to the status of the project when a specific issue is fixed. If the project
team has a heavy integration workload, i.e., many fixed issues waiting to be integrated,
the integration of newly fixed issues are likely to have a longer integration time.

– Process: refers to the process of fixing an issue. A fixed issue that involved a complex
process (e.g., long comment threads, large code changes) could be more difficult to
understand and integrate.
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Tables 2 and 3 describe the attributes that we compute for each family. For each attribute,
Tables 2 and 3 present our rationale for using it in our models. We choose these families
of attributes because (i) we intend to study a variety of perspectives that might influence
integration time and (ii) they are simple to compute using the publicly available data sources
(e.g., ITSs and VCs) from our studied systems.

We train exploratory models to study how many releases a fixed issue is likely to be
prevented from integration (Definition 1). To study integration time in terms of releases,
we use the random forest classification technique (Breiman 2001). Random forest is an
ensemble learning technique that operates by combining a multitude of decision trees at
the training stage. Each decision tree uses a random subset of the attributes that are used
to explain one phenomenon (e.g., integration time). Next, each decision tree votes for the
response bucket (e.g., next or after-1 release(s)) of a given instance. The majority of the
votes for a given bucket will be the actual response of the random forest. We choose random
forests because they are known to have a good overall accuracy and to be robust to outliers as
well as noisy data. Model robustness is important for our study because the data in the ITSs
tend to be noisy (Herraiz et al. 2008). In our study, we use the random forest implementation
provided by the bigrf R package.23

Because our data has a temporal order, i.e., the values of the attributes for each instance
depends on the time at which the issue was fixed, we evaluate our models by adapting the
Leave One Out Cross Validation (LOOCV) technique. In our LOOCV variation, we first
sort the data by the date at which the issues were fixed. Then, we train models to predict
each next instance of the data. For example, if issue A is fixed before issue B, we train a
model using A and test it using B. Furthermore, if issues A and B are fixed before C, we
train a model using A and B and test it using C. This process is repeated until we test a
model by using the last fixed issue in our data.

We evaluate the performance of our random forest models using the precision, recall, F-
measure, and AUC. We also use Zero-R models as a baseline to compare the results of our
models, since no prior models have been proposed to model integration time. We describe
each one below.

Precision (P) measures the correctness of our models in estimating the number of releases
that are necessary to ship a fixed issue. An estimation is considered correct if the estimated
integration time is the same as the actual integration time of a fixed issue. Precision is com-
puted as the proportion of correctly estimated integration time for each studied integration
bucket (e.g., next, after-1).

Recall (R) measures the completeness of a model. A model is considered complete if
all of the fixed issues that were integrated in a given release r are estimated to appear in r .
Recall is computed as the proportion of issues that actually appear in a release r that were
correctly estimated as such.

F-measure (F) is the harmonic mean of precision and recall, (i.e., 2×P×R
P+R

). F-measure
combines the inversely related precision and recall values into a single descriptive statistic.

Area Under the Curve (AUC) is used to evaluate the degree of discrimination achieved
by the model (Hanley and McNeil 1982). For instance, AUC can be used to evaluate how
well our models can distinguish between fixed issues that are prevented from integration
into one or two releases. The AUC is the area below the curve plotting the true positive rate
against false positive rate. The value of AUC ranges between 0 (worst) and 1 (best). An area
greater than 0.5 indicates that the explanatory model outperforms a random predictor. We

23Bigrf package https://cran.r-project.org/src/contrib/Archive/bigrf/.
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Table 2 Reporter, Resolver and Issue families

Family Attributes Value Definition (d)|Rationale (r)

Reporter Experience Numeric d: Experience in filing reports for the project. It is measured

by the number of previously reported issues of a reporter.

r: An issue reported by an experienced reporter might be

integrated quickly.

Integration speed Numeric d: Measured by the median integration time of prior issues

that were reported by a given reporter.

r: If issues that are reported by a given reporter are

integrated quickly, future issues reported by the same

reporter may also be integrated quickly.

Resolver Experiencea Numeric d: Experience in fixing issues for the project. It is measured

by the number of prior issues that were fixed by a given

resolver.

r: An issue that is fixed by an experienced resolver may be

easier to integrate.

Integration speeda Numeric d: Measured by the median integration time of prior fixed

issues.

r: If the prior fixed issues of a particular resolver were

quickly integrated, future issues that are fixed by the same

resolver may also be quickly integrated.

Issue Component Nominal d: The component to which an issue is being reported.

r: Issues that are related to a given component

(e.g., authentication) might be more important,

and thus, might be integrated more quickly than issues

that are reported to less important components.

Platform Nominal d: The platform specified in the issue report.

r: Issues regarding one platform (e.g., MS Windows) might

be integrated more quickly than issues that are reported to

less important platforms.

Severity Nominal d: The severity level that is recorded in the issue report.

r: severe issues (e.g., blocking) might be integrated faster

than other issues. Panjer observed that the severity of an

issue has a large effect on its lifetime for the Eclipse

project (Panjer 2007).

Priority Nominal d: The priority that is assigned to the issue report.

r: High priority issues will likely be integrated before low

priority issues.

Stack trace attacheda Boolean d: We check whether the issue report has a stack trace

attached in its description.

r: A stack trace attached in the description of the issue

report may provide useful information with respect to the

cause of the issue, which may quicken the integration of

that fixed issue (Schroter et al. 2010).
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Table 2 (continued)

Family Attributes Value Definition (d)|Rationale (r)

Description size Numeric d: Description of the issue measured by the number of

words in its description.

r: Issues that are well-described might be easier to

integrate than issues that are difficult to understand.

Attributes of the Reporter, Resolver and Issue families that are used to model the integration time of fixed
issues
aNew attributes that did not appear in our previous work (Costa et al. 2014)

computed the AUC value for a given bucket b (e.g., next) on a binary basis. In other words,
the probabilities of the instances were analyzed as pertaining to a given bucket b or not. For
example, when computing the AUC value for the next bucket, the AUC value is computed
by verifying if an instance belongs to the next bucket or not. This process is repeated for
each bucket. Therefore, each bucket has its own AUC value.

Zero-R models are naı̈ve models that always select the bucket with the highest number of
instances. For example, a Zero-R model trained with the Firefox project data would always
select after-2 as the response for each instance.

We also study the integration time in terms of number of days (Definition 2). We train
linear regression models (Olkin 2002) (using the ordinary least squares technique) to study
integration time in terms of days. Linear regression is an approach for modeling relation-
ships between a dependent variable y and one or more explanatory variables x. When a
single explanatory variable is used, the approach is called simple linear regression, whereas
when several explanatory variables are used, the approach is called multiple linear regres-
sion (Freedman 2009). Regression models fit a curve of the form y = β0 +β1X1 +β2X2 +
... + βnXn. The y variable is the response variable (i.e., integration time in terms of days
in our case), while the set of X variables represent explanatory variables that may share a
relationship with y. The set of β coefficients represent weights given by the model to adjust
the values of X to better estimate the response y. The set of explanatory variables that we
use in our study are the attributes that are outlined in Tables 2 and 3.

We use the guidelines that are provided by Harrell (2001) to fit our regression models.
Figure 6 provides an overview of our model fitting approach. In Step 1, we compute the
budget of degrees of freedom that our data can accommodate while keeping the risk of
overfitting low. We compute this budget by using the formula n

15 , where n is the number
of issues in our dataset and 15 is a denominator that is recommended by Harrell (2001). In
Step 2, we verify the normality assumption of ordinary least squares, i.e., it assumes that the
response variable y should follow a normal distribution. Through analysis of the integration
time values (i.e., the y variable), we find that it does not follow a normal distribution, and
hence, we apply a log transformation [ln(y + 1)] to mitigate such skewness.

In Step 3, we use a variable clustering analysis (Sarle 1990) to remove high correlated
variables. For variables within a cluster that have a correlation of |ρ| > 0.7, we choose only
one of them to include in our models. In Step 4, we check the redundancy of the surviving
explanatory variables. Redundant variables do not add explanatory power to the models
and can distort the relationship between explanatory and response variables. To remove
redundant variables we use the redun function from the rms R package, which fits models
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Table 3 Project and Process families

Family Attributes Value Definition (d)|Rationale (r)

Project Backlog of issues Numeric d: The number of issues in the RESOLVED-FIXED state

at a given time.

r: Having a large number of fixed issues at a given time

might create a high workload on team members, which

may affect the number of fixed issues that are integrated.

Queue positiona Numeric d: rank of the issue
all fixed issues , where the rank is the position in time at

which an issue was fixed in relation to others in the current

release cycle. The rank is divided by all of the issues that

were fixed until the end of the current release cyle.

r: An issue that is near the front of the queue is more likely

to be quickly integrated.

Fixing time Numeric d:

total∑

issue=1
fixing time

# of resolvers , the sum of the time (measured in terms

per resolvera of days) to fix the issues of the current release cycle over

the number of resolvers that worked in that release cycle

(Brooks 1975).

r: The higher the total fixing time that is spent per resolver

in fixing issues the less the likelihood of a fixed issue

experiencing a large integration time.

Backlog of issues Numeric d: The number of issues in the RESOLVERD-FIXED state

per resolvera at a given time for each resolver of the development team.

r: Having a large number of fixed issues per resolver might

create a workload on that resolver to integrate the issue.

Process Number of Numeric d: The number

impacted files of files that are linked to an issue report.

r: Integration time might be related to a high number of

impacted files because more effort would be required to

properly integrate code modifications (Jiang et al. 2013).

Number of activities Numeric d: An activity is an entry in the issue’s history.

r: A high number of activities might indicate that much

work was necessary to fix the issue, which can impact

the integration time of an issue. (Jiang et al. 2013).

Number of comments Numeric d: The number of comments of an issue report.

r: A large number of comments might indicate the

importance of an issue or the difficulty to understand it

(Giger et al. 2010), which might impact integration

time (Jiang et al. 2013).

Number of tosses Numeric d: The number of times that the issue’s assignee has

changed.

r: The number of changes in the issue assignee might

indicate a complex issue to fix or a difficulty in

understanding such an issue, which can impact

integration time. One of the reasons for changing the
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Table 3 (continued)

Family Attributes Value Definition (d)|Rationale (r)

assigned developer is because additional expertise

may be required to fix an issue

(Jiang et al. 2013; Jeong et al. 2009).

Comment interval Numeric d: The sum of all of the time intervals between

comments (measured in hours) divided by the total

number of comments.

r: A short comment time interval indicates that an active

discussion took place, which suggests that the issue is

important. (Jiang et al. 2013).

Churn Numeric d: The sum of the added lines and removed lines in the

code repository.

r: A higher churn suggests that a great amount of work

was required to fix the issue, and hence, verifying the

impact of integrating the modifications may also be

difficult (Nagappan and Ball 2005; Jiang et al. 2013).

Fixing timea Numeric d: The number of days between the moment at which

an issue is opened the moment at which the issue

is fixed (i.e., the issue reaches the RESOLVED-FIXED

status) (Giger et al. 2010).

r: Issues that are fixed quickly might indicate that the

necessary code changes are easy to integrate, which

may quicken integration time.

Attributes of the Project and Process families that are used to model the integration time of a fixed issue
aNew attributes that did not appear in our previous work (Costa et al. 2014)

to explain each explanatory variable using the other explanatory variables. We then discard
those explanatory variables that could be estimated with an R2 ≥ 0.9 (the default threshold
of the redun function).

In the following step (Step 5), we identify which explanatory variables may benefit from
a relaxation of the linear relationship with the response variable. To identify such variables,
we calculate the Spearman multiple ρ2 between the response and explanatory variables. We
spend more of our budgeted degrees of freedom on the explanatory variables that obtain the
higher ρ2 values.

In Step 6, we fit our regression models. To assess the fit of our models (Step 6.1) we
use the R2 metric. The R2 measures the “variability explained” of the dependent variable
that is analyzed (Steel and James 1960). For example, a R2 of 0.4 indicates that 40% of
the variability of the dependent variable is being modeled (“explained”) by the explanatory
variables—the remaining 60% of the variability may be due to external factors that are not
being modeled or cannot be controlled. The interpretation of R2 values depends on the
analysis that is being performed. For example, when prediction is the main goal, the R2

values should be very high (e.g., around 0.7 to 0.9) (Choi and Varian 2012). Low R2 values
(e.g., around 0.20) may also generate important insights in fields such as psychology or
social sciences (Bersani et al. 2016).
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Fig. 6 Training regression models. We follow the guidelines that are provided by Harrell (2001) to train
regression models, which involves nine activities, from data collection to model validation. The results of
Steps 6.2 and is presented in RQ4

We also use the Mean Absolute Error (MAE) to verify how close are the estimates of
our models (ŷ) to the actual observations (y). Then, we assess the stability of our models
by using the bootstrap-calculated optimism of the R2. The bootstrap-calculated optimism
is computed by fitting models using bootstrap samples of the original data. For each model
fit to a bootstrap sample, we subtract the R2 of such a model from the model fit to the
original data. This difference is a measure of the optimism in the original model. In this
work, we obtain the bootstrap-calculated optimism by computing the average optimism
obtained using 1,000 bootstrap samples. The smaller the bootstrap-calculated optimism the
more stable are our models (Efron 1986).

3.3.4 RQ4: What are the Most Influential Attributes for Modeling Integration Time?

RQ4: Motivation In RQ3, we found that our models can accurately model the integration
time of fixed issues. To fit our models, we use attributes that we collect from ITSs and
VCSs. As described in Tables 2 and 3, the attributes belong to different families that are
related to fixed issues. In RQ4, we investigate which attributes are influential to estimate
the integration time of fixed issues. We present the approaches and results of RQ4 for each
studied kind of integration time (Definitions 1 and 2).

RQ4: Approach To identify the most influential attributes for estimating the integration
time in terms of releases (Definition 1), we compute the variable importance score for
each attribute of our models. The variable importance implementation that we use in our
study is available within the bigrf R package. This implementation computes the importance
score based on Out Of the Bag (OOB) estimates. Each attribute of the dataset is randomly
permuted in the OOB data. Then, the average a of the differences between the votes for the
correct bucket in the permuted OOB and the original OOB is computed. The result of a is
the importance of an attribute.
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The final output of the variable importance is a rank of the attributes indicating their
importance for the model. Hence, if a specific attribute has the highest rank, then it is the
most influential attribute that our explanatory model is using to estimate integration time.
Finally, we use the models with the largest training corpus when performing the LOOCV to
compute the variable importance scores.

We perform Step 6.2 of Fig. 6 to identify the most influential attributes in our models that
we fit to study the integration time in terms of number of days (Definition 2). We evaluate
the explanatory power of each attribute by using the Wald χ2 maximum likelihood test (Step
6.2). The larger the χ2 value, the greater the power that a particular attribute has to model
the variability of integration time in terms of days. We use the anova function of the rms
R package.

3.3.5 RQ5: How Well Can We Identify the Fixed Issues that Will Suffer from a Long
Integration Time?

RQ5: Motivation End users may get frustrated if a fixed issue that s/he is interested has a
long integration time. Furthermore, if such a integration time is unexpected for a particular
system (e.g., it is very long), the frustration of users may increase considerably because they
are not used to such a integration time. In RQ5, we investigate if we can accurately identify
which fixed issues are likely to have a long integration time. This investigation helps us
mitigate the problem of prolonged integration time of fixed issues.

RQ5: Approach We calculate prolonged integration time (Definition 3) as described in
Section 3.2.3. Indeed, in Fig. 5, we observe that the distribution of integration time of the
Eclipse and ArgoUML projects have more variation than the distribution of the Firefox
project.

The hexbin plots of Fig. 7 show the relationship between the integration time in terms
of releases and days. Hexbin plots are scatterplots that represent several data points with
hexagon-shaped bins. The lighter the shade of the hexagon, the more data points that fall
within the bin. Indeed, Fig. 7 suggests that the longer the integration time in terms of days,
the longer is the integration time in terms of releases. This tendency is more clear in the
Eclipse and Firefox projects. In the ArgoUML project, we observe fixed issues with a longer
integration time in terms of releases but with a shorter integration time in terms of days. For
example, we observe fixed issues with a integration time of four releases that have a shorter
integration time in terms of days than fixed issues with a integration time of three releases.
Such behaviour in the ArgoUML project may be explained by the skew in the distance
between the releases of this project (cf. Fig. 9).

Table 4 shows the medians and MADs for each project to identify fixed issues that have a
long integration time. For example, a fixed issue have a long integration time in the Firefox
project when that issue takes more than 123 days to be integrated. Figure 8 shows the pro-
portion of issues that have a long integration time per project. We observe that 13%, 12%,
and 22% of the fixed issues in the Eclipse, Firefox, and ArgoUML projects have a long
integration time, respectively.

To train our exploratory models, we produce a dichotomous response variable Y , where
Y = 1 means that a fixed issue has a long integration time, while Y = 0 means that the
integration time of that issue is normal. Finally, we train random forest models to study
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Fig. 7 Relationship between
integration time in terms of
releases and days. We observe
that a longer integration time in
terms of releases is associated
with a longer integration time in
terms of days
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whether a given fixed issue is likely to have a long integration time. Similar to RQ2, we
evaluate our models using precision, recall, F-measure, and AUC.

3.3.6 RQ6: What are the Most Influential Attributes for Identifying the Issues
that Will Suffer from a Long Integration Time?

RQ6: Motivation RQ6 shows that we can accurately identify whether a fixed issue is
likely to have a long integration time. However, it is also important to understand what
attributes are more influential when identifying fixed issues with long integration time, i.e.,
from which attributes do our models derive the most explanatory power?
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Table 4 Long integration time thresholds

Eclipse Firefox ArgoUML

Median integration time 166 107 146

Median absolute deviation 142 16 131

Long integration time >308 >123 >278

We present the median integration time in terms of days, the MAD, and the long integration time threshold
for each project

RQ6: Approach Similar to RQ4, in this research question, we analyze our explanatory
models by computing the variable importance score of the attributes.

4 Results for the Concrete Integration Time Dimension

In this section, we present the results with respect to the concrete integration time dimen-
sion. This dimension involves the investigation of integration time in terms of number
of releases and number of days (Definitions 1 and 2). This dimension is comprised of
RQ1–RQ4. Below, we present the obtained results for each RQ.

4.1 RQ1: How Often are Fixed Issues Prevented from Being Released?

Fixed Issues UsuallyMiss the Next Release in the Firefox Project Figure 9 shows the
difference between the studied projects in terms of the time interval between their releases.
The median time in days for the Firefox project (42 days) is approximately 1

4 that of the
ArgoUML project (180 days), and 1

3 that of the Eclipse project (112 days). Unlike the
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Fig. 8 Fixed issues that have a long integration time. We present the proportion of fixed issues that have
a long integration time per project. 13%, 12%, and 22% of the fixed issues of the Eclipse, Firefox, and
ArgoUML projects have a long integration time, respectively
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Fig. 9 Number of days between the studied releases of the ArgoUML, Eclipse, and Firefox projects. The
number shown over each boxplot is the median interval

Eclipse and Firefox projects, the distribution for the ArgoUML project is skewed. In addi-
tion, Fig. 4 shows that the vast majority of fixed issues for the Firefox project is integrated
after-2 releases, whereas for the Eclipse and ArgoUML projects, the majority is integrated
in the next release.

The reason for the difference may be due to the release policies that are followed in each
project. For example, Fig. 9 shows that the Firefox project releases consistently every 42
days (six weeks), whereas the time intervals between the releases of the ArgoUML project
vary from 50 to 220 days. Indeed, the release guidelines for the ArgoUML project state
that the ArgoUML team should release at least one stable release every 8 months (see
Section 3.1.3). The delivery consistency of the Firefox releases might lead to fixed issues
being prevented from a greater number of releases, since the Firefox project rigidly adhere
to a six-week release schedule despite accumulating issues that could not be integrated (see
Section 3.1.2).

Although a fixed issue usually misses the next release in the Firefox project, issues are
usually shipped faster when compared to the other projects. Indeed, Fig. 5 shows that fixed
issues in the Firefox project take a median of 107 days to be released, while it takes 166 and
146 days in the Eclipse and ArgoUML projects, respectively.

34% to 60% of Fixed Issues had Their Integration Prevented from at Least One
Release in the Traditionally Released Projects Figure 4 shows that 98% of the fixed
issues in the Firefox project are prevented from integration in at least one release. However,
for the projects that adopt a more traditional release cycle, i.e., the ArgoUML and Eclipse
projects, 34% to 60% of the fixed issues are prevented from integration in at least one
release. This result indicates that even though an issue is fixed, integration may be prevented
by one or more releases, which can frustrate end users.

Many Issues that were Prevented from Integration are Fixed Well Before the
Upcoming Release Date Fixed issues could be prevented from integration because they
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were fixed late in the release cycle, e.g., one day or one week before the upcoming release
date. To check whether fixed issues are being prevented from integration mostly because
they are being fixed late in the release cycle, we compute the fix timing metric.

Figure 10 shows the distribution of the fix timing metric for each project. The smallest
fix timing median is observed for the Eclipse project, which is 0.45. For the ArgoUML
and Firefox projects, the median is 0.52 and 0.53, respectively. The fix timing medians are
roughly in the middle of the release. Moreover, the boxes extend to cover between 0.25
and 0.75. The result suggests that, in the studied projects, issues that are prevented from
integration are usually fixed 1

4 to 3
4 of the way through a release. Hence, it is unlikely that

most fixed issues are prevented from integration solely because they were fixed too close to
an upcoming release date.

The integration of 34% to 60% of the fixed issues in the traditionally released projects
and 98% in the rapidly released project were prevented from integration in at least one
release. Furthermore, we find that many issues which integration was prevented, were
fixed well before the releases from which they were omitted.

4.2 RQ2: Does the Stage of the Release Cycle Impact Integration Time?

Issues that are Fixed DuringMore Stable Stages of a Release Cycle Have a Shorter
Integration Time Figure 11 shows the distributions of integration time (in terms of days)
per each release cycle stage of the studied projects. For the Eclipse project, the stages are
divided into milestones, RCs (Release Candidates), and code freeze (see Section 3.1.1).
Indeed, issues that are fixed during RCs have a shorter integration time when compared to
issues that were fixed during milestone releases. For the difference between milestones and
RCs, we observe a p = 1.47 × 10−52 and a large effect-size of delta = 0.63. All of the

0.52
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0.53

0.00
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0.50
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ArgoUML Eclipse Firefox
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Fig. 10 Fix timing metric. We present the distribution of the fix timing metric for fixed issues that are
prevented from integration in at least one release
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Fig. 11 Integration time during
release cycle stages. Issues that
are fixed during more stable
stages of a release cycle are likely
to have a shorter integration time
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Table 5 Statistical analysis

Comparison Kruskal-Wallis (p) Dunn (p.adjusted) Effect-size (delta)

Eclipse Milestones vs RCs 1.87 × 10−51 1.47 × 10−52 (large) 0.63

RCs vs Code freeze 0.56 Not apply

Milestones vs Code freeze 0.02 (negligible) 0.09

Firefox Nightly vs Aurora 2.99 × 10−76 5.07 × 10−49 (medium) 0.40

Aurora vs Beta 1.72 × 10−03 (medium) 0.40

Nightly vs Beta 1.43 × 10−31 (large) 0.57

ArgoUML Development vs Alpha 2.73 × 10−135 7.24 × 10−89 (large) 0.94

Alpha vs Beta 3.98 × 10−09 (large) 0.98

Development vs Beta 1.14 × 10−78 (large) 0.99

An overview of the p-values and deltas that are observed during our statistical analyses

p-values and deltas of our statistical analysis are shown in Table 5. Even though integra-
tion time seems to be larger during the code freeze stage, we do not observe a significant
p-value when comparing the code freeze stage to the other stages. In fact, only ten issues
were fixed during the code freeze stage in our data, which impairs statistical observations of
trends in such a stage.

For the Firefox project, we observe that integration time tends to be shorter as fixes are
performed along more stable stages. For example, by comparing the integration time values
between the NIGHTLY and AURORA stages, we observe a p = 5.1 × 10−49 and a medium
effect-size of delta = 0.40 (the other comparisons are shown in Table 5).

Finally, for the ArgoUML project, we also observe a trend of shorter integration time
as the fixes are performed during more stable stages of release cycles. For instance, when
we compare the integration time of fixed issues of the alpha and beta stages, we obtain a
p-value of 3.98 × 10−09 and a large effect-size of delta = 0.98.

Many Issues that are Prevented from Integration are Fixed Well Before the Code
Freeze Stage of Their Respective Release Cycle We compute the fix timing metric that
we present in RQ1. However, instead of counting the number of days until an upcoming
release, we count the number of days until an upcoming code freeze stage (2). Our goal is
to check whether fixed issues are being prevented from integration mostly because they are
being fixed too close to a code freeze stage (i.e., a period during which integration of new
code changes would likely be minimal).

In Fig. 12, we show the fix timing values for the Eclipse and ArgoUML projects, since
both projects adopt a code freeze stage. For the Eclipse project, the code freeze starts after
the last release candidate, while for the ArgoUML project, the code freeze starts at the
beginning of the beta stage (see Section 3.3.2). Naturally, we observe a drop in the fix timing
values, since both code freeze stages start considerably before the official release dates.
Nevertheless, we observe that even after correcting for the code freeze stages of the Eclipse
and ArgoUML projects, it is unlikely that fixed issues are being prevented from integration
solely because of an approaching code freeze stage. For instance, although the median fix
timing for the ArgoUML project dropped from 0.52 to 0.35, the development team would
still have 2 months to integrate a fixed issue—since the median duration of a release cycle
in the ArgoUML project is 180 days.
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Fig. 12 Fix timing values for the
code freeze period. The median
fix timing values drop from 0.45
and 0.52 to 0.41 and 0.35 in the
Eclipse and ArgoUML projects,
respectively
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We observe that issues that are fixed during more stable stages of release cycles are
associated with a shorter integration time. We also observe that fixed issues are unlikely
to be prevented from integration solely because they were fixed near an upcoming code
freeze stage.

4.3 RQ3: How Well Can We Model the Integration Time of Fixed Issues?

4.3.1 RQ3: Results for Integration Time in Terms of Releases

Our Explanatory Models Obtain a Median Precision of 0.81 to 0.88 and a Median
Recall of 0.29 to 0.92 Figure 13 shows the precision, recall, F-measure, and AUC of our
explanatory models. The bar charts show the values that we observe for each bucket. The
values of precision, recall, F-measure, and AUC are also shown in Table 6.

The best precision/recall values that we obtain for the Eclipse, Firefox, and ArgoUML
projects are related to the after-2 (F-measure of 0.88), after-2 (F-measure of 0.96), and
next (F-measure of 0.97), respectively. However, for buckets with low number of instances,
precision/recall values decrease considerably. For instance, the F-measures that are obtained
by our models for the Firefox project are considerably low for the next, after-1, and after-3-
or-more buckets (0.41, 0.28 and 0.45, respectively).

Moreover, our models obtain median AUCs between 0.62 to 0.96, which indicate that our
model estimations are better than random guessing (AUC of 0.5). Summarizing the results,
our models obtain a median precision of 0.81–0.88 (median) and a median recall of 0.29–
0.92. Our models provide a sound starting point for studying the release into which a fixed
issue will be integrated.

OurModels Obtain Better F-measure Values than Zero-R We compared our models
to Zero-R models as a baseline. For all test instances, Zero-R selects the bucket that contains
the majority of the instances. Hence, the recall for the bucket containing the majority of
instances is 1.0. We compared the F-measure of our models to the F-measure of Zero-R
models. We choose to compare to the F-measure values because precision and recall are
very skewed for Zero-R.
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Fig. 13 Performance of random
forest models. We show the
values of Precision, Recall,
F-measure, and AUC that are
computed using the LOOCV
technique
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For the Firefox project, Zero-R obtains an F-measure of 0.95 for the after-2 bucket,
whereas our model obtains an F-measure of 0.96 for the same bucket. For the Eclipse
project, Zero-R always selects next and obtains a F-measure of 0.58, while our model
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Table 6 The precision, recall, F-measure, and AUC values that are obtained for the Eclipse, Firefox, and
ArgoUML projects

Bucket Precision Recall F-measure AUC

Eclipse

Next 0.95 0.71 0.81 0.84

After-1 0.75 0.89 0.81 0.88

After-2 0.82 0.95 0.88 0.94

After-3-or-more 0.80 0.98 0.88 0.98

Firefox

Next 0.99 0.26 0.41 0.63

After-1 0.74 0.17 0.28 0.58

After-2 0.92 0.99 0.96 0.61

After-3-or-more 0.81 0.32 0.45 0.66

ArgoUML

Next 0.96 0.98 0.97 0.93

After-1 0.89 0.87 0.88 0.92

After-2 0.67 0.31 0.42 0.65

After-3-or-more 0.88 0.89 0.88 0.94

obtains an F-measure of 0.81. Finally, for the ArgoUML project, Zero-R always selects next
with an F-measure of 0.84, whereas our model obtains an F-measure of 0.97. These results
show that our models yield better F-measure values than naı̈ve techniques like Zero-R or
random guessing (AUC = 0.5) in the majority of cases.

We are able to accurately model how many releases a fixed issue is likely to be pre-
vented from integration. Our models outperform naı̈ve techniques, such as Zero-R and
random guessing, obtaining AUC values of 0.62 to 0.96.

4.3.2 RQ3: Results for Integration Time in Terms of Days

Our ExplanatoryModels ObtainR2 Values of 0.39–0.65 andMAEValues Between
7.8 to 67 Days Our models obtain fair R2 values to model the variability of integration
time in days in the studied projects. Table 7 shows the R2 and MAE values that are obtained
by each of our regression models. The R2 values for the Eclipse, Firefox, and ArgoUML
projects are of 0.39, 0.48, and 0.65, respectively. Additionally, our regression models can

Table 7 Regression results of
model fit Metric/Project Eclipse Firefox ArgoUML

R2 0.48 0.39 0.65

MAE (days) 61 7.8 66

Release cycle duration (median in days) 112 42 180

Error ratio ( MAE
cycle

) 0.54 0.18 0.37

Optimism 0.0267 0.0162 0.0035

Our explanatory models obtain
R2 values between 0.39 to 0.65
and MAE values between 7.8 to
66 days
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provide fair estimations of integration time in days, specially for the Firefox project. For
instance, the median interval in days between releases of the Firefox project is 42 days (see
Fig. 9), while the MAE value for the Firefox project is 7.8 days, which equates to an error
ratio of 18% (see Table 7).

Our ExplanatoryModels Obtain a Good Stability with Bootstrap Calculated Opti-
mism Between 0.0035 to 0.0267 of the R2 Values We also observe that our regression
models are stable. Table 7 shows the bootstrap-calculated optimism of the R2 values of our
models. The optimism for the Eclipse, Firefox and ArgoUML projects are 0.0267, 0.0162,
and 0.0035, respectively. Such results indicate that our explanatory models are unlikely to be
overfitted to our data and that our models are stable enough for us to perform the statistical
inferences that follow.

We are able to accurately estimate the integration time in terms of number of days. Our
models obtain fair 2 values of 0.39 to 0.65. Our exploratory models are quite stable
with a maximum optimism of 0.0267.

4.4 RQ4: What are the Most Influential Attributes for Modeling Integration
Time?

4.4.1 RQ4: Results for Integration Time in Terms of Releases

The Fixing Time per Resolver and Integration Workload Attributes are the Most
Influential Attributes in our Models Figure 14 shows the variable importance values of
the LOOCV of our models. The most influential attribute is the fixing time per resolver. The
fixing time per resolver attribute measures the total time that is spent by each resolver on
fixing issues in a release cycle. The second most influential attributes are integration work-
load attributes (i.e., backlog of issues and backlog of issues per resolver). These integration
workload attributes measure the competition of issues that were fixed but not yet integrated
into an official release.

Our results suggest that the time that is invested by the resolvers on fixing issues have a
strong association with integration time. This could be due to resolvers fixing issues more
carefully—which would lead to a smoother integration of such issues—or issues that were
less complex in overall (e.g., a shorter time was invested), which might simplify the inte-
gration process. A deeper analysis of this attribute would be necessary to better understand
the exact reasons behind this relationship (e.g., consulting the development team through
surveys and interviews).

We also observe that integration workload attributes (i.e., backlog of issues and backlog
of issues per resolver) are the second most influential attributes in the three studied projects.
This finding suggests that the integration backlog introduces overhead that may lead to
longer integration time.

Furthermore, we study the distribution of fixed issues across components in the Firefox
project. Figure 15 shows the top seven components of the Firefox project, each having more
than 400 fixed issues. We analyze the proportion of fixed issues where integration was
prevented in the top seven components. Figure 15 shows that, for buckets next and after-1,
the majority of issues are related to the General component, whereas for after-2 and after-
3-or-more the majority are related to the Javascript engine component. Fixed issues related
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Fig. 14 Variable importance
scores. We show the importance
scores that are computed for the
LOOCV of our models
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Fig. 15 The spread of issues among the Firefox components The darker the colors, the smaller the proportion
of issues that impact that component

to the General component may be easy to integrate, whereas issues related to the Javascript
Engine may require more careful analysis before integration.

Severity and Priority have Little Influence on Integration Time in Terms of
Releases Users and contributors of software projects can denote the importance of an issue
using the priority and severity fields. Previous studies have shown that priority and severity
have little influence on bug fixing time (Tian et al. 2015; Herraiz et al. 2008; Mockus et al.
2002). For example, while an issue might be severe or of high priority, it might be complex
and would take a long time to fix.

However, in the integration context, we expect that priority and severity would be more
influential, since the issues have already been fixed. Even though priority and severity are
often left at their default values (see Section 3.1), one would expect that the integrators
would fast-track the integration of issues for which they care about increasing the levels of
severity or priority. For instance, according to the Eclipse project guidelines for filing issue
reports, a priority level of P1 is used for serious issues and specifies that the existence of a
P1 issue should prevent a release from shipping.24 Hence, it is surprising that priority and
severity play such a small role in determining the release in which a fixed issue will appear.
Indeed, Fig. 14 shows that the priority and severity metrics obtain low importance scores.

Figure 16 shows the percentage of issues with a given priority (y-axis) in a given inte-
gration bucket (x-axis). The integration of 36% to 97% of priority P1 fixed issues had their
integration prevented in at least one release, whereas the integration of 32% to 96% of
priority P2 fixed issues were prevented from integration in at least one release.

In the ArgoUML project, while the majority of priority P1 issues (64%) were integrated
in the next release, 36% of them had their integration prevented in at least one release. For
the Firefox project, 97% of the P1 issues and 96% of the blocker issues were prevented
from integration in at least one release. Finally, for the Eclipse project, 57% of P1 issues
and 49% of blocker issues had their integration prevented in at least one release. Hence, our
data shows that, in the context of issue integration, the priority and severity values that are

24http://wiki.eclipse.org/Development Resources/HOWTO/Bugzilla Use.
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(a) ArgoUML Priority (b) Eclipse Priority (c) Firefox Priority

(d) Eclipse Severity (e) Firefox Severity

Fig. 16 The percentage of priority and severity levels in each studied bucket of integration time. We expect
to see light colour in the upper left corner of these graphs, indicating that high priority/severity issues are
integrated rapidly. Surprisingly, we are not seeing such a pattern in our datasets

recorded in the ITSs have little influence on integration time. Instead, fixed issues might
be prioritized by the level of risk that are associated to them.25 This might explain why the
time that is invested on fixing issues during a release cycle reduces integration time—a risk
of a fixed issue breaking the code would be smaller when more time is invested at fixing
activities.

The total time that is invested in fixing issues of a release cycle and integration work-
load attributes are the most influential attributes in our models. We also find that
priority and severity have little influence in estimating integration time.

4.4.2 RQ4: Results for Integration Time in Terms of Days

Project Family Attributes, Such as the Backlog of Issues and Queue Position Pro-
vide Most of the Explanatory Power of our Models Table 8 shows the explanatory
power of each of the attributes of our models. The two most influential attributes for each
model are shown in bold. Queue position, i.e., the time at which an issue is fixed is the most

25Two issues from our sample were promoted to stabler release channels due to low associated
risk https://bugzilla.mozilla.org/show bug.cgi?id=724145 and https://bugzilla.mozilla.org/show bug.cgi?
id=732962, while another issue was prevented from integration due to code break https://bugzilla.mozilla.
org/show bug.cgi?id=723793.
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influential attribute in all of the models that are fitted to our studied projects. Interestingly,
we observe that resolver integration speed—the median integration time of the previously
resolved issues of a particular resolver—plays an influential role in our models that are fit

Table 8 Explanatory power of attributes

Eclipse Firefox ArgoUML

Wald χ2 1,180 8,560 2,803

Budgeted Degrees of Freedom 87 879 102

Degrees of Freedom Spent 24 33 28

Reporter experience D.F. 1 1 1

χ2 4∗∗∗ ≈ 0 1∗∗

Resolver experience D.F. 1 1 1

χ2 12∗∗∗ ≈ 0∗ ≈ 0

Reporter integration speed D.F. 3 1 2

χ2 16∗∗∗ ≈ 0 1∗

Resolver integration speed D.F. 2 1 4

χ2 22∗∗∗ ≈ 0 9∗∗∗

Fixing time D.F. 2 ⊕ 1

χ2 1∗ 1∗∗

Severity D.F. 6 6 �
χ2 ≈ 0 8∗∗∗

Priority D.F. � 5 5

χ2 5∗∗∗ 1∗

Description size D.F. 1 1 1

χ2 ≈ 0 ≈ 0 ≈ 0

Impacted files D.F. 1 1 1

χ2 ≈ 0 ≈ 0∗∗ ≈
Number of comments D.F. 1 1 1

χ2 2∗∗ 1∗∗∗ ≈ 0

Reassignments D.F. 1 1 1

χ2 ≈ 0 ≈ 0 1∗

Number of activities D.F. 1 1 1

χ2 ≈ 0 ≈ 0 ≈ 0

Interval between comments D.F. 1 1 �
χ2 1∗ ≈ 0

Churn D.F. 1 1 1

χ2 ≈ 0 ≈ 0 1∗∗

Number of concurrent issues D.F. � 2 �
χ2 8∗∗∗

Number of concurrent issues per resolver D.F. 1 2 2

χ2 7∗∗∗ 2∗∗∗ 9∗∗∗

Queue position D.F. 1 4 2

χ2 23∗∗∗ 83∗∗∗ 67∗∗∗
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Table 8 (continued)

Eclipse Firefox ArgoUML

Fixing time per resolver D.F. 1 2 4

χ2 7∗∗∗ ≈ 0∗∗ 8∗∗∗

We present the χ2 proportion and the degrees of freedom that are spent for each attribute. The χ2 of the two
most influential attributes of each model are in bold
�Discarded during correlation analysis
⊕Discarded during redundancy analysis
�The variable does not apply to the dataset
∗p < 0.05
∗∗p < 0.01
∗ ∗ ∗p < 0.001

for the Eclipse and ArgoUML projects. Moreover, we also observe that integration work-
load attributes (i.e., backlog of issues, and backlog of issues per resolver) are very influential
in our models that are fit for the Firefox and ArgoUML projects.

The Component to Which an Issue is Fixed has Little Impact in the Integration
Time in Terms of Days To demonstrate this, we group each fixed issue according to the
components that such an issue modifies. We use components that have at least 100 fixed
issues as a threshold for our analysis. We then compare the distribution of integration time
in terms of days in these components. Figure 17 shows the distributions of integration time
in terms of days per component. We do not observe a considerable difference between
distributions of integration time in the ArgoUML or Firefox projects. The distribution of
the “Other” component in the ArgoUML project is more skewed, which is suggestive of its
generic role—such a component may encompass a more broad spectrum of fixed issues. On
the other hand, 99% of the fixed issues in the Eclipse (JDT) project belong to the “Core”
component (thus its skewness). Finally, the “Debug” and “Text” Eclipse components contain
only one fixed issue each.

The workload in terms of backlog of issues awaiting integration and the integration
speed of prior fixed issues of a given resolver play a important role to model integra-
tion time in terms of days. Moreover, the initial queue position is the most important
attribute in all models that we fit to study integration time in terms of days.

5 Results for the Prolonged Integration Time Dimension

In Section 4, we analyze integration time with respect to the number of releases and number
of days that a fixed issue requires before integration. Additionally, we study projects with
different release cycles. For instance, in the Firefox project, we observed that fixed issues
have their integration prevented in two consecutive releases (89% of the fixed issues). How-
ever, a long integration time of one project may be shorter than a typical integration time
of another project. Hence, we set out to complement our previous analyses by studying
fixed issues that suffer a long integration time when compared to other fixed issues of that

Author's personal copy
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Fig. 17 Integration time per
component. The Figure shows
the distributions of integration
time in terms of days for each
component of the studied projects
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particular project. The prolonged integration time dimension addresses RQ5 and RQ6. We
present the results for each RQ below.

5.1 RQ5: How Well Can We Identify the Fixed Issues that Will Suffer
from a Long Integration Time?

Our Models Obtain F-measures from 0.79 to 0.96 Table 9 shows the performance of
our exploratory models. Our models that we train for the Eclipse project obtain the highest
F-measure (0.96). On the other hand, our models trained for the Firefox and ArgoUML
projects obtain F-measures of 0.79 and 0.88, respectively. Moreover, our models obtain
AUC values of 0.82 to 0.96. Such results suggest that our models vastly outperform naı̈ve
models, such as random guessing (AUC value of 0.50).

Our Models Obtain Better F-measure Values than Zero-R For the Eclipse, Fire-
fox, and ArgoUML projects, Zero-R obtain median F-measures of 0.22, 0.22, and 0.36,
respectively. Meanwhile, our explanatory models obtain F-measures of 0.96, 0.79, and
0.88, respectively. Again, such results suggest that our models vastly outperform naı̈ve
classification techniques.

We are able to accurately identify whether a fixed issue is likely to have a long integra-
tion time in a given project. Our models outperform naı̈ve techniques, such as Zero-R
and random guessing, obtaining AUC values from 0.82 to 0.96 (median).

5.2 RQ6: What are the Most Influential Attributes for Identifying the Issues
that Will Suffer from a Long Integration Time?

Long Integration Time is Most Consistently Associated with Attributes of the
Project Family Figure 18 shows the importance scores that are computed for the LOOCV
that we use to evaluate our random forest models. We observe that the attributes that
are related to the project family are the most influential attributes in the projects. The
backlog of issues is the most influential attribute in our Eclipse models, while queue posi-
tion and fixing time per resolver are the most influential attributes in our Firefox and
ArgoUML models, respectively. In addition, we observe that attributes that are related
to workload, such as the backlog of issues and the backlog of issues per resolver are at
least the third most influential attributes in all of our models. Such results suggest that a
long integration time is associated with project-related attributes and that the amount of
fixed issues that are to be integrated also plays a major role to identify a long integration
time.

Table 9 Performance of the
random forest models Eclipse Firefox ArgoUML

Precision 0.97 0.99 0.98

Recall 0.96 0.66 0.80

F-measure 0.96 0.79 0.88

AUC 0.96 0.82 0.89

The table shows the values of
Precision, Recall, F-measure, and
AUC values that are computed
for the LOOCV of our models
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Fig. 18 Variable importance
scores. We show the importance
scores that are computed for the
LOOCV of our models
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Our explanatory models suggest that long integration time is more closely associated
with project characteristics, such as the backlog of issues, queue position, and fixing
time per resolver. Moreover, the backlog of issues plays an influential role in identifying
a long integration time in all of the studied projects.

6 Discussion

The Most Important Attributes Vary as We Study Different Kinds of Integration
Time While we observe that fixing time per resolver is the most influential attribute to
model integration time in terms of releases, the time at which an issue is fixed (queue posi-
tion) is the most influential attribute to model integration time in days. This difference may
be explained by the different focus of these kinds of integration time. The integration time
in terms of releases focuses on the releases from which the integration of fixed issues is pre-
vented. In this context, the fixing time per resolver attribute becomes influential, because it
is a measure of the amount of time that was invested by the team to fix issues, which may
lead to smoother integration of an issue in the upcoming releases. This smoother integration
might be either because issues were fixed more carefully or because complex/risky issues
had the necessary time to become stable enough to avoid breakage.

Integration time in terms of days focuses on the total time that is required to ship a
fixed issue regardless the number of releases that are missed. In this case, the time at which
an issue is fixed in the release cycle becomes more influential (i.e., queue position). For
example, a fixed issue might be shipped faster because it was fixed during a beta stage (see
RQ2), i.e., when the collaborators deal with a narrower backlog of issues so that fixes can
be performed more carefully. The increased focus due to a narrower backlog of issues may
lead the fixed issue to become easier to integrate in the next release cycle.

Moreover, in the Eclipse project, we observe that the speed at which the prior fixed issues
of a particular resolver are integrated influences the integration time of new fixed issues
(resolver integration speed). This result might be an indicator that resolvers/integrators who
are experienced in fixing and integrating fixes for the project may reduce integration time.

As for long integration time, we observe a similar behaviour in our models that are fit to
the ArgoUML and Eclipse projects. The fixing time per resolver attribute and attributes that
are related to the backlog of issues are the most important to identify fixed issues that have
a long integration time. The queue position is the most important attribute to model long
integration time in the Firefox project. One of the major differences between the former
projects (ArgoUML and Eclipse) and the later one (Firefox) is the release cycle strategy that
is adopted—ArgoUML and Eclipse use a more traditional release cycle compared to the
rapid release cycles that are used in the Firefox project. Nevertheless, more empirical anal-
yses are necessary to investigate if there is a relationship between release cycle strategies
and prolonged integration time.

The Backlog of Fixed Issues Awaiting Integration May Introduce an Overhead
that Must be Managed by Software Teams We observe that integration workload
attributes (e.g., backlog of issues and backlog of issues per resolver) are influential in all
studied kinds of integration time. This finding suggests that the overhead that is introduced
by the backlog of fixed issues that are awaiting integration may increase the integration time
as a whole.
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7 Exploratory Data Analysis

7.1 Backlog of Issues per Fixed Issue

We observe that the integration workload in terms of the number of backlog of issues is
an influential attribute in all of the studied projects. Because of this observation, we also
investigate the competition that is due to issues that are waiting for integration per fixed
issue in the release cycle. Figure 19 shows the distributions of the number of competing
issues for a fixed issue of a given release cycle. For each fixed issue, a median of three, two,
and one other issues are competing for integration in the Eclipse, Firefox, and ArgoUML
projects, respectively. The distribution of the Firefox project is equivalent to the Eclipse
project one, even though the Firefox releases are more frequent. This observation might
suggest an intense period of activity in the Firefox release cycles (high rates of integration
and fixing activity).

7.2 Practical Suggestions

In our study, we observe that attributes such as: fixing time per resolver, backlog of issues,
resolver integration speed, and queue position have a considerable impact on the studied
kinds of integration time. As such, we suggest that our investigated attributes could be used
as a starting point in project management tools to track the integration time of fixed issues.
For example, a tool that could automatically track the backlog of issues by using the ITS,
could raise warnings when the backlog for integration crosses a project-specific threshold.
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Fig. 19 Backlog of issues per fixed issue of the current release cycle. The median number of concurrent
fixes per fixed issue for the Eclipse, Firefox, and ArgoUML projects are 3, 2, and 1, respectively
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Such a warning could lead to early integration sessions before the official release deadline,
and prevent log jams in the integration queue.

Our work suggests that the integration stage is also a bottleneck that must be managed
in a software project. Tracking data and developing tools to reduce integration time should
also be the target of the practice and research.

8 Threats to Validity

8.1 Construct Validity

A number of tools were developed to extract and analyze the integration data in the studied
projects. Defects in these tools could have an influence on our results. However, we carefully
tested our tools using manually-curated subsamples of the studied projects, which produced
correct results.

8.2 Internal Validity

The internal threats to validity are concerned with the ability to draw conclusions from the
relation between the explanatory and response variables.

The main threat in this regard is the representativeness of the data. Although the Firefox
and Eclipse projects report the list of fixed issues in their release notes, we do not know
how complete this list truly is. In addition, issues may be incorrectly listed in a release note.
For example, an issue that should have been listed in the release notes for version 2.0 but
only appears in the release note for version 3.0. Such human errors may introduce noise
in our datasets. To explore how correct the release notes are, we draw a random sample
of 120 Firefox fixed issues, each one listed in the release notes of versions 17 to 27. We
verify the corresponding tag that such issues were integrated into in the BETA channel,
i.e., the most stable channel of the Firefox project that lead to the RELEASE channel.26

Indeed, 94% ( 113
120 ) fixed issues were integrated into the corresponding tag that lead to the

release for which the release notes have listed such issues. This sample can be found on the
supplemental material Web page.27

Another threat is the method that we use to map the fixed issues to releases in the
ArgoUML project. This mapping is based on the target milestone which may be more
susceptible to human error. Nonetheless, our results obtained for the Firefox and Eclipse
projects are based on fixed issues that have been denoted in the release notes—and that we
are more confident about their integration time.

In addition, the way that we segment the response variable of our explanatory models is
also subject to bias. For the integration time in terms of releases (Definition 1), we segment
the response variable into next, after-1, after-2, and after-3-or-more. Although we found it
to be a reasonable classification, a different classification may yield different results. Also,
we use at least one MAD above the median as a threshold to split the response variable of
the prolonged integration time (Definition 3) into two categories. A different threshold to
split the response variable may yield different results.

26https://hg.mozilla.org/releases/mozilla-beta/tags.
27http://sailhome.cs.queensu.ca/replication/integration delay/.
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Moreover, the attributes that we considered in our explanatory models are not exhaustive.
We choose a starting set of attribute families that can be easily computed through publicly
available data sources such as ITSs and VCSs. The addition of other attributes would likely
improve model performance. For example, one could study testing or code review effort
that was invested on a fixed issue. Nonetheless, our random forest models performed well
compared to random guessing and Zero-R models with the current set of attributes and
response variable segmentation. With respect to our linear regression models, we base our
observations using models that obtain 39% to 65% of variability explained. Although higher
R2 values are usually targeted in research, we provide a sound starting point of exploratory
models for studying integration time phenomena—especially in a field that involves human
intervention, such as software engineering.

Finally, the main limitation of our exploratory models (i.e., random forests and linear
regressions) is that we cannot claim a causal relationship between our exploratory vari-
ables (i.e., the studied attributes) and integration time. Instead, our conclusions are based on
associations that are drawn from the average behavior of our studied projects’ data.

8.3 External Validity

External threats are concerned with our ability to generalize our results. In our work, we
investigated only three open source projects. Although the projects that we considered in
our study are of different sizes and domains, and prescribing to different release policies,
our findings may not generalize to other projects. Replication of this work in a large set of
projects is required in order to reach more general conclusions.

9 Related Work

Estimating the effort and time required to fix an issue has become an important project
planning activity. To assist developers and project managers in this regard, several studies
have proposed different approaches to estimate effort and time required to triage and to fix
issues (Anvik et al. 2005; Hooimeijer and Weimer 2007; Anbalagan and Vouk 2009; Giger
et al. 2010; Kim and Whitehead 2006; Marks et al. 2011; Weiß et al. 2007; Zhang et al.
2013). In each of the following subsections, we describe prior work about triaging, fixing,
and integrating issues.

9.1 Our Prior Work

This paper is an extended version of our prior work (Costa et al. 2014). We extend our prior
work to:

1. Expand the set of explanatory attributes (Tables 2 and 3) to include:

(a) The time to fix an issue, i.e., from OPENED to RESOLVED-FIXED.
(b) An indicator of whether or not a stack trace has been attached to the issue report.
(c) The time at which an issue is fixed during the current release cycle (queue position).
(d) Attributes that are related to the resolvers of issues (resolver experience and

resolver integration speed).
(e) Heuristics that estimate the effort that was invested in fixing the issues of a given

release cycle (fixing time per resolver)
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(f) The number of fixed issues that are waiting to be integrated, normalized by the
size of the team (backlog of issues per resolver)

2. Study fixed issues that suffer from a long integration time (RQ5 and RQ6 in Section 5).

3. Study integration time in terms of days (RQ3 and RQ4 in Section 4).

4. Study the relationship between the components of the studied systems and integration
time (RQ4 in Section 4).

5. Perform an exploratory analysis of how release cycle stages are related with integration
time (RQ2).

6. Analyze the backlog of issues that are waiting to be integrated, normalized by the
number of issues that were fixed in a given release cycle (Section 7).

7. Outline key insights for practitioners based on our findings (Section 7).

9.2 Triaging Issues

Triaging issues is the process of deciding which issues have to be fixed, and assigning the
appropriate developer to them (Anvik et al. 2006). This decision depends of several factors,
such as the impact of the issue on the software, or how much effort is required to fix the
issue. Projects usually receive a high number of issue reports. Issue reports come from a
diverse audience that is usually larger than the developer team. Hence, effective triaging of
issue reports is an important means of keeping up with user demands.

Hooimeijer and Weimer (2007) built a model to classify whether or not an issue report
will be “cheap” or “expensive” to triage by measuring the quality of the report. Based on
their findings, the authors state that the effort required to maintain a software system could
be reduced by filtering out reports that are “expensive” to triage. Saha et al. (2014) studied
long lived issues, i.e., issues that were not fixed for more than one year. They found that
the time to assign a developer and fix such issues is approximately two years. Our work
complements these prior studies by investigating the time to integrate issues once they are
fixed rather than the time to assign a developer to fix the issue.

9.3 Fixing Issues

Once an issue is properly triaged, the assigned developer starts to fix it. Kim and Whitehead
(2006) computed the needed time to fix issues in the ArgoUML and PostgreSQL projects.
They found that the issue-fixing time for their studied projects ranges from 100 to 200 days.
To estimate the required time to fix issues, some approaches use the similarity of an issue
to existing issues (Weiß et al. 2007; Zhang et al. 2013). For example, Weiß et al. (2007)
used the title and description of a newly reported issue to find similar issues on the Jira ITS
of the JBoss project. The authors used the Apache Lucene framework to find the similar
issues. The effort that is needed to fix a newly reported issue is computed based on the aver-
age fix time of its similar issues. Other approaches train prediction models using different
machine learning techniques (Panjer 2007; Anbalagan and Vouk 2009; Giger et al. 2010;
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Guo et al. 2010; Marks et al. 2011) to estimate the needed time to fix an issue. For example,
Panjer (2007) used Decision Trees, Logistic Regression models, and the Naı̈ve Bayes algo-
rithm to estimate the lifetime of issues, i.e., the total time between the date of the NEW
status and the date of the RESOLVED-FIXED status. Moreover, Guo et al. (2010) used logis-
tic regression models to predict the probability that a new issue will be fixed. The authors
trained the model on Windows Vista issues and obtained a precision of 0.68 and recall of
0.64 when tested on Windows 7 issue reports. These approaches focus on estimating the
time that is required to fix an issue.

Other recent empirical studies investigate the significance of attributes that are used to
estimate the needed time to fix issues. Bhattacharya and Neamtiu (2011) performed uni-
variate and multivariate regression analyses to capture the significance of four attributes in
issue reports. Their results indicate that more attributes are required to train better predic-
tion models. Herraiz et al. (2008) studied the impact of issues’ severity and priority levels
on the required time to fix issues. The authors used one way analysis of variance to study
significant differences among the priority and severity levels that are assigned to the issues
of the Eclipse project. Based on their results, the authors suggest to reduce the severity and
priority levels to three options only. Zhang et al. (2012) investigated the delays that are
incurred by developers in the process of fixing issues. To do so, they extracted the initial
and final dates of issues fixing activity from interaction logs. The authors used the collected
information to analyze delays in the fixing process. Three dimensions related to issues were
investigated: characteristics of issue reports, source code, and code changes. They found
that attributes such as severity, operating system, issue description, and comments are likely
to impact the delays in the process of fixing issues. Similar to Zhang et al. (2012), we use
attributes that are related to issue reports to train explanatory models. However, we aim to
understand which attributes are influential in the integration time of fixed issues rather than
the needed time to fix issues. In addition, we investigate why severity and priority levels are
not relevant to distinguish issue reports that are fixed and integrated more quickly compared
to others. Our work advances the state of the art by studying how much time a fixed issue
may require before reaching end users.

9.4 Integrating Issues

Jiang et al. (2013) studied attributes related to patch integration decisions in the Linux ker-
nel. A patch is a record of changes that is applied to a software system to fix an issue. To
identify such attributes, the authors trained decision tree models and conducted top node
analysis. Among the attributes that are studied, developer experience, patch maturity, and
prior subsystem are found to play an influential role in patch acceptance and integration
time. Similar to Jiang et al. (2013), we also investigate the integration of fixed issues.
However, we focus on several kinds of integration time rather than integration decisions.

Choetkiertikul et al. (2017) and Morakot et al. (2015) studied the risk of delaying the
resolution of issues. For example, if an issue is resolved after its assigned due date, such
an issue is considered to be delayed. Choetkiertikul et al. (2017) achieved a predictive per-
formance of 79% precision, 61% recall, 72% F-measure, and AUCs above 80% using their
predictive models. In addition, Morakot et al. (2015) studied the risk of delaying the reso-
lution of a particular issue by analyzing the relationship that such an issue has with other
issues. For example, if issue A blocks issue B and issue A was delayed, what is the risk of
issue B to be delayed as well? The authors achieved predictive performance of 46%–97%
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precision, 46%–97% recall, and AUCs of 78%–95%. Our work complements the aforemen-
tioned work by studying the needed time to deliver fixed issues to end users rather than
studying the risk of delaying the resolution of a particular issue.

10 Conclusions

Once an issue is fixed, what users and code contributors care most about is when the soft-
ware is going to reflect such a fixed issue, i.e., when the integration occurs. However, we
observed that the integration of several fixed issues was delayed for a considerable amount
of time. It was not clear why certain fixed issues take longer to be integrated than others.
We performed an empirical study of 20,995 issues from the ArgoUML, Eclipse and Firefox
projects. In our study, we:

– find that despite being fixed well before an upcoming release, 34% to 60% of the fixed
issues were prevented from integration in more than one release in the ArgoUML and
Eclipse projects. Furthermore, 98% of the Firefox project issues had their integration
prevented in at least one release.

– train random forest models to model the integration time of a fixed issue. Our models
obtain a median AUC values between 0.62 to 0.96. Our models outperform baseline
random and Zero-R models.

– compute variable importance to understand which attributes are the most important
in our random forest models to study integration time. Heuristics that estimate the
effort that teams invest in fixing issues are the most influential in our models to study
integration time in terms of number of releases.

– find that priority and severity have little impact on our exploratory models for inte-
gration time. Indeed, 36% to 97% of priority P1 fixed issues were prevented from
integration in at least one release.

– find that a shorter integration time is associated with fixes that are performed during
more controlled stages of a given release cycle.

– observe that the time at which issues are fixed and the resolvers of the issues have
great impact on estimating the integration time of a fixed issue. Our explanatory models
obtain R2 values between 0.39 to 0.65.

– verify that our models that identify fixed issues that have a long integration time
outperform random guessing and Zero-R models, obtaining AUC values of 0.82 to 0.96.

– find that the time at which an issue is fixed (queue position), the integration workload
(in terms of the backlog of fixed issues), and the heuristics that estimate the effort that
teams invest in fixing issues (fixing time per resolver), are the most influential attributes
for issues that have a a long integration time.

Our work provides insights as to why some fixed issues are integrated prior to others.
Our results suggest that characteristics of the release cycle are the ones that have the largest
impact on integration time. Therefore, our findings highlight the importance of research
and tooling that can support integrators of software projects. It is important to improve the
integration stage of a release cycle, because the availability of a fixed issue in a release is
what users and contributors care most about.

As part of our future work, we intend to perform a qualitative study (e.g., surveys and
interviews) using our subject projects to better understand why a longer integration time
occurs during the development of a software project to explain our findings in terms of
developers’ behavior.
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