
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Review Participation in Modern Code Review
An Empirical Study of the Android, Qt, and OpenStack Projects

Patanamon Thongtanunam · Shane McIntosh ·
Ahmed E. Hassan · Hajimu Iida

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-016-9452-6

Abstract Software code review is a well-established software quality practice. Recently,
Modern Code Review (MCR) has been widely adopted in both open source and proprietary
projects. Our prior work shows that review participation plays an important role in MCR
practices, since the amount of review participation shares a relationship with software qual-
ity. However, little is known about which factors influence review participation in the MCR
process. Hence, in this study, we set out to investigate the characteristics of patches that:
(1) do not attract reviewers, (2) are not discussed, and (3) receive slow initial feedback.
Through a case study of 196,712 reviews spread across the Android, Qt, and OpenStack
open source projects, we find that the amount of review participation in the past is a sig-
nificant indicator of patches that will suffer from poor review participation. Moreover, we
find that the description length of a patch shares a relationship with the likelihood of receiv-
ing poor reviewer participation or discussion, while the purpose of introducing new features
can increase the likelihood of receiving slow initial feedback. Our findings suggest that the
patches with these characteristics should be given more attention in order to increase review
participation, which will likely lead to a more responsive review process.

Keywords Code Review · Review Participation · Developer Involvement

Patanamon Thongtanunam, Hajimu Iida
Software Design and Analysis Lab (SDLAB),
Nara Institute of Science and Technology, Japan
E-mail: patanamon-t@is.naist.jp, iida@itc.naist.jp

Shane McIntosh
Department of Electrical and Computer Engineering,
McGill University, Canada
E-mail: shane.mcintosh@mcgill.ca

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL),
Queen’s University, Canada
E-mail: ahmed@cs.queensu.ca

http://dx.doi.org/10.1007/s10664-016-9452-6

2 Patanamon Thongtanunam et al.

1 Introduction

Software code review is a well-established software quality practice of having team mem-
bers critique changes to a software system. Prior work has shown that code reviews can
improve the quality of software products by identifying weakness in changes early in the
development cycle (Fagan, 1999; Shull et al., 2002). Furthermore, recent studies find that
code reviews can improve the quality of changes (Bacchelli and Bird, 2013; Tsay et al.,
2014), and the quality of system design (Morales et al., 2015).

Rigby and Bird (2013) find that current software inspection practices tend to converge
on Modern Code Review (MCR), i.e., a lightweight variant of the software inspection pro-
cess, that has been widely adopted in open source and proprietary projects. Similar to other
collaborative processes, the value that is derived from MCR is dependent on the participa-
tion of team members. However, the lightweight MCR process often lacks mechanisms for
ensuring a base level of review participation, which the formal software inspection process
of the past achieved through formalized inspection meetings and review checklists (Fagan,
1999). Hence, MCR reviews may not foster a sufficient amount of participation and discus-
sion between author and reviewers.

Furthermore, prior work has shown that review participation has become a key aspect
of MCR practices. Rigby et al. (2014) report that the efficiency and effectiveness of code
reviews are most affected by the amount of review participation. Recent work finds that
the review participation metrics (e.g., the number of involved developers in a review) are
associated with the quality of the code review process (Kononenko et al., 2015). Our prior
studies also find that a lack of review participation can have a negative impact on long-
term software quality (McIntosh et al., 2015; Thongtanunam et al., 2015a). Despite the
importance of review participation, little is known about the factors that influence review
participation in the MCR process.

In this paper, we set out to investigate the characteristics of patches that suffer from a
lack of review participation. In particular, we focus on the characteristics of patches that:
(1) do not attract reviewers, (2) are not discussed, and (3) receive slow initial feedback.
We measure patch characteristics using 20 patch and MCR process metrics grouped along
five dimensions, i.e., patch properties, review participation history, past involvement of an
author, past involvement of reviewers, and review environment dimensions. To investigate
the relationship between the patch characteristics and the likelihood that a patch will suffer
from a lack of review participation, we use contemporary regression modelling techniques
that relax the requirement of a linear relationship between explanatory variables and the
response, enabling a more accurate and robust fit of the data (Harrell Jr., 2002). Through a
case study of 196,712 reviews spread across the Android, Qt, and OpenStack open source
projects, we address the following three research questions:

(RQ 1) What patch characteristics share a relationship with the likelihood of a patch
not being selected by reviewers?
We find that the number of reviewers of prior patches, the number of days since the
last modification of the patched files share a strong increasing relationship with the
likelihood that a patch will have at least one reviewer. The description length is also
a strong indicator of a patch that is likely to not be selected by reviewers.

(RQ 2) What patch characteristics share a relationship with the likelihood of a patch
not being discussed?
We find that the description length, churn, and the discussion length of prior patches
share an increasing relationship with the likelihood that a patch will be discussed.

Review Participation in Modern Code Review 3

(2) Invite
reviewers

(3) Examine  
the patch

Pass

(4) Approved patch is
integrated into VCS

repositories

Reviewers

An author
A code review tool

(e.g. Gerrit)
(1) Upload a

patch

Fig. 1 An overview of the MCR process.

We also find that the past involvement of reviewers shares an increasing relationship
with the likelihood. On the other hand, the past involvement of an author shares an
inverse relationship with the likelihood.

(RQ 3) What patch characteristics share a relationship with the likelihood of a patch
receiving slow initial feedback?
We find that the feedback delay of prior patches shares a strong relationship with
the likelihood that a patch will receive slow initial feedback. Furthermore, a patch
is likely to receive slow initial feedback if its purpose is to introduces new features.

Our results lead us to conclude that the review participation history, the description
length, the number of days since the last modification of files, the past involvement of an
author, and the past involvement of reviewers share a strong relationship with the likelihood
that a patch will suffer from poor review participation. Our results highlight the need for
patch submission policies that monitor these factors in order to help development teams
improve review participation in MCR processes.

1.1 Paper Organization

The remainder of the paper is organized as follows. Section 2 provides an overview of the
MCR process and situates this paper with respect to the related work. Section 3 describes
the design of our empirical study, while Section 4 presents the results with respect to our
three research questions. Section 5 discusses the broader implication of our results. Sec-
tion 6 discloses the threats to the validity of our empirical study. Finally, Section 7 draws
conclusions.

2 Related Work & Research Questions

Modern Code Review (MCR) is a lightweight variant of the software inspection process (Bac-
chelli and Bird, 2013). Figure 1 provides an overview of the MCR process. Broadly speak-
ing, the review process is composed of four main steps:

1. An author uploads a patch (i.e., a set of proposed changes) to a code review tool.
2. An author invites a set of reviewers to critique the patch.

4 Patanamon Thongtanunam et al.

3. Reviewers examine the patch and provide feedback by posting a message to a general
discussion thread or inserting inline comments within the patch itself. The author revises
the patch to address the feedback from the reviewers and uploads a new revision.

4. When the patch satisfies the requirements of reviewers, reviewers mark the patch as
ready for integration into upstream VCS repositories. The patch author or reviewers
may also abandon a patch if it does not meet sufficient quality or requires too much
rework.

2.1 Review Participation

Participation and involvement in software development can have a significant impact on sys-
tem quality (Abelein and Paech, 2013). Code review is a task that requires the involvement
of practitioners to critique new software changes (Raymond, 1999). Our recent work shows
that reviewing expertise which is approximated based on review participation can reverse
the association between authoring expertise and defect-proneness (Thongtanunam et al.,
2016). Rigby et al. (2014) report that the level of review participation is the most influential
factor in the code review efficiency. Several studies have suggested that patches should be
reviewed by at least two developers to maximize the number of defects found during the
review, while minimizing the reviewing workload on the development team (Sauer et al.,
2000; Porter et al., 1998; Rigby and Bird, 2013).

Several prior studies find that patches might be ignored during the MCR process (Nuro-
lahzade et al., 2009; Bird et al., 2007). Rigby and Storey (2011) indicate that in email-based
code reviews, patches are ignored if they do not match with the interests of members of the
core development team. In the MCR process, some patches are merged into upstream VCS
repositories even though they do not have any participants involved with their reviews apart
from the patch author.

Our prior work shows that the number of participants that are involved with a review
has a large negative impact on the defect proneness of files in the Qt system, i.e., a file that
is examined by more reviewers is less likely to have post-release defects (Thongtanunam
et al., 2015a). Bavota and Russo (2015) also find that the patches with low number of re-
viewers tend to have a higher chance of inducing new bug fixes. Moreover, our prior studies
measure review investment (i.e., the proportion of patches that are reviewed and the amount
of participation) in a module and examine the impact that review coverage has on software
quality (McIntosh et al., 2014, 2015). We find that patches with low review investment are
undesirable and have a negative impact on code quality. Hence, in this paper, we try to un-
derstand the characteristics of such patches with poor participation. A good understanding
of these characteristics will help projects to create mitigation strategies to avoid such poor
participation, which in turn would help them to avoid future quality problems (given the em-
pirical link that was established by our prior studies (McIntosh et al., 2014, 2015)). Hence,
we set out to address the following research question:

RQ1: What patch characteristics share a relationship with the likelihood of a patch not
being selected by reviewers?

In addition to the number of participants, the amount of discussion that is associated with
a code review also indicates the scrutiny that developers have applied. Careful consideration
of the implications of changes improves their overall quality prior to integration (Bacchelli

Review Participation in Modern Code Review 5

Table 1 Overview of the studied projects. Those above the double line satisfy our criteria for analysis.

Project
Overview

Period Total Patches Avg. #Patches/Yr
Android 2008/10 - 2014/12 (6 Years) 51,721 8,620

Qt 2011/5 - 2014/12 (4 Years) 99,286 33,095
OpenStack 2011/7 - 2014/12 (4 Years) 136,343 45,447

ITK 2010/8 - 2013/11 (4 Years) 4,305 1,435
VTK 2010/10 - 2013/11 (3 Years) 5,605 1,868

and Bird, 2013; Tsay et al., 2014; Thongtanunam et al., 2015a). A review that simply assigns
a review score without any suggestion for improvement nor discussion provides little return
on code review investment. Recent studies have found that the proportion of changes with-
out review discussion shares a positive relationship with the incidence of both post-release
defects (McIntosh et al., 2015), and software design anti-patterns (Morales et al., 2015).
However, it is not known whether there are factors that make a review more susceptible to a
lackluster discussion. To investigate this, we formulate the following research question:

RQ2: What patch characteristics share a relationship with the likelihood of a patch not
being discussed?

While several prior studies extensively investigate the reviewing time (Jiang et al., 2013;
Baysal et al., 2015; Gousios et al., 2014), little is known about the factors that share a re-
lationship with feedback delay, i.e., the time from a patch submission to initial feedback. A
well-functioning code review process should yield responses to a new review request in a
timely manner in order to avoid potential problems in the development process (Bettenburg
et al., 2013). For example, due to continuous software development practices (Fowler and
Foemmel, 2006), it is possible that if a patch receives slow initial feedback, it can become
outdated, requiring updates to be re-applied (and possibly re-implemented) to the latest ver-
sion of the system. Moreover, Rigby et al. (2008) suggest that the earlier that a patch is
reviewed, the lower the risk of deeply embedded defects. Our recent work also finds that
defective files tend to undergo reviews that provide slow initial feedback (Thongtanunam
et al., 2015a). To better understand patches that have a long feedback delay, we formulate
the following research question:

RQ3: What patch characteristics share a relationship with the likelihood of a patch
receiving slow initial feedback?

3 Case Study Design

In this section, we describe the studied projects and present the data preparation, model
construction, and model analysis approaches that we use to address our research questions.

6 Patanamon Thongtanunam et al.

Code
Review
Dataset

(DP-1)
Selecting Data

Patch
Data

(DP-2)
Cleaning Data

(DP-3) Calculating Patch
and MCR Process Metrics

Fig. 2 An overview of our data preparation approach.

3.1 Studied Projects

In order to address our research questions, we perform an empirical study of software
projects that actively use MCR for the code review process, i.e., examine and discuss soft-
ware changes through a code review tool. We began with the review datasets of Android, Qt,
and OpenStack projects which are provided by Hamasaki et al. (2013). The review datasets
describe patch information, reviewer scoring, the involved personnel, and review discus-
sion history. We also expand the review datasets to include reviews from the VTK and ITK
projects. All five projects have been performing code reviews through the Gerrit code review
tool for an extended period of time, i.e., more than three years (see Table 1).

Since we focus on projects that actively use MCR, we measure the average number of
reviews that have been recorded with the Gerrit code review tool in each year. Table 1 shows
that the Android, Qt, and OpenStack projects have a large number of reviews, while the
ITK and VTK projects have relatively few reviews. Therefore, we remove the ITK and VTK
projects from our study.

The Android Open Source Project1 is an operating system for mobile devices that is de-
veloped by Google. Qt2 is a cross-platform application and UI framework that is developed
by the Digia corporation. OpenStack3 is an open-source software platform for cloud com-
puting that is developed by many well-known companies, e.g., IBM, VMware, and NEC.

3.2 Data Preparation

To perform our empirical study, we classify patches based on their review participation and
extract patch metrics. Figure 2 provides an overview of our data preparation approach. We
describe the details of our data preparation approach below.

3.2.1 Selecting Data

To truly understand review participation, we exclude patches that do not satisfy the following
criteria:

1. A patch must be submitted during the period when the studied projects actively uses
MCR tools.

2. A patch must not be related to VCS bookkeeping activity, such as branch merging.

For criterion 1, we identify active periods (i.e., years) of MCR usage by computing an
active rate, i.e., the number of submitted patches in a year relative to the total number of
submitted patches in the whole period that is captured in the datasets. For our analysis, we
select the years that have an active rate larger than 10%. Note that we do not have any gaps

1 https://source.android.com/
2 http://qt-project.org/
3 http://www.openstack.org/

Review Participation in Modern Code Review 7

in our data, i.e., we find that after the first year that the project has an active rate above
10%, each following year also has an active rate above 10%. We focus only on patches that
are submitted during the active MCR period because we need to ensure that the low MCR
participation are due to patch characteristics and not initial MCR experimentation (like the
activity during initial adoption of MCR tools). For criterion 2, we filter out patches that are
related to branch merging because such patches are used to perform VCS bookkeeping for
other patches that have already been revised and integrated. Therefore, such patches gener-
ally have little review participation, since the earlier patches have already been reviewed.

3.2.2 Cleaning Data

After selecting patches, we clean the data in order to ensure the accuracy of study results.
To do so, we (1) merge the duplicate accounts of a reviewer in the code review systems, and
(2) remove auto-generated messages. We describe our approaches below.
Merging the duplicate accounts of a reviewer. Similar to Issue Tracking Systems and
email discussion threads, Gerrit uses an email address to uniquely identify users. It is possi-
ble that a reviewer may have multiple review accounts in the MCR tool due to email aliases
of the reviewer. To merge the duplicate accounts, we identify the email aliases using the
approaches of Bird et al. (2006). For each reviewer account, we search for the accounts
that have a similar name or a similar email name (excluding the email domain) using the
generalized Levenshtein edit distance (Ukkonen, 1985). We then manually inspect potential
duplicates, i.e., those with a Levenshtein edit distance below 0.1.
Removing auto-generated messages. Since we will use the messages that are posted in
the review discussion thread to measure the participation of reviewers, we need to remove
the messages that are left by automated quality gating tools (e.g., static code analyzers) or
written by the patch author. We identify the messages that are posted by tools using the
accounts of bots in the studied projects. As suggested by Mukadam et al. (2013), we mark
the account named “Deckard Autoverifier” as a bot for the Android project. By studying the
MCR processes of the Qt and OpenStack projects, we find that the Qt project has Continuous
Integration (CI) and Early Warning System (EWS) systems,4 and the OpenStack project has
the Jenkins and Zuul automated testing systems.5

3.2.3 Calculating Patch and MCR Process Metrics

We use 20 patch and MCR process metrics to examine the patches that will suffer from poor
review participation. Our metrics are grouped into five dimensions: (1) patch properties, (2)
history, (3) past involvement of an author, (4) past involvement of reviewers, and (5) review
environment. Table 2 provides the conjecture and the motivating rationale for each of the
studied patch and MCR process metrics. Below, we describe the calculation for each of our
metrics.
Patch properties. The patch properties dimension measures the change and the informa-
tion of a patch. To measure the change of a patch, we adopt the change metrics from prior
work (Kamei et al., 2013). Churn measures the number of lines added to and removed from
modified files. Number of modified files and directories measure the dispersion of a change.

4 https://wiki.qt.io/Qt_Contribution_Guidelines
5 http://docs.openstack.org/infra/manual/developers.html#peer-review

https://wiki.qt.io/Qt_Contribution_Guidelines
http://docs.openstack.org/infra/manual/developers.html#peer-review

8 Patanamon Thongtanunam et al.

Table 2 A taxonomy of patch metrics.

Metric Conjecture Rationale
Patch Properties Dimension
Churn The larger the churn is, the more likely that the patch

receives review participation.
Large patches may need more effort to review (Mishra and
Sureka, 2014; Rigby et al., 2008, 2014).

Number of Modified
Files

The more files that are changed in this patch, the more
likely that the patch will suffer from poor review par-
ticipation.

Patches where their changes scatter across a large number
of files or directories may need more effort to review. Find-
ing reviewers who have knowledge for such changes is
difficult as well. Therefore, it is more likely that the patch
will suffer from poor review participation.

Number of Modified
Directories

The more directories that are impacted by this patch,
the more likely that the patch will suffer from poor
review participation.

Entropy The more scattered the changes in this patch are, the
more likely that the patch will suffer from poor review
participation.

Description Length The longer description in the patch, the less likely that
the patch will suffer from poor review participation.

Patches with a descriptive subject and a well explained
change log message would be able to draw the attention of
reviewers (Rigby and Storey, 2011).

Purpose A patch that introduces new functionality is more
likely to receive slow initial feedback than a patch for
another purposes.

Patches that introduce new features may require more ef-
fort to examine than patches for other purposes.

History Dimension
Number of Days since
the Last Modification

A patch containing files that have been recently
changed is more likely to receive responsive review
participation.

Recently changed files could be the files on which devel-
opers are currently working (i.e., more knowledgeable).

Total Number of Authors The more developers who have written patches made
to the modified files, the more likely that the patch
receives responsive review participation.

A reviewer is likely to be one of the authors of a frequently
changed file.

Number of Prior Defects A patch containing files that have many defects is
more likely to receive responsive review participation.

Files that have historically been defective may require ad-
ditional attention during the code review process (Thong-
tanunam et al., 2015a).

Number of Reviewers of
Prior Patches

The more reviewers who have examined prior
patches, the more likely the patch receive responsive
participation.

Files that have been previously examined by many review-
ers would have the likelihood that one of those reviewers
is a reviewer of this patch.

Discussion Length of
Prior Patches

The longer discussion that the modified files have re-
ceived in prior patches, the more likely that the patch
receive responsive participation.

Files that have received long discussion in prior patches
could be complicated. Hence, they may require additional
attention during the code review process.

Feedback Delay of Prior
Patches

The longer the feedback delay in prior patches is, the
more likely that the patch will suffer from poor review
participation.

Files that often receive slow initial feedback can be those
with less priority than other files. Hence, they may receive
little review participation.

Past Involvement of an Author Dimension
Number of Prior Patches
of an Author

The more prior patches that the author has either writ-
ten or examined, the more likely that the patch re-
ceives review participation.

Patches written by inexperienced authors are more likely
to receive little review participation, since the authors
are not familiar with the project and may not know who
should be invited to review the changes (Bosu and Carver,
2013).

Recent Patches of an
Author

The more the recent patches of an author are, the more
likely that the patch receives review participation.

Number of Directory
Patches of an Author

The more the directory patches of an author are,
the more likely that the patch receives review
participation.

Past Involvement of Reviewers Dimension
Number of Prior Patches
of Reviewers

The more prior patches that the reviewers have either
written or examined, the more likely that the patch
receives review participation.

Patches reviewed by experienced reviewers are very likely
to receive prompt initial feedback and long discussion,
since such reviewers have a good understanding and a
strong familiarity of the context in which a change is be-
ing made (Rigby et al., 2008, 2012; Baysal et al., 2015;
Thongtanunam et al., 2015b).

Recent Patches of
Reviewers

The more the recent patches of reviewers are, the
more likely that the patch receives review participa-
tion.

Number of Directory
Patches of Reviewers

The more the directory patches of reviewers are,
the more likely that the patch receives review
participation.

Review Environment Dimension
Overall Workload The more the overall workload of the project is, the

more likely that the patch will suffer from poor review
participation.

Reviewers can be burdened with a large workload. There-
fore, it is more likely that patches will receive little re-
view participation if they are submitted at a time when a
project has a large review workload (Rigby and Storey,
2011; Baysal et al., 2012).

Directory Workload The more the directory workload is, the more likely
that the patch will suffer from poor review participa-
tion.

Change entropy measures the distribution of modified code across each modified file. Simi-
lar to prior work (Hassan, 2009), we measure the entropy of a change C as described below:

H(C) =− 1
log2n

n

∑
k=1

(pk× log2 pk) (1)

Review Participation in Modern Code Review 9

where n is the number of files included in a patch, pk is the proportion of change C that
impacts file k. The larger the entropy value, the more dispersed that a change is among files.

We also add description length and purpose metrics into this dimension to measure the
information that authors provide for the patch. The description length measures how many
words an author uses to describe a patch. The purpose indicates the change purpose of a
patch. We define the purpose category similar to prior work (Hassan, 2008; Mockus and
Votta, 2000), i.e., documentation, bug fixing, and feature introduction. We classify a patch
where its description contains “doc”, “copyright”, or “license” words as documentation,
while a patch where its description contains “fix”, “bug”, or “defect” words is classified as
bug fixing. The remaining patches are classified as feature introduction. A similar approach
was used to classify patches in prior studies (Kim et al., 2008; Kamei et al., 2013; McIntosh
et al., 2014).
History. The history dimension measures the activity of prior patches that modified the
same files as the patch under examination. Nagappan et al. (2010) report that the time win-
dow of history metrics may have an impact on the prediction models. Therefore, we select
a time window based on the development activities of the studied projects. To do so, we
study the development cycle by observing the release dates of the studied projects.6 We find
that the studied projects often release a new version every six months. Hence, we measure
the history metrics using the six-month period prior to the patch’s date of submission. To
measure the history metrics for each patch, we focus our analysis on the review activity
of patches that (1) occurred on the same branch as the studied patch, and (2) originated on
other branches, but have been merged into the same branch as the studied patch. The number
of days since the last modification measures how long it has been since the files that were
modified in the patch were last modified. The total number of authors counts how many
people have submitted patches that impact the same files as the patch under examination.
The number of prior defects counts the number of prior bug-fixing patches that impact the
same files as the patch under examination.

Furthermore, we adopt the hypothesis of prior work to estimate past tendencies (Tan-
tithamthavorn et al., 2015). We measure the past tendency of review participation using
three metrics, i.e., the number of reviewers, discussion length, and feedback delay of prior
patches that have been applied to the same files as the files in the patch under examination.
The number of reviewers of prior patches measures the median number of reviewers who
have posted messages or a reviewing score in the reviews of prior patches that impact the
same files as the patch under examination. The discussion length of prior patches measures
the median number of messages that are posted in the reviews of prior patches that impact
the same files as the patch under examination. The feedback delay of prior patches measures
the median of feedback delays that the reviews of prior patches had received. We use the
median value because we find that the distributions of the history data do not follow normal
distribution (i.e., the p-values of Shapiro-Wilk tests are lower than 0.05 for all of the studied
patches).
Past involvement of an author. The past involvement of an author dimension measures the
activity in which an author has been involved before making the patch under examination.
To calculate the past involvement of an author metrics, we use the same approach as the
history dimension to collect the activity in which an author has been involved. The number
of prior patches of an author counts the number of submitted or reviewed patches by the
author prior to the patch under examination. The recent patches of an author is a variant of

6 https://en.wikipedia.org/wiki/Android_version_history, https://en.wikipedia.
org/wiki/List_of_Qt_releases, https://wiki.openstack.org/wiki/Releases

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/List_of_Qt_releases
https://en.wikipedia.org/wiki/List_of_Qt_releases
https://wiki.openstack.org/wiki/Releases

10 Patanamon Thongtanunam et al.

(MC-3) Logistic
Regression Model

Construction

(MA-1) Assessment
of Explanatory Ability
& Model Reliability

(MA-2) Power of
Explanatory

Variables Estimation

(MA-3) Examination of
Variables in Relation

to the Response

Model Construction Model Analysis

(MC-1) Correlation
& Redundancy

Analysis

(MC-2) Degrees of
Freedom Allocation

Patch
Data

Response
Variable

Explanatory
Variables

Fig. 3 An overview of our model construction and analysis approaches.

the number of prior patches of an author, which is weighted by the age of the prior patches.
The more recent patches are given a higher weight than the less recent ones. Similar to prior
work (Kamei et al., 2013), we measure the recent patches for an author as described below:

RC = ∑
m∈M

Nc

m
(2)

where Nc is the number of patches that have been submitted or reviewed by the author in the
past month m in the time window M (i.e., six-month period). Similar to prior work (Kamei
et al., 2013), we also measure a higher level of experience for an author using the number
of directory patches of an author metric. The number of directory patches of an author
measures how many prior patches modify code in the same directories as the patch under
examination, and were submitted or reviewed by the author.
Past involvement of reviewers. The past involvement of reviewers dimension measures
the activity that the patch reviewers have been involved with prior to the patch under exami-
nation. Similar to past involvement of an author dimension, we measure the number of prior
patches, recent patches, and the number of directory patches of reviewers metrics.
Review environment. The review environment dimension measures the code review activ-
ity that occurred during the same period as the patch being submitted. To measure review
environment metrics, we use a 7-day period prior to the time that a patch is submitted. We
select the 7-days period as our time window because we find that the time from patch sub-
mission to review completion is shorter than 3, 4, and 11 days for 75% of the reviews in the
Android, Qt, and OpenStack projects, respectively. The overall workload metric counts how
many patches are submitted to the code review tool. The directory workload metric counts
how many prior patches modify code in the same directories as the patch under examination.

3.3 Model Construction

We build logistic regression models to determine the likelihood of a patch suffering from
poor review participation. Logistic regression models are commonly used to study how ex-
planatory variables are related to a dichotomous response variable. In our study, we use our
patch and MCR process metrics as explanatory variables, while the response variable is as-
signed the value of TRUE if a patch suffered from poor review participation, and FALSE
otherwise.

Similar to prior work (McIntosh et al., 2015), we adopt the model construction and
analysis approaches of Harrell Jr. (2002, p. 79) to allow nonlinear relationships between

Review Participation in Modern Code Review 11

explanatory and response variables to be modelled. Furthermore, these techniques can en-
able a more accurate and robust fit of the data, while carefully considering the potential for
overfitting (i.e., a model is too specifically fit to the training dataset to be applicable to other
datasets). An overfit model will overestimate the performance of the model and exagger-
ate spurious relationships between explanatory and response variables. Figure 3 provides an
overview of the three steps in our model construction approach. We describe below each
step in our approach.

3.3.1 Correlation & Redundancy Analysis

Explanatory variables that are highly correlated with each other can interfere with the re-
sults of model analysis. Hence, we measure the correlation between explanatory variables
using Spearman rank correlation tests (ρ). We then use a variable clustering analysis tech-
nique (Sarle, 1990) to construct a hierarchical overview of the correlation and remove ex-
planatory variables with a high correlation. According to Hinkle et al. (1998, p. 120), Spear-
man correlation coefficient values that are greater than 0.7 are considered to be strong corre-
lation. Hence, we select |ρ|= 0.7 as our threshold for removing highly correlated variables.
We perform this analysis iteratively until all clusters of surviving variables have |ρ| values
below 0.7.

Some explanatory variables are not highly correlated but can still be redundant, i.e.,
variables that do not have a unique signal from the other explanatory variables. Redundant
variables in an explanatory model will distort the modelled relationship between the ex-
planatory and response variables. To detect redundant variables, we use the redun function
in the rms R package (Harrell Jr., 2015) to fit models that explain each explanatory variable
using the remaining explanatory variables. We then remove the explanatory variables where
models are fit with an R2 value greater than 0.9 (the default threshold of the redun function).

3.3.2 Degrees of Freedom Allocation

Before allocating the degrees of freedom to the model, we have to ensure that our model
will not be overfit. A model can be overfit if it uses degrees of freedom (e.g., explanatory
variables) more than a dataset can support. To minimize the risk of overfitting, we need to
estimate a budget for degrees of freedom, i.e., number of explanatory variables that a dataset
can support, before fitting a model. As suggested by (Harrell Jr., 2002, p. 60), we set a budget
for degrees of freedom to be min(T,F)

15 , where T is the number of rows where the response
variable is TRUE, and F is the number of rows where the response variable is FALSE.

In order to allow nonlinear relationships between explanatory and response variables to
be modelled, we must decide how to allocate our budgeted degrees of freedom to each of
our explanatory variables. To allocate the degrees of freedom most effectively, the explana-
tory variables that have more potential for sharing nonlinear relationship with the response
variable should be allocated more degrees of freedom than the explanatory variables that
have less potential.

We measure the potential for nonlinearity in the relationship between explanatory and
response variables using a calculation of the Spearman multiple ρ2. A large Spearman mul-
tiple ρ2 score indicates that there is potential for a strong nonlinear relationship between
an explanatory variable and the response variable. Taking the budgeted degrees of freedom
into account, we allocate the degrees of freedom to explanatory variables according to their
Spearman multiple ρ2 values, i.e., variables with larger ρ2 values are allocated more degrees

12 Patanamon Thongtanunam et al.

of freedom. Nevertheless, we limit the maximum degrees of freedom that we allocate to any
given explanatory variable to five in order to minimize the risk of overfitting (Harrell Jr.,
2002, p. 23).

3.3.3 Logistic Regression Model Construction

After removing the highly correlated and redundant variables and allocating the degrees of
freedom to the surviving explanatory variables, we fit our logistic regression models to the
data. We use the restricted cubic splines of the rcs function in the rms R package (Harrell
Jr., 2015) to fit the allocated degrees of freedom to the explanatory variables. We use the
restricted cubic splines because the smooth nature of cubic curves will more realistically fit
natural phenomena than linear splines, which introduce abrupt changes in direction (Harrell
Jr., 2002, p. 20).

3.4 Model Analysis

Once the logistic regression model has been constructed, we analyze the model in order to
understand the relationship between the explanatory variables (i.e., patch and MCR process
metrics) and the response variable (i.e., whether a patch had review participation or not).
Figure 3 shows our three steps of model analysis. We describe below each step of our model
analysis approach.

3.4.1 Assessment of Explanatory Ability & Model Reliability

To evaluate the performance of our models, we use the Area Under the receiver operating
characteristic Curve (AUC) (Hanley and McNeil, 1982). AUC measures how well a model
can discriminate between the potential responses. It is computed by measuring the area un-
der the curve that plots the true positive rate against the false positive rate while varying the
threshold that is used to determine whether a patch is classified as receiving review partici-
pation or not. An AUC value of 1 indicates perfect discrimination, i.e., perfect separation of
patches that receive review participation and those that do not, while an AUC value of 0.5
indicates that the model does not discriminate better than random guessing.

Although the AUC can measure the explanatory power, it may overestimate the perfor-
mance of the model if it is an overfit model. To evaluate the reliability of our models, we
estimate the optimism of the AUC using a bootstrap-derived approach (Efron, 1986). First,
the approach trains a model using a bootstrap sample, i.e., a dataset sampled with replace-
ment from the original dataset, which has the same population size as the original dataset.
Then, the optimism is estimated using the difference in performance between the bootstrap
model when applied to the original dataset and the bootstrap sample. Finally, the approach
is repeated 1,000 times in order to compute the average optimism. The smaller the average
optimism is, the more reliable the performance estimates of the original fit are.

3.4.2 Power of Explanatory Variables Estimation

Similar to prior work (McIntosh et al., 2015), we use Wald statistics to estimate the im-
pact that each explanatory variable has on the model’s performance. Since the explanatory
variables that were assigned additional degrees of freedom are represented in the model by

Review Participation in Modern Code Review 13

multiple terms, Wald statistics are used to jointly test all model terms that relate to a given
explanatory variable. For the tests, we use the anova function in the rms R package (Harrell
Jr., 2015) to estimate the relative contribution (Wald χ2) and the statistically significance (p-
value) of each explanatory variable in the model. The larger the Wald χ2 value is, the larger
the explanatory power that a particular explanatory variable contributes to the performance
of the model.

3.4.3 Examination of Variables in Relation to the Response

The power of explanatory variables indicates the magnitude of the impact that an explana-
tory variable has on model performance, yet it does not provide a notion of the direction or
the shape of the relationship between the explanatory variables and the response. To better
understand the direction and shape of these relationships, we plot the odds value produced
by our models against an explanatory variable while holding the other explanatory variables
at constant values. We use the Predict function in the rms R package (Harrell Jr., 2015) to
compute and plot the odds values for various explanatory variables.

In addition, we estimate the partial effect that explanatory variables have on the response
using odds ratio (Harrell Jr., 2002, p. 220). Odds ratio indicates the change to the likelihood
of a patch that will suffer from poor review participation when the value of an explanatory
variable under study increases. The larger the odds ratio is, the larger the partial effect that
the explanatory variable has on the likelihood. We analyze the relative percentage that the
odds has changed corresponding to the changed value of the explanatory variable, while
holding the other explanatory variables at constant values. Using the summary function in
the rms R package (Harrell Jr., 2015), the partial effect is estimated based on the odds dif-
ference of the inter-quartile range for continuous variables, and the odds difference between
each category value and the mode (i.e., the most frequently occurring category) for cate-
gorical variables. A positive partial effect indicates an increasing relationship between the
explanatory variable and the response, while a negative partial effect indicates an inverse
relationship. The magnitude of a partial effect indicates the amount that the odds value in
our models will change according to the shifted value of the explanatory variable.

4 Case Study Results

In this section, we present the results of our study with respect to our research questions.
Table 1 provides a summary of the patch and review data that we selected according to our
data preparation approach. Table 3 shows distributions of data for the patch metrics that
we measure in the studied datasets. For each research question, we discuss our: (a) model
construction procedure and (b) model analysis results.

(RQ1) What patch characteristics share a relationship with the likelihood of a patch
not being selected by reviewers?

In the Gerrit process, some patches can be merged into upstream VCS repositories even
though these patches do not have any participant apart from the patch author. For exam-
ple, in the review ID 29921 in the Qt project, no third-party reviewers participated in the

14 Patanamon Thongtanunam et al.

Table 3 Descriptive statistics of the studied patch metrics. Histograms are in a log scale.

Android Qt OpenStack Android Qt OpenStack
Patch Properties Dimension History Dimension

C
hu

rn

1st Qu. 5.00 4.00 5.00

#P
ri

or
de

fe
ct

s 1st Qu. 0.00 0.00 0.00
Median 20.00 15.00 21.00 Median 1.00 1.00 3.00
Mean 4434.00 603.00 767.00 Mean 5.69 4.01 10.48

3rd Qu. 96.00 63.00 90.00 3rd Qu. 4.00 4.00 10.00

Histogram Histogram

#M
od

ifi
ed

fil
es

1st Qu. 1.00 1.00 1.00

#D
ay

s
si

nc
e

th
e

la
st

m
od

-
ifi

ca
tio

n

1st Qu. 1.47 1.26 1.18
Median 2.00 2.00 2.00 Median 11.31 8.19 5.45
Mean 27.02 10.81 4.81 Mean 55.11 41.83 28.62

3rd Qu. 4.00 4.00 3.00 3rd Qu. 109.24 49.48 22.52

Histogram Histogram

#M
od

ifi
ed

di
re

ct
or

ie
s

1st Qu. 1.00 1.00 1.00

#T
ot

al
au

th
or

s 1st Qu. 0.00 0.00 1.00
Median 1.00 1.00 1.00 Median 1.00 2.00 4.00
Mean 4.10 3.09 2.57 Mean 2.70 3.31 13.40

3rd Qu. 2.00 2.00 2.00 3rd Qu. 3.00 4.00 13.00

Histogram Histogram

E
nt

ro
py

1st Qu. 0.00 0.00 0.00
#R

ev
ie

w
er

s
of

pr
io

r
pa

tc
he

s

1st Qu. 0.00 1.00 1.50
Median 0.22 0.10 0.49 Median 1.00 1.00 3.00
Mean 0.90 0.83 0.85 Mean 0.92 1.29 2.85

3rd Qu. 1.46 1.31 1.36 3rd Qu. 1.00 2.00 4.00

Histogram Histogram

D
es

cr
ip

tio
n

le
ng

th

1st Qu. 11.00 10.00 13.00

D
is

cu
ss

io
n

le
ng

th
of

pr
io

rp
at

ch
es 1st Qu. 0.00 0.00 1.00

Median 22.00 19.00 28.00 Median 0.00 0.50 2.00
Mean 35.61 28.74 36.46 Mean 1.23 1.90 4.15

3rd Qu. 45.00 36.00 47.00 3rd Qu. 1.00 2.00 5.00

Histogram Histogram

Pu
rp

os
e

BUG-FIX 13360.00 24827.00 39405.00

Fe
ed

ba
ck

de
-

la
y

of
pr

io
r

pa
tc

he
s

1st Qu. 0.00 0.35 0.73
Document 757.00 6830.00 8167.00 Median 0.64 1.53 2.32

Feature 19852.00 34471.00 48043.00 Mean 31.91 24.17 11.22
3rd Qu. 3.19 7.87 6.45

Histogram
Past Involvement of an Author Dimension Past Involvement of Reviewers Dimension

#P
ri

or
pa

tc
he

s
of

an
au

th
or

1st Qu. 3.00 13.00 4.00

#P
ri

or
pa

tc
he

s
of

re
vi

ew
er

s

1st Qu. 0.00 14.00 34.00
Median 22.00 60.00 24.00 Median 21.00 84.00 171.00
Mean 83.36 128.50 96.02 Mean 101.80 179.80 331.60

3rd Qu. 105.00 168.00 114.00 3rd Qu. 139.00 245.00 495.00

Histogram Histogram

R
ec

en
t

pa
tc

he
s

of
an

au
th

or

1st Qu. 0.33 2.67 1.00

R
ec

en
t

pa
tc

he
s

of
re

vi
ew

er
s

1st Qu. 0.00 2.45 13.88
Median 8.15 23.00 10.17 Median 7.88 33.00 72.05
Mean 35.27 53.65 40.03 Mean 43.03 73.73 135.41

3rd Qu. 48.67 74.40 49.75 3rd Qu. 60.50 105.00 200.50

Histogram Histogram

#D
ir

ec
to

ry
pa

tc
he

s
of

an
au

th
or

1st Qu. 0.00 1.00 2.00

#D
ir

ec
to

ry
pa

tc
he

s
of

re
vi

ew
er

s

1st Qu. 0.00 1.00 9.00
Median 8.00 13.00 11.00 Median 4.00 15.00 48.00
Mean 78.34 116.60 68.44 Mean 82.75 104.90 161.80

3rd Qu. 52.00 76.00 51.00 3rd Qu. 44.00 88.00 164.00

Histogram Histogram
Review Environment Dimension

O
ve

ra
ll

w
or

kl
oa

d

1st Qu. 221.00 511.00 1220.00

D
ir

ec
to

ry
w

or
kl

oa
d

1st Qu. 1.00 1.00 2.00
Median 394.00 580.00 1524.00 Median 3.00 5.00 8.00
Mean 369.40 587.20 1430.00 Mean 10.85 10.66 63.79

3rd Qu. 477.00 674.00 1626.00 3rd Qu. 10.00 12.00 33.00

Histogram Histogram

review by neither voting a score or posting a message, although the patch author had in-
vited a reviewer.7 Furthermore, our prior study has shown that the number of patches that
do not have reviewers providing feedback to the reviews shares a relationship with defect-
proneness (McIntosh et al., 2014). Hence, to address our RQ1, we identify the patches that
do not attract reviewers by counting the number of unique reviewers who participated in a
review by either posting a message or assigning a reviewing score. We classify patches into
two categories — those that attract at least one reviewer and those that do not.

7 https://codereview.qt-project.org/#/c/29921/

 https://codereview.qt-project.org/#/c/29921/

Review Participation in Modern Code Review 15

Table 4 Patch data for the study of RQ1.

Project
Patch data

Studied period #Patches that did not attract reviewers
(TRUE class) #Total Patches

Android 2012/01 - 2014/12 8,356 33,969
Qt 2012/01 - 2014/12 7,234 66,128

OpenStack 2013/01 - 2014/12 8,360 95,615

O
ve

ra
ll

w
or

kl
oa

d

D
ire

ct
or

y
w

or
kl

oa
d

#D
ire

ct
or

y
pa

tc
he

s
of

 a
n

au
th

or

#P
rio

r
pa

tc
he

s
of

 a
n

au
th

or

R
ec

en
t p

at
ch

es
 o

f a
n

au
th

or

#D
ay

s
si

nc
e

th
e

la
st

 m
od

ifi
ca

tio
n

#T
ot

al
 a

ut
ho

rs

#P
rio

r
de

fe
ct

s

F
ee

db
ac

k
de

la
y

of
 p

rio
r

pa
tc

he
s

#R
ev

ie
w

er
s

of
 p

rio
r

pa
tc

he
s

D
is

cu
ss

io
n

le
ng

th
 o

f p
rio

r
pa

tc
he

s

C
hu

rn

#M
od

ifi
ed

 fi
le

s

#M
od

ifi
ed

 d
ire

ct
or

ie
s

D
es

cr
ip

tio
n

le
ng

th

P
ur

po
se

 =
 F

ea
tu

re

E
nt

ro
py

P
ur

po
se

 =
 D

oc
um

en
t

1.
0

0.
6

0.
2

S
pe

ar
m

an
 ρ

Fig. 4 Hierarchical clustering of variables according to Spearman’s |ρ| in the Android dataset (RQ1). The
dashed line indicates the high correlation threshold (i.e., Spearman’s |ρ|= 0.7).

Table 4 provides the number of patches from our patch classification. Below, we present
and discuss the results of our model construction and analysis.

(RQ1-a) Model Construction

According to our model construction approach (cf. Figure 3), the response variable is set
to TRUE if a patch is not reviewed by another developer and FALSE otherwise. We use
our patch and MCR process metrics that are described in Table 2 as explanatory variables.
However, we did not use the past involvement of reviewers metrics, since past involvement
of reviewers cannot be measured in the patches that do not have reviewers. We then construct
logistic regression models, which we describe in detail below.
(MC-1) Correlation & Redundancy Analysis. Before constructing a model, we remove
the explanatory variables in Table 2 that are highly correlated with one another based on
hierarchical clustering analysis. If a cluster of explanatory variables have a Spearman’s
|ρ| > 0.7, we select one variable from the cluster. For example, Figure 4 shows the hier-
archical clustering of explanatory variables in the Android dataset. There are three clusters
of variables that have a Spearman’s |ρ|> 0.7, i.e., (1) the number of files and the number of
directories, (2) the number of prior patches, recent patches, and directory patches of an au-
thor, (3) the number of prior defects and the total number of authors, and (4) the number of
reviewers and discussion length of prior patches. For the first and second clusters, we select
the number of files and the prior patches of an author as the representative variables because
they are simpler to calculate than the other variables in their clusters. For the third clus-
ter, we select the number of prior defects and remove the total number of authors since the
distribution of the number of prior defects is less skewed than the total number of authors.

16 Patanamon Thongtanunam et al.

#Reviewers of prior patches
Feedback delay of prior patches

#Days since the last modification
Description length

#Prior defects
Directory workload

#Prior patches of an author
Churn

Entropy
Overall workload

N df

33969 2
17699 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

Spearman ρ2 Response : No Reviewers (True False)

Adjusted ρ2

Fig. 5 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the response (the likelihood
that a patch will not attract reviewers) in the Android dataset. Larger values indicate a higher potential for a
nonlinear relationship (RQ1).

For the fourth cluster, both explanatory variables (the number of reviewers and discussion
length of prior patches) are participation tendency metrics, which are simple to calculate.
We select the number of reviewers of prior patches as the representative variable because
the number of reviewers of prior patches shares a more intuitive link with the response (i.e.,
the likelihood that a patch will be selected by reviewers) than the discussion length of prior
patches.

After we remove the highly correlated explanatory variables, we repeat the variables
clustering analysis and find that the number of files and churn are also highly correlated, i.e.,
Spearman’s |ρ|> 0.7. Hence, we select the churn and remove the number of files because the
distribution of churn data is less skewed than the number of files. For the Qt and OpenStack
datasets, we obtain similar results from correlation analysis. Table 5 shows the results of our
correlation analysis where the variables that were removed during the analysis are marked
with a dagger symbol (†).

For the surviving explanatory variables, we perform a redundancy analysis to detect and
remove redundant variables. We find that there are no explanatory variables that have a fit
with an R2 greater than 0.9. Hence, we use all of the surviving explanatory variables to
construct our models.

(MC-2) Degree of Freedom Allocation. We allocate the budgeted degrees of freedom to
the surviving explanatory variables based on their potential for sharing a nonlinear relation-
ship with the response variable. For example, Figure 5 shows the potential for nonlinearity
in the relationship between explanatory variables and the response variable in the Android
dataset. We allocate additional degrees of freedom to the explanatory variables with a large
Spearman multiple ρ2.

By observing the rough clustering of variables according to the Spearman multiple ρ2

values, we split the explanatory variables of Figure 5 into three groups. We allocate: (1) five
degrees of freedom to the number of reviewers of prior patches, (2) three degrees of freedom
to feedback delay of prior patches, and (3) one degree of freedom to the remaining variables.
We repeat the same process for the Qt and OpenStack datasets.

We then build our logistic regression models to fit our patch data using the surviving
explanatory variables with the allocated degrees of freedom. Table 5 shows that the number
of degrees of freedom that we spent to fit our models did not exceed the budgeted degrees
of freedom.

Review Participation in Modern Code Review 17

Table 5 Statistics of the logistic regression models for identifying patches that do not attract reviewers (RQ1).
The explanatory variables that contribute the most significant explanatory power to a model (i.e., accounting
for a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.72 (0.002) 0.70 (0.001) 0.74 (0.001)

Budgeted D.F. 557 482 557
Spent D.F. 14 16 17
Wald χ2 2,218∗∗∗ 2,910∗∗∗ 3,804∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear
Patch Properties Dimension

Churn D.F. 1 − 1 − 1 −
χ2 0%◦ 0%◦ 0%∗∗∗

#Modified files D.F. † † †
χ2

#Modified directories D.F. † † †
χ2

Entropy D.F. 1 − 1 − 1 −
χ2 0%◦ 1%∗∗∗ 1%∗∗∗

Description length D.F. 1 − 2 1 2 1
χ2 0%∗ 15%∗∗∗ 13%∗∗∗ 5%∗∗∗ 5%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 1%∗∗∗ 1%∗∗∗ 1%∗∗∗

History Dimension

#Days since the last modification D.F. 1 − 1 − 1 −
χ2 16%∗∗∗ 30%∗∗∗ 15%∗∗∗

#Total authors D.F. † 1 − †
χ2 0%◦

#Prior defects D.F. 1 − 1 − 1 −
χ2 0%◦ 0%◦ 0%∗∗

#Reviewers of prior patches D.F. 2 1 3 2 4 3
χ2 81%∗∗∗ 26%∗∗∗ 69%∗∗∗ 42%∗∗∗ 72%∗∗∗ 32%∗∗∗

Discussion length of prior patches D.F. † † †
χ2

Feedback delay of prior patches D.F. 2 1 1 − 2 1
χ2 1%∗∗∗ 1%∗∗∗ 0%◦ 1%∗∗∗ 0%∗∗∗

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 1 − 1 − 1 −
χ2 0%∗∗ 0%∗∗∗ 0%∗∗

Recent patches of an author D.F. † † †
χ2

#Directory patches of an author D.F. † † †
χ2

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 0%∗ 0%◦ 0%∗

Directory workload D.F. 1 − 1 − 1 −
χ2 1%∗∗∗ 0%◦ 0%∗∗∗

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001

(RQ1-b) Model Analysis

In this section, we present and discuss the results of our model analysis approach that is
outlined in Figure 3 and present our empirical observations.

(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 5 shows that our
models achieve an AUC of 0.7 to 0.74. Moreover, Table 5 also shows that the optimism of
AUC is very small (|Optimism|= 0.002 for the Android project and |Optimism|= 0.001 for
the Qt and OpenStack projects). These results indicate that our models are stable and can
provide a meaningful and robust amount of explanatory power.

18 Patanamon Thongtanunam et al.

(MA-2) Power of Explanatory Variables Estimation. Table 5 shows the explanatory
power (Wald χ2) of our explanatory variables that contribute to the fit of our models. In
the table, the Overall column shows the proportion of the Wald χ2 of the entire model fit
that is attributed to that explanatory variable, and the Nonlinear column shows the propor-
tion of the Wald χ2 of the entire model fit that is attributed to the nonlinear component of
that explanatory variable. The larger the proportion of the Wald χ2 is, the larger the ex-
planatory power that a particular explanatory contributes explanatory power to the fit of the
model.

Table 5 shows that the number of reviewers of prior patches and the number of days
since the last modification account for the largest proportion of Wald χ2 in our three models.
Hence, the number of reviewers of prior patches and the number of days since the last
modification contribute the most significant explanatory power to the fit of our models.
The description length also contributes a relatively large, significant amount of explanatory
power to the Qt model.

On the other hand, Table 5 shows that churn did not contribute a significant amount
of explanatory power to our three models. Moreover, we observe that entropy, the num-
ber of prior defects, feedback delay of prior patches, and the explanatory variables in the
past involvement of an author and the review environment dimensions contribute a small
explanatory power, although they have a statistically significant impact on our models.

Table 5 also shows that four of the seven explanatory variables to which we allocated
nonlinear degrees of freedom provide significant boosts to the explanatory power of the
model. This result indicates that the nonlinear style of modelling is improving the fit of our
models, providing a more in-depth picture of the relationship between explanatory variables
and the response.
(MA-3) Examination of Variables in Relation to Response. To study the relationship be-
tween the explanatory variables and the response, we plot the odds produced by our models
against an explanatory variable while holding the other explanatory variables at their me-
dian values. For example, Figure 6 shows the nonlinear relationship between the explanatory
variables and the response with the 95% confidence interval (gray area) based on models fit
to 1,000 bootstrap samples.

To estimate the partial effect that the explanatory variables have on the likelihood, we
analyze the relative change in the odds corresponding to a shift in the value of each ex-
planatory variable. Table 6 shows the estimated partial effect of each explanatory variable
in our models. The Odds Ratio column shows the partial effect based on the shifted value
shown in the Observed Value column. For continuous variables, the observed value is an
inter-quartile range of those explanatory variables. For categorical variables, the observed
value is a comparison between the observed category and the mode (i.e., the most frequently
occurring category).

Below, we present and discuss our empirical observations from the examination of these
explanatory variables in relation to the response.

Observation 1 - The number of reviewers of prior patches shares an inverse relation-
ship with the likelihood that a patch will not be selected by reviewer. Table 5 shows that
there is a nonlinear relationship between the number of reviewers of prior patches and the
likelihood that a patch will not be selected by reviewers. For example, Figure 6(a) shows
that the likelihood that an Android patch will not attract a reviewer decreases rapidly as the
number of reviewers of prior patches increases from 0 to 1. We observe similar trends in the
Qt and OpenStack models. Furthermore, Table 6 shows that the likelihood can decrease by
89%, 14%, and 40% when the number of reviewers of prior patches increases from 0 to 1, 1
to 2, and 2 to 4 in the Android, Qt, OpenStack models, respectively. Broadly speaking, our

Review Participation in Modern Code Review 19

0.5

1.0

1.5

2.0

0 2 4 6
#Reviewers of prior patches

O
dd

s

(a) Number of reviewers of prior patches in
the Android model

0.1

0.2

0.3

0.4

0 100 200 300 400
Description length

O
dd

s

(b) Description length in the Qt model

Fig. 6 The nonlinear relationship between the likelihood that a patch will not attract reviewers (y-axis) and
the explanatory variables (x-axis). The larger the odds value is, the higher the likelihood that the patch will not
be selected by reviewers. The gray area shows the 95% confidence interval estimated by using a bootstrap-
derived approach.

Table 6 Partial effect that our explanatory variables have on the likelihood that a patch will not attract re-
viewers (RQ1). The larger the magnitude of the odds ratio is, the larger the partial effect that an explanatory
variable has on the likelihood.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 0% 4→63 0% 5→90 0%

Description length 11→45 -3%↓ 10→36 -57%↓ 13→47 -41%↓
Entropy 1→1 0% 1→1 -11%↓ 1→1 -11%↓

Purpose Feature→BUG-FIX -10%↓ Feature→BUG-FIX 0% Feature→BUG-FIX -23%↓
Feature→Document -37%↓ Feature→Document -30%↓ Feature→Document -25%↓

History Dimension
#Days since the last modification 1→109 -50%↓ 1→49 -45%↓ 1→23 -19%↓

#Total authors − 0→4 2%↑ −
#Prior defects 0→4 -1%↓ 0→4 0% 0→10 2%↑

#Reviewers of prior patches 0→1 -89%↓ 1→2 -14%↓ 2→4 -40%↓
Feedback delay of prior patches 0→3 9%↑ 0→8 0% 1→6 16%↑

Past Involvement of an Author Dimension
#Prior patches of an author 3→105 -4%↓ 13→168 -6%↓ 4→114 4%↑

Review Environment Dimension
Overall workload 221→477 9%↑ 511→674 -5%↓ 1220→1626 -6%↓

Directory workload 1→10 3%↑ 1→12 1%↑ 2→33 2%↑

models show that patches are more likely to attract reviewers if past changes to the modified
files have a tendency to be reviewed by at least two reviewers. These results indicate that
patches that modify files whose prior patches have had few reviewers tend to be ignored by
reviewers.

Observation 2 - The number of days since the last modification shares an inverse
relationship with the likelihood that a patch will not be selected by reviewers. Table 6 also
shows that the number of days since the last modification consistently shares a strong inverse
relationship with the likelihood that a patch will be not selected by reviewers in the three
models for the studied projects. The likelihood decreases by 50%, 45%, and 19% when the
number of days since the last modification is changed from 1 to 109, 1 to 49, and 1 to 23
in the Android, Qt, and OpenStack models, respectively. This result indicates that a patch
containing files that have been recently modified is not likely to attract reviewers.

Observation 3 - Description length shares an inverse relationship with the likelihood
that a patch will not be selected by reviewers. Figure 6(b) shows that there is a decreasing
trend in the likelihood that a Qt patch will not attract reviewers as the description length
increases. On the other hand, there is an increasing trend in the likelihood as the description
length increases beyond 50. However, the broadening of the confidence interval (gray area)

20 Patanamon Thongtanunam et al.

Table 7 Patch data for the study of RQ2.

Project
Patch data

Studied period #Patches that are not discussed
(TRUE class) #Patches with reviewers

Android 2012/01 - 2014/12 12,262 25,613
Qt 2012/01 - 2014/12 29,771 58,894

OpenStack 2013/01 - 2014/12 21,855 87,255

indicates that there is less data to support this area of the curve. Table 6 also shows that
the description length shares a relatively strong relationship with the likelihood in the Qt
and OpenStack models. When the description length is greater than 10 words, the likelihood
decreases by 3%, 57%, and 41% in the Android, Qt, and OpenStack models, respectively.
This result indicates that a patch with a short description is unlikely to attract reviewers.

The number of reviewers of prior patches and the number of days since the last
modification share a strong increasing relationship with the likelihood that a patch will
have at least one reviewers. Furthermore, a short patch description can also lower the

likelihood of attracting reviewers (Observations 1-3).

(RQ2) What patch characteristics share a relationship with the likelihood of a patch
not being discussed?

A review that simply assigns a review score without any suggestion for improvement nor
discussion provides little return on code review investment. Hence, to address our RQ2, we
perform our analysis on patches that have reviewers but were not discussed. We filter the
patches that did not attract any reviewers, since such patches cannot receive any feedback.
We then identify the patches that are not discussed by counting the number of messages that
are posted in the review discussion thread of each patch. We classify the patches that had
no messages as patches that are not discussed. Patches that had at least one message are
defined as patches that are discussed.

Table 7 provides an overview of the studied patch data after we remove patches that did
not attract reviewers. Below, we present and discuss the results of our model construction
and analysis.

(RQ2-a) Model Construction

Similar to RQ1, the response variable is set to TRUE if a patch is not discussed and FALSE
otherwise. We then use all of our patch and MCR process metrics that are described in Table
2 to construct logistic regression models for each studied project.
(MC-1) Correlation & Redundancy Analysis. Since we filtered out patches that did not
attract any reviewers and we added the past involvement of reviewers metrics into the mod-
els, we have to perform correlation & redundancy analysis for the studied patch data again.
Figure 7 shows that there are four clusters of variables that have a Spearman’s |ρ| > 0.7:
(1) the variables in the past involvement of an author dimension, (2) the number of files and
directories, (3) the number of prior patches of reviewers and the number of recent patches of
reviewers, (4) the number of prior defects and the number of total authors, and (5) the num-
ber of reviewers and the discussion length of prior patches. For the first three clusters, we

Review Participation in Modern Code Review 21

O
ve

ra
ll

w
or

kl
oa

d

#D
ire

ct
or

y
pa

tc
he

s
of

 a
n

au
th

or

#P
rio

r
pa

tc
he

s
of

 a
n

au
th

or

R
ec

en
t p

at
ch

es
 o

f a
n

au
th

or

#D
ire

ct
or

y
pa

tc
he

s
of

 r
ev

ie
w

er
s

#P
rio

r
pa

tc
he

s
of

 r
ev

ie
w

er
s

R
ec

en
t p

at
ch

es
 o

f r
ev

ie
w

er
s

F
ee

db
ac

k
de

la
y

of
 p

rio
r

pa
tc

he
s

#R
ev

ie
w

er
s

of
 p

rio
r

pa
tc

he
s

D
is

cu
ss

io
n

le
ng

th
 o

f p
rio

r
pa

tc
he

s

D
ire

ct
or

y
w

or
kl

oa
d

#D
ay

s
si

nc
e

th
e

la
st

 m
od

ifi
ca

tio
n

#T
ot

al
 a

ut
ho

rs

#P
rio

r
de

fe
ct

s

P
ur

po
se

 =
 D

oc
um

en
t

P
ur

po
se

 =
 F

ea
tu

re

E
nt

ro
py

D
es

cr
ip

tio
n

le
ng

th

C
hu

rn

#M
od

ifi
ed

 fi
le

s

#M
od

ifi
ed

 d
ire

ct
or

ie
s1.

0
0.

6
0.

2

S
pe

ar
m

an
 ρ

Fig. 7 Hierarchical clustering of variables according to Spearman’s |ρ| in the Android dataset (RQ2). The
dashed line indicates the high correlation threshold (i.e., Spearman’s |ρ|= 0.7).

Description length
Churn

#Prior defects
Discussion length of prior patches

#Prior patches of an author
#Prior patches of reviewers

Entropy
Directory workload

#Days since the last modification
Overall workload

Feedback delay of prior patches

N df

25613 2
25613 2
25613 2
25613 2
13427 2
25613 2
25613 2
25613 2
25613 2
25613 2
25613 2●

●

●

●

●

●

●

●

●

●

●

0.00 0.01 0.02 0.03 0.04

Spearman ρ2 Response : No Review Discussion (True False)

Adjusted ρ2

Fig. 8 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the response (the likelihood that
a patch will not be discussed) in the Android dataset. Larger values indicate a higher potential for a nonlinear
relationship (RQ2).

select the number of prior patches of an author, the number of files, and the number of prior
patches of reviewers as the representative variables because they are simpler to calculate
than the other variables. For the forth cluster, we select the number of prior defects as the
representative variable since the distribution of the number of prior defects is less skewed
than the total number of authors. For the fifth cluster, we select the discussion length of prior
patches because it shares a more intuitive link with the response (i.e., the likelihood that a
patch will not be discussed) than the number of reviewers of prior patches. For the Qt and
OpenStack datasets, Table 8 shows the results of our correlation analysis.

(MC-2) Degree of Freedom Allocation. Figure 8 shows the estimated potential for non-
linear relationships between each explanatory variable and the likelihood that a patch will
not be discussed in the Android dataset. We split the explanatory variables for the Android
dataset into three groups: (1) the description length (2) churn, the number of prior defects,
discussion length of prior patches, the number of prior patches of an author and the number
of prior patches of reviewers, and (3) the remaining explanatory variables. We then allocate
five degrees of freedom to the first group, three degrees of freedom to the second group,
and one degree of freedom to the third group. We repeat the same process for the Qt and
OpenStack datasets.

22 Patanamon Thongtanunam et al.

Table 8 Statistics of the logistic regression models for identifying patches that are not discussed (RQ2). The
explanatory variables that contribute the most significant explanatory power to a model (i.e., accounting for
a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.70 (0.002) 0.72 (0.001) 0.78 (0.001)

Budgeted D.F. 817 1,941 1,457
Spent D.F. 19 19 22
Wald χ2 1,312∗∗∗ 3,681∗∗∗ 5,882∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear
Patch Properties Dimension

Churn D.F. 2 1 2 1 2 1
χ2 12%∗∗∗ 12%∗∗∗ 19%∗∗∗ 19%∗∗∗ 8%∗∗∗ 8%∗∗∗

#Modified files D.F. † † †
χ2

#Modified directories D.F. † † †
χ2

Entropy D.F. 1 − 2 1 1 −
χ2 0%◦ 2%∗∗∗ 2%∗∗∗ 0%∗∗∗

Description length D.F. 4 3 2 1 4 3
χ2 18%∗∗∗ 7%∗∗∗ 5%∗∗∗ 1%∗∗∗ 17%∗∗∗ 4%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 0%◦ 1%∗∗∗ 0%∗

History Dimension

#Days since the last modification D.F. 1 − 1 − 1 −
χ2 2%∗∗∗ 1%∗∗∗ 3%∗∗∗

#Total authors D.F. † † †
χ2

#Prior defects D.F. 2 1 1 − 2 1
χ2 8%∗∗∗ 2%∗∗∗ 1%∗∗∗ 3%∗∗∗ 2%∗∗∗

#Reviewers of prior patches D.F. † † †
χ2

Discussion length of prior patches D.F. 2 1 2 1 2 1
χ2 14%∗∗∗ 12%∗∗∗ 23%∗∗∗ 21%∗∗∗ 27%∗∗∗ 17%∗∗∗

Feedback delay of prior patches D.F. 1 − 1 − 1 −
χ2 1%∗∗ 0%◦ 0%◦

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 1 − 2 1 1 −
χ2 30%∗∗∗ 25%∗∗∗ 4%∗∗∗ 7%∗∗∗

Recent patches of an author D.F. † † †
χ2

#Directory patches of an author D.F. † † †
χ2

Past Involvement of Reviewers Dimension

#Prior patches of reviewers D.F. 1 − 1 − 2 1
χ2 10%∗∗∗ 14%∗∗∗ 5%∗∗∗ 0%◦

Recent patches of reviewers D.F. † † †
χ2

#Directory patches of reviewers D.F. † 1 − 2 1
χ2 1%∗∗∗ 2%∗∗∗ 1%∗∗∗

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 0%∗ 0%∗∗∗ 0%∗∗∗

Directory workload D.F. 1 − 1 − 1 −
χ2 0%◦ 1%∗∗∗ 1%∗∗∗

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated;
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001

(RQ2-b) Model Analysis

In this section, we present the results of our model analysis approach that is outlined in
Figure 3 and present our empirical observations.

Review Participation in Modern Code Review 23

0.8

1.2

1.6

1 100 200 300 400 >=500
Churn

O
dd

s

(a) Churn in the Qt model

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 >=50
Discussion length of prior patches

O
dd

s

(b) Discussion length of prior patches in the
OpenStack model

Fig. 9 The nonlinear relationship between the likelihood that a patch will not be discussed (y-axis) and the
explanatory variables (x-axis). The larger the odds value is, the higher the likelihood that the patch will not
be not discussed. The gray area shows the 95% confidence interval estimated by using a bootstrap-derived
approach.

(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 8 shows that our
models achieve an AUC of 0.70 to 0.78 and the optimism of AUC is very small for all of our
studied datasets. These results indicate that our models can provide a meaningful and robust
amount of explanatory power.
(MA-2) Power of Explanatory Variables Estimation. Table 8 shows the proportion of
Wald χ2 of the explanatory variables that contribute to the fit of our models. We find that
the discussion length of prior patches has a large proportion of Wald χ2 in our three models.
The churn, the description length, the number of prior patches of an author and reviewers
also account for a large proportion of the explanatory power in two of the three models.

Table 8 shows that entropy, feedback delay of prior patches, the number of prior patches
within the same directory that the reviewer has reviewed, and the explanatory variables in
the review environment dimension did not contribute a significant amount of explanatory,
although they survive our correlation and redundancy analysis. These results indicate that
these explanatory variables in our models share a weaker relationship with the likelihood of
a patch being discussed than other metrics.

Table 8 also shows that five of the fifteen explanatory variables to which we allocated
nonlinear degrees of freedom provide significant boosts to the explanatory power of the
model. This result indicates that the nonlinear style of modelling can improve the fit of our
models. However, we find that the nonlinear degrees of freedom that we allocate to the num-
ber of prior patches of reviewers does not provide a significant amount of explanatory power
to the OpenStack model, suggesting that not all relationships with potential for nonlinearity
benefit from nonlinear fits.
(MA-3) Examination of Variables in Relation to Response. Figure 9 shows the nonlinear
relationships of the high impact explanatory variables and the response. We provide online
access to the figures for the other studied projects.8 Table 9 shows the estimated partial effect
of that each explanatory variable has on the likelihood that a patch will not be discussed.
Below, we present and discuss our empirical observations from the examination of these
explanatory variables in relation to the response.

Observation 4 - Churn shares an inverse relationship with the likelihood that a patch
will not be discussed. We observe that churn shares a strong relationship with the likelihood

8 http://sailhome.cs.queensu.ca/replication/review_participation/

http://sailhome.cs.queensu.ca/replication/review_participation/

24 Patanamon Thongtanunam et al.

Table 9 Partial effect that our explanatory variables have on the likelihood that a patch will not be discussed
(RQ2). The larger the magnitude of the odds ratio is, the larger the partial effect that an explanatory variable
has on the likelihood.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 -30%↓ 4→60 -46%↓ 5→91 -40%↓

Description length 11→46 -43%↓ 11→38 -24%↓ 15→48 -43%↓
Entropy 1→1 -3%↓ 1→1 6%↑ 1→1 7%↑

Purpose Feature→BUG-FIX -1%↓ Feature→BUG-FIX -19%↓ Feature→BUG-FIX -7%↓
Feature→Document 7%↑ Feature→Document -11%↓ Feature→Document -9%↓

History Dimension
#Days since the last modification 2→92 -16%↓ 1→52 -7%↓ 1→22 -8%↓

#Prior defects 0→5 -27%↓ 0→4 -3%↓ 1→11 -34%↓
Discussion length of prior patches 0→2 -45%↓ 0→2 -58%↓ 1→6 -67%↓
Feedback delay of prior patches 0→4 0% 0→8 0% 1→6 0%

Past Involvement of an Author Dimension
#Prior patches of an author 3→111 41%↑ 12→167 104%↑ 4→114 21%↑

Past Involvement of Reviewers Dimension
#Prior patches of reviewers 11→207 -26%↓ 31→278 -32%↓ 56→532 -37%↓

#Directory patches of reviewers − 3→107 4%↑ 16→183 -18%↓
Review Environment Dimension

Overall workload 221→476 -7%↓ 507→673 -6%↓ 1225→1626 10%↑
Directory workload 1→10 0% 1→12 6%↑ 2→31 -3%↓

that a patch will not be discussed in our three models. Table 9 shows that the likelihood
decreases by 30%, 46%, and 40% in the Android, Qt, OpenStack models, respectively. Fig-
ure 9(a) shows that there is a decreasing trend of the odds in the Qt model when the churn
increases from 1 to 150 LOC. Then, the odds stabilizes when the churn increases to more
than 150 LOC. We also observe similar trend of the odds produced by the Android model.
The odds decrease when the churn increases from 1 to 300 LOC, then the odds stabilize
when the churn increases to more than 300 LOC. This result indicates that the more lines
that were changed in the patch, the more likely the patch will be discussed.

Observation 5 - The description length shares an inverse relationship with the likeli-
hood that a patch will not be discussed. Table 9 shows that the description length consis-
tently shares an inverse relationship with the likelihood that a patch will not be discussed in
our three studied projects. The likelihood decreases by 43%, 24%, and 43% when the de-
scription length is greater than 11 words. Our results suggest that the longer the description
that an author provides, the higher the likelihood of the patch being discussed.

Observation 6 - The discussion length of prior patches shares an inverse relationship
with the likelihood that a patch will not be discussed. Figure 9(b) shows that the odds, pro-
duced by the OpenStack model, sharply decrease when the discussion length of prior patches
increases from 0 to 10 messages. We observe similar trends of the odds in the Android and
Qt models. Table 9 shows that the likelihood decreases by 45%, 58%, and 67% when the
discussion length increases beyond 2 messages in the Android, Qt, OpenStack models, re-
spectively. These results indicate that patches that modify files whose prior patches typically
had short review discussions are unlikely to be discussed.

Observation 7 - The number of prior patches of an author shares an increasing rela-
tionship with the likelihood that a patch will not be discussed, while the number of prior
patches of reviewers shares an inverse relationship with the likelihood. Table 9 shows that
the likelihood increases by 41%, 104%, and 21% when the number of prior patches of an
author is greater than 3, 12, and 4 in the Android, Qt, OpenStack models, respectively. Fur-
thermore, Table 9 shows that the number of prior patches of reviewers shares an inverse
relationship with the likelihood. The likelihood can decrease by 26%, 32%, and 37% in the
Android, Qt, and OpenStack models, respectively. Our results indicate that a patch written
by an experienced developer or examined by an inexperienced reviewer is not likely to be
discussed.

Review Participation in Modern Code Review 25

Author uploads
a patch

R1 R2 Rn

Reviewers
post the first

message
Author uploads
revisions of a

patch

Time

Feedback delay

Fig. 10 An example of a calculation for feedback delay.

Table 10 Descriptive statistics of feedback delay (hours).

Project Min 1st Qu. Median Mean 3rd Qu. Max
Android 0.00 0.19 1.20 106.50 11.78 16,470.00

Qt 0.00 0.28 1.49 70.75 15.70 20,260.00
OpenStack 0.00 0.27 2.17 31.82 15.17 7,031.00

Churn, the description length, and the discussion length of prior patches share an
increasing relationship with the likelihood that a patch will be discussed. Moreover, the
past involvement of an author shares an inverse relationship, while the past involvement

of reviewers shares an increasing relationship with the likelihood (Observations 4-7).

(RQ3) What patch characteristics share a relationship with the likelihood of a patch
receiving slow initial feedback?

To address our RQ3, we identify patches that receive slow initial feedback by measuring
feedback delay, i.e., the time between the submission of the latest patch revision before the
first message from reviewers is posted until that message is posted. Figure 10 provides an
example of a calculation for feedback delay. We did not use the time that the original patch
is submitted because there are likely cases that reviewers are still waiting for the author to
complete preliminary revisions, which would incorrectly inflate the feedback delay.

To follow our model construction approach, we classify the patches into two groups, i.e.,
patches that receive prompt initial feedback and patches that receive slow initial feedback.
From the descriptive statistics of feedback delay (see Table 10), we classify the patches that
have a feedback delay of more than 12 hours as patches that receive slow initial feedback.
Patches that receive initial feedback within 12 hours are defined as patches that receive
prompt initial feedback.

Similar to RQ2, we want to investigate the characteristics of patches that receive slow
initial feedback although these patches eventually have reviewers providing feedback. Hence,
we filter out patches that did not attract any reviewers, since such patches do not receive
any feedback. Moreover, we filter out patches that are submitted on weekends, since our
prior study finds that code review activity is often less active on weekend than on week-
days (Thongtanunam et al., 2014). Hence, such patches have a lower chance to receive initial
feedback within 24 hours. Since our studied projects have globally-distributed development
teams, the timezone difference could make it difficult to detect weekends consistently. To
identify weekends, we observe the number of code review activities (i.e., a patch submis-
sion, posting a review message, or voting a review score). For example, Figure 11 shows the

26 Patanamon Thongtanunam et al.

0

25

50

75

100

2013−05−17 18:00:00

2013−05−19 18:00:00

2013−05−24 18:00:00

2013−05−26 18:00:00

2013−05−31 18:00:00

2013−06−02 18:00:00

2013−06−07 18:00:00

2013−06−09 18:00:00

N
um

be
r

of
 A

ci
tiv

iti
es

Fig. 11 The hourly code review activity of the Qt project. The dark areas indicate the periods that are likely
to be weekends.

Table 11 Patch data for the study of RQ3.

Project
Patch data

Studied period
#Patches that received
slow initial feedback

(TRUE class)

#Patches with reviewers &
submitted in workdays

Android 2012/01 - 2014/12 5,759 23,287
Qt 2012/01 - 2014/12 15,900 54,783

OpenStack 2013/01 - 2014/12 22,302 79,431

hourly code review activity of the Qt project, where the periods with small amounts of code
review activities are indicated using dark shading. We mark the areas with small amounts
of code review activities as weekends for the Qt project, and we remove the patches that are
submitted in these periods from our analysis. We repeat the same process for the Android
and OpenStack projects.

Table 11 provides an overview of the studied patch data after we remove patches that
did not attract reviewers and that are submitted during weekends. Below, we present and
discuss the results of our model construction and analysis.

(RQ3-b) Model Construction

Again, we use our patch and MCR process metrics that are described in Table 2 as ex-
planatory variables. The response is set to TRUE if a patch receives slow initial feedback,
and FALSE otherwise. We then construct a logistic regression model, which we describe in
detail below.
(MC-1) Correlation & Redundancy Analysis. We check for highly correlated and redun-
dant variables again, since we filter out patches that did not attract any reviewers, and were
submitted on weekends. We find that the hierarchical clustering analysis shows the same
results as the analysis in RQ2. Hence, we use the same set of surviving variables. Table 12
shows the results of our correlation analysis.
(MC-2) Degree of Freedom Allocation. Again, we allocate additional degrees of freedom
to the surviving explanatory variables based on their potential for sharing a nonlinear rela-
tionship with the response. By observing the Spearman multiple ρ2 values in Figure 12, we
split the explanatory variables into two groups: (1) the feedback delay of prior patches and
the number of prior patches of an author, and (2) the remaining explanatory variables. We
then allocate five and one degree of freedom to each group respectively. We repeat the same

Review Participation in Modern Code Review 27

Feedback delay of prior patches
#Prior patches of an author

#Prior defects
#Prior patches of reviewers

#Days since the last modification
Description length

Directory workload
Overall workload

Discussion length of prior patches
Churn

Entropy

N df

12213 2
23287 2
23287 2
23287 2
23287 2
23287 2
23287 2
23287 2
23287 2
23287 2
23287 2●

●

●

●

●

●

●

●

●

●

●

0.00 0.01 0.02 0.03 0.04

Spearman ρ2 Response : Receive Slow Initial Feedback (True False)

Adjusted ρ2

Fig. 12 Dotplot of the Spearman multiple ρ2 of each explanatory variable and the response (the likelihood
that a patch will receive slow initial feedback) in the Android model. Larger values indicate a higher potential
for a nonlinear relationship (RQ3).

process for Qt and OpenStack datasets. Table 12 shows the number of degrees of freedom
that we spent to build our logistic regression models.

(RQ3-c) Model Analysis

In this section, we describe the results of our model analysis approach that is outlined in
Figure 3 and present our empirical observations.
(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 12 shows that
our models achieve an AUC of 0.61 to 0.66 and the optimism of 0.001 (OpenStack)-0.004
(Android). These results indicate that our models can determine the likelihood that a patch
will receive slow initial feedback and provide a meaningful and robust amount of explana-
tory power.
(MA-2) Power of Explanatory Variables Estimation. We find that the feedback delay of
prior patches contribute a significant amount of explanatory power to the fit of our models.
Table 12 shows that feedback delay of prior patches accounts for a large proportion of the
explanatory power in our three models. Furthermore, we observe that churn also accounts
for a large proportion of the explanatory power of the OpenStack model, while the number
of prior patches of an author accounts for a large proportion of the explanatory power of the
Android model.

Table 12 shows that the explanatory power of the variables in the past involvement of
reviewers dimension account for a relatively small proportion of the explanatory power. This
result suggests that when considering the initial feedback delay, the experience of reviewers
is not as important as the other studied dimensions.
(MA-3) Examination of Variables in Relation to Response. Figure 13 shows the shape
of the nonlinear relationship between the likelihood that a patch will receive slow initial
feedback and two of the most impactful explanatory variables. For the other studied projects,
we provide online access to the figures.18 Table 13 shows the estimated partial effect that
each explanatory variable has on the likelihood. Below, we present our observations from
the examination of these explanatory variables in relation to the response variable.

Observation 8 - The feedback delay of prior patches has an increasing relationship
with the likelihood that a patch will receive slow initial feedback. Figure 13(a) shows that
the shape of the relationship between the likelihood and the feedback delay of prior patches
in the Qt model. The plot shows a steeply increasing trend in the likelihood where the feed-
back delay of prior patches reaches to 25 hours. We observe the similar trends in the Android

28 Patanamon Thongtanunam et al.

Table 12 Statistics of the logistic regression models for identifying patches receiving slow initial feedback
(RQ3). The explanatory variables that contribute the most significant explanatory power to a model (i.e.,
accounting for a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.66 (0.004) 0.61 (0.002) 0.61 (0.001)

Budgeted D.F. 383 1,060 1,486
Spent D.F. 18 17 16
Wald χ2 722∗∗∗ 940∗∗∗ 1,380∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear
Patch Properties Dimension

Churn D.F. 1 − 2 1 2 1
χ2 0%◦ 6%∗∗∗ 6%∗∗∗ 15%∗∗∗ 15%∗∗∗

#Modified files D.F. † † †
χ2

#Modified directories D.F. † † †
χ2

Entropy D.F. 1 − 2 1 1 −
χ2 2%∗∗∗ 7%∗∗∗ 4%∗∗∗ 1%∗∗

Description length D.F. 1 − 1 − 1 −
χ2 8%∗∗∗ 0%◦ 1%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 8%∗∗∗ 4%∗∗∗ 12%∗∗∗

History Dimension

#Days since the last modification D.F. 2 1 1 − 1 −
χ2 7%∗∗∗ 1%∗ 4%∗∗∗ 13%∗∗∗

#Total authors D.F. † † †
χ2

#Prior defects D.F. 1 − 1 − 1 −
χ2 1%◦ 0%◦ 1%∗∗∗

#Reviewers of prior patches D.F. † † †
χ2

Discussion length of prior patches D.F. 1 − 1 − 1 −
χ2 1%∗∗ 1%∗ 0%◦

Feedback delay of prior patches D.F. 2 1 2 1 2 1
χ2 33%∗∗∗ 27%∗∗∗ 51%∗∗∗ 51%∗∗∗ 61%∗∗∗ 54%∗∗∗

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 4 3 1 − 1 −
χ2 18%∗∗∗ 7%∗∗∗ 5%∗∗∗ 0%∗

Recent patches of an author D.F. † † †
χ2

#Directory patches of an author D.F. † † †
χ2

Past Involvement of Reviewers Dimension

#Prior patches of reviewers D.F. 1 − 1 − 1 −
χ2 0%◦ 6%∗∗∗ 0%◦

Recent patches of reviewers D.F. † † †
χ2

#Directory patches of reviewers D.F. † 1 − 1 −
χ2 0%◦ 3%∗∗∗

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 2%∗∗∗ 5%∗∗∗ 0%◦

Directory workload D.F. 1 − 1 − 1 −
χ2 0%◦ 5%∗∗∗ 0%◦

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001

and OpenStack models. Table 13 also shows that feedback delay of prior patches shares a
strong relationship with the likelihood. When the feedback delay of prior patches is greater
than one hour, the likelihood increases by 35%, 69%, and 76% in the Android, Qt, and
OpenStack models, respectively. These results indicate that patches that modify files whose
prior patches had received slow initial feedback tend to also receive slow initial feedback.

Review Participation in Modern Code Review 29

0.4

0.5

0.6

0.7

0.8

0 25 50 75 >=100
Feedback delay of prior patches

O
dd

s

(a) Feedback delay of prior patches in the Qt
model

0.3

0.4

0.5

1 100 200 300 400 >=500
Churn

O
dd

s

(b) Churn in the OpenStack model

Fig. 13 The nonlinear relationship between the likelihood that a patch will receive slow initial feedback (y-
axis) and the explanatory variables (x-axis). The larger the odds value is, the higher the likelihood that the
patch will receive slow initial feedback. The gray area shows the 95% confidence interval estimated by using
a bootstrap-derived approach.

Table 13 Partial effect that our explanatory variables have on the likelihood that a patch will receive slow
initial feedback (RQ3). The larger the magnitude of the odds ratio is, the larger the partial effect that an
explanatory variable has on the likelihood.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 0% 4→59 19%↑ 5→90 33%↑

Entropy 1→1 -9%↓ 1→1 -12%↓ 1→1 4%↑
Description length 11→46 12%↑ 11→37 2%↑ 15→48 4%↑

Purpose Feature→BUG-FIX -29%↓ Feature→BUG-FIX -16%↓ Feature→BUG-FIX -25%↓
Feature→Document -40%↓ Feature→Document -12%↓ Feature→Document -22%↓

History Dimension
#Days since the last modification 2→93 12%↑ 1→51 8%↑ 1→22 7%↑

#Prior defects 0→5 8%↑ 0→4 0% 1→11 2%↑
Discussion length of prior patches 0→2 -3%↓ 0→2 -1%↓ 1→6 0%
Feedback delay of prior patches 0→4 35%↑ 0→8 69%↑ 1→6 76%↑

Past Involvement of an Author Dimension
#Prior patches of an author 3→109 -42%↓ 12→170 9%↑ 4→111 -2%↓

Past Involvement of Reviewers Dimension
#Prior patches of reviewers 11→208 -2%↓ 32→275 -11%↓ 56→527 1%↑

#Directory patches of reviewers 3→106 0% 15→183 -4%↓
Review Environment Dimension

Overall workload 221→476 -12%↓ 507→674 -11%↓ 1229→1626 0%
Directory workload 0→10 -1%↓ 1→12 -6%↓ 2→31 0%

We further investigate how long the association between the feedback delay of prior and
future patches lasts. To do so, we compute the autocorrelation of the feedback delay. First,
we classify patches that receive slow initial feedback and patches that receive prompt initial
feedback. Then, for each file, we create a series of patches that impact that file. Finally,
we measure the association of receiving slow initial feedback of each series with that series
itself using Cramér’s V (Cramér, 1999). We also use the convention of Rea and Parker (2014)
for describing the magnitude of an association. Figure 14 shows the correlogram where the
x-axis indicates the sample intervals of lags (i.e., patches) and y-axis indicates the median
Cramér’s V values between the series of patches at sequence t and the series at sequence
t+lag for all studied files. The correlation at the lag value of 0 always equals to 1. Figure 14
shows that the median of autocorrelation is moderate (0.20 ≤ V < 0.40) until the lag is 11,
12, and 2 for Android, Qt, and OpenStack, respectively. Then, the median of autocorrelation
is weak or negligible (V < 0.2). These results indicate that receiving slow initial feedback in
the current patch is associated with receiving slow initial feedback in the next 11 (Android),
12(Qt), and 2(OpenStack) patches.

30 Patanamon Thongtanunam et al.

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ●0.00

0.25

0.50

0.75

1.00

0 10 20
Lag

M
ed

ia
n

of
 A

ut
oc

or
re

la
tio

n Android

●

● ●
● ●

●0.00

0.25

0.50

0.75

1.00

0 10 20
Lag

M
ed

ia
n

of
 A

ut
oc

or
re

la
tio

n Qt

●

● ●0.00

0.25

0.50

0.75

1.00

0 10 20 30
Lag

M
ed

ia
n

of
 A

ut
oc

or
re

la
tio

n OpenStack

Fig. 14 Correlogram of autocorrelation of feedback delay of prior patches

Observation 9 - The purpose of introducing a new feature shares an increasing rela-
tionship with the likelihood that a patch will receive slow initial feedback. Table 13 shows
that a patch will have a lower likelihood of receiving slow initial feedback when its purpose
is changed from feature introduction to other purposes. The likelihood decreases by 16%
to 29% when the purpose of the patch is changed from feature introduction to bug fixing,
and 12% to 40% when the purpose is changed to documentation. This result indicates that a
patch that introduces new functionality is more likely to receive slow initial feedback than
patches for other purposes.

In addition, we also find that churn shares an increasing relationship with the likelihood
that a patch will receive slow initial feedback. Figure 13(b) shows that the odds, produced
by the OpenStack model, increases when churn increases from 1 to 150 LOC. Table 13
shows that when the churn increases greater than 5 LOC, the likelihood increases by 33% in
the OpenStack models. However, Table 12 shows that churn did not contribute a significant
amount of explanatory power to the Android and Qt models. Moreover, Table 13 shows that
the partial effect of churn having on the likelihood in the Android model is 0%. To bet-
ter understand this relationship, we further investigate with a one-tailed Mann-Whitney U
test (α = 0.05) comparing the churn of patches that receive slow initial feedback and those
that receive prompt feedback in the Android dataset. We find that the churn of patches that
receive slow initial feedback is statistically larger than churn of patches that receive slow ini-
tial feedback, indicating that a patch with large churn tends to receive slow initial feedback
(p-value < 0.001). Our results suggest that when we control for several confounding factors
using prediction model, the churn did not share a strong relationship with the likelihood.

On the other hand, we find that the number of prior patches of an author shares a strong
relationship with the speed of initial feedback in the Android model. Table 12 shows that the
number of prior patches of an author contributes a large amount of explanatory power, and

Review Participation in Modern Code Review 31

its nonlinear relationship can boost to the explanatory power of the Android model. Table 13
shows that the likelihood decreases by 42% when the number of prior patches of an author
increases from 3 to 109.

We observe a similar relationship in the OpenStack dataset, i.e., the likelihood decrease
by 4% when the number of prior patches of an author increases from 4 to 111. However,
Table 13 shows that the likelihood increases when the number of prior patches of an author
in the Qt dataset increases. One possible reason for the reverse effect of the number of prior
patches of an author in the Qt dataset is the low number of developers in the sub-projects.
This is especially true for the qt3d sub-project. We find that 52% of the Qt patches that
are submitted to the qt3d sub-project received slow initial feedback (609/1,166). However,
there are only 24 developers who author these patches. Hence, many of the qt3d patches
have a large number of prior patches of an author while they received slow initial feedback.

The feedback delay of prior patches shares a strong relationship with the likelihood that
a patch will receive slow initial feedback. Furthermore, the purpose of introducing new

features can also increase the likelihood (Observations 8-9).

5 Discussion

In this section, we provide a broader discussion of our empirical observations. The obser-
vations are grouped into three main groups, which are the (1) past review participation, (2)
past activities of practitioners, and (3) patch properties.

5.1 Past Review Participation

The number of reviewers of prior patches. As we conjecture (see Table 2), observation
1 shows that the number of reviewers of prior patches share an increasing relationship the
likelihood of having at least one reviewer. We suspect that files have had few reviewers of
prior patches in part due to a limited number of developers who are interested or working
on related subsystems. Prior work reports that developers usually select patches that are
within their area of interest (Rigby and Storey, 2011). For example, we find that 42% of the
patches in the less popular subsystems (i.e., having fewer than 10 contributing developers) of
Android contain files where their prior patches do not attract any reviewers. We also observe
a similar proportion of 45% and 53% in the small subsystems of Qt and OpenStack. On the
other hand, the subsystems that have a large number of developers (11 to 590 contributing
developers) have only 8%, 3%, and 6% of patches containing files where their prior patches
did not attract any reviewers in the Android, Qt, and OpenStack projects, respectively.

Moreover, our results indicate that patches are more likely to have at least one reviewer if
past changes to the modified files have a tendency to be reviewed by at least two reviewers.
This finding complements those of Rigby and Bird (2013) who report that two reviewers
find an optimal number of defects in MCR processes.
Discussion length of prior patches. Observation 6 arrives at our conjecture where the
discussion length shares an increasing relationship with the likelihood that a patch will be
discussed. In other words, files that had little review discussion in the past will have little dis-
cussion in the future. Similar to prior studies, the discussion length is a strong indicator for
the review quality. For example, Kononenko et al. (2015) report that the number of review

32 Patanamon Thongtanunam et al.

comments posted shares a significant link to the defect-proneness of that patch. Our prior
work also shows that files without post-release defects also undergo many reviews with long
discussions (Thongtanunam et al., 2015a). In addition, this observation also complements
the study of Bird et al. (2006) who find that the social status shares a strong relationship
with the number of messages replied in the email-based discussions.

During correlation analysis, we find that the number of reviewers of prior patches and
the discussion length of prior patches are highly correlated with each other. Hence, we ex-
perimented by swapping these variables in order to validate observations 1 and 6. We find
that the number of reviewers of prior patches and the discussion length of prior patches share
a similar relationship with the likelihood. Therefore, for observation 1, we can conclude that
patches that modify files whose prior patches had received either few reviewers or short
discussions tend tend to be ignored by reviewers. For observation 6, we can conclude that
patches that modify files whose prior patches had received either few reviewers or short dis-
cussions tend not to be discussed, despite being approved by there is at least one reviewer.
These findings suggest that the poor review participation in the past (either few reviewers or
short discussions) can lead to the poor review participation in the future.
Feedback delay of prior patches. Observation 8 shows that the feedback delay of prior
patches shares an increasing relationship with the likelihood that a patch that will receive
slow initial feedback. Prior work shows that reviews often receive prompt initial feedback.
Otherwise, patches tend to be ignored if they have not receive initial feedback for a long
period of time (Rigby et al., 2008).

Our observations 1, 6, and 8 have shown that the past review participation shares a link to
poor review participation of a patch. Furthermore, our prior study has found that practition-
ers tend to overlook the history of files, i.e., reviewers did not give much attention to patches
made to files that have been historically defective (Thongtanunam et al., 2015a). Therefore,
our findings of past review participation metrics suggest that practitioners should take the
history of files into consideration in order to break the cycle of poor review participation.

5.2 Past Activity

Past Involvement of Practitioners. Observation 7 shows that the past involvement of an
author shares an inverse relationship with the likelihood that a patch will be discussed, while
the past involvement of reviewers shares an increasing relationship with the likelihood. The
relationship of the past involvement of reviewers arrives at our conjecture. However, the re-
lationship of the past involvement of authors is counter our conjecture. A potential reason is
that the experience developers are less likely to submit defective patches as those developers
have written many patches to those files (Bird et al., 2011).

Rigby et al. (2014) report that the past involvement of author and reviewers have a
small effect on the amount of discussion in the email-based code reviews. Yet, their study
did not consider the patches that have no review discussion. Hence, this observation can
complement the prior study by showing that the past involvement of an author and reviewers
shares a link to the likelihood that a patch that will be discussed. Moreover, Kononenko
et al. (2015) report that reviewer experience is a good indicator of whether the patch will be
effectively reviewed.

Furthermore, the past involvement of reviewers has been recently used to suggest re-
viewers for a new patch in several studies (Balachandran, 2013; Thongtanunam et al., 2015b;
Zanjani et al., 2015), and also in commercial MCR tools such as CodeCollaborator (Rat-
cliffe, 2009). Hence, observation 7 can support their approaches that inviting reviewers who

Review Participation in Modern Code Review 33

have been involved in many reviews of the modified files can increase the likelihood that a
patch will be discussed.
The number of days since the last modification. Our observation 2 shows that the number
of days since the last modification shares an increasing relationship with the likelihood that
a patch will have at least one reviewer. This finding does not match our expectations. One
possible reason for this relationship is that the last patch prior to the current patch is incom-
plete. For example, the Android patch of review ID 39850 was approved by a reviewer.9

Then, two hours later, the patch author submitted a new patch in order to make a change that
was suggested in review ID 39850.10 We find similar examples in the Qt and OpenStack
projects.11 Although such patches can be minor changes or may not need much involvement
from reviewers, prior work suggests that the patches still should be examined by at least
one reviewers to decrease the likelihood of having defects in the future (Bavota and Russo,
2015).

5.3 Patch Properties

Patch Description. As we conjecture, observation 3 shows that the description length
shares an increasing relationship with the likelihood that a patch will have at least one re-
viewer. Similarly, observation 5 shows that a short description can lower the likelihood that
a patch will be discussed. We find that most of the patches with short descriptions provide
neither the details that are necessary to understand the proposed changes nor a link for ad-
ditional information. For example, the patch author of OpenStack review ID 29856 did not
describe the detail of a change.12 This finding is consistent with prior studies of email-based
code reviews, i.e., a descriptive subject and a well-explained change log message are very
important information for developers to select patches to review (Rigby and Storey, 2011).
Moreover, Tao et al. (2012) report that one of the most important pieces of information for
reviewers is a description of the rationale of a change.

Observation 9 shows that as we conjecture, a patch that introduces new functionality is
more likely to receive slow initial feedback than a patch with another purposes. A potential
reason for this delayed feedback in patches that introduce new features could be that such
patches require more effort to understand. Intuitively, a documentation patch would be easy
to understand, and could receive prompt feedback. We also observe that the reviewers of
the bug-fixing patches often are reporters in the Issue Tracking System (ITS). For example,
Qt review ID 29856 is made to address the bug ID 22625.13 We find that the reviewer
of this patch is the one who reports the bug.14 Hence, it is more likely that the bug fix
reviewers would already understand the problem and could provide prompt feedback to the
author. On the other hand, the purpose of patches that introduce new functionality must be
entirely built from the patch description and source code. For example, the patch author in
Qt review ID 101316 implements a new function to QGeoShape.15 Hence, there are likely

9 https://android-review.googlesource.com/#/c/39850
10 https://android-review.googlesource.com/#/c/39881
11 An example in the Qt project: https://codereview.qt-project.org/#/c/27218 and https://

codereview.qt-project.org/#/c/30591. An example in the OpenStack project: https://review.
openstack.org/#/c/36808 and https://review.openstack.org/#/c/36832.

12 https://review.openstack.org/#/c/36901/
13 https://codereview.qt-project.org/#/c/29856
14 https://bugreports.qt.io/browse/QTBUG-22625
15 https://codereview.qt-project.org/#/c/101316

https://android-review.googlesource.com/#/c/39850
https://android-review.googlesource.com/#/c/39881
https://codereview.qt-project.org/#/c/27218
https://codereview.qt-project.org/#/c/30591
https://codereview.qt-project.org/#/c/30591
https://review.openstack.org/#/c/36808
https://review.openstack.org/#/c/36808
https://review.openstack.org/#/c/36832
https://review.openstack.org/#/c/36901/
https://codereview.qt-project.org/#/c/29856
https://bugreports.qt.io/browse/QTBUG-22625
https://codereview.qt-project.org/#/c/101316

34 Patanamon Thongtanunam et al.

cases that reviewers will require longer time to understand before providing initial feedback.
These observations suggest that to increase review participation, an author should provide
a detailed description of their proposed changes in order to help reviewers to understand
which problem it fixes or how the new feature is supposed to work. Then, reviewers can
either provide feedback if they have the expertise to do so or suggest appropriate reviewers.
Patch Size. Observation 4 shows that as we conjecture, churn shares an increasing rela-
tionship with the likelihood that a patch will be discussed. Recent studies also report that
the patch size is a good indicator of patch acceptance (Weißgerber et al., 2008; Jiang et al.,
2013). Intuitively, the large patches are likely to be discussed since they can contain more
problems than the small patches. For example, OpenStack review ID 35074 shows a review
where an author proposes a change of 737 LOC, then the reviewers raised several issues.16

On the other hand, smaller patches have less code to critique, and thus are less likely to
receive comments from reviewers.17 This observation is also consistent with the findings
of Baysal et al. (2015) who find that large patches tend to have more revisions than small
patches in the MCR processes of the WebKit and Blink projects.

6 Threats to Validity

We now discuss threats to the validity of our study.

6.1 External Validity

We focus our study on three open source projects, which may limit the generalizability of
our results. Nagappan et al. (2013) argue that increasing the sample size without careful
selection cannot contribute to the goal of increased generality. Hence, it is a challenge to
carefully identify projects that satisfy our selection criteria (cf. Section 3.1), since the code
review process of MCR is a relatively new development. To aid in future work, we make
our datasets publicly available.18 Nonetheless, additional replication studies are needed to
generalize our results.

6.2 Construct Validity

We identify the purpose of a patch by extracting keywords from its commit message. Al-
though modern Issue Tracking Systems (ITSs) provide a field for practitioners to denote the
purpose of a change, we find that our studied projects have a small proportion of patches
that can be linked to records in ITSs. Indeed, only 9%, 1%, and 19% of the studied patches
can be linked to issues in the ITS records of our studied projects. Hence, we must rely on
heuristics to recover this information. Nevertheless, we measure the accuracy of our purpose
identification by manually examining samples of patches. From a sample of 50 patches for
each type of purpose, we find that on average, 89% of patches are correctly identified as fea-
ture introduction, 91% of patches are correctly identified as bug-fixing, and 75% of patches
are correctly identified as documentation. We provide online access to our samples and their
manual classification results.18

16 https://review.openstack.org/#/c/35074/
17 https://review.openstack.org/#/c/36448/
18 http://sailhome.cs.queensu.ca/replication/review_participation/

https://review.openstack.org/#/c/35074/
https://review.openstack.org/#/c/36448/
http://sailhome.cs.queensu.ca/replication/review_participation/

Review Participation in Modern Code Review 35

We measure feedback delay based on a heuristic that reviewers will promptly review a
new patch at the time that it is submitted. However, there are likely cases where reviewers
actually examined a patch for a fraction of this timeframe. Unfortunately, reviewers do not
record the time that they actually spent reviewing a patch. To reduce such measurement er-
rors, we use the elapsed time between the latest revision before receiving the initial feedback
and the posting of the initial feedback.

6.3 Internal Validity

We assume that our studied projects perform code reviews using the MCR tools. There are
likely cases where the reviewing activities are missing. For example, Mukadam et al. (2013)
report that many reviews in the Android project are missing since August 2011 until early
January 2012. It is also possible that reviewers may provide feedback using other com-
munication media, such as in-person discussion (Beller et al., 2014), a group IRC (Shihab
et al., 2009), or mailing list (Guzzi et al., 2013; Rigby and Storey, 2011). Unfortunately,
recovering these reviewing activities is a non-trivial problem (Bacchelli et al., 2010; Bird
et al., 2007). However, our analysis focuses on reviews that were submitted during the pe-
riod when the studied projects actively use MCR tools (cf. Section 3.2.1). Hence, we rely on
the information that is recorded by these tools.

Since our observations are based on the surviving explanatory variables, there are likely
cases that our variable selection may influence our conclusions. Hence, for the sake of com-
pleteness, we change each surviving variable to the other variables that were removed and
refit our models. Our model analysis results indicate that these alternate models achieve sim-
ilar AUC values, i.e., the AUC differences are ranging between -0.01 to 0.04 for models in
RQ1, -0.01 to 0.02 for models in RQ2, and -0.01 to 0.01 for models in RQ3. Furthermore, we
find that if the surviving variables have a large effect on the likelihood, the alternate variables
will have a large effect as well. For example, Table 6 shows that the number of reviewers
of prior patches has the largest negative effect on the likelihood that a patch will not attract
reviewer. We also find that the discussion length of prior patches has the largest negative
effect on the likelihood in the alternate model (i.e., the variable that is highly correlated with
the number of reviewers of prior patches). Moreover, the variables that are highly correlated
in our study measure similar characteristics of a patch, e.g., the number of reviewers of prior
patches and the discussion length of prior patches are measures of past review participation.
Therefore, we believe that our variable selection does not muddle our conclusions.

We assume that the review processes are consistent across all subsystems in a large
project. Future work should closely examine whether there are differences in review pro-
cesses across subsystems.

7 Conclusion

Due to the human-intensive nature of code reviewing, review participation plays an im-
portant role in Modern Code Review (MCR) practices. Despite the importance of review
participation (McIntosh et al., 2014; Thongtanunam et al., 2015a; Morales et al., 2015),
little is known about the factors that influence review participation in the MCR process.

In this paper, we investigate the characteristics of patches that: do not attract review-
ers, are not discussed, or receive slow initial feedback in the MCR process. We measure
20 patch and MCR process metrics grouped along five dimensions. We use contemporary

36 Patanamon Thongtanunam et al.

regression modelling techniques to investigate the relationship that our metrics share with
the likelihood that a patch will suffer from poor review participation. Using data collected
from the Android, Qt, and OpenStack open source projects, we empirically study 196,712
code reviews. The results of our study show that our models can identify patches that fill
suffer from poor review participation with an AUC ranging 0.61-0.76. Moreover, we make
the following observations:

– The number of reviewers of prior patches, and the description length share a strong in-
verse relationship with the likelihood that a patch will not attract any reviewers. Counter-
intuitively, the number of days since the last modification of files also share an inverse
relationship. (Observations 1-3).

– The description length, the discussion length of prior patches, churn, and past involve-
ment of reviewers share an inverse relationship with the likelihood that a patch will not
be discussed, while past involvement of an author shares an increasing relationship with
that likelihood (Observations 4-7).

– The feedback delay of prior patches shares a strong increasing relationship with the
likelihood that a patch will receive slow initial feedback. Moreover, patches that intro-
duce new features tend to receive slower feedback than patches that fix bugs or address
documentation issues (Observations 8-9).

We believe that our results and empirical observations help to support the management
of the MCR process and adherence to our recommendations will lead to a more responsive
review process. To facilitate future work, we provide online access to our patch data and
example R scripts for model our construction and analysis approaches.19

8 Acknowledgments

This research was supported by the Grant-in-Aid for JSPS Fellows (Numbers 16J02861).

References

Abelein U, Paech B (2013) Understanding the Influence of User Participation and Involve-
ment on System Success a Systematic Mapping Study. Empirical Software Engineering
(EMSE) 20(1):28–31

Bacchelli A, Bird C (2013) Expectations, Outcomes, and Challenges of Modern Code Re-
view. In: Proceedings of the 35th International Conference on Software Engineering
(ICSE), pp 712–721

Bacchelli A, Lanza M, Robbes R (2010) Linking E-Mails and Source Code Artifacts. In:
Proceedings of the 32nd International Conference on Software Engineering (ICSE), pp
375–384

Balachandran V (2013) Reducing Human Effort and Improving Quality in Peer Code Re-
views using Automatic Static Analysis and Reviewer Recommendation. In: Proceedings
of the 35th International Conference on Software Engineering (ICSE), pp 931–940

Bavota G, Russo B (2015) Four Eyes Are Better Than Two: On the Impact of Code Reviews
on Software Quality. In: Proceedings of the 31st International Conference on Software
Maintenance and Evolution (ICSME), pp 81–90

19 http://sailhome.cs.queensu.ca/replication/review_participation/

http://sailhome.cs.queensu.ca/replication/review_participation/

Review Participation in Modern Code Review 37

Baysal O, Kononenko O, Holmes R, Godfrey MW (2012) The Secret Life of Patches: A
Firefox Case Study. In: Proceedings of the 19th Working Conference on Reverse Engi-
neering (WCRE), pp 447–455

Baysal O, Kononenko O, Holmes R, Godfrey MW (2015) Investigating technical and
non-technical factors influencing modern code review. Empirical Software Engineering
(EMSE) pp 1–28

Beller M, Bacchelli A, Zaidman A, Juergens E (2014) Modern Code Reviews in Open-
Source Projects: Which Problems Do They Fix? In: Proceedings of the 11th Working
Conference on Mining Software Repositorie (MSR), pp 202–211

Bettenburg N, Hassan AE, Adams B, German DM (2013) Management of community con-
tributions - A case study on the Android and Linux software ecosystems. Empirical Soft-
ware Engineering (EMSE) pp 1–38

Bird C, Gourley A, Devanbu P, Gertz M, Swaminathan A (2006) Mining Email Social Net-
works. In: Proceedings of the 3rd International Workshop on Mining Software Reposito-
ries (MSR), pp 137–143

Bird C, Gourley A, Devanbu P (2007) Detecting Patch Submission and Acceptance in OSS
Projects. In: Proceedings of the 4th Internaltion Workshop on Mining Software Reposi-
tories (MSR), pp 26–29

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t Touch My Code! Examin-
ing the Effects of Ownership on Software Quality. In: Proceedings of the 8th joint meeting
of the European Software Engineering Conference and the Internaltional Symposium on
the Foundations of Software Engineering (ESEC/FSE), pp 4–14

Bosu A, Carver JC (2013) Impact of Peer Code Review on Peer Impression Formation:
A Survey. In: Proceedings of the 7th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp 133–142

Cramér H (1999) Mathematical methods of statistics. Princeton University Press 9
Efron B (1986) How Biased is the Apparent Error Rate of a Prediction Rule? Journal of the

American Statistical Association 81(394):461–470
Fagan ME (1999) Design and Code Inspections to Reduce Errors in Program Development.

IBM System Journal 38(2-3):258–287
Fowler M, Foemmel M (2006) Continuous integration.

http://wwwthoughtworkscom/Continuous Integrationpdf
Gousios G, Pinzger M, van Deursen A (2014) An Exploratory Study of the Pull-based Soft-

ware Development Model. In: Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE), pp 345–355

Guzzi A, Bacchelli A, Lanza M, Pinzger M, Van Deursen A (2013) Communication in
Open Source Software Development Mailing Lists. In: Proceedings of the 10th Working
Conference on Mining Software Repositories (MSR), pp 277–286

Hamasaki K, Kula RG, Yoshida N, Erika CCA, Fujiwara K, Iida H (2013) Who does what
during a Code Review? An extraction of an OSS Peer Review Repository. In: Proceedings
of the 10th Working Conference on Mining Software Repositories (MSR), pp 49–52

Hanley JA, McNeil BJ (1982) The Meaning and Use of the Area under a Receiver Operating
Characteristic (ROC) Curve. Radiological Society of North America 143(1):29–36

Harrell Jr FE (2002) Regression Modeling Strategies: With Application to Linear Models,
Logistic Regression, and Survival Analysis, 1st edn. Springer

Harrell Jr FE (2015) rms: Regression Modeling Strategies. URL http://biostat.mc.

vanderbilt.edu/rms

Hassan AE (2008) Automated Classification of Change Messages in Open Source Projects.
In: Proceedings of the 23rd Symposium on Applied Computing (SAC), pp 837–841

http://biostat.mc.vanderbilt.edu/rms
http://biostat.mc.vanderbilt.edu/rms

38 Patanamon Thongtanunam et al.

Hassan AE (2009) Predicting Faults Using the Complexity of Code Changes. In: Proceed-
ings of the 31st International Conference on Software Engineering (ICSE), pp 78–88

Hinkle DE, Wiersma W, Jurs SG (1998) Applied statistics for the behavioral sciences, 4th
edn. Houghton Mifflin Boston, MA

Jiang Y, Adams B, German DM (2013) Will My Patch Make It? And How Fast? Case Study
on the Linux Kernel. In: Proceeding of the 10th IEEE Working Conference on Mining
Software Repositories (MSR), pp 101–110

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A
Large-Scale Empirical Study of Just-in-Time Quality Assurance. Transactions on Soft-
ware Engineering (TSE) 39(6):757–773

Kim S, Whitehead EJ Jr, Zhang Y (2008) Classifying software changes: Clean or buggy?
Transaction on Software Engineering (TSE) 34(2):181–196

Kononenko O, Baysal O, Guerrouj L, Cao Y, Godfrey MW (2015) Investigating Code Re-
view Quality : Do People and Participation Matter ? In: Proceedings of the 31st Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp 111–120

McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The Impact of Code Review Coverage
and Code Review Participation on Software Quality. In: Proceedings of the 11th Working
Conference on Mining Software Repositorie (MSR), pp 192–201

McIntosh S, Kamei Y, Adams B, Hassan AE (2015) An Empirical Study of the Impact of
Modern Code Review Practices on Software Quality. Empirical Software Engineering
(EMSE)

Mishra R, Sureka A (2014) Mining Peer Code Review System for Computing Effort and
Contribution Metrics for Patch Reviewers. In: Proceedings of the 4th Workshop on Min-
ing Unstructured Data (MUD), pp 11–15

Mockus A, Votta LG (2000) Identifying Reasons for Software Changes using Historic
Databases. In: Proceedings of the 16th International Conference on Software Main-
tainance (ICSM), pp 120–130

Morales R, Mcintosh S, Khomh F (2015) Do Code Review Practices Impact Design Qual-
ity? A Case Study of the Qt, VTK, and ITK Projects. In: Proceedings of the 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering (SANER)

Mukadam M, Bird C, Rigby PC (2013) Gerrit Software Code Review Data from Android.
In: Proceedings of the 10th Working Conference on Mining Software Repositories (MSR’
13), pp 45–48

Nagappan M, Zimmermann T, Bird C (2013) Diversity in Software Engineering Research.
In: Proceedings of the 9th joint meeting of the European Software Engineering Con-
ference and the International Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp 466–476

Nagappan N, Zeller A, Zimmermann T, Herzig K, Murphy B (2010) Change Bursts as De-
fect Predictors. In: Proceedings of the 21st International Symposium on Software Relia-
bility Engineering (ISSRE), Ieee, pp 309–318

Nurolahzade M, Nasehi SM, Khandkar SH, Rawal S (2009) The Role of Patch Review in
Software Evolution: An Analysis of the Mozilla Firefox. In: Proceedings of the join Inter-
national and Anual ERCIM Workshops on Principles of Software Evolution and Software
Evolution Workshop (IWPSE-Evol), pp 9–17

Porter A, Siy H, Mockus A, Votta L (1998) Understanding the Sources of Variation in
Software Inspections. Transactions on Software Engineering and Methodology (TOSEM)
7(1):41–79

Ratcliffe JG (2009) Moving Software Quality Upstream: The Positive Impact of Lightweight
Peer Code Review. In: Pacific NW Software Quality Conference, pp 1–10

Review Participation in Modern Code Review 39

Raymond ES (1999) The Cathedral and the Bazaar. Knowledge, Technology & Policy
12(3):23–49

Rea LM, Parker RA (2014) Designing and conducting survey research: A comprehensive
guide. John Wiley & Sons

Rigby PC, Bird C (2013) Convergent Contemporary Software Peer Review Practices. In:
Proceedings of the 9th joint meeting of the European Software Engineering Confer-
ence and the International Symposium on the Foundations of Software Engineering (ES-
EC/FSE), pp 202–212

Rigby PC, Storey MA (2011) Understanding Broadcast Based Peer Review on Open Source
Software Projects. In: Proceeding of the 33rd International Conference on Software En-
gineering (ICSE), pp 541–550

Rigby PC, German DM, Storey MA (2008) Open Source Software Peer Review Practices:
A Case Study of the Apache Server. In: Proceedings of the 30th International Conference
on Software Engineering (ICSE), pp 541–550

Rigby PC, Cleary B, Painchaud F, Storey MA, German DM (2012) Contemporary Peer
Review in Action: Lessons from Open Source Development. IEEE Software 29(6):56–61

Rigby PC, German DM, Cowen L, Storey Ma (2014) Peer Review on Open-Source Software
Projects: Parameters, Statistical Models, and Theory. Transactions on Software Engineer-
ing and Methodology (TOSEM) 23(4):Article No. 35

Sarle WS (1990) The VARCLUS Procedure, 4th edn. SAS Institute, Inc.
Sauer C, Jeffery DR, Land L, Yetton P (2000) The Effectiveness of Software Develop-

ment Technical Reviews: A Behaviorally Motivated Program of Research. Transactions
on Software Engineering (TSE) 26(1):1–14

Shihab E, Jiang ZM, Hassan AE (2009) Studying the Use of Developer IRC Meetings in
Open Source Projects. In: Prceedings of the 25th International Conference on Software
Maintenance (ICSM), pp 147–156

Shull F, Basili V, Boehm B, Brown AW, Costa P, Lindvall M, Port D, Rus I, Tesoriero R,
Zelkowitz M (2002) What We Have Learned About Fighting Defects. In: Proceedings of
the 8th International Software Metrics Symposium (METRICS), pp 249–258

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The Impact
of Mislabelling on the Performance and Interpretation of Defect Prediction Models. In:
Proceedings of the 37th International Conference on Software Engineering (ICSE), pp
812–823

Tao Y, Dang Y, Xie T, Zhang D, Kim S (2012) How Do Software Engineers Understand
Code Changes?: An Exploratory Study in Industry. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering (FSE),
pp 51:1–51:11

Thongtanunam P, Yang X, Yoshida N, Kula RG, Ana Erika CC, Fujiwara K, Iida H (2014)
ReDA: A Web-based Visualization Tool for Analyzing Modern Code Review Dataset.
In: The proceeding of the 30th International Conference on Software Maintenance and
Evolution (ICSME), pp 606–609

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2015a) Investigating Code Review Prac-
tices in Defective Files: An Empirical Study of the Qt System. In: Proceedings of the 12th
Working Conference on Mining Software Repositories (MSR), pp 168–179

Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, Iida H, Matsumoto K (2015b)
Who Should Review My Code? A File Location-Based Code-Reviewer Recommenda-
tion Approach for Modern Code Review. In: Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER), pp 141–150

40 Patanamon Thongtanunam et al.

Thongtanunam P, Mcintosh S, Hassan AE, Iida H (2016) Revisiting Code Ownership and its
Relationship with Software Quality in the Scope of Modern Code Review. In: Proceed-
ings of the 38th International Conference on Software Engineering (ICSE), p to appear

Tsay J, Dabbish L, Herbsleb J (2014) Let’s Talk About It: Evaluating Contributions through
Discussion in GitHub. In: Proceedings of the 22nd International Symposium on the Foun-
dations of Software Engineering (FSE), pp 144–154

Ukkonen E (1985) Algorithms for approximate string matching. Information and Control
64(1-3):100–118

Weißgerber P, Neu D, Diehl S (2008) Small Patches Get In ! In: Proceedings of the 2008
international working conference on Mining software repositories (MSR’08), pp 67–75

Zanjani M, Kagdi H, Bird C (2015) Automatically Recommending Peer Reviewers in Mod-
ern Code Review. IEEE Transactions on Software Engineering 5589(c):1–1

	Introduction
	Related Work & Research Questions
	Case Study Design
	Case Study Results
	Discussion
	Threats to Validity
	Conclusion
	Acknowledgments

