
NAIST-IS-DD1461019

Doctoral Dissertation

Towards a Better Understanding of the Impact of

Experimental Components on Defect Prediction

Models

Chakkrit Tantithamthavorn

September 5, 2016

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Chakkrit Tantithamthavorn

Thesis Committee:
Professor Kenichi Matsumoto (Nara Institute of Science and Technology)
Professor Hajimu Iida (Nara Institute of Science and Technology)
Assistant Professor Akinori Ihara (Nara Institute of Science and Technology)
Professor Ahmed E. Hassan (Queen’s University)
Dr. Thomas Zimmermann (Microsoft Research)

i

Towards a Better Understanding of the Impact of

Experimental Components on Defect Prediction

Models∗

Chakkrit Tantithamthavorn

Abstract

Software Quality Assurance (SQA) teams play a critical role in the software
development process to ensure the absence of software defects. It is not feasible
to perform exhaustive SQA tasks (i.e., software testing and code review) on a
large software product given the limited SQA resources that are available. Thus,
the prioritization of SQA efforts is an essential step in all SQA efforts.
Defect prediction models are used to prioritize risky software modules and

understand the impact of software metrics on the defect-proneness of software
modules. The predictions and insights that are derived from defect prediction
models can help software teams allocate their limited SQA resources to the mod-
ules that are most likely to be defective and avoid common past pitfalls that are
associated with the defective modules of the past. However, the predictions and
insights that are derived from defect prediction models may be inaccurate and
unreliable if practitioners do not control for the impact of experimental compo-
nents (e.g., datasets, metrics, and classifiers) on defect prediction models, which
could lead to erroneous decision-making in practice.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461019, September 5, 2016.

ii

In this thesis, we investigate the impact of experimental components on the
performance and interpretation of defect prediction models. More specifically,
we investigate the impact of the three often overlooked experimental components
(i.e., issue report mislabelling, parameter optimization of classification techniques,
and model validation techniques) have on defect prediction models. Through
case studies of systems that span both proprietary and open-source domains, we
demonstrate that (1) issue report mislabelling does not impact the precision of
defect prediction models, suggesting that researchers can rely on the predictions
of defect prediction models that were trained using noisy defect datasets; (2)
automated parameter optimization for classification techniques substantially im-
prove the performance and stability of defect prediction models, as well as they
change their interpretation, suggesting that researchers should no longer shy from
applying parameter optimization to their models; and (3) the out-of-sample boot-
strap validation technique produces a good balance between bias and variance of
performance estimates, suggesting that the single holdout and cross-validation
families that are commonly-used nowadays should be avoided.

Keywords:

Software Quality Assurance, Defect Prediction Modelling

Related Publications

Early versions of the work in this thesis were published as listed below.

– (Chapter 1 and Chapter 4) Towards a Better Understanding of the Im-
pact of Experimental Components on Defect Prediction Modelling.
Chakkrit Tantithamthavorn. In the Doctoral Symposium of the Interna-
tional Conference on Software Engineering (ICSE 2016), pp. 867–870.
Acceptance Rate: 22% (8/36).

– (Chapter 3) Comments on “Researcher Bias: The Use of Machine Learn-
ing in Software Defect Prediction".
Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. IEEE Transactions on Software Engineering (TSE), 4 pages,
In Press. Impact Factor: 1.6 (2015).

– (Chapter 5) The Impact of Mislabelling on the Performance and Inter-
pretation of Defect Prediction Models.
Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, Akinori
Ihara, and Kenichi Matsumoto. In Proceedings of the International Con-
ference on Software Engineering (ICSE 2015), pp. 812–823.
Acceptance Rate: 19% (89/455).
This paper received an Outstanding Paper Award for Young C&C Re-
searchers by NEC C&C, Japan.

iii

iv

– (Chapter 6) Automated Parameter Optimization of Classification Tech-
niques for Defect Prediction Models.
Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. In Proceedings of the International Conference on Software
Engineering (ICSE 2016), pp. 321–332. Acceptance Rate: 19% (101/530).

– (Chapter 7) An Empirical Comparison of Model Validation Techniques
for Defect Prediction Models.
Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. IEEE Transactions on Software Engineering (TSE), 21 pages,
In Press. Impact Factor: 1.6 (2015).

The following publications are not directly related to the material in this thesis,
but were produced in parallel to the research performed for this thesis.

– Who Should Review My Code? A File Location-Based Code-Reviewer
Recommendation Approach for Modern Code Review.
Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikov-
ina Kula, Norihiro Yoshida, Hajimu Iida, Kenichi Matsumoto. In Pro-
ceedings of The International Conference on Software Analysis, Evolution,
and Reengineering (SANER 2015), pp 141–150. Acceptance Rate: 32%
(46/144).

– A Study of Redundant Metrics in Defect Prediction Datasets.
Jirayus Jiarpakdee, Chakkrit Tantithamthavorn, Akinori Ihara, Kenichi Mat-
sumoto. In Proceedings of the International Symposium on Software Reli-
ability Engineering (ISSRE 2016), To Appear.

Acknowledgements

This thesis would not have been possible without support and encouragement
from many important people. To the following people, I owe an enormous debt
of gratitude.
First and foremost, there are no proper words to convey my deep gratitude

and respect for my thesis supervisor, Kenichi Matsumoto, for his supervision and
continuous support throughout my Ph.D. journey.
I have been amazingly fortunate to work closely with and mentored by Ahmed

E. Hassan and Shane McIntosh. Their technical and editorial advice was essential
to the completion of this dissertation. They have taught me innumerable lessons
and insights on the workings of academic research in general. They also demon-
strated what a brilliant and hard-working researcher can accomplish. I am also
thankful for their feedback and countless revisions of this dissertation. I could
not have imagined having better mentors for my Ph.D study. I hope that one
day I would become as good an advisor to my students as they have been to me.
Besides my supervisor and mentors, I would like to thank the rest of my thesis

committee Thomas Zimmermann, Hajimu Iida, and Akinori Ihara, for their en-
couragement, insightful comments, and hard questions. I am particularly grateful
to Yasutaka Kamei, Meiyappan Nagappan, Weiyi Shang and Hideaki Hata, who
have been like older brothers to me, offering advice and sharing their experiences.
I am very fortunate to work with the brightest network of collaborators on top-

ics outside of the scope of this thesis: Surafel Lemma Abebe, Norihiro Yoshida,

v

vi

Raula G. Kula, Safwat Ibrahim Hassan, Ranjan Kumar Rahul, Cor-Paul Baze-
mer, Jirayus Jiarpakdee, Shade Ruangwan, Nonthaphat Wongwattanakij, and
Phuwit Vititayanon.
I would like to thank Frank E. Harrell Jr. for fruitful discussion on the state

of the art and practice of model validation techniques, as well as performance
measures. He helped me sort out the technical details of my work during the
Regression Modelling Strategies workshop 2015 at the School of Medicine, Van-
derbilt University, USA.
I wish to thank my labmates both at NAIST and Queen’s University. Also,

Daniel Alenca da Costa and Hanyang Hu for sharing their advice and sharing
their experiences.
I also thank Compute Canada for providing me access to the High Performance

Computing (HPC) systems and the Centre for Advanced Computing at Queen’s
University.
My Ph.D. journey is generously supported by NAIST Excellent Student Schol-

arship Award 2014, NEC C&C Research Grant for Non-Japanese Researchers
2014, the JSPS Research Fellowship for Young Scientist (DC2), the Grant-in-
Aid for JSPS Fellows (No. 16J03360), and the Natural Sciences and Engineering
Research Council of Canada (NSERC).
Special thanks to Patanamon Thongtanunam. I feel so lucky and thankful that

we were able to share another journey together as we pursued our Master’s and
Ph.D. degrees. Thank you for the patient, understanding, and humorous jokes
that always make me forget my tiredness. You also made my days bright (even
the really tough ones) and filled every second of my time with happiness and joy.
Finally and most importantly, I would like to thank my parents for their never

ending encouragement and support. Their love is the driving force that has
pushed me this far. Thank you for allowing me to chase my dreams and be as
ambitious as I wanted.

Dedication

I dedicate this thesis to my beloved parents Chan and Mayuree. I hope that this
achievement will complete the dream that you had for me all those many years
when you chose to give me the best education you could.

vii

Contents

Abstract i

Related Publications iii

Acknowledgements v

Dedication vii

List of Figures xiii

List of Tables xix

1. Introduction 1
1.1. Problem Statement . 6
1.2. Thesis Overview . 6
1.3. Thesis Contribution . 10
1.4. Thesis Organization . 11

I. Background and Definitions 13

2. Defect Prediction Modelling 15
2.1. Introduction . 15

ix

x Contents

2.2. Data Preparation . 16
2.3. Model Construction . 23
2.4. Model Validation . 24
2.5. Chapter Summary . 27

II. A Motivating Study and Related Research 29

3. The Experimental Components that Impact Defect Prediction Models 31
3.1. Introduction . 32
3.2. The Presence of Collinearity . 32
3.3. The Interference of Collinearity 34
3.4. Mitigating Collinearity . 36
3.5. Chapter Summary . 38

4. Related Research 41
4.1. Introduction . 42
4.2. Data Preparation Stage . 42
4.3. Model Construction Stage . 45
4.4. Model Validation Stage . 46
4.5. Chapter Summary . 47

III.Empirical Investigations of the Impact of Experimental Com-

ponents 49

5. The Impact of Issue Report Mislabelling 51
5.1. Introduction . 52
5.2. Related Work & Research Questions 54
5.3. Case Study Design . 59
5.4. Case Study Results . 68

Contents xi

5.5. Discussion & Threats to Validity 78

5.6. Chapter Summary . 80

6. The Impact of Automated Parameter Optimization 83

6.1. Introduction . 84

6.2. The Relevance of Parameter Settings for Defect Prediction Models 87

6.3. Related Work & Research Questions 96

6.4. Case Study Design . 101

6.5. Case Study Results . 110

6.6. Revisiting the Ranking of Classification Techniques for Defect Pre-
diction Models . 125

6.7. Discussion . 130

6.8. Threats to Validity . 133

6.9. Chapter Summary . 134

7. The Impact of Model Validation Techniques 137

7.1. Introduction . 138

7.2. Motivating Examples . 141

7.3. Model Validation Techniques in Defect Prediction Literature . . . 149

7.4. Related Work & Research Questions 154

7.5. Case Study Design . 156

7.6. Case Study Results . 167

7.7. Discussion . 180

7.8. Practical Guidelines . 183

7.9. Threats to Validity . 184

7.10. Chapter Summary . 187

xii Contents

IV. Conclusion and Future Work 191

8. Conclusion and Future Work 193
8.1. Contributions and Findings . 194
8.2. Opportunities for Future Research 197

References 203

Appendix A. Replication Package for Chapter 3 237
A.1. Download dataset and scripts . 237
A.2. Load miscellaneous functions . 237
A.3. The Presence of Collinearity . 237
A.4. The Interference of Collinearity 238
A.5. Mitigating the Collinearity . 241

Appendix B. A List of 101 Defect Datasets. 247
B.1. Install and load necessary R packages 247
B.2. A list of 101 datasets . 247

Appendix C. An example R script for Caret parameter optimization 253
C.1. Install necessary R packages . 253
C.2. Caret parameter optimization . 253
C.3. Results . 256

Appendix D. An R implementation of the generic variable importance com-
putation 257
D.1. Install necessary R packages . 257

Appendix E. An R Implementation of the Scott-Knott ESD Test 261

Appendix F. An example R script for out-of-sample bootstrap validation 263
F.1. Install necessary R packages . 263

List of Figures

1.1. An overview of the typical defect prediction modelling and its re-
lated experimental components. 4

1.2. An overview of the scope of this thesis. 7

2.1. A graphical illustration of the defect prediction modelling process. 18

2.2. A graphical illustration of data preparation stage. 21

2.3. An example issue report that describes software defect. A red box
is used to highlight the category of the issue report, while a blue
box is used to highlight the modules that are changed to address
the issue report. 22

2.4. A Git commit that is related to the given example issue report of
Figure 2.3. 22

3.1. [A Motivating Study] Distribution of the partial η2 values for each
explanatory variable when it appears at each position in the model
formula. 35

5.1. [Empirical Study 1] The construction of defect prediction datasets. 55

5.2. [Empirical Study 1] An overview of our data extraction and anal-
ysis approaches. 58

xiii

xiv List of Figures

5.3. [Empirical Study 1] A comparison of the performance of our models
that are trained to identify mislabelled issue reports (blue) against
random guessing (white). Error bars indicate the 95% confidence
interval based on 1,000 bootstrap iterations. 70

5.4. [Empirical Study 1] The difference in performance between models
trained using realistic noisy samples and clean samples. All models
are tested on clean samples (defect mislabelling). 72

5.5. [Empirical Study 1] The difference in performance between models
trained using random noisy and realistic noisy samples. All models
are tested on clean samples (defect mislabelling). 74

5.6. [Empirical Study 1] An overview of our approach to study the
impact of issue report mislabelling. 76

5.7. [Empirical Study 1] The difference in the ranks for the metrics
according to their variable importance scores among the clean and
noisy models. The bars indicate the percentage of variables that
appear in that rank in the clean model while also appearing in that
rank in the noisy models. 77

6.1. [Empirical Study 2] An overview of our case study approach for
studying the impact of automated parameter optimization on de-
fect prediction models. 104

6.2. [Empirical Study 2] An overview of Caret parameter optimization. 106

6.3. [Empirical Study 2] An overview of our generic variable importance
calculation that can be applied to any classification techniques. . . 109

6.4. [Empirical Study 2] The performance improvement and its Cohen’s
d effect size for each of the studied classification techniques. . . . 112

6.5. [Empirical Study 2] The AUC performance difference of the top-20
most sensitive parameters. 113

List of Figures xv

6.6. [Empirical Study 2] The stability ratio of the classifiers that are
trained using Caret-optimized settings compared to the classifiers
that are trained using default settings for each of the studied clas-
sification techniques. 116

6.7. [Empirical Study 2] The stability ratio of the top-20 most sensitive
parameters. 117

6.8. [Empirical Study 2] The difference in the ranks for the variables
according to their variable importance scores among the classifiers
that are trained using Caret-optimized settings and classifiers that
are trained using default settings. The bars indicate the percentage
of variables that appear in that rank in the Caret-optimized model
while also appearing in that rank in the default models. 119

6.9. [Empirical Study 2] Four types of transferability for each of the
top-20 most sensitive parameters. Higher frequency for each of
the Caret-suggested settings that appear across datasets indicates
high transferability of a parameter. 121

6.10. [Empirical Study 2] Computational cost of Caret optimization tech-
niques (hours). 125

6.11. [Empirical Study 2] An overview of our statistical comparison over
multiple datasets. 127

6.12. [Empirical Study 2] The likelihood of each technique appearing in
the top Scott-Knott ESD rank. Circle dots and triangle dots indi-
cate the median likelihood, while the error bars indicate the 95%
confidence interval of the likelihood of the bootstrap analysis. A
likelihood of 80% indicates that a classification technique appears
at the top-rank for 80% of the studied datasets. 128

xvi List of Figures

7.1. [Empirical Study 3] The distribution of Events Per Variable (EPV)
values in publicly-available defect prediction datasets. The black
line indicates the median value. The vertical red line indicates
the rule-of-thumb EPV value of 10 that is recommended by Pe-
duzzi et al. [186]. The red-shaded area indicates the high-risk
datasets that do not meet this recommendation (EPV ≤ 10). . . . 142

7.2. [Empirical Study 3] The distribution of performance estimates that
are produced by the repeated 10-fold cross validation at different
EPV contexts when the experiment is repeated 100 times. 145

7.3. [Empirical Study 3] An overview of the design of our case study
experiment. 159

7.4. [Empirical Study 3] An overview of our ranking and clustering
approach. 166

7.5. [Empirical Study 3] The Scott-Knott ESD ranking of the bias of
model validation techniques. The technique in a bracket indicates
the top-performing technique for each classifier type. The red di-
amond indicates the average amount of bias across our studied
datasets. 170

7.5. [Empirical Study 3] The Scott-Knott ESD ranking of the bias of
model validation techniques. The technique in a bracket indicates
the top-performing technique for each classifier type. The red di-
amond indicates the average amount of bias across our studied
datasets. (Cont.) . 171

7.5. [Empirical Study 3] The Scott-Knott ESD ranking of the bias of
model validation techniques. The technique in a bracket indicates
the top-performing technique for each classifier type. The red di-
amond indicates the average amount of bias across our studied
datasets. (Cont.) . 172

List of Figures xvii

7.6. [Empirical Study 3] The Scott-Knott ESD ranking of the variance
of model validation techniques. The technique in a bracket indi-
cates the top-performing technique for each classifier type. The
red diamond indicates the average amount of variance across our
studied datasets. 176

7.6. [Empirical Study 3] The Scott-Knott ESD ranking of the variance
of model validation techniques. The technique in a bracket indi-
cates the top-performing technique for each classifier type. The
red diamond indicates the average amount of variance across our
studied datasets. (Cont.) . 177

7.6. [Empirical Study 3] The Scott-Knott ESD ranking of the variance
of model validation techniques. The technique in a bracket indi-
cates the top-performing technique for each classifier type. The
red diamond indicates the average amount of variance across our
studied datasets. (Cont.) . 178

7.7. [Empirical Study 3] A scatter plot of the mean Scott-Knott ESD
ranks in terms of bias and variance among 5 performance metrics,
3 studied classifiers, and 18 studied systems for the high-risk EPV
context (EPV= 3) when using two different types of unseen data,
i.e., Figure 7.7a uses the observations from the input dataset that
do not appear in the sample dataset; and Figure 7.7b uses the
next software release. The techniques that appear in the upper-
right corner are top-performers. 181

List of Tables

2.1. Confusion matrix for predicting defect-prone modules. 25

3.1. [A Motivating Study] The association among explanatory variables. 33

3.2. [A Motivating Study] Partial η2 values of the multi-way ANOVA
analysis with respect to the Eclipse dataset family. 37

5.1. [Empirical Study 1] An overview of the studied systems. Those
above the double line satisfy our criteria for analysis. 58

5.2. [Empirical Study 1] Factors used to study the nature of mislabelled
issue reports (RQ1). 61

5.3. [Empirical Study 1] The factors that we use to build our defect
models (RQ2, RQ3). 63

5.4. [Empirical Study 1] Example confusion matrices. 67

6.1. [Empirical Study 2] Overview of studied parameters of classifica-
tion techniques. [N] denotes a numeric value; [L] denotes a logical
value; [F] denotes a factor value. The default values are shown in
bold typeface and correspond to the default values of the Caret R
package. 88

6.2. [Empirical Study 2] An overview of the studied systems. 100

7.1. [Empirical Study 3] Summary of model validation techniques. . . 146

xix

xx List of Tables

7.2. [Empirical Study 3] An overview of the studied systems. 158

Listings

B.1. A List of 101 Defect Datasets. 251

C.1. An example R script for grid-search parameter optimization. . . . 253

D.1. An R implementation of the generic variable importance function. 257
D.2. An example usage of the generic variable importance function. . . 258

E.1. An R implementation of the Scott-Knott ESD test. 261

F.1. An example R script for out-of-sample bootstrap validation. . . . 263

xxi

xxii Listings

CHAPTER 1

Introduction

Key Concept

Defect prediction models play a critical
role in the prioritization of software qual-
ity assurance effort. Yet, the accuracy and
reliability of such predictions and associ-
ated insights have never been explored in
depth.

An earlier version of the work in this chapter ap-
pears in the Doctoral Symposium of the Interna-
tional Conference on Software Engineering (ICSE
2016) [229].

1

2 Chapter 1. Introduction

Software Quality Assurance (SQA) teams play a critical role in the software
development process to ensure the absence of software defects. Therefore, several
modern software companies (like Amazon [4], Facebook [2], Mozilla [1], Black-
berry [211]) often have a dedicated SQA department. There are various SQA
tasks that software engineers must perform. First and foremost, they design,
implement, and execute tests to verify and validate that software systems satisfy
their functional and non-functional requirements, as well as meet user expec-
tations to ensure that systems are of sufficient quality before their release to
customers [38, 120]. Furthermore, they also review designs, look closely at code
quality and risk, and refactoring code to make it more testable [19].

Prior work raises several concerns that SQA activities are expensive and time-
consuming [8, 235]. For example, Alberts et al. [8] point out that SQA activities
require almost 50% of the software development resources. Thus, it is unlikely
feasible to exhaustively test and review such a large software product given the
limited SQA resources (in terms of team size and time). For example, Facebook
allocates about 3 months to test a new product [3]. A case study of Mozilla
project by Mantyla et al. [142] shows that the adoption of rapid release software
development substantially increase the workload of software testers. Therefore,
inadequate software testing can ultimately result in software defects that cost
billions dollars [235].

Defect prediction models play a critical role in the prioritization of SQA effort.
Defect prediction models are trained using historical data to identify defect-prone
software modules. From an SQA perspective, defect prediction models serve two
main purposes. First, defect prediction models can be used to predict modules
that are likely to be defect-prone in the future [7,50,90,119,163,167,175,195,258].
SQA teams can use defect prediction models in a prediction setting to effectively
allocate their limited resources to the modules that are most likely to be defective.
Second, defect models can be used to understand the impact of various software
metrics on the defect-proneness of a module [42, 145, 161, 163, 212, 214]. The

3

insights that software teams derive from defect prediction models can help them
avoid past pitfalls that are associated with the defective modules of the past.

In the last decade, there has been a spike in the adoption of defect predic-
tion models in practice. Some recent examples of adopters of defect predic-
tion include (but are not limited to): Bell Labs [163], AT&T [182], Turkish
Telecommunication [256], Microsoft Research [171,172,175,255,257], Google [134],
Blackberry [211], Cisco [227], IBM [39], and Sony Mobile [215]. Such compa-
nies often report their successful adoption of defect prediction models and their
lessons learned.

Figure 1.1 provides an overview of the defect prediction modelling process.
The process is composed of the following stages: data preparation, model con-
struction, and model validation. To develop a defect prediction model, we first
need to prepare a metrics dataset of software modules (e.g., module size, module
complexity), which are typically collected from a version control system (VCS).
Second, we need to label defective modules if they have been affected by a code
change that addresses an issue report that is classified as a defect. Third, we
train defect models using a machine learning technique. Forth, we need to config-
ure the parameter settings of such machine learning techniques that control their
characteristics (e.g., the number of trees in a random forest classifier). Fifth,
we select performance measures to measure the performance of defect prediction
models. Finally, we validate the models in order to estimate the model perfor-
mance when it is applied to new software modules and interpret the models in
order to understand past pitfalls that lead to defective modules.

Prior work raises several concerns about inconsistent conclusions of several
defect prediction studies. For example, a literature survey by Hall et al. [82] points
out that several defect prediction studies that evaluate the top-performing defect
prediction models arrive at different conclusions. Thus, the lack of consistency in
the conclusions of prior work makes it hard to derive practical guidelines about
the most appropriate defect prediction modelling process to use in practice.

4
C
hapter

1.
Introduction

Defect  
Prediction 

Model

Performance  
Estimates

Defect  
Dataset

Issue Tracking  
System (ITS)

Version Control 
System (VCS)

Issue 
Reports

Code 
Changes

Model Construction 
Stage  
 
 
 
 Classification 

Technique
Classifier  

Parameters

Model Validation 
Stage  
 
 
 
  Validation 

Technique
Performance 

Measures
Changes

Issues

Data Preparation 
Stage  
 
 
 
 Metrics 

Collection
Defect  

Labelling

Figure 1.1.: An overview of the typical defect prediction modelling and its related experimental components.

5

Troublingly, a meta-analysis by Shepperd et al. [207] points out that the re-
ported performance of defect prediction models shares a strong relationship with
the research group who performed the study. This observation raises several con-
cerns about the state of the defect prediction field. However, we suspect that
research groups are likely to reuse experimental components (e.g., datasets, met-
rics, and classifiers) across their various studies. This tendency to reuse experi-
mental components would introduce a strong relationship among the explanatory
variables, which calls into question the validity of their findings.

Before delving into the main body of this thesis, we first set out to investigate
the components that impact the conclusions of defect prediction models using
the data provided by Shepperd et al. [207]. More specifically, we investigate (1)
the strength of the relationship among the explanatory variables, i.e., research
group and the experimental components (i.e., dataset family, metric family, and
classifier family); (2) the interference that these relationships introduce when
interpreting the impact of explanatory variables on the reported performance;
and (3) the impact of the explanatory variables on the reported performance after
we mitigate the strong relationship among the explanatory variables. Through a
case study of 42 primary defect prediction studies (see Chapter 3), we find that (1)
research group shares a strong relationship with the dataset and metrics families
that are used in building models; (2) the strong relationship among explanatory
variables introduces interference when interpreting the impact of research group
on the reported model performance; and (3) after mitigating the interference,
we find that the experimental components (e.g., metric family) that are used to
construct defect prediction models share a stronger relationship with the reported
performance than research group does. Our findings suggest that experimental
components of defect prediction modelling may influence the conclusions of defect
prediction models.

6 Chapter 1. Introduction

1.1. Problem Statement

The empirical evidence of our motivating analysis (see Chapter 3) leads us to the
formation of our thesis statement, which we state as follows.

Thesis Statement: The experimental components of defect prediction mod-
elling impact the predictions and associated insights that are derived from
defect prediction models. Empirical investigations on the impact of overlooked
experimental components are needed to derive practical guidelines for defect
prediction modelling.

Indeed, there exists a plethora of research that raise concerns about the impact
of experimental components on defect prediction models. For example, Menzies
and Shepperd [154] point out that a variety of experimental components may
have an impact on the conclusions of defect prediction models. Yet, the accuracy
(i.e., how much do estimates (e.g., predictions, insights, performance) differ from
the ground-truth?) and reliability (i.e., how do such estimates vary when an
experiment is repeated?) of such model predictions and associated insights have
never been explored in depth.
Hence, in this thesis, we set out to empirically investigate the impact of the

three often overlooked experimental components (i.e., noise generated by issue
report mislabelling, parameter settings of classification techniques, and model
validation techniques) of the three stages of defect prediction modelling, as well
as provide practical guidelines for defect prediction modelling.

1.2. Thesis Overview

We now provide a brief overview of the thesis. Figure 1.2 provides an overview
sketch of this thesis, which is broken into three parts. We describe each part
below.

1.2. Thesis Overview 7

Chapter 5  
Issue report
mislabelling

Chapter 6  
Classifier parameter

settings

Chapter 7  
Model validation 

techniques

Potential 
outcomes

Allow us to accurately
predict more defective

modules

Improve the performance,
model stability, and model

interpretation

More accurate and
reliable performance

estimation

Part III. 
Empirical 
Investigations

Part II.
A Motivating 
Study and 
Related  
Research

Chapter 2  
Defect Prediction

Modelling

Part I. 
Background

Chapter 4  
Related research

Chapter 3  
The experimental components that impact defect prediction models

Data Preparation Model Construction Model Validation

Figure 1.2.: An overview of the scope of this thesis.

Part I: Background and Definitions

Chapter 2 Defect Prediction Modelling.
In this chapter, we first provide necessary background material of the
defect prediction modelling process (purple boxes). More specifically,
we provide definitions of a defect prediction model and the defect
prediction modelling process. Then, we provide a detailed description
of the defect prediction modelling process with respect to the data
preparation, model construction, and model validation stages.

Part II: A Motivating Study and Related Research

In order to situate the thesis, we perform a motivating analysis on the relationship
between the reported performance of a defect prediction model and the experi-
mental components that are used to construct the models (blue boxes). Then,
we discuss several concerns with respect to prior research in order to situate the

8 Chapter 1. Introduction

three empirical studies.

Chapter 3 The Experimental Components that Impact Defect Prediction Mod-
els.
In this chapter, we investigate the relationship between the reported
performance of a defect prediction model and the explanatory vari-
ables, i.e., research group and the experimental components (i.e.,
dataset family, metric family, and classifier family) using the data
provided by Shepperd et al. [207]. More specifically, we investigate
(1) the strength of the association among the explanatory variables,
i.e., research group and the experimental components; (2) the interfer-
ence that these associations introduce when interpreting the impact
of the explanatory variables on the reported performance; and (3) the
impact of the explanatory variables on the reported performance after
we mitigate the strong associations among the explanatory variables.

Chapter 4 Related Research.
In order to situate this thesis with respect to prior research, we present
a survey of prior research on defect prediction modelling.

Part III: Empirical Investigations of the Impact of Experimental

Components

In this part, we shift our focus to the main body of the thesis. In this thesis, we
focus on the three often overlooked experimental components of defect prediction
modelling process (yellow boxes).

Chapter 5 The Impact of Issue Report Mislabelling.
The accuracy and reliability of a prediction model depends on the
quality of the data from which it was trained. Therefore, defect pre-
diction models may be inaccurate and unreliable if they are trained

1.2. Thesis Overview 9

using noisy data [94, 118]. Recent research shows that noise that is
generated by issue report mislabelling, i.e., issue reports that describe
defects but were not classified as such (or vice versa), may impact
the performance of defect models [118]. Yet, while issue report mis-
labelling is likely influenced by characteristics of the issue itself —
e.g., novice developers may be more likely to mislabel an issue than
an experienced developer — the prior work randomly generates mis-
labelled issues. In this chapter, we investigate whether mislabelled
issue reports can be accurately explained using characteristics of the
issue reports themselves, and what is the impact of a realistic amount
of noise on the predictions and insights derived from defect models.

Chapter 6 The Impact of Automated Parameter Optimization.
Defect prediction models are classifiers that are trained to identify
defect-prone software modules. Such classifiers have configurable pa-
rameters that control their characteristics (e.g., the number of trees in
a random forest classifier). Recent studies show that these classifiers
may underperform due to the use of suboptimal default parameter set-
tings [82]. However, it is likely feasible that parameter optimization
may increase the risk of model overfitting (i.e., producing a classifier
that is too specialized for the data from which it was trained to apply
to other datasets). In this chapter, we investigate the performance,
stability, and interpretation of defect prediction models where Caret
— an automated parameter optimization technique — is applied.

Chapter 7 The Impact of Model Validation Techniques.
Defect prediction models may provide an unrealistically optimistic es-
timation of model performance when (re)applied to the same sample
with which that they were trained. To address this problem, Model
Validation Techniques (MVTs) (e.g., k-fold cross-validation) are used

10 Chapter 1. Introduction

to estimate how well a model will perform on unseen data [51,133,140,
257]. Recent research has raised concerns about the bias (i.e., how
much do the performance estimates differ from the ground truth?)
and variance (i.e., how much do performance estimates vary when
an experiment is repeated?) of model validation techniques when
applied to defect prediction models [152, 159, 169, 208, 246]. An opti-
mal MVT would not overestimate or underestimate the ground truth
performance. Moreover, the performance estimates should not vary
broadly when the experiment is repeated. However, little is known
about how bias and variance the performance estimates of MVTs tend
to be. In this chapter, we set out to investigate the bias and variance
of model validation techniques in the domain of defect prediction.

1.3. Thesis Contribution

In this thesis, we investigate the impact of experimental components of the three
stages of defect prediction modelling on the performance and interpretation of
defect prediction models. This thesis makes a variety of contributions to the
research field. We highlight the key contributions as follow:

1. We demonstrate that research group shares a strong relationship with the
dataset and metrics families that are used in building models. Such a strong
relationship makes it difficult to discern the impact of the research group on
model performance. After mitigating the impact of this strong relationship,
we find that the research group has a smaller impact than metrics families.
(Chapter 3)

2. We demonstrate that the noise that is generated by issue report mislabelling
is non-random. Unlike prior work that shows that noise that are artificially
generated has a large negative impact on the performance of defect pre-

1.4. Thesis Organization 11

diction models, we find that noise that are realistically generated by issue
report mislabelling has little impact on the performance and interpretation
of defect prediction models. (Chapter 5)

3. We demonstrate that defect prediction models substantially improve the
performance and stability of defect prediction models, as well as they change
their interpretation, when automated parameter optimization is applied.
(Chapter 6)

4. We demonstrate that 78 out of 101 publicly-available defect datasets (77%)
are highly susceptible to producing inaccurate and unstable results. (Chap-
ter 7)

5. We demonstrate that the choice of model validation techniques has an im-
pact on the bias and variance of the performance estimates that are pro-
duced by defect prediction models. (Chapter 7)

1.4. Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides back-
ground information and defines key terms. Chapter 3 presents the results of an
analysis of the experimental factors. Chapter 4 presents research related to over-
looked experimental components. Chapter 5 presents an investigation approach
of the impact of issue report mislabelling and discusses their results. Chapter 6
presents an investigation approach of the impact of automated parameter opti-
mization and discusses their results. Chapter 7 presents an investigation approach
of the impact of model validation techniques and discusses their results. Finally,
Chapter 8 draws conclusions and discusses promising avenues for future work.

Part I.

Background and Definitions

CHAPTER 2

Defect Prediction Modelling

Key Concept

A defect prediction model is a classifier
that is trained to identify defect-prone
software modules.

In this chapter, we provide a background and definitions of defect prediction
model. We also provide a detailed explanation of defect prediction modelling.

2.1. Introduction

Software quality assurance (SQA) teams plays a critical role in software companies
to ensure that software products are of sufficient quality before their release to
customers [38, 120]. However, SQA teams often have limited resources in terms
of team size and time.

15

16 Chapter 2. Defect Prediction Modelling

Defect prediction models can help SQA teams focus their limited SQA resources
on the most risky software modules. Broadly speaking, defect prediction models
leverage historical software development data, such as, issue reports, historical
code changes, to support decisions and help evaluate current development prac-
tices. Thus, insights that are derived from defect prediction models could lead to
more informed and empirically-supported decisions.

In this thesis, we define a defect prediction model as a classifier that is trained
to identify defect-prone software modules. Thus, defect prediction modelling
is the process of preparing a defect dataset, applying a statistical model or a
machine learning classifier to defect dataset, and estimating the performance of
defect prediction models. Figure 2.1 provides a graphical illustration of the defect
prediction modelling process.

2.1.1. Chapter Organization

In the remaining of this chapter, we provide a detailed explanation of the three
stages of defect prediction modelling (i.e., data preparation, model construction,
and model validation) which are the focus of this thesis.

2.2. Data Preparation

Module metrics and classes are typically mined from historical repositories, such
as Issue Tracking Systems (ITSs) and Version Control Systems (VCSs). Issue
Tracking Systems (ITSs) are a software application that keeps track of issue
reports from users, developers, testers (e.g., JIRA1, Bugzilla2). Version Control
Systems (VCSs) are a software application that keeps track of revisions of source
code. Some examples of VCSs that are widely-used today (but are not limited

1https://www.atlassian.com/software/jira
2https://www.bugzilla.org/

https://www.atlassian.com/software/jira
https://www.bugzilla.org/

2.2. Data Preparation 17

to): Git3, Mercurial SCM4, and SVN.5

To prepare a defect dataset, we first extract metrics of software modules (e.g.,
size, complexity, process metrics) from a version control system (VCS). We focus
on the development activity that occurs prior to a release that corresponds to
the release branch of a studied system. With this strictly controlled setting,
we ensure that changes that we study correspond to the development and main-
tenance of official software releases. Since modern issue tracking systems, like
JIRA, often provide traceable links between issue reports (i.e., a report described
defects or feature requests) and code changes, we can identify the modules that
are changed to address a particular issue report. Finally, we label defective mod-
ules if they have been affected by a code change that addresses an issue report
that is classified as a defect. Similar to prior studies [51, 111,213,258], we define
post-release defects as modules that are changed to address an issue report within
the six-month period after the release date.

2.2.1. Metric Collection

To understand the characteristics of defect-proneness, prior studies proposed a
variety of metrics that are related to software quality. We provide a brief summary
of software metrics below.
Code metrics describe the relationship between code properties and software

quality. For example, in 1971, Akiyama et al. [7] is among the first research to
show that the size of modules (e.g., lines of code) shares a relationship with defect-
proneness. McCabe et al. [144] and Halstead et al. [83] also show that the high
complexity of modules (e.g., the number of distinct operators and operands) are
likely to be more defective. Chidamber and Kemerer [43] also propose CK metrics
suites, a set of six metrics that describe the structure of a class (e.g., the number of

3https://git-scm.com/
4https://www.mercurial-scm.org/
5https://subversion.apache.org/

https://git-scm.com/
https://www.mercurial-scm.org/
https://subversion.apache.org/

18 Chapter 2. Defect Prediction Modelling

Performance 
Estimates

Issue Tracking  
System (ITS)

Version Control 
System (VCS)

Issue Reports Code Changes

ChangesIssues

Code SnapshotCommit Log

Defect Dataset

Defect 
Prediction 
Models

Training 
Corpus

Testing 
Corpus

Classifier  
Parameters

Model 
Construction

Model 
ValidationPerformance 

Measures

Code  
metrics

Process+Org.  
metricsD

at
a

Pr
ep

ar
at

io
n

M
od

el
 C

on
st

ru
ct

io
n

M
od

el
 V

al
id

at
io

n

Metrics CollectionDefect Labelling

Data  
Sampling

Figure 2.1.: A graphical illustration of the defect prediction modelling process.

2.2. Data Preparation 19

methods defined in a class), that may share a relationship with defect-proneness.
An independent evaluation by Basili et al. [22] and Gyimothy et al. [80] confirms
that the CK metrics suites can be effectively used as software quality indicators.
An in-depth investigation on the size-defect relationship by Syer et al. [226] shows
that defect density has an inverted "U" shaped pattern (i.e., defect density in-
creases in smaller files, peaks in the largest small-sized files/smallest medium-sized
files, then decreases in medium and larger files). Such code metrics are typically
extracted from a code snapshot at a release using various available static analysis
tools (e.g., SLOCcount6, Understand tool7, the mccabe python package8, and the
radon python package9)

Process metrics describe the relationship between change activities during soft-
ware development process and software quality. Prior work has shown that his-
torical software development process can be used to describe the characteristics
of defect-proneness. For example, Graves et al. [76] find that the software de-
fects may still exist in modules that were recently defective. Nagappan and
Ball [170,171] find that modules that have undergone a lot of change are likely to
be more defective. Hassan [90] find that modules with a volatile change process,
where changes are spread amongst several files are likely defective. Hassan and
Holt [91] find that modules that are recently changed are more likely to be defec-
tive. Zimmermann and Nagappan [255, 257, 258] find that program dependency
graphs share a relationship with software quality. Zimmermann et al. [258] find
that the number of defects that were reported in the last six months before release
for a module shares a relationship with software quality. Such process metrics
are typically extracted using code changes that are stored in VCSs.

6https://sourceforge.net/projects/sloccount/
7https://scitools.com/
8https://pypi.python.org/pypi/mccabe
9https://pypi.python.org/pypi/radon

https://sourceforge.net/projects/sloccount/
https://scitools.com/
https://pypi.python.org/pypi/mccabe
https://pypi.python.org/pypi/radon

20 Chapter 2. Defect Prediction Modelling

Organization metrics describe the relationship between organization structure
and software quality [173]. For example, Graves et al. [76] find that modules that
are changed by a large number of developers are likely to be more defective. De-
spite of the organization structure, prior studies have shown that code ownership
shares a relationship with software quality. Thus, we focus on the two dimensions
for an approximation of code ownership. First, authoring activity has been widely
used to approximate code ownership. For example, Mockus and Herbslerb [162]
identify developers who responsible for a module using the number of tasks that
a developer has completed. Furthermore, Bird et al. [29] find that modules that
are written by many experts are less likely to be defect-prone. Second, reviewing
activity has been also used to approximate code ownership. For example, Thong-
tanunam et al. [238] find that reviewing expertise also shares a relationship with
defect-proneness (e.g., modules that are reviewed by experts are less likely to be
defect-prone).

2.2.2. Defect Labelling

Since modern issue tracking systems, like JIRA, often provide traceable links
between issue reports (i.e., an issue report that describes a software defect or a
feature request) and commit logs, we can identify the modules that are changed
to address an issue report. First, the issue reports are extracted from the ITS
of each studied system. Next, the references to code changes are extracted from
those issue reports. Then, the commit information is extracted for the referenced
code changes from the VCS. Finally, modules that are changed to address an issue
report in the six-month period after the release date are labelled as a defective
module. On the other hand, modules that are not changed to address any issue
reports after the release date are labelled as clean (i.e., not defective).

2.2. Data Preparation 21

Post-release
period

Release Date

Changes

Issues

(2.2.1) Metric Collection (2.2.2) Defect Labelling

Timeline

Timeline

Pre-release
period

Defect-fixing commits

An issue that describes software defect.
An issue that describes feature improvement.

Figure 2.2.: A graphical illustration of data preparation stage.

To illustration, Figure 2.3 provides an example of a JIRA issue report that
describes a software defect that affected the 4.0-ALPHA release of the LUCENE
project.10 A red box is used to highlight the category of the issue report (e.g., Bug,
Improvement, Documentation, Maintenance, and Test), while a blue box is used
to highlight the modules that are changed to address the issue report. Figure 2.4
shows an example Git commit that is related to the given example issue report.11

Such commit information allows us to understand the characteristics of historical
development process (e.g., the numbers of changed modules, the numbers of added
or removed lines of code) that may share a relationship with software quality.
Take this example, we label the lucene/core/src/.../index/SegmentInfos.java

module as a defective module, since it is changed to address an issue report that
describes a software defect.

10https://issues.apache.org/jira/browse/LUCENE-4128
11https://github.com/apache/lucene-solr/commit/662f8dd3423b3d56e9e1a197fe816393a33155e2

https://issues.apache.org/jira/browse/LUCENE-4128
https://github.com/apache/lucene-solr/commit/662f8dd3423b3d56e9e1a197fe816393a33155e2

22 Chapter 2. Defect Prediction Modelling

Figure 2.3.: An example issue report that describes software defect. A red box is
used to highlight the category of the issue report, while a blue box is
used to highlight the modules that are changed to address the issue
report.

Figure 2.4.: A Git commit that is related to the given example issue report of
Figure 2.3.

2.3. Model Construction 23

2.3. Model Construction

A defect prediction model is a classifier that is trained to identify defect-prone
software modules. Defect prediction models are typically trained using the rela-
tionship between module’s software metrics (e.g., size and complexity) that are
extracted from historical development data that is recorded in software repos-
itories and their defectiveness (e.g., the number of post-release defects) using
a statistical regression or a machine learning classifier. In order to understand
the relationship between such software metrics and their defectiveness, much
research often uses supervised learning approaches (i.e., a statistical learning
technique that is trained on a training data in order to produce a predicted out-
come) [82,157,210,251]. Below, we discuss two common types of outcomes (e.g.,
continuous outcome and binary outcome) in defect prediction research.
Continuous Outcome. There is a plethora of research that is focused on predict-

ing the number of post-release defects [29,51,145,151,163,180]. Linear regression
is a common technique that is used for predicting the number of post-release
defects. For example, Mockus and Weiss [163] use linear regression models to
predict the number of software defects. Maneely et al. [151] use linear regression
models to understand the relationship between developers social networks and
software quality. Bird et al. [29] use linear regression models to understand the
relationship between code ownership and software quality. McIntosh et al. [145]
use linear regression models to understand the relationship between code review
practices and software quality.
Binary Outcome. Despite predicting the number of post-release defects, much

research is also focused on classifying modules as defective or clean. A variety
of classification techniques have been explored in defect prediction research. For
example, logistic regression [22, 36], rule-based techniques [16], boosting tech-
niques [16,105,204], Multivariate Adaptive Regression Splines (MARS) [26,100],
and discrimination analysis techniques [110]. Such techniques can be accessed us-

24 Chapter 2. Defect Prediction Modelling

ing common research toolkits (such as R [190], Weka [81], and Scikit-learn [185]).

2.4. Model Validation

Once a defect prediction model is constructed, it is often unknown how accurate
is a defect prediction model performs when it is applied to a new software mod-
ules (i.e., unseen dataset). To address this problem, model validation techniques
(e.g., k-fold cross-validation) are commonly used to estimate the model perfor-
mance. The model performance is used to (1) indicate how well a model will
perform on unseen data [51, 54, 140, 187, 245, 257]; (2) select the top-performing
prediction model [74, 115, 133, 159, 169, 232, 247]; and (3) combine several predic-
tion models [20,206,241,252]. Below, we briefly discuss the common performance
measures that are used to evaluate defect prediction models and model validation
techniques that are used to generate sample datasets for model construction.

2.4.1. Performance Measures

The performance of defect prediction models can be quantified using a variety of
threshold-dependent (e.g., precision, recall) and threshold-independent (e.g, Area
Under the receiver operating characteristic Curve (AUC)) performance measures.
We describe each type of performance measure below.

Threshold-Dependent Performance Measures. When applied to a module
from the testing corpus, a defect prediction model will report the probability
of that module being defective. In order to calculate the threshold-dependent
performance measures, these probabilities are transformed into a binary classifi-
cation (defective or clean) using a threshold value of 0.5, i.e., if a module has a
predicted probability above 0.5, it is considered defective; otherwise, the module
is considered clean.

Using the threshold of 0.5, we compute the precision and recall performance

2.4. Model Validation 25

Table 2.1.: Confusion matrix for predicting defect-prone modules.
Actual

Classified as Defective Non-Defective
Defective TP FP

Non-defective FN TN

measures. These measures are calculated using the confusion matrix of Table
2.1. Precision measures the proportion of modules that are classified as defective,
which are actually defective (TP

TP+FP). Recall measures the proportion of actually
defective modules that were classified as such (TP

TP+FN).

Threshold-Independent Performance Measures. Prior research has argued
that precision and recall are unsuitable for measuring the performance of defect
prediction models because they: (1) depend on an arbitrarily-selected threshold
(typically 0.5) [9, 17, 133, 192, 210], and (2) are sensitive to imbalanced data [52,
93,139,147,227]. Thus, we also discuss three threshold-independent performance
measures to quantify the performance of our defect prediction models.

First, the Area Under the receiver operator characteristic Curve (AUC) [84] is
used to measure the discrimination power of our models. The AUC measures a
classifier’s ability to discriminate between defective and clean modules (i.e., do
the defective modules tend to have higher predicted probabilities than clean mod-
ules?). AUC is computed by measuring the area under the curve that plots true
positive rate against the false positive rate while varying the threshold that is used
to determine whether a module is classified as defective or not. Values of AUC
vary from 0 (worst classifier performance), 0.5 (random classifier performance) to
1 (best classifier performance).

In addition to the discrimination power, practitioners often use the predicted
probabilities to rank defect-prone files [163, 170, 214, 258]. Shihab et al. [214]
point out that practitioners often use the predicted probability to make decisions.
Mockus et al. [163] point out that the appropriate range of probability values is

26 Chapter 2. Defect Prediction Modelling

important to make an appropriate decision (e.g., high-reliability systems may
require a lower cutoff value than 0.5). However, the AUC does not capture all of
the dimensions of a prediction model [55, 87, 222, 224]. To measure the accuracy
of the predicted probabilities, we use the Brier score and the calibration slope.
The Brier score [37,201] is used to measure the distance between the predicted

probabilities and the outcome. The Brier score is calculated as:

B = 1
N

N∑
i=1

(ft − ot)2 (2.1)

where ft is the predicted probability, ot is the outcome for module t encoded as
0 if module t is clean and 1 if it is defective, and N is the total number of modules.
The Brier score varies from 0 (best classifier performance), 0.25 (random classifier
performance), to 1 (worst classifier performance).
Finally, the calibration slope is used to measure the direction and spread of

the predicted probabilities [48, 55, 87, 89, 158, 223, 224]. The calibration slope
is the slope of a logistic regression model that is trained using the predicted
probabilities of our original defect prediction model to predict whether a module
will be defective or not [48]. A calibration slope of 1 indicates the best classifier
performance and a calibration slope of 0 indicates the worst classifier performance.

2.4.2. Model Validation Techniques

We often validate the defect prediction models in order to estimate the model
performance when it is applied to new (i.e., unseen) software modules. There
is a variety of model validation techniques that can be used to estimate the
model performance. Holdout validation randomly splits a dataset into training
and testing corpora according to a given proportion (e.g., 30% holdout for test-
ing). Cross-validation extends the idea of holdout validation by repeating the
splitting process several times, which randomly partitions the data into k folds of

2.5. Chapter Summary 27

roughly equal size where each fold contains roughly the same proportions of the
defective ratio [73,225]. We then use the training corpus to train a defect predic-
tion model, while the testing corpus is used to estimate the model performance.
While such cross-validation techniques are commonly used in defect prediction
research, more powerful approach like bootstrap validation that leverages aspects
of statistical inference [62, 87, 92, 222] has been rarely explored in software engi-
neering research. Unlike cross-validation techniques, a model is still trained using
a bootstrap sample (i.e., a sample that is randomly drawn with replacement from
a defect dataset), and the model is tested using the rows that do not appear in
the bootstrap sample [58]. The process of resampling is repeated several times
(e.g., 100 repetitions). The key intuition is that the relationship between the
studied dataset and the theoretical population from which it is derived is asymp-
totically equivalent to the relationship between the bootstrap samples and the
studied dataset. More detailed explanation is discussed in Section 7.3.

2.5. Chapter Summary

This chapter provides a definition of defect prediction models and describes foun-
dation concepts of the typical defect prediction modelling process. In the next
chapter, we perform a motivational analysis to investigate what are the factors
that impact the predictions and insights that are derived from defect prediction
models.

Part II.

A Motivating Study and Related
Research

CHAPTER 3

The Experimental Components that
Impact Defect Prediction Models

Key Question

Which experimental components have the
biggest impact on the conclusion of a de-
fect prediction study?

An earlier version of the work in this chapter ap-
pears in the Journal of the IEEE Transactions on
Software Engineering (TSE) [233].

31

32
Chapter 3. The Experimental Components that Impact Defect Prediction

Models

3.1. Introduction

Recently, Shepperd et al. [207] study the extent to which the research group
that performs a defect prediction study associates with the reported performance
of defect prediction models. Through a meta-analysis of 42 primary studies,
they find that the reported performance of a defect prediction model shares
a strong relationship with the group of researchers who construct the models.
Shepperd et al.’s findings raise several concerns about the current state of the
defect prediction field. Indeed, their findings suggest that many published defect
prediction studies are biased (i.e., producing inconsistent conclusions), and calls
their validity into question.
In this chapter, we perform an alternative investigation of Shepperd et al.’s

data. More specifically, we set out to investigate (1) the strength of the association
among the explanatory variables, e.g., research group and metric family (Section
3.2); (2) the interference that these associations introduce when interpreting the
impact of explanatory variables on the reported performance (Section 3.3); and
(3) the impact of the explanatory variables on the reported performance after we
mitigate the strong associations among the explanatory variables (Section 3.4).
We also provide a replication package of the following experiment in Appendix A.

3.2. The Presence of Collinearity

We suspect that research groups are likely to reuse experimental components
(e.g., datasets, metrics, and classifiers) in several studies. This tendency to reuse
experimental components would introduce a strong association among the ex-
planatory variables of Shepperd et al. [207]. To investigate our suspicion, we
measure the strength of the association between each pair of the explanatory
variables that are used by Shepperd et al. [207], i.e., ResearcherGroup, Dataset-
Family, MetricFamily, and ClassifierFamily.

3.2. The Presence of Collinearity 33

Table 3.1.: [A Motivating Study] The association among explanatory variables.
Pair Cramer’s V Magnitude
ResearcherGroup & MetricFamily 0.65∗∗∗ Strong
ResearcherGroup & DatasetFamily 0.56∗∗∗ Relatively strong
MetricFamily & DatasetFamily 0.55∗∗∗ Relatively strong
ResearcherGroup & ClassifierFamily 0.54∗∗∗ Relatively strong
DatasetFamily & ClassifierFamily 0.34∗∗∗ Moderate
MetricFamily & ClassifierFamily 0.21∗∗∗ Moderate
Statistical significance of the Pearson χ2 test:
◦p ≥ .05; * p < .05; ** p < .01; *** p < .001

Approach. Since the explanatory variables are categorical, we first use a Pearson
χ2 test [5] to check whether a statistically significant association exists between
each pair of explanatory variables (α = 0.05). Then, we compute Cramer’s V [49]
to quantify the strength of the association between each pair of two categorical
variables. The value of Cramer’s V ranges between 0 (no association) and 1
(strongest association). We use the convention of Rea et al. [197] for describing
the magnitude of an association. To compute the Pearson’s χ2 and Cramer’s V
values, we use the implementation provided by the assocstats function of the
vcd R package [156].

Results. Research group shares a strong association with the dataset and
metrics that are used. Table 3.1 shows the Cramer’s V values and the p-value
of the Pearson χ2 test for each pair of explanatory variables. The Cramer’s V
values indicate that research group shares a strong association with the dataset
and metrics that are used. Indeed, we find that 13 of the 23 research groups
(57%) only experiment with one dataset family, where 9 of them only use one
NASA dataset, which contains only one family of software metrics (i.e., static
metrics). Moreover, 39% of researcher groups only use the static metric family
of the NASA dataset in several studies. The strong association among research
groups, dataset, and metrics confirms our suspicion that researchers often reuse
experimental components.

34
Chapter 3. The Experimental Components that Impact Defect Prediction

Models

3.3. The Interference of Collinearity

The strong association among explanatory variables that we observe in Section 3.2
may introduce interference when one studies the impact of these explanatory
variables on the outcome [77,243]. Furthermore, this interference among variables
may cause impact analyses, such as ANOVA, to report spurious relationships that
are dependent on the ordering of variables in the model formula. Indeed, ANOVA
is a hierarchical model that first attributes as much variance as it can to the first
variable before attributing residual variance to the second variable in the model
formula [189]. If two variables share a strong association, the variable that appear
first in the model formula will got the brunt of the variance associated with it.
Hence, we set out to investigate the interference that is introduced by the strong
association among explanatory variables.
Approach. To investigate this interference, we use a bootstrap analysis approach,
which leverages aspects of statistical inference [62]. We first draw a bootstrap
sample of size N that is randomly drawn with replacement from an original
dataset that is also of size N . We train linear regression models with the data
of the bootstrap sample using the implementation provided by the lm function
of the stats R package [190]. For each bootstrap sample, we train multi-way
ANOVA models with all of the 24 possible ordering of the explanatory variables
(e.g., ANOVA(ResearcherGroup × DatasetFamily × MetricFamily × Classifier-
Family) versus ANOVA(DatasetFamily × ResearcherGroup × MetricFamily ×
ClassifierFamily)). Following the prior study [207], we compute the partial η2

values [199], which describe the proportion of the total variance that is attributed
to an explanatory variable for each of the 24 models. We use the implementation
provided by the etasq function of the heplots R package [67]. We repeat the
experiment 1,000 times for each of the 24 models to produce a distribution of the
partial η2 values for each explanatory variable.
Results. The strong association among the explanatory variables introduces

3.3. The Interference of Collinearity 35

●●●●●●●●●●●●
●●●●●●

●●

●●
●●
●●

●●

●●
●

●●

●●

●
●

●●

●●

●●

●●●●●●
●

●●●

●●

●
●●●
●●

●●●●

●●●●

●●

●●
●
●

●

●●●

●●●●

●

●●●
●●
● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

0.0

0.1

0.2

0.3

0.4

ResearcherGroup DatasetFamily MetricFamily ClassifierFamily

P
ar

tia
l e

ta
−

sq
ua

re
 v

al
ue

s

Position in the model formulas 1 2 3 4

Figure 3.1.: [A Motivating Study] Distribution of the partial η2 values for each
explanatory variable when it appears at each position in the model
formula.

interference when interpreting the impact of research group on model perfor-
mance. Figure 3.1 shows the distributions of the partial η2 values for each ex-
planatory variable when it appears at each position in the model formula. Each
boxplot is derived from the models of the 24 possible variable ordering combina-
tions. The results show that there is a decreasing trend in partial eta-squared
values when collinearity is not mitigated. Indeed, research group and dataset
family tend to have the largest impact when they appear in earlier positions
in the model formula, indicating that the impact of explanatory variables on the
outcome depends on the ordering of variables in the model formula. Moreover, we
observe that research group and dataset family tend to have comparable partial

36
Chapter 3. The Experimental Components that Impact Defect Prediction

Models

η2 values, indicating that the strong association introduces interference. In par-
ticular, a model with DatasetFamily in the first position and ResearcherGroup in
the second position in the model formula would lead us to believe that Dataset-
Family plays a bigger role than the ResearcherGroup. However, once we flip
the positions of DatasetFamily and ResearcherGroup, we would reach a different
conclusion, i.e., that ResearcherGroup plays a bigger role in the model. On the
other hand, the moderate association between the metric and classifier families
introduces much less interference.

3.4. Mitigating Collinearity

In the study of Shepperd et al., Table 13 is derived from a one-way ANOVA anal-
ysis (y = xn) for each of the explanatory variables and Table 14 is derived from
a multi-way ANOVA analysis (y = x1 × ... × xn). One of the main assumption
of ANOVA analysis is that the explanatory variables must be independent. The
prior sections show that such strong association among the explanatory variables
(Section 3.2) introduces interference when we interpret the impact of the explana-
tory variables on the outcome (Section 3.3). However, Shepperd et al.’s multi-way
ANOVA analysis did not mitigate for the collinearity between the explanatory
variables.
In this section, we set out to investigate the impact of the explanatory variables

on the reported performance after mitigating the interference that is introduced
by strongly associated explanatory variables. Thus, our earlier analysis indicates
that we cannot include all three of the explanatory variables in the same model.
Instead, we should only include two of these three variables in our models. Hence,
we opt to focus on one studied dataset in order to control the dataset family metric
by holding it constant.
Approach. To mitigate the interference, we first select the Eclipse dataset family,
which is the second-most popular dataset family in the studied dataset. We

3.4. Mitigating Collinearity 37

Table 3.2.: [A Motivating Study] Partial η2 values of the multi-way ANOVA anal-
ysis with respect to the Eclipse dataset family.

ResearcherGroup Model MetricFamily Model
Adjusted R2 0.19 0.36

AIC -77 -105
Partial η2 Partial η2

Research Group 0.127 (medium) †
Metric Family † 0.235 (large)

Classifier Family 0.122 (medium) 0.113 (medium)
Research Group:Classifier Family 0.022 (small) -
Metric Family:Classifier Family - 0.162 (large)
†Strong association variables

choose the Eclipse dataset family instead of selecting the NASA dataset family
because Section 3.2 reveals that 39% of the research groups only use the static
metric family of the NASA dataset in several studies. Overall, the Eclipse dataset
family contains 6 metrics families, which are used by 7 research groups who
fit defect prediction model using 6 classifier families. While controlling for the
dataset family metric, only research group, metric family, and classifier family
will be included in the model formulas. Since the dataset family metric is now a
constant, it is excluded from our model formula.

Since Table 3.1 shows that research group shares a strong association with the
metric family, we build two different linear regression models by removing one
of the two strongly associated variables, i.e., one model uses the research group
and classifier family variables, while another model uses the metric family and
classifier family variables.

To confirm the absence of collinearity in the models, we perform a redundancy
analysis [87] in order to detect redundant variables prior to constructing the
models. We use the implementation provided by the redun function in the rms

R package [88].

38
Chapter 3. The Experimental Components that Impact Defect Prediction

Models

To assess the fit of our models, we compute the adjusted R2 and the Akaike
Information Criterion (AIC) [6]. The adjusted R2 measures the amount of vari-
ance, while AIC measures the goodness-of-fit based on information entropy. In
general, higher adjusted R2 and lower AIC values correspond to a better fit of
the model to the underlying data.
Finally, we perform a multi-way ANOVA analysis and compute the partial η2

values. As suggested by Richardson et al. [199] and Mittas et al. [159], we use the
convention of Cohen [44] for describing the effect size of the partial η2 values —
values below 0.01, 0.06, and 0.14 describe small, medium, and large effect sizes,
respectively.
Results. When we mitigate the interference of strongly associated explanatory
variables, we find that the research group has a smaller impact than the metric
family with respect to the Eclipse dataset family. Table 3.2 shows partial η2

values of the ANOVA analysis with respect to the Eclipse dataset family. The
results show that the MetricFamily model, which achieves a higher adjusted R2

and a lower AIC, tends to represent the underlying data better than the Re-
searcherGroup model. The redundancy analysis also confirms that there are no
redundant variables in the MetricFamily model. Unlike Shepperd et al.’s earlier
observations, our ANOVA analysis of the MetricFamily model shows that the
choice of metrics that are used to build defect prediction models tends to have
a large impact on the reported performance with respect to the Eclipse dataset
family. Moreover, since the interference has been mitigated, the ANOVA results
still hold when the explanatory variables are reordered.

3.5. Chapter Summary

The prior work of Shepperd et al. [207] suggests that the reported performance of
a defect prediction model shares a strong relationship with the research group who
conducted the study. This observation raises several concerns about the state of

3.5. Chapter Summary 39

the defect prediction field. In this chapter, we investigate (1) the strength of the
association among the explanatory variables of Shepperd et al.’s study [207]; (2)
the interference that these associations introduce when interpreting the impact
of the explanatory variables on the reported performance; and (3) the impact
of the explanatory variables on the reported performance after we mitigate the
interference that is introduced by strongly associated explanatory variables. We
make the following observations:

– Research group shares a strong association with the dataset and metrics
families that are used in building models, suggesting that researchers should
experiment with a broader selection of datasets and metrics in order to
maximize external validity.

– The strong association among explanatory variables introduces interference
when interpreting the impact of research group on the reported model per-
formance, suggesting that researchers should carefully mitigate collinearity
issues prior to analysis in order to maximize internal and construct validity.

– After mitigating the interference, we find that the research group has a
smaller impact than metric family with respect to the Eclipse dataset family,
suggesting that researchers should carefully examine the choice of metrics
when building defect prediction models.

These observations lead us to conclude that the relationship between research
groups and the performance of a defect prediction model have more to do with
the tendency of researchers to reuse experimental components (e.g., datasets and
metrics). Hence, a threat of bias exists if authors fixate on studying the same
datasets with the same metrics. We recommend that research groups experi-
ment with different datasets and metrics rather than relying entirely on reusing
experimental components.

40
Chapter 3. The Experimental Components that Impact Defect Prediction

Models

When adhering to our recommendation, researchers should be mindful of the
inherent trade-off between maximizing internal and external validity in empirical
research [216]. For example, maximizing external validity by studying a large
corpus of datasets may raise threats to the internal validity of the study (i.e.,
the insights may be difficult to discern due to a broad selection of the studied
systems). On the other hand, maximizing internal validity by focusing on a highly
controlled experiment may raise threats to the external validity of the study (i.e.,
the insights may be too specific to the studied systems to generalize to other
systems).

3.5.1. Concluding Remarks

In this chapter, we perform a meta-analysis to investigate which experimental
components have the biggest impact on the conclusion of a defect prediction
study. We find that the reported performance shares a stronger relationship
with the choice of metrics than research group who perform studies, suggesting
that experimental design choices of defect prediction modelling may influence the
conclusions of defect prediction studies.
In the next chapter, we survey prior research on defect prediction modelling in

order to situate our empirical studies.

CHAPTER 4

Related Research

Key Concept

Experimental components may impact the
conclusions of defect prediction models.

An earlier version of the work in this chapter ap-
pears in the Doctoral Symposium of the Interna-
tional Conference on Software Engineering (ICSE
2016). [229]

41

42 Chapter 4. Related Research

4.1. Introduction

There exists a plethora of research that raise concerns about the impact of ex-
perimental components on defect prediction models. For example, Menzies and
Shepperd [154] point out that a variety of experimental components may have an
impact on the conclusions of defect prediction models. Kim et al. [118] point out
that noise in defect datasets has a large negative impact on the performance of
defect prediction models. Hall et al. [82] point out that defect prediction models
may underperform because the suboptimal default parameter settings are used.
Mittas et al. [159] and Turhan et al. [246] point out that the random nature of
sampling used by model validation techniques may produce inaccurate perfor-
mance estimates.
In this chapter, we survey the related research on the concerns about the impact

of experimental components on defect prediction models. In the following sec-
tions, we organize the concerns along the 3 stages of defect prediction modelling
(i.e., data preparation, model construction, and model validation) that are the
focus of this thesis. More specifically, we describe how the related work motivates
our three empirical studies.

4.2. Data Preparation Stage
Data preparation stage involves a variety of experimental components, such as
metrics selection and the quality of data preparation process. Prior work shows
that the use of various choice of metrics may have an impact on the performance of
defect prediction models. For example, Kamei et al. [109] and Rahman et al. [192]
show that defect prediction models that are trained with process metrics outper-
form defect prediction models that are trained with code metrics. Furthermore,
the motivating analysis of Chapter 3 also shows that the selected software met-
rics shares the strongest relationship with the reported performance of defect
prediction models.

4.2. Data Preparation Stage 43

Even if the best set of metrics are selected, decision-making based on poor data
quality (i.e., data that is inaccurate) can easily do more harm than good. Several
studies show that poor data quality can lead to a large negative impact on all
segments of the economy (e.g., companies, governments, and academia and their
customers). For example, Redman [198] argues that poor data quality increases
operational costs and can impact operations, tactics and strategies.

Prior studies raise several concerns about data quality for software engineering
research. For example, Mockus [160] argues that poor data quality can lead
to biased conclusions. Aranda and Venolia [12] argue that information that is
recorded in issue reports is often inaccurate. Tian et al. [239] point out that
severity levels (e.g., critical or minor) of issue reports are often misclassified.
While such software engineering data is inaccurate, Liebchen and Shepperd [136]
point out that very few software engineering studies are aware of data quality
issues.

The predictions and insights that are derived from defect prediction models
depends on the quality of the data from which these models are trained. Prior
work has investigated various potential sources of biases that can produce noise
in the defect data that are used to train defect models. Below, we discuss related
research along the two dimensions.

4.2.1. Noise generated by linkage process.

Defect models are trained using datasets that connect issue reports recorded in
an Issue Tracking System (ITS) with the software modules that are impacted by
the associated code changes that address these issue reports. The code changes
are in turn recorded in a Version Control System (VCS). Thus, the quality of the
data recorded in the ITS and VCS impacts the quality of the data that is used
to train defect models [11, 21,28,94,178].

44 Chapter 4. Related Research

Prior work points out the process of linking issue reports with code changes
can generate noise in defect prediction datasets, since the linkage process often
depends on manually-entered links that are provided by developers [21, 28, 118].
For example, Koru and Tian [127] point out that the defect linking practices are
different from project to project. Bird et al. [28] find that the issue reports of
several defects are not identified in the commit logs. Bachmann et al. [21] find
that the noise generated by missing links in defect prediction datasets introduces
bias. Kim et al. [118] find that the noise has a large negative impact on the
performance of defect prediction models. Recently, Rahman et al. [193] find that
the size of the dataset matters more than the amount of injected noise. Hence,
various techniques that are proposed by Wu et al. [253] and Nguyen et al. [178]
are needed to detect and cope with biases in defect datasets.

4.2.2. Noise generated by issue report mislabelling.

Even if all of the links between issue reports and code changes are correctly
recovered, noise may creep into defect prediction datasets if the issue reports
themselves are mislabelled. For example, Herzig et al. [94] find that 43% of
all issue reports are mislabelled, and this mislabelling impacts the ranking of the
most defect-prone files. While Kim et al. [118] find that noise has a large negative
impact on the performance of defect prediction models, they artificially generated
noise. Yet, noise is likely non-random—novice developers might tend to mislabel
issue reports more than experienced developers.

Observation 1. Little is known about the characteristics of noise that is
generated by issue report mislabelling and its impact on the performance and

interpretation of defect prediction models.

4.3. Model Construction Stage 45

4.3. Model Construction Stage

Model construction stage involves various experimental components, such as, the
choice of classification techniques, and the choice of classifier parameter settings.

4.3.1. Selecting Classification Techniques

To build defect prediction models, prior research explored the use of various clas-
sification techniques in order to train defect prediction models [74,133,221]. For
example, in early research, researchers tend to apply statistical learning tech-
niques (e.g., logistic regression) to build defect prediction models [22, 36]. In
recent research, researchers tend to used more advanced machine learning tech-
niques, such as, rule-based techniques [16], boosting techniques [16, 105, 204],
Multivariate Adaptive Regression Splines (MARS) [26, 100], and discrimination
analysis techniques [110].
Even if the noise in defect datasets has been mitigated, the performance of

defect prediction models still relies heavily on the used classification techniques.
Indeed, Song et al. [221] suggests that different data sets should use different
classification techniques. Panichella et al. [184] also find that using different clas-
sification techniques can identify different defective modules. Ghotra et al. [74]
also confirm that the choice of classification techniques has a large impact on the
performance of defect prediction models for both proprietary and open-source
systems. Hence, researchers should explore many of the readily-available classifi-
cation techniques from toolkits such as R and Weka.

4.3.2. Selecting Classifier Parameter Settings

Even if the best classification techniques are used to construct defect prediction
models, such classification techniques often have configurable parameters that
control their characteristics (e.g., the number of trees in a random forest classi-

46 Chapter 4. Related Research

fier). Thus, training defect prediction models involves selecting a classification
technique and its most appropriate parameters.

Even if the best classifier is selected, the performance of defect prediction mod-
els may also be fluctuated based on different classifier parameters. For example,
prior research points out that selecting different classifier parameters may impact
the performance of defect models [147, 148]. Hall et al. [82] also point out that
defect prediction models may under-perform due to the use of suboptimal de-
fault parameter settings. Mittas et al. [159] also point out that highly sensitive
classifiers will make defect prediction studies more difficult to reproduce.

Observation 2. Little is known about the impact of parameter settings on the
performance and interpretation of defect prediction models and the benefits of

automated parameter optimization techniques.

4.4. Model Validation Stage

Model validation stage involves various experimental components, such as, the
choice of performance measures and the choice of model validation techniques.

4.4.1. Selecting Model Validation Techniques.

Prediction models may provide an unrealistically optimistic estimation of model
performance when (re)applied to the same sample with which were trained. To
address this problem, model validation techniques (e.g., k-fold cross-validation)
are commonly used to estimate the model performance. The model performance
is used to (1) indicate how well a model will perform on unseen data [51,54,140,
187, 245, 257]; (2) select the top-performing prediction model [74, 115, 133, 159,
169,232,247]; and (3) combine several prediction models [20, 206,241,252].

4.5. Chapter Summary 47

Recent research has raised concerns about the accuracy and reliability of model
validation techniques when applied to defect prediction models [72,152,154,159,
169,246]. Indeed, a perfectly unbiased model validation technique should produce
a performance estimate that is equivalent to the model performance on unseen
data.

Observation 3. Little is known about the accuracy and reliability of the
performance estimates that are derived from commonly used model validation

techniques for defect prediction models.

4.5. Chapter Summary

In this chapter, we briefly survey prior research along the three stages of defect
prediction modelling. We find that while the related work supports our thesis hy-
pothesis that the choice of experimental components may have an impact on the
conclusions of defect prediction studies, it is not yet clear: (1) what are the char-
acteristics of noise that is generated by issue report mislabelling and what is the
impact of such a noise on the performance and interpretation of defect prediction
models; (2) the impact of parameter settings on the performance, model stability,
and interpretation of defect prediction models; and (3) the accuracy and reliabil-
ity of the performance estimates that are derived from the commonly-used model
validation techniques. Broadly speaking, the remainder of this thesis describes
our empirical studies that set out to tackle these three gaps in the literature. We
begin, in the next chapter, by studying the impact of issue report mislabelling on
the performance and interpretation of defect prediction models.

Part III.

Empirical Investigations of the
Impact of Experimental Components

CHAPTER 5

The Impact of Issue Report
Mislabelling

Key Finding

Noise generated by issue report misla-
belling has little impact on the perfor-
mance and interpretation of defect predic-
tion models.

An earlier version of the work in this chap-
ter appears in the Proceedings of the Interna-
tional Conference on Software Engineering (ICSE),
2015 [230].

51

52 Chapter 5. The Impact of Issue Report Mislabelling

5.1. Introduction

Defect models, which identify defect-prone software modules using a variety of
software metrics [82,191,210], serve two main purposes. First, defect models can
be used to predict [7, 50, 90, 119, 163, 167, 175, 195, 258] modules that are likely
to be defect-prone. Software Quality Assurance (SQA) teams can use defect
models in a prediction setting to effectively allocate their limited resources to the
modules that are most likely to be defective. Second, defect models can be used
to understand [42, 145, 161, 163, 212, 214] the impact of various software metrics
on the defect-proneness of a module. The insights derived from defect models
can help software teams to avoid pitfalls that have often led to defective software
modules in the past.
The accuracy of the predictions and insights derived from defect models de-

pends on the quality of the data from which these models are trained. Indeed,
Mockus argues that poor data quality can lead to biased conclusions [160]. De-
fect models are trained using datasets that connect issue reports recorded in an
Issue Tracking System (ITS) with the software modules that are impacted by the
associated code changes that address these issue reports. The code changes are
in turn recorded in a Version Control System (VCS). Thus, the quality of the
data recorded in the ITS and VCS impacts the quality of the data used to train
defect models [11,21,28,94,178].
Recent research shows that the noise that is generated by issue report mis-

labelling, i.e., issue reports that describe defects but were not classified as such
(or vice versa), may impact the performance of defect models [118, 193]. Yet,
while issue report mislabelling is likely influenced by characteristics of the issue
itself — e.g., novice developers may be more likely to mislabel an issue than an
experienced developer — the prior work randomly generates mislabelled issues.
In this chapter, we set out to investigate whether mislabelled issue reports

can be accurately explained using characteristics of the issue reports themselves,

5.1. Introduction 53

and what impact a realistic amount of noise has on the predictions and insights
derived from defect models. Using the manually-curated dataset of mislabelled
issue reports provided by Herzig et al. [94], we generate three types of defect
datasets: (1) realistic noisy datasets that contain mislabelled issue reports as
classified manually by Herzig et al., (2) random noisy datasets that contain the
same proportion of mislabelled issue reports as contained in the realistic noisy
dataset, however the mislabelled issue reports are selected at random, and (3)
clean datasets that contain no mislabelled issues (we use Herzig et al.’s data to
reassign the mislabelled issue reports to their correct categories). Through a case
study of 3,931 issue reports spread across 22 releases of the Apache Jackrabbit
and Lucene systems, we address the following three research questions:

(RQ1) Is mislabelling truly random?
Issue report mislabelling is not random. Our models can predict misla-
belled issue reports with a mean F-measure that is 4-34 times better than
that of random guessing. The tendency of a reporter to mislabel issues in
the past is consistently the most influential metric used by our models.

(RQ2) How does mislabelling impact the performance of defect models?
We find that the precision of our defect models is rarely impacted by
mislabelling. Hence, practitioners can rely on the accuracy of modules
labelled as defective by defect models that are trained using noisy data.
However, cleaning the data prior to training the defect models will likely
improve their ability to identify all defective modules.

(RQ3) How does mislabelling impact the interpretation of defect models?
We find that 80%-85% of the metrics in the top influence rank of the clean
models also appear in the top influence rank of the noisy models, indi-
cating that the most influential metrics are not heavily impacted by issue
report mislabelling. On the other hand, as little as 18% of the metrics

54 Chapter 5. The Impact of Issue Report Mislabelling

in the second and third influence rank of the clean models appear in the
same rank in the noisy models, which suggests that the less influential
metrics are more unstable.

Furthermore, we find that randomly injecting mislabelled defects tends to over-
estimate the impact of truly mislabelling on model performance and model inter-
pretation.

5.1.1. Chapter organization

The remainder of this chapter is organized as follows. Section 5.2 situates this
paper with respect to the related work. Section 5.3 discusses the design of our
case study, while Section 5.4 presents the results with respect to our three research
questions. Section 5.5 discloses the threats to the validity of our work. Finally,
Section 5.6 draws conclusions.

5.2. Related Work & Research Questions

Given a software module, such as a source code file, a defect model classifies it
as either likely to be defective or clean. Defect models do so by modelling the
relationship between module metrics (e.g., size and complexity), and module class
(defective or clean).
As shown in Figure 5.1, module metrics and classes are typically mined from

historical repositories, such as ITSs and VCSs. First, issue reports, which de-
scribe defects, feature requests, and general maintenance tasks, are extracted
from the ITS. Next, the historical code changes that are recorded in a VCS are
extracted. Finally, these issue reports are linked to the code changes that have
been performed in order to address them. For example, a module’s class is set to
defective if it has been affected by a code change that addresses an issue report
that is classified as a defect.

5.2. Related Work & Research Questions 55

Issue Tracking  
System (ITS)

Version Control 
System (VCS)

Linking
Defect  

Prediction 
Dataset

Issue 
Reports

Code  
Changes

Figure 5.1.: [Empirical Study 1] The construction of defect prediction datasets.

Various data quality issues can arise when constructing defect prediction datasets.
Specifically, prior work has investigated data quality issues with respect to the
linkage process and the issue reports themselves. We describe the prior work with
respect to each data quality issue below.

5.2.1. Linkage of Issue Reports with Code Changes

The process of linking issue reports with code changes can generate noise in
defect prediction datasets, since the linkage process often depends on manually-
entered links that are provided by developers. Bachmann et al. find that the issue
reports of several defects are not identified in the commit logs [21], and thus are
not visible to the automated linking tools that are used to extract defect datasets.
Wu et al. [253] and Nguyen et al. [178] use the textual similarity between issue
reports and version control logs to recover the missing links between the ITS and
VCS repositories.

The noise generated by missing links in defect prediction datasets introduces
bias. Bird et al. find that more experienced developers are more likely to explicitly
link issue reports to the corresponding code changes [28]. Nguyen et al. find
that such biases also exist in commercial datasets [179], which were suspected

56 Chapter 5. The Impact of Issue Report Mislabelling

to be “near-ideal.” Rahman et al. examined the impact of bias on defect models
by generating artificially biased datasets [192], reporting that the size of the
generated dataset matters more than the amount of injected bias.

Linkage noise and bias are addressed by modern tools like JIRA1 and IBM
Jazz2 that automatically link issue reports with code changes. Nevertheless,
recent work by Nguyen et al. shows that even when such modern tools are used,
bias still creeps into defect datasets [179]. Hence, techniques are needed to detect
and cope with biases in defect prediction datasets.

5.2.2. Mislabelled Issue Reports

Even if all of the links between issue reports and code changes are correctly
recovered, noise may creep into defect prediction datasets if the issue reports
themselves are mislabelled. Aranda and Venolia find that ITS and VCS reposi-
tories are noisy sources of data [12]. Antoniol et al. find that textual features can
be used to classify issue reports [11], e.g., the term “crash” is more often used in
the issue reports of defects than other types of issue reports. Herzig et al. find
that 43% of all issue reports are mislabelled, and this mislabelling impacts the
ranking of the most defect-prone files [94].

Mislabelled issue reports generate noise that impacts defect prediction models.
Yet, little is known about the nature of mislabelling. For example, do mislabelled
issue reports truly appear at random throughout defect prediction datasets, or are
they explainable using characteristics of code changes and issue reports? Knowl-
edge of the characteristics that lead to mislabelling would help researchers to
more effectively filter (or repair) mislabelled issue reports in defect prediction
datasets. Hence, we formulate the following research question:

1https://issues.apache.org/jira/
2http://www.jazz.net/

https://issues.apache.org/jira/
http://www.jazz.net/

5.2. Related Work & Research Questions 57

(RQ1) Is mislabelling truly random?

Prior work has shown that issue report mislabelling may impact the perfor-
mance of defect models. Kim et al. find that defect models are considerably less
accurate when they are trained using datasets that have a 20%-35% mislabelling
rate [118]. Seiffert et al. conduct a comprehensive study [205], and the results
confirm the prior findings of Kim et al. [118].
However, prior work assumes that issue report mislabelling is random, which

is not necessarily true. For example, novice developers may be more likely to
mislabel an issue report than experienced developers. Hence, we set out to address
the following research question:

(RQ2) How does mislabelling impact the performance of defect models?

In addition to being used for prediction, defect models are also used to un-
derstand the characteristics of defect-prone modules. Mockus et al. study the
relationship between developer-centric measures of organizational change and the
probability of customer-reported defects in the context of a large software sys-
tem [161]. Cataldo et al. study the impact of software and work dependencies
on software quality [42]. Shihab et al. study the characteristics of high-impact
and surprise defects [214]. McIntosh et al. study the relationship between soft-
ware quality and modern code review practices [145]. Such an understanding of
defect-proneness is essential to chart quality improvement plans.
Mislabelled issue reports likely impact the interpretation of defect models as

well. To investigate this, we formulate the following research question:

(RQ3) How does mislabelling impact the interpretation of defect models?

58
C
hapter

5.
T
he

Im
pact

ofIssue
R
eport

M
islabelling

Table 5.1.: [Empirical Study 1] An overview of the studied systems. Those above the double line satisfy our criteria
for analysis.

Overview Studied Issue Reports Releases & Source Code Information
System Tracker #Issues Link #Defective %Mislabelled #Non-Defective %Mislabelled Releases #Files %Defective
Name Type Rate Issues Issues Files
Jackrabbit JIRA 2,402 79% 966 24% 922 2% 11 1,236 - 2,931 <1% - 7%
Lucene JIRA 2,443 84% 838 29% 1205 1% 11 517 - 4,820 2% - 6%
HTTPClient JIRA 746 31% 125 27% 106 2% - - -
Rhino Bugzilla 584 - - - - - - - -
Tomcat5 Bugzilla 1,077 - - - - - - - -

Oracle of  
Mislabelled  

Issue Reports

Issue 
Tracking System

Version  
Control System

Link issue
reports to

code changes

Dataset for  
Prediction of  
Mislabelled  

Issue Reports

Dataset for  
Prediction of  
Defect-Prone  

Files

Analyze model
performance

Analyze
impact of
metrics

(DA 2)

(DA 3)

(DA 4)

(DE 1)

(DE 3)
(1) Data Extraction (DE) (2) Data Analysis (DA)

(DA 1)

Model

Integrate
oracle of

mislabelled  
issue reports

(DE 2)

Linked 
Data

Calculate
metrics for

prediction of
mislabelled

issue reports

Calculate
metrics for

prediction of
defect-prone

files

(DE 4)

Generate  
subsample  

datasets
Construct 

models

Figure 5.2.: [Empirical Study 1] An overview of our data extraction and analysis approaches.

5.3. Case Study Design 59

5.3. Case Study Design

In this section, we outline our criteria for selecting the studied systems, and our
data extraction and analysis approaches.

5.3.1. Studied Systems

To address our research questions, we need a dataset of mislabelled issue reports.
In selecting the studied systems, we identified two important criteria that needed
to be satisfied:

– Criterion 1 —Mislabelled issue report oracle: In order to study the impact
of mislabelling on defect prediction models, we need an oracle of which issues
have been mislabelled.

– Criterion 2 — Issue report linking rate: The issue reports for each studied
system must be traceable, i.e., an issue report must establish a link to the
code change that addresses it. Systems with low rates of traceable issue
reports will introduce too many missing links [21, 28], which may impact
the performance of our defect models [192]. Hence, we only study systems
where a large proportion of issue reports can be mapped to the code changes
that address them.

To satisfy criterion 1, we began our study using the corpus of mislabelled issue
reports that was manually-curated by Herzig et al. [95]. Table 5.1 provides an
overview of the five systems in the corpus.
To satisfy criterion 2, we first select the set of systems in the corpus of Herzig

et al. that use the JIRA ITS.1 JIRA explicitly links code changes to the issue
reports that they address. Since Rhino and Tomcat5 do not use JIRA, we removed
them from our analysis. Next, we discard systems that do not have a high linkage

60 Chapter 5. The Impact of Issue Report Mislabelling

rate. We discard HTTPClient, since fewer than half of the issue reports could be
linked to the code changes that address them.

Table 5.1 shows that the Jackrabbit and Lucene systems satisfied our criteria for
analysis. Jackrabbit is a digital content repository that stores versioned entries in
a hierarchy.3 Lucene is a library offering common search indexing functionality.4

5.3.2. Data Extraction

In order to produce the datasets necessary for our study, we first need to extract
data from the ITS of each studied system. Next, we need to link the extracted
ITS data with entries from the respective VCS repositories, as well as with the
oracle of mislabelled issue reports. Figure 5.2 provides an overview of our data
extraction approach, which is further divided into the four steps that we describe
below.

(DE 1) Link issue reports to code changes. We first extract the issue reports
from the ITS of each studied system. Then, we extract the references to code
changes from those issue reports. Finally, we extract the commit information for
the referenced code changes from the VCS.

(DE 2) Integrate oracle of mislabelled issue reports. We link the oracle of
mislabelled issue reports with our defect datasets for two purposes. First, we
record the mislabelled issues in order to train models that predict and explain the
nature of mislabelling (cf. RQ1). Second, we use the oracle to correct mislabelled
issues in order to produce clean (mislabel-free) versions of our defect prediction
datasets. We use this data to study the impact of mislabelling on the performance
and interpretation of our models (cf. RQ2 and RQ3).

(DE 3) Calculate metrics for the prediction of mislabelled issue reports. In
order to address RQ1, we train models that classify whether an issue report is

3http://jackrabbit.apache.org/
4http://lucene.apache.org/

http://jackrabbit.apache.org/
http://lucene.apache.org/

5.3. Case Study Design 61

Table 5.2.: [Empirical Study 1] Factors used to study the nature of mislabelled
issue reports (RQ1).

Metrics Description
Diffusion Dimension
Files, # Compo-
nents,
Subsystems

The number of unique files, components, and subsys-
tems that are involved in the code changes that address
an issue report.

Entropy The dispersion of a change across the involved files.
Size Dimension
Commits The number of commits made to address an issue report.
Churn The sum of the added and removed lines in the code

changes made to address an issue report.
History Dimension
Reporter tendency The proportion of prior issue reports that were previ-

ously filed by the reporter of this issue and that were
mislabelled.

Code tendency For each file involved in the code changes that address an
issue report, we calculate the proportion of its prior issue
reports that were mislabelled. For each issue report, we
select the maximum of the proportions of each of its
files.

Communication Dimension
Discussion length The number of comments that were posted on the issue

report.

mislabelled or not. Table 5.2 shows the nine metrics that we use to predict
whether an issue report is mislabelled or not. These nine metrics capture four
dimensions of an issue report that we briefly describe below.

Diffusion metrics measure the dispersion of a change across modules. Since
broadly-dispersed code changes may contain several different concepts, they are
likely difficult to accurately label. We use four metrics to measure diffusion
as described below. The # Subsystems, # Components, and # Files metrics
measure the spread of a change at different granularities. For example, for

62 Chapter 5. The Impact of Issue Report Mislabelling

a file org/apache/lucene/index/values/Reader.java, the subsystem is org.

apache.lucene.index and the component is org/apache/lucene/index/values.
We count the number of unique subsystems, components, and files that are mod-
ified by a change by analyzing the file paths as described above. We also measure
the entropy (i.e., disorder) of a change. We use the entropy definition of prior
work [90, 111], i.e., the entropy of a change C is H(C) = −∑n

k=1(pk × log2 pk),
where N is the number of files included in a change, pk is the proportion of
change C that impacts file k. The larger the entropy value, the more broadly
that a change is dispersed among files.

Size metrics measure how much code change was required to address an issue
report. Similar to diffusion, we suspect that larger changes may contain more
concepts, which likely makes the task of labelling more difficult. We measure the
size of a change by the # commits (i.e., the number of changes in the VCS history
that are related to this issue report) and the churn (i.e., the sum of the added
and removed lines).

History metrics measure the tendency of files and reporters to be involved with
mislabelled issue reports. Files and reporters that have often been involved with
mislabelled issue reports in the past are likely to be involved with mislabelled
issue reports in the future. The reporter tendency is the proportion of prior
issue reports that were created by a given reporter and were mislabelled. To
calculate the code tendency for an issue report r, we first compute the tendency
of mislabelling for each involved file fk, i.e., the proportion of prior issue reports
that involve fk that were mislabelled. We select the maximum of the mislabelling
tendencies of fk to represent r.

Communication metrics measure the degree of discussion that occurred on an
issue report. Issue reports that are discussed more are likely better understood,
and hence are less likely to be mislabelled. We represent the communication di-
mension with the discussion length metric, which counts the number of comments
posted on an issue report.

5.3. Case Study Design 63

Table 5.3.: [Empirical Study 1] The factors that we use to build our defect models
(RQ2, RQ3).

Metrics Description
Process Metrics
Commits Number of commits made to a file during a studied re-

lease.
Normalized lines
added

Number of added lines in this file normalized by the sum
of all lines added to all files during a studied release.

Normalized lines
deleted

Number of deleted lines in this file normalized by the
sum of all lines deleted from all files during a studied
release.

Churn The sum of added and removed lines in a file during a
studied release.

Developer Metrics
Active developer Number of developers who made a change to a file during

a studied release.
Distinct developer Number of distinct developers who made a change to a

file during or prior to a studied release.
Minor contributor Number of developers who have authored less than 5%

of the changes to a file.
Ownership Metrics
Ownership ratio The proportion of lines written by the author who made

the most changes to a file.
Owner experience The experience (i.e., the proportion of all of the lines in

a project that have been written by an author) of the
most active contributor to a file.

Committer experi-
ence

The geometric mean of the experiences of all of the de-
velopers that contributed to a file.

(DE 4) Calculate metrics for the prediction of defect-prone files. In order to
address RQ2 and RQ3, we train defect models that identify defect-prone files.
Table 5.3 shows the ten metrics that are spread across three dimensions that we
use to predict defect-prone files. These metrics have been used in several previous
defect prediction studies [17,29,109,163,167,174,192,212,250]. We briefly describe

64 Chapter 5. The Impact of Issue Report Mislabelling

each dimension below.

Process metrics measure the change activity of a file. We count the number
of commits, lines added, lines deleted, and churn to measure change activity of
each file. Similar to Rahman et al. [192], we normalize the lines added and lines
deleted of a file by the total lines added and lines deleted.

Developer metrics measure the size of the team involved in the development of
each file [29]. Active developers counts the developers who have made changes to
a file during the studied release period. Distinct developers counts the developers
who have made changes to a file up to (and including) the studied release period.
Minor developers counts the number of developers who have authored less than
5% of the changes to a file in the studied release period.

Ownership metrics measure how much of the change to a file has been con-
tributed by a single author [29]. Ownership ratio is the proportion of the changed
lines to a file that have been contributed by the most active author. We mea-
sure the experience of an author using the proportion of changed lines in all of
the system files that have been contributed by that author. Owner experience is
the experience of the most active author of a file. Committer experience is the
geometric mean of the experiences of the authors that contributed to a file.

5.3.3. Data Analysis

We train models using the datasets that we extracted from each studied system.
We then analyze the performance of these models, and measure the influence that
each of our metrics has on model predictions. Figure 5.2 provides an overview of
our data analysis approach, which is divided into four steps. We describe each
step below.

(DA 1) Generate bootstrap datasets. In order to ensure that the conclusions
that we draw about our models are robust, we use the bootstrap resampling tech-
nique [63]. The bootstrap randomly samples K observations with replacement

5.3. Case Study Design 65

from the original dataset of size K. Using the bootstrap technique, we repeat
our experiments several times, i.e., once for each bootstrap sample. We use im-
plementation of the bootstrap algorithm provided by the boot R package [41].

Unlike k-fold cross-validation, the bootstrap technique fits models using the
entire dataset. Cross-validation splits the data into k equal parts, using k -
1 parts for fitting the model, setting aside 1 fold for testing. The process is
repeated k times, using a different part for testing each time. Notice, however,
that models are fit using k - 1 folds (i.e., a subset) of the dataset. Models fit
using the full dataset are not directly tested when using k-fold cross-validation.
Previous research demonstrates that the bootstrap leads to considerably more
stable results for unseen data points [63, 87]. Moreover, the use of bootstrap is
recommended for high-skewed datasets [87], as is the case in our defect prediction
datasets.

(DA 2) Construct models. We train our models using the random forest classifi-
cation technique [34]. Random forest is an accurate classification technique that
is robust to noisy data [103, 217], and has been used in several previous stud-
ies [70,75,103,109,133]. The random forest technique constructs a large number
of decision trees at training time. Each node in a decision tree is split using a
random subset of all of the metrics. Performing this random split ensures that
all of the trees have a low correlation between them. Since each tree in the forest
may report a different outcome, the final class of a work item is decided by aggre-
gating the votes from all trees and deciding whether the final score is higher than
a chosen threshold. We use the implementation of the random forest technique
provided by the bigrf R package [137].

We use the approach described by Harrell Jr. to train and test our models
using the bootstrap and original samples [87]. In theory, the relationship be-
tween the bootstrap samples and the original data is asymptotically equivalent
to the relationship between the original data and its population [87]. Since the
population of our datasets is unknown, we cannot train a model on the original

66 Chapter 5. The Impact of Issue Report Mislabelling

dataset and test it on the population. Hence, we use the bootstrap samples to
approximate this by using several thousand bootstrap samples to train several
models, and test each of them using the original data.

Handling skewed metrics: Analysis of the distributions of our metrics reveals
that they are right-skewed. To mitigate this skew, we log-transform each metric
prior to training our models (ln(x+ 1)).

Handling redundant metrics: Correlation analysis reduces collinearity among
our metrics, however it would not detect all of the redundant metrics, i.e., metrics
that do not have a unique signal with respect to the other metrics. Redundant
metrics will interfere with each other, distorting the modelled relationship be-
tween the module metrics and its class. We, therefore, remove redundant metrics
prior to constructing our defect models. In order to detect redundant metrics,
we fit preliminary models that explain each metric using the other metrics. We
use the R2 value of the preliminary models to measure how well each metric is
explained by the others.

We use the implementation of this approach provided by the redun function
of the rms R package. The function builds preliminary models for each metric
for each bootstrap iteration. The metric that is most well-explained by the other
metrics is iteratively dropped until either: (1) no preliminary model achieves
an R2 above a cutoff threshold (for this paper, we use the default threshold of
0.9), or (2) removing a metric would make a previously dropped metric no longer
explainable, i.e., its preliminary model will no longer achieve an R2 exceeding our
0.9 threshold.

Handling imbalanced categories: Table 5.1 shows that our dependent variables
are imbalanced, e.g., there are more correctly labelled issue reports than mis-
labelled ones. If left untreated, the models trained using imbalanced data will
favour the majority category, since it offers more predictive power. In our case,
the models will more accurately identify correctly-labelled issue reports than mis-
labelled ones.

5.3. Case Study Design 67

Table 5.4.: [Empirical Study 1] Example confusion matrices.
Actual

Classified as Mislabel Correct
Mislabelled TP FP

Correct FN TN

(a) [Empirical Study 1] Prediction of
mislabelled issue reports.

Actual
Classified as Defective Non-Defective

Defective TP FP
Non-defective FN TN

(b) [Empirical Study 1] Prediction of defect-
prone files.

To combat the bias of imbalanced categories, we re-balance the training corpus
to improve the performance of the minority category. We re-balance the data
using a re-sampling technique that removes samples from the majority category
(under-sampling) and repeats samples in the minority category (over-sampling).
We only apply re-balancing to bootstrap samples (training data) — the original
(testing) data is not re-balanced.

(DA 3) Analyze model performance. To evaluate the performance of the pre-
diction models, we use the traditional evaluation metrics in defect prediction,
i.e., precision, recall, and F-measure. These metrics are calculated using the
confusion matrices of Table 5.4. Precision measures the proportion of classified
entities that are correct (TP

TP+FP). Recall measures the proportion of correctly
classified entities (TP

TP+FN). F-measure is the harmonic mean of precision and
recall (2×Precision×Recall

Precision+Recall).

(DA 4) Analyze influence of metrics. To study the most influential metrics in
our random forest models, we compute Breiman’s variable importance score [34]
for each studied metric. The larger the score, the greater the influence of the
metric on our models. We use the varimp function of the bigrf R package [137]
to compute the variable importance scores of our metrics.

To study the influence that the studied metrics have on our models, we apply
the Scott-Knott test [203]. Each metric will have several variable importance
scores (i.e., one from each of the releases). The Scott-Knott test will cluster

68 Chapter 5. The Impact of Issue Report Mislabelling

the metrics according to statistically significant differences in their mean variable
importance scores (α = 0.05). We use the implementation of the Scott-Knott test
provided by the ScottKnott R package [98]. The Scott-Knott test ranks each
metric exactly once, however several metrics may appear within one rank.

5.4. Case Study Results

In this section, we present the results of our case study with respect to our three
research questions.

5.4.1. (RQ1) Is mislabelling truly random?

To address RQ1, we train models that indicate whether or not an issue report was
mislabelled. We build two types of mislabelling models — one to predict issue
reports that were incorrectly labelled as defects (defect mislabelling, i.e., false
positives), and another to predict issue reports that should have been labelled
as defects, but were not (non-defect mislabelling, i.e., false negatives). We then
measure the performance of these models (RQ1-a) and study the impact of each
of our issue report metrics in Table 5.2 (RQ1-b).

(RQ1-a) Model performance. Figure 5.3 shows the performance of 1,000 bootstrap-
trained models. The error bars indicate the 95% confidence interval of the perfor-
mance of the bootstrap-trained models, while the height of the bars indicates the
mean performance of these models. We compare the performance of our models
to random guessing.

Our models achieve a mean F-measure of 0.38-0.73, which is 4-34 times better
than random guessing. Figure 5.3 also shows that our models also achieve a mean
precision of 0.68-0.78, which is 6-75 times better than random guessing. Due to
the scarcity of non-defect mislabelling (see Table 5.1), we observe broader ranges
covered by the confidence intervals of the performance values in Figure 5.3b.

5.4. Case Study Results 69

Nonetheless, the ranges covered by the confidence intervals of the precision and
F-measure of all of our models does not overlap with those of random guessing.
Given the skewed nature of the distributions at hand, we opt to use a bootstrap
t-test, which is distribution independent. The results show that the differences
are statistically significant (α = 0.05).

Figure 5.3b shows that the only case where our models under-perform with
respect to random guessing is the non-defect mislabelling model on the Jackrabbit
system. Although the mean recall of our model is lower in this case, the mean
precision and F-measure are still much higher than that of random guessing.

(RQ1-b) Influence of metrics. We calculate the variable importance scores of
our metrics in 1,000 bootstrap-trained models, and cluster the results using the
Scott-Knott test.

A reporter’s tendency to mislabel issues in the past is the most influential
metric for predicting mislabelled issue reports. We find that reporter tendency
is the only metric in the top Scott-Knott cluster, indicating that it is consis-
tently the most influential metric for our mislabelling models. Moreover, for
defect mislabelling, reporter tendency is the most influential metric in 94% of our
bootstrapped Jackrabbit models and 86% of our Lucene models.

Similar to RQ1-a, we find that there is more variability in the influential met-
rics of our non-defect mislabelling models than our defect mislabelling ones.
Nonetheless, reporter tendency is still the only metric in the top Scott-Knott
cluster. Furthermore, reporter tendency is the most influential metric in 46% of
our Jackrabbit models and 73% of our Lucene models.

Summary. Issue report mislabelling is not random. Our models can predict mis-
labelled issue reports with a mean F-measure that is 4-34 times better than that
of random guessing. The tendency of a reporter to mislabel issues in the past is
consistently the most influential metric used by our models.

70 Chapter 5. The Impact of Issue Report Mislabelling

Jackrabbit Lucene

0.78

0.12

0.64

0.50

0.70

0.19

0.75

0.12

0.71

0.50

0.73

0.19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision Recall F−Measure Precision Recall F−Measure

P
er

fo
rm

an
ce

 V
al

ue

Our Model Random Guessing

(a) [Empirical Study 1] Defect mislabelling (false positive)

Jackrabbit Lucene

0.75

0.01

0.26

0.50

0.38

0.02

0.68

0.01

0.70

0.50

0.68

0.02
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision Recall F−Measure Precision Recall F−Measure

P
er

fo
rm

an
ce

 V
al

ue

Our Model Random Guessing

(b) [Empirical Study 1] Non-defect mislabelling (false negative)

Figure 5.3.: [Empirical Study 1] A comparison of the performance of our models
that are trained to identify mislabelled issue reports (blue) against
random guessing (white). Error bars indicate the 95% confidence
interval based on 1,000 bootstrap iterations.

5.4. Case Study Results 71

5.4.2. (RQ2) How does mislabelling impact the performance of

defect models?

Approach. We use the same high-level approach to address RQ2 and RQ3.
Figure 5.6 provides an overview of the steps in that approach. We describe how
we implement each step to address RQ2 in particular below.
(Step 1) Construct models: For each bootstrap iteration, we train models using

clean, realistic noisy, and random noisy samples. The clean sample is the unmod-
ified bootstrap sample. The realistic noisy sample is generated by re-introducing
the mislabelled issue reports in the bootstrap sample. To generate the random
noisy sample, we randomly inject mislabelled issue reports in the bootstrap sam-
ple until the rate of mislabelled issue reports is the same as the realistic noisy
sample. Finally, we train models on each of the three samples.
(Step 2) Analyze models: We want to measure the impact of real mislabelling

and random mislabelling on defect prediction. Thus, we compute the ratio of the
performance of models that are trained using the noisy samples to that of the
clean sample. Since we have three performance measures, we generate six ratios
for each bootstrap iteration, i.e., the precision, recall, and F-measure ratios for
realistic noisy and random noisy samples compared to the clean sample.
(Step 3) Interpret results: We repeat the bootstrap experiment for each studied

release individually. Finally, we compare the distributions of each performance
ratio using beanplots [112]. Beanplots are boxplots in which the vertical curves
summarize the distributions of different data sets. The horizontal lines indicate
the median values. We choose beanplots over boxplots, since beanplots show
contours of the data that are hidden by the flat edges of boxplots.

72
C
hapter

5.
T
he

Im
pact

ofIssue
R
eport

M
islabelling

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
ea

lis
tic

/C
le

an
 R

at
io

(a) [Empirical Study 1] Jackrabbit

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
ea

lis
tic

/C
le

an
 R

at
io

(b) [Empirical Study 1] Lucene

Figure 5.4.: [Empirical Study 1] The difference in performance between models trained using realistic noisy samples
and clean samples. All models are tested on clean samples (defect mislabelling).

5.4. Case Study Results 73

Results. Figure 5.4 shows the distribution of the ratios of our performance
metrics in all of the studied releases.
Similar to RQ1, we perform experiments for defect mislabelling and non-defect

mislabelling individually. We find that, likely due to scarcity, non-defect misla-
belled issue reports have little impact on our models. Hence, we focus on defect
mislabelling for the remainder of this section.
The modules classified as defective by models trained using noisy data are

typically as reliable as the modules classified as defective by models trained
using clean data. Figure 5.4 shows that there is a median ratio of one between
the precision of models trained using the realistic noisy and clean samples for both
of the studied systems. Furthermore, we find that the 95% confidence interval for
the distributions are 0.88-1.20 (Jackrabbit) and 0.90-1.19 (Lucene). This tight
range of values that are centred at one suggests that the precision of our models
is not typically impacted by mislabelled defects.
On the other hand, models trained using noisy data tend to miss more de-

fective modules than models trained using clean data. Figure 5.4 shows that
the median ratio between the recall of models trained using the realistic noisy
and clean samples is 0.68 (Jackrabbit) and 0.56 (Lucene). This indicates that
models trained using data with mislabelled defects typically achieve 56%-68% of
the recall that models trained on clean data would achieve when tested on clean
data.

Summary. While defect mislabelling rarely impacts the precision of defect models,
the recall is often impacted. Practitioners can rely on the modules classified as
defective by defect models trained on noisy data. However, cleaning historical
data prior to training defect models will likely improve their recall.

74
C
hapter

5.
T
he

Im
pact

ofIssue
R
eport

M
islabelling

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
an

do
m

/R
ea

lis
tic

 R
at

io

(a) [Empirical Study 1] Jackrabbit

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
an

do
m

/R
ea

lis
tic

 R
at

io

(b) [Empirical Study 1] Lucene

Figure 5.5.: [Empirical Study 1] The difference in performance between models trained using random noisy and
realistic noisy samples. All models are tested on clean samples (defect mislabelling).

5.4. Case Study Results 75

Random mislabelling issue reports tends to overestimate the impact of realis-
tic mislabelling on model performance. Figure 5.5 shows that while the median
ratio between the precision of realistic and random noisy models is 1 for both
studied systems, the median recall and F-measure ratios are 0.84-0.90 and 0.88-
0.93 respectively. In fact, 64%-66% of the recall and F-measure ratios are below
1 in our studied systems, indicating that models trained using randomly misla-
belled issues tend to overestimate the impact of real mislabelling on the recall
and F-measure of our models.

Summary. When randomly injecting mislabelled defects, our results suggest that
the impact of the mislabelling will be overestimated by 7-16 percentage points.

5.4.3. (RQ3) How does mislabelling impact the interpretation of

defect models?

Approach. We again use the high-level approach of Figure 5.6 to address RQ3.
While Step 1 of the approach is identical for RQ2 and RQ3, Steps 2 and 3 are
performed differently. We describe the different Steps 2 and 3 below.
(Step 2) Analyze models: For each bootstrap iteration, we calculate the vari-

able importance score for each metric in each type of model (i.e., clean, realistic
noisy, and random noisy). Hence, the variable importance score for each metric
is calculated three times in each bootstrap iteration.
(Step 3) Interpret results: We cluster the variable importance scores of metrics

in each type of model using Scott-Knott tests to produce statistically distinct
ranks of metrics for clean, realistic noisy, and random noisy models. Thus, each
metric has a rank for each type of model.
To estimate the impact of random and realistic mislabelling have on model

interpretation, we compute the difference in the ranks of the metrics that appear
in the top-three ranks of the clean models. For example, if a metric m appears in

76 Chapter 5. The Impact of Issue Report Mislabelling

Realistically  
Noisy Sample

Randomly  
Noisy Sample

Model

Model

Repeat 1,000 times

(Step 1) Construct models

In
te

rp
re

t 
re

su
lts

Model

Analyze  
models

(Step 2) (Step 3)

Bootstrap 
Sample

Clean  
Data

Clean Sample

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
ea

lis
tic

/C
le

an
 R

at
io

Ranked 1 Ranked 2 Ranked 3

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Jackrabbit
Lucene

2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5
Difference in rank

Pe
rc

en
ta

ge

Realistically Noisy Sample Randomly Noisy Sample

Realistic

Random

Figure 5.6.: [Empirical Study 1] An overview of our approach to study the impact
of issue report mislabelling.

the top rank in the clean and realistic noisy models then the metric would have
a rank difference of zero. However, if m appears in the third rank in the random
noisy model, then the rank difference of m would be negative two.

Similar to RQ2, we repeat the whole experiment for each studied release indi-
vidually.

Results. Figure 5.7 shows the rank differences for all of the studied releases. We
again perform experiments for defect mislabelling and non-defect mislabelling in-
dividually. The scarcity of non-defect mislabelling limits the impact of it can have
on model interpretation. Indeed, we find that there are very few rank differences
in the non-defect mislabelling results. Hence, we focus on defect mislabelling for
the remainder of this section.

The most influential metrics are generally robust to the noise that is in-
troduced by defect mislabelling. Figure 5.7 shows that 80% (Lucene) to 85%
(Jackrabbit) of the metrics in the top rank of the clean model (most often, the
committer experience) also appear in the top rank of the realistic noisy model.

5.4. Case Study Results 77

Ranked 1 Ranked 2 Ranked 3

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Jackrabbit
Lucene

2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5
Difference in rank

P
er

ce
nt

ag
e

Realistic Noisy Sample Random Noisy Sample

Figure 5.7.: [Empirical Study 1] The difference in the ranks for the metrics ac-
cording to their variable importance scores among the clean and noisy
models. The bars indicate the percentage of variables that appear in
that rank in the clean model while also appearing in that rank in the
noisy models.

Similarly, 80% (Lucene) to 85% (Jackrabbit) of the metrics in the top rank of the
clean model appear in the top rank of the random noisy model. Moreover, the
10%-15% of metrics in the top rank of the clean model that do not appear in the
top rank of the noisy models only decrease by one rank.

Conversely, the metrics in the second and third ranks are less stable. Fig-
ure 5.7 shows that 31% (Jackrabbit) to 75% (Lucene) of the metrics in the second
rank and 38% (Jackrabbit) to 82% (Lucene) of the metrics in the third rank of
the clean model (most often, the process and developer metrics) do not appear
in the second rank of the realistic noisy model, indicating that these metrics are

78 Chapter 5. The Impact of Issue Report Mislabelling

influenced by defect mislabelling. Furthermore, 8%-33% of the second and third
rank variables drop by two or more ranks in the noisy models.

Summary. The most influential metrics are generally robust to defect mislabelling,
with 80%-85% of the most influential metrics from the clean models appearing in
the top rank of the noisy models as well. On the other hand, the second and third
ranks are unstable, with as little as 18% of the metrics from the clean models
appearing in those ranks in the noisy models.

Randomly injected mislabelled defects have a more damaging impact on
model interpretation than real mislabelled defects do. Figure 5.7 shows that a
smaller percentage of the metrics of the clean models are found at the same rank
in the random noisy models than the realistic noisy models.

Summary. Randomly injecting mislabelled defects tends to distort the interpre-
tation of influential metrics more than truly mislabelled defects do.

5.5. Discussion & Threats to Validity

We now discuss the results of our case study with respect to other work on issue
report mislabelling, as well as the threats to the validity of our case study.

5.5.1. Discussion

In prior work, Herzig et al. show that issue report mislabelling has a drastic
impact on the relative order of the most defect-prone files [94] — 16%-40% of
the top-10% most defect-prone files do not belong in that group. The impact of
issue report mislabelling on the ordering of the most defect-prone files suggests
that defect models (such as the ones that we build in this study) will also be
drastically impacted, both in terms of precision and recall.

5.5. Discussion & Threats to Validity 79

Yet in this study, we find that issue report mislabelling has little impact on
the precision of defect models, which may seem to be incongruent with the prior
work. We suspect that the differences in the conclusions that we draw have to
do with the differences in our defect prediction experiments.

In the study of Herzig et al., files are ranked according to the number of defect
reports that are mapped to a file. The files at the top of this ranked list are
the most defect-prone, and would yield the most benefit from additional quality
assurance effort [91]. Instability in the top-10% of files in this ranked list occurs
if these highly defect-prone file have several mislabelled defects mapped to them.

On the other hand, our defect models classify whether a file is defective or
clean. In order for a file to be remapped from defective to clean, all of the defects
that are mapped to a file must be mislabelled, reducing the number of defects to
zero. Otherwise, a file would still be considered defective. Hence, the instability
that Herzig et al. observe with respect to the most defect-prone files may not have
as much of an impact on the files that our defect models will consider defective.

5.5.2. Threats to Validity

External validity. We focus our study on two subject systems, due to the low
number of systems that satisfied our analysis criteria (cf. Section 5.3). The
lack of a curated oracle of mislabelled issue reports presented a major challenge.
Nonetheless, additional replication studies are needed.

Construct validity. Although the studied datasets have high link rates of is-
sue reports and code changes, we make the implicit assumption that these links
are correct. On the other hand, we rely on JIRA links from issue reports to
code changes, which others have noted lead to more accurate links than links
constructed from code changes to issue reports [192].

Internal validity. We use nine metrics to train models that identify mislabelled
issue reports, and ten metrics to train models that identify defective files. We se-

80 Chapter 5. The Impact of Issue Report Mislabelling

lected metrics that cover a variety of dimensions for each type of model. However,
other metrics that we may have overlooked could also improve the performance
of our models.
We focus on the random forest classification technique. Although prior studies

have also used random forest [70,75,103,109,133], our findings are entirely bound
to this technique. Future research should explore the impact of issue report
mislabelling on other classification techniques.

5.6. Chapter Summary

Defect models identify potentially defective software modules. However, the accu-
racy of the predictions and the insights derived from defect models depend on the
quality of the data from which these models are trained. While recent work shows
that issue report mislabelling may impact the performance of defect prediction
models [118,192], the mislabelled issue reports were generated randomly.
In this chapter, we study the nature of mislabelled issue reports and the impact

of truly mislabelled issue reports on the performance and interpretation of defect
models. Through a case study of two large and successful open source systems,
we make the following observations:

– Mislabelling is not random. Models trained to identify mislabelled issue
reports achieve a mean F-measure that is 4-34 times better than that of
random guessing. A reporter’s tendency to mislabel issues in the past is
consistently the most influential metric used by our models.

– Since we observe that the precision of our defect models is rarely impacted
by defect mislabelling, practitioners can rely on the accuracy of modules
labelled as defective by defect models that are trained using noisy data —
the files that are classified as defect-prone by models trained using noisy
data are often just as accurate as the defect-prone predictions of models

5.6. Chapter Summary 81

trained using clean data (i.e., mislabel-free). However, cleaning the data
prior to training defect models will likely allow them to identify more of the
truly defective modules.

– The most influential metrics are generally robust to defect mislabelling.
80%-85% of the most influential metrics from the clean models appear in
the top ranks of the noisy models as well.

– On the other hand, the second- and third-most influential metrics are more
unstable than the most influential ones. As little as 18% of the metrics in
the second and third influence rank of the clean models also appear in the
same rank in the noisy models.

– Randomly injecting mislabelled defects tends to overestimate the impact of
defect mislabelling on the performance and interpretation of defect models.

5.6.1. Concluding Remarks

The focus of this chapter is on the impact of the noise generated by issue report
mislabelling. Unlike prior study assumes that mislabelling is random and such
random noise has a large negative impact [118], we find that realistic noise that is
generated by issue report mislabelling is non-random and such realistic noise has
little impact on the performance and interpretation of defect prediction models.
Even if the noise in defect datasets has been mitigated, the performance of

defect prediction models still relies heavily on the used classification techniques.
Such classification techniques often have configurable parameters that control
the characteristics of classification techniques. We begin, in the next chapter, by
studying the impact of the parameter settings of classification techniques on the
performance, model stability, and interpretation of defect prediction models.

CHAPTER 6

The Impact of Automated Parameter
Optimization

Key Finding

Automated parameter optimization sub-
stantially improves the performance,
model stability, as well as, the interpreta-
tion of defect prediction models.

An earlier version of the work in this chap-
ter appears in the Proceedings of the Interna-
tional Conference on Software Engineering (ICSE),
2016 [232].

83

84 Chapter 6. The Impact of Automated Parameter Optimization

6.1. Introduction

The limited Software Quality Assurance (SQA) resources of software organiza-
tions must focus on software modules (e.g., source code files) that are likely to
be defective in the future. To that end, defect prediction models are trained
to identify defect-prone software modules using statistical or machine learning
classification techniques.
Such classification techniques often have configurable parameters that control

the characteristics of the classifiers that they produce. For example, the number
of decision trees of which a random forest classifier is comprised can be configured
prior to training the forest. Furthermore, the number of non-overlapping clusters
of which a k-nearest neighbours classifier is comprised must be configured prior
to using the classification technique.
Since the optimal settings for these parameters are not known ahead of time,

the settings are often left at default values. Prior work suggests that defect pre-
diction models may underperform if they are trained using suboptimal parameter
settings. For example, Jiang et al. [103] and Tosun et al. [242] also point out that
the default parameter settings of random forest and naïve bayes are often subop-
timal. Koru et al. [78] and Mende et al. [147, 148] show that selecting different
parameter settings can impact the performance of defect models. Hall et al. [82]
show that unstable classification techniques may underperform due to the use
of default parameter settings. Mittas et al. [159] and Menzies et al. [154] argue
that unstable classification techniques can make replication of defect prediction
studies more difficult.
Indeed, we perform a literature analysis that reveals that 26 of the 30 most com-

monly used classification techniques (87%) require at least one parameter setting.
Since such parameter settings may impact the performance of defect prediction
models, the settings should be carefully selected. However, it is impractical to
assess all of the possible settings in the parameter space of a single classification

6.1. Introduction 85

technique [24, 86, 122]. For example, Kocaguneli et al. [122] point out that there
are at least 17,000 possible settings to explore when training k-nearest neighbours
classifier.
In this chapter, we investigate the performance, stability, and interpretation

of defect prediction models where Caret [131] — an off-the-shelf automated pa-
rameter optimization technique — has been applied. Caret evaluates candidate
parameter settings and suggests the optimized setting that achieves the highest
performance. Through a case study of 18 datasets from systems that span both
proprietary and open source domains, we record our observations with respect to
five dimensions:

(1) Performance improvement: Caret improves the AUC performance of defect
prediction models by up to 40 percentage points. Moreover, the performance
improvement provided by applying Caret is non-negligible for 16 of the 26
studied classification techniques (62%).

(2) Performance stability: Caret-optimized classifiers are at least as stable as
classifiers that are trained using the default parameter settings. Moreover,
the Caret-optimized classifiers of 9 of the 26 studied classification techniques
(35%) are significantly more stable than classifiers that are trained using the
default parameter settings.

(3) Model interpretation: Caret substantially shifts the ranking of the impor-
tance of software metrics, with as little as 28% of the variables from the Caret-
optimized models appearing in those ranks in the default models. Moreover,
classification techniques where Caret has a larger impact on the performance
are also subject to large shifts in interpretation.

(4) Parameter transferability: The Caret-suggested setting of 85% of the 20
most sensitive parameters can be applied to datasets that share a similar set
of metrics without a statistically significant drop in performance.

86 Chapter 6. The Impact of Automated Parameter Optimization

(5) Computational cost: Caret adds less than 30 minutes of additional compu-
tation time to 65% of the studied classification techniques.

Since we find that parameter settings can have such a substantial impact on
model performance and model interpretation, we revisit prior analyses that rank
classification techniques by their ability to yield top-performing defect prediction
models. We find that Caret increases the likelihood of producing a top-performing
classifier by as much as 83%, suggesting that automated parameter optimization
can substantially shift the ranking of classification techniques.

Our results lead us to conclude that parameter settings can indeed have a
large impact on the performance, stability, and interpretation of defect prediction
models, suggesting that researchers should experiment with the parameters of the
classification techniques. Since automated parameter optimization techniques like
Caret yield substantial benefits in terms of performance improvement, stability,
and interpretation, while incurring a manageable additional computational cost,
they should be included in future defect prediction studies.

6.1.1. Contributions

This chapter makes the following contributions:

– A large collection of 43 parameters that are derived from 26 of the most
frequently-used classification techniques in the context of defect prediction.

– The improvement and stability of the performance of defect prediction mod-
els when automated parameter optimization is applied.

– An investigation of the impact of parameter settings of classification tech-
niques on the interpretation of defect prediction models when automated
parameter optimization is applied.

6.2. The Relevance of Parameter Settings for Defect Prediction Models 87

– An investigation of parameter transferability in a cross-context prediction
setting when automated parameter optimization is applied.

– An in-depth discussion of the broader implications of our findings with
respect to software defect prediction modelling and search-based software
engineering (Section 6.7).

– The introduction of a generic variable importance calculation that applies
to the 26 studied classification techniques (Section 6.4.6).

6.1.2. Chapter Organization

The remainder of the chapter is organized as follows. Section 6.2 illustrates the
importance of parameter settings of classification techniques for defect prediction
models. Section 6.3 positions this chapter with respect to the related work.
Section 6.4 presents the design and approach of our case study. Section 6.5
presents the results of our case study with respect to our five research questions.
Section 6.6 revisits prior analyses that rank classification techniques by their
likelihood of producing top-performing defect prediction models. Section 6.7
discusses the broader implications of our findings with related work. Section 6.8
discloses the threats to the validity of our study. Finally, Section 6.9 draws
conclusions.

6.2. The Relevance of Parameter Settings for Defect

Prediction Models

A variety of classification techniques are used to train defect prediction models.
Since some classification techniques do not require parameter settings (e.g., lo-
gistic regression), we first assess whether the most commonly used classification
techniques require parameter settings.

88
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization
Table 6.1.: [Empirical Study 2] Overview of studied parameters of classification techniques. [N] denotes a numeric

value; [L] denotes a logical value; [F] denotes a factor value. The default values are shown in bold
typeface and correspond to the default values of the Caret R package.

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Naive

Bayes

Naive Bayes is a probability model
that assumes that predictors are in-
dependent of each other [128].
Techniques: Naive Bayes (NB).

Laplace Correc-

tion

[N] Laplace correction (0

indicates no correction).

NB={0}

Distribution

Type

[L] TRUE indicates a

kernel density estimation,

while FALSE indicates a

normal density estimation.

NB={TRUE, FALSE}

Nearest

Neigh-

bour

Nearest neighbour is an algorithm
that stores all available observa-
tions and classifies new observations
based on its similarity to prior ob-
servations [128].
Techniques: k-Nearest Neighbour
(KNN).

#Clusters [N] The numbers of non-

overlapping clusters to pro-

duce.

KNN={1, 5, 9, 13, 17}

Continued on next page

6.2.
T
he

R
elevance

ofParam
eter

Settings
for

D
efect

Prediction
M
odels

89
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Regres-

sion

Logistic regression is a technique for
explaining binary dependent vari-
ables. MARS is a non-linear regres-
sion modelling technique [66].
Techniques: GLM and MARS.

Degree Interac-

tion

[N] The maximum degree

of interaction (Friedman’s

mi). The default is 1,

meaning build an additive

model (i.e., no interaction

terms).

MARS={1}

Partial

Least

Squares

Partial Least Squares regression
generalizes and combines features
from principal component analysis
and multiple regression [236].
Techniques: Generalized Partial
Least Squares (GPLS).

#Components [N] The number of PLS

components.

GPLS={1, 2, 3, 4, 5}

Continued on next page

90
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Neural

Network

Neural network techniques are
used to estimate or approximate
functions that can depend on a
large number of inputs and are
generally unknown [218].
Techniques: Standard (NNet),
Model Averaged (AVNNet), Feature
Extraction (PCANNet), Radial
Basis Functions (RBF), Multi-layer
Perceptron (MLP), Voted-MLP
(MLPWeightDecay), and Penalized
Multinomial Regression (PMR).

Bagging [L] Should each repetition

apply bagging?

AVNNet={TRUE,

FALSE}
Weight Decay [N] A penalty factor to be

applied to the errors func-

tion.

MLPWeightDecay,

PMR, AVNNet, NNet,

PCANNet={0, 0.0001,

0.001, 0.01, 0.1},

SVMLinear={1}
#Hidden Units [N] Numbers of neurons in

the hidden layers of the

network that are used to

produce the prediction.

MLP, MLPWeightDe-

cay, AVNNet, NNet,

PCANNet={1, 3, 5, 7,

9},

RBF={11, 13, 15, 17,

19}

Continued on next page

6.2.
T
he

R
elevance

ofParam
eter

Settings
for

D
efect

Prediction
M
odels

91
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Discrimi-

nation

Analysis

Discriminant analysis applies differ-
ent kernel functions (e.g., linear) to
classify a set of observations into
predefined classes based on a set of
predictors [65].
Techniques: Linear Discriminant
Analysis (LDA), Penalized Discrim-
inant Analysis (PDA), and Flexible
Discriminant Analysis (FDA).

Product Degree [N] The number of degrees

of freedom that are avail-

able for each term.

FDA={1}

Shrinkage

Penalty Coeffi-

cient

[N] A shrinkage parameter

to be applied to each tree

in the expansion (a.k.a.,

learning rate or step-size

reduction).

PDA={1, 2, 3, 4, 5}

#Terms [N] The number of terms in

the model.

FDA={10, 20, 30, 40,

50}

Rule

Rule-based techniques transcribe
decision trees using a set of rules for
classification [128].
Techniques: Rule-based classifier
(Rule), and Ripper classifier (Rip-
per).

#Optimizations [N] The number of opti-

mization iterations.

Ripper={1, 2, 3, 4, 5}

Continued on next page

92
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Decision

Trees-

Based

Decision trees use feature values to
classify instances [128].
Techniques: C4.5-like trees (J48),
Logistic Model Trees (LMT), and
Classification And Regression Trees
(CART).

Complexity [N] A penalty factor to be

applied to the error rate of

the terminal nodes of the

tree.

CART={0.0001, 0.001,

0.01, 0.1, 0.5}

Confidence [N] The confidence factor

used for pruning (smaller

values incur more prun-

ing).

J48={0.25}

#Iterations [N] The numbers of itera-

tions.

LMT={1, 21, 41, 61,

81}

SVM

Support Vector Machines (SVMs)
use a hyperplane to separate two
classes (i.e., defective or not) [128].
Techniques: SVM with Linear ker-
nel (SVMLinear), and SVM with
Radial basis function kernel (SVM-
Radial).

Sigma [N] The width of Gaussian

kernels.

SVMRadial={0.1, 0.3,

0.5, 0.7, 0.9}
Cost [N] A penalty factor to be

applied to the number of

errors.

SVMRadial={0.25, 0.5,

1, 2, 4},
SVMLinear={1}

Continued on next page

6.2.
T
he

R
elevance

ofParam
eter

Settings
for

D
efect

Prediction
M
odels

93
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Bagging

Bagging methods combine different
base learners together to solve one
problem [254].
Technique: Random Forest (RF),
Bagged CART (BaggedCART)

#Trees [N] The numbers of classi-

fication trees.

RF={10, 20, 30, 40, 50}

Boosting

Boosting performs multiple itera-
tions, each with different example
weights, and makes predictions us-
ing voting of classifiers [33].
Techniques: Gradient Boosting Ma-
chine (GBM), Adaptive Boosting
(AdaBoost), Generalized linear and
Additive Models Boosting (GAM-
Boost), Logistic Regression Boost-
ing (LogitBoost), eXtreme Gradient
Boosting Tree (xGBTree), and C5.0.

#Boosting Iter-

ations

[N] The numbers of itera-

tions that are used to con-

struct models.

C5.0={1, 10, 20, 30,

40}, GAMBoost={50,
100, 150, 200, 250},

LogitBoost={11,
21, 31, 41, 51},

GBM,xGBTree={50,

100, 150, 200, 250}
#Trees [N] The numbers of classi-

fication trees.

AdaBoost={50, 100,

150, 200, 250}

Continued on next page

94
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Shrinkage [N] A shrinkage factor to

be applied to each tree

in the expansion (a.k.a.,

learning rate reduction).

GBM={0.1}, xGB-

Tree={0.3}

Max Tree Depth [N] The maximum depth

per tree.

AdaBoost, GBM, xGB-

Tree={1, 2, 3, 4, 5}
Min. Terminal

Node Size

[N] The minimum terminal

nodes in trees.

GBM={10}

Winnow [L] Should predictor win-

nowing (i.e feature selec-

tion) be applied?

C5.0={FALSE, TRUE}

AIC Prune? [L] Should pruning using

stepwise feature selection

be applied?

GAMBoost={FALSE,
TRUE}

Continued on next page

6.2.
T
he

R
elevance

ofParam
eter

Settings
for

D
efect

Prediction
M
odels

95
Table 6.1 – continued from previous page

Family Family Description Parameter
Name

Parameter Description Techniques that apply
with their default (in bold
typeface) and candidate
parameter values.

Model Type [F] Either tree for the pre-

dicted class or rules for

model confidence values.

C5.0={rules, tree}

96 Chapter 6. The Impact of Automated Parameter Optimization

We begin with the 6 families of classification techniques that are used by Less-
mann et al. [133]. Based on a recent literature review of Laradji et al. [132], we
add 5 additional families of classification techniques that have been recently used
in defect prediction studies. In total, we study 30 classification techniques that
span 11 classifier families. Table 6.1 provides an overview of the 11 families of
classification techniques.

Our literature analysis reveals that 26 of the 30 most commonly used classifi-
cation techniques require at least one parameter setting. Table 6.1 provides an
overview of the 25 unique parameters that apply to the studied classification tech-
niques.

Summary. 26 of the 30 most commonly used classification techniques require
at least one parameter setting, indicating that selecting an optimal parameter
setting for defect prediction models is an important experimental design choice.

6.3. Related Work & Research Questions

Recent research has raised concerns about parameter settings of classification
techniques when applied to defect prediction models. For example, Koru et al. [78]
and Mende et al. [147, 148] point out that selecting different parameter set-
tings can impact the performance of defect models. Jiang et al. [103] and To-
sun et al. [242] also point out that the default parameter settings of research
toolkits (e.g., R [190], Weka [81], Scikit-learn [185], MATLAB [143]) are subop-
timal.

Although prior work suggests that defect prediction models may underperform
if they are trained using suboptimal parameter settings, parameters are often left
at their default values. For example, Mende et al. [150] use the default number
of decision trees to train a random forest classifier (provided by an R package).
Weyuker et al. [250] also train defect models using the default setting of C4.5 that

6.3. Related Work & Research Questions 97

is provided by Weka. Jiang et al. [101] and Bibi et al. [27] also use the default
value of the k-nearest neighbours classification technique (k = 1). In our prior
work [74,230], we ourselves have also used default classification settings.

In addition, the implementations of classification techniques that are provided
by different research toolkits often use different default settings. For example, for
the number of decision trees of the random forest technique, the default varies
among settings of 10 for the bigrf R package [137], 50 for MATLAB [143],
100 for Weka [81], and 500 for the randomForest R package [135]. Moreover,
for the number of hidden layers of the neural networks techniques, the default
varies among settings of 1 for the neuralnet R package [68], 2 for Weka [81]
and the nnet R package [200], and 10 for MATLAB [143]. Such variation among
default settings of different research toolkits may influence conclusions of defect
prediction studies [229].

There are many empirical studies in the area of Search-Based Software Engi-
neering (SBSE) [24, 85, 86, 122] that aim to optimize software engineering tasks
(e.g., software testing [99]). However, little is known about how the performance
difference of defect prediction models tend to be when automated parameter op-
timization is applied. Thus, we formulate the following research question:

(RQ1) How much does the performance of defect prediction models change
when automated parameter optimization is applied?

Recent research voices concerns about the stability of performance estimates
that are obtained from classification techniques when applied to defect predic-
tion models. For example, Menzies et al. [154] and Mittas et al. [159] argue that
unstable classification techniques can make replication of defect prediction stud-
ies more difficult. Shepperd et al. [207], and Jorgensen et al. [107] also point
out that the unstable performance estimates that are produced by classification
techniques may introduce bias, which can mislead different research groups to

98 Chapter 6. The Impact of Automated Parameter Optimization

draw erroneous conclusions. Mair et al. [141] and Myrtveit et al. [169] show that
high variance in performance estimates from classification techniques is a critical
problem in comparative studies of prediction models. Song et al. [220] also show
that applying different settings to unstable classification techniques will provide
different results.

Like any form of classifier optimization, automated parameter optimization
may increase the risk of overfitting, i.e., producing a classifier that is too spe-
cialized for the data from which it was trained to apply to other datasets. To
investigate whether parameter optimization is impacting the stability of defect
prediction models, we formulate the following research question:

(RQ2) How stable is the performance of defect prediction models when
automated parameter optimization is applied?

In addition to being used for prediction, defect models are also used to under-
stand the characteristics of defect-prone modules. For example, Bettenburg et al. [25]
study the relationship between social interactions and software quality. Shi-
hab et al. [214] study the characteristics of high impact and surprising defects.
McIntosh et al. [145, 146], Thongtanunam et al. [238], Morales et al. [166], and
Kononenko et al. [126] study the relationship between code review practices and
software quality. Such an understanding of defect-proneness is essential to design
effective quality improvement plans.

Recent research has draws into question about the accuracy of insights that
are derived from defect prediction models. For example, our recent work shows
that issue report mislabelling has a large impact on the interpretation of de-
fect prediction models [230]. To investigate whether default parameter settings
are impacting the interpretation of defect prediction models, we formulate the
following research question:

6.3. Related Work & Research Questions 99

(RQ3) How much does the interpretation of defect prediction models change
when automated parameter optimization is applied?

Recent research applies parameter settings of classification techniques that per-
form well on one dataset to another. For example, Tan et al. [227] explore dif-
ferent settings to identify the optimal setting and apply it to several datasets.
Jiang et al. [100] also experiment with various settings on one dataset, since the
total execution time of a classification technique (i.e., MARS) can take several
hours. However, Ghotra et al. [74], Khoshgoftaar et al. [115], and Song et al. [221]
show that the performance of defect prediction models often depend on the char-
acteristics of defect datasets that are used to train it. Gao et al. [71] also ar-
gue that classification techniques are context-specific. Yet, little is known about
whether the optimal parameter settings that are obtained for one dataset are
transferable to another. Knowing the transferability of the optimal parameter
settings of the most sensitive classification techniques will shed light onto whether
automated parameter optimization can be safely omitted (by opting to use these
transferable setting instead) without incurring a significant drop in performance.
To investigate how well the optimal parameter settings transfer from one context
to another, we formulate the following research question:

(RQ4) How well do optimal parameter settings transfer from one context to
another?

In addition to the benefits of applying automated parameter optimization,
one must also consider the additional computational cost to provide a balance
understanding of the practicality of the optimization. Menzies et al. [152] point
out that some classification techniques can be very slow and exploring various
settings would require a large computational cost. Ma et al. [140] point out that

100 Chapter 6. The Impact of Automated Parameter Optimization

the computational cost depends on to the size of training dataset. Yet, little is
known about how the cost of applying automated parameter optimization tend
to be. Hence, we formulate the following research question:

(RQ5) What is the cost of applying automated parameter optimization?

Project System Defective #Files #Metrics EPV
Ratio

NASA JM11 21% 7,782 21 80
PC51 28% 1,711 38 12

Proprietary Prop-12 15% 18,471 20 137
Prop-22 11% 23,014 20 122
Prop-32 11% 10,274 20 59
Prop-42 10% 8,718 20 42
Prop-52 15% 8,516 20 65

Apache Camel 1.22 36% 608 20 11
Xalan 2.52 48% 803 20 19
Xalan 2.62 46% 885 20 21

Eclipse Platform 2.03 14% 6,729 32 30
Platform 2.13 11% 7,888 32 27
Platform 3.03 15% 10,593 32 49
Debug 3.44 25% 1,065 17 15
SWT 3.44 44% 1,485 17 38
JDT5 21% 997 15 14
Mylyn5 13% 1,862 15 16
PDE5 14% 1,497 15 14

1Provided by Shepperd et al. [209].
2Provided by Jureczko et al. [108].
3Provided by Zimmermann et al. [258].
4Provided by Kim et al. [118].
5Provided by D’Ambros et al. [50, 51].

Table 6.2.: [Empirical Study 2] An overview of the studied systems.

6.4. Case Study Design 101

6.4. Case Study Design

In this section, we discuss our selection criteria for the studied systems and then
describe the design of the case study experiment that we perform in order to
address our research questions.

6.4.1. Studied Datasets

In selecting the studied datasets, we identified three important criteria that
needed to be satisfied:

Criterion 1 — Publicly-available defect datasets from different corpora

Our recent work [233] Chapter 3 shows that researchers tend to reuse experi-
mental components (e.g., datasets, metrics, and classifiers). Song et al. [221] and
Ghotra et al. [74] also show that the performance of defect prediction models can
be impacted by the dataset from which they are trained. To combat potential bias
in our conclusions and to foster replication of our experiments, we choose to train
our defect prediction models using datasets from different corpora and domains
that are hosted in publicly-available data repositories. To satisfy criterion 1, we
began our study using 101 publicly-available defect datasets. 76 datasets are
downloaded from the Tera-PROMISE Repository,1 12 clean NASA datasets are
provided by Shepperd et al. [209], 5 are provided by Kim et al. [118,253], 5 are pro-
vided by D’Ambros et al. [50,51], and 3 are provided by Zimmermann et al. [258].

Criterion 2 — Dataset robustness

Mende et al. [147] show that models that are trained using small datasets may
produce unstable performance estimates. An influential characteristic in the
performance of a classification technique is the number of Events Per Variable

1http://openscience.us/repo/

http://openscience.us/repo/

102 Chapter 6. The Impact of Automated Parameter Optimization

(EPV) [186,231], i.e., the ratio of the number of occurrences of the least frequently
occurring class of the dependent variable (i.e., the events) to the number of inde-
pendent variables that are used to train the model (i.e., the variables). Our recent
work shows that defect prediction models that are trained using datasets with a
low EPV value are especially susceptible to unstable results [231]. To mitigate
this risk, we choose to study datasets that have an EPV above 10, as suggested
by Peduzzi et al. [186]. To satisfy criterion 2, we exclude the 78 datasets that we
found to have EPV values below 10.

Criterion 3 — Sane defect data

Since it is unlikely that more software modules have defects than are free of
defects, we choose to study datasets that have a rate of defective modules below
50%. To satisfy criterion 3, we exclude an additional 5 datasets because they
have a defective rate above 50%.

Table 6.2 provides an overview of the 18 datasets that satisfy our criteria for
analysis. To strengthen the generalizability of our results, the studied datasets
include proprietary and open source systems of varying size and domain.
Figure 6.1 provides an overview of the approach that we apply to each studied

system. We describe each step in the approach below.

6.4.2. Generate Bootstrap Sample

In order to ensure that the conclusions that we draw about our models are robust,
we use the out-of-sample bootstrap validation technique [58,233], which leverages
aspects of statistical inference [62]. The out-of-sample bootstrap is made up of
two steps:

(Step 1) A bootstrap sample of size N is randomly drawn with replacement from
an original dataset, which is also of size N .

6.4. Case Study Design 103

(Step 2) A model is trained using the bootstrap sample and tested using the
rows that do not appear in the bootstrap sample. On average, 36.8%
of the rows will not appear in the bootstrap sample, since it is drawn
with replacement [58].

The out-of-sample bootstrap process is repeated 100 times, and the average
out-of-sample performance is reported as the performance estimate.
Unlike the ordinary bootstrap, the out-of-sample bootstrap technique fits mod-

els using the bootstrap samples, but rather than testing the model on the orig-
inal sample, the model is instead tested using the rows that do not appear in
the bootstrap sample [233]. Thus, the training and testing corpora do not share
overlapping observations.
Unlike k-fold cross-validation, the out-of-sample bootstrap technique fits mod-

els using a dataset that is of equal length to the original dataset. Cross-validation
splits the data into k equal parts, using k - 1 parts for fitting the model, setting
aside 1 fold for testing. The process is repeated k times, using a different part
for testing each time. However, Mende et al. [147] point out that the scarcity
of defective modules in the small testing corpora of 10-fold cross validation may
produce biased and unstable results. Prior studies have also shown that 10-fold
cross validation can produce unstable results for small samples [32]. On the other
hand, our recent research demonstrates that the out-of-sample bootstrap tends to
produce the least biased and most stable performance estimates [233]. Moreover,
the out-of-sample bootstrap is recommended for highly-skewed datasets [87], as
is the case in our defect prediction datasets.

6.4.3. Generate Caret-optimized setting

Since it is impractical to assess all of the possible parameter settings of the pa-
rameter spaces, we use the optimized parameter settings suggested by the train

function of the caret R package [131]. Caret suggests candidate settings for

104
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization

Repeat 100 times

Caret- 
Optimized  
Setting

Default  
Setting

Defect  
Dataset

Testing  
Corpus

Training  
Corpus

Generate
bootstrap

sample

Default 
PerformanceNormality  

Adjustment
Correlation 

Analysis

X1

X2
Redundancy  

Analysis

X1
X2

Default  
Model

Optimized  
Models

Var. Ranking of  
default models

Construct defect models
Caret-optimized 

performance

Var. Ranking of
Caret-optimized 

model

Calculate  
performance

Rank variable
by importance

score

Figure 6.1.: [Empirical Study 2] An overview of our case study approach for studying the impact of automated
parameter optimization on defect prediction models.

6.4. Case Study Design 105

each of the studied classification techniques, which can be checked using the
getModelInfo function of the caret R package [131]. Figure 6.2 provides an
overview of Caret parameter optimization. The optimization process is made up
of three steps.

(Step 1) Generate candidate parameter settings: The train function will gen-
erate candidate parameter settings based on a given budget threshold
(i.e., tune length) for evaluation. The budget threshold indicates the
number of different values to be evaluated for each parameter. As sug-
gested by Kuhn [129], we use a budget threshold of 5. For example,
the number of boosting iterations of the C5.0 classification technique
is initialized to 1 and is increased by 10 until the number of candidate
settings reaches the budget threshold (e.g., 1, 10, 20, 30, 40). Table 6.1
shows the candidate parameter settings for each of the studied param-
eters. The default settings are shown in bold typeface.

(Step 2) Evaluate candidate parameter settings: Caret evaluates all of the po-
tential combinations of the candidate parameter settings. For example,
if a classification technique accepts 2 parameters with 5 candidate pa-
rameter settings for each, Caret will explore all 25 potential combina-
tions of parameter settings (unless the budget is exceeded). We use 100
repetitions of the out-of-sample bootstrap to estimate the performance
of classifiers that are trained using each of the candidate parameter
settings. For each candidate parameter setting, a classifier is fit to a
subsample of the training corpus and we estimate the performance of
a model using those rows in the training corpus that do not appear in
the subsample that was used to trained the classifier.

(Step 3) Identify the Caret-optimized setting: Finally, the performance esti-
mates are used to identify which parameter settings are the most opti-

106 Chapter 6. The Impact of Automated Parameter Optimization

(Step-1) 
Generate
candidate
settings Settings

 
 
 
 
 
 
  Performance  

for each  
setting

(Step-3) 
Identify
optimal
setting

Optimal 
settingDefect  

Dataset Testing  
Corpus

Training  
Corpus

Generate  
100  

bootstrap
samples

Construct
and evaluate  
defect model Perf.

(Step-2) Evaluate candidate settings

Figure 6.2.: [Empirical Study 2] An overview of Caret parameter optimization.

mal. The Caret-optimized setting is the one that achieves the highest
performance estimate.

6.4.4. Construct Defect Models

In order to measure the impact of automated parameter optimization on defect
prediction models, we train defect models using Caret-optimized settings and
default settings. To ensure that the training and testing corpora have similar
characteristics, we do not re-balance or re-sample the training data.
Normality Adjustment. Analysis of the distributions of our independent vari-
ables reveals that they are right-skewed. As suggested by previous research [103],
we mitigate this skew by log-transforming each independent variable (ln(x+ 1))
prior to using them to train our models.
Correlation Analysis. Independent variables that are highly correlated with each
other when a model is being interpreted. Indeed, our recent work [233] (see Chap-
ter 3) has demonstrated that collinearity and multicollinearity issues can artifi-
cially inflate (or deflate) the impact of software metrics in the interpretation of
defect prediction models. Jiarpakdee et al. [106] also point out that 10%-67% of
software metrics of the publicly defect datasets are redundant. We measure the
correlation between explanatory variables using Spearman rank correlation tests
(ρ). We then use a variable clustering analysis [202] to construct a hierarchical
overview of the correlation and remove explanatory variables with a high correla-
tion. We select |ρ| = 0.7 as a threshold for removing highly correlated variables,

6.4. Case Study Design 107

as a rule of thumb for interpreting the magnitude of the correlation [113]. We
perform this analysis iteratively until all clusters of surviving variables have |ρ|
values below 0.7.

Redundancy Analysis. While correlation analysis reduces collinearity among our
variables, it does not detect all of the redundant variables, i.e., variables that do
not have a unique signal with respect to the other variables. Redundant variables
will interfere with each other, distorting the modelled relationship between the
explanatory variables and its class. We, therefore, remove redundant variables
prior to constructing our defect prediction models. In order to detect redundant
variables, we fit preliminary models that explain each variable using the other
variables. We use the R2 value of the preliminary models to measure how well
each variable is explained by the others.

We use the implementation of this approach provided by the redun function
of the rms R package [88]. The variable that is most well-explained by the other
variables is iteratively dropped until either: (1) no preliminary model achieves an
R2 above a cutoff threshold (for this paper, we use the default threshold of 0.9),
or (2) removing a variable would make a previously dropped variable no longer
explainable, i.e., its preliminary model will no longer achieve an R2 exceeding the
threshold.

6.4.5. Calculate Performance

Prior studies have argued that threshold-dependent performance metrics (i.e.,
precision and recall) are problematic because they: (1) depend on an arbitrarily-
selected threshold [9,17,133,192,211] and (2) are sensitive to imbalanced data [52,
93,139,147,227]. Instead, we use the Area Under the receiver operator characteris-
tic Curve (AUC) to measure the discrimination power of our models as suggested
by recent research [55,87,96,133,222,224].

The AUC is a threshold-independent performance metric that measures a clas-

108 Chapter 6. The Impact of Automated Parameter Optimization

sifier’s ability to discriminate between defective and clean modules (i.e., do the
defective modules tend to have higher predicted probabilities than clean mod-
ules?). AUC is computed by measuring the area under the curve that plots the
true positive rate against the false positive rate, while varying the threshold that
is used to determine whether a file is classified as defective or not. Values of AUC
range between 0 (worst performance), 0.5 (random guessing performance), and 1
(best performance).

6.4.6. Rank Variables by Importance Score

To identify the most important variables, we compute variable importance for
each variable in our models. To do so, we introduce a generic variable importance
score that can be applied to any classifier. Figure 6.3 provides an overview of
the calculation of our variable importance measurement to generate ranks of
important variables for each of the Caret-optimized and default models.

Generic Variable Importance Score

The calculation of our variable importance score is made up of 2 steps.

(Step 1) For each testing dataset, we first randomly permute values of a variable
under test in order to produce a randomly-permuted dataset.

(Step 2) We then compute the misclassification rate of a defect prediction model
that we train using randomly-permuted dataset. The larger the mis-
classification rate, the greater the importance of the variable.

We repeat the Steps 1 and 2 in order to produce a variable important score
for all variables. Since the experiment is repeated 100 times, each variable will
have several variable importance scores (i.e., one from each of the repetitions).
An example R implementation of the generic variable importance calculation is
provided in Appendix D.

6.4.
C
ase

Study
D
esign

109

Var. Ranking of 
defect model

(4.6.2) 
Ranking
variables

Original 
testing  
dataset

Randomly- 
permuted testing  

dataset

Var. imp. score

(Step-1)
Randomly
permuted

values of a
variable

Repeat for all variables

V1 … VN Bug?
0.66 … 12 Yes

0.12 … 35 No
0.87 … 5 Yes

V1 … VN Bug?
0.87 … 12 Yes

0.12 … 35 No
0.66 … 5 Yes

V1 … VN

0.10 … 0.25

(Step-2) 
Compute

misclassifica- 
tion rate

(4.6.1) Calculate generic variable importance score

Testing  
Corpus

A distribution of  
100 var. imp. scores

V1 … VN

0.10 … 0.25
0.12 … 0.20
… … …
0.08 … 0.18

Defect  
Model

Figure 6.3.: [Empirical Study 2] An overview of our generic variable importance calculation that can be applied to
any classification techniques.

110 Chapter 6. The Impact of Automated Parameter Optimization

Ranking Variables

To study the impact of the studied variables on our models, we apply the Scott-
Knott Effect Size Difference (ESD) test [231] (see Chapter 7). The Scott-Knott
ESD test will cluster variables according to statistically significant differences in
their mean variable importance scores (α = 0.05). The Scott-Knott ESD test
ranks each variable exactly once, however several variables may appear within
one rank. The Scott-Knott ESD test is a variant of the Scott-Knott test that is
effect size aware. The Scott-Knott ESD test uses hierarchical cluster analysis to
partition the set of treatment means into statistically distinct groups.

Unlike the traditional Scott-Knott test [98], the Scott-Knott ESD test will
merge any two statistically distinct groups that have a negligible Cohen’s d ef-
fect size [44] into one group. The Scott-Knott ESD test also overcomes the con-
founding factor of overlapping groups that are produced by several other post-hoc
tests [74,159], such as Nemenyi’s test [177], which were used in prior studies [133].
We implement the Scott-Knott ESD test based on the implementation of the
Scott-Knott test provided by the ScottKnott R package [98] and the implemen-
tation of Cohen’s d provided by the effsize R package [240].

Finally, we produce rankings variables in the Caret-optimized and default mod-
els. Thus, each variable has a rank for each type of model.

6.5. Case Study Results

In this section, we present the results of our case study with respect to our three
research questions.

6.5. Case Study Results 111

(RQ1) How much does the performance of defect prediction

models change when automated parameter optimization is

applied?

Approach. To address RQ1, we start with the AUC performance distribution of
the 26 classification techniques that require at least one parameter setting (see
Section 6.2). For each classification technique, we compute the difference in the
performance of classifiers that are trained using default and Caret-optimized pa-
rameter settings. We then use boxplots to present the distribution of the perfor-
mance difference for each of the 18 studied datasets. To quantify the magnitude
of the performance improvement, we use Cohen’s d effect size [44], which is the
difference between the two means divided by the standard deviation of the two
datasets (d = x̄1−x̄2

s.d.
). The magnitude is assessed using the thresholds provided

by Cohen [45]:

effect size =

negligible if Cohen’s d ≤ 0.2
small if 0.2 < Cohen’s d ≤ 0.5
medium if 0.5 < Cohen’s d ≤ 0.8
large if 0.8 < Cohen’s d

Furthermore, understanding the most influential parameters would allow re-
searchers to focus their optimization effort. To this end, we investigate the per-
formance difference for each of the studied parameters. To quantify the individual
impact of each parameter, we train a classifier with all of the studied parameters
set to their default settings, except for the parameter whose impact we want to
measure, which is set to its Caret-optimized setting. We estimate the impact of
each parameter using the difference of its performance with respect to a classifier
that is trained entirely using default parameter settings.
Results. Caret improves the AUC performance by up to 40 percentage points.
Figure 6.4 shows the performance improvement for each of the 18 studied datasets

112 Chapter 6. The Impact of Automated Parameter Optimization

Large Medium Small Negligible

●

●

●

●

●

● ●

●
●

●

●

●

0.0

0.1

0.2

0.3

0.4

C5.
0

Ada
Boo

st

AVNNet

CART

PCANNet
NNet

FDA

M
LP

W
eig

ht
Dec

ay
M

LP LM
T

GPLS

Lo
git

Boo
st
KNN

xG
BTr

ee
GBM NB

RBF

SVM
Rad

ial

GAM
Boo

st RF

Ripp
er
PM

R
PDA

M
ARS

SVM
Lin

ea
r
J4

8

A
U

C
 P

er
fo

rm
an

ce
 Im

pr
ov

em
en

t

Figure 6.4.: [Empirical Study 2] The performance improvement and its Cohen’s
d effect size for each of the studied classification techniques.

and for each of the classification techniques. The boxplots show that Caret can
improve the AUC performance by up to 40 percentage points. Moreover, the per-
formance improvement provided by applying Caret is non-negligible (i.e., d > 0.2)
for 16 of the 26 studied classification techniques (62%). This indicates that pa-
rameter settings can substantially influence the performance of defect prediction
models.

6.5. Case Study Results 113

●

●

● ●

●

●

●

Boosting Iterations of GAMBoost

Max Tree Depth of GBM

Boosting Iterations of LogitBoost

Max Tree Depth of xGBTree

#Hidden Units of NNet

#Hidden Units of PCANNet

#Hidden Units of AVNNet

#Neighbors of KNN

#Hidden Units of MLPWeightDecay

#Components of GPLS

Iteratons of LMT

Weight Decay of NNet

#Hidden Units of MLP

Weight Decay of MLPWeightDecay

#Terms of FDA

Max Tree Depth of AdaBoost

Complexity Parameter of CART

Weight Decay of AVNNet

Weight Decay of PCANNet

Boosting Iterations of C5.0

0.0 0.1 0.2 0.3 0.4
AUC Performance Difference

Figure 6.5.: [Empirical Study 2] The AUC performance difference of the top-20
most sensitive parameters.

C5.0 boosting yields the largest performance improvement when Caret is
applied. According to Cohen’s d, the performance improvement provided by
applying Caret is large for 9 of the 26 studied classification techniques (35%).
On average, Figure 6.4 shows that the C5.0 boosting classification technique
benefits most by applying Caret, with a median performance improvement of 27
percentage points. Indeed, the C5.0 boosting classification technique improves
from 6 to 40 percentage points.

114 Chapter 6. The Impact of Automated Parameter Optimization

Figure 6.5 shows that the #boosting iterations parameter of the C5.0 classi-
fication technique is the most influential parameter, while the winnow and model

type parameters tend to have less of an impact. Indeed, the default #boosting

iterations setting that is provided by the C5.0 R package [130] is 1, indicat-
ing that only one C5.0 tree model is used for prediction. Nevertheless, we find
that the optimal #boosting iterations parameter is 40, suggesting that the
default parameter settings of the research toolkits are suboptimal for defect pre-
diction datasets. This finding provides supporting evidence of the suspicion of
prior studies [82,103,220,242].

In addition to C5.0 boosting, other classifiers also yield a considerably large
benefit. Figure 6.4 shows that the performance of the adaptive boosting (i.e., Ad-
aBoost), advanced neural networks (i.e., AVNNet, PCANNet, NNet, MLP, and
MLPWeightDecay), CART, and Flexible Discriminant Analysis (FDA) classifica-
tion techniques also have a large effect size with a median performance improve-
ment from 13-24 percentage points. Indeed, Figure 6.5 shows that the fluctuation
of the performance of the advanced neural network techniques is largely caused by
changing the weight decay, but not the #hidden units or bagging parameters.
Moreover, the complexity parameter of CART and max tree depth of adaptive
boosting classification techniques are also sensitive to parameter optimization.

Summary. Caret improves the AUC performance of defect prediction models by
up to 40 percentage points. Moreover, the performance improvement provided by
applying Caret is non-negligible for 16 of the 26 studied classification techniques
(62%).

6.5. Case Study Results 115

(RQ2) How stable is the performance of defect prediction

models when automated parameter optimization is applied?

Approach. To address RQ2, we start with the AUC performance distribution of
the 26 studied classification techniques on each of the 18 studied datasets. The
stability of a classification technique is measured in terms of the variability of
the performance estimates that are produced by the 100 iterations of the out-
of-sample bootstrap. For each classification technique, we compute the standard
deviation (S.D.) of the bootstrap performance estimates of the classifiers where
Caret-optimized settings have been used and the S.D. of the bootstrap perfor-
mance estimates of the classifiers where the default settings have been used. To
analyze the difference of the stability between two classification techniques, we
present distribution of the stability ratio (i.e., S.D. of the optimized classifier di-
vided by the S.D. of the default classifier) of the two classifiers when applied to
the 18 studied datasets.

Similar to RQ1, we analyze the parameters that have the largest impact on the
stability of the performance estimates. To this end, we investigate the stability
ratio for each of the studied parameters. To quantify the individual impact of
each parameter, we train a classifier with all of the studied parameters set to their
default settings, except for the parameter whose impact we want to measure,
which is set to its Caret-optimized setting. We estimate the impact of each
parameter using the stability ratio of its S.D. of performance estimates with
respect to a classifier that is trained entirely using default settings.

Results. Caret-optimized classifiers are at least as stable as classifiers that are
trained using the default settings. Figure 6.6 shows that there is a median stabil-
ity ratio of at least one for all of the studied classification techniques. Indeed, we
find that the median ratio of one tends to appear for the classification techniques
that yield negligible performance improvements in RQ1. These tight stability
ratio ranges that are centered at one indicate that the stability of classifiers is

116 Chapter 6. The Impact of Automated Parameter Optimization

Large Medium Small Negligible

0.0

0.5

1.0

1.5

2.0

C5.
0

Ada
Boo

st

AVNNet

CART

PCANNet
NNet

FDA

M
LP

W
eig

ht
Dec

ay
M

LP LM
T

GPLS

Lo
git

Boo
st
KNN

xG
BTr

ee
GBM NB

RBF

SVM
Rad

ial

GAM
Boo

st RF

Ripp
er
PM

R
PDA

M
ARS

SVM
Lin

ea
r
J4

8

S
ta

bi
lit

y
R

at
io

Figure 6.6.: [Empirical Study 2] The stability ratio of the classifiers that are
trained using Caret-optimized settings compared to the classifiers
that are trained using default settings for each of the studied classi-
fication techniques.

not typically impacted by Caret-optimized settings.

Moreover, the Caret-optimized classifiers of 9 of the 26 studied classification
techniques (35%) are more stable than classifiers that are trained using the
default values. Indeed, Figure 6.6 shows that there is a median stability ratio
of 0.11 (NNet) to 0.61 (MLP) among the 9 classification techniques where the
stability has improved. This equates to a 39%-89% stability improvement for
these Caret-optimized classifiers. Indeed, Figure 6.7 shows that the stability of

6.5. Case Study Results 117

●

●●

●

●●

●

●●

Boosting Iterations of GBM

Max Tree Depth of GBM

#Randomly Selected Predictors of RF

#Hidden Units of PCANNet

#Trees of AdaBoost

#Neighbors of KNN

Cost of SVMRadial

#Hidden Units of AVNNet

#Hidden Units of RBF

Max Tree Depth of AdaBoost

Boosting Iterations of LogitBoost

#Hidden Units of NNet

#Hidden Units of MLPWeightDecay

#Hidden Units of MLP

Weight Decay of MLPWeightDecay

Weight Decay of PCANNet

Boosting Iterations of C5.0

Weight Decay of NNet

Weight Decay of AVNNet

#Terms of FDA

0.00 0.25 0.50 0.75 1.00
Stability Ratio

Figure 6.7.: [Empirical Study 2] The stability ratio of the top-20 most sensitive
parameters.

the performance of the advanced neural network techniques is largely caused by
changing the weight decay, but not the #hidden units or bagging parameters,
which is consistent with our findings in RQ1.

Summary. Caret-optimized classifiers are at least as stable as classifiers that are
trained using the default parameter settings. Moreover, the Caret-optimized
classifiers of 9 of the 26 studied classification techniques (35%) are significantly
more stable than classifiers that are trained using the default parameter settings.

118 Chapter 6. The Impact of Automated Parameter Optimization

(RQ3) How much does the interpretation of defect prediction

models change when automated parameter optimization is

applied?

Approach. To address RQ3, we start with the variable ranking of the 26 stud-
ied classification techniques on each of the 18 studied datasets for both Caret-
optimized and default models. For each classification technique, we compute the
difference in the ranks of the variables that appear in the top-three ranks of the
classifiers that are trained using Caret-optimized and default settings. For ex-
ample, if a variable v appears in the top rank in both the Caret-optimized and
default models, then the variable would have a rank difference of zero. However,
if v appears in the third rank in the default model, then the rank difference of v
would be negative two.

Results. The insights that are derived from 42% of the Caret-optimized clas-
sifiers are different from the insights that are derived from the classifiers that
are trained using the default values. Figure 6.8 shows the rank differences for
all of the studied classifiers. In the 11 studied classification techniques that yield
a medium to large performance improvement, we find that 64%-65% of the vari-
ables in the top importance rank of the Caret-optimized models also appear in
the top importance rank of the default models. Indeed, in the 9 studied classifi-
cation techniques that yield a large performance improvement, as little as 28% of
the variables in the third rank of the Caret-optimized models also appear in the
third rank of the default models. The low percentage indicates that the insights
are heavily influenced by the parameter settings of classification techniques.

6.5.
C
ase

Study
R
esults

119

Rank 1 Rank 2 Rank 3

0%

20%

40%

60%

80%

100%

2 1 0 −1 −2 −3 −4 −5 −6 2 1 0 −1 −2 −3 −4 −5 −6 2 1 0 −1 −2 −3 −4 −5 −6
Difference in rank

P
er

ce
nt

ag
e

Large Medium Small Negligible

Figure 6.8.: [Empirical Study 2] The difference in the ranks for the variables according to their variable importance
scores among the classifiers that are trained using Caret-optimized settings and classifiers that are
trained using default settings. The bars indicate the percentage of variables that appear in that rank
in the Caret-optimized model while also appearing in that rank in the default models.

120 Chapter 6. The Impact of Automated Parameter Optimization

Classifiers that yield a large performance improvement tends to have a larger
impact on interpretation than classifiers that yield a negligible performance
improvement do. Figure 6.8 shows that a smaller percentage of the variables
of the Caret-optimized models are found at the same rank in the classification
techniques that have a large performance improvement than the classification
techniques that have a negligible performance improvement. Indeed, 65% of the
variables in the top importance rank of classification techniques that yield a large
performance improvement are found at the same rank. On the other hand, 95%
of the variables appear at the same rank in the Caret-optimized and default
models of classification techniques where Caret yields a negligible performance
improvement.

Summary. Caret substantially shifts the ranking of the importance of software
metrics, with as little as 28% of the variables from the Caret-optimized models
appearing in those ranks in the default models. Moreover, classification tech-
niques where Caret has a larger impact on the performance are also subject to
large shifts in interpretation.

(RQ4) How well do optimal parameter settings transfer from one context to
another?

Approach. We apply Caret parameter optimization on all datasets. For each
classification technique, we obtain a list of Caret-suggested settings for every
studied dataset. We then estimate the transferability of these settings using their
frequency of appearance in the Caret suggestions across datasets. We call the
setting values that appear in the Caret suggestions of several datasets transferable
parameters.

We analyze 4 different types of transferability, i.e., across the 18 datasets, across
the 5 proprietary datasets, across the 3 Eclipse datasets, and across the 2 NASA

6.5.
C
ase

Study
R
esults

121

1 2 3

0.00

0.25

0.50

0.75

1.00

Ite

ra
to

ns
 o

f L
M

T

#B
oo

sti
ng

 It
er

. o
f C

5.
0

W
eig

ht
 D

ec
ay

 o
f N

Net

W
eig

ht
 D

ec
ay

 o
f P

CANNet

Boo

sti
ng

 It
er

at
ion

s o
f G

AM
Boo

st

#C
om

po
ne

nt
s o

f G
PLS

#H
idd

en
 U

nit
s o

f A
VNNet

#H
idd

en
 U

nit
s o

f M
LP

#H
idd

en
 U

nit
s o

f M
LP

W
eig

ht
Dec

ay

#H
idd

en
 U

nit
s o

f N
Net

#H
idd

en
 U

nit
s o

f P
CANNet

#N
eig

hb
or

s o
f K

NN

Com
ple

xit
y P

ar
am

et
er

 o
f C

ART

M
ax

 Tr
ee

 D
ep

th
 o

f A
da

Boo
st

M
ax

 Tr
ee

 D
ep

th
 o

f G
BM

W
eig

ht
 D

ec
ay

 o
f A

VNNet

W
eig

ht
 D

ec
ay

 o
f M

LP
W

eig
ht

Dec
ay

Boo

sti
ng

 It
er

at
ion

s o
f L

og
itB

oo
st

#T
er

m
s o

f F
DA

M
ax

 Tr
ee

 D
ep

th
 o

f x
GBTr

ee
Tr

an
sf

er
ab

ili
ty

Cross−Project Within−Proprietary Within−Eclipse Within−NASA

Figure 6.9.: [Empirical Study 2] Four types of transferability for each of the top-20 most sensitive parameters.
Higher frequency for each of the Caret-suggested settings that appear across datasets indicates high
transferability of a parameter.

122 Chapter 6. The Impact of Automated Parameter Optimization

datasets. Since the transferability of Caret-suggested parameters has more of an
impact on the most sensitive parameters, we focus our analysis on the 20 most
sensitive parameters (cf. Figure 6.5).

Results. The Caret-suggested setting of 85% of the 20 most sensitive param-
eters can be applied to datasets that share a similar set of metrics without
a statistically significant drop in performance. Figure 6.9 shows the 4 types
of transferability for each of the 20 most sensitive parameters. We divide the
transferable parameters into three groups. The first group is used to indicate
the parameters that can be transfered across the studied contexts. The second
group is used to indicate the parameters that can be transfered across some of
the studied contexts. The third group is used to indicate the parameters that
can not be transfered across any of the studied contexts.

We find that the Caret-suggested setting of 17 of the 20 most sensitive param-
eters can be applied to other datasets that share a similar set of metrics without
a statistically significant drop in performance with respect to the optimal per-
formance for that dataset (i.e., the first and the second groups). For example,
the value 40 for the # boosting iterations parameter of the C5.0 boosting
classification technique can be applied to all of the 18 studied datasets without
a statistically significant drop in performance. Moreover, the Caret-suggested
value 9 for #hidden units and value 0.1 for weight decay parameters of the
advanced neural networks (i.e., AVNNet) can be applied to 9 and 15 of the 18
studied datasets, respectively, that have a similar set of metrics without a statis-
tically significant drop in performance. Indeed, the parameters of C5.0 and LMT
are always transferable across the studied contexts, indicating that researchers
and practitioners can safely adopt the Caret-suggested parameters that are ob-
tained using a dataset with similar metrics. On the other hand, we find that only
the parameters of LogitBoost, FDA, and xGBTree cannot be transfered across
any of the studied contexts, indicating that researchers and practitioners should
re-apply automated parameter optimization.

6.5. Case Study Results 123

Summary. The Caret-suggested setting of 85% of the 20 most sensitive parameters
can be applied to datasets that share a similar set of metrics without a statistically
significant drop in performance.

124 Chapter 6. The Impact of Automated Parameter Optimization

(RQ5) What is the cost of applying automated parameter optimization?

Approach. Our case study approach is computationally-intensive (i.e., 450 pa-
rameter settings × 100 out-of-sample bootstrap repetitions × 18 systems =
810,000 results). However, the results can be computed in parallel. Hence, we de-
sign our experiment using a High Performance Computing (HPC) environment.
Our experiments are performed on 43 high performance computing machines
with 2x Intel Xeon 5675 @3.1 GHz (24 hyper-threads) and 64 GB memory (i.e.,
in total, 24 hyper-threads × 43 machines = 1,032 hyper-threads). Each machine
connects to a 2 petabyte shared storage array via a dual 10-gigabit fibre-channel
connection.

For each of the classification techniques, we compute the average amount of
execution time that was consumed by Caret when producing suggested parameter
settings for each of the studied datasets.

Results. Caret adds less than 30 minutes of additional computation time to
65% of the studied classification techniques. Figure 6.10 shows the computa-
tional cost of Caret optimization techniques for each of the 18 studied classifi-
cation techniques. The optimization cost of 17 of the 26 studied classification
techniques (65%) is less than 30 minutes. C5.0 and extreme gradient boosting
classification techniques, which yield top-performing classifiers more frequently
than other classification techniques, fall into this category. This indicates that
applying Caret tends to improve the performance of defect models while incurring
a manageable additional computational cost.

On the other hand, 12% of the studied classification techniques require more
than 3 additional hours of computation time to apply Caret. Only AdaBoost,
MLPWeightDecay, and RBF incur this large overhead. Nonetheless, the compu-
tation could still be completed if it was run overnight. Since defect prediction
models do not need to be (re)trained very often in practice, this cost should still
be manageable.

6.6. Revisiting the Ranking of Classification Techniques for Defect
Prediction Models 125

●
●●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

1

2

3

CART
LD

A
J4

8
PDA

GLM

M
ARS

PM
R

FDA

Lo
git

Boo
st

Rule

Ripp
er

SVM
Lin

ea
r
GBM

KNN

Bag
ge

dC
ART

GAM
Boo

st
C5.

0

PCANNet

xG
BTr

ee

SVM
Rad

ial

NNet
LM

T NB RF

AVNNet
M

LP
GPLS RBF

Ada
Boo

st

M
LP

W
eig

ht
Dec

ay

C
ar

et
 E

xe
cu

tio
n

T
im

e
(h

ou
rs

)

Figure 6.10.: [Empirical Study 2] Computational cost of Caret optimization tech-
niques (hours).

Summary. Caret adds less than 30 minutes of additional computation time to
65% of the studied classification techniques.

6.6. Revisiting the Ranking of Classification

Techniques for Defect Prediction Models

Prior studies have ranked classification techniques according to their performance
on defect prediction datasets. For example, Lessmann et al. [133] demonstrate
that 17 of 22 studied classification techniques are statistically indistinguishable.
On the other hand, Ghotra et al. [74] argue that classification techniques can
have a large impact on the performance of defect prediction models.
However, these studies have not taken parameter optimization into account.

Since we find that parameter settings can improve the performance of the clas-
sifiers that are produced (see RQ1), we set out to revisit the findings of prior
studies when Caret-optimized settings have been applied.

126 Chapter 6. The Impact of Automated Parameter Optimization

6.6.1. Approach

As Keung et al. [114] point out, dataset selection can be a source of bias in an
analysis of top-performing classification techniques. To combat the bias that may
be introduced by dataset selection, we perform a bootstrap-based Ranking Like-
lihood Estimation (RLE) experiment. Figure 6.11 provides an overview of our
RLE experiment. The experiment uses a statistical comparison approach over
multiple datasets that leverages both effect size differences and aspects of statis-
tical inference [62]. The experiment is divided into two steps that we describe
below.

(Step 1) Ranking Generation. We first start with the AUC performance dis-
tribution of the 26 studied classification techniques with the Caret-optimized
parameter settings and the default settings. To find statistically distinct ranks of
classification techniques within each dataset, we provide the AUC performance
distribution of the 100 bootstrap iterations of each classification technique with
both parameter settings to a Scott-Knott ESD test (α = 0.05) [233].

We use the Scott-Knott ESD test in order to control for dataset-specific model
performance, since some datasets may have a tendency to produce over- or under-
performing classifiers. Finally, for each classification technique, we have 18 dif-
ferent Scott-Knott ranks (i.e., one from each dataset).

(Step 2) Bootstrap Analysis. We then perform a bootstrap analysis to approxi-
mate the empirical distribution of the likelihood that a technique will appear in
the top Scott-Knott ESD rank [58]. The key intuition is that the relationship be-
tween the likelihood that is derived from studied datasets and the true likelihood
that would be derived from the population of defect datasets is asymptotically
equivalent to the relationship between the likelihood that is derived from boot-
strap samples and the likelihood that is derived from studied datasets. We first
input the ranking of the studied classification techniques on 18 studied datasets
to the bootstrap analysis, which is comprised of two steps:

6.6.
R
evisiting

the
R
anking

ofC
lassification

Techniques
for

D
efect

Prediction
M
odels

127

Applying the
Scott-Knott

ESD test

Rank Technique

1 T2

2 T1

Dataset 1

100x

Technique 1

100x

Technique N

…
AUC Performance  

Distribution
AUC Performance  

Distribution

Applying the
Scott-Knott

ESD test

Rank Technique

1 T1, T2

2 T3

Dataset M

100x

Technique 1

100x

Technique N

…
AUC Performance  

Distribution
AUC Performance  

Distribution

…

Lineplots

Dataset T1 T2 T3

1 2 1 3
2 1 2 3
3 1 1 2

(Step 2-2) 
Compute
likelihood

Repeat 100 times

Technique  
ranking  

for studied  
datasets

(Step 2) Bootstrap Analysis

(Step 2-1)
Resampling

with
replacement

T1 T2 T3
0.67 0.33 0

Dataset T1 T2 T3

1 2 1 3
2 1 2 3
2 1 2 3

Likelihood

(Step 1) Ranking Generation

Figure 6.11.: [Empirical Study 2] An overview of our statistical comparison over multiple datasets.

128
C
hapter

6.
T
he

Im
pact

ofA
utom

ated
Param

eter
O
ptim

ization

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

● ●
● ●

● ● ● ● ● ● ●0.0

0.2

0.4

0.6

0.8

1.0

C5.
0

xG
BTr

ee
AVNNet

GBM RF
GPLS PDA
NNet
PM

R
GAM

Boo
st

PCANNet
M

ARS
FDA

Ada
Boo

st
SVM

Rad
ial

M
LP

W
eig

ht
Dec

ay
M

LP RBF NB
Ripp

er
LM

T
CART

SVM
Lin

ea
r

J4
8

KNN
Lo

git
Boo

st
Li

ke
lih

oo
d

●Optimized Classifier Default Classifier

Figure 6.12.: [Empirical Study 2] The likelihood of each technique appearing in the top Scott-Knott ESD rank.
Circle dots and triangle dots indicate the median likelihood, while the error bars indicate the 95%
confidence interval of the likelihood of the bootstrap analysis. A likelihood of 80% indicates that a
classification technique appears at the top-rank for 80% of the studied datasets.

6.6. Revisiting the Ranking of Classification Techniques for Defect
Prediction Models 129

(Step 2-1) A bootstrap sample of 18 datasets is randomly drawn with replace-
ment from the ranking table, which is also of comprised of size 18
studied datasets.

(Step 2-2) For each classification technique, we compute the likelihood that a
technique appears in the top Scott-Knott ESD rank in the bootstrap
sample.

The bootstrap analysis is repeated 100 times. We then present the results with
its 95% confidence interval, which is derived from the bootstrap analysis.

6.6.2. Results

C5.0 boosting tends to yield top-performing defect prediction models more
frequently than the other studied classification techniques. Figure 6.12 shows
the likelihood of each technique appearing in the top Scott-Knott ESD rank. We
find that there is a 83% likelihood of C5.0 appearing in the top Scott-Knott rank.
Furthermore, the bootstrap-derived 95% confidence interval ranges from 67% to
94%. On the other hand, when default settings are applied, C5.0 boosting has
a 0% likelihood of appearing in the top rank. This echoes the findings of RQ1,
where C5.0 boosting was found to be the classification technique that is most
sensitive to parameter optimization.
Unlike prior work in the data mining domain, we find that random forest is not

the most frequent top performer in our defect prediction datasets. Indeed, we
find that there is a 55% likelihood of random forest appearing in the top Scott-
Knott rank with a bootstrap-derived 95% confidence interval that ranges from
33% to 72%. A one-tailed bootstrap t-test reveals that the likelihood of C5.0
producing a top performing classifier is significantly larger than the likelihood of
random forest producing a top-performing classifier (α = 0.05). This contradicts
the conclusions of Fernandez-Delgado et al. [64], who found that random forest

130 Chapter 6. The Impact of Automated Parameter Optimization

tends to yield top-performing classifiers the most frequently. The contradictory
conclusions indicate that the domain-specifics play an important role.
Automated parameter optimization increases the likelihood of appearing in

the top Scott-Knott ESD rank by as much as 83%. Figure 6.12 shows that
automated parameter optimization increases the likelihood of 11 of the studied 26
classification techniques by as much as 83% (i.e., C5.0 boosting). This suggests
that automated parameter optimization can substantially shift the ranking of
classification techniques.

Summary. C5.0 boosting tends to yield top-performing defect prediction models
more frequently than the other studied classification techniques. This disagrees
with prior studies in the data mining domain, suggesting that domain-specifics
play a key role. Furthermore, automated parameter optimization increases the
likelihood of appearing in the top Scott-Knott ESD rank by as much as 83%.

6.7. Discussion

In this section, we discuss the broader implications of our findings and how our
findings fit with the software defect prediction modelling and search-based soft-
ware engineering literature.

6.7.1. Defect Prediction Modelling

Plenty of research raises concerns about the impact of experimental components
of defect prediction modelling on research conclusions [229]. For example, con-
cerns about the quality of defect datasets have been raised [28,179,193,230,253].
Bird et al. [28] find that the issue reports of several defects are not identified
in commit logs. Bachmann et al. [21] find that the noise generated by missing
links in defect prediction datasets introduces bias. Kim et al. [118] find that the
randomly-generated noise has a large negative impact on the performance of de-

6.7. Discussion 131

fect models. On the other hand, our recent work [230] shows that realistic noise
(i.e., noise generated by actually mislabelled issue reports [94]) does not typically
impact the precision of defect prediction models.

Recent research also raises concerns about that the choice of classification
techniques and model validation techniques. For example, Ghotra et al. [74]
find that there are statistically significant differences in the performance of de-
fect prediction models that are trained using different classification techniques.
Panichella et al. [184] and Bowes et al. [30] also find that using different classifi-
cation techniques can identify different defective modules. Our recent work [231]
(see Chapter 7) shows that the choice of model validation techniques also has an
impact on the accuracy and stability of performance estimates.

Implications. In addition to the concerns about data quality, classification
techniques, and model validation techniques, we find that parameter settings of
classification techniques can also have a large impact on the performance, stabil-
ity, and interpretation of defect prediction models. Our findings suggest that re-
searchers should experiment with the parameters of the classification techniques.
Given the large parameter space of many classification techniques, automated
parameter optimization techniques like Caret offer an efficient way to conduct
such an exploration.

6.7.2. Parameter Optimization for Defect Prediction Models

The most closely research related to our paper is the work by Fu et al., who
demonstrate that automated parameter optimization has an impact on the per-
formance, model interpretation, and the ranking of top-performing classification
techniques [69]. However, their experimental design is different from our paper in
numerous ways. First, we investigate the impact of parameter settings of the 26
classification techniques, while they focus only 4 classification techniques. Second,
we measure the performance using threshold-independent measures (i.e., AUC),

132 Chapter 6. The Impact of Automated Parameter Optimization

while they measure using threshold-dependent measures (i.e., Precision, Recall,
and F-measure). Third, we apply Caret—an off-the-shelf parameter optimization
technique, while they apply Differential Evolution (DE) algorithm. Forth, we
evaluate defect prediction models using a within-release prediction setting, while
they evaluate using a cross-project prediction setting.

Implications. Despite their experimental design is different from our paper in
numerous ways, their conclusions are consistent to the conclusions of our study
(i.e., RQ1, RQ3, and Section 6.6). Relative to the contributions of prior work, this
paper makes the two additional contributions: an investigation of the automated
parameter optimization on the model stability (RQ2), and an investigation on
the parameter transferability in a cross-context prediction setting (RQ4).

6.7.3. Search-Based Software Engineering

Prior studies in the area of the search-based software engineering have shown
that search algorithms can be used to find useful solution to software engineering
problems [85,86]. For example, Panichella et al. [183] and Lohar et al. [138] tune
the parameters of topic modelling techniques (i.e., Latent Dirichlet Allocation)
for software engineering tasks. Thomas et al. [237] tune off-the-shelf Informa-
tion Retrieval techniques for bug localization. Song et al. [220] tune classification
techniques for software effort estimation models. Wang et al. [248] tune the set-
tings of code clone detection techniques. Arcuri et al. [15] investigate a minimal
test suite that maximizes branch coverage in the context of test data genera-
tion. Jia et al. [99] investigate an optimal test suite for combinatorial interaction
testing.

Implications. In addition to the area of topic modelling, information retrieval,
effort estimation, code clone detections, test data and suite generation, we find
that Caret, which is a grid-search technique, can also be used to efficiently tune
parameter settings of classification techniques for defect prediction models. Fur-

6.8. Threats to Validity 133

thermore, we find that Caret yields a large benefit in terms of performance im-
provement of defect prediction models, suggesting that automated parameter
optimization like Caret should be used in future defect prediction studies.

6.8. Threats to Validity

We now discuss the threats to the validity of our study.

6.8.1. Construct Validity

The datasets that we analyze are part of several collections (e.g., NASA and
PROMISE), which each provide different sets of metrics. Since the metrics vary,
this is a point of variation between the studied systems that could impact our
results. However, our within-family datasets analysis shows that the number and
type of predictors do not influence our findings. Thus, we conclude that the
variation of metrics does not pose a threat to our study. On the other hand,
the variety of metrics also strengthens the generalization of our results, i.e., our
findings are not bound to one specific set of metrics.
The Caret budget, which controls the number of settings that we evaluate

for each parameter, limits our exploration of the parameter space. Although
our budget setting is selected based on the literature [131], selecting a different
budget may yield different results. To combat this bias, we repeat the experiment
with different budgets of exploration (i.e., 3, 5, 7) and find consistent conclusions.
Thus, we believe that an increase in the budget would not alter the conclusions
of our study.

6.8.2. Internal Validity

We measure the performance of our classifiers using AUC. Other performance
measures may yield different results. Future research to expand the set of mea-

134 Chapter 6. The Impact of Automated Parameter Optimization

sures that we adopt in our future work.

Prior work has shown that noisy data may influence conclusions that are drawn
from defect prediction studies [74, 229, 230]. While Chapter 5 shows that noise
generated by issue report mislabelling has little impact on the precision of de-
fect prediction models, they do indeed impact the ability of identifying defective
modules (i.e., recall). Hence, noisy data may be influencing our conclusions.
However, we conduct a highly-controlled experiment where known-to-be noisy
NASA data [209] has been cleaned. Nonetheless, dataset cleanliness should be
inspected in future work.

6.8.3. External Validity

We study a limited number of systems in this paper. Thus, our results may not
generalize to all software systems. However, the goal of this paper is not to show
a result that generalizes to all datasets, but rather to show that there are datasets
where parameter optimization matters. Nonetheless, additional replication stud-
ies may prove fruitful.

The generalizability of the bootstrap-based Ranking Likelihood Estimation
(RLE) is dependent on how representative our sample is. To combat potential
bias in our samples, we analyze datasets of different sizes and domains. Nonethe-
less, a larger sample may yield more robust results.

6.9. Chapter Summary

Defect prediction models are classifiers that are trained to identify defect-prone
software modules. The characteristics of the classifiers that are produced are
controlled by configurable parameters. Recent studies point out that classifiers
may under-perform because they were trained using suboptimal default parameter
settings. However, it is impractical to explore all of the possible settings in the

6.9. Chapter Summary 135

parameter space of a classification technique.
In this chapter, we investigate the performance, stability, and interpretation

of defect prediction models where Caret [131] — an automated parameter opti-
mization technique — has been applied. Through a case study of 18 datasets
from systems that span both proprietary and open source domains, we make the
following observations:

– Caret improves the AUC performance of defect prediction models by up
to 40 percentage points. Moreover, the performance improvement provided
by applying Caret is non-negligible for 16 of the 26 studied classification
techniques (62%).

– Caret-optimized classifiers are at least as stable as classifiers that are trained
using the default parameter settings. Moreover, the Caret-optimized clas-
sifiers of 9 of the 26 studied classification techniques (35%) are significantly
more stable than classifiers that are trained using the default parameter
settings.

– Caret substantially shifts the ranking of the importance of software metrics,
with as little as 28% of the variables from the Caret-optimized models
appearing in those ranks in the default models. Moreover, classification
techniques where Caret has a larger impact on the performance are also
subject to large shifts in interpretation.

– Caret increases the likelihood of producing a top-performing classifier by
as much as 83%, suggesting that automated parameter optimization can
substantially shift the ranking of classification techniques.

Our results lead us to conclude that parameter settings can indeed have a
large impact on the performance, stability, and interpretation of defect prediction
models. Since automated parameter optimization techniques like Caret yield

136 Chapter 6. The Impact of Automated Parameter Optimization

benefits in terms of performance, stability, and interpretation, they should be
considered for use in future defect prediction studies.
Finally, we would like to emphasize that we do not seek to claim the generaliza-

tion of our results. Instead, the key message of our study is that there are datasets
where there are statistically significant differences between the performance of
classification techniques that are trained using default and Caret-optimized pa-
rameter settings. Hence, we recommend that software engineering researchers
experiment with the automated parameter optimization (e.g., Caret) instead of
relying on the default parameter setting of the research toolkits, assuming that
other parameter settings are not likely to lead to statistically significant improve-
ments in their reported results. Given the availability of automated parameter
optimization in commonly-used research toolkits (e.g., Caret for R [131], Mul-
tiSearch for Weka [81], GridSearch for Scikit-learn [185]), we believe that our
recommendation is a rather simple and low-cost recommendation to adopt.

6.9.1. Concluding Remarks

In this chapter, we investigate the impact of the choice of parameter settings of
classification techniques on defect prediction models. Our findings suggest that
automated parameter optimization should be applied to produce more accurate
and more reliable defect prediction models.
Even if defect prediction models are trained on a clean defect dataset and their

parameter settings are optimized, defect prediction models may produce inaccu-
rate performance estimates if we do not consider the impact of model validation
techniques (e.g., k-fold cross-validation). In the next chapter, we investigate the
impact of model validation techniques on the performance estimates.

CHAPTER 7

The Impact of Model Validation
Techniques

Key Finding

Model validation techniques produces sta-
tistically different performance estimates.

An earlier version of the work in this chapter ap-
pears in the IEEE Transactions on Software Engi-
neering (TSE) [231].

137

138 Chapter 7. The Impact of Model Validation Techniques

7.1. Introduction

Defect prediction models help Software Quality Assurance (SQA) teams to effec-
tively focus their limited resources on the most defect-prone software modules.
Broadly speaking, a defect prediction model is a statistical regression model or a
machine learning classifier that is trained to identify defect-prone software mod-
ules. These defect prediction models are typically trained using software metrics
that are mined from historical development data that is recorded in software
repositories.
Prediction models may provide an unrealistically optimistic estimation of model

performance when (re)applied to the same sample with which were trained. To
address this problem, model validation techniques (e.g., k-fold cross-validation)
are commonly used to estimate the model performance. The model performance
is used to (1) indicate how well a model will perform on unseen data [51,54,140,
187, 245, 257]; (2) select the top-performing prediction model [74, 115, 133, 159,
169,232,247]; and (3) combine several prediction models [20, 206,241,252].
The conclusions that are derived from defect prediction models may not be

sound if the estimated performance is unrealistic or unstable. Such unrealistic
and unstable performance estimates could lead to incorrect model selection in
practice and inaccurate conclusions for defect prediction studies [154,229].
Recent research has raised concerns about the bias (i.e., how much do the per-

formance estimates differ from the model performance on unseen data?) and
variance (i.e., how much do performance estimates vary when the experiment is
repeated on the same data?) of model validation techniques when they are applied
to defect prediction models [72,152,159,169,208,246]. An optimal model valida-
tion technique would not overestimate or underestimate the model performance
on unseen data. Moreover, the performance estimates should not vary greatly
when the experiment is repeated. Mittas et al. [159] and Turhan et al. [246] point
out that the random nature of sampling used by model validation techniques may

7.1. Introduction 139

introduce bias. Myrtveit et al. [169] point out that a high variance in the perfor-
mance estimates that are derived from model validation techniques is a critical
problem in comparative studies of prediction models.
To assess the risk that defect prediction datasets pose with respect to producing

unstable results, we analyze the number of Events Per Variable (EPV) in publicly-
available defect datasets. Models that are trained using datasets where the EPV
is low (i.e., below 10) are especially susceptible to unstable results. We find that
77% of defect prediction datasets have EPV values below 10, and thus are highly
susceptible to producing unstable results. Hence, selecting an appropriate model
validation technique is a critical experimental design choice.
Therefore, in this chapter, we explore the bias and variance of model valida-

tion techniques in both high-risk (i.e., EPV=3) and low-risk (i.e., EPV=10) con-
texts. Based on an analysis of 256 defect prediction studies that were published
from 2000-2011, we select the 12 most popular model validation techniques for
our study. The selected techniques include holdout, cross-validation, and boot-
strap family techniques. We evaluate 3 types of classifiers, i.e., probability-based
(i.e., naïve bayes), regression-based (i.e., logistic regression) and machine learn-
ing (i.e., random forest) classifiers. Through a case study of 18 systems spanning
both proprietary and open source domains, we address the following two research
questions:

(RQ1) Which model validation techniques are the least biased for defect pre-
diction models?
Irrespective of the type of classifier, the out-of-sample bootstrap tends to
provide the least biased performance estimates in terms of both threshold-
dependent (e.g., precision) and threshold-independent performance mea-
sures (e.g., AUC).

140 Chapter 7. The Impact of Model Validation Techniques

(RQ2) Which model validation techniques are the most stable for defect pre-
diction models?
Irrespective of the type of classifier, the ordinary bootstrap is the most
stable model validation technique in terms of threshold-dependent and
threshold-independent performance measures.

Furthermore, we derive the following practical guidelines for future defect pre-
diction studies:

1. The single holdout validation techniques should be avoided, since we find
that the single holdout validation tends to produce performance estimates
with 46%-229% more bias and 53%-863% more variance than the top ranked
model validation techniques.

2. Researchers should use the out-of-sample bootstrap techniques instead
of cross-validation or holdout techniques, since we find that out-of-sample
bootstrap validation is less prone to bias and variance in the sparse data
contexts that are present in many publicly-available defect datasets.

To the best of our knowledge, this chapter is the first work to examine:

1. A large collection of model validation techniques, especially bootstrap val-
idation, which has only rarely been explored in the software engineering
literature.

2. The bias and variance of model validation techniques for defect prediction
models.

3. The distribution of Events Per Variable (EPV) of publicly-available defect
datasets (Section 7.2).

7.2. Motivating Examples 141

4. Furthermore, we introduce the Scott-Knott Effect Size Difference (ESD)
test—an enhancement of the standard Scott-Knott test (which cluster dis-
tributions (e.g., distributions of the importance score of variables) into
statistically distinct ranks [203]), which makes no assumptions about the
underlying distribution and takes the effect size into consideration (Sec-
tion 7.5.8).

7.1.1. Chapter Organization

Section 7.2 introduces the Events Per Variable (EPV) in a dataset, i.e., a met-
ric that quantifies the risk of producing unstable results, and presents realistic
examples to illustrate its potential impact. Section 7.3 introduces the studied
model validation techniques. Section 7.4 situates this chapter with respect to the
related work. Section 7.5 discusses the design of our case study, while Section 7.6
presents the results with respect to our two research questions. Section 7.7 pro-
vides a broader discussion of the implications of our results, while Section 7.8
derives practical guidelines for future research. Section 7.9 discloses the threats
to the validity of our study. Finally, Section 7.10 draws conclusions.

7.2. Motivating Examples

Mende [147] and Jiang et al. [105] point out that model validation techniques
may not perform well when using a small dataset. An influential characteristic
in the performance of a model validation technique is the number of Events Per
Variable (EPV) [10, 18, 186, 223], i.e., the ratio of the number of occurrences of
the least frequently occurring class of the dependent variable (i.e., the events) to
the number of independent variables used to train the model (i.e., the variables).
Models that are trained using datasets where the EPV is low (i.e., too few events
are available relative to the number of independent variables) are especially sus-

142 Chapter 7. The Impact of Model Validation Techniques

0.01 0.1 1 3 10 100
Event Per Variables

Figure 7.1.: [Empirical Study 3] The distribution of Events Per Variable (EPV)
values in publicly-available defect prediction datasets. The black line
indicates the median value. The vertical red line indicates the rule-of-
thumb EPV value of 10 that is recommended by Peduzzi et al. [186].
The red-shaded area indicates the high-risk datasets that do not meet
this recommendation (EPV ≤ 10).

ceptible to overfitting (i.e., being fit too closely to the training data) and produce
unstable results [46,186].

In order to assess whether low EPV values are affecting defect prediction stud-
ies, we analyze 101 publicly-available defect datasets (see Section 7.5.1 for details
on our selection process for the studied datasets). 76 datasets are downloaded
from the Tera-PROMISE repository [153], 12 clean NASA datasets are provided
by Shepperd et al. [209], 5 datasets are provided by Kim et al. [118, 253], 5
datasets are provided by D’Ambros et al. [50,51], and 3 datasets are provided by
Zimmermann et al. [258].

As is often done in defect prediction studies [50,51,152,192,230,258], we create
our dependent variable by classifying the modules in these datasets as defective
(i.e., #defects > 0) or clean (i.e., #defects = 0). We then calculate the EPV using
the number of independent variables that are offered by the studied datasets.

Figure 7.1 shows the distribution of EPV values in the studied datasets using a

7.2. Motivating Examples 143

beanplot [112]. Beanplots are boxplots in which the horizontal curves summarize
the distribution of a dataset. The long vertical black line indicates the median
value. Peduzzi et al. [186] argue that, in order to avoid unstable results, the EPV
of a dataset should be at least 10. Thus, we shade the dataset that fall into the
high-risk area in red.

Summary. 78 out of 101 publicly-available defect datasets (77%) are highly sus-
ceptible to producing inaccurate and unstable results. Hence, selecting an appro-
priate model validation technique is a critical experimental design choice.

Figure 7.1 shows that 77% of the studied datasets have an EPV value below
10. Furthermore, the median EPV value that we observe is 3, indicating that half
of the studied datasets are at a high risk of producing inaccurate and unstable
results. Indeed, only 23% of the studied datasets have EPV values that satisfy
the recommendation of Peduzzi et al. [186].
Below, we present realistic examples to illustrate impact that model validation

techniques and EPV can have on the performance of defect prediction models.

7.2.1. The Risk of Producing Inaccurate Performance Estimate

To assess the risk that model validation techniques pose with respect to produc-
ing inaccurate performance estimates, we analyze the performance of a defect
prediction model when it is produced by model validation techniques. We select
the JM1 NASA dataset as the subject of our analysis, since it is widely used in
different defect prediction studies [79, 101, 102, 105, 133, 149, 221, 249]. We focus
on the high-risk EPV context (i.e., EPV= 3) because Figure 7.1 shows that 50%
of the 101 studied defect datasets have an EPV value below 3. Thus, we select
a sample from the JM1 dataset such that the EPV is 3. This sampling yields a
dataset with 300 observations (i.e., 63 defective and 237 clean modules). We train
a defect prediction model using logistic regression [48] with the implementation
that is provided by the glm R function [190]. We measure the performance of the

144 Chapter 7. The Impact of Model Validation Techniques

defect prediction models using the Area Under the receiver operator characteris-
tic Curve (AUC) [84]. Finally, we apply 12 different model validation techniques
in order to produce performance estimates (see Section 7.3 for details on our
selection process for the studied model validation techniques).

The performance estimates that are produced by model validation techniques
vary by up to 15 percentage points. We find that the AUC performance estimates
that are produced by model validation techniques vary from 0.58 to 0.73. Indeed,
the ordinary bootstrap produces an estimated AUC of 0.73, while the holdout
50% validation produces an estimated AUC of 0.58. This suggests that defect
prediction models may produce inaccurate performance estimates if the wrong
different model validation technique is selected. However, it is not clear which
model validation techniques provide the most accurate performance estimates in
low EPV contexts. Hence, we evaluate each of our research questions across a
variety of model validation techniques.

7.2.2. The Risk of Producing Unstable Results in Defect

Datasets

To assess the risk that defect datasets pose with respect to producing unstable
performance estimates, we analyze the variation in performance estimates that
are produced by defect prediction models when the experiments are repeated at
different EPV contexts. Similar to Section 7.2.1, we use the JM1 NASA dataset
as the subject of our analysis. We train defect prediction models using logistic
regression [48] and measure the AUC performance. In order to assess whether
datasets at different EPV values are affecting performance estimates, we draw
sample defect datasets of different EPV values (i.e., EPV= 1, 3, 5, 10). Since we
preserve the original rate of defective modules in these samples (i.e., 21%), our
samples are of 100, 300, 500, and 1,000 modules for an EPV value of 1, 3, 5, and
10, respectively (see Section 7.5.2 for details on sample size generation). We apply

7.2. Motivating Examples 145

●
0.55

0.60

0.65

0.70

1 3 5 10
EPV

A
U

C

Figure 7.2.: [Empirical Study 3] The distribution of performance estimates that
are produced by the repeated 10-fold cross validation at different
EPV contexts when the experiment is repeated 100 times.

the repeated 10-fold cross-validation, since it is one of the most commonly-used
model validation techniques in defect prediction studies (see Section 7.3 for details
on our literature analysis). In order to investigate the variation of performance
estimates, we repeat the experiment 100 times. Figure 7.2 shows the distribution
of the 100 AUC performance estimates for each EPV context.

Performance estimates that are produced by a model that is trained in a
low-risk EPV context (i.e., EPV= 10) are more stable than that of a model
that is trained in a high-risk EPV context (i.e., EPV= 3). Figure 7.2 shows
that the performance estimates produced by the model that is trained in a low-
risk EPV context (i.e., EPV= 10) vary from 0.69 to 0.70, while the performance
estimates produced by the model that is trained in a high-risk EPV context
(i.e., EPV= 3) vary from 0.56 to 0.67. Thus, model validation techniques may
help to counter the risk of low EPV datasets through built-in repetition (e.g.,
M bootstrap iterations or k folds of cross-validation). However, it is not clear
which model validation techniques provide the most stable performance estimates
in such low EPV contexts. Hence, we evaluate each of our research questions in
both high-risk (i.e., EPV=3) and low-risk (i.e., EPV=10) contexts.

146
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques
Table 7.1.: [Empirical Study 3] Summary of model validation techniques.

Family Technique Training sample Testing sample Estimated per-
formance

Iteration(s)

Holdout Holdout 0.5 50% of original Independent: 50% of
original

A single esti-
mate

1

Holdout 0.7 70% of original Independent: 30% of
original

A single esti-
mate

1

Repeated
Holdout 0.5

50% of original Independent: 50% of
original

Average of per-
formance of sev-
eral samples

100

Repeated
Holdout 0.7

70% of original Independent: 30% of
original

Average of per-
formance of sev-
eral samples

100

Continued on next page

7.3.
M
odelValidation

Techniques
in

D
efect

Prediction
Literature

147
Table 7.1 – continued from previous page
Family Technique Training sample Testing sample Estimated per-

formance
Iteration(s)

Cross Validation Leave-one-
out

N-1 of original Independent: Sub-
ject that is not in-
cluded in the train-
ing sample

Average of per-
formance of sev-
eral samples

N

2-Fold 50% of original Independent: 50% of
original

Average of per-
formance of sev-
eral samples

2

10-Fold 90% of original Independent: 10% of
original

Average of per-
formance of sev-
eral samples

10

10 × 10-Fold 90% of original Independent: 10% of
original

Average of per-
formance of sev-
eral samples

100

Continued on next page

148
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques
Table 7.1 – continued from previous page
Family Technique Training sample Testing sample Estimated per-

formance
Iteration(s)

Bootstrapping Ordinary Bootstrap Original Average of per-
formance of sev-
eral samples

100

Optimism-
reduced

Bootstrap Original Apparent† - op-
timism

100

Out-of-
sample

Bootstrap Independent: the
training subjects
that are not sam-
pled in bootstrap

Average of per-
formance of sev-
eral samples

100

.632 Boot-
strap

Bootstrap Independent: the
training subjects
that are not sam-
pled in bootstrap

0.368 ×
Apparent†

+ 0.632 ×
average(out-of-
sample)

100

†Apparent performance is computed from a model that is trained and tested on the original
sample.

7.3. Model Validation Techniques in Defect Prediction Literature 149

7.3. Model Validation Techniques in Defect

Prediction Literature

There are a plethora of model validation techniques available. Since it is im-
practical to study all of these techniques, we would like to select a manageable,
yet representative set of model validation techniques for our study. To do so, we
analyze the defect prediction literature in order to identify the commonly used
model validation techniques.

We begin by selecting 310 papers that were published between 2000-2011 from
two literature surveys of defect prediction—208 papers from the survey of Hall
et al. [82] and 102 papers from the survey of Shihab [210]. After eliminating
duplicate papers, we are left with 256 unique defect prediction studies for analysis.

We read the 256 papers in order to identify the most commonly-used model
validation techniques in defect prediction research. We find that 38 of the stud-
ied papers needed to be excluded from our analysis because they did not train
defect prediction models. For example, many of the excluded papers performed
correlation analyses, which does not require a model validation technique. Fur-
thermore, another 35 papers also needed to be excluded because they did not use
any model validation technique. Finally, our analysis below describes our findings
with respect to the 183 papers that used model validation techniques.

Summary. 89 studies (49%) use k-fold cross-validation, 83 studies (45%) use hold-
out validation, 10 studies (5%) use leave-one-out cross-validation, and 1 study
(0.5%) uses bootstrap validation.

Below, we describe each studied model validation technique. Table 7.1 provides
an overview of the three families of model validation techniques that we select
based on our study of the defect prediction literature.

150 Chapter 7. The Impact of Model Validation Techniques

7.3.1. Holdout Validation

Holdout validation randomly splits a dataset into training and testing corpora
according to a given proportion (e.g., 30% holdout for testing). The training
corpus is only used to train the model, while the testing corpus is only used
to estimate the performance of the model. Prior work has shown that holdout
validation is statistically inefficient because much of the data is not used to train
the prediction model [60, 62, 87, 164, 222, 225]. Moreover, an unfortunate split of
the training and testing corpora may cause the performance estimate of holdout
validation to be misleading. To reduce the bias and variance of holdout validation
results, prior studies suggest that it be applied in a repeated fashion [29, 174,
234, 255, 258]. In this chapter, we study the commonly used variant of repeated
holdout validation, where the entire process is repeated 100 times.

7.3.2. Cross-Validation

Cross-validation extends the idea of holdout validation by repeating the splitting
process several times. In this chapter, we study the k-fold cross-validation tech-
nique, which randomly partitions the data into k folds of roughly equal size where
each fold contains roughly the same proportions of the defective ratio [73,225]. A
single fold is used for the testing corpus, and the remaining k − 1 folds are used
for the training corpus. The process of splitting is repeated k times, using each
of the k folds as the testing corpus once. The average of the k results is used to
estimate the true model performance.
The advantage of k-fold cross-validation is that all of the data is at one point

used for both training and testing. However, selecting an appropriate value for k
presents a challenge. In this chapter, we explore two popular k values (i.e., k = 2
and k = 10).
While the cross-validation technique is known to be nearly unbiased, prior

studies have shown that it can produce unstable results for small samples [32,

7.3. Model Validation Techniques in Defect Prediction Literature 151

97, 105]. To improve the variance of cross-validation results, the entire cross-
validation process can be repeated several times. In this chapter, we study the
commonly used variant of the 10-fold cross-validation where the entire process is
repeated 10 times (i.e., 10 × 10-fold cross-validation).

Leave-One-Out Cross Validation (LOOCV) is the extreme case of k-fold cross-
validation, where k is equal to the total number of observations (n). A classifier
is trained n times using n − 1 observations, and the one remaining observation
is used for testing. In a simulation experiment [35], and an experiment using
effort estimation datasets [121], prior work has shown that LOOCV is the most
unbiased model validation technique.

We considered two approaches to estimate model performance when using
LOOCV in the defect prediction context (i.e., classifying if a module is defec-
tive or clean):

(1) Computing performance metrics once for each iteration. However, threshold-
dependent performance measures achieve unrealistic results. Take, for ex-
ample, the precision metric—when the one testing observation is a defective
module, the precision value will either 0% (meaning the model suggests that
the module is clean) or 100% (the model suggests that the module is defec-
tive). Alternatively, when the one testing observation is a clean module, the
precision value is undefined because the denominator (i.e., #true positives +
#false positives) is zero.

(2) Computing performance metrics using the N predicted values all at once.
While this approach avoids the pitfalls of approach 1, this approach will
produce a single performance value. Thus, using this approach, we cannot
measure the variance of performance estimates. Furthermore, this approach
yields bias values that are not comparable to the other studied model valida-
tion techniques, since they are not based on a distribution.

152 Chapter 7. The Impact of Model Validation Techniques

By considering the trade-offs of the considered approaches, we opt to apply
LOOCV using approach 1 to only the Brier score (see Section 7.5.6) because it
can be computed using a single observation for testing [87,92,188].

7.3.3. Bootstrap Validation

The bootstrap is a powerful model validation technique that leverages aspects of
statistical inference [62,87,92,222]. In this chapter, we study four variants of the
bootstrap. We describe each variant below.
The ordinary bootstrap was proposed by Efron et al. [60]. The bootstrap process

is made up of two steps:

(Step 1) A bootstrap sample of size N is randomly drawn with replacement from
an original dataset that is also of size N .

(Step 2) A model is trained using the bootstrap sample and tested using the
original sample.

These two steps are repeated M times to produce a distribution of model per-
formance measurements from which the average is reported as the performance
estimate. The key intuition is that the relationship between the studied dataset
and the theoretical population from which it is derived is asymptotically equiva-
lent to the relationship between the bootstrap samples and the studied dataset.
The optimism-reduced bootstrap is an enhancement to the ordinary bootstrap

that is used to correct for upward bias [59]. The enhancement alters Step 2 of
the ordinary bootstrap procedure. A model is still trained using the ith bootstrap
sample, but the model is tested twice—once using the original sample and again
using the bootstrap sample from which the model was trained. The optimism of
the model is estimated by subtracting the performance (P) of the model when it
is applied to the ith bootstrap sample from the performance of the model when it
is applied to the original sample (see Equation 7.1). Optimism calculations are

7.3. Model Validation Techniques in Defect Prediction Literature 153

repeated M times to produce a distribution from which the average optimism is
derived.

Optimism = 1
M

M∑
i=1

(P boot
boot(i) − P

orig
boot(i)) (7.1)

Finally, a model is trained using the original sample and tested on the original
sample, which yields an unrealistically inflated performance value. The average
optimism is subtracted from that performance value to obtain the performance
estimate (see Equation 7.2).

Optimism-reduced = P orig
orig −Optimism (7.2)

The out-of-sample bootstrap, another enhancement to the ordinary bootstrap,
is used to leverage the unused rows from the bootstrap samples. Similar to the
optimism-reduced bootstrap, Step 2 of the ordinary bootstrap procedure is al-
tered. A model is still trained using the drawn bootstrap sample, but rather than
testing the model on the original sample, the model is instead tested using the
rows that do not appear in the bootstrap sample [58]. On average, approximately
36.8% of the rows will not appear in the bootstrap sample, since the bootstrap
sample is drawn with replacement. Again, the entire bootstrap process is re-
peated M times, and the average out-of-sample performance is reported as the
performance estimate.
The .632 bootstrap, an enhancement to the out-of-sample bootstrap, is designed

to correct for the downward bias in performance estimates [58]. Similar to the
optimism-reduced bootstrap, a model is first trained using the original sample and
tested on the same original sample to obtain an “apparent” performance value.
This yields an unrealistically inflated performance value, which is combined with
the upwardly-biased estimate from the out-of-sample bootstrap as follows:

154 Chapter 7. The Impact of Model Validation Techniques

.632 Bootstrap = 1
M

M∑
i=1

(0.368× P orig
orig + 0.632× P−boot(i)

boot(i)) (7.3)

The two constants in Equation 7.3 (i.e., 0.632 and 0.368) are carefully selected.
The constants are selected because the training corpus of the out-of-sample boot-
strap will have approximately 63.2% of the unique observations from the original
dataset and the testing corpus will have 36.8% (i.e., 100%− 63.2%) of the obser-
vations. Furthermore, since the out-of-sample bootstrap tends to underestimate
and the apparent performance tends to overestimate, 0.632 is used to correct the
downward bias of the out-of-sample bootstrap and 0.368 is used to correct the
upward bias of the apparent performance.

7.4. Related Work & Research Questions

Defect prediction models may produce an unrealistic estimation of model perfor-
mance when inaccurate and unreliable model validation techniques are applied.
Such inaccurate and unreliable model validation techniques could lead to incorrect
model selection in practice and unstable conclusions of defect prediction studies.
Recent research has raised concerns about the bias of model validation tech-

niques when applied to defect prediction models [72, 152, 154, 159, 169, 246]. The
bias of a model validation technique is often measured in terms of the difference
between a performance estimate that is derived from a model validation tech-
nique and the model performance on unseen data. A perfectly unbiased model
validation technique will produce a performance estimate that is equivalent to the
model performance on unseen data. Mittas et al. [159], Turhan et al. [246], and
Myrtveit et al. [169] point out that the random nature of sampling that is em-
ployed by model validation techniques is a potential source of bias. Gao et al. [72]
point out that an unfortunate division of training and testing corpora may also
introduce bias.

7.4. Related Work & Research Questions 155

Plenty of prior studies have explored the bias of model validation techniques
in other research domains. However, these studies have arrived at contradictory
conclusions. Indeed, some studies conclude that the bootstrap achieves the least
biased estimate of model performance [23,32], while others conclude that 10-fold
cross validation achieves the least biased estimate of model performance [124,164].
Other work concludes that LOOCV should be used to achieve the most accurate
estimate of model performance [35,121].

We suspect that the contradictory conclusions of prior work are largely related
to changes in experimental context. For example, some studies conduct simula-
tion experiments [32, 53, 57, 61, 97, 116], while others use empirical data [32, 57,
121,124,164].

The lack of consistency in the conclusions of prior work makes it hard to derive
practical guidelines about the most appropriate model validation technique to use
in defect prediction research. To address this, we formulate the following research
question:

(RQ1) Which model validation techniques are the least biased for defect
prediction models?

In addition to the bias of a model validation technique, it is also important
to evaluate its variance [105, 147, 154, 168, 169, 208]—the performance estimates
should not vary broadly when the experiment is repeated. The variance of a
model validation technique is typically measured in terms of the variability of
the estimated performance, i.e., how much do performance estimates vary when
the experiment is repeated on the same data. Myrtveit et al. [169] point that
high variance in performance estimates from model validation techniques is a
critical challenge in comparative studies of prediction models. Shepperd and
Kadoda [208] show that the performance of defect prediction models that are
trained using different subsamples that are drawn from the same underlying

156 Chapter 7. The Impact of Model Validation Techniques

dataset vary widely. To structure our analysis of the variance of model validation
techniques, we formulate the following research question:

(RQ2) Which model validation techniques are the most stable for defect
prediction models?

7.5. Case Study Design

In this section, we discuss our selection criteria for the studied systems and then
describe the design of our case study experiment that we perform in order to
address our research questions.

7.5.1. Studied Datasets

In selecting the studied datasets, we identified three important criteria that
needed to be satisfied:

– Criterion 1 — Different corpora: Recent research points out that the per-
formance of defect prediction models may be limited to the dataset from
which they are trained [221, 233]. To extend the generality of our conclu-
sions, we choose to train our defect prediction models using systems from
different corpora and domains.

– Criterion 2 — Sufficient EPV: Since we would like to study cases where
EPV is low-risk (i.e, = 10) and high-risk (i.e, = 3), the systems that we
select for analysis should begin with a low-risk EPV. Our rationale is that
we prefer to control for dataset-specific model performance by generating
low and high-risk EPV settings using the same dataset. This ensures that
a comparison of EPV is derived from the same context. Essentially, we

7.5. Case Study Design 157

disregard datasets with low initial EPV because we prefer to undersample
to generate low and high-risk EPV datasets from an initially high EPV
dataset. For example, if we were to select datasets with an initial EPV of 5,
we would need to over-sample the defective class in order to raise the EPV
to 10. However, the defective class of a system with an initial EPV of 15
can be under-sampled in order to lower the EPV to 10.

– Criterion 3 — Sane defect data: Since it is unlikely that more software
modules have defects than are free of defects, we choose to study datasets
that have a rate of defective modules below 50%.

To satisfy criterion 1, we begin our study using the 101 publicly-available defect
datasets described in Section 7.2.2. We provide a list of the 101 defect datasets
in Appendix A. To satisfy criterion 2, we exclude the 78 datasets that we found
to have an EPV value lower than 10 in Section 7.2.2. To satisfy criterion 3, we
exclude an additional 5 datasets because they have a defective ratio above 50%.

Table 7.2 provides an overview of the 18 datasets that satisfy our criteria for
analysis. To combat potential bias in our conclusions, the studied datasets include
proprietary and open source systems with varying size, domain, and defective
ratio.

Figure 7.3 provides an overview of the approach that we apply to each studied
system. The crux of our approach is that we calculate model performance on
unseen data such that the performance estimates that are derived from model
validation techniques can be compared to the model performance on unseen data.
The approach is repeated 1,000 times to ensure that the results are robust and
that they converge

158 Chapter 7. The Impact of Model Validation Techniques

Project System Defective #Files #Metrics EPV
Ratio

NASA JM11 21% 7,782 21 80
PC51 28% 1,711 38 12

Proprietary Prop-12 15% 18,471 20 137
Prop-22 11% 23,014 20 122
Prop-32 11% 10,274 20 59
Prop-42 10% 8,718 20 42
Prop-52 15% 8,516 20 65

Apache Camel 1.22 36% 608 20 11
Xalan 2.52 48% 803 20 19
Xalan 2.62 46% 885 20 21

Eclipse Platform 2.03 14% 6,729 32 30
Platform 2.13 11% 7,888 32 27
Platform 3.03 15% 10,593 32 49
Debug 3.44 25% 1,065 17 15
SWT 3.44 44% 1,485 17 38
JDT5 21% 997 15 14
Mylyn5 13% 1,862 15 16
PDE5 14% 1,497 15 14

1Provided by Shepperd et al. [209].
2Provided by Jureczko et al. [108].
3Provided by Zimmermann et al. [258].
4Provided by Kim et al. [118].
5Provided by D’Ambros et al. [50, 51].

Table 7.2.: [Empirical Study 3] An overview of the studied systems.

7.5.
C
ase

Study
D
esign

159

Rank Techniques

1 T3, T4

2 T1,T2

Rank Techniques

1 T3, T4

2 T1,T2

Ranking
and

Clustering

Defect  
Dataset

Sample  
Dataset

Repeat 1,000 Times

Unseen  
Dataset

Training  
Corpus

Performance  
on Unseen  

Data

Estimated 
Performance

Testing 
Corpus

Data
Preparation for
Performance  
Estimation

Bias

Variance

Model 
Construction

Performance  
Measurement

N repetitions

Model

Model 
Construction

Performance  
Measurement

Model

Generate  
Sample

Data

Bias &
Variance

Calculation

Data Preparation for Model
Performance on Unseen Data

Testing Corpus

Training Corpus

Figure 7.3.: [Empirical Study 3] An overview of the design of our case study experiment.

160 Chapter 7. The Impact of Model Validation Techniques

7.5.2. Generate Sample Data

In order to compare the studied model validation techniques, we begin by creating
sample and unseen datasets using historical data from a studied dataset. The
sample dataset is created in order to train our model for performance on unseen
data, while the unseen dataset is used to test it. The sample dataset is also
used to train and test models using the studied model validation techniques. The
performance on the unseen dataset is compared to the performance estimates
that are derived from the studied model validation techniques.

Sample Dataset

In order to produce our sample datasets, we select observations with replacement
from the input dataset, while controlling for two confounding factors:

(C1) The defective ratio: While generating sample datasets, we preserve the
defective ratio of the original dataset to ensure that the sample and un-
seen datasets are representative of the original dataset. Thus, the defective
ratio of the unseen datasets are the same as the defective ratio of the orig-
inal datasets.

(C2) The EPV: As mentioned above, we explore high-risk (EPV = 3) and low-
risk (EPV = 10) contexts.

Note that by controlling for C1 and C2, we have specified the number of defec-
tive modules (and indirectly, the number of clean modules) in the sample dataset.
For example, the size of the original JM1 dataset is 7,782 modules. To generate a
sample of the JM1 dataset with EPV values of 3 and 10, we need to preserve (1)
the defective ratio of 21%; and (2) the 21 variables. Thus, a sample size of the
JM1 dataset with an EPV of 3 is 300 modules (i.e., 63 defective and 237 clean
modules). Similarly, a sample size of the JM1 dataset with an EPV of 10 is 1000
(i.e., 210 defective and 790 clean modules).

7.5. Case Study Design 161

7.5.3. Data Preparation for Model Performance on Unseen Data

Unfortunately, the population of the input dataset is unknown, so the actual
model performance on unseen data cannot be directly measured. Inspired by
previous studies [32, 97, 116, 124, 125], we estimate the model performance using
unseen data, i.e., the observations from the input dataset that do not appear in
the sample dataset. To do so, we use the sample dataset as the training corpus for
training a defect prediction model and we use the unseen dataset as the testing
corpus to measure the performance of that defect prediction model.

7.5.4. Data Preparation for Performance Estimation

In order to compare the estimates of the studied model validation techniques to
the model performance on unseen data, we apply the model validation techniques
to the sample dataset. To split the sample dataset into training and testing cor-
pora, we use: (1) the createDataPartition function of the caret R package for
the holdout family of model validation techniques [129,131], (2) the createFolds

function of the caret R package for the cross-validation family of model valida-
tion techniques [129, 131], and (3) the boot function of the boot R package for
the bootstrap family of model validation techniques [41].

7.5.5. Model Construction

We select three types of classifiers that are often used in defect prediction liter-
ature. These types of classifiers include probability-based (i.e., naïve bayes [56]),
regression-based (i.e., logistic regression [48]) and machine learning-based (i.e.,
random forest [34]) classifiers.
Naïve bayes is a probability-based technique that assumes that all of the pre-

dictors are independent of each other [56]. We use the implementation of naïve
bayes that is provided by the naiveBayes R function [155].

162 Chapter 7. The Impact of Model Validation Techniques

Logistic regression measures the relationship between a categorical dependent
variable and one or more independent variables [48]. We use the implementation
of logistic regression that is provided by the glm R function [190].
Random forest is a machine learning classifier that constructs multiple decision

trees from bootstrap samples [34]. Since each tree in the forest may return a
different outcome, the final class of a software module is computed by aggregating
the votes from all trees. We use the implementation of random forest that is
provided by the randomForest R function [135].
To ensure that the training and testing corpora have similar characteristics, we

do not re-balance or re-sample the training data, as suggested by Turhan [244].

Normality Adjustment

Analysis of the distributions of our independent variables reveals that they are
right-skewed. As suggested by previous research [103,152], we mitigate this skew
by log-transforming each independent variable (ln(x+ 1)) prior to using them to
train our models.

7.5.6. Performance Measurement

We apply the defect prediction models that we train using the training corpus to
the testing corpus in order to measure their performance. We use both threshold-
dependent and threshold-independent performance measures to quantify the per-
formance of our models. We describe each performance metric below.

Threshold-Dependent Performance Measures

When applied to a module from the testing corpus, a defect prediction model will
report the probability of that module being defective. In order to calculate the
threshold-dependent performance measures, these probabilities are transformed
into a binary classification (defective or clean) using a threshold value of 0.5,

7.5. Case Study Design 163

i.e., if a module has a predicted probability above 0.5, it is considered defective;
otherwise, the module is considered clean.

Using the threshold of 0.5, we compute the precision and recall performance
measures. Precision measures the proportion of modules that are classified as
defective, which are actually defective (TP

TP+FP). Recall measures the proportion
of actually defective modules that were classified as such (TP

TP+FN). We use the
confusionMatrix function of the caret R package [129, 131] to compute the
precision and recall of our models.

Threshold-Independent Performance Measures

Prior research has argued that the precision and recall are unsuitable for mea-
suring the performance of defect prediction models because they: (1) depend
on an arbitrarily-selected threshold (typically 0.5) [9, 17, 133, 192, 211], and (2)
are sensitive to imbalanced data [52, 93, 139, 147, 227]. Thus, we also use three
threshold-independent performance measures to quantify the performance of our
defect prediction models.

First, we use theArea Under the receiver operator characteristic Curve (AUC) [84]
to measure the discrimination power of our models. The AUC measures a clas-
sifier’s ability to discriminate between defective and clean modules (i.e., do the
defective modules tend to have higher predicted probabilities than clean mod-
ules?). AUC is computed by measuring the area under the curve that plots true
positive rate against the false positive rate while varying the threshold that is
used to determine whether a module is classified as defective or not. Values of
AUC range between 0 (worst classifier performance) and 1 (best classifier perfor-
mance).

In addition to the discrimination power, practitioners often use the predicted
probabilities to rank the defect-prone files [163,170,214,258]. Shihab et al. [214]
point out that practitioners often use the predicted probability to make decisions.

164 Chapter 7. The Impact of Model Validation Techniques

Mockus et al. [163] point out that the appropriate range of probability values is
important to make an appropriate decision (e.g., high-reliability systems may
require a lower cutoff value than 0.5). However, the AUC does not capture all of
the dimensions of a prediction model [55, 87, 222, 224]. To measure the accuracy
of the predicted probabilities, we use the Brier score and the calibration slope.
We use the Brier score [37,201] to measure the distance between the predicted

probabilities and the outcome. The Brier score is calculated as:

B = 1
N

N∑
i=1

(ft − ot)2 (7.4)

where ft is the predicted probability, ot is the outcome for module t encoded as 0
if module t is clean and 1 if it is defective, and N is the total number of modules.
The Brier score ranges from 0 (best classifier performance) to 1 (worst classifier
performance).
Finally, we use the calibration slope to measure the direction and spread of

the predicted probabilities [48, 55, 87, 89, 158, 223, 224]. The calibration slope
is the slope of a logistic regression model that is trained using the predicted
probabilities of our original defect prediction model to predict whether a module
will be defective or not [48]. A calibration slope of 1 indicates the best classifier
performance and a calibration slope of 0 (or less) indicates the worst classifier
performance. We use the val.prob function of the rms R package [88] to calculate
the Brier score, AUC, and calibration slope.

7.5.7. Bias and Variance Calculation

We calculate each performance measure using the model performance on unseen
data and the model validation techniques. In order to address RQ1, we calculate
the bias, i.e., the absolute difference between the performance that we derive from
the model validation techniques and the model performance on unseen data. In
order to address RQ2, we calculate the variance of the performance measures that
we derive from the model validation techniques (in terms of standard deviation).

7.5. Case Study Design 165

7.5.8. Ranking and Clustering

Finally, we group the model validation techniques into statistically distinct ranks
according to the their bias and variance using the Scott-Knott Effect Size Differ-
ence (ESD) test.

The Scott-Knott Effect Size Difference (ESD) test

The Scott-Knott test [203] uses hierarchical cluster analysis to partition the set
of treatment means into statistically distinct groups (α = 0.05). Two major
limitations of the Scott-Knott test are that (1) it assumes that the data should
be normally distributed; and (2) it may create groups that are trivially different
from one another. To strengthen the Scott-Knott test, we propose the Scott-
Knott Effect Size Difference (ESD) test—a variant of the Scott-Knott test that
is normality and effect size aware. The Scott-Knott ESD test will (1) correct the
non-normal distribution of an input dataset; and (2) merge any two statistically
distinct groups that have a negligible effect size into one group.
Normality correction. The Scott-Knott test assumes that the data under analy-
sis are normally distributed. Thus, we mitigate the skewness by log-transforming
each treatment (ln(x+ 1)), since it is a commonly-used transformation technique
in software engineering research [103,152].
Effect size correction. To quantify the effect size, we use Cohen’s delta (d) [44],
which is the difference between two means divided by the standard deviation of
the data:

d = x̄1 − x̄2

s.d.
(7.5)

where the magnitude is assessed using the thresholds provided in Cohen [45], i.e.
|d| < 0.2 “negligible", |d| < 0.5 “small", |d| < 0.8 “medium", otherwise “large".
We implement the Scott-Knott ESD test [228] based on the implementation

166 Chapter 7. The Impact of Model Validation Techniques

Mean Bias
Technique 1

Mean Bias
Technique 1

Bias
Technique 1

1,000x
Mean Bias

Technique N

Mean Bias
Technique N

Bias
Technique N

1,000x

………

Ranked by
Scott-Knott 
ESD tests

(RC-1) Bias Ranking and Clustering

Mean Bias
Technique 1

Mean Bias
Technique 1

Performance  
Estimates

Technique 1

1,000x
Mean Bias

Technique N

Mean Bias
Technique N

Performance  
Estimates

Technique N

1,000x

………

(RC-2) Variance Ranking and Clustering

Ranked by
Scott-Knott 
ESD tests

1…M datasets

1…M datasets

Variance1 VarianceN

Mean Bias1 Mean BiasN

Figure 7.4.: [Empirical Study 3] An overview of our ranking and clustering ap-
proach.

of the Scott-Knott test that is provided by the ScottKnott R package [98] and
the implementation of Cohen’s delta provided by the effsize R package [240].
The R implementation of the ScottKnott ESD test is provided in Appendix E and
published online as an R package.1

Ranking and Clustering Approach

Figure 7.4 provides an overview of our approach. First, to identify the least
biased model validation techniques, similar to our prior work [74], we perform a
double Scott-Knott test. We apply a Scott-Knott ESD test on the bias results
from the 1,000 iterations that are performed for each studied dataset individually.
After performing this first set of Scott-Knott ESD tests, we have a list of ranks

1https://github.com/klainfo/ScottKnottESD

https://github.com/klainfo/ScottKnottESD

7.6. Case Study Results 167

for each model validation technique (i.e., one rank from each studied dataset).
We provide these lists of ranks to a second run of the Scott-Knott’s ESD test,
which produces a ranking of model validation techniques across all of the studied
datasets. We perform the first set of Scott-Knott ESD tests in order to control
for dataset-specific model performance, since some datasets may be more or less
susceptible to bias than others. Since only one variance value is computed for
the 1,000 runs of one technique, only a single Scott-Knott ESD test needs to be
applied to the variance values.

7.6. Case Study Results

In this section, we present the results of our case study with respect to our two
research questions.

(RQ1) Which model validation techniques are the least biased

for defect prediction models?

In order to address RQ1, we compute the bias in terms of precision, recall, Brier
score, AUC, and calibration slope. We then present the results with respect
to probability-based (RQ1-a), regression-based (RQ1-b), and machine learning-
based (RQ1-c) classifiers. Figure 7.5 shows the statistically distinct Scott-Knott
ESD ranks of the bias of the studied model validation techniques.

RQ1-a: Probability-Based Classifiers

The .632, out-of-sample, and optimism-reduced bootstraps are the least biased
model validation techniques for naïve bayes classifiers. Figure 7.5a shows that
the .632, out-of-sample, and optimism-reduced bootstraps are the only model
validation techniques that consistently appear in the top Scott-Knott ESD rank

168 Chapter 7. The Impact of Model Validation Techniques

in terms of precision, recall, Brier score, AUC, and calibration slope bias in both
EPV contexts.

Other techniques appear consistently in the top rank for some metrics, but not
across all metrics. For example, the repeated 10-fold and 10-fold cross-validation
techniques appear in the top rank in terms of precision, recall, AUC, and Brier
score, but not in calibration slope for the high-risk EPV context. We suspect
that the calibration slope that we derived from the 10-fold cross-validation is
upwardly-biased because of the scarcity of defective modules in the small testing
corpus of 10-fold cross-validation (i.e., 10% of the input dataset).

While advanced model validation techniques with built-in repetitions (i.e., re-
peated holdout validation, cross-validation and bootstrap validation) tend to
produce the least biased performance estimates, single-repetition holdout vali-
dation tends to produce the most biased performance estimates. Indeed, single-
repetition holdout validation tends to produce performance estimates with 46%-
229% more bias than the top-ranked model validation techniques, suggesting that
researchers should avoid using single holdout validation, since it tends to produce
overly optimistic or pessimistic performance estimates. However, repeated hold-
out validation produces up to 43% less biased performance estimates than single
holdout validation does. Indeed, by repeating the holdout validation technique,
the amount of bias of the high-risk EPV context is substantially reduced by 30%,
20%, 32%, and 43% for precision, recall, AUC, and calibration slope, respectively.
Indeed, single-repetition holdout validation should be avoided.

RQ1-b: Regression-Based Classifier

The out-of-sample bootstrap is the least biased model validation technique for
logistic regression classifiers. Figure 7.5b shows that the out-of-sample bootstrap
is the only model validation technique that consistently appears in the top Scott-
Knott ESD rank in terms of precision, recall, Brier score, AUC, and calibration

7.6. Case Study Results 169

slope bias in both EPV contexts.
Other techniques appear consistently in the top rank with respect to the low-

risk EPV context, but not the high-risk EPV context. For example, the .632
and optimism-reduced bootstraps, and the 10-fold and repeated 10-fold cross-
validation techniques consistently appear in the top rank in the low-risk EPV
context, but do not consistently appear in the top ranks of the high-risk EPV
context. Indeed, Figure 7.5b indicates that the .632 bootstrap tends to pro-
duce recall estimates with 21% more bias than the top-ranked technique in the
high-risk EPV context, while the optimism-reduced bootstrap, 10-fold, and re-
peated 10-fold cross-validation techniques tend to produce precision estimates
that are 29% more biased than the top ranked technique in the high-risk EPV
context. Furthermore, the bias in performance estimates in the high-risk EPV
context is larger than those of the low-risk EPV context. This indicates that the
performance estimates that are derived from the least biased model validation
techniques in the high-risk EPV context tend to produce 46% more bias than the
least biased model validation techniques in the low-risk EPV context. A lack of
generality across EPV contexts of some model validation techniques and an in-
crease of performance bias in the high-risk EPV context, suggests that selecting a
robust model validation technique is an especially important experimental design
choice in the high-risk EPV contexts that are commonplace in defect datasets (cf.
Section 7.2).

RQ1-c: Machine Learning-Based Classifier

The out-of-sample bootstrap and 2-fold cross-validation are the least biased
model validation techniques for random forest classifiers. Figure 7.5c shows that
the out-of-sample bootstrap and 2-fold cross-validation techniques consistently
appear in the top Scott-Knott ESD rank in terms of precision, recall, Brier score,
AUC, and calibration slope bias in both EPV contexts.

170
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques

1 2 3

●
●

●

0.03

0.06

0.09

[[.
63

2
Boo

tst
ra

p]
]

[[O
pt

im
ism

]]
Ord

ina
ry

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

B
ia

s
(E

P
V

=
3)

Precision

1 2

●

●

●

● ●

0.02

0.04

0.06

0.08

[[.
63

2
Boo

tst
ra

p]
]

[[O
pt

im
ism

]]
Ord

ina
ry

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

Rep
. H

old
ou

t 0
.7

2−
Fo

ld
CV

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

Hold
ou

t 0
.7

B
ia

s
(E

P
V

=
10

)

1 2 3 4

●

●

●

●
●

●

●
●

●

●

●

●

0.1

0.2

[[O
pt

im
ism

]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

[[.
63

2
Boo

tst
ra

p]
]

[[O
ut

−o
f−

sa
m

ple
]]

Ord
ina

ry

2−
Fo

ld
CV

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

Hold
ou

t 0
.5

Recall

1 2 3

●
●

●

●
●

● ●

●

●

0.1

0.2

0.3

[[O
pt

im
ism

]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

[[.
63

2
Boo

tst
ra

p]
]

[[O
ut

−o
f−

sa
m

ple
]]

Ord
ina

ry
2−

Fo
ld

CV

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.7

Hold
ou

t 0
.5

1 2 3

●
●
●●

●

●

●

●

●

●

●
●

●

0.05

0.10

0.15

0.20

[[O
pt

im
ism

]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
LO

OCV

[[.
63

2
Boo

tst
ra

p]
]

[[O
ut

−o
f−

sa
m

ple
]]

Ord
ina

ry
2−

Fo
ld

CV
Hold

ou
t 0

.7

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Brier Score

1 2 3

●

● ●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

[[O
pt

im
ism

]]

10
−F

old
 C

V

Rep
. 1

0−
Fo

ld
CV

LO
OCV

[[.
63

2
Boo

tst
ra

p]
]

Ord
ina

ry

[[O
ut

−o
f−

sa
m

ple
]]

2−
Fo

ld
CV

Hold
ou

t 0
.7

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

1 2 3 4

●
●

0.02

0.04

0.06

0.08

[[.
63

2
Boo

tst
ra

p]
]

[[O
pt

im
ism

]]

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.5

Ord
ina

ry

10
−F

old
 C

V

Rep
. H

old
ou

t 0
.7

[[O
ut

−o
f−

sa
m

ple
]]

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

AUC

1 2 3 4

0.02

0.03

0.04

0.05

[[.
63

2
Boo

tst
ra

p]
]

Rep
. 1

0−
Fo

ld
CV

[[O
pt

im
ism

]]

10
−F

old
 C

V

[[O
ut

−o
f−

sa
m

ple
]]

Ord
ina

ry

2−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 ●

●

0.0

0.1

0.2

0.3

[[O
pt

im
ism

]]

Rep
. H

old
ou

t 0
.5

[[.
63

2
Boo

tst
ra

p]
]

Ord
ina

ry

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.7

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

Slope

1 2

0.00

0.02

0.04

0.06

[[O
pt

im
ism

]]

[[.
63

2
Boo

tst
ra

p]
]

Ord
ina

ry

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

(a) [Empirical Study 3] Probability-Based Classifiers

Figure 7.5.: [Empirical Study 3] The Scott-Knott ESD ranking of the bias of model validation techniques. The
technique in a bracket indicates the top-performing technique for each classifier type. The red diamond
indicates the average amount of bias across our studied datasets.

7.6.
C
ase

Study
R
esults

171

1 2 3 4 5

0.05

0.10

0.15

0.20

0.25

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

2−
Fo

ld
CV

Opt
im

ism

10
−F

old
 C

V
Hold

ou
t 0

.5
Ord

ina
ry

Hold
ou

t 0
.7

B
ia

s
(E

P
V

=
3)

Precision

1 2 3 4 5

●

0.05

0.10

0.15

0.20

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

.6
32

 B
oo

tst
ra

p
Ord

ina
ry

2−
Fo

ld
CV

Opt
im

ism

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

10
−F

old
 C

V

Hold
ou

t 0
.5

Hold
ou

t 0
.7

B
ia

s
(E

P
V

=
10

)

1 2 3 4

●

●

0.04

0.08

0.12

0.16

Rep
. 1

0−
Fo

ld
CV

[[O
ut

−o
f−

sa
m

ple
]]

10
−F

old
 C

V
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Ord
ina

ry

Recall

1 2 3

●

0.02

0.04

0.06

0.08

Rep
. 1

0−
Fo

ld
CV

[[O
ut

−o
f−

sa
m

ple
]]

10
−F

old
 C

V
Opt

im
ism

.6
32

 B
oo

tst
ra

p
2−

Fo
ld

CV

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Ord
ina

ry

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 3 4

●

●
●●

●
●

●

●

●
●

●

● ●●

●●●

●

●

●

0.00

0.02

0.04

0.06

0.08

.6
32

 B
oo

tst
ra

p

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Opt

im
ism

LO
OCV

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.7

Ord
ina

ry
2−

Fo
ld

CV
Hold

ou
t 0

.5

Brier Score

1 2

● ●

0.005

0.010

0.015

0.020

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

[[O
ut

−o
f−

sa
m

ple
]]

LO
OCV

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Opt

im
ism

.6
32

 B
oo

tst
ra

p

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Ord
ina

ry

1 2 3

●
●

●
● ●

●
●

●
●

0.025

0.050

0.075

0.100

0.125

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

Opt
im

ism
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

Ord
ina

ry

AUC

1 2 3 4

●

● ●

●
●

●
●

●

●

0.02

0.04

0.06

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p
Opt

im
ism

2−
Fo

ld
CV

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Ord
ina

ry
Hold

ou
t 0

.7

1 2

● ● ●

●

● ●

●

0.0

0.5

1.0

1.5

Rep
. H

old
ou

t 0
.5

Ord
ina

ry

Rep
. H

old
ou

t 0
.7

Opt
im

ism

.6
32

 B
oo

tst
ra

p

[[O
ut

−o
f−

sa
m

ple
]]

2−
Fo

ld
CV

Hold
ou

t 0
.7

Hold
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

Slope

1 2 3

●

●

●

●

0.0

0.1

0.2

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Ord
ina

ry
Opt

im
ism

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

Hold
ou

t 0
.5

(b) [Empirical Study 3] Regression-Based Classifiers

Figure 7.5.: [Empirical Study 3] The Scott-Knott ESD ranking of the bias of model validation techniques. The
technique in a bracket indicates the top-performing technique for each classifier type. The red diamond
indicates the average amount of bias across our studied datasets. (Cont.)

172
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques

1 2 3 4

●●

●

●
●

●

0.2

0.4

0.6

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

[[2
−F

old
 C

V]]

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

10
−F

old
 C

V

Hold
ou

t 0
.5

Hold
ou

t 0
.7

.6
32

 B
oo

tst
ra

p
Ord

ina
ry

Opt
im

ism

B
ia

s
(E

P
V

=
3)

Precision

1 2 3 4 5

● ●
●

●

●

●

●

● ●

0.0

0.2

0.4

0.6

[[2
−F

old
 C

V]]

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

10
−F

old
 C

V

Rep
. 1

0−
Fo

ld
CV

.6
32

 B
oo

tst
ra

p
Ord

ina
ry

Opt
im

ism

B
ia

s
(E

P
V

=
10

)

1 2 3 4 5 6

●●

●

●

●

●
●
●

●

0.2

0.4

0.6

[[2
−F

old
 C

V]]

Rep
. H

old
ou

t 0
.5

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Hold

ou
t 0

.7

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

Recall

1 2 3 4 5

●

●

●

●

●

●
●

●

●

●

0.0

0.2

0.4

0.6

[[2
−F

old
 C

V]]

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

1 2 3 4 5 6

0.00

0.05

0.10

Rep
. H

old
ou

t 0
.5

LO
OCV

[[O
ut

−o
f−

sa
m

ple
]]

[[2
−F

old
 C

V]]

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Hold

ou
t 0

.7

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

Brier Score

1 2 3 4 5

●

●

0.00

0.05

0.10

0.15

Rep
. H

old
ou

t 0
.5

LO
OCV

[[2
−F

old
 C

V]]

Hold
ou

t 0
.5

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

1 2 3 4 5

●
●

●
●

● ●
●

●

●

● ●

0.1

0.2

0.3

[[O
ut

−o
f−

sa
m

ple
]]

[[2
−F

old
 C

V]]

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

Hold
ou

t 0
.5

10
−F

old
 C

V
Hold

ou
t 0

.7

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

AUC

1 2 3 4 5

●

● ● ●

● ●

● ● ●

● ●

0.0

0.1

0.2

0.3

[[2
−F

old
 C

V]]

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Ord
ina

ry

1 2 3

●●
●

●

●●

●

●

●

0

2

4

Rep
. H

old
ou

t 0
.5

[[O
ut

−o
f−

sa
m

ple
]]

[[2
−F

old
 C

V]]

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

Ord
ina

ry

10
−F

old
 C

V

Rep
. 1

0−
Fo

ld
CV

.6
32

 B
oo

tst
ra

p
Opt

im
ism

Slope

1 2 3 4 5

● ● ●

●

●

0

1

2

3

[[O
ut

−o
f−

sa
m

ple
]]

Rep
. H

old
ou

t 0
.5

[[2
−F

old
 C

V]]

Hold
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.7

10
−F

old
 C

V

Rep
. 1

0−
Fo

ld
CV

Ord
ina

ry
Opt

im
ism

.6
32

 B
oo

tst
ra

p

(c) [Empirical Study 3] Machine Learning-Based Classifiers

Figure 7.5.: [Empirical Study 3] The Scott-Knott ESD ranking of the bias of model validation techniques. The
technique in a bracket indicates the top-performing technique for each classifier type. The red diamond
indicates the average amount of bias across our studied datasets. (Cont.)

7.6. Case Study Results 173

While the .632 and optimism-reduced bootstraps are less biased for the naïve
bayes and logistic regression classifiers, the .632 and optimism-reduced bootstraps
are quite biased for random forest classifiers. We suspect that the upward-bias in
the .632 and optimism-reduced bootstraps have to do with the low training error
rate of random forest. Since the low training error rate often produces a high
apparent performance, the calculation of .632 and optimism-reduced bootstraps,
which are partly computed using the apparent performance, are biased. This
suggests that the .632 and optimism-reduced bootstraps are not appropriate for
classifiers that have low training error rates, such as random forest. This finding
is also complementary to Kohavi et al. [124], who suggests that repeated 10-fold
cross-validation should be used. On the other hand, Kohavi et al. [124] did not
evaluate the out-of-sample bootstrap. In our analysis, we find that the out-of-
sample bootstrap is less-prone to bias than repeated 10-fold cross-validation is.

Summary. Irrespective of the type of classifier, the out-of-sample bootstrap tends
to provide the least biased performance estimates in terms of both threshold-
dependent and threshold-independent performance metrics.

(RQ2) Which model validation techniques are the most stable

for defect prediction models?

In order to address RQ2, we compute the variance in terms of precision, recall,
Brier score, AUC, and calibration slope. We then present the results with respect
to probability-based (RQ2-a), regression-based (RQ2-b), and machine learning-
based (RQ2-c) classifiers. Figure 7.6 shows the statistically distinct Scott-Knott
ESD ranks of the variance of the studied model validation techniques.

174 Chapter 7. The Impact of Model Validation Techniques

RQ2-a: Probability-Based Classifier

All variants of the bootstrap, repeated 10-fold cross validation, and repeated
holdout validation techniques are the most stable model validation techniques
for naïve bayes classifiers. Figure 7.6a shows that, in addition to the repeated
10-fold cross-validation and the repeated holdout techniques, the .632, optimism-
reduced, out-of-sample, and ordinary bootstrap techniques are the only model
validation techniques that consistently appear in the top Scott-Knott ESD rank
in terms of both precision and recall variance in both EPV contexts.

While advanced model validation techniques with built-in repetitions (i.e., re-
peated holdout validation, cross-validation and bootstrap validation) tend to
yield the most stable performance estimates, single holdout validation, which
only uses a single iteration, tends to yield the least stable performance esti-
mates. Indeed, single holdout validation tends to produce performance estimates
with 53%-863% more variance than the most stable model validation techniques.
Moreover, the repeated holdout validation produces 40%-68% more stable per-
formance estimates than single holdout validation does. Indeed, by repeating the
holdout validation technique, the amount of variance in the high-risk EPV con-
text is substantially reduced by 45%, 45%, 48%, 40%, 68% for precision, recall,
Brier score, AUC, and calibration slope, respectively. Indeed, holdout validation
should be avoid unless it is repeated.

RQ2-b: Regression-Based Classifier

The .632 and ordinary bootstraps are the most stable model validation tech-
niques for logistic regression classifiers. Figure 7.6b shows that the .632 and
ordinary bootstraps are the only model validation techniques that consistently
appear in the top Scott-Knott ESD rank in terms of precision, recall, Brier score,
AUC, and calibration slope variance in both EPV contexts.

Other techniques appear consistently in the top rank for the low-risk EPV

7.6. Case Study Results 175

context, but not for high-risk EPV context. For example, the optimism-reduced
bootstrap and the 10-fold cross-validation techniques appear consistently in the
top rank in terms of threshold-dependent metrics in the low-risk EPV context,
but not in the high-risk EPV context. Indeed, Figure 7.6b shows that there is (on
average) a 66% increase in terms of precision variance and 91% increase in terms
of recall variance when those techniques are used in the high-risk EPV context.
We suspect that the precision and recall that are derived from the cross-validation
family are less stable in the high-risk EPV context because an unfortunate split of
the training and testing corpora may result in too few defective modules appearing
in the testing corpus. Hence, very few correct (or incorrect) predictions can have
a very large impact on cross-validation performance estimates.
Furthermore, the optimism-reduced and out-of-sample bootstraps, as well as

the repeated 10-fold cross-validation techniques appear consistently in the top
rank in terms of threshold-independent metrics in the low-risk EPV context, but
not in the high-risk EPV context. Indeed, Figure 7.6b shows that there is (on
average) a 110% increase in terms of AUC variance when those techniques are used
in the high-risk EPV context. We suspect that the AUC is less stable because the
AUC derived from these techniques are calculated from a small amount of data
in the testing corpus. For example, 10-fold cross-validation is validated on 10%
of the original data and the optimism-reduced and out-of-sample bootstraps are
validated on 36.8% of the original data. Conversely, the performance estimates
when using the ordinary bootstrap that are computed using a sample that has the
same size as the original data is likely to produce the most stable performance
estimates. On the other hand, the .632 bootstrap, which is an enhancement
of the out-of-sample bootstrap (cf. Section 7.4), is also generally robust to the
AUC variance. A lack of generality across EPV contexts of some model validation
techniques and an increase of performance variance in the high-risk EPV context,
indeed, suggest that the EPV plays a major role in the stability of performance
estimates.

176
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques

1 2

●

● ●

● ●

●
●

●

●

0.04

0.08

0.12

0.16

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
rd

ina
ry

]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.7
]]

[[O
pt

im
ism

]]

[[R
ep

. 1
0−

Fo
ld

CV]]

2−
Fo

ld
CV

10
−F

old
 C

V
Hold

ou
t 0

.5

Hold
ou

t 0
.7

V
ar

ia
nc

e
(E

P
V

=
3)

Precision

1 2

● ● ●
●

●

● ● ●

●

●

●
●

●

●

●
●

0.025

0.050

0.075

0.100

[[O
rd

ina
ry

]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.5
]]

[[R
ep

. H
old

ou
t 0

.7
]]

[[R
ep

. 1
0−

Fo
ld

CV]]

[[O
pt

im
ism

]]

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

V
ar

ia
nc

e
(E

P
V

=
10

)

1 2

● ● ●● ●

●
● ●

●●

●
●●

0.1

0.2

0.3

[[O
rd

ina
ry

]]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.7
]]

2−
Fo

ld
CV

[[R
ep

. 1
0−

Fo
ld

CV]]

10
−F

old
 C

V

[[O
pt

im
ism

]]
Hold

ou
t 0

.5

Hold
ou

t 0
.7

Recall

1 2

● ●
●

●

●

● ●

●

●
●

●

●

●
●

0.1

0.2

[[O
rd

ina
ry

]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.5
]]

[[R
ep

. 1
0−

Fo
ld

CV]]

[[R
ep

. H
old

ou
t 0

.7
]]

10
−F

old
 C

V

[[O
pt

im
ism

]]

2−
Fo

ld
CV

Hold
ou

t 0
.7

Hold
ou

t 0
.5

1 2

●● ● ●●

●● ●●

●
●

●
●

●

●

●

●
●
●

0.05

0.10

0.15

0.20

[[O
rd

ina
ry

]]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.7
]]

[[R
ep

. 1
0−

Fo
ld

CV]]

10
−F

old
 C

V

[[O
pt

im
ism

]]

2−
Fo

ld
CV

LO
OCV

Hold
ou

t 0
.7

Hold
ou

t 0
.5

Brier Score

1 2

●●

●

●

●

●

●

●●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.05

0.10

0.15

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. 1
0−

Fo
ld

CV]]

10
−F

old
 C

V

[[O
pt

im
ism

]]

[[O
rd

ina
ry

]]

[[O
ut

−o
f−

sa
m

ple
]]

LO
OCV

[[R
ep

. H
old

ou
t 0

.7
]]

[[R
ep

. H
old

ou
t 0

.5
]]

2−
Fo

ld
CV

Hold
ou

t 0
.7

Hold
ou

t 0
.5

1 2 3 4

●● ●● ● ●
●

●
●0.025

0.050

0.075

0.100

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

[[O
pt

im
ism

]]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
ut

−o
f−

sa
m

ple
]]

[[R
ep

. 1
0−

Fo
ld

CV]]

[[R
ep

. H
old

ou
t 0

.7
]]

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

AUC

1 2 3

●●

●

0.01

0.02

0.03

0.04

0.05

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
ut

−o
f−

sa
m

ple
]]

[[R
ep

. H
old

ou
t 0

.7
]]

[[R
ep

. 1
0−

Fo
ld

CV]]

[[O
pt

im
ism

]]

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

1 2

●

●
●

●

●

0.0

0.2

0.4

0.6

[[O
rd

ina
ry

]]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
ut

−o
f−

sa
m

ple
]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.7
]]

[[O
pt

im
ism

]]

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

[[R
ep

. 1
0−

Fo
ld

CV]]
10

−F
old

 C
V

Slope

1 2

0.00

0.02

0.04

0.06

[[O
ut

−o
f−

sa
m

ple
]]

[[R
ep

. H
old

ou
t 0

.5
]]

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

[[R
ep

. H
old

ou
t 0

.7
]]

[[O
pt

im
ism

]]

[[R
ep

. 1
0−

Fo
ld

CV]]

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

(a) [Empirical Study 3] Probability-Based Classifiers

Figure 7.6.: [Empirical Study 3] The Scott-Knott ESD ranking of the variance of model validation techniques.
The technique in a bracket indicates the top-performing technique for each classifier type. The red
diamond indicates the average amount of variance across our studied datasets.

7.6.
C
ase

Study
R
esults

177

1 2 3 4

0.1

0.2

0.3

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

[[.
63

2
Boo

tst
ra

p]
]

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

2−
Fo

ld
CV

Opt
im

ism

10
−F

old
 C

V
Hold

ou
t 0

.5
Hold

ou
t 0

.7

V
ar

ia
nc

e
(E

P
V

=
3)

Precision

1 2 3

●

●
●

●

0.1

0.2

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

[[.
63

2
Boo

tst
ra

p]
]

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

Opt
im

ism
2−

Fo
ld

CV

10
−F

old
 C

V
Hold

ou
t 0

.5
Hold

ou
t 0

.7

V
ar

ia
nc

e
(E

P
V

=
10

)

1 2 3 4

●
● ●

●

0.03

0.06

0.09

0.12

0.15

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Opt

im
ism

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Recall

1 2

●●

●

●●

●
●

0.02

0.04

0.06

0.08

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.7

[[.
63

2
Boo

tst
ra

p]
]

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
Opt

im
ism

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2

● ●

● ●

●●

●
●●

●

● ●

●
●

0.00

0.02

0.04

0.06

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

LO
OCV

Opt
im

ism

10
−F

old
 C

V
2−

Fo
ld

CV

Hold
ou

t 0
.7

Hold
ou

t 0
.5

Brier Score

1 2

●

●

●

● ● ●

●

●

0.000

0.005

0.010

0.015

0.020

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.5

[[.
63

2
Boo

tst
ra

p]
]

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

Opt
im

ism

10
−F

old
 C

V

Out
−o

f−
sa

m
ple

LO
OCV

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 3 4 5

●●

●

●

●

●
●
●

0.02

0.04

0.06

0.08

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

Opt
im

ism

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

AUC

1 2 3 4

●

●

0.01

0.02

0.03

0.04

0.05

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

Opt
im

ism

Rep
. 1

0−
Fo

ld
CV

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

10
−F

old
 C

V

Out
−o

f−
sa

m
ple

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 3

●
●

● ●0.0

0.5

1.0

1.5

2.0

2.5

[[.
63

2
Boo

tst
ra

p]
]

[[O
rd

ina
ry

]]
Opt

im
ism

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

Slope

1 2 3 4 5

● ● ●

● ● ●

●

●

●

●

●

●

0.0

0.1

0.2

Opt
im

ism

[[O
rd

ina
ry

]]

[[.
63

2
Boo

tst
ra

p]
]

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

(b) [Empirical Study 3] Regression-Based Classifiers

Figure 7.6.: [Empirical Study 3] The Scott-Knott ESD ranking of the variance of model validation techniques.
The technique in a bracket indicates the top-performing technique for each classifier type. The red
diamond indicates the average amount of variance across our studied datasets. (Cont.)

178
C
hapter

7.
T
he

Im
pact

ofM
odelValidation

Techniques

1 2 3 4 5

●

●

●

0.0

0.1

0.2

0.3

[[O
rd

ina
ry

]]
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

2−
Fo

ld
CV

10
−F

old
 C

V

Hold
ou

t 0
.5

Hold
ou

t 0
.7

V
ar

ia
nc

e
(E

P
V

=
3)

Precision

1 2 3 4

●

●

●

0.000

0.025

0.050

0.075

0.100

0.125

[[O
rd

ina
ry

]]

Opt
im

ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5

Hold
ou

t 0
.7

V
ar

ia
nc

e
(E

P
V

=
10

)

1 2 3 4 5

●

●

● ●

●
●

0.05

0.10

0.15

[[O
rd

ina
ry

]]
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

Recall

1 2 3 4 5 6 7

●
●

●●

●

●

●

●
●

●

0.025

0.050

0.075

[[O
rd

ina
ry

]]
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. H

old
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 3 4

● ●
●

0.00

0.01

0.02

0.03

0.04

[[O
rd

ina
ry

]]
LO

OCV
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Out
−o

f−
sa

m
ple

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Brier Score

1 2 3 4

●●

●

0.005

0.010

0.015

0.020

[[O
rd

ina
ry

]]
LO

OCV
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Out
−o

f−
sa

m
ple

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V

2−
Fo

ld
CV

Hold
ou

t 0
.5

Hold
ou

t 0
.7

1 2 3 4 5 6

● ●

●0.025

0.050

0.075

0.100

[[O
rd

ina
ry

]]
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.5

Rep
. H

old
ou

t 0
.7

Out
−o

f−
sa

m
ple

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

AUC

1 2 3 4 5 6

●

●

●

●

●

●

0.00

0.02

0.04

[[O
rd

ina
ry

]]
Opt

im
ism

.6
32

 B
oo

tst
ra

p

Rep
. H

old
ou

t 0
.7

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

Rep
. 1

0−
Fo

ld
CV

10
−F

old
 C

V
2−

Fo
ld

CV
Hold

ou
t 0

.5
Hold

ou
t 0

.7

1 2 3 4

● ●
●

●●●

●

● ●●

0

2

4

6

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

2−
Fo

ld
CV

Rep
. H

old
ou

t 0
.7

Hold
ou

t 0
.5

Hold
ou

t 0
.7

Rep
. 1

0−
Fo

ld
CV

.6
32

 B
oo

tst
ra

p

10
−F

old
 C

V
Opt

im
ism

Slope

1 2 3

● ● ●● ●

●

●

●
●

●

0.0

0.5

1.0

1.5

2.0

2.5

Rep
. H

old
ou

t 0
.5

Out
−o

f−
sa

m
ple

[[O
rd

ina
ry

]]

Rep
. H

old
ou

t 0
.7

2−
Fo

ld
CV

Hold
ou

t 0
.5

Rep
. 1

0−
Fo

ld
CV

Hold
ou

t 0
.7

10
−F

old
 C

V

.6
32

 B
oo

tst
ra

p
Opt

im
ism

(c) [Empirical Study 3] Machine Learning-Based Classifiers

Figure 7.6.: [Empirical Study 3] The Scott-Knott ESD ranking of the variance of model validation techniques.
The technique in a bracket indicates the top-performing technique for each classifier type. The red
diamond indicates the average amount of variance across our studied datasets. (Cont.)

7.6. Case Study Results 179

RQ2-c: Machine Learning-Based Classifier

The ordinary bootstrap is the most stable model validation technique for ran-
dom forest classifiers. Figure 7.6c shows that the ordinary bootstrap is the only
model validation technique that consistently appears in the top Scott-Knott ESD
rank in terms of precision, recall, Brier score, AUC, and calibration slope variance
in both EPV contexts.

We suspect that the most stable performance estimates that are being produced
by the ordinary bootstrap because of the statistical inference properties of the
bootstrap itself. Indeed, the key intuition is that the relationship between the
performance that is derived from a studied dataset and the true performance
that would be derived from the population of defect datasets is asymptotically
equivalent to the relationship between the performance that is derived from a
bootstrap sample and the performance that is derived from the studied dataset.

In addition to yielding highly biased results for random forest classifiers (cf.
RQ1-c), the .632 and optimism-reduced bootstraps also tend to produce the least
stable performance estimates in terms of calibration slope. Indeed, this further
supports our suspicion that the .632 and optimism-reduced bootstraps are not
appropriate for classifiers that have low training error rates, such as random
forest.

Summary. Irrespective of the type of classifier, the ordinary bootstrap is the most
stable model validation technique in terms of threshold-dependent and threshold-
independent metrics.

180 Chapter 7. The Impact of Model Validation Techniques

7.7. Discussion

7.7.1. Leave-One-Out Cross-Validation

In Section 7.3, we find that 5% of the analyzed defect prediction literature uses
the LOOCV technique. However, since LOOCV only performs one prediction per
fold, it is incompatible with the majority of our performance metrics. Thus, we
exclude it from our core analysis of our research questions. On the other hand,
the bias and variance of the LOOCV technique can be assessed using the Brier
score.
Leave-one-out cross-validation is among the least biased and most stable

model validation techniques in terms of Brier score. Indeed, Figures 7.5 and 7.6
show that LOOCV appears in the top Scott-Knott ESD ranks in terms of Brier
score bias and variance. This finding is very much complementary to recent
work on software effort estimation [121], which argues for the use of LOOCV for
assessing software effort estimation models.

7.7.2. External Validation

We estimate the model performance using unseen data, which may not be real-
istic, since it is derived from a random sampling. While this random splitting
approach is common in other research areas [32, 97, 116, 124, 125], recent studies
in software engineering tend to estimate the performance of defect models using
data from subsequent releases [104,192–194]. We perform an additional analysis
in order to investigate whether the performance of classifiers that is derived from
model validation techniques is similar to the performance of classifiers that are
trained using one release and tested on the next one. We then repeat all of our
experiments to compute the bias and variance in terms of precision, recall, Brier
score, AUC, and calibration slope of naïve bayes, logistic regression, and random
forest classifiers.

7.7.
D
iscussion

181

●

● ●
●

Holdout 0.5

Holdout 0.7

2−Fold, 10−Fold CV

Rep. 10−Fold CV

Ordinary

Optimism Outsample

.632 Bootstrap

Rep. Holdout 0.5, 0.7

1

1.5

2

2.5

3

11.522.53
Mean Ranks of Bias

M
ea

n
R

an
ks

 o
f V

ar
ia

nc
e

Family ● Bootstrap Cross Validation Holdout

(a) [Empirical Study 3] Internal Validation (Section 7.6)

●

●
●

●

Holdout 0.5

Holdout 0.7

2−Fold CV
 Rep. 10−Fold, 10−Fold CV

Ordinary

Optimism
Outsample

.632 Bootstrap

Rep. Holdout 0.5
Rep. Holdout 0.7

1

1.5

2

11.522.5
Mean Ranks of Bias

M
ea

n
R

an
ks

 o
f V

ar
ia

nc
e

Family ● Bootstrap Cross Validation Holdout

(b) [Empirical Study 3] External Validation (Section 7.7.2)

Figure 7.7.: [Empirical Study 3] A scatter plot of the mean Scott-Knott ESD ranks in terms of bias and variance
among 5 performance metrics, 3 studied classifiers, and 18 studied systems for the high-risk EPV
context (EPV= 3) when using two different types of unseen data, i.e., Figure 7.7a uses the observations
from the input dataset that do not appear in the sample dataset; and Figure 7.7b uses the next software
release. The techniques that appear in the upper-right corner are top-performers.

182 Chapter 7. The Impact of Model Validation Techniques

The out-of-sample bootstrap still yields the best balance between bias and
variance of performance estimates. Based on our analysis of 5 releases of Propri-
etary systems, 2 releases of Apache Xalan, and 3 releases of the Eclipse Platform,
Figure 7.7b shows that, similar to Section 7.6, the out-of-sample bootstrap tends
to provide a good balance between bias and variance of performance estimates
in the high-risk EPV context. We also find a consistent finding in the low-risk
EPV context, indicating that internally validated estimates of model performance
could accurately be obtained with the out-of-sample bootstrap.

7.7.3. The Computational Cost of Model Validation Techniques

Note that the computational cost (i.e., the number of iterations) of each model
validation technique varies (see Table 7.1). For example, the performance that is
derived from holdout validation requires a single iteration, while the performance
derived from bootstrap validations requires several iterations. Thus, for complex
classifiers (e.g., random forest), the advanced model validation techniques (e.g.,
bootstrap validation and repeated 10-fold cross-validation) may require a large
amount of total execution time. However, since each iteration is independent,
they can be computed simultaneously. Therefore, researchers can speed up the
process using multi-core or multi-thread processors.

In addition to the impact of the computational cost of model validation tech-
niques on the total execution time, it may affect the bias and variance of
performance estimates.

The number of iterations impacts the variance of the performance estimates,
but not the bias. Figure 7.6 and Figure 7.7b show that the bootstrap family and
repeated 10-fold cross-validation, which requires several iterations, tend to yield
the most stable performance estimates, indicating that increasing the number
of iterations tends to produce more stable performance estimates. This suggests
that the repeated 10-fold cross-validation is more preferable than the 10-fold cross-

7.8. Practical Guidelines 183

validation. Conversely, we find that the number of iterations tends to have less
of an impact on the bias. For example, all variants of bootstrap and repeated 10-
fold cross-validation that have the same amount of computational cost (i.e., 100
iterations), have different amounts of bias on performance estimates. Hence, we
suspect that the impact of model validation techniques on the bias of performance
estimates may have more to do with their calculation techniques (e.g., type or
size of training and testing data) than the number of iterations.

7.8. Practical Guidelines

Our experimental results indicate that the choice of model validation technique
can influence model performance estimates, especially for complex classifiers. An
inappropriate model validation technique could lead to misleading conclusions.
In this section, we offer practical guidelines for future defect prediction studies:

(1) Single-repetition holdout validation should be avoided.
Section 7.3 shows that 45% of the surveyed defect prediction literature uses
the holdout model validation technique. However, Section 7.6 shows that the
single holdout family is consistently the most biased and least stable model
validation technique. Indeed, our results show that the single holdout family
tends to produce performance estimates with 46%-229% more bias and 53%-
863% more variance than the top-ranked model validation techniques. Hence,
researchers should avoid using the holdout family, since it may produce overly
optimistic or pessimistic performance estimates and yield results that are dif-
ficult to reproduce. Section 7.6 shows that the repetitions of holdout valida-
tion technique substantially reduce the amount bias and variance, suggesting
that the repetition must be applied for the holdout validation. Nonethe-
less, the repeated holdout validation techniques still produce performance
estimates with more variance than the ordinary bootstrap.

184 Chapter 7. The Impact of Model Validation Techniques

(2) Researchers should use out-of-sample bootstrap validation instead of cross-
validation or holdout.
Although other families of model validation techniques are comparable to the
out-of-sample bootstrap techniques in the low-risk EPV context, Figure 7.7a
shows that, in high-risk EPV contexts, the out-of-sample bootstrap technique
is less biased (Figure 7.5) and more stable (Figure 7.6) than the other studied
model validation techniques. Moreover, Figure 7.7b also confirms that inter-
nally validated estimates of model performance can accurately be obtained
with the out-of-sample bootstrap. Furthermore, since Section 7.4 shows that
many publicly-available defect datasets suffer from a high-risk EPV, we rec-
ommend that researchers use the out-of-sample bootstrap in future defect
prediction studies.

7.9. Threats to Validity

Like any empirical study design, experimental design choices may impact the
results of our study [229]. However, we perform a highly-controlled experiment
to ensure that our results are robust. Below, we discuss threats that may impact
the results of our study.

7.9.1. Construct Validity

The datasets that we analyze are part of several collections (e.g., NASA and
PROMISE), which each provide different sets of software metrics. Since the met-
rics vary, this is another point of variation between the studied systems that could
impact the results. On the other hand, the variation of metrics also strengthens
the generalization of our results—our findings are not bound to one specific set
of software metrics.

The conclusions of Section 7.2.2 are based on a rule-of-thumb EPV value that

7.9. Threats to Validity 185

is suggested by Peduzzi et al. [186], who argue that, in order to avoid unstable
results, the EPV of a dataset should be at least 10. However, their conclusions are
not derived in a defect prediction context. Thus, future research should explore
an optimal EPV value for defect prediction context.

The design our experiments of Section 7.5 take the approaches that have been
used in the other research areas into consideration [32,97,116,124,125]. Although
our approach is built upon these successful previous studies, we made several
improvements. For example, Kohavi et al. [124] adopt a simple holdout approach
to generate sample and unseen corpora. However, our approach is based on the
bootstrap concept, which leverages aspects of statistical inference. Moreover, we
also maintain the same defective ratio as the original dataset to ensure that the
sample and unseen datasets are representative of the dataset from which they
were generated. We also repeat the experiment several times to ensure that the
results are robust and that they converge.

Randomness may introduce bias. To combat this bias, we repeat the experi-
ment 1,000 times to ensure that the results converge. While we have reported the
results using 1,000 repetitions, we also repeated the experiment using 300 repeti-
tions, and found consistent results. Thus, we believe the results have converged,
and an increase in the number of repetitions would not alter the conclusions of
our study.

In our experiment, parameter settings of classification techniques may impact
the performance of defect prediction models [14,47,219,229,232]. However, only 2
out of the 3 studied classification techniques (i.e., naïve bayes and random forest)
require at least one parameter setting. Our recent work [232] (see Chapter 6) finds
that both naïve bayes and random forest classifiers are relatively insensitive to
the choice of parameter settings. Hence, we believe that the choice of parameter
settings would not alter the conclusions of our study.

Although the Scott-Knott Effect Size Difference (ESD) test (Section 7.5.8)
uses log-transformations [31] to mitigate the skewness of data distribution, we

186 Chapter 7. The Impact of Model Validation Techniques

are aware that other data transformation techniques (i.e., Box-Cox transforma-
tion [20, 31], Blom transformation [159]) may yield different results [181]. To
ensure that the results are robust, we repeat the experiment 1,000 times, as sug-
gested by Arcuri et al. [13]. Therefore, according to the Central Limit Theorem,
the distribution of bias and variance results will be approximately normally dis-
tributed if the sample size is large enough [165]. We believe that other data
transformation techniques would not alter the conclusions of our study.

Finally, all variants of bootstrap validation techniques are repeated 100 times
(see Table 7.1). While our results show that the 100 repetitions of the out-of-
sample bootstrap validation produce the least biased and most stable performance
estimates, we also repeated the experiment using 200 repetitions, and found con-
sistent results. Hence, we believe that 100 repetitions are sufficient.

7.9.2. Internal Validity

While we find that the out-of-sample bootstrap tends to provide the least bias
and most stable performance estimates across measures in both EPV contexts,
our findings are limited to 5 performance measures—2 threshold-dependent per-
formance measures (i.e., precision and recall) and 3 threshold-independent perfor-
mance measures (i.e., AUC, Brier score, calibration slope). Other performance
measures may yield different results. However, 3 of the studied performance
measures (i.e., precision, recall, and AUC) are commonly used measures in de-
fect prediction studies. We also explore another 2 performance measures (i.e.,
Brier score and calibration slope) that capture other important dimensions of the
performance of a classifier (cf. Section 7.5.6), which have not yet been explored
in the software engineering literature. Nonetheless, other performance measures
can be explored in future work. This chapter provides a detailed methodology for
others who would like to re-examine our findings using unexplored performance
measures.

7.10. Chapter Summary 187

Prior work has shown that noisy data may influence conclusions that are drawn
from defect prediction studies [74, 229, 230]. While Chapter 5 shows that noise
generated by issue report mislabelling has little impact on the precision of de-
fect prediction models, they do indeed impact the ability of identifying defective
modules (i.e., recall). Hence, noisy data may be influencing our conclusions.
However, we conduct a highly-controlled experiment where known-to-be noisy
NASA data [209] has been cleaned. Nonetheless, dataset cleanliness should be
inspected in future work.

7.9.3. External Validity

We study a limited number of datasets in this chapter. Thus, our results may
not generalize to all software systems. To combat potential bias, we analyze 18
datasets from both proprietary and open source domains. Nonetheless, additional
replication studies are needed.

We study only one technique for each classification family, i.e., probability-
based, regression-based, and machine learning-based families. Thus, our results
may not generalize to other classification techniques of each family. Hence, addi-
tional evaluation of families of classification techniques are needed.

7.10. Chapter Summary

Defect prediction models help software quality assurance teams to effectively al-
locate their limited resources to the most defect-prone software modules. Model
validation techniques are used to estimate how well a model will perform on
unseen data, i.e., data other than that which was used to train the model. How-
ever, the validity and the reliability of performance estimates rely heavily on the
employed model validation techniques. Yet, little is known about which model
validation techniques tend to produce the least biased and most stable perfor-

188 Chapter 7. The Impact of Model Validation Techniques

mance estimates.
To that end, this chapter investigates the bias and the variance of 12 model

validation techniques in terms of 2 threshold-dependent performance measures
(i.e., precision and recall) and 3 threshold-independent performance measures
(i.e., Brier score, AUC, and calibration slope). Since many publicly available
defect datasets are at a high risk of producing unstable results (see Section 7.2.2),
we explore the bias and variance of model validation techniques in both high-risk
(i.e., EPV=3) and low-risk (i.e., EPV=10) contexts. We evaluate 3 types of
classifiers that include probability-based (i.e., naïve bayes), regression-based (i.e.,
logistic regression) and machine learning-based (i.e., random forest) classifiers.
Through a case study of 18 datasets spanning both open source and proprietary
domains, we make the following observations:

– The out-of-sample bootstrap is the least biased model validation technique
in terms of both threshold-dependent and threshold-independent perfor-
mance measures.

– The ordinary bootstrap is the most stable model validation technique in
terms of both threshold-dependent and threshold-independent performance
measures.

– In datasets with a high-risk of producing unstable results (i.e., the EPV
is low), the out-of-sample bootstrap family yields a good balance between
bias and variance of model performance.

– The single-repetition holdout validation consistently yields the most biased
and least stable estimates of model performance.

To mitigate the risk of result instability that is present in many defect
datasets, we recommend that future defect prediction studies avoid using
the single-repetition holdout validation and instead opt to use the out-of-
sample bootstrap model validation technique.

7.10. Chapter Summary 189

7.10.1. Concluding Remarks

In the past two chapters, we focus on the impact of the two common overlooked
experimental components (i.g., noise generated by issue report mislabelling and
the choice of parameter settings of classification techniques). In this chapter, we
focus on the impact of model validation techniques.

Part IV.

Conclusion and Future Work

CHAPTER 8

Conclusion and Future Work

Key Concept

The experimental components of defect
prediction modelling do indeed impact de-
fect prediction models.

The limited Software Quality Assurance (SQA) resources of software organi-
zations must focus on software modules (e.g., source code files) that are likely
to be defective in the future. To that end, defect prediction models are trained
to identify defect-prone software modules using statistical or machine learning
classification techniques. However, the predictions and insights derived from de-
fect prediction models may not be accurate and reliable, if practitioners do not
consider the impact of the experimental design choices on defect prediction mod-
elling.

193

194 Chapter 8. Conclusion and Future Work

8.1. Contributions and Findings

The goal of this thesis is to better understand the impact of experimental com-
ponents on defect prediction models. To do so, we set out to investigate the
impact of the three often overlooked experimental components (i.e., noise gener-
ated by issue report mislabelling, parameter settings of classification techniques,
and model validation techniques) of the 3 stages of defect prediction modelling.
Broadly speaking, we find that:

The experimental components of defect prediction modelling impact the pre-
dictions and associated insights that are derived from defect prediction models.
Empirical investigations on the impact of these overlooked experimental com-
ponents are needed to derive practical guidelines for defect prediction mod-
elling.

Below, we reiterate the main findings and its implication of the thesis:

1. Research group shares a strong relationship with the dataset and metrics
families that are used in building models.
Implications: Researchers should experiment with a broader selection of
datasets and metrics in order to maximize external validity (Chapter 3).

2. The strong association among explanatory variables introduces interference
when interpreting the impact of research group on the reported model per-
formance.
Implications: Researchers should carefully mitigate collinearity issues prior
to analysis in order to maximize internal and construct validity (Chapter 3).

3. After mitigating the interference, we find that the research group has a
smaller impact than metric family with respect to the Eclipse dataset fam-
ily.

8.1. Contributions and Findings 195

Implications: Researchers should carefully examine the choice of metrics
when building defect prediction models in order not to produce under-
performing models (Chapter 3).

4. The precision of our defect prediction models is rarely impacted by the noise
generated by issue report mislabelling.
Implications: Practitioners and researchers can rely on the accuracy of
modules labelled as defective by defect prediction models that are trained
using such noisy data (Chapter 5).

5. Defect prediction models that are trained on such noisy data typically
achieve 56%-68% of the recall of models that are trained on clean data.
Implications: Researchers should clean mislabelled issue reports in order to
improve the ability of defect prediction models to identify defective modules
(Chapter 5).

6. The most important variables are generally robust to defect mislabelling.
On the other hand, the second- and third-most important variables are
more unstable than the most important ones.
Implications: Practitioners and researchers should only interpret or make
decisions based on the most important metrics of defect prediction models
when they are trained on noisy data (Chapter 5).

7. Automated parameter optimization substantially improves the performance
and stability of defect prediction models, as well as they change their inter-
pretation.
Implications: Researchers should apply automated parameter optimization
in order to improve the performance and reliability of defect prediction
models (Chapter 6).

8. The single-repetition holdout validation consistently yields the most biased
and least stable estimates of model performance.

196 Chapter 8. Conclusion and Future Work

Implications: Practitioners and researchers should avoid using the single-
repetition holdout validation and instead opt to use the out-of-sample boot-
strap model validation technique in order to produce more accurate and
reliable performance estimates (Chapter 7).

Furthermore, this thesis is the first to introduce a variety of approaches that
future software engineering research can use in their studies:

1. An evaluation approach of the impact of collinearity and multicollinearity
on the insights derived from an ANOVA analysis (Chapter 3). A replication
package of the approach is provided in Appendix A.

2. An evaluation approach of the impact of mislabelling on the performance
and interpretation of defect prediction models (Chapter 5).

3. An evaluation approach of the impact of automated parameter optimization
on the performance, stability, and interpretation of defect prediction models
(Chapter 6).

4. An introduction of a generic variable importance calculation that can be
applied to a variety of classification techniques (Chapter 6). An example R

implementation of the generic variable importance calculation is provided
in Appendix D.

5. An introduction of Caret parameter optimization (Chapter 6). An example
R usage of the Caret parameter optimization is provided in Appendix C.

6. An introduction of a bootstrap sensitivity analysis that can be used to
estimate empirical distributions from an unknown population (e.g., an es-
timation of the likelihood that a technique will appear in the top-rank).
This approach can be used a statistical comparison approach over multiple
datasets (Chapter 6).

8.2. Opportunities for Future Research 197

7. An evaluation approach of the bias and variance of model validation tech-
niques for defect prediction models (Chapter 7).

8. The distribution of Events Per Variable (EPV) of publicly-available defect
datasets (Chapter 7). A list of the datasets and their EPV values is provided
in Appendix B.

9. An introduction of the Scott-Knott Effect Size Difference (ESD) test—an
enhancement of the standard Scott-Knott test (which cluster distributions
(e.g., distributions of the importance score of variables) into statistically
distinct ranks [203]), which makes no assumptions about the underlying
distribution and takes the effect size into consideration (Chapter 7). The R

implementation of the ScottKnott ESD test is provided in Appendix E and
published online as an R package.1

10. An introduction of the two new threshold-independent performance mea-
sures (i.e., Brier score and calibration slope) that capture other important
dimensions of the performance of a classifier (cf. Section 7.5.6), which have
not yet been explored in the software engineering literature (Chapter 7).

11. An introduction of a large collection of model validation techniques, es-
pecially bootstrap validation, which has only rarely been explored in the
software engineering literature (Chapter 7). An example R implementation
of the out-of-sample bootstrap validation is provided in Appendix F.

8.2. Opportunities for Future Research

We believe that our thesis makes a positive contribution towards providing em-
pirical evidence of the impact of experimental components for defect prediction
modelling. However, we believe that our work also opens a number of research

1https://github.com/klainfo/ScottKnottESD

https://github.com/klainfo/ScottKnottESD

198 Chapter 8. Conclusion and Future Work

opportunities. In the following, we highlight potential future work to extend our
results.

8.2.1. Improving early classification approach of issue report

mislabelling

Our approach in Chapter 5 shows that the use of nine characteristics of issue
reports can be used to early detect issue report mislabelling. Even if we select
the characteristics that cover a variety of dimensions. However, future research
should leverage other information and other techniques in order improve the
performance of the detection approach. For example, we can use a text mining
approach with the title and description of issue reports to classify into categories
(e.g., bug, feature improvement).

8.2.2. Understanding the impact of mislabelling on other

classification techniques

Our investigation in Chapter 5 focus only on the random forest classification
technique. Although prior studies have also used random forest [70, 75, 103, 109,
133], our findings are entirely bound to this technique. Future research should
explore the impact of issue report mislabelling on other classification techniques
(e.g., logistic regression).

8.2.3. Understanding the benefits of other parameter

optimization techniques for defect prediction models

Our investigation in Chapter 6 focuses only on Caret parameter optimization.
Caret relies on a grid search technique which exhaustively searches for an optimal
parameter setting for a classification technique. Yet, little is known about the
benefits that other parameter optimization techniques (e.g., random search) have

8.2. Opportunities for Future Research 199

on defect prediction models. Thus, future research should explore the benefits of
other parameter optimization techniques for defect prediction models.

8.2.4. Revisiting defect prediction studies when automated

parameter optimization is applied

Our investigation in Chapter 6 shows that automated parameter optimization
impacts the performance, model stability, and interpretation of defect prediction
models. However, little research applies automated parameter optimization tech-
niques. Thus, future research should revisit prior studies if automated parameter
optimization techniques impacts the performance, model stability, and model in-
terpretation of various settings of defect prediction models, such as, cross-project
defect prediction [257], change classification [117], Just-In-Time (JIT) defect pre-
diction [70, 111], transfer learning models [123, 140], and heterogeneous defect
prediction [176].

Furthermore, recent research applies search-based techniques to identify the
best set of classification techniques for defect prediction models [40]. Search-
based techniques also require a set of configurable parameters, e.g., crossover and
mutation rate. Arcuri et al. [15] point out that such search-based parameters
impact the performance of defect prediction models, which is consistent to the
findings of Chapter 6. Thus, future research should explore if automated param-
eter optimization can help to configure parameters of search-based techniques for
defect prediction model and improve the performance of defect prediction models.

8.2.5. Investigating a rule-of-thumb EPV value for a defect

prediction context

The conclusions of our investigation in Chapter 7 are based on a rule-of-thumb
EPV value that is suggested by Peduzzi et al. [186], who argue that, in order to

200 Chapter 8. Conclusion and Future Work

avoid unstable results, the EPV of a dataset should be at least 10. However, their
conclusions are not derived in a defect prediction context. Thus, future research
should explore an optimal EPV value for defect prediction context.

8.2.6. Understanding the impact of normalization techniques for

the Scott-Knott ESD test

The Scott-Knott Effect Size Difference (ESD) test (Section 7.5.8) uses log trans-
formations [31] to mitigate the skewness of data distribution. However, we aware
that other data transformation techniques (i.e., Box-Cox transformation [20,31],
Blom transformation [159]) may yield different results [181]. Thus, future research
should investigate the impact of normalization techniques for the Scott-Knott
ESD test.

8.2.7. Revisiting defect prediction studies when out-of-sample

bootstrap is applied

Our investigation in Chapter 7 shows that model validation techniques impacts
the accuracy and reliability of the performance estimates that are derived from
defect prediction models. However, little research adopts the out-of-sample boot-
strap validation, suggesting that the reported performance may be inaccurate
and unstable. Thus, future research should revisit prior studies if the out-of-
sample bootstrap validation impacts the conclusions of prior studies, such as,
personalized defect prediction [100], online defect prediction [227], change clas-
sification [117], Just-In-Time (JIT) defect prediction [70, 111], transfer learning
models [123,140], and heterogeneous defect prediction [176].

8.2. Opportunities for Future Research 201

8.2.8. Revisiting prior literature analyses when the overlooked

experimental components are taken into consideration

Our investigation in Chapter 5, Chapter 6, and Chapter 7 show that a variety of
experimental components (i.e., noise cleaning techniques, parameter optimization
techniques, and model validation techniques) impacts the accuracy and reliability
of predictions, insights, and performance estimates that are derived from defect
prediction models. However, prior literature analyses [82,207] does not take into a
consideration these overlooked experimental components. Thus, future literature
analyses should include families of these overlooked experimental components in
order to provide a more complete understanding of defect prediction literature.

8.2.9. Inspecting the cleanliness of publicly-available defect

prediction datasets

Prior work has shown that noisy data may influence conclusions that are drawn
from defect prediction studies [74, 229, 230]. While Chapter 5 shows that noise
generated by issue report mislabelling has little impact on the precision of de-
fect prediction models, they do indeed impact the ability of identifying defective
modules (i.e., recall). However, the conclusions of several defect prediction studies
heavily rely on the use of publicly-available datasets [82,191,210]. Thus, dataset
cleanliness of the publicly-available defect prediction datasets should be inspected
in future work.

8.2.10. Investigating the impact of research toolkits on defect

prediction models

The findings of this thesis rely on one research toolkit (i.e., R). Ramirez et al. [196]
show that different versions of the randomForest R package provide different

202 Chapter 8. Conclusion and Future Work

results. Thus, tools may impact the conclusions of defect prediction studies.
Therefore, future research should investigate if research toolkits impact the con-
clusions of defect prediction models. Also, future research should report the used
functions and tools in order to increase validity and reproducibility of research.

References

[1] Mozilla quality assurance. https://quality.mozilla.org/, 2016. (Cited
on page 2.)

[2] Product quality analyst jobs. http://www.facebook.jobs/

product-quality-analyst/jobs-in/, 2016. (Cited on page 2.)

[3] Quality assurance. https://code.facebook.com/posts/

624281754360665/quality-assurance/, 2016. (Cited on page 2.)

[4] Systems, quality, & security engineering jobs. https://www.amazon.jobs/

en/job_categories/systems-quality-security-engineering, 2016.
(Cited on page 2.)

[5] A. Agresti. An introduction to categorical data analysis, volume 135. Wiley
New York, 1996. (Cited on page 33.)

[6] H. Akaike. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19(6):716–723, 1974. (Cited on page 38.)

[7] F. Akiyama. An Example of Software System Debugging. In Proceedings of
the International Federation of Information Processing Societies Congress
(IFIP’71), pages 353–359, 1971. (Cited on pages 2, 17, and 52.)

203

https://quality.mozilla.org/
http://www.facebook.jobs/product-quality-analyst/jobs-in/
http://www.facebook.jobs/product-quality-analyst/jobs-in/
https://code.facebook.com/posts/624281754360665/quality-assurance/
https://code.facebook.com/posts/624281754360665/quality-assurance/
https://www.amazon.jobs/en/job_categories/systems-quality-security-engineering
https://www.amazon.jobs/en/job_categories/systems-quality-security-engineering

204 References

[8] D. S. Alberts. The economics of software quality assurance. In Proceedings
of the National Computer Conference and Exposition, pages 433–442. ACM,
1976. (Cited on page 2.)

[9] D. G. Altman, B. Lausen, W. Sauerbrei, and M. Schumacher. Dangers of
Using “optimal" Cutpoints in the Evaluation of Prognostic Factors. Journal
of the National Cancer Institute, 86(1994):829–835, 1994. (Cited on pages
25, 107, and 163.)

[10] D. G. Altman and P. Royston. What do we mean by validating a prognostic
model? Statistics in Medicine, 19(4):453–473, 2000. (Cited on page 141.)

[11] G. Antoniol, K. Ayari, M. D. Penta, and F. Khomh. Is it a Bug or an En-
hancement? A Text-based Approach to Classify Change Requests. In Pro-
ceedings of the IBM Centre for Advanced Studies Conference (CASCON),
pages 1–15, 2008. (Cited on pages 43, 52, and 56.)

[12] J. Aranda and G. Venolia. The Secret Life of Bugs: Going Past the Errors
and Omissions in Software Repositories. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 298–308, 2009. (Cited
on pages 43 and 56.)

[13] A. Arcuri and L. Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 1–10,
2011. (Cited on page 186.)

[14] A. Arcuri and G. Fraser. On parameter tuning in search based software
engineering. In Search Based Software Engineering (SBSE), pages 33–47.
Springer, 2011. (Cited on page 185.)

References 205

[15] A. Arcuri and G. Fraser. Parameter tuning or default values? An empiri-
cal investigation in search-based software engineering. Empirical Software
Engineering, 18(3):594–623, 2013. (Cited on pages 132 and 199.)

[16] E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for
building fault-proneness models in telecom java software. In Proceedings of
the International Symposium on Software Reliability Engineering (ISSRE),
pages 215–224, 2007. (Cited on pages 23 and 45.)

[17] E. Arisholm, L. C. Briand, and E. B. Johannessen. A Systematic and Com-
prehensive Investigation of Methods to Build and Evaluate Fault Prediction
Models. Journal of Systems and Software (JSS), 83(1):2–17, 2010. (Cited
on pages 25, 63, 107, and 163.)

[18] P. C. Austin and E. W. Steyerberg. Events per variable (EPV) and the
relative performance of different strategies for estimating the out-of-sample
validity of logistic regression models. Statistical Methods in Medical Re-
search, 0(0):1–13, 2014. (Cited on page 141.)

[19] A. Avram. Ensuring product quality at google. https://www.infoq.

com/news/2011/03/Ensuring-Product-Quality-Google, 2011. (Cited on
page 2.)

[20] M. Azzeh, A. B. Nassif, and L. L. Minku. An empirical evaluation of
ensemble adjustment methods for analogy-based effort estimation. Journal
of Systems and Software (JSS), 103:36–52, 2015. (Cited on pages 24, 46,
138, 186, and 200.)

[21] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The
Missing Links: Bugs and Bug-fix Commits. In Proceedings of the Inter-
national Symposium on the Foundations of Software Engineering (FSE),
pages 97–106, 2010. (Cited on pages 43, 44, 52, 55, 59, and 130.)

https://www.infoq.com/news/2011/03/Ensuring-Product-Quality-Google
https://www.infoq.com/news/2011/03/Ensuring-Product-Quality-Google

206 References

[22] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Transactions on Software Engi-
neering (TSE), 22(10):751–761, 1996. (Cited on pages 19, 23, and 45.)

[23] C. Beleites, R. Baumgartner, C. Bowman, R. Somorjai, G. Steiner,
R. Salzer, and M. G. Sowa. Variance reduction in estimating classifica-
tion error using sparse datasets. Chemometrics and Intelligent Laboratory
Systems, 79(1-2):91–100, 2005. (Cited on page 155.)

[24] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimiza-
tion. The Journal of Machine Learning Research (JMLR), 13(1):281–305,
2012. (Cited on pages 85 and 97.)

[25] N. Bettenburg and A. E. Hassan. Studying the impact of social interactions
on software quality. Empirical Software Engineering, 18(2):375–431, 2013.
(Cited on page 98.)

[26] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think Locally , Act
Globally : Improving Defect and Effort Prediction Models. In Proceedings
of the Working Conference on Mining Software Repositories (MSR), pages
60–69, 2012. (Cited on pages 23 and 45.)

[27] S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahvas. Software Defect Predic-
tion Using Regression via Classification. In Proceedings of the International
Conference on Computer Systems and Applications (ICCSA), pages 330–
336, 2006. (Cited on page 96.)

[28] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and Balanced? Bias in Bug-Fix Datasets. In Proceedings of
the European Software Engineering Conference and the Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 121–130, 2009.
(Cited on pages 43, 44, 52, 55, 59, and 130.)

References 207

[29] C. Bird, B. Murphy, and H. Gall. Don’t Touch My Code! Examining the Ef-
fects of Ownership on Software Quality. In Proceedings of the joint meeting
of the European Software Engineering Conference and the symposium on
the Foundations of Software Engineering (ESEC/FSE), pages 4–14, 2011.
(Cited on pages 20, 23, 63, 64, and 150.)

[30] D. Bowes, T. Hall, and J. Petrić. Different classifiers find different defects
although with different level of consistency. In Proceedings of the Inter-
national Conference on Predictive Models and Data Analytics in Software
Engineering (PROMISE), page 3, 2015. (Cited on page 131.)

[31] G. E. Box and D. R. Cox. An analysis of transformations. Journal of the
Royal Statistical Society. Series B (Methodological), pages 211–252, 1964.
(Cited on pages 185, 186, and 200.)

[32] U. M. Braga-Neto and E. R. Dougherty. Is cross-validation valid for small-
sample microarray classification? Bioinformatics, 20(3):374–380, 2004.
(Cited on pages 103, 150, 155, 161, 180, and 185.)

[33] L. Breiman. Bias, variance and arcing classifiers. Statistics, 1996. (Cited
on page 93.)

[34] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001. (Cited
on pages 65, 67, 161, and 162.)

[35] L. Breiman and P. Spector. Submodel Selection and Evaluation in Regres-
sion. The X-Random Case. International Statistical Institute, 60(3):291–
319, 1992. (Cited on pages 151 and 155.)

[36] L. C. Briand, J. Wüst, and H. Lounis. Replicated case studies for in-
vestigating quality factors in object-oriented designs. Empirical Software
Engineering, 6(1):11–58, 2001. (Cited on pages 23 and 45.)

208 References

[37] G. W. Brier. Verification of Forecasets Expressed in Terms of Probability.
Monthly Weather Review, 78(1):25–27, 1950. (Cited on pages 26 and 164.)

[38] F. J. Buckley and R. Poston. Software quality assurance. IEEE Transac-
tions on Software Engineering (TSE), 10(1):36–41, 1984. (Cited on pages
2 and 15.)

[39] B. Caglayan, B. Turhan, A. Bener, M. Habayeb, A. Miransky, and
E. Cialini. Merits of organizational metrics in defect prediction: an indus-
trial replication. In Proceedings of the International Conference on Software
Engineering (ICSE), volume 2, pages 89–98, 2015. (Cited on page 3.)

[40] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and
S. Panichella. Defect prediction as a multiobjective optimization problem.
Software Testing, Verification and Reliability, 25(4):426–459, 2015. (Cited
on page 199.)

[41] A. Canty and B. Ripley. boot: Bootstrap r (s-plus) functions. http://

CRAN.R-project.org/package=boot, 2014. (Cited on pages 65 and 161.)

[42] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb. Software Dependen-
cies, Work Dependencies, and Their Impact on Failures. IEEE Transactions
on Software Engineering (TSE), 35(6):864–878, 2009. (Cited on pages 2,
52, and 57.)

[43] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering (TSE), 20(6):476–493,
1994. (Cited on page 17.)

[44] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. 1988.
(Cited on pages 38, 110, 111, and 165.)

http://CRAN.R-project.org/package=boot
http://CRAN.R-project.org/package=boot

References 209

[45] J. Cohen. A power primer. Psychological bulletin, 112(1):155, 1992. (Cited
on pages 111 and 165.)

[46] J. Concato, A. R. Feinstein, and T. R. Holford. The Risk of Determining
Risk with Multivariable Models. Annals of Internal Medicine, 118(3):201–
210, 1993. (Cited on page 141.)

[47] A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, F. Sarro, and
E. Mendes. How effective is tabu search to configure support vector regres-
sion for effort estimation? In Proceedings of the International Conference
on Predictive Models in Software Engineering (PROMISE), page 4, 2010.
(Cited on page 185.)

[48] D. R. Cox. Two Further Applications of a Model for Binary Regression.
Biometrika, 45(3):562–565, 1958. (Cited on pages 26, 143, 144, 161, 162,
and 164.)

[49] H. Cramér. Mathematical methods of statistics, volume 9. Princeton uni-
versity press, 1999. (Cited on page 33.)

[50] M. D’Ambros, M. Lanza, and R. Robbes. An Extensive Comparison of
Bug Prediction Approaches. In Proceedings of the Working Conference on
Mining Software Repositories (MSR), pages 31–41, 2010. (Cited on pages
2, 52, 100, 101, 142, 158, and 251.)

[51] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating Defect Prediction Ap-
proaches: A Benchmark and an Extensive Comparison. Empirical Software
Engineering, 17(4-5):531–577, 2012. (Cited on pages 10, 17, 23, 24, 46, 100,
101, 138, 142, 158, and 251.)

[52] J. Davis and M. Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the International Conference on Machine Learning
(ICML’06), pages 233–240, 2006. (Cited on pages 25, 107, and 163.)

210 References

[53] A. C. Davison and P. Hall. On the bias and variability of bootstrap
and cross-validation estimates of error rate in discrimination problems.
Biometrika, 79(2):279–284, 1992. (Cited on page 155.)

[54] K. Dejaeger, W. Verbeke, D. Martens, and B. Baesens. Data Mining Tech-
niques for Software Effort Estimation: A Comparative Study. IEEE Trans-
actions on Software Engineering (TSE), 38(2):375–397, 2012. (Cited on
pages 24, 46, and 138.)

[55] S. den Boer, N. F. de Keizer, and E. de Jonge. Performance of prognostic
models in critically ill cancer patients - a review. Critical care, 9(4):R458–
R463, 2005. (Cited on pages 26, 107, and 164.)

[56] P. Domingos and M. Pazzani. On the optimality of the simple bayesian
classifier under zero-one loss. Machine learning, 29(2-3):103–130, 1997.
(Cited on page 161.)

[57] E. Dougherty, C. Sima, J. Hua, B. Hanczar, and U. Braga-Neto. Perfor-
mance of Error Estimators for Classification. Bioinformatics, 5(1):53–67,
2010. (Cited on page 155.)

[58] B. Efron. Estimating the Error Rate of a Prediction Rule: Improve-
ment on Cross-Validation. Journal of the American Statistical Association,
78(382):316–331, 1983. (Cited on pages 27, 102, 103, 126, and 153.)

[59] B. Efron. How Biased Is the Apparent Error Rate of a Prediction Rule
? Journal of the American Statistical Association, 81(394):461–470, 1986.
(Cited on page 152.)

[60] B. Efron and G. Gong. A Leisurely Look at the Bootstrap , the Jackknife ,
and Cross-Validation. The American Statistician, 37(1):36–48, 1983. (Cited
on pages 150 and 152.)

References 211

[61] B. Efron and R. Tibshirani. Improvements on Cross-Validation: The
632+ Bootstrap Method. Journal of the American Statistical Association,
92(438):548–560, 1997. (Cited on page 155.)

[62] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Springer
US, Boston, MA, 1993. (Cited on pages 27, 34, 102, 126, 150, and 152.)

[63] R. Efron, B. and Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall, 1993. (Cited on pages 64 and 65.)

[64] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we Need
Hundreds of Classifiers to Solve Real World Classification Problems? Jour-
nal of Machine Learning Research (JMLR), 15(1):3133–3181, 2014. (Cited
on page 129.)

[65] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179–188, 1936. (Cited on page 91.)

[66] J. H. Friedman. Multivariate adaptive regression splines. The Annals of
Statistics, pages 1–67, 1991. (Cited on page 89.)

[67] M. Friendly. heplots: Visualizing hypothesis tests in multivariate linear
models. http://CRAN.R-project.org/package=heplots, 2015. (Cited
on page 34.)

[68] S. Fritsch and F. Guenther. neuralnet: Training of neural networks. http:

//CRAN.R-project.org/package=neuralnet, 2015. (Cited on page 97.)

[69] W. Fu, T. Menzies, and X. Shen. Tuning for software analytics: Is it really
necessary? Information and Software Technology, 76:135–146, 2016. (Cited
on page 131.)

[70] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi.
An Empirical Study of Just-in-Time Defect Prediction using Cross-Project

http://CRAN.R-project.org/package=heplots
http://CRAN.R-project.org/package=neuralnet
http://CRAN.R-project.org/package=neuralnet

212 References

Models. In Proceedings of the Working Conference on Mining Software
Repositories (MSR), pages 172–181, 2014. (Cited on pages 65, 80, 198, 199,
and 200.)

[71] J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple
model local structure mapping. In Proceedings of the International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 283–291,
2008. (Cited on page 99.)

[72] K. Gao and T. M. Khoshgoftaar. A comprehensive empirical study of count
models for software fault prediction. IEEE Transactions on Reliability,
56(2):223–236, 2007. (Cited on pages 47, 138, and 154.)

[73] S. Geisser. Sample Reuse Method The Predictive with Applications. Jour-
nal of the American Statistical Association, 70(350):320–328, 1975. (Cited
on pages 27 and 150.)

[74] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classi-
fication techniques on the performance of defect prediction models. In Pro-
ceedings of the International Conference on Software Engineering (ICSE),
pages 789–800, 2015. (Cited on pages 24, 45, 46, 97, 99, 101, 110, 125, 131,
134, 138, 166, 187, and 201.)

[75] G. Gousios, M. Pinzger, and A. V. Deursen. An Exploratory Study of the
Pull-Based Software Development Model. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), pages 345–355, 2014.
(Cited on pages 65, 80, and 198.)

[76] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault inci-
dence using software change history. IEEE Transactions on Software En-
gineering (TSE), 26(7):653–661, 2000. (Cited on pages 19 and 20.)

References 213

[77] R. Grewal, J. a. Cote, and H. Baumgartner. Multicollinearity and Mea-
surement Error in Structural Equation Models: Implications for Theory
Testing. Marketing Science, 23(4):519–529, 2004. (Cited on page 34.)

[78] A. Günes Koru and H. Liu. An investigation of the effect of module size on
defect prediction using static measures. In Proceedings of the International
Workshop on Predictor Models in Software Engineering (PROMISE), pages
1–5, 2005. (Cited on pages 84 and 96.)

[79] L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-
proneness by random forests. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 417–428, 2004. (Cited
on page 143.)

[80] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE Trans-
actions on Software Engineering (TSE), 31(10):897–910, 2005. (Cited on
page 19.)

[81] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The WEKA data mining software: an update. SIGKDD explorations
newsletter, 11(1):10–18, 2009. (Cited on pages 24, 96, 97, and 136.)

[82] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A Systematic
Literature Review on Fault Prediction Performance in Software Engineer-
ing. IEEE Transactions on Software Engineering (TSE), 38(6):1276–1304,
nov 2012. (Cited on pages 3, 9, 23, 42, 46, 52, 84, 114, 149, and 201.)

[83] M. H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc., 1977. (Cited on page 17.)

214 References

[84] J. a. Hanley and B. J. McNeil. The meaning and use of the area under
a receiver operating characteristic (ROC) curve. Radiology, 143(4):29–36,
1982. (Cited on pages 25, 143, and 163.)

[85] M. Harman. The current state and future of search based software en-
gineering. In 2007 Future of Software Engineering, pages 342–357. IEEE
Computer Society, 2007. (Cited on pages 97 and 132.)

[86] M. Harman, P. McMinn, J. De Souza, and S. Yoo. Search based software
engineering: Techniques, taxonomy, tutorial. pages 1–59, 2012. (Cited on
pages 85, 97, and 132.)

[87] F. E. Harrell Jr. Regression Modeling Strategies. Springer, 1st edition, 2002.
(Cited on pages 26, 27, 37, 65, 103, 107, 150, 152, and 164.)

[88] F. E. Harrell Jr. rms: Regression modeling strategies. http://CRAN.

R-project.org/package=rms, 2015. (Cited on pages 37, 107, and 164.)

[89] F. E. Harrell Jr., K. L. Lee, and D. B. Mark. Tutorial in Biostatistics
Multivariable Prognostic Models : Issues in Developing Models, Evaluting
Assumptions and Adequacy, and Measuring and Reducing Errors. Statistics
in Medicine, 15:361–387, 1996. (Cited on pages 26 and 164.)

[90] A. E. Hassan. Predicting Faults Using the Complexity of Code Changes.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 78–88, 2009. (Cited on pages 2, 19, 52, and 62.)

[91] A. E. Hassan and R. C. Holt. The Top Ten List: Dynamic Fault Prediction.
In Proceedings of the International Conference on Software Maintenance
(ICSM), pages 263–272, 2005. (Cited on pages 19 and 79.)

[92] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. Springer, 2009. (Cited on pages 27 and 152.)

http://CRAN.R-project.org/package=rms
http://CRAN.R-project.org/package=rms

References 215

[93] H. He and E. A. Garcia. Learning from Imbalanced Data. Transactions on
Knowledge and Data Engineering (TKDE), 21(9):1263–1284, 2009. (Cited
on pages 25, 107, and 163.)

[94] K. Herzig, S. Just, and A. Zeller. It’s Not a Bug, It’s a Feature: How Mis-
classification Impacts Bug Prediction. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 392–401, 2013. (Cited
on pages 9, 43, 44, 52, 53, 56, 78, and 131.)

[95] K. Herzig and A. Zeller. The Impact of Tangled Code Changes. In Proceed-
ings of the Working Conference on Mining Software Repositories (MSR),
pages 121–130, 2013. (Cited on page 59.)

[96] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning
algorithms. Transactions on Knowledge and Data Engineering, 17(3):299–
310, 2005. (Cited on page 107.)

[97] A. Isaksson, M. Wallman, H. Göransson, and M. Gustafsson. Cross-
validation and bootstrapping are unreliable in small sample classification.
Pattern Recognition Letters, 29(14):1960–1965, 2008. (Cited on pages 150,
155, 161, 180, and 185.)

[98] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman. The ScottKnott Clustering
Algorithm. Universidade Estadual de Santa Cruz - UESC, Ilheus, Bahia,
Brasil, 2014. (Cited on pages 68, 110, and 166.)

[99] Y. Jia, M. Cohen, and M. Petke. Learning Combinatorial Interaction Test
Generation Strategies using Hyperheuristic Search. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 540–550,
2015. (Cited on pages 97 and 132.)

[100] T. Jiang, L. Tan, and S. Kim. Personalized defect prediction. pages 279–
289. Ieee, nov 2013. (Cited on pages 23, 45, 99, and 200.)

216 References

[101] Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction
models. Empirical Software Engineering, 13(5):561–595, 2008. (Cited on
pages 96 and 143.)

[102] Y. Jiang, B. Cukic, and T. Menzies. Fault Prediction using Early Lifecycle
Data. In Proceedings of the International Symposium on Software Reliability
(ISSRE), pages 237–246, 2007. (Cited on page 143.)

[103] Y. Jiang, B. Cukic, and T. Menzies. Can Data Transformation Help in
the Detection of Fault-prone Modules? In Proceedings of the Workshop on
Defects in Large Software Systems (DEFECTS), pages 16–20, 2008. (Cited
on pages 65, 80, 84, 96, 106, 114, 162, 165, and 198.)

[104] Y. Jiang, B. Cukic, T. Menzies, and J. Lin. Incremental development of
fault prediction models. International Journal of Software Engineering
and Knowledge Engineering (SEKE), 23(10):1399–1425, 2013. (Cited on
page 180.)

[105] Y. Jiang, J. Lin, B. Cukic, and T. Menzies. Variance Analysis in Software
Fault Prediction Models. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 99–108, 2009. (Cited
on pages 23, 45, 141, 143, 150, and 155.)

[106] J. Jiarpakdee, C. Tantithamthavorn, A. Ihara, and K. Matsumoto. A study
of redundant metrics in defect prediction datasets. In Proceedings of the In-
ternational Symposium on Software Reliability Engineering (ISSRE), page
To Appear, 2016. (Cited on page 106.)

[107] M. Jorgensen and M. Shepperd. A Systematic Review of Software Develop-
ment Cost Estimation Studies. IEEE Transactions on Software Engineering
(TSE), 33(1):33–53, 2007. (Cited on page 97.)

References 217

[108] M. Jureczko and L. Madeyski. Towards identifying software project clusters
with regard to defect prediction. In Proceedings of the International Con-
ference on Predictive Models in Software Engineering (PROMISE), pages
9:1–9:10, 2010. (Cited on pages 100, 158, 248, 249, and 250.)

[109] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and
A. E. Hassan. Revisiting Common Bug Prediction Findings Using Effort-
Aware Models. In Proceedings of the International Conference on Software
Maintenance (ICSM), pages 1–10, 2010. (Cited on pages 42, 63, 65, 80,
and 198.)

[110] Y. Kamei, A. Monden, S. Morisaki, and K.-i. Matsumoto. A hybrid faulty
module prediction using association rule mining and logistic regression anal-
ysis. In Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), page 279, 2008. (Cited on pages
23 and 45.)

[111] Y. Kamei, E. Shihab, B. Adams, a. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi. A Large-Scale Empirical Study of Just-in-Time Quality Assur-
ance. IEEE Transactions on Software Engineering (TSE), 39(6):757–773,
2013. (Cited on pages 17, 62, 199, and 200.)

[112] P. Kampstra. Beanplot: A boxplot alternative for visual comparison of
distributions. Journal of Statistical Software, 28(1):1–9, 2008. (Cited on
pages 71 and 142.)

[113] A. E. Kazdin. The meanings and measurement of clinical significance. 1999.
(Cited on page 106.)

[114] J. Keung, E. Kocaguneli, and T. Menzies. Finding conclusion stability for
selecting the best effort predictor in software effort estimation. Automated
Software Engineering (ASE), 20(4):543–567, 2013. (Cited on page 126.)

218 References

[115] T. Khoshgoftaar and N. Seliya. Comparative Assessment of Software Qual-
ity Classification Techniques : An Empirical Case Study. Empirical Soft-
ware Engineering, 9:229–257, 2004. (Cited on pages 24, 46, 99, and 138.)

[116] J.-H. Kim. Estimating classification error rate: Repeated cross-validation,
repeated hold-out and bootstrap. Computational Statistics & Data Analy-
sis, 53(11):3735–3745, 2009. (Cited on pages 155, 161, 180, and 185.)

[117] S. Kim, E. J. W. Jr, and Y. Zhang. Classifying Software Changes: Clean
or Buggy? IEEE Transactions on Software Engineering (TSE), 34(2):181–
196, 2008. (Cited on pages 199 and 200.)

[118] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with Noise in Defect
Prediction. In Proceeding of the International Conference on Software En-
gineering (ICSE), pages 481–490, 2011. (Cited on pages 9, 42, 44, 52, 57,
80, 81, 100, 101, 130, 142, 158, 250, and 251.)

[119] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting
Faults from Cached History. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 489–498, 2007. (Cited on pages 2
and 52.)

[120] B. A. Kitchenham. Software quality assurance. Microprocessors and mi-
crosystems, 13(6):373–381, 1989. (Cited on pages 2 and 15.)

[121] E. Kocaguneli and T. Menzies. Software effort models should be as-
sessed via leave-one-out validation. Journal of Systems and Software (JSS),
86(7):1879–1890, 2013. (Cited on pages 151, 155, and 180.)

[122] E. Kocaguneli, T. Menzies, A. B. Bener, and J. W. Keung. Exploiting
the essential assumptions of analogy-based effort estimation. IEEE Trans-
actions on Software Engineering (TSE), 38(2):425–438, 2012. (Cited on
pages 85 and 97.)

References 219

[123] E. Kocaguneli, T. Menzies, and E. Mendes. Transfer learning in effort
estimation. Empirical Software Engineering, mar 2014. (Cited on pages
199 and 200.)

[124] R. Kohavi. A Study of Cross-Validation and Bootstrap for Accuracy Es-
timation and Model Selection. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 1137–1143, 1995.
(Cited on pages 155, 161, 173, 180, and 185.)

[125] R. Kohavi and D. H. Wolpert. Bias plus variance decomposition for zero-one
loss functions. In Proceedings of the International Conference on Machine
Learning (ICML’96), 1996. (Cited on pages 161, 180, and 185.)

[126] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. In-
vestigating code review quality: Do people and participation matter? In
Proceedings of the International Conference on Software Maintenance and
Evolution (ICSME), pages 111–120. IEEE, 2015. (Cited on page 98.)

[127] A. G. Koru and J. Tian. Defect handling in medium and large open source
projects. IEEE Software, 21(4):54–61, 2004. (Cited on page 44.)

[128] S. Kotsiantis. Supervised Machine Learning: A Review of Classification
Techniques. Informatica, 31:249–268, 2007. (Cited on pages 88, 91, and 92.)

[129] M. Kuhn. Building Predictive Models in R Using caret Package. Journal
of Statistical Software, 28(5), 2008. (Cited on pages 105, 161, and 163.)

[130] M. Kuhn. C50: C5.0 decision trees and rule-based models. http://CRAN.

R-project.org/package=C50, 2015. (Cited on page 114.)

[131] M. Kuhn. caret: Classification and regression training. http://CRAN.

R-project.org/package=caret, 2015. (Cited on pages 85, 103, 105, 133,
135, 136, 161, and 163.)

http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret

220 References

[132] I. H. Laradji, M. Alshayeb, and L. Ghouti. Software defect prediction
using ensemble learning on selected features. Information and Software
Technology (IST), 58:388–402, 2015. (Cited on page 96.)

[133] S. Lessmann, S. Member, B. Baesens, C. Mues, and S. Pietsch. Bench-
marking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Transactions on Software Engineer-
ing (TSE), 34(4):485–496, 2008. (Cited on pages 10, 24, 25, 45, 46, 65, 80,
96, 107, 110, 125, 138, 143, 163, and 198.)

[134] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. W. Jr. Does
Bug Prediction Support Human Developers ? Findings From a Google
Case Study. In Proceedings of the International Conference on Software
Engineering (ICSE). (Cited on page 3.)

[135] A. Liaw and M. Wiener. randomforest: Breiman and cutler’s random forests
for classification and regression. http://CRAN.R-project.org/package=

randomForest, 2015. (Cited on pages 97 and 162.)

[136] G. A. Liebchen and M. Shepperd. Data sets and data quality in software
engineering. In Proceedings of the International Workshop on Predictor
Models in Software Engineering (PROMISE), pages 39–44. ACM, 2008.
(Cited on page 43.)

[137] A. Lim, L. Breiman, and A. Cutler. bigrf: Big Random Forests: Classifica-
tion and Regression Forests for Large Data Sets, 2014. (Cited on pages 65,
67, and 97.)

[138] S. Lohar, A. Zisman, M. Keynes, and J. Cleland-huang. Improving Trace
Accuracy through Data-Driven Configuration and Composition of Tracing
Features. In Proceedings of the International Symposium on Foundations
of Software Engineering (FSE), pages 378–388, 2013. (Cited on page 132.)

http://CRAN.R-project.org/package=randomForest
http://CRAN.R-project.org/package=randomForest

References 221

[139] Y. Ma and B. Cukic. Adequate and Precise Evaluation of Quality Models in
Software Engineering Studies. In Proceedings of the International Workshop
on Predictor Models in Software Engineering (PROMISE), pages 1–9, 2007.
(Cited on pages 25, 107, and 163.)

[140] Y. Ma, G. Luo, X. Zeng, and A. Chen. Transfer learning for cross-company
software defect prediction. Information and Software Technology (IST),
54(3):248–256, 2012. (Cited on pages 10, 24, 46, 99, 138, 199, and 200.)

[141] C. Mair and M. Shepperd. The consistency of empirical comparisons of
regression and analogy-based software project cost prediction. In Proceed-
ings of the International Symposium on Empirical Software Engineering
(ESEM), page 10, 2005. (Cited on page 97.)

[142] M. V. Mantyla, F. Khomh, B. Adams, E. Engstrom, and K. Petersen. On
rapid releases and software testing. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 20–29, 2013. (Cited
on page 2.)

[143] MATLAB. version 8.5.0 (R2015a). The MathWorks Inc., Natick, Mas-
sachusetts, 2015. (Cited on pages 96 and 97.)

[144] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering (TSE), (4):308–320, 1976. (Cited on page 17.)

[145] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The Impact of Code
Review Coverage and Code Review Participation on Software Quality. In
Proceedings of the Working Conference on Mining Software Repositories
(MSR), pages 192–201, 2014. (Cited on pages 2, 23, 52, 57, and 98.)

[146] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of
the impact of modern code review practices on software quality. Empirical
Software Engineering, 2015. (Cited on page 98.)

222 References

[147] T. Mende. Replication of Defect Prediction Studies: Problems, Pitfalls
and Recommendations. In Proceedings of the International Conference on
Predictive Models in Software Engineering (PROMISE), pages 1–10, 2010.
(Cited on pages 25, 46, 84, 96, 101, 103, 107, 141, 155, and 163.)

[148] T. Mende and R. Koschke. Revisiting the evaluation of defect prediction
models. In Proceedings of the International Conference on Predictive Models
in Software Engineering (PROMISE), page 7, 2009. (Cited on pages 46,
84, and 96.)

[149] T. Mende and R. Koschke. Effort-Aware Defect Prediction Models. Pro-
ceedings of the European Conference on Software Maintenance and Reengi-
neering (CSMR), pages 107–116, mar 2010. (Cited on page 143.)

[150] T. Mende, R. Koschke, and M. Leszak. Evaluating Defect Prediction Models
for a Large Evolving Software System. In Proceedings of the European
Conference on Software Maintenance and Reengineering (CSMR), pages
247–250, 2009. (Cited on page 96.)

[151] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures
with developer networks and social network analysis. In Proceedings of
the International Symposium on the Foundations of Software Engineering
(FSE), page 13, New York, New York, USA, 2008. (Cited on page 23.)

[152] T. Menzies, J. Greenwald, and A. Frank. Data Mining Static Code At-
tributes to Learn Defect Predictors. IEEE Transactions on Software Engi-
neering (TSE), 33(1):2–13, 2007. (Cited on pages 10, 47, 99, 138, 142, 154,
162, and 165.)

[153] T. Menzies, C. Pape, R. Krishna, and M. Rees-Jones. The Promise Repos-
itory of Empirical Software Engineering Data. http://openscience.us/

repo, 2015. (Cited on page 142.)

http://openscience.us/repo
http://openscience.us/repo

References 223

[154] T. Menzies and M. Shepperd. Special issue on repeatable results in software
engineering prediction. Empirical Software Engineering, 17(1-2):1–17, 2012.
(Cited on pages 6, 42, 47, 84, 97, 138, 154, and 155.)

[155] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C.-C.
Chang, and C.-C. Lin. e1071: Misc Functions of the Department of Statis-
tics (e1071), TU Wien. http://CRAN.R-project.org/package=e1071,
2014. (Cited on page 161.)

[156] D. Meyer, A. Zeileis, K. Hornik, F. Gerber, and M. Friendly. vcd: Visual-
izing categorical data. http://CRAN.R-project.org/package=vcd, 2015.
(Cited on page 33.)

[157] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural
and statistical classification. 1994. (Cited on page 23.)

[158] M. E. Miller, S. L. Hui, and W. M. Tierney. Validation techniques for
logistic regression models. Statistics in medicine, 10(8):1213–1226, 1991.
(Cited on pages 26 and 164.)

[159] N. Mittas and L. Angelis. Ranking and Clustering Software Cost Estimation
Models through a Multiple Comparisons Algorithm. IEEE Transactions on
Software Engineering (TSE), 39(4):537–551, 2013. (Cited on pages 10, 24,
38, 42, 46, 47, 84, 97, 110, 138, 154, 186, and 200.)

[160] A. Mockus. Missing Data in Software Engineering. In Guide to Advanced
Empirical Software Engineering, pages 185–200. 2008. (Cited on pages 43
and 52.)

[161] A. Mockus. Organizational Volatility and its Effects on Software Defects.
In Proceedings of the International Symposium on Foundations of Software
Engineering (FSE), pages 117–127, 2010. (Cited on pages 2, 52, and 57.)

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=vcd

224 References

[162] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach
to identifying expertise. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 503–512. ACM, 2002. (Cited on
page 20.)

[163] A. Mockus and D. M. Weiss. Predicting Risk of Software Changes. Bell
Labs Technical Journal, 5(6):169–180, 2000. (Cited on pages 2, 3, 23, 25,
52, 63, and 163.)

[164] A. M. Molinaro, R. Simon, and R. M. Pfeiffer. Prediction error estimation:
a comparison of resampling methods. Bioinformatics, 21(15):3301–3307,
Aug. 2005. (Cited on pages 150 and 155.)

[165] D. S. Moore. The basic practice of statistics, volume 2. WH Freeman New
York, 2007. (Cited on page 186.)

[166] R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact
design quality? a case study of the qt, vtk, and itk projects. In Proceed-
ings of the International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 171–180, 2015. (Cited on page 98.)

[167] R. Moser, W. Pedrycz, and G. Succi. A Comparative Analysis of the Effi-
ciency of Change Metrics and Static Code Attributes for Defect Prediction.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 181–190, 2008. (Cited on pages 2, 52, and 63.)

[168] I. Myrtveit and E. Stensrud. Validity and reliability of evaluation proce-
dures in comparative studies of effort prediction models. Empirical Software
Engineering, 17(1-2):23–33, 2011. (Cited on page 155.)

[169] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and Validity in
Comparative Studies of Software Prediction Models. IEEE Transactions

References 225

on Software Engineering (TSE), 31(5):380–391, 2005. (Cited on pages 10,
24, 46, 47, 97, 138, 139, 154, and 155.)

[170] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. Proceedings International Conference on Software
Engineering (ICSE), 2005. (Cited on pages 19, 25, and 163.)

[171] N. Nagappan and T. Ball. Using software dependencies and churn metrics
to predict field failures: An empirical case study. In First International
Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 364–373, 2007. (Cited on pages 3 and 19.)

[172] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict compo-
nent failures. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 452–461, 2006. (Cited on page 3.)

[173] N. Nagappan, B. Murphy, and V. Basili. The influence of organizational
structure on software quality: an empirical case study. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 521–530.
ACM, 2008. (Cited on page 20.)

[174] N. Nagappan, B. Murphy, and V. R. Basili. The Influence of Organizational
Structure on Software Quality: An Empirical Case Study. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 521–
530, 2008. (Cited on pages 63 and 150.)

[175] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy.
Change Bursts as Defect Predictors. In Proceedings of the International
Symposium on Software Reliability Engineering (ISSRE), pages 309–318,
2010. (Cited on pages 2, 3, and 52.)

[176] J. Nam and S. Kim. Heterogeneous Defect Prediction. In Proceedings
of the European Software Engineering Conference and the Foundations of

226 References

Software Engineering (ESEC/FSE), pages 508–519, 2015. (Cited on pages
199 and 200.)

[177] P. Nemenyi. Distribution-free multiple comparisons. PhD thesis, Princeton
University, 1963. (Cited on page 110.)

[178] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Multi-
layered Approach for Recovering Links between Bug Reports and Fixes. In
Proceedings of the International Symposium on the Foundations of Software
Engineering (FSE), pages 63:1–63:11, 2012. (Cited on pages 43, 44, 52,
and 55.)

[179] T. H. Nguyen, B. Adams, and A. E. Hassan. A Case Study of Bias in Bug-
Fix Datasets. In Proceedings of the Working Conference on Reverse Engi-
neering (WCRE), pages 259–268, 2010. (Cited on pages 55, 56, and 130.)

[180] T. H. D. Nguyen, B. Adams, and A. E. Hassan. Studying the impact of
dependency network measures on software quality. In Proceedings of the
International Conference on Software Maintenance (ICSM), 2010. (Cited
on page 23.)

[181] J. W. Osborne. Improving your data transformations: Applying the box-cox
transformation. Practical Assessment, Research & Evaluation, 15(12):1–9,
2010. (Cited on pages 186 and 200.)

[182] T. Ostrand, E. Weyuker, and R. Bell. Predicting the location and num-
ber of faults in large software systems. IEEE Transactions on Software
Engineering (TSE), 31(4):340–355, apr 2005. (Cited on page 3.)

[183] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia. How to Effectively Use Topic Models for Software Engineering Tasks

References 227

? An Approach Based on Genetic Algorithms. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE), pages 522–531, 2013.
(Cited on page 132.)

[184] A. Panichella, R. Oliveto, and A. De Lucia. Cross-project defect prediction
models: L’union fait la force. In Proceedings of the International Con-
ference on Software Maintenance, Reengineering and Reverse Engineering
(CSMR/WCRE), pages 164–173, 2014. (Cited on pages 45 and 131.)

[185] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn:
Machine learning in python. The Journal of Machine Learning Research
(JMLR), 12:2825–2830, 2011. (Cited on pages 24, 96, and 136.)

[186] P. Peduzzi, J. Concato, E. Kemper, T. R. Holford, and A. R. Feinstein. A
Simulation Study of the Number of Events per Variable in Logistic Regres-
sion Analysis. Journal of Clinical Epidemiology, 49(12):1373–1379, 1996.
(Cited on pages xvi, 102, 141, 142, 143, 185, and 199.)

[187] F. Peters, T. Menzies, L. Gong, and H. Zhang. Balancing Privacy and
Utility in Cross-Company Defect Prediction. IEEE Transactions on Soft-
ware Engineering (TSE), 39(8):1054–1068, 2013. (Cited on pages 24, 46,
and 138.)

[188] K. L. Priddy and P. E. Keller. Artificial Neural Networks: An Introduction,
volume 68. SPIE Press, 2005. (Cited on page 152.)

[189] B. R. Clifford. Tests of Hypotheses for Unbalanced Factorial Designs Un-
der Various Regression/Coding Method Combinations. Educational and
Psychological Measurement, (38):621–631, 1978. (Cited on page 34.)

228 References

[190] R Core Team. R: A language and environment for statistical comput-
ing. http://www.R-project.org/, 2013. (Cited on pages 24, 34, 96, 143,
and 162.)

[191] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic. Software Fault Pre-
diction Metrics: A Systematic Literature Review. Information and Software
Technology (IST), 55(8):1397–1418, 2013. (Cited on pages 52 and 201.)

[192] F. Rahman and P. Devanbu. How, and Why, Process Metrics Are Better.
In Proceedings of the International Conference on Software Engineering
(ICSE), pages 432–441, 2013. (Cited on pages 25, 42, 56, 59, 63, 64, 79,
80, 107, 142, 163, and 180.)

[193] F. Rahman, I. Herraiz, D. Posnett, and P. Devanbu. Sample Size vs. Bias
in Defect Prediction. In Proceedings of the joint meeting of the European
Software Engineering Conference and the symposium on the Foundations
of Software Engineering (FSE), pages 147–157, 2013. (Cited on pages 44,
52, 130, and 180.)

[194] F. Rahman, D. Posnett, and P. Devanbu. Recalling the “Imprecision" of
Cross-Project Defect Prediction. In Proceedings of the International Sympo-
sium on the Foundations of Software Engineering (FSE), pages 61:1–61:11,
2012. (Cited on page 180.)

[195] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu. BugCache
for Inspections: Hit or Miss? In Proceedings of the European Software
Engineering Conference and the Symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 322–331, 2011. (Cited on pages 2 and 52.)

[196] C. Ramirez, M. Nagappan, and M. Mirakhorli. Studying the impact of
evolution in r libraries on software engineering research. In 1st International

http://www.R-project.org/

References 229

Workshop on Software Analytics (SWAN), pages 29–30, 2015. (Cited on
page 201.)

[197] L. M. Rea and R. A. Parker. Designing and conducting survey research: A
comprehensive guide. John Wiley & Sons, 2014. (Cited on page 33.)

[198] T. C. Redman. The impact of poor data quality on the typical enterprise.
Commun. ACM, 41(2):79–82, Feb. 1998. (Cited on page 43.)

[199] J. T. E. Richardson. Eta squared and partial eta squared as measures of
effect size in educational research. Educational Research Review, 6(2):135–
147, 2011. (Cited on pages 34 and 38.)

[200] B. Ripley. nnet: Feed-forward neural networks and multinomial log-linear
models. http://CRAN.R-project.org/package=nnet, 2015. (Cited on
page 97.)

[201] K. Rufibach. Use of Brier score to assess binary predictions. Journal of
Clinical Epidemiology, 63(8):938–939, 2010. (Cited on pages 26 and 164.)

[202] W. S. Sarle. The varclus procedure. In SAS/STAT User’s Guide. SAS
Institute, Inc, 4th edition, 1990. (Cited on page 106.)

[203] A. J. Scott and M. Knott. A Cluster Analysis Method for Grouping Means
in the Analysis of Variance. Biometrics, 30(3):507–512, 1974. (Cited on
pages 67, 141, 165, and 197.)

[204] C. Seiffert, T. M. Khoshgoftaar, and J. Van Hulse. Improving software-
quality predictions with data sampling and boosting. IEEE Transactions on
Systems, Man, and Cybernetics Part A:Systems and Humans, 39(6):1283–
1294, 2009. (Cited on pages 23 and 45.)

[205] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco. An Empirical
Study of the Classification Performance of Learners on Imbalanced and

http://CRAN.R-project.org/package=nnet

230 References

Noisy Software Quality Data. Information Sciences, 259:571–595, 2014.
(Cited on page 57.)

[206] G. Seni and J. F. Elder. Ensemble Methods in Data Mining: Improving
Accuracy Through Combining Predictions, volume 2. Jan. 2010. (Cited on
pages 24, 46, and 138.)

[207] M. Shepperd, D. Bowes, and T. Hall. Researcher Bias: The Use of Machine
Learning in Software Defect Prediction. IEEE Transactions on Software
Engineering (TSE), 40(6):603–616, 2014. (Cited on pages 3, 5, 8, 32, 34,
38, 39, 97, and 201.)

[208] M. Shepperd and G. Kadoda. Comparing software prediction techniques
using simulation. IEEE Transactions on Software Engineering (TSE),
27(11):1014–1022, 2001. (Cited on pages 10, 138, and 155.)

[209] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data quality: Some comments
on the NASA software defect datasets. IEEE Transactions on Software
Engineering (TSE), 39(9):1208–1215, 2013. (Cited on pages 100, 101, 134,
142, 158, 187, 247, and 248.)

[210] E. Shihab. An Exploration of Challenges Limiting Pragmatic Software De-
fect Prediction. PhD thesis, Queen’s University, 2012. (Cited on pages 23,
25, 52, 149, and 201.)

[211] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang. An Industrial Study
on the Risk of Software Changes. In Proceedings of the International Sym-
posium on the Foundations of Software Engineering (FSE), page 62, 2012.
(Cited on pages 2, 3, 107, and 163.)

[212] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan.
Understanding the Impact of Code and Process Metrics on Post-Release

References 231

Defects: A Case Study on the Eclipse Project. In Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM), 2010. (Cited on pages 2, 52, and 63.)

[213] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan. High-Impact Defects
: A Study of Breakage and Surprise Defects. pages 300–310, 2011. (Cited
on page 17.)

[214] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan. High-Impact Defects: A
Study of Breakage and Surprise Defects. In Proceedings of the joint meeting
of the European Software Engineering Conference and the symposium on
the Foundations of Software Engineering (ESEC/FSE’11), pages 300–310,
2011. (Cited on pages 2, 25, 52, 57, 98, and 163.)

[215] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi. A
study of the quality-impacting practices of modern code review at sony
mobile. In Proceedings of the International Conference on Software Engi-
neering (ICSE), pages 212–221. ACM, 2016. (Cited on page 3.)

[216] J. Siegmund, N. Siegmund, and S. Apel. Views on internal and external
validity in empirical software engineering. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), pages 1276–1304, 2015.
(Cited on page 40.)

[217] M. R. Sikonja. Improving Random Forests. In Proceedings of the European
Conference on Machine Learning (ECML), pages 359–370, 2004. (Cited on
page 65.)

[218] Y. Singh and A. S. Chauhan. Neural networks in data mining. Journal of
Theoretical and Applied Information Technology, 5(6):36–42, 2009. (Cited
on page 90.)

232 References

[219] L. Song, L. L. Minku, and X. Yao. The impact of parameter tuning
on software effort estimation using learning machines. In Proceedings of
the International Conference on Predictive Models in Software Engineering
(PROMISE), page 9, 2013. (Cited on page 185.)

[220] L. Song, L. L. Minku, and X. Yao. The Impact of Parameter Tuning on
Software Effort Estimation Using Learning Machines. In Proceedings of
the International Conference on Predictive Models in Software Engineering
(PROMISE), pages 1–10, 2013. (Cited on pages 98, 114, and 132.)

[221] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A General Software
Defect-Proneness Prediction Framework. IEEE Transactions on Software
Engineering (TSE), 37(3):356–370, 2011. (Cited on pages 45, 99, 101, 143,
and 156.)

[222] E. W. Steyerberg. Clinical prediction models: a practical approach to de-
velopment, validation, and updating. Springer Science & Business Media,
2008. (Cited on pages 26, 27, 107, 150, 152, and 164.)

[223] E. W. Steyerberg, M. J. Eijkemans, F. E. Harrell Jr., and J. D. Habbema.
Prognostic modelling with logistic regression analysis: a comparison of se-
lection and estimation methods in small data sets. Statistics in Medicine,
19:1059–1079, 2000. (Cited on pages 26, 141, and 164.)

[224] E. W. Steyerberg, A. J. Vickers, N. R. Cook, T. Gerds, N. Obuchowski,
M. J. Pencina, and M. W. Kattan. Assessing the performance of prediction
models: a framework for some traditional and novel measures. Epidemiol-
ogy, 21(1):128–138, 2010. (Cited on pages 26, 107, and 164.)

[225] M. Stone. Cross-Validatory Choice and Assessment of Statistical Predic-
tions. Journal of the Royal Statistical Society, 36(2):111–147, 1974. (Cited
on pages 27 and 150.)

References 233

[226] M. D. Syer, M. Nagappan, B. Adams, and A. E. Hassan. Replicating and
re-evaluating the theory of relative defect-proneness. IEEE Transactions
on Software Engineering (TSE), 41(2):176–197, 2015. (Cited on page 19.)

[227] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online Defect Prediction for Im-
balanced Data. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 99–108, 2015. (Cited on pages 3, 25, 99, 107,
163, and 200.)

[228] C. Tantithamthavorn. ScottKnottESD: An R package of The Scott-Knott
Effect Size Difference (ESD) Test. https://cran.r-project.org/web/

packages/ScottKnottESD/index.html, 2016. (Cited on page 165.)

[229] C. Tantithamthavorn. Towards a Better Understanding of the Impact of
Experimental Components on Defect Prediction Modelling. In Compan-
ion Proceedings of the International Conference on Software Engineering
(ICSE), pages 867––870, 2016. (Cited on pages 1, 41, 97, 130, 134, 138,
184, 185, 187, and 201.)

[230] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto. The Impact of Mislabelling on the Performance and Interpretation
of Defect Prediction Models. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 812–823, 2015. (Cited on pages 51,
97, 98, 130, 131, 134, 142, 187, and 201.)

[231] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. An
Empirical Comparison of Model Validation Techniques for Defect Predic-
tion Models. IEEE Transactions on Software Engineering (TSE), 2016.
(Cited on pages 102, 110, 131, and 137.)

[232] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. Au-
tomated Parameter Optimization of Classification Techniques for Defect

https://cran.r-project.org/web/packages/ScottKnottESD/index.html
https://cran.r-project.org/web/packages/ScottKnottESD/index.html

234 References

Prediction Models. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 321–322, 2016. (Cited on pages 24, 46, 83,
138, and 185.)

[233] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. Com-
ments on "Researcher Bias: The Use of Machine Learning in Software De-
fect Prediction". IEEE Transactions on Software Engineering (TSE), 2016.
(Cited on pages 31, 101, 102, 103, 106, 126, and 156.)

[234] A. Tarvo. Using Statistical Models to Predict Software Regressions. In
Proceedings of the International Symposium on Software Reliability Engi-
neering (ISSRE), 2008. (Cited on page 150.)

[235] G. Tassey. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, RTI Project,
7007(011), 2002. (Cited on page 2.)

[236] M. Tenenhaus, V. E. Vinzi, Y.-M. Chatelin, and C. Lauro. Pls path model-
ing. Computational statistics & data analysis, 48(1):159–205, 2005. (Cited
on page 89.)

[237] S. W. Thomas, M. Nagappan, D. Blostein, and A. E. Hassan. The Im-
pact of Classifier Configuration and Classifier Combination on Bug Local-
ization. IEEE Transactions on Software Engineering (TSE), 39(10):1427–
1443, 2013. (Cited on page 132.)

[238] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code
ownership and its relationship with software quality in the scope of modern
code review. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 1039–1050, 2016. (Cited on pages 20 and 98.)

References 235

[239] Y. Tian, N. Ali, D. Lo, and A. E. Hassan. On the unreliability of bug
severity data. Empirical Software Engineering, pages 1–26, 2015. (Cited on
page 43.)

[240] M. Torchiano. effsize: Efficient effect size computation. http://CRAN.

R-project.org/package=effsize, 2015. (Cited on pages 110 and 166.)

[241] A. Tosun. Ensemble of Software Defect Predictors: A Case Study. In Pro-
ceedings of the International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 318–320, 2008. (Cited on pages 24, 46,
and 138.)

[242] A. Tosun and A. Bener. Reducing false alarms in software defect predic-
tion by decision threshold optimization. In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 477–480, 2009. (Cited on pages 84, 96, and 114.)

[243] Y.-K. Tu, M. Kellett, V. Clerehugh, and M. S. Gilthorpe. Problems of
correlations between explanatory variables in multiple regression analyses
in the dental literature. British dental journal, 199(7):457–461, 2005. (Cited
on page 34.)

[244] B. Turhan. On the dataset shift problem in software engineering prediction
models. Empirical Software Engineering, 17(1-2):62–74, 2011. (Cited on
page 162.)

[245] B. Turhan, G. Kocak, and A. Bener. Data mining source code for locating
software bugs: A case study in telecommunication industry. Expert Systems
with Applications, 36(6):9986–9990, 2009. (Cited on pages 24, 46, and 138.)

[246] B. Turhan, A. Tosun Misirli, and A. Bener. Empirical evaluation of the
effects of mixed project data on learning defect predictors. Information

http://CRAN.R-project.org/package=effsize
http://CRAN.R-project.org/package=effsize

236 References

and Software Technology (IST), 55(6):1101–1118, 2013. (Cited on pages
10, 42, 47, 138, and 154.)

[247] H. Wang, T. M. Khoshgoftaar, and A. Napolitano. A Comparative Study of
Ensemble Feature Selection Techniques for Software Defect Prediction. In
International Conference on Machine Learning and Applications (ICMLA),
pages 135–140, 2010. (Cited on pages 24, 46, and 138.)

[248] S. Wang and X. Yao. Using Class Imbalance Learning for Software Defect
Prediction. IEEE Transactions on Reliability, 62(2):434–443, 2013. (Cited
on page 132.)

[249] T. Wang and W.-h. Li. Naive Bayes Software Defect Prediction Model.
International Conference on Computational Intelligence and Software En-
gineering (CISE), (2006):1–4, 2010. (Cited on page 143.)

[250] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too many cooks spoil
the broth? Using the number of developers to enhance defect prediction
models. Empirical Software Engineering, 13(5):539–559, 2008. (Cited on
pages 63 and 96.)

[251] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2005. (Cited on page 23.)

[252] D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259,
1992. (Cited on pages 24, 46, and 138.)

[253] R. Wu, H. Zhang, S. Kim, and S. C. Cheung. ReLink: Recovering Links
between Bugs and Changes. In Proceedings of the joint meeting of the Eu-
ropean Software Engineering Conference and the symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages 15–25, 2011. (Cited
on pages 44, 55, 101, 130, and 142.)

References 237

[254] Z.-H. Zhou. Ensemble learning. In Encyclopedia of Biometrics, pages 270–
273. Springer, 2009. (Cited on page 93.)

[255] T. Zimmermann and N. Nagappan. Predicting defects using network anal-
ysis on dependency graphs. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 531–540, 2008. (Cited on pages 3,
19, and 150.)

[256] T. Zimmermann and N. Nagappan. Predicting defects with program depen-
dencies. In Proceedings of the International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pages 435–438, 2009. (Cited
on page 3.)

[257] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-
project defect prediction. In Proceedings of the European Software En-
gineering Conference and the symposium on the Foundations of Software
Engineering (ESEC/FSE), pages 91–100, 2009. (Cited on pages 3, 10, 19,
24, 46, 138, and 199.)

[258] T. Zimmermann, R. Premraj, and A. Zeller. Predicting Defects for Eclipse.
In Proceedings of the International Workshop on Predictor Models in Soft-
ware Engineering (PROMISE), pages 9–20, 2007. (Cited on pages 2, 17,
19, 25, 52, 100, 101, 142, 150, 158, 163, and 250.)

APPENDIX A

Replication Package for Chapter 3

A.1. Download dataset and scripts

– Download misc.R from http://sailhome.cs.queensu.ca/replication/

researcher_bias_comments/misc.R

– Download rawdata.csv from http://sailhome.cs.queensu.ca/replication/

researcher_bias_comments/rawdata.csv, which is a copy version of https:

//codefeedback.cs.herts.ac.uk/mlbias/rawdata.csv

A.2. Load miscellaneous functions

1 source (" misc .R")

A.3. The Presence of Collinearity

1 pa i r <− combn(c (" ResearcherGroup " , " MetricFamily " , " DatasetFamily " , "
C l a s s i f i e rFam i l y ") , 2)

2 r e s u l t s <− NULL

239

http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/misc.R
http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/misc.R
http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/rawdata.csv
http://sailhome.cs.queensu.ca/replication/researcher_bias_comments/rawdata.csv
https://codefeedback.cs.herts.ac.uk/mlbias/rawdata.csv
https://codefeedback.cs.herts.ac.uk/mlbias/rawdata.csv

240 Appendix A. Replication Package for Chapter 3

3 f o r (i in 1 : nco l (pa i r)) {
4 Xsq <− a s s o c s t a t s (t ab l e (data [, pa i r [1 , i]] , data [, pa i r [2 , i]]))
5

6 r e s u l t s <− rbind (r e s u l t s , c (
7 " Pair "=paste0 (pa i r [, i] , c o l l a p s e=" = ") ,
8 "Cramer ’ s V"= s p r i n t f ("%.2 f%s " ,
9 Xsq$cramer ,

10 i f e l s e (Xsq$chisq_tests [2 , 3] <= 0 .05 ,
"∗∗∗ " , "−")

11) ,
12 "Magnitude"=Cramer (Xsq$cramer)
13)
14)
15 }

A.3.1. Table 3.1

1 r e s u l t s [rev (order (r e s u l t s [, " Cramer ’ s V"])) ,]

Pair Cramer’s V Magnitude

[1,] "ResearcherGroup = MetricFamily" "0.65***" "Strong"

[2,] "ResearcherGroup = DatasetFamily" "0.56***" "Rel.strong"

[3,] "MetricFamily = DatasetFamily" "0.55***" "Rel.strong"

[4,] "ResearcherGroup = ClassifierFamily" "0.54***" "Rel.strong"

[5,] "DatasetFamily = ClassifierFamily" "0.34***" "Moderate"

[6,] "MetricFamily = ClassifierFamily" "0.21***" "Moderate"

A.4. The Interference of Collinearity

1 boot s t rap_ana lys i s <− f unc t i on (data , indep , N) {
2

3 r e s u l t s <− NULL
4 f o r (i in 1 :N) {

A.4. The Interference of Collinearity 241

5 # generate a bootstramp sample
6 i n d i c e s <− sample (nrow (data) , nrow (data) , r ep l a c e=T)
7

8 # permute the orde r ing o f exp lanatory v a r i a b l e s
9 f o r (o rde r ing in permn (1 : l ength (indep))) {

10 p r ed i c t o r <− indep [o rde r ing]
11

12 # tra i n a l i n e a r r e g r e s s i o n model us ing the boots t rap
sample

13 f <− formula (paste ("MCC ~ " , paste (p red i c to r , c o l l a p s e="
∗ ")))

14 m <− lm(f , data=data [i nd i c e s ,])
15

16 # compute the p a r t i a l eta−square s t a t i s t i c
17 e t a_re su l t s <− etasq (aov (m) , p a r t i a l=T) [, " Pa r t i a l eta

^ 2 "] [1 : l ength (indep)]
18 names (e t a_re su l t s) <− p r ed i c t o r
19

20 ranking <− 1 :4
21 names (ranking) <− indep [o rde r ing]
22

23 r e s u l t s <− rbind (r e s u l t s , data . frame (
24 va r i ab l e=indep ,
25 ranking=ranking [indep] ,
26 value=e ta_re su l t s [indep])
27)
28 }
29 }
30 rownames (r e s u l t s) <− NULL
31 re turn (data . frame (r e s u l t s))
32 }
33

34 s e t . seed (1234)
35 indep <− c (" ResearcherGroup " , " DatasetFamily " , " MetricFamily " , "

C l a s s i f i e rFam i l y ")

242 Appendix A. Replication Package for Chapter 3

36 r e s u l t s <− boot s t rap_ana lys i s (data , indep ,1000)
37 saveRDS(r e s u l t s , f i l e = " bootstrap−ana l y s i s . rds ")

A.4.1. Figure 3.1

1 r e s u l t s <− readRDS (" bootstrap−ana l y s i s . rds ")
2 r e s u l t s $ v a r i a b l e <− f a c t o r (r e s u l t s $ v a r i a b l e ,
3 l e v e l s=c (" ResearcherGroup " , " DatasetFamily

" ,
4 " MetricFamily " , " C l a s s i f i e rFam i l y

"))
5 r e s u l t s $ r ank i ng <− f a c t o r (r e s u l t s $ r ank i ng)
6

7 ggp lot (r e s u l t s , aes (x=var i ab l e , y=value , f i l l =ranking)) +
geom_boxplot () + theme_bw() +

8 xlab (" ") + ylab (" Pa r t i a l eta−square va lue s ") +
9 s c a l e_ f i l l_b r ewe r (p a l e t t e="Blues ") + theme (legend . p o s i t i o n="top

") +
10 gu ides (f i l l =guide_legend (t i t l e ="Pos i t i on in the model formulas ")

)

A.5. Mitigating the Collinearity 243

●●●●●●●●●●●●
●●●●●●

●●

●●
●●
●●

●●

●●
●

●●

●●

●
●

●●

●●

●●

●●●●●●
●

●●●

●●

●
●●●
●●

●●●●

●●●●

●●

●●
●
●

●

●●●

●●●●

●

●●●
●●
● ●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●

0.0

0.1

0.2

0.3

0.4

ResearcherGroup DatasetFamily MetricFamily ClassifierFamily

P
ar

tia
l e

ta
−

sq
ua

re
 v

al
ue

s

Position in the model formulas 1 2 3 4

A.5. Mitigating the Collinearity

A.5.1. Select the Eclipse dataset family

1 ec l ip se_data <− data [data$DatasetFamily == "ECLIP " ,]
2 ec l ipse_data$DatasetFami ly <− NULL

244 Appendix A. Replication Package for Chapter 3

A.5.2. Define two models

1 indep_1 <− c (" ResearcherGroup " , " C l a s s i f i e rFam i l y ")
2 indep_2 <− c (" MetricFamily " , " C l a s s i f i e rFam i l y ")
3 m1 <− lm(formula (paste ("MCC ~" , paste (rev (indep_1) , c o l l a p s e=" ∗ "))

) , data=ec l ip se_data)
4 m2 <− lm(formula (paste ("MCC ~" , paste (rev (indep_2) , c o l l a p s e=" ∗ "))

) , data=ec l ip se_data)

A.5.3. Analyze the ResearcherGroup Model

Redundancy analysis

1 redun (formula (paste ("~ " , paste (indep_1 , c o l l a p s e=" + "))) , data=
ec l ipse_data , nk=0)

##

Redundancy Analysis

##

redun(formula = formula(paste("~ ", paste(indep_1,

collapse = " + "))), data = eclipse_data, nk = 0)

##

n: 126 p: 2 nk: 0

##

Number of NAs: 0

##

Transformation of target variables forced to be linear

##

R-squared cutoff: 0.9 Type: ordinary

##

R^2 with which each variable can be predicted from

all other variables:

A.5. Mitigating the Collinearity 245

##

ResearcherGroup ClassifierFamily

0.785 0.785

##

No redundant variables

AIC computation

1 AIC(m1) ;

[1] -77.20829

Adjusted R2 computation

1 summary(m1) $adj . r . squared

[1] 0.1932176

Partial eta-square values computation

1 etasq (aov (m1))

Partial eta^2

ClassifierFamily 0.12237562

ResearcherGroup 0.12679423

ClassifierFamily:ResearcherGroup 0.02177965

Residuals NA

A.5.4. Analyze the MetricFamily Model

Redundancy analysis

1 redun (formula (paste ("~ " , paste (indep_2 , c o l l a p s e=" + "))) , data=
ec l ipse_data , nk=0)

246 Appendix A. Replication Package for Chapter 3

##

Redundancy Analysis

##

redun(formula = formula(paste("~ ", paste(indep_2,

collapse = " + "))), data = eclipse_data, nk = 0)

##

n: 126 p: 2 nk: 0

##

Number of NAs: 0

##

Transformation of target variables forced to be linear

##

R-squared cutoff: 0.9 Type: ordinary

##

R^2 with which each variable can be predicted from

all other variables:

##

MetricFamily ClassifierFamily

0.279 0.279

##

No redundant variables

AIC computation

1 AIC(m2) ;

[1] -104.9324

Adjusted R2 computation

1 summary(m2) $adj . r . squared

A.5. Mitigating the Collinearity 247

[1] 0.3612852

Partial eta-square values computation

1 etasq (aov (m2))

Partial eta^2

ClassifierFamily 0.1128156

MetricFamily 0.2352727

ClassifierFamily:MetricFamily 0.1625307

Residuals NA

APPENDIX B

A List of 101 Defect Datasets.

B.1. Install and load necessary R packages

1 i n s t a l l . packages (" dev too l s ")
2 devtoo l s : : i n s t a l l_g i t hub (" k l a i n f o /DefectData ")
3 l i b r a r y (DefectData)

B.2. A list of 101 datasets

1 l i s tDa t a

ID Dataset Corpus #
R
at
io

#
M
od

ul
es

#
D
ef
ec
tiv

e

#
M
et
ri
cs

EP
V

1 JM1 Shepperd et al. [209] 21.49 7782 1672 21 79.62
2 KC3 Shepperd et al. [209] 18.56 194 36 39 0.92
3 MC1 Shepperd et al. [209] 2.31 1988 46 38 1.21
4 MC2 Shepperd et al. [209] 35.20 125 44 39 1.13
5 MW1 Shepperd et al. [209] 10.67 253 27 37 0.73

Continued on next page

249

250 Appendix B. A List of 101 Defect Datasets.

Table B.1 – continued from previous page

ID Dataset Corpus #
R
at
io

#
M
od

ul
es

#
D
ef
ec
tiv

e

#
M
et
ri
cs

EP
V

6 PC1 Shepperd et al. [209] 8.65 705 61 37 1.65
7 PC2 Shepperd et al. [209] 2.15 745 16 36 0.44
8 PC3 Shepperd et al. [209] 12.44 1077 134 37 3.62
9 PC4 Shepperd et al. [209] 13.75 1287 177 37 4.78

10 PC5 Shepperd et al. [209] 27.53 1711 471 38 12.39
11 ar1 Shepperd et al. [209] 7.44 121 9 29 0.31
12 ar3 Shepperd et al. [209] 12.70 63 8 29 0.28
13 ar4 Shepperd et al. [209] 18.69 107 20 29 0.69
14 ar5 Shepperd et al. [209] 22.22 36 8 29 0.28
15 ar6 Shepperd et al. [209] 14.85 101 15 29 0.52
16 cm1 Shepperd et al. [209] 12.84 327 42 37 1.14
17 kc2 Shepperd et al. [209] 20.50 522 107 21 5.10
18 ant-1.3 Jureczko et al. [108] 16 125 20 20 1
19 ant-1.4 Jureczko et al. [108] 22.47 178 40 20 2
20 ant-1.5 Jureczko et al. [108] 10.92 293 32 20 1.60
21 ant-1.6 Jureczko et al. [108] 26.21 351 92 20 4.60
22 ant-1.7 Jureczko et al. [108] 22.28 745 166 20 8.30
23 arc Jureczko et al. [108] 11.54 234 27 20 1.35
24 berek Jureczko et al. [108] 37.21 43 16 20 0.80
25 camel-1.0 Jureczko et al. [108] 3.83 339 13 20 0.65
26 camel-1.2 Jureczko et al. [108] 35.53 608 216 20 10.80
27 camel-1.4 Jureczko et al. [108] 16.63 872 145 20 7.25
28 camel-1.6 Jureczko et al. [108] 19.48 965 188 20 9.40
29 ckjm Jureczko et al. [108] 50 10 5 20 0.25
30 e-learning Jureczko et al. [108] 7.81 64 5 20 0.25
31 forrest-0.6 Jureczko et al. [108] 16.67 6 1 20 0.05
32 forrest-0.7 Jureczko et al. [108] 17.24 29 5 20 0.25
33 forrest-0.8 Jureczko et al. [108] 6.25 32 2 20 0.10
34 intercafe Jureczko et al. [108] 14.81 27 4 20 0.20
35 ivy-1.1 Jureczko et al. [108] 56.76 111 63 20 3.15

Continued on next page

B.2. A list of 101 datasets 251

Table B.1 – continued from previous page

ID Dataset Corpus #
R
at
io

#
M
od

ul
es

#
D
ef
ec
tiv

e

#
M
et
ri
cs

EP
V

36 ivy-1.4 Jureczko et al. [108] 6.64 241 16 20 0.80
37 ivy-2.0 Jureczko et al. [108] 11.36 352 40 20 2
38 jedit-3.2 Jureczko et al. [108] 33.09 272 90 20 4.50
39 jedit-4.0 Jureczko et al. [108] 24.51 306 75 20 3.75
40 jedit-4.1 Jureczko et al. [108] 25.32 312 79 20 3.95
41 jedit-4.2 Jureczko et al. [108] 13.08 367 48 20 2.40
42 jedit-4.3 Jureczko et al. [108] 2.24 492 11 20 0.55
43 kalkulator Jureczko et al. [108] 22.22 27 6 20 0.30
44 log4j-1.0 Jureczko et al. [108] 25.19 135 34 20 1.70
45 log4j-1.1 Jureczko et al. [108] 33.94 109 37 20 1.85
46 log4j-1.2 Jureczko et al. [108] 92.20 205 189 20 9.45
47 lucene-2.0 Jureczko et al. [108] 46.67 195 91 20 4.55
48 lucene-2.2 Jureczko et al. [108] 58.30 247 144 20 7.20
49 lucene-2.4 Jureczko et al. [108] 59.71 340 203 20 10.15
50 nieruchomosci Jureczko et al. [108] 37.04 27 10 20 0.50
51 pbeans1 Jureczko et al. [108] 76.92 26 20 20 1
52 pbeans2 Jureczko et al. [108] 19.61 51 10 20 0.50
53 pdftranslator Jureczko et al. [108] 45.45 33 15 20 0.75
54 poi-1.5 Jureczko et al. [108] 59.49 237 141 20 7.05
55 poi-2.0 Jureczko et al. [108] 11.78 314 37 20 1.85
56 poi-2.5 Jureczko et al. [108] 64.42 385 248 20 12.40
57 poi-3.0 Jureczko et al. [108] 63.57 442 281 20 14.05
58 prop-1 Jureczko et al. [108] 14.82 18471 2738 20 136.90
59 prop-2 Jureczko et al. [108] 10.56 23014 2431 20 121.55
60 prop-3 Jureczko et al. [108] 11.49 10274 1180 20 59
61 prop-4 Jureczko et al. [108] 9.64 8718 840 20 42
62 prop-5 Jureczko et al. [108] 15.25 8516 1299 20 64.95
63 prop-6 Jureczko et al. [108] 10 660 66 20 3.30
64 redaktor Jureczko et al. [108] 15.34 176 27 20 1.35
65 serapion Jureczko et al. [108] 20 45 9 20 0.45

Continued on next page

252 Appendix B. A List of 101 Defect Datasets.

Table B.1 – continued from previous page

ID Dataset Corpus #
R
at
io

#
M
od

ul
es

#
D
ef
ec
tiv

e

#
M
et
ri
cs

EP
V

66 skarbonka Jureczko et al. [108] 20 45 9 20 0.45
67 sklebagd Jureczko et al. [108] 60 20 12 20 0.60
68 synapse-1.0 Jureczko et al. [108] 10.19 157 16 20 0.80
69 synapse-1.1 Jureczko et al. [108] 27.03 222 60 20 3
70 synapse-1.2 Jureczko et al. [108] 33.59 256 86 20 4.30
71 systemdata Jureczko et al. [108] 13.85 65 9 20 0.45
72 szybkafucha Jureczko et al. [108] 56 25 14 20 0.70
73 termoproject Jureczko et al. [108] 30.95 42 13 20 0.65
74 tomcat Jureczko et al. [108] 8.97 858 77 20 3.85
75 velocity-1.4 Jureczko et al. [108] 75 196 147 20 7.35
76 velocity-1.5 Jureczko et al. [108] 66.36 214 142 20 7.10
77 velocity-1.6 Jureczko et al. [108] 34.06 229 78 20 3.90
78 workflow Jureczko et al. [108] 51.28 39 20 20 1
79 wspomaganiepi Jureczko et al. [108] 66.67 18 12 20 0.60
80 xalan-2.4 Jureczko et al. [108] 15.21 723 110 20 5.50
81 xalan-2.5 Jureczko et al. [108] 48.19 803 387 20 19.35
82 xalan-2.6 Jureczko et al. [108] 46.44 885 411 20 20.55
83 xalan-2.7 Jureczko et al. [108] 98.79 909 898 20 44.90
84 xerces-1.2 Jureczko et al. [108] 16.14 440 71 20 3.55
85 xerces-1.3 Jureczko et al. [108] 15.23 453 69 20 3.45
86 xerces-1.4 Jureczko et al. [108] 74.32 588 437 20 21.85
87 xerces-init Jureczko et al. [108] 47.53 162 77 20 3.85
88 zuzel Jureczko et al. [108] 44.83 29 13 20 0.65
89 eclipse-2.0 Zimmermann et al. [258] 14.49 6729 975 32 30.47
90 eclipse-2.1 Zimmermann et al. [258] 10.83 7888 854 32 26.69
91 eclipse-3.0 Zimmermann et al. [258] 14.80 10593 1568 32 49
92 Apache Kim et al. [118] 50.52 194 98 26 3.77
93 Safe Kim et al. [118] 39.29 56 22 26 0.85
94 Zxing Kim et al. [118] 29.57 399 118 26 4.54
95 eclipse34_debug Kim et al. [118] 24.69 1065 263 17 15.47

Continued on next page

B.2. A list of 101 datasets 253

Table B.1 – continued from previous page

ID Dataset Corpus #
R
at
io

#
M
od

ul
es

#
D
ef
ec
tiv

e

#
M
et
ri
cs

EP
V

96 eclipse34_swt Kim et al. [118] 43.97 1485 653 17 38.41
97 equinox D’Ambros et al. [50, 51] 39.81 324 129 15 8.60
98 jdt D’Ambros et al. [50, 51] 20.66 997 206 15 13.73
99 lucene D’Ambros et al. [50, 51] 9.26 691 64 15 4.27
100 mylyn D’Ambros et al. [50, 51] 13.16 1862 245 15 16.33
101 pde D’Ambros et al. [50, 51] 13.96 1497 209 15 13.93

Listing B.1: A List of 101 Defect Datasets.

APPENDIX C

An example R script for Caret
parameter optimization

C.1. Install necessary R packages

1 i n s t a l l . packages (" c a r e t ")
2 i n s t a l l . packages (" dev too l s ")
3 devtoo l s : : i n s t a l l_g i t hub (" k l a i n f o /DefectData ")

C.2. Caret parameter optimization

1 l i b r a r y (DefectData)
2 l i b r a r y (ca r e t)
3

4 r e s u l t s <− NULL
5

6 g r id . param <− expand . g r id (t r i a l s=c (1 ,10 ,20 , 30 , 40) ,model=c (" t r e e " , "
r u l e s ") ,winnow=c (TRUE,FALSE))

7 de f au l t . param <− expand . g r id (t r i a l s=c (1) ,model=c (" r u l e s ") ,winnow=c (
FALSE))

255

256 Appendix C. An example R script for Caret parameter optimization

8

9 f o r (system in l i s tDa t a [listData$EPV > 10 & l i s tDa ta$De f e c t i v eRa t i o <
50 ,] $system) {

10 Data <− loadData (system)
11 data <− Data$data
12 dep <− Data$dep
13 indep <− Data$indep
14

15 transformLog <− f unc t i on (y) { y <− log1p (y) }
16 indep . l og <− apply (data [, indep] , 2 , f unc t i on (x) { ! (min (x) < 0)

})
17 indep . l og <− names (indep . l og [which (indep . l og == TRUE)])
18 data [, indep . l og] <− data . frame (apply (data [, indep . l og] , 2 ,

transformLog))
19 data [, dep] <− as . f a c t o r (i f e l s e (data [, dep] == "TRUE" , "T" , "F"))
20

21 c t r l <− t r a inCont ro l (method = " boot " , number = 100 , c l a s sProbs =
TRUE, summaryFunction=twoClassSummary)

22

23 s e t . seed (1234)
24 opt imize <− ca r e t : : t r a i n (data [, indep] , data [, dep] ,
25 method = "C5 . 0 " ,
26 t rContro l = c t r l ,
27 tuneGrid = gr id . param ,
28 metr ic = "ROC")
29

30 s e t . seed (1234)
31 de f au l t <− ca r e t : : t r a i n (data [, indep] , data [, dep] ,
32 method = "C5 . 0 " ,
33 t rContro l = c t r l ,
34 tuneGrid = de f au l t . param ,
35 metr ic = "ROC")
36

37 r e s u l t s <− rbind (r e s u l t s , c (opt imize=max(optimize$results$ROC) ,
d e f au l t=max(default$results$ROC)))

C.2. Caret parameter optimization 257

38 }
39

40 r e s u l t s <− data . frame (r e s u l t s)
41 r e su l t s $ sy s t em <− l i s tDa t a [listData$EPV > 10 &

l i s tDa ta$De f e c t i v eRa t i o < 50 ,] $system
42 saveRDS(r e s u l t s , f i l e ="C5 . 0 . rds ")

Listing C.1: An example R script for grid-search parameter optimization.

258 Appendix C. An example R script for Caret parameter optimization

C.3. Results

1 r e s u l t s <− readRDS(f i l e ="C5 . 0 . rds ")
2 resu lts$ improvement <− r e su l t s $op t im i z e−r e s u l t s $ d e f a u l t
3 r e s u l t s

optimize default system improvement

1 0.6812443 0.5276690 JM1 0.15357536

2 0.7718680 0.4831502 PC5 0.28871785

3 0.6817029 0.4994888 camel-1.2 0.18221415

4 0.8179451 0.4536583 prop-1 0.36428682

5 0.8545482 0.4823125 prop-2 0.37223573

6 0.7467892 0.4786966 prop-3 0.26809259

7 0.7624442 0.4425753 prop-4 0.31986892

8 0.7533058 0.4630926 prop-5 0.29021322

9 0.7626922 0.6653037 xalan-2.5 0.09738852

10 0.8443650 0.7655026 xalan-2.6 0.07886231

11 0.8401523 0.4243956 eclipse-2.0 0.41575663

12 0.7895530 0.4386999 eclipse-2.1 0.35085306

13 0.8010375 0.5310208 eclipse-3.0 0.27001672

14 0.8002733 0.5397900 eclipse34_debug 0.26048335

15 0.9685388 0.9149021 eclipse34_swt 0.05363675

16 0.8139885 0.5447301 jdt 0.26925838

17 0.7917020 0.4136083 mylyn 0.37809369

18 0.7260917 0.4600913 pde 0.26600047

APPENDIX D

An R implementation of the generic
variable importance computation

D.1. Install necessary R packages

1 i n s t a l l . packages (" c a r e t ")
2 i n s t a l l . packages (" dev too l s ")
3 devtoo l s : : i n s t a l l_g i t hub (" k l a i n f o /ScottKnottESD ")
4 devtoo l s : : i n s t a l l_g i t hub (" k l a i n f o /DefectData ")

1 GenericVarImp <− f unc t i on (data , model , dep , indep , s h u f f l e t im e s =
25) {

2 i f (s h u f f l e t im e s < 10) {throw("#Repet i t i on should be h igher than
1 0 . ") }

3 s e t . seed (1234)
4 f eaturesMeanScores <− c ()
5 f o r (predictorName in indep) {
6 f e a tu r eS co r e s <− c ()
7 shu f f l edData <− data [, indep]
8 f o r (i t e r in 1 : s h u f f l e t im e s) {
9 shu f f l edData [, predictorName] <− sample (shu f f l edData [,

259

260
Appendix D. An R implementation of the generic variable importance

computation

predictorName] , l ength (shu f f l edData [, predictorName]))
10 p r ed i c t i o n s <− i f e l s e (p r ed i c t (ob j e c t=model , shu f f l edData

[, indep] , type=’prob ’) [[2]] > 0 . 5 , ’T’ , ’F ’)
11 f e a tu r eS co r e s <− c (f ea tu r eSco r e s , mean(data [, dep] !=

p r ed i c t i o n s))
12 }
13 f eaturesMeanScores <− cbind (featuresMeanScores ,

f e a tu r eS co r e s)
14 }
15 colnames (featuresMeanScores) <− indep
16 re turn (data . frame (featuresMeanScores))
17 }

Listing D.1: An R implementation of the generic variable importance function.

1 l i b r a r y (DefectData)
2 l i b r a r y (ca r e t)
3 l i b r a r y (ScottKnottESD)
4

5 r e s u l t s <− NULL
6

7 Data <− loadData (" e c l i p s e −2.0")
8 data <− Data$data
9 dep <− Data$dep

10 indep <− Data$indep
11

12 transformLog <− f unc t i on (y) { y <− log1p (y) }
13 indep . l og <− apply (data [, indep] , 2 , f unc t i on (x) { ! (min (x) < 0) })
14 indep . l og <− names (indep . l og [which (indep . l og == TRUE)])
15 data [, indep . l og] <− data . frame (apply (data [, indep . l og] , 2 ,

transformLog))
16 data [, dep] <− as . f a c t o r (i f e l s e (data [, dep] == "TRUE" , "T" , "F"))
17

18 c t r l <− t r a inCont ro l (method = " boot " , number = 100 , c l a s sProbs =
TRUE, summaryFunction=twoClassSummary)

D.1. Install necessary R packages 261

19

20 m <− t r a i n (data [, indep] , data [, dep] ,
21 method = "C5 . 0 " ,
22 t rContro l = c t r l ,
23 tuneLength = 3 ,
24 metr ic = "ROC")
25

26 varimp <− GenericVarImp (data , m, dep , indep , s h u f f l e t im e s = 25)
27

28 pr in t (SK.ESD(varimp) $group)

Listing D.2: An example usage of the generic variable importance function.

pre NBD_sum FOUT_max VG_avg FOUT_sum

1 2 2 3 4

PAR_avg TLOC PAR_max NBD_avg VG_sum

5 5 6 7 8

NBD_max VG_max MLOC_sum FOUT_avg MLOC_max

8 9 9 9 9

PAR_sum NOM_avg MLOC_avg NSF_max NSM_max

10 11 11 12 12

ACD NOM_max NOM_sum NSM_avg NOF_avg

12 13 13 13 13

NOF_max NSF_avg NOI NOF_sum NSM_sum

13 13 14 14 14

NOT NSF_sum

14 14

APPENDIX E

An R Implementation of the
Scott-Knott ESD Test

1 f unc t i on SK.ESD(data , long = FALSE)
2 {
3 l i b r a r y (ScottKnott)
4 l i b r a r y (reshape)
5 l i b r a r y (e f f s i z e)
6 i f (long) {
7 tmp <− do . c a l l (cbind , s p l i t (data , da ta$va r i ab l e))
8 tmp <− tmp [, grep (" va lue " , names (tmp))]
9 names (tmp) <− gsub (" . va lue " , " " , names (tmp))

10 data <− tmp
11 }
12

13 # Normal l i ty Correc t ion
14 data <− data . frame (data)
15 transformLog <− f unc t i on (y) {y <− log1p (y) }
16 data <− data . frame (apply (data , 2 , transformLog))
17

18 av <− aov (value ~ var i ab l e , data = melt (data))

263

264 Appendix E. An R Implementation of the Scott-Knott ESD Test

19 sk <− SK(av , which = " va r i ab l e " , d i s p e r s i o n = " s " , s i g . l e v e l =
0 . 05)

20 s k $ o r i g i n a l <− sk$groups
21 names (s k $ o r i g i n a l) <− rownames (sk$m . i n f)
22 ranking <− sk$groups
23 names (ranking) <− rownames (sk$m . i n f)
24 s k$d i agno s i s <− NULL
25 keys <− names (ranking)
26

27 # Ef f e c t S i z e Correc t ion
28 f o r (k in seq (2 , l ength (keys))) {
29 e f f <− un l i s t (cohen . d(data [, keys [k]] , data [, keys [k −
30 1]]) [c (" magnitude " , " e s t imate ")])
31 s k$d i agno s i s <− rbind (sk$d iagnos i s , c (s p r i n t f (" [%d] %s (%.3 f

) " ,
32 ranking [k − 1] , keys [k − 1] , mean(data [, keys [k −
33 1]])) , s p r i n t f (" [%d] %s (%.3 f) " , ranking [k] ,
34 keys [k] , mean(data [, keys [k]])) , e f f))
35 i f (e f f [" magnitude "] == " n e g l i g i b l e " && ranking [k] !=
36 ranking [k − 1]) {
37 ranking [seq (k , l ength (keys))] = ranking [seq (k , l ength (

keys))] −
38 1
39 }
40 }
41 sk$groups <− ranking
42 s k$ r ev e r s e <− max(ranking) − ranking + 1
43 s k$d i agno s i s <− data . frame (sk$d i agno s i s)
44 re turn (sk)
45 }

Listing E.1: An R implementation of the Scott-Knott ESD test.

APPENDIX F

An example R script for
out-of-sample bootstrap validation

F.1. Install necessary R packages

1 i n s t a l l . packages ("pROC")
2 i n s t a l l . packages (" dev too l s ")
3 devtoo l s : : i n s t a l l_g i t hub (" k l a i n f o /DefectData ")

1 l i b r a r y (DefectData)
2 l i b r a r y (pROC)
3 Data <− loadData (" e c l i p s e −2.0")
4 data <− Data$data
5 dep <− Data$dep
6 indep <− Data$indep
7

8 # Normality Correc t ion
9 transformLog <− f unc t i on (y) { y <− log1p (y) }

10 data [, indep] <− data . frame (apply (data [, indep] , 2 , transformLog))
11 data [, dep] <− as . f a c t o r (i f e l s e (data [, dep] == "TRUE" , "T" , "F"))
12

265

266Appendix F. An example R script for out-of-sample bootstrap validation

13 performance <− NULL
14 f o r (i in seq (1 ,100)) {
15 # Generate a boots t rap sample with replacement
16 i n d i c e s <− sample (nrow (data) , r ep l a c e=TRUE)
17

18 # Generate t r a i n i n g datase t us ing a boots t rap sample
19 t r a i n i n g <− data [i nd i c e s ,]
20

21 # Generate t e s t i n g datase t (i . e . , i n s t an c e s that
22 # are not inc luded in the boots t rap sample)
23 t e s t i n g <− data [−unique (i n d i c e s) ,]
24

25 # Generate model formula
26 f <− as . formula (paste0 (dep , " ~ " , paste0 (indep , c o l l a p s e = "+"))

)
27

28 # Fit a p r ed i c t i on model us ing a l o g i s t i c r e g r e s s i o n model
29 m <− glm (f , data=t ra in ing , fami ly="binomial ")
30

31 # Extract p r o b a b i l i t i e s us ing the t e s t i n g datase t
32 prob <− p r ed i c t (m, t e s t i ng , type=" response ")
33

34 # Compute AUC performance
35 performance <− c (performance , auc (t e s t i n g [, dep] , prob))
36 }

Listing F.1: An example R script for out-of-sample bootstrap validation.

1 # Report the average AUC performance
2 mean(performance)

[1] 0.8319609

	Abstract
	Related Publications
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Overview
	1.3 Thesis Contribution
	1.4 Thesis Organization

	I Background and Definitions
	2 Defect Prediction Modelling
	2.1 Introduction
	2.2 Data Preparation
	2.3 Model Construction
	2.4 Model Validation
	2.5 Chapter Summary

	II A Motivating Study and Related Research
	3 The Experimental Components that Impact Defect Prediction Models
	3.1 Introduction
	3.2 The Presence of Collinearity
	3.3 The Interference of Collinearity
	3.4 Mitigating Collinearity
	3.5 Chapter Summary

	4 Related Research
	4.1 Introduction
	4.2 Data Preparation Stage
	4.3 Model Construction Stage
	4.4 Model Validation Stage
	4.5 Chapter Summary

	III Empirical Investigations of the Impact of Experimental Components
	5 The Impact of Issue Report Mislabelling
	5.1 Introduction
	5.2 Related Work & Research Questions
	5.3 Case Study Design
	5.4 Case Study Results
	5.5 Discussion & Threats to Validity
	5.6 Chapter Summary

	6 The Impact of Automated Parameter Optimization
	6.1 Introduction
	6.2 The Relevance of Parameter Settings for Defect Prediction Models
	6.3 Related Work & Research Questions
	6.4 Case Study Design
	6.5 Case Study Results
	6.6 Revisiting the Ranking of Classification Techniques for Defect Prediction Models
	6.7 Discussion
	6.8 Threats to Validity
	6.9 Chapter Summary

	7 The Impact of Model Validation Techniques
	7.1 Introduction
	7.2 Motivating Examples
	7.3 Model Validation Techniques in Defect Prediction Literature
	7.4 Related Work & Research Questions
	7.5 Case Study Design
	7.6 Case Study Results
	7.7 Discussion
	7.8 Practical Guidelines
	7.9 Threats to Validity
	7.10 Chapter Summary

	IV Conclusion and Future Work
	8 Conclusion and Future Work
	8.1 Contributions and Findings
	8.2 Opportunities for Future Research

	References
	Appendix A Replication Package for Chapter 3
	A.1 Download dataset and scripts
	A.2 Load miscellaneous functions
	A.3 The Presence of Collinearity
	A.4 The Interference of Collinearity
	A.5 Mitigating the Collinearity

	Appendix B A List of 101 Defect Datasets.
	B.1 Install and load necessary R packages
	B.2 A list of 101 datasets

	Appendix C An example R script for Caret parameter optimization
	C.1 Install necessary R packages
	C.2 Caret parameter optimization
	C.3 Results

	Appendix D An R implementation of the generic variable importance computation
	D.1 Install necessary R packages

	Appendix E An R Implementation of the Scott-Knott ESD Test
	Appendix F An example R script for out-of-sample bootstrap validation
	F.1 Install necessary R packages

