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Studying Reviewer Selection and Involvement in

Modern Code Review Processes∗

Patanamon Thongtanunam

Abstract

Software code review is a well-established software quality practice. During
code review, team members examine each others’ code changes in order to iden-
tify potential problems early in the development cycle. In a distributed devel-
opment setting, code review in modern software organizations tends to converge
on a lightweight variant called Modern Code Review (MCR). While enabling
distributed reviews, MCR lacks mechanisms for ensuring a base level of review
quality, which the formal software inspection of the past achieved through the
careful review preparation and the formal review execution. Lax reviewing prac-
tices may creep into MCR processes, which can impact software quality.
In this thesis, we perform a series of empirical studies in order to better un-

derstand how teams can improve their reviewing practices in MCR processes.
We first perform two empirical studies to investigate how reviewers should be
selected. We observe that (1) the proportion of reviewers without an expertise
of a module shares a strong, increasing relationship with the likelihood of that
module having future defects; however, (2) it is often difficult selecting appropri-
ate reviewers, which can slow down MCR processes. To address this problem, we
propose RevFinder, a file location-based reviewer recommendation approach.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461020, September 5, 2016.
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Our empirical evaluation shows that RevFinder accurately recommends (within
top 10 recommendation) an appropriate reviewer for 69%-86% of reviews.
We then perform another two empirical studies to investigate reviewer involve-

ment in MCR process. We observe that (1) modules that will eventually have
future defects or have been historically defective tend to be reviewed with less
reviewer involvement than their clean counterparts and (2) past reviewer involve-
ment tendencies are strong indicators of poor reviewer involvement.
Our results and empirical observations highlight the need for improved review-

ing policies in an MCR context in order to mitigate the risk of having defects in
software products.
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Chapter 1

Introduction

Code review is a well-established software quality practice. During code review,
team members examine each others’ changes to the source code. Boehm and Basili
argue that code review is one of the best investments for defect reduction [22].
Moreover, Shull et al. find that code reviews often catch more than half of a
product’s detected defects [111]. Baker also reports that when performing code
reviews during the development cycle, the number of serious problems found
during testing phases decreases by 40% [8].

Formal software inspection, i.e., a rigidly structured code review process, has
long been perceived as an effective method to improve the quality of a software
product [2,5,34,104]. In the formal software inspection process, time is explicitly
allocated for the preparation and execution of in-person meetings. Documents
like defect checklists are prepared beforehand. During the meetings, the roles
of participants are well defined. For instance, the main focus of reviewers is to
identify defects, while the task of the moderator is to keep the inspection meeting
on point, and the role of the scribe is to document the defects that were found
by reviewers.

For the globally-distributed teams of the modern software organizations, the
formal software inspection process is hard to adopt due to the physical con-
straints of inspection meetings [77, 130]. Within distributed development teams,

1



2 Chapter 1. Introduction

collaboration between developers is asynchronous, which requires tools to support
coordination and communication [71,98].

Recent work finds that modern software organizations (e.g., Microsoft, Apache)
tend to converge on a lightweight variant of the code review process called Modern
Code Review (MCR) [97]. MCR is coordinated using light weight collaborative
tools and processes. Broadly speaking, the process of MCR begins with a de-
veloper who first (1) uploads a proposed patch (i.e., a set of code changes) to
an MCR tool and (2) selects reviewers (i.e., other members of the development
team). Next, reviewers (3) critique the patch to identify potential problems. Af-
ter receiving reviewer feedback, the patch author revises the patch to address
the identified problems. Once the reviewer(s) agree that the patch is of sufficient
quality, it can be (4) integrated into the project’s Version Control System (VCS).

One of the main goals of MCR is to control the quality of patches. Bacchelli
and Bird report that the top motivation for using MCR at Microsoft is to remove
defects and improve code changes [6]. Baysal et al. find that the proposed patches
of the Mozilla project tend to be revised several times before integration [13].
Tao et al. also uncover several concerns (e.g., compilation errors, undescriptive
documentation) that reviewers in the Eclipse and Mozilla projects have pointed
out in rejected patches [118].

Nevertheless, MCR is not solely focused on whether or not a patch should
be integrated. Instead, MCR tends to focus on collaboration between a patch
author and reviewers. For example, recent research finds that reviewers often
help patch authors improve proposed patches by suggesting alternative solutions
during code reviews at Microsoft [97], on GitHub [128], and within several open
source projects [16, 97]. Moreover, from time to time, reviewers even help patch
authors to fix problems that were found during reviews [100,121].
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1.1. Problem Statement

MCR does not impose review preparation and execution criteria. The flexibility
of MCR is both a blessing and a curse. While enabling distributed code reviews,
MCR lacks mechanisms for ensuring a base level of review quality:

Thesis Statement: The lightweight Modern Code Review process lacks mecha-
nisms for preventing lax code reviewing practices, which can allow poor quality
code to slip through to official software releases. A deeper understanding of
these processes and their impact on software quality is needed as MCR con-
tinues to gain popularity and be adopted by projects worldwide.

Indeed, unlike the formal software inspections of the past, MCR processes do
not mandate in-person meetings or the use of review checklists. Lax reviewing
practices may creep into MCR processes, which can impact software quality [73,
74,81]. Suboptimal reviewing practices may take several forms:

Reviewer selection – To begin the MCR process, a patch author needs to assign
team members to examine the proposed patch. Intuitively, a patch author
should assign developers who have related knowledge in the area of the
system that is impacted by the patch. However, estimating expertise of
developers is not a trivial task [3, 37, 38, 79]. Moreover, reviewer selection
criteria are not mandated by the MCR process [101, 121]. Hence, MCR
reviews may be suboptimal if reviewers are assigned to critique patches
that modify areas of the system for which they have little knowledge.

Reviewer involvement – Due to the human-intensive nature of code reviewing,
reviewer involvement plays a key role in code review effectiveness. For
example, Linus’ law suggests that given enough reviewers, the defects that
escape to the field will be shallow [96]. Fagan argues that a code review
checklist can guide reviewers during code examination [33]. However, MCR
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processes tend to use an ad hoc reading style, where reviewers critique a
patch from their personal perspectives [100]. Hence, MCR reviews may not
foster a sufficient amount of reviewer involvement to mitigate the risk of
having defects in the patch.

The overarching goal of this thesis is to provide actionable insights and MCR
process support. To achieve this goal, we perform a series of empirical studies
to understand how teams can better prepare for and execute code reviews in an
MCR context.

1.2. Thesis Overview

In this section, we provide a brief overview of the thesis. Figure 1.1 outlines the
scope of this thesis. We first provide the necessary background material (pink
box):

Part I: The Modern Code Review Processes

Chapter 2: The Code Review Process
In this chapter, we provide a broad background of code review pro-
cesses and definitions of the steps of the MCR processes.

Chapter 3: Related Research
We present a survey and an in-depth discussion of prior research that
is related to this thesis.

Next, we present the main body of the thesis, which consists of four chap-
ters. These chapters are organized into review preparation and execution parts
(blue box). Each part consists of two empirical studies (yellow box) that have
compelling potential outcomes (green box).
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Figure 1.1. An overview of the scope of the thesis.

Part II: Reviewer Selection in Modern Code Review Processes

We perform two empirical studies to address the reviewer selection problem:

Chapter 4: The Impact of Reviewer Selection on Software Quality
Developer expertise is important in the software development cycle.
Several studies have shown that code authoring expertise shares a
strong relationship with software quality [21, 28, 42, 85]. Besides the
knowledge that is gained from authoring experience, developers also
can gain knowledge of modules by reviewing a patch that modifies
those modules [6, 97]. Yet, little is known about whether assigning
developers with reviewing expertise to examine a patch that modifies
a module can reduce the risk of having defects in that module. Hence,
we set out to study the relationship between reviewing expertise and
the likelihood of having post-release defects in a module.

Chapter 5: Selecting Appropriate Reviewers
To help select appropriate reviewers, we propose RevFinder, a file
location-based reviewer recommendation approach. We leverage the
similarities between the path of a newly changed file and the paths of
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previously reviewed files to recommend an appropriate reviewer. The
intuition behind RevFinder is that files that are located in similar
file paths (i.e., similar modules) would be managed and reviewed
by reviewers with similar experience. To evaluate RevFinder, we
perform a case study on four open source systems.

Part III: Reviewer Involvement in Modern Code Review

Processes

We perform two empirical studies to address the reviewer involvement problem:

Chapter 6: The Impact of Reviewer Involvement on Software Quality
Prior work provides an evidence that software modules with many
patches that lack reviewer involvement (i.e., the large proportion of
patches without reviews or discussions) are more likely to contain
defects in the future [73, 74]. Yet, little is known about how much
reviewer involvement is “enough” to mitigate the risk of future de-
fects. Moreover, it is unclear if developers are carefully reviewing
changes to risky areas of a codebase. Hence, we set out to evaluate
the impact that characteristics of MCR reviewer involvement have
on software quality.

Chapter 7: Identifying Characteristics of Patches with Poor Reviewer Involve-
ment
To help improve reviewer involvement, we investigate the factors that
influence reviewer involvement in MCR. To that end, we analyze
statistical regression models that are trained using 196,712 reviews
spread across three open source systems in order to better understand
the characteristics of patches that: (1) do not attract reviewers, (2)
are not discussed, and (3) receive slow initial feedback.



1.3. Thesis Contribution

We demonstrate that:

1. Developers who solely review patches of other developers account for the
largest proportion of developers who contribute to that module. (Chapter 4)

2. Modules without future defects tend to have a smaller proportion of devel-
opers with major reviewing expertise than their clean counterparts do. On
the other hand, the proportion of developers who have neither authored nor
reviewed many patches to a module share a strong increasing relationship
with defect-proneness of that module. (Chapter 4)

3. Patches where an author could not initially find appropriate reviewers tend
to take a longer time in MCR processes than patches without such a problem.
(Chapter 5)

4. RevFinder can accurately recommends (within top 5 recommendation) an
appropriate reviewer for 41%-79% of reviews. (Chapter 5)

5. Modules that will have defects in the future tend to be reviewed less rigor-
ously than their future-defect-free counterparts. (Chapter 6)

6. Modules that have been historically defective tend to have less reviewer in-
volvement than their defect-free counterparts. (Chapter 6)

7. Past reviewer involvement tendencies and the level of detail in the description
of a patch can be used to accurately explain whether a patch will suffer from
poor reviewer involvement. (Chapter 7)
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1.4. Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides back-
ground information and defines key terms. Chapter 3 presents research related
to our studies. Chapter 4 studies of the impact of reviewer selection on software
quality. Chapter 5 presents RevFinder, our approach to select appropriate re-
viewers. Chapters 6 and 7 present empirical studies of the impact of reviewer
involvement on software quality and the factors that influence reviewer involve-
ment, respectively. Finally, Chapter 8 draws conclusions, presents a summary of
the main contributions of this thesis, and outlines promising avenues for future
work.



Part I.

The Modern Code Review Processes





Chapter 2

The Code Review Process

Code review is the practice of having team members examine each others’ code
changes in search of potential problems early in the development cycle. Many code
review processes, e.g., Software Inspections and Walkthroughs were developed in
order to effectively perform code reviews that improve the quality of software
products.
In this chapter, we provide a broad background of code review processes that

were used in the past. Then, we describe the Modern Code Review (MCR)
process.

2.1. Traditional Code Review

2.1.1. Formal Software Inspection

A formal software inspection is a well-structured code review process, that was
famously advocated by Fagan [34]. The objective of a software inspection is to
improve the quality of a software artifact (e.g., software module) by analyzing the
artifact, detecting and removing defects before the software product is released.
The software inspection process consists of six well-defined steps:

1. Planning: An inspection team is formed. Each team member has a specific

11
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role, i.e., moderator, author, reader, scribe, and reviewers. Each role requires
specific skills and knowledge. Thus, the selection of team members who
occupy each role is important. For example, the developer who occupies a
reviewer role should be a developer who is working on similar or interfacing
components.

2. Overview: The inspection team is assigned and informed about an artifact
that will be reviewed.

3. Preparation: Each reviewer in the inspection team studies the artifact.

4. Examination: The inspection team holds a meeting. The objective of the
meeting is to document the defects that each reviewer found. During the
meeting, approaches to address are not discussed. The meeting is managed
by the moderator, and should not last longer than two hours.

5. Rework: The documented defects are fixed by the author.

6. Follow-up: The moderator verifies the fixes that were produced during the
rework step.

Although software inspection has been demonstrated to be as an effective
method to improve the quality of software products [2, 5, 34, 104], the rigid and
formal nature of the software inspection process is not well perceived in terms of
management. Votta argues that software inspection is very time-consuming, as it
requires time for preparation and an inspection meeting [130]. Mashayekhi et al.
argue that the face-to-face meetings are costly, while an inspection meeting covers
a small portion of the product like software modules [71]. Moreover, Shull and
Seaman report that due to its cumbersome, time-consuming, and synchronous na-
ture, the adoption of the software inspection process is far from universal [112].
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2.1.2. Informal Code Reviews

In contrast to the software inspection, less formal code review processes were in-
troduced. For example, walkthroughs are informal code reviews where an author
sets up a meeting and invites teammates to critique a software artifact (e.g., a
software module). The focus of the meeting is to find and resolve problems in
the artifact.

Email-based code review is an another informal code review process that is
widely used in open source projects [57,99,101,131]. A code review begins with an
author who broadcasts a review request for a patch through project’s mailing lists.
Then, developers who are interested in the patch provide feedback by replying
to the email. Rigby et al. observe two common processes of email-based reviews:
Review-Then-Commit (RTC) and Commit-Then-Review (CTR) [100]. In the
RTC process, every patch has to be reviewed before integration and the patches
that do not satisfy reviewers cannot be integrated into the code base. In contrast,
the CTR process allows patches to be integrated into the code base before review.
Although prior studies have found that email-based code reviews can support
asynchronous coordination in distributed software development teams and can
improve the quality of software products [4, 87, 100], a lack of traceability can
lead to poor process management [98].

2.2. Modern Code Review

In recent years, many modern software organizations have adopted Modern Code
Review (MCR), which is based on collaborative tools. MCR tools provide a
lightweight code review environment to manage reviewing processes that are sim-
ilar to the formal software inspection, while allowing for asynchronous collabora-
tion during code reviews similar to an email-based code review process.

As MCR tools tightly integrate with VCS repositories, MCR processes have
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become a critical gate of quality control. In general, every new patch needs to
pass through the code review process of the MCR tool before the patch can be
integrated into upstream VCS repositories. If reviewers find some problems in a
patch during the MCR process, the patch needs to be revised until the reviewers
agree that the patch is of sufficient quality.

There are several MCR tools that support the code review process in mod-
ern software development. For instance, Gerrit is a web-based code review tool
that is widely used in both proprietary and open source projects (e.g., eBay and
Eclipse).1 ReviewBoard is an alternative web-based code review tool that is used
by several modern software development teams like VMware [9]. CodeFlow is an
internal code review tool for Microsoft teams [6]. Phabricator, which is developed
by Facebook, is used by several software teams at Dropbox.2 GitHub also pro-
vides a code review system for pull requests, i.e., requests to integrate a patch
(or set of patches) from the local VCS repositories of an author to the main VCS
repository of a project [40].

These MCR tools provide similar code review processes with similar features
like file-by-file difference, in-line commenting, and discussion threads [98]. Patches
are updated and re-submitted to the MCR tools until the reviewers agree with
the patches. To allow a patch to be integrated into VCS repositories, for instance,
reviewers in Gerrit provide a review score [121], reviewers in ReviewBoard mark
the patch as approved [9], and reviewers in CodeFlow sign off on the review [6].
Some MCR tools provide additional features to support the software development
process. For example, Phabricator provides an issue tracking system and docu-
mentation portal. Nevertheless, the main goal of these MCR tools is to support
the collaboration among developers while increasing traceability and integrating
code reviewing practices with the current software development practices.

1https://www.gerritcodereview.com/
2http://phabricator.org/

https://www.gerritcodereview.com/
http://phabricator.org/
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2.3. An Overview of the Modern Code Review

Process

Figure 2.1 provides a general overview of code review process in MCR tools.
There are two main steps in the MCR process:

1. Review preparation: The patch author prepares the proposed patch for review
by describing code changes and assigning reviewers.

2. Review execution: The patch is examined by reviewers and automatically
tested. The patch author revises the patch if the reviewers or automated
tests find problems in the patch. Once the patch is accepted by the reviewers
and passes the automatic tests, the MCR tool will automatically integrate
the patch into the upstream VCS repositories.

Below, we describe each step in the MCR process. Since the MCR process of
the case studies in this thesis are based on Gerrit3 which is a popular web-based
code review tool, we provide the detail of the MCR process based on the code
review process in Gerrit.

2.3.1. Review Preparation in Modern Code Review

In Gerrit, the review preparation step mainly consists of two main stages:

Uploading a patch

To upload a proposed patch, a patch author commits the patch to the VCS
repositories of Gerrit. In the commit, the patch author describes the changes in
the commit message. If the intent of the patch is to address an issue, the patch
author can link the patch to its issue report by including the issue ID in the

3https://www.gerritcodereview.com/

https://www.gerritcodereview.com/
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commit message. Once the patch is uploaded, Gerrit automatically generates a
new review request and assigns a Change-ID to the patch. During code review,
an author can upload several revisions to improve the patch by including the
Change-ID in the commit message.

Figure 2.2 shows an example of a review request in Gerrit, which consists of
four main components, i.e., patch properties, a reviewer list, change sets, and a
discussion thread. The patch properties consist of eight fields of information. The
Change-ID field shows an identification number that Gerrit assigns to the patch.
The Owner field shows the name of the patch author who initially uploaded the
patch. The Project and Branch fields show the sub-project (or VCS repository)
and the branch to which the patch will be integrated. The Uploaded field shows
the date that the initial patch was uploaded, while the Updated field shows the
date of the latest reviewing activities (e.g., uploading a revised patch or posting
messages). The Status field shows the current status of the review, i.e., review
in progress, merged, and abandoned. The Commit Message field describes the
changes in the patch. The reviewer list shows a list of developers who the patch
author assigned to the review. The change sets show the list of patch revisions
and files that are changed by the patch.

Selecting reviewers

To assign a review task, the patch author adds the email address or name of
a developer into the review request form. Then, Gerrit notifies the developers
that they have been assigned to review the patch. Note that there is no explicit
criterion for selecting reviewers. The patch author can select any team member(s)
to review the patch, assign the author herself, or ask team members to recommend
appropriate reviewers [124].
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Reviewer list

Patch properties

Change sets

Discussion threads

Figure 2.2. An example of a review request in the MCR tool (Gerrit) of the Qt
project.

2.3.2. Review Execution in Modern Code Review

The review execution step in Gerrit consists of two main stages:

Examining code

In the code examination stage, reviewers examine the technical content of the
patch and provide feedback to the patch author by posting either directly in the
discussion thread or using in-line comments in the patch itself (see Figure 2.3).

To indicate the review decision, reviewers provide a review score ranging be-
tween −2 and +2, where positive values indicate agreement and negative values
indicate disagreement. More specifically, a review score of +1 indicates that the
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Figure 2.3. An example of file-by-file difference viewing and inline commenting
of Qt review ID #101397.

patch is of sufficient quality from the reviewers’ viewpoint, yet they need a con-
firmation from other reviewers. A review score of +2 indicates that the patch is
of sufficient quality and is ready to be integrated into upstream VCS repositories.
Similarly, for negative scores, a value of −1 indicates that the patch should be
revised before integrating into upstream VCS repositories. A review score of −2
indicates that reviewer found a critical issue.
The patch author can revise the patch to address the feedback that was pro-

vided by the reviewers, and upload a new revision of the patch to Gerrit. Then,
the reviewers re-examine the new revision of the patch. Once (at least) one re-
viewer assigns it a review score of +2, the latest revision of the patch will be
moved to the next stage of automated testing. The patch author or reviewers
may also mark the review status as Abandoned if the patch is irredeemably flawed
or requires too much rework.

Automated testing

Prior to integration into upstream VCS repositories, automatic systems perform
more rigorous testing on the patch. For example, Continuous Integration (CI)
systems perform regression tests to detect whether there are compilation errors
when the patch is applied to the latest version of upstream VCS repositories.
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If the patch does not pass automated testing, the patch needs to be revised
according to the testing reports, and a new revision needs to be uploaded. Once
the patch passes the automated tests, Gerrit automatically integrates the patch
into upstream VCS repositories and marks the review status as Merged.

2.4. Chapter Summary

This chapter provides a broad background of formal software inspection and in-
formal code reviews that were used in the past, as well as an overview of code
review processes that are supported using MCR tools. In particular, we define
mechanisms in the review preparation and execution steps of Gerrit.
In the next chapter, we survey prior research on code reviews in order to situate

our empirical studies with respect to the literature.



Chapter 3

Related Research

In this chapter, we survey the related research on code reviews. We organize the
work along the review preparation and execution of the MCR processes. More
specifically, we describe how the related work motivates our four empirical studies.

3.1. Review Preparation

Review preparation helps reviewers better understand the proposed patch and
provide useful feedback.

3.1.1. Patch upload

Much research suggests that a proposed patch should be small, i.e., the number of
changed lines should be small. For example, Weißgerber et al. report that small
patches are more likely to be integrated into VCS repositories than large patches
for the FLAC and OpenAFS projects [131]. Similarly, Tao et al. find that the
reviewers of the Eclipse and Mozilla projects tend to reject patches due to the
large size of the patches [118]. Baysal et al. report that large patches have more
re-work done before they are eventually integrated into VCS repositories than
small patches do. Rigby et al. indicate that the patch size has a large impact on
review interval [99]. Moreover, the reviewers of the Apache HTTP server project

21
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suggest that an author should break a large patch into several small patches of
logical and functional steps [101]. Furthermore, prior studies show that the patch
size is associated with the risk of having defects in the patch [80] and with the
defect density of a software system [84].

To help authors make small patches, recent work proposes approaches to de-
compose a large patch. For example, Barnett et al. developed ClusterChanges
which is a lightweight static analysis technique in order to cluster areas of code
changes that are related to each other [10]. Tao et al. proposed an approach
to automatically partition code changes in a proposed patch based on semantic
dependencies and logical change patterns [119].

Prior work also find that the description of a proposed patch can have an
impact on the reviewing performance. Rigby and Storey find that the description
of changes is important for reviewers to understand the purpose and the detail of
changes [101]. Tao et al. find that missing or inconsistent documentation is one
of the decisive reasons for patch rejection [118].

3.1.2. Reviewer selection

Selecting a developer to whom tasks or questions should be delegated is important
for software productivity and quality. Code ownership concepts can help software
development teams to estimate expertise of developers and establish a chain of
responsibility. Many prior studies propose an approach to estimate the expertise
of developers using code authoring activity. For example, Mockus and Herbsleb
use Experience Atoms (EA), i.e., the development and maintenance tasks that a
developer has completed, as a measure of developer expertise [79]. Schuler and
Zimmermann create an expertise profile from a set of methods that developers
have implemented or referenced [107]. Bird et al. estimate expertise of developers
using the proportion of patches that developers have authored [21]. Moreover,
several studies complement authorship data with the data that is recorded during
developer IDE interactions [37,38,52,102].
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Moreover, several studies find that code authoring expertise is associated with
defect-proneness. For example, Pinzger et al. show that contribution networks
that are built from author contributions can identify defect-prone modules in the
Microsoft Windows Vista system [90]. Meneely et al. find that there is an asso-
ciation between the number of commits that developers have made to a module
and the incidence of security-related problems in the Red Hat Enterprise Linux
4 kernel [76]. Rahman and Devanbu also report that an area of source code that
has been associated with defects in the past tends to be written by developers
with low code authoring expertise [93].

In addition to code authoring expertise, the current review practices may help
developers gain an expertise as well. Several studies find that reviewers in MCR
processes are actively involved in a proposed patch more than just uncovering
defects. The reviewers often help the author to improve the proposed patch by
suggesting alternative solutions [16, 118, 128] or even providing updates to the
patch themselves [100, 121]. Bacchelli and Bird also find that code reviews at
Microsoft provide additional benefits to development teams, such as knowledge
transfer among team members [6].

Moreover, recent work provides an empirical evidence of the importance of re-
viewing expertise. Meneely et al. find that the likelihood of having vulnerability-
related problems in files is associated with the number of reviewers who have
security experience [75]. Baysal et al. indicate that the choice of reviewers plays
an important role on reviewing time [14]. Yet, it is not clear whether selecting
developers based on reviewing expertise to examine a patch in MCR processes
can reduce the risk of having defects. We, therefore, set out to investigate the
relationship between the reviewing expertise of developers and the likelihood of
having post-release defects in a module.

Empirical Study 1: The impact of reviewer selection on software quality.
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Automated identification of relevant experts helps team to expedite the soft-
ware development processes, especially for geographically distributed develop-
ment teams. Several prior studies proposed approaches for expert recommenda-
tion in order to support software development. For example, for the bug triage
process, Anvik et al. use machine learning techniques to recommend developers
who should be responsible for a new bug issue report [3]. Shokripour et al. iden-
tify responsible developers using the information that is recorded in a bug issue
report and the history of fixed files [110]. Xia et al. propose a developer rec-
ommendation using the information of a bug issue report and developers [133].
Lately, Tian et al. propose an expert recommendation system for Question &
Answer communities using topic modeling and collaborative voting scores [126].

Such support tool may also be needed in MCR processes. Tsay et al. find that
some pull requests in GitHub might await merging for over two months [128].
Weißgerber et al. find that some patches in the FLAC and OpenAFS projects
were waiting more than two weeks before being integrated [131]. Rigby and Bird
report that the reviewing time in industrial and several open source projects is
ranging from one minute to as much as 365 days [97].

To better understand the long delay of MCR reviews, several studies investigate
the factors that can influence reviewing time. Jiang et al. find that the reviewing
time is impacted by the patch submission time, the number of affected subsys-
tems, the number of reviewers and the experience of an author [57]. Bosu et al.
observe that the reviewing time of patches that are submitted by core devel-
opers is shorter than patches that are submitted by peripheral developers [24].
Pinzger et al. also find that the developer’s contribution history, the size of the
project, the test coverage, and the project’s openness to external contributions
are the main factors that influence reviewing time in pull requests at GitHub [40].

Indeed, recent work points out that selecting developers who should be as-
signed for a review can be a time consuming task [9]. With the aim of reducing
human effort, Balachandran proposed ReviewBot to recommend reviewers for
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the industrial setting of VMware [9]. ReviewBot uses the line-by-line modi-
fication history of source code to recommend an appropriate reviewer for new
code changes. However, there is likely a case where lines of source code are rarely
changed like in projects that are already in the maintenance phase. Then, the
history of changed lines is not sufficient to be used to identify appropriate review-
ers. To this end, we propose RevFinder that leverages the similarities between
the path of a newly changed file and the paths of previously reviewed files.

Empirical Study 2: Selecting appropriate reviewers by leveraging the
similarities between the path of a newly changed file and the paths of previously

reviewed files.

3.2. Reviewer Involvement

MCR does not impose strict execution criteria. Many studies investigate the cur-
rent reviewing practices of MCR processes. For example, Gousios et al. explore
the amount of reviewer involvement (i.e., the number of reviewers and discussion
length) in reviews of pull requests at GitHub [40]. Similarly, Rigby and Bird
observe the number of reviewers, reviewing time, and the number of revisions
in MCR reviews at Microsoft and within several open source projects [97]. Fur-
thermore, prior work suggests that patches should be reviewed by at least two
developers to maximize the number of defects found during the review, while mini-
mizing the reviewing workload on the development team [91,97,106]. Baysal et al.
report that the collaborations between organizations in the WebKit project can
have an impact on the positivity, i.e., the proportion of accepted patches [14].
Rigby et al. report that the level of review participation is the most influential
factor in the code review efficiency [99].
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The reviewer concern in MCR processes is another aspect that has been exten-
sively explored. Beller et al. observe a 75:25 ratio of maintainability-related and
functional defects that were raised in the MCR reviews of several open source
projects [16], which is a similar ratio as in the code reviews of student and com-
mercial projects [70]. Tsay et al. report that reviewers are concerned with the
appropriateness of a code solution and often provide alternative solutions during
reviews of pull requests at GitHub [128]. Tao et al. report that risk concerns are
frequently raised in the code reviews at Microsoft while it is often difficult to
quantify the risk of proposed patches [117].

Other recent work has analyzed the usefulness of reviewer feedback in the
MCR process. Pangsakulyanont et al. find that the semantic similarity between
reviewer comments and the commit message can be used as an indicator of MCR
comment usefulness [88]. Bosu et al. uncover characteristics of useful reviewer
comments and investigate the factors that influence the comment usefulness den-
sity in reviews at Microsoft [26].

While MCR reviewer involvement has been explored in prior work, the impact
of the reviewer involvement in MCR processes on software quality remains largely
unexplored. Lately, empirical studies have provided an evidence that the review
investment, i.e., the proportion of patches that are reviewed or are discussed,
in a module has an impact on software quality [73,74] and software design qual-
ity [81]. However, besides the review investment, little is known about the impact
of other dimensions of reviewer involvement (e.g., code revisions and addressed
reviewing concerns) on software quality. To this end, we characterize the reviewer
involvement in MCR processes and evaluate its impact on software quality.

Empirical Study 3: The impact of reviewer involvement on software quality.
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Although code reviews require the active involvement of reviewers to critique
the proposed patches [1,96], recent studies uncover that patches might be ignored
during the MCR process [17,19,87,101]. For example, Rigby and Storey indicate
that patches can be ignored if they do not match with the interests of members
of the core development team [101]. Bettenburg et al. report that in the volun-
tarily code reviews of open source projects, there is a risk that a contribution is
completely ignored, when no volunteer steps up for a review [17].

In addition to the review participation, several studies provide evidence of the
impact of other dimensions of reviewer involvement on reviewing performance.
Prior work finds that careful consideration of the implications of changes improves
their overall quality prior to integration [6,128]. Moreover, Bettenburg et al. indi-
cate that a well-functioning code review process should yield responses to a new
review request in a timely manner in order to avoid potential problems in the
development process [17]. For example, due to continuous software development
practices [36], it is possible that if a patch receives slow initial feedback, it can be-
come outdated, requiring updates to be re-applied (and possibly re-implemented)
to the latest version of the system. Moreover, Rigby et al. suggest that the earlier
that a patch is reviewed, the lower the risk of deeply embedded defects [100].

In the MCR process, however, some patches are merged into upstream VCS
repositories even though they do not have any reviewer involved nor feedback is
provided in their reviews apart from the patch author [73, 81]. It is not known
whether there are characteristics of patches that share a relationship with the
likelihood of receiving such poor reviewer involvement. A good understanding of
these characteristics will help projects create mitigation strategies to avoid such
poor participation.

Empirical Study 4: Identifying characteristics of patches with poor reviewer
involvement.
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3.3. Chapter Summary

In this chapter, we survey prior research along the review preparation, and ex-
ecution of MCR processes. From the survey, we find that (1) little is known
about the impact of reviewer selection and involvement on software quality and
(2) MCR tools need additional features to support and increase the effectiveness
of code review processes.
Broadly speaking, the remainder of this thesis describes our empirical studies

that set out to better understand and improve the reviewer selection (Chapters
4 and 5), and in the reviewer involvement in MCR processes (Chapters 6 and 7).



Part II.

Reviewer Selection in Modern Code
Review Processes





Chapter 4

The Impact of Reviewer Selection on
Software Quality

An earlier version of the work in this chapter appears in
the Proceedings of the 38th International Conference on
Software Engineering (ICSE) [123].

A patch author should assign a review task to developers who have an expertise
or experience that is related to the impacted module. However, the lightweight
MCR does not impose strict criteria for selecting reviewers. Recent work finds
that the choice of reviewers has an impact on reviewing performance of MCR [14,
75]. Motivated by the findings of prior work, we suspect that the choice of
reviewers may also have an impact on software quality. Hence, in this chapter,
we adopt the concept of code ownership to estimate the expertise of developers.
In particular, we include code review activity into traditional code ownership
heuristics which are solely derived from code authoring activity [21], then examine
the relationship between the level of reviewing expertise and defect-proneness
of software products. The results of our case studies demonstrate that when
considering code review activity, we find developers who are actively involved
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in software projects through only reviewing patches, instead of authoring them.
Our results also show that a code ownership heuristic that is aware of code review
activity can reverse the association between code authoring expertise and defect-
proneness. Our findings suggest that considering reviewing expertise in addition
to authoring expertise when selecting a reviewer for a new patch can decrease the
likelihood of having future defects.

4.1. Introduction

Code ownership is an important concept for large software teams. In large soft-
ware systems, with hundreds or even thousands of modules, code ownership is
used to establish a chain of responsibility. When tasks or questions need to be ad-
dressed to a module with strong code ownership, there is a module owner who is
responsible for it. On the other hand, it is more difficult to identify the developer
to whom tasks should be delegated in modules with weak code ownership.
In the literature, code ownership is typically estimated using heuristics that

are derived from code authorship data. For example, Mockus and Herbsleb use
the number of tasks that a developer has completed within a time window that
modify a given module to identify the developer that is responsible for that mod-
ule [79]. Furthermore, Bird et al. estimate code ownership for a developer within
a module by computing the proportion of code changes that the developer has
authored within that module [21]. Rahman and Devanbu estimate code owner-
ship at a finer granularity by computing the proportion of lines of changed code
that each developer has authored [93]. Indeed, the intuition behind traditional
code ownership heuristics is that developers who author the majority of changes
to a module are likely to be the owners of those modules.
However, in addition to authorship contributions, developers can also con-

tribute to the evolution of a module by critiquing code changes that other de-
velopers have authored in that module. Indeed, many contemporary software
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development teams use Modern Code Review (MCR), a tool-based code review
process, which tightly integrates with the software development process [97]. In
the MCR process, code changes are critiqued by reviewers (typically other de-
velopers) to ensure that such code changes are of sufficient quality prior to their
integration with the codebase.

While several studies show that the modern code review activity shares a link
to software quality [65, 73, 121], the MCR process is more than just a defect-
hunting exercise. Indeed, Morales et al. show that developer involvement in the
MCR process shares a relationship with software design quality [81]. Bacchelli
and Bird report that the focus of code review at Microsoft has shifted from being
defect-driven to collaboration-driven [6]. Others report that reviewers in MCR
processes often suggest alternative solutions [16,118,128] or even provide updates
to the code changes themselves [121].

Despite the active role that reviewers play in the MCR process, reviewer con-
tributions are disregarded by traditional code ownership heuristics. For example,
a senior developer who reviews many of the code changes to a module, while
authoring relatively few will not be identified as a module owner by traditional
code ownership heuristics. Therefore, in this chapter, we set out to complement
traditional code ownership heuristics using data that is derived from code review
repositories. More specifically, we adapt the popular code ownership heuristics
of Bird et al. [21] to be: (1) review-specific, i.e., solely derived from code review
data and (2) review-aware, i.e., combine code authorship and reviewing activities.
We then use review-specific and review-aware code ownership heuristics to build
regression models that classify modules as defect-prone or not in order to revisit
the relationship between the code ownership and software quality. Through a
case study of six releases of the large Qt and OpenStack open source systems, we
address the following three research questions:
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(RQ1) How do code authoring and reviewing contributions differ?
Motivation. While prior work examines the contributions of developers in
terms of code authorship [21, 37, 38, 76, 90, 93], the reviewer contributions
that these developers make to a module still remains largely unexplored.
Hence, we first study how developers contribute to the evolution of a module
in terms of code authorship and review.
Results. 67%-86% of the developers who contribute to a module did not
author any code changes, yet they participated in the reviews of 21%-39%
of the code changes made to that module. Moreover, 18%-50% of these
review-only contributors are documented core team members.

(RQ2) Should code review activity be used to refine traditional code owner-
ship heuristics?
Motivation. Prior work uses defect models to understand the relationship
between traditional code ownership heuristics and software quality [21, 28,
42, 85]. Such an understanding of defect-proneness is essential to chart
quality improvement plans, e.g., developing code ownership policies. Fur-
thermore, Bird et al. find that modules with many minor authors (i.e.,
developers who seldom wrote code changes in that module) are likely to be
defective [21]. However, there are likely cases where these minor authors
review several of the code changes in that module. Hence, we investigate
whether refining traditional code ownership heuristics using code review ac-
tivity will provide a more comprehensive picture of the relationship between
code ownership and software quality.
Results. 13%-58% of developers who are flagged as minor contributors of a
module by traditional code ownership heuristics are actually major contrib-
utors when their code review activity is taken into consideration. Moreover,
modules without post-release defects tend to have a large proportion of de-
velopers who have low traditional code ownership values but high review-
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specific ownership values. Conversely, the modules with post-release defects
tend to have a large proportion of developers who have both low traditional
and review-specific ownership values. Moreover, when controlling for sev-
eral factors that are known to share a relationship with defect-proneness,
our defect models show that the proportion of developers who have both
low traditional and review ownership values shares a strong, increasing re-
lationship with the likelihood of having post-release defects.

Our results lead us to conclude that code review activity provides an important
perspective that contributes to the code ownership concept. Moreover, reviewing
expertise of developers can reverse the relationship with defect-proneness. These
findings suggests that one should select reviewers who have reviewing expertise
of a module (even if they never authored any code changes in that module) in
order to mitigate the risk of having defects in the future.

4.1.1. Chapter Organization

The remainder of this chapter is organized as follow. Section 4.2 describes the
studied code ownership heuristics in more detail. Section 4.3 describes the de-
sign of our case study, while Section 4.4 presents our empirical observations with
respect to our three research questions. Section 4.5 discusses our broader impli-
cations of our observations. Section 4.6 discloses the threats to the validity of our
study. Finally, Section 4.7 provide a summary of this study.

4.2. Background & Definition

In this section, we provide a description of the studied code ownership heuristics.
Code ownership heuristics that operate at different granularities have been

proposed in the literature [21, 38, 42, 79, 93]. For example, Bird et al. estimate
code ownership values using the code change granularity [21]. Fritz et al. propose
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code ownership heuristics at the element (i.e., class) granularity [38]. Rahman
and Devanbu estimate code ownership values at the finer granularity of a code
fragment. Since the studied MCR processes are connected with code changes,
i.e., proposed changes should be reviewed prior to integration into the VCS, we
opt to extend the code ownership heuristics of Bird et al. [21] using code review
activity.

Below, we describe the traditional, review-specific, and review-aware code own-
ership heuristics.

4.2.1. Traditional Code Ownership Heuristics

The traditional code ownership heuristics of Bird et al. [21] are computed using
the authorship of code changes to estimate the code ownership of a developer for
a module. For a developer D, Traditional Code Ownership (TCO) of a module
M is computed as follows:

TCO(D,M) = a(D,M)
C(M) (4.1)

where a(D,M) is the number of code changes that D has authored in M and
C(M) is the total number of code changes made to M .

In addition, Bird et al. also define two levels of developer expertise within a
module. Developers with low TCO values (i.e., below 5%) are considered to
be minor authors, while developers with high TCO values (i.e., above 5%) are
considered to be major authors.

4.2.2. Review-Specific Ownership Heuristics

We define review-specific ownership heuristics that use code review data to es-
timate the code ownership of developers according to the reviewer contributions
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that they have made to a module. For a developerD, Review-Specific Ownership
(RSO) of a module M is computed as follows:

RSO(D,M) =
∑r(D,M)

k=1 p(D, k)
C(M) (4.2)

where r(D,M) is the number of reviews of code changes made to M in which
D has participated and p(D, k) is a proportion of reviewer contributions that D
made to code change k. Since one review can have many reviewers, we normalize
the value of review-specific ownership in each code change using p(D, k) in order
to avoid having RSO values that do not sum up to 100%. We explore two RSO
heuristics by varying the definition of p(D, k):

1. RSOEven: This normalization assumes that every reviewer contributes equally
to k. Therefore, this normalization evenly divides the share of reviewer
contributions to every reviewer of k.

p(D, k) = 1
R(k) (4.3)

R(k) is the total number of developers who participated in the review of k.

2. RSOProportional: The intuition behind this normalization is that the more the
feedback that D provides during the review of k, the larger the share of
reviewer contributions that D made to k. Therefore, this normalization
assigns a share of the reviewer contribution to D that is proportional to
the amount of feedback (i.e., number of reviewer comments) that D has
provided to the review of k.

p(D, k) = c(D, k)
C(k) (4.4)

c(D, k) is the number of reviewer comments that are provided by D in the
review of k, while C(k) is the total number of reviewer comments in the
review of k.
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Table 4.1. A contingency table of the review-aware ownership expertise category.
Traditional code ownership
≤ 5% > 5%

Review-
specific
ownership

≤ 5% Minor author &
minor reviewer

Major author &
minor reviewer

> 5% Minor author &
major reviewer

Major author &
major reviewer

Similar to traditional code ownership, we consider developers with low RSO
values (i.e., below 5%) to be minor reviewers, and developers with high RSO
values (i.e., above 5%) to be major reviewers. We also perform a sensitivity
analysis with RSO threshold values ranging from 2% to 10%. We observe a
similar result when using these RSO thresholds (see Appendix B.1).

4.2.3. Review-Aware Ownership Heuristics

In practice, developers act as both authors and reviewers. For example, a devel-
oper can be the author of a code change to a module, while also being a reviewer
of code changes that other developers have authored to that module. However,
the traditional and review-specific ownership heuristics independently estimate
code ownership using either authorship or reviewer contributions, respectively.

To address this, we propose review-aware code ownership heuristics. We adapt
the traditional code ownership heuristics to be review-aware using the pair of TCO
and RSO values that a developer can have within a module. Then, we refine the
levels of the traditional code ownership using the levels of review-specific code
ownership as shown in Table 4.1. For example, for a module M , if a developer D
has a TCO value of 3% and an RSO value of 25%, then D would have a review-
aware ownership value of (3%, 25%), which falls into the minor author & major
reviewer category.
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4.3. Case Study Design

In this section, we outline our criteria for selecting the studied systems and our
data preparation approach.

4.3.1. Studied Systems

In order to address our research questions, we perform an empirical study on
large, rapidly-evolving open source systems. In selecting the subject system, we
identified two important criteria that needed to be satisfied:

Criterion 1: Traceability — We focus our study on systems where the MCR pro-
cess records explicit links between code changes and the associated reviews.

Criterion 2: Full Review Coverage —Since we will investigate the effect of review-
specific and review-aware ownership heuristics on software quality, we need
to ensure that unreviewed changes are not a confounding factor [73]. Hence,
we focus our study on systems that have a large number of modules with
100% review coverage, i.e., modules where every code change made to them
has been reviewed by at least one reviewer other than its author.

To satisfy criterion 1, we began our study with four software systems that use
the Gerrit code review tool. To mitigate bias that may be introduced into our
datasets through noisy manual linkage [18], we select systems that use the Gerrit
code reviewing tool for our analysis. Gerrit automatically records a unique ID
that can link code changes to the reviews that they have undergone. We discard
VTK, since its linkage rate is too low. We also remove ITK from our analysis,
since it does not satisfy criterion 2.
Table 4.2 shows that the Qt and OpenStack systems satisfy our criteria for

analysis. Qt is a cross-platform application and UI framework that is developed
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Table 4.2. Overview of the studied systems. Systems above the double line satisfy our criteria for further analysis.
System Commits Modules Personnel

Name Version Tag name Total Linkage rate Total With 100% review coverage With defects Authors Reviewers

Qt 5.0 v5.0.0 2,955 95% 389 328 (84%) 70 (21%) 156 156
5.1 v5.1.0 2,509 96% 450 438 (97%) 77 (18%) 186 170

OpenStack

Folsom 2012.2 2,315 99% 258 241 (93%) 70 (29%) 235 152
Grizzly 2013.1 2,881 99% 336 326 (97%) 123 (37%) 330 205
Havana 2013.2 3,583 99% 527 515 (97%) 128 (25%) 451 359
Icehouse 2014.1 3,021 100% 499 499 (100%) 198 (40%) 499 480

VTK 5.10 v5.10.0 1,431 39% 170 8 (5%) - - -
ITK 4.0 v4.3.0 352 97% 218 125 (57%) - - -
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by the Digia corporation, while welcoming contributions from the community-at-
large.1 OpenStack is an open-source software platform for cloud computing that
is developed by many well-known companies, e.g., IBM, VMware, and NEC.2

4.3.2. Data Preparation

We use the review dataset that is provided by Hamasaki et al. [46]. The dataset
describes patch information, reviewer scoring, the involved personnel, and review
discussion. We use the code dataset for the Qt system from prior work [73]. The
code dataset describes the recorded commits on the release branch of the Qt
VCSs during the development and maintenance of each studied Qt release. We
also expand the code dataset for the OpenStack system using the same approach
as the prior work [73].
In order to produce the datasets that are necessary for our study, we link the

review and code datasets, and compute the code ownership heuristics. Figure 4.1
provides an overview of our data preparation process, which is broken down into
the following three steps.
(DP1) Link code changes to reviews. Similar to prior work [73], we link the
code and review datasets using the change ID, i.e., a review reference that is au-
tomatically generated by Gerrit. For each code change, we extract the change ID
recorded in the commit message. To link the associated review, Gerrit uses “<sub-
system name>_<VCS branch>_<change ID>” as a unique reference. Hence, we
extract the commit data from the VCSs to generate a reference, then link the
code change to the associated review.
Once the code and review datasets are linked, we measure the review coverage

for each module (i.e., directory). Since this study revisits the traditional code
ownership heuristics [21] which were previously studied at the module level, we
conduct our study at the module level as well to enable the comparability of our

1http://qt-project.org/
2http://www.openstack.org/

http://qt-project.org/
http://www.openstack.org/
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(DP1) Link code 
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code ownership 

heuristics
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module metrics
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Review 
dataset

Code 
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Module 
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Code 
ownership data

Data Preparation

Figure 4.1. An overview of data preparation approach.

results with the prior work. We then remove modules that do not have 100%
review coverage from our datasets in order to control for the confounding effect
that a lack of review coverage may have [73].
(DP2) Compute code ownership heuristics. To estimate the code ownership
of a developer for a module, we first identify code changes that the developer
has authored using the owner field as recorded in Gerrit. We then identify the
code changes that the developer has reviewed using the reviewer comments that
the developer posted. A code change that spans multiple modules is treated as
contributing to all of the changed modules.
Next, we estimate code ownership using the traditional, review-specific, and

review-aware code ownership heuristics (see Section 4.2) for every developer who
was involved with the development of each module. Similar to prior work [58,74],
we use a six-month period prior to each release date to capture the authorship
and reviewer contributions that developers made during the development cycle.
(DP3) Calculate module metrics. Prior work finds that several types of metrics
have an impact on software quality. Hence, we also measure popular product and
process metrics that are known to have a relationship with defect-proneness in
order to control for their impact [51,109].
For the product metrics, we measure the size of the source code in a module

at the release time by aggregating the number of lines of code in each of the files
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of the module. For the process metrics, we use churn and entropy to measure the
change activity that occurred during the development cycle of a studied release.
We again use use the six-month period prior to each release date to capture the
change activity. Churn counts the total number of lines added to and removed
from a module prior to release. Entropy measures how the complexity of a change
process is distributed across source code files [51]. We measure the entropy of a
module using a calculation of H(M) = − 1

log2n

∑n
k=1(pk × log2pk), where n is the

number of source code files in module M , and pk is the proportion of the changes
to M that occur in file k.

We also detect whether there are post-release defects in each module. To detect
post-release defects in a module, we identify defect-fixing changes that occurred
after a studied release date. By studying the release practice of the studied
systems, we found that the studied systems release sub-versions every two month
after the main version is released. Hence, we use a two-month window to capture
the defect-fixing changes. Similar to prior work [73], we search the VCS commit
messages for co-occurrences of defect identifiers with keywords like “bug”, “fix”,
or “defect”. A similar approach is commonly used to determine defect-fixing and
defect-inducing changes in prior work [58,61,74].

4.4. Case Study Results

In this section, we present the results of our case study with respect to our
three research questions. For each research question, we present our empirical
observations, followed by a general conclusion.
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(RQ1) How do code authoring and reviewing contributions

differ?

4.4.1. Approach

To address our RQ1, we examine the contributions of developers in each release
of the studied systems. We analyze descriptive statistics of the number of devel-
opers who contribute by authoring or reviewing code changes to modules. Since
the number of involved developers can vary among modules, we analyze the pro-
portion of developers in a module instead of the actual number of developers.

4.4.2. Results

We now present our empirical observations.
Observation 1 – 67%-86% of developers who contribute to a module did not

previously author any code changes, yet they had previously reviewed 21%-
39% of the code changes in that module. We find that there are on average
6-8 (Qt) and 17-32 (OpenStack) developers who contribute to a module. Figure
4.2 shows that the developers who previously only reviewed code changes are the
largest set of developers who contribute to a module. 67%-70% (Qt) and 67%-
86% (OpenStack) of developers are review-only contributors. On average, these
review-only contributors have reviewed 29%-39% (Qt) and 21%-31% (OpenStack)
of the code changes made to a module. This suggests that many developers
contribute by only reviewing code changes to a module, yet their expertise is not
captured by traditional code ownership heuristics.
Observation 2 – 18%-50% of the developers who only review code changes

made to a module are documented core developers. 44%-51% (Qt) and 18%-
21% (OpenStack) of the review-only contributors to modules are documented core
developers (see Appendix C). On the other hand, 18%-20% (Qt) and 12%-26%
(OpenStack) of developers who have authored a code change to a module are
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Figure 4.2. Number of developers who contribute to a module (i.e., authoring vs
reviewing code changes).

documented as core developers. Moreover, we observe that core developers tend
to often contribute to a module as reviewers rather than authors. Indeed, 51%-
54% (Qt) and 42%-60% (OpenStack) of modules do not have any code changes
authored by core developers. On the other hand, 0%-8% (Qt) and 23%-36%
(OpenStack) of modules that do not have any code changes reviewed by core
developers.

Summary: The developers who contribute to a module by only reviewing code
changes account for the largest set of contributors to that module. Moreover,
18%-50% of these review-only developers are documented core developers of the
studied systems, suggesting that code ownership heuristics that only consider
authorship activity are missing the activity of these major contributors.
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(RQ2) Should code review activity be used to refine traditional

code ownership heuristics?

4.4.3. Approach

To address RQ2, we first examine the TCO values of each developer in each
module against their RSO values. We then analyze the relationship between
review-aware ownership and defect-proneness. To do so, we perform two data
analysis approaches: (DA1) statistical analysis and (DA2) defect model analysis.
Below, we describe each of our analysis approaches.

(DA1) Statistical Analysis

We use statistical analysis to determine the difference between defective and clean
modules in terms of developer expertise. To do so, we compute the proportion of
developers in each expertise category of the review-aware ownership heuristic (see
Table 4.1), i.e., (1) minor author & minor reviewer, (2) minor author & major
reviewer, (3) major author & minor reviewer, and (4) major author & major
reviewer for each module. Then, we compare the proportion of developers in each
of the expertise categories of defective and clean modules using beanplots [59].
Beanplots are boxplots in which the vertical curves summarize the distributions of
different datasets. Defective modules are those that have at least one post-release
defect, while clean modules are those that are free from post-release defects.
We use one-tailed Mann-Whitney U tests (α = 0.05) to detect whether there

is a statistically significant difference among the defective and clean modules
in terms of the proportion of developers in the different expertise categories.
We use Mann-Whitney U tests instead of T-tests because we observe that the
distributions of the proportions of developers do not follow a normal distribution
(Shapiro-Wilk test p-values are less than 2.2×10−16 for all distributions). We also
measure the effect size, i.e., the magnitude of the difference using Cliff’s δ [69].
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Cliff’s δ is considered as negligible for δ < 0.147, small for 0.147 ≤ δ < 0.33,
medium for 0.33 ≤ δ < 0.474 and large for δ ≥ 0.474 [103].

(DA2) Defect Model Analysis

Although our statistical analysis can explain the association between each of
the expertise categories and defect-proneness, their effects could be correlated
with other metrics that are known to share a relationship with defect-proneness
(e.g., module size) [136]. Hence, we examine the impact that review-specific and
review-aware code ownership heuristics can have on defect-proneness using defect
models that control for several confounding factors. Similar to Bird et al. and
other work [21, 29, 74, 136], our main goal of building defect models is not to
predict defect-prone modules, but to understand the relationship between the
explanatory variables and defect-proneness.

To build defect models, we use logistic regression models to fit our studied
datasets. We adopt a nonlinear regression modeling approach, which enhances
the fit of the data to be more accurate and robust, while carefully considering
the potential for overfitting [48]. Our models operate at the module-level, where
the response variable is assigned a value of TRUE if a module has at least one
post-release defect, and FALSE otherwise. The explanatory variables are outlined
in Table 4.3. Similar to prior work [21], we estimate the traditional and review-
specific code ownership for a module by using the largest TCO and RSO values
of the developers who contributed to that module. We also estimate the review-
aware ownership for a module by computing the proportion of developers in each
expertise category. Furthermore, in addition to the product and process metrics
(i.e., size, churn, and entropy), we control for the number of contributors, authors,
and reviewers in our models, since these metrics may have an impact on defect-
proneness.
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Table 4.3. A taxonomy of the considered control (top) and code ownership met-
rics (bottom).

Metrics Description
Control Metrics
Size Number of lines of code.
Churn Sum of added and removed lines of code.
Entropy Distribution of changes among files.
#Contributor The number of developers who contribute by authoring

or reviewing code changes to the module.
#Author The number of developers who have authored code

changes to the module.
#Reviewer The number of developers who have reviewed code

changes to the module.
Code Ownership Metrics
Top TCO The traditional code ownership value of the developer

who authored the most code changes to the module.
Top RSO The review-specific ownership value of the developer

who reviewed the most code changes to the module.
Review-Aware Ownership Metrics
Proportion of minor author
& major reviewer

A proportion of developers in the minor author & major
reviewer category.

Proportion of major author
& major reviewer

A proportion of developers in the major author & major
reviewer category.

Proportion of minor author
& minor reviewer

A proportion of developers in the minor author & minor
reviewer category.

Proportion of major author
& minor reviewer

A proportion of developers in the major author & minor
reviewer category.

Similar to prior work [74], we adopt the model construction and analysis ap-
proaches of [48, p. 79] to allow nonlinear relationships between explanatory and
response variables to be modelled. Furthermore, these techniques can enable a
more accurate and robust fit of the data, while carefully considering the potential
for overfitting (i.e., a model is too specifically fit to the training dataset to be
applicable to other datasets). An overfit model will overestimate the performance
of the model and exaggerate spurious relationships between explanatory and re-
sponse variables. To facilitate future research and replication study, we provide
an example R script of model construction and analysis in Appendix A.
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Figure 4.3. An overview of our model construction and analysis approaches.

Figure 4.3 provides an overview of the model construction and analysis ap-
proaches, which we describe below. We now describes each step in our model
construction and analysis approaches.

(MC-1) Correlation & Redundancy Analysis. Explanatory variables that are
highly correlated with each other can interfere with the results of model anal-
ysis. Hence, we measure the correlation between explanatory variables using
Spearman rank correlation tests (ρ). We then use a variable clustering analysis
technique [105] to construct a hierarchical overview of the correlation and re-
move explanatory variables with a high correlation. According to [54, p. 120],
Spearman correlation coefficient values that are greater than 0.7 are considered
to be strong correlation. Hence, we select |ρ| = 0.7 as our threshold for removing
highly correlated variables. We perform this analysis iteratively until all clusters
of surviving variables have |ρ| values below 0.7.

Some explanatory variables are not highly correlated but can still be redun-
dant, i.e., variables that do not have a unique signal from the other explanatory
variables. Redundant variables in an explanatory model will distort the modelled
relationship between the explanatory and response variables. To detect redun-
dant variables, we use the redun function in the rms R package [49] to fit models
that explain each explanatory variable using the remaining explanatory variables.
We then remove the explanatory variables where models are fit with an R2 value
greater than 0.9 (the default threshold of the redun function).
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(MC-2) Degrees of Freedom Allocation. In order to allow nonlinear relationships
between explanatory and response variables to be modelled, we must decide how
to allocate our budgeted degrees of freedom to each of our explanatory variables.
To allocate the degrees of freedom most effectively, the explanatory variables that
have more potential for sharing nonlinear relationship with the response variable
should be allocated more degrees of freedom than the explanatory variables that
have less potential. Hence, we measure the potential for nonlinearity in the
relationship between explanatory and response variables using a calculation of
the Spearman multiple ρ2. A large Spearman multiple ρ2 score indicates that
there is potential for a strong nonlinear relationship between an explanatory
variable and the response variable. Nevertheless, we limit the maximum degrees
of freedom that we allocate to any given explanatory variable to five in order to
minimize the risk of overfitting [48, p. 23]. Finally, we allocate degree of freedom
for explanatory variable xi as follow:

D.F.(xi) =


5 for strong: ρ2 > 0.3

3 for moderate: 0.15 < ρ2 ≤ 0.3

1 for small: ρ2 ≤ 0.15

(MC-3) Logistic Regression Model Construction. After removing the highly
correlated and redundant variables and allocating the degrees of freedom to the
surviving explanatory variables, we fit our logistic regression models to the data.
We use the restricted cubic splines of the rcs function in the rms R package [49]
to fit the allocated degrees of freedom to the explanatory variables. We use
the restricted cubic splines because the smooth nature of cubic curves will more
realistically fit natural phenomena than linear splines, which introduce abrupt
changes in direction [48, p. 20].

Once the logistic regression model has been constructed, we analyze the model
in order to understand the relationship between the explanatory variables (i.e.,
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patch and MCR process metrics) and the response variable (i.e., whether a patch
had review participation or not).

(MA-1) Assessment of Explanatory Ability & Model Reliability. To evaluate
the performance of our models, we use the Area Under the receiver operating
characteristic Curve (AUC) [47]. AUC measures how well a model can discrim-
inate between the potential responses. AUC is computed by measuring the area
under the curve that plots the true positive rate against the false positive rate
while varying the threshold that is used to determine whether a patch is classified
as receiving review participation or not. An AUC value of 1 indicates perfect dis-
crimination, i.e., perfect separation of patches that receive review participation
and those that do not, while an AUC value of 0.5 indicates that the model does
not discriminate better than random guessing.

Although the AUC can measure the explanatory power, it may overestimate
the performance of the model if it is an overfit model. To evaluate the reliability
of our models, we estimate the optimism of the AUC using a bootstrap-derived
approach [32]. First, the approach trains a model using a bootstrap sample, i.e.,
a dataset sampled with replacement from the original dataset, which has the
same population size as the original dataset. Then, the optimism is estimated
using the difference in performance between the bootstrap model when applied to
the original dataset and the bootstrap sample. Finally, the approach is repeated
1,000 times in order to compute the average optimism. The smaller the average
optimism is, the more reliable the performance estimates of the original fit are.

(MA-2) Power of Explanatory Variables Estimation. Similar to prior work [74],
we use Wald statistics to estimate the impact that each explanatory variable has
on the model’s performance. Since the explanatory variables that were assigned
additional degrees of freedom are represented in the model by multiple terms,
Wald statistics are used to jointly test all model terms that relate to a given
explanatory variable. For the tests, we use the anova function in the rms R
package [49] to estimate the relative contribution (Wald χ2) and the statistically
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significance (p-value) of each explanatory variable in the model. The larger the
Wald χ2 value is, the larger the explanatory power that a particular explanatory
variable contributes to the performance of the model.
(MA-3) Examination of Variables in Relation to the Response. The power of
explanatory variables indicates the magnitude of the impact that an explanatory
variable has on model performance, yet it does not provide a notion of the direc-
tion or the shape of the relationship between the explanatory variables and the
response. To better understand the direction and shape of these relationships, we
plot the likelihood of module defect-proneness produced by our models against
an explanatory variable while holding the other explanatory variables at constant
values. We use the Predict function in the rms R package [49] to compute and
plot the odds values for various explanatory variables.

4.4.4. Results

We now present the results of statistical and defect model analyses.

(DA1) Statistical Analysis

Observation 3 – 13%-58% of minor authors are major reviewers. When we
assume that reviewers contribute equally (i.e., using RSOEven), 41%-58% (Qt)
and 13%-22% (OpenStack) of minor authors fall in the minor author & major
reviewer category. Similarly, when we assume that reviewers who post more
comments make more of a contribution (i.e., using RSOProportional), 32%-48% (Qt)
and 11%-18% (OpenStack) of minor authors fall in the minor author & major
reviewer category. This indicates that many minor authors make large reviewer
contributions.
Observation 4 – Clean modules tend to have more developers in the minor

author & major reviewer category than defective modules do. Figure 4.4(a)
shows that when we use RSOEven, the proportion of developers in the minor
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author & major reviewer category of clean modules is larger than that of defective
modules. Mann-Whitney U tests confirm that the differences are statistically
significant (p < 0.001), with medium or large effect sizes (0.468 ≤ δ ≤ 0.698) for
all of the studied datasets. Table 4.4 shows that when using either RSOEven or
RSOProportional, the differences are statistically significant, with medium or large
effect sizes. Our results indicate that post-release defects occur less frequently in
the modules with a large proportion of developers in the minor author & major
reviewer category than modules with a smaller proportion of developers in minor
author & major reviewer category.

Observation 5 – Conversely, defective modules tend to have more developers
in the minor author & minor reviewer category than clean modules do. Figure
4.4(b) shows that when we use RSOEven, the proportion of developers in the minor
author & minor reviewer category of defective modules is larger than that of clean
modules. Mann-Whitney U tests confirm that the differences are statistically
significant (p < 0.001), with medium or large effect sizes (0.444 ≤ δ ≤ 0.708) for
all of the studied datasets. Similarly, when using RSOProportional—Mann-Whitney
U tests confirm that the differences are statistically significant (p < 0.001), with
medium or large effect sizes (0.435 ≤ δ ≤ 0.663) for all of the studied datasets.
Our results indicate that post-release defects occur more frequently in the modules
with a large proportion of developers in the minor author & minor reviewer
category than those with a smaller proportion of developers in minor author &
minor reviewer category.

We observe similar differences among the defective and clean modules for the
major author & minor reviewer and the major author & major reviewer categories.
When we use either RSOEven or RSOProportional, Table 4.4 shows that the propor-
tion of developers in the major author & minor reviewer category of defective
modules is significantly larger than that of clean modules, with small or medium
effect sizes for the Qt datasets (0.158 ≤ δ ≤ 0.343). Conversely, the proportion of
developers in the major author & major reviewer category of defective modules
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Figure 4.4. The distribution of developers of defective (blue) and clean (gray) modules when using RSOEven. The
horizontal lines indicates the median of distributions.
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Table 4.4. Results of one-tailed Mann-Whitney U tests for the developers in defective (D) and clean (C) models.
RSOEven RSOProportional

Release Minor author &
minor reviewer

Minor author &
major reviewer

Major author &
minor reviewer

Major author &
major reviewer

Minor author &
minor reviewer

Minor author &
major reviewer

Major author &
minor reviewer

Major author &
major reviewer

5.0 D>C∗∗∗ D<C∗∗∗ D>C∗ ◦ D>C∗∗∗ D<C∗∗∗ D>C∗ ◦0.444 (M) 0.556 (L) 0.183 (S) 0.435 (M) 0.524 (L) 0.158 (S)

5.1 D>C∗∗∗ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗
0.633 (L) 0.649 (L) 0.343 (M) 0.462 (M) 0.663 (L) 0.685 (L) 0.279 (S) 0.445 (M)

Folsom D>C∗∗∗ D<C∗∗∗ D<C∗ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗ ◦ D<C∗∗∗
0.622 (L) 0.532 (L) 0.170 (S) 0.461 (M) 0.623 (L) 0.512 (L) 0.528 (L)

Grizzly D>C∗∗∗ D<C∗∗∗ ◦ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗ D>C∗ D<C∗∗∗
0.518 (L) 0.562 (L) 0.351 (M) 0.476 (L) 0.524 (L) 0.128 (N) 0.347 (M)

Havana D>C∗∗∗ D<C∗∗∗ ◦ D<C∗∗∗ D>C∗∗∗ D<C∗∗∗ D>C∗∗ D<C∗∗∗
0.708 (L) 0.698 (L) 0.437 (M) 0.664 (L) 0.637 (L) 0.142 (N) 0.548 (L)

Icehouse D>C∗∗∗ D<C∗∗∗ ◦ D<C∗∗∗ D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗∗∗ (S) D<C∗∗∗ (L)
0.486 (L) 0.468 (M) 0.363 (M) 0.562 (L) 0.568 (L) 0.186 (S) 0.483 (L)

Statistical significance: ◦p ≥0.05, *p <0.05, **p <0.01, ***p <0.001
Effect size: (L: Large) Cliff’s δ ≥0.474, (M: Medium) 0.33≤ δ <0.474, (S: Small) 0.147≤ δ <0.33, (N: Negligible) δ <0.147
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is significantly smaller than that of clean modules, with medium effect sizes for
the Qt 5.1 (0.445 ≤ δ ≤ 0.462) and all OpenStack datasets (0.347 ≤ δ ≤ 0.528).

Summary: Many minor authors are major reviewers who actually make large
contributions to the evolution of modules by reviewing code changes. Code re-
view activity can be used to refine traditional code ownership heuristics to more
accurately identify the defect-prone modules.

(DA2) Defect Model Analysis

For our defect model analysis, we present the results of our model construction
and analysis when using RSOEven to estimate review-specific and review-aware
ownership. We complement our results with the models where the review-specific
and review-aware ownership are estimated using RSOProportional in Appendix B.2
(see Table B.1).

(MC-1) Correlation & Redundancy Analysis. Figure 4.5 shows an example of
the hierarchical clustering of explanatory variables. We find that the top TCO,
the number of contributors, authors, and reviewers are often highly correlated.
We select the number of contributors as the representative for these variables,
since the number of contributors is simpler to calculate and can capture the
number of both authors and reviewers. We also find that the proportions of
minor author & major reviewer and minor author & minor reviewer are highly
correlated. We remove the proportion of minor author & major reviewer, since
we want to revisit the relationship between the proportion of minor contributors
(i.e., minor author & minor reviewer) and defect-proneness. For the sake of
completeness, we analyze models that use the proportion of minor author &
major reviewer instead of the proportion of minor author & minor reviewer (see
Table B.3 in Appendix B.2). We found that the proportion of minor author &
major reviewer had no discernible impact on model performance.
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Figure 4.5. Hierarchical clustering of variables according to Spearman’s |ρ| in
the Qt 5.0 dataset. The dashed line indicates the high correlation
threshold (i.e., Spearman’s |ρ| = 0.7).

After removing the highly correlated variables, we repeat the variables clus-
tering analysis and find that the number of contributors and the proportions of
minor author & minor reviewer are highly correlated. We opt to remove the
number of contributors, since the proportion of minor author & minor reviewer
metrics are already controlled by the number of contributors.
(MC-2) Degree of Freedom Allocation. We allocate the budgeted degrees of
freedom to the surviving explanatory variables based on their potential for sharing
a nonlinear relationship with the response variable. For example, Figure 4.6 shows
the potential for nonlinearity in the relationship between explanatory variables
and the response variable in the Android dataset. We allocate: (1) three degrees
of freedom to size and the proportion of minor author & minor reviewer, and (2)
one degree of freedom to the remaining variables. We repeat the same process
for the other studied datasets.
We then build our logistic regression models to fit our patch data using the

surviving explanatory variables with the allocated degrees of freedom. Table 4.5
shows that the number of degrees of freedom that we spent to fit our models did
not exceed the budgeted degrees of freedom.
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Figure 4.6. Dotplot of the Spearman multiple ρ2 of each explanatory variable and
defect-proneness in the Qt 5.0 dataset.

Model Analysis Results

Table 4.5 shows that our defect models achieve an AUC of between 0.81 (Qt
5.0 and OpenStack Icehouse) and 0.89 (OpenStack Havana). The AUC opti-
mism is also relatively small ranging from 0.01 (OpenStack Havana and Ice-
house) to 0.03 (OpenStack Folsom). We obtain similar model statistics when
using RSOProportional (see Appendix B.2). The AUC values of the RSOProportional

models range from 0.81 (Qt 5.0) to 0.87 (Qt 5.1 and OpenStack Havana), with an
AUC optimism of 0.01-0.03. Since RSOEven models use a simpler approximation
of review-specific and review-aware ownership, we report our observations for the
analysis results of the RSOEven models below.
Observation 6 – The proportion of developers in the minor author & minor

reviewer category shares a strong relationship with post-release defect prone-
ness. Table 4.5 shows that the proportion of minor author & minor reviewer
contributes a significant amount of explanatory power to the fit of our models
(shown in the overall Wald χ2 column). The OpenStack Folsom model is the only
one where the proportion of minor author & minor reviewer did not contribute a
significant amount of explanatory power. Furthermore, we observe that the pro-
portion of minor author & minor reviewer accounts for most of the explanatory
power in the Qt 5.0, Qt 5.1, and OpenStack Havana models. This result indicates
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Table 4.5. Statistics of defect models where review-specific and review-aware ownership are estimated using
RSOEven. The explanatory power (χ2) of each variable is shown in a proportion to Wald χ2 of the
model.

Qt 5.0 Qt 5.1 OpenStack Folsom OpenStack Grizzly OpenStack Havana OpenStack Icehouse
AUC 0.81 0.86 0.89 0.83 0.88 0.81

AUC optimism 0.02 0.02 0.03 0.02 0.01 0.01
Wald χ2 48∗∗∗ 81∗∗∗ 57∗∗∗ 68∗∗∗ 114∗∗∗ 93∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 2 1 2 1 2 1 2 1 2 1 2 1
χ2 13%∗ 0%◦ 4%◦ 1%◦ 24%∗∗∗ 10%∗ 13%∗ 0%◦ 4%◦ 0%◦ 27%∗∗∗ 1%◦

Churn D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 4%◦ 0%◦ 0%◦ 1%◦ 15%∗∗∗ 12%∗∗

Entropy D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 1%◦ 2%◦ 6%◦ 2%◦ 0%◦ 2%◦

Top TCO D.F. † † 1 4 3 2 1 †
χ2 5%◦ 13%◦ 2%◦ 1%◦ 0%◦

Top RSOEven
D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 0%◦ 5%∗ 2%◦ 6%∗ 0%◦ 4%◦

Major author &
major reviewer

D.F. 1 − 2 1 2 1 2 1 1 − 1 −
χ2 11%∗ 8%∗ 1%◦ 14%∗ 6%◦ 2%◦ 1%◦ 3%∗ 2%◦

Minor author &
minor reviewer

D.F. 2 1 4 3 4 3 2 1 4 3 2 1
χ2 46%∗∗∗ 4%◦ 42%∗∗∗ 8%◦ 10%◦ 9%◦ 11%∗ 6%∗ 32%∗∗∗ 6%◦ 13%∗∗ 1%◦

Major author &
minor reviewer

D.F. 1 − 2 1 1 − 1 − 1 − 1 −
χ2 6%◦ 1%◦ 0%◦ 5%◦ 3%◦ 1%◦ 3%◦

†: Discarded during variable clustering analysis (|ρ| ≥ 0.7)
The number of contributors, authors, reviewers, and the proportion of minor author & major reviewer are also discard during variable
clustering analysis.

−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test: ◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001
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that the rate of contributors who lack both authorship and reviewing expertise
in a module shares a strong relationship with the post-release quality.

Table 4.5 also shows that the additional degrees of freedom that we allocate to
the proportion of minor author & minor reviewer did not contribute a significant
amount of explanatory power to the fit of our models (shown in the nonlinear
Wald χ2 column). This result indicates that there was no significant benefit
in spending additional degrees of freedom on this metric—the relationship is
primarily log-linear.

Observation 7 – Modules with a higher rate of developers in the minor author
& minor reviewer category are more likely to be defect-prone. Figure 4.7 shows
that there is an increasing trend in the probability that a typical module will
have post-release defects as the proportion of minor author & minor reviewer
increases. The narrow breadth of the confidence interval (gray area) indicates
that there is sufficient data to support the curve. Moreover, Figure 4.7 shows
that the probability of having post-release defects rapidly increases when the
proportion of minor author & minor reviewer increases beyond 0.5 in the Qt 5.0,
Qt 5.1, OpenStack Grizzly and Havana models.

In addition, we check whether the roles of developers (i.e., core and non-core
developers) have an impact on our results. To do so, we add the proportion
of core developers who are involved in a module as another control metrics and
repeat the model construction and analysis again. We find that the proportion
of core developers did not contribute a significant amount of explanatory in four
of the six defect models (i.e., the Qt 5.0, 5.1 and OpenStack Folsom, and Havana
models), while the proportion of core developers accounts for a small explanatory
power to the OpenStack Grizzly and Icehouse models (See Table B.2 in Appendix
B.2). On the other hand, the proportion of minor author & minor reviewer still
contributes a large explanatory power to our models, even though we control for
the roles of developers. This result suggests that the roles of developers did not
have an impact on software quality as much as the expertise of developers has.
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Figure 4.7. The estimated probability in a typical module for the proportion of developers in the minor author &
minor reviewer category ranging. The gray area shows the 95% confidence interval.
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We also analyze the defect models that use the proportion of minor author
& major reviewer instead of the proportion of minor author & minor reviewer.
We find that the proportion of minor author & major reviewer contributes a
significant amount of explanatory power to the Qt 5.0, Qt 5.1, OpenStack Havana
and Icehouse models (see Table B.3 in Appendix B.2). Furthermore, we observe
that there is an inverse relationship between the proportion of minor author &
major reviewer and the probability that a typical module will have post-release
defects in the Qt 5.0, Qt 5.1, OpenStack Havana and Icehouse models (See Figure
B.3 in Appendix B.2). This result indicates that the larger the proportion of
developers in the minor author & major reviewer category, the lower the likelihood
of a module having post-release defects.

Summary: Even when we control for several confounding factors, the proportion
of developers in the minor author & minor reviewer category shares a strong
relationship with defect-proneness. Indeed, modules with a larger proportion of
developers without authorship or reviewing expertise are more likely to be defect-
prone.

4.5. Practical Suggestions

In this section, we discuss the broader implications of our observations by offering
the following suggestions:

(1) Code review activity should be included in future approximations of code
ownership.
Observations 1 and 2 show that apart from the developers who author code
changes to a module, there are major contributors who only contribute
to that module by reviewing code changes. Furthermore, observation 3
shows that many developers who were identified as minor contributors by
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traditional code ownership heuristics are actually major contributors when
their code reviewer contributions are taken into consideration.

(2) Teams should apply additional scrutiny to module contributions from de-
velopers who have neither authored nor reviewed many code changes to
that module in the past.
Observation 5 shows that modules with post-release defects tend to have
a larger proportion of minor authors who are also minor reviewers than
modules without post-release defects do. Furthermore, observations 6 and
7 show that the proportion of developers in the minor author & minor re-
viewer category shares a strong increasing relationship with the likelihood
of having post-release defects in a module, even when we control for several
confounding factors.

(3) A module with many developers who have not authored many code changes
should not be considered risky if those developers have reviewed many of
the code changes to that module.
While observations 6 and 7 confirm the findings of prior work [21, 93],
i.e., the number of minor contributors shares a relationship with defect-
proneness, we find that the proportion of developers in another category
of minor authors (i.e., minor author & major reviewer) shares an inverse
relationship with the defect-proneness (see RQ3). Indeed, observation 4
shows that modules without post-release defects tend to have a larger pro-
portion of developers in minor author & major reviewer than modules with
post-release defects do.

4.6. Threats to Validity

We now discuss the threats to the validity of our study.
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4.6.1. External validity

We focus our study on two open source systems, due to the low number of sys-
tems that satisfied our eligibility criteria for analysis (see Section 4.3.1). Thus,
our results may not generalize to all software systems. However, the goal of this
study is not to build a theory that applies to all systems, but rather to show
that code review activity can have an impact on code ownership approximations.
Our results suggest that code review activity should be considered in future stud-
ies of code ownership. Nonetheless, additional replication studies are needed to
generalize our results.

4.6.2. Construct validity

Our analysis is focused on the code review activity that is recorded in the code
review tools of the studied systems, i.e., Gerrit. However, there are likely cases
where developers perform code reviews through other communication media, such
as through in-person discussions [16], a group IRC [108], or a mailing list [45,101].
Unfortunately, there are no explicit links of code changes to those communication
threads, and recovering these links is a non-trivial research problem [7,19]. Nev-
ertheless, we perform our study on modules where every code change could be
linked to the reviews in Gerrit, which should capture the majority of the review
discussion in the studied systems.

Since we identify defect-fixing changes using keyword-based approach, there
are likely cases that our defect data is inaccurate [18]. To evaluate this, we
measure the accuracy of our approach by manually examining samples of defect-
fixing changes. For each studied system, we randomly select 50 code changes that
are flagged as bug-fixing changes by our keyword-based approach. We find that
88%-92% of the sampled code changes are correctly identified.
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4.6.3. Internal validity

We identify developers who post at least one reviewer comment as reviewers of
a module, although some of the identified reviewers may only leave superficial or
unrelated reviewer comments [26, 88]. We attempt to mitigate this risk with our
RSOProportional heuristic, which allocates less ownership value for reviewers who
provide less feedback. We find that the results of our study using RSOProportional

heuristic are similar to the results using the simpler, RSOEven heuristic, which
allocates an even share of the ownership value to every reviewer of a code change.
This suggests that the noise of reviewer contributions is not heavily biasing our
results.

In this study, we opt to measure RSO and TCO values separately. Even when
they are combined in our the review-aware ownership heuristics, the values are
plotted on orthogonal axes rather than summed. Summation of RSO and TCO
values may have a different association with software quality. However, since
reviewing and authoring are different activities, a naive summation may not be
desired. Additional work is needed to investigate appropriate means of computing
a generic expertise metric.

There may still be cases where developers who make many contributions by
either authoring or reviewing code changes are not the actual owner of the mod-
ules. Unfortunately, ground truth data is not available for us to validate against.
Nevertheless, we use a list of core developers that is available in the documenta-
tion of the studied systems to validate our heuristics. Our results also show that
many of these core developers can only be module owners if their code reviewer
contributions are considered in code ownership heuristics.
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4.7. Summary

Code ownership heuristics have been used in many studies for identifying the
developers who are responsible for maintaining modules. These heuristics are
traditionally computed using code authorship contributions, and many studies
discover an association between code authorship and defect-proneness. However,
developers can also make important contributions to modules by critiquing code
changes during the code review process.
In this chapter, we extend the traditional code ownership heuristics to be: (1)

review-specific, i.e., a code ownership approximation that is derived solely using
reviewer contributions and (2) review-aware, i.e., a code ownership approximation
that is derived using both authorship and reviewer contributions. Through a case
study of six releases of the large Qt and OpenStack open source systems, we make
the following observations:

– 67%-86% of developers only contribute to a module by reviewing code
changes. 18%-50% of these review-only contributors are documented core
developers of the studied systems (Observations 1 and 2).

– 13%-58% of developers who are flagged as minor contributors by traditional
code ownership heuristics are actually major contributors when their code
review activity is considered (Observation 3).

– When traditional code ownership heuristics are refined by code review activ-
ity, we find that modules without post-release defects tend to have a higher
rate of developers in the minor author & major reviewer category, but a
lower rate of developers in the minor author & minor reviewer category
than modules with post-release defects do (Observations 4 and 5).

– Even when we control for several factors that are known to have an impact
on software quality, the proportion of developers in the minor author &
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minor reviewer category shares a strong, increasing relationship with the
likelihood of having post-release defects in a module (Observations 6 and
7).





Chapter 5

Selecting Appropriate Reviewers

An earlier version of the work in this chapter appears in
the Proceedings of the 22nd International Conference on
Software Analysis, Evolution, and Reengineering
(SAnER) [124].

In the previous chapter, our results show that the more reviewing experts the
module has, the less likely that the module will have post-release defects. This
finding suggests that to mitigate the risk of having defects in the future, a new
patch should be examined by reviewers who have expertise on the modules im-
pacted by that patch. However, manually finding reviewers who have expertise
can be a tedious task for the patch author, especially for the new comer author.
To better understand this, we first perform an empirical study on the difficulty
of selecting reviewers and its impact on MCR timeliness. The results of our
case studies demonstrate that patches where the patch author cannot find ap-
propriate reviewers tend to be in MCR tools longer than patches without such
a problem. Furthermore, to help developers find appropriate reviewers, we pro-
pose RevFinder, a file location-based reviewer recommendation approach. The
evaluation results also demonstrate that our RevFinder can accurately recom-
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mend reviewers who should examine a new patch. Motivated by this study, recent
research has begun to develop reviewer recommendation approaches in order to
support MCR processes at Microsoft [135], on GitHub [56, 72, 134], and within
several open source projects [132].

5.1. Introduction

To effectively evaluate a new patch, a patch author should find appropriate re-
viewers who have a deep understanding of the related source code to well examine
the patch and identify defects [5]. Indeed, Tao et al. report that determining the
risk of a new patch is difficult for developers at Microsoft if the affected mod-
ules are beyond the developers’ knowledge [117]. Rigby and Storey find that
developers tend to ignore patches that do not meet their expertise [101].
Similar to other collaborative processes [3, 113,126], manually finding relevant

experts for reviewing a new patch can be time-consuming, especially at the dis-
tributed software development teams. For example, a patch author who newly
joined the development team may know a small set of developers. To find ap-
propriate reviewers, the patch author needs to ask other developers for recom-
mendations. Such practices may lead to a longer time that is spent on MCR
processes.
In this chapter, we first set out to investigate the reviewer selection problem in a

patch, i.e., an author cannot initially select appropriate reviewers for a new patch.
Furthermore, as a means of reducing the time spent on selecting appropriate re-
viewers, we propose RevFinder, a file location-based reviewer recommendation
approach. We leverage the similarities between the path of a newly changed file
and the paths of previously reviewed files to recommend an appropriate reviewer.
The intuition behind RevFinder is that files that are located in similar file
paths would be managed and reviewed by a similar set of experienced reviewers.
We also combine several string comparison techniques to increase the accuracy
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and the ranking performance of RevFinder. Finally, we compare the perfor-
mance of RevFinder with a baseline approach or ReviewBot, i.e., which is a
previously proposed approach for MCR process at VMware [9].
Through a manual examination of 7,597 comments and an empirical evaluation

of 42,045 patches spread across Android, Qt, OpenStack, and LibreOffice open
source systems, we address the following research questions:

(RQ1) Does the reviewer assignment problem impact the time that is spent
on MCR processes?
Motivation. Recent research points out that selecting an appropriate re-
viewer can be an effort-intensive task for developers at VMware [9]. Yet, it
is still unclear whether a patch author is suffering from selecting appropri-
ate reviewers and whether this problem is associated with the time that is
spent on MCR processes. Hence, we set out to empirically investigate the
difference in the time that is spent on MCR processes between patches with
the reviewer selection problem and those without such a problem.
Results. We find that 4%-30% of representative patch samples have the
reviewer selection problem. Moreover, these patches with the reviewer se-
lection problem typically take 6 to 21 days in the MCR processes longer
than patches without the reviewer selection problem.

(RQ2) Does RevFinder accurately recommend reviewers?
Motivation. Better performing reviewer recommendation approach is of
great value as it enables a better selecting decision for developers. More-
over, the higher ranks the correct reviewers that the recommendation ap-
proach can recommend, the more effective the recommendation approach
is [43]. In other words, recommending correct reviewers in the top ranks
could help a patch author in selecting the appropriate reviewers as well
as avoid involving unrelated reviewers. Therefore, we set out to evaluate
RevFinder in terms of ranking performance and accuracy of recommenda-
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tion. To do so, we measure Mean Reciprocal Rank (MRR) which calculates
an average of reciprocal ranks of correct reviewers in a recommendation
list. We also measure the Top-k accuracy which calculates the percentage
of patches that will receive a correct recommendation from RevFinder
within k recommendation.

Results. RevFinder can recommend correct reviewers with a median
rank of 4. Moreover, the overall ranking of RevFinder is 3 times better
than that of the baseline approach, indicating that RevFinder provides a
good ranking of correct reviewers. RevFinder can correctly recommend
reviewers with a Top-5 accuracy of 41%-79%, which is more accurate than
ReviewBot. These results indicate that leveraging the similarities be-
tween the path of a newly changed file and the paths of previously reviewed
files can help teams to accurately recommend reviewers.

Our results lead us to conclude that RevFinder can help developers find
appropriate reviewers, which is likely to speed up the overall code review process.
Furthermore, the main contributions of this chapter are:

– An exploratory study of the impact of reviewer assignment on the time that
is spent on MCR processes.

– RevFinder, a file location-based reviewers recommendation approach, with
promising evaluation results to automatically suggest appropriate reviewers
for MCR.

– A rich data set of reviews data in order to encourage future research in the
area of reviewer recommendation.1

1http://github.com/patanamon/revfinder
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5.1.1. Chapter Organization

The remainder of the chapter is organized as follows. Section 5.2 describes our
case study design. Section 5.3 presents an exploratory study of the reviewer selec-
tion problem in MCR processes. Section 5.4 describes RevFinder. Section 5.5
describes an empirical evaluation of RevFinder, while Section 5.6 presents the
results of our empirical evaluation. Section 5.7 discusses the performance and
applicability of RevFinder, and addresses the threats to validity. Finally, Sec-
tion 5.9 summarizes this work.

5.2. Case Study Design

In this section, we describe our studied systems and present the data collection
approach that we used for an exploratory study and empirical evaluation.

5.2.1. Studied Systems

In order to address our research questions, we perform an empirical study of
large software systems that actively use MCR for the code review process, i.e.,
examine and discuss software changes through a code review tool. Hence, we
select to study the MCR processes of Android, Qt, OpenStack and LibreOffice
open source systems. These systems are using Gerrit as for their code review
processes. Table 5.1 shows a statistical summary of the studied systems.
The Android open source system2 is a mobile operating system developed by

Google. Qt3 is a cross-platform application and UI framework developed by Digia
Plc. OpenStack4 is a free and open-source software cloud computing software
platform supported by many well-known companies e.g., IBM, VMware, and
NEC. LibreOffice5 is a free and open source office suite.

2https://source.android.com/
3http://qt-project.org/
4http://www.OpenStack.org/
5http://www.libreoffice.org/
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Table 5.1. A summary of the dataset for each studied system.
Android OpenStack Qt LibreOffice

Studied Period 10/2008 - 01/2012 07/2011 - 05/2012 05/2011 - 05/2012 03/2012 - 06/2014
# Selected Reviews 5,126 6,586 23,810 6,523
# Reviewers 94 82 202 63
# Files 26,840 16,953 78,401 35,273
Avg. Reviewers per Review 1.06 1.44 1.07 1.01
Avg. Files per Review 8.26 6.04 10.64 11.14

5.2.2. Data Collection

To obtain review data of the studied systems, we began with the review datasets of
Android, Qt, and OpenStack systems that are provided by Hamasaki et al. [46].
We also expand the review datasets to include review data of the LibreOffice
system using the same collection technique as the prior work.

Once we obtained the review data, we exclude the patches that do not satisfy
the following criteria:

1. The review of a patch must be closed, i.e., the review status is “Merged” or
“Abandoned”.

2. A patch must contain at least one changed files.

For criterion 1, we filter out patches that are still open in order to ensure that
the patches have been examined. Moreover, we cannot build our ground-truth
data since these open-reviewing patches may not yet have reviewers. For criterion
2, we filter out patches that do not contain any changed files because those patches
may be related to VCS bookkeeping (like branch merging) for other patches that
have already been examined and integrated. Such patches generally do not need
an expert since the earlier patches have already been reviewed. Table 5.1 shows
the statistical summary for each studied system.
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Figure 5.1. An overview of our approach for RQ1.

5.3. An Exploratory Study of the Reviewer Selection

Problem in MCR processes

In this section, we describe our approach and present results for our RQ1. More
specifically, we present our exploratory study on the difficulty of selecting appro-
priate reviewers in MCR processes.

(RQ1) Does the reviewer assignment problem impact the time

that is spent on MCR processes?

5.3.1. Approach

To address RQ1, we manually identify the reviewer selection problem on rep-
resentative patch samples. Then, we analyze the difference in the time that is
spent on MCR processes between patches with the reviewer selection problem
and patches that do not have such a problem. Figure 5.1 provides an overview
of our approach for RQ1. We describe each step of our approach below.

Step 1: Selecting Representative Samples

Since the full sets of patches are too large to manually examine entirely, we
randomly select a statistically representative sample for our analysis. To obtain
a representative sample with a confidence level of 95%, we determine a sample
size using the following equation:

s = z2p(1− p)
c2 (5.1)



76 Chapter 5. Selecting Appropriate Reviewers

where p is the proportion that we want to estimate, z = 1.96 to achieve a 95%
confidence level, and and c = 0.05 for a 10% bound of the actual proportion [63,
67]. Since we did not know the proportion in advance, we use p = 0.5. We further
correct for the finite population of reviews P using the following equation in order
to obtain our sample for manual analysis.

ss = s

1 + s−1
P

(5.2)

Step 2: Identify the Reviewer Selection Problem

We use the review discussion history to determine whether a patch has the re-
viewer selection problem. Since messages in the review discussion history are
written in natural language, we manually identify a patch that has the reviewer
selection problem instead of using an automatic approach in order to yield an
accurate result. We identify patches as having a reviewer selection problem if
the discussions of the patches have an issue like who should review the patch
or recommending reviewers. For example, Figure 5.2(a) shows that the patch
author of the Android review ID 18767 posted a message into discussion threads
for a reviewer recommendation.6 Figure 5.2(b) shows that Chris Adam was in-
vited to examine the Qt review ID 13006, however, he did not have a confidence
to review the patch.7 Then, he invited Aaron Kennedy as another reviewer of
the Qt review ID 13006. We identify the patches of these Android review ID
18767 and Qt review ID 13006 as patches that have a reviewer selection problem.
Patches without such discussion issues are identified as patches that do not have a
reviewer selection problem. This step was conducted by the author of this thesis
and verified by the second author of our paper [124].

6https://android-review.googlesource.com/#/c/18767/
7https://codereview.qt-project.org/#/c/13006/

https://android-review.googlesource.com/#/c/18767/
https://codereview.qt-project.org/#/c/13006/
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(a) Android review ID 18767

(b) Qt review ID 13006

Figure 5.2. An example of review discussion threads of patches that are identified as having a reviewer selection
problem.
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Step 3: Measure Time Spent in MCR processes

Once we manually identify patches that have the reviewer selection problem in
the representative patch samples, we measure the time that is spent on MCR
processes of the review samples. To calculate the time that is spent on MCR
processes of the studied patches, we measure the time difference in days from
the time of a patch submission to the review decision is made, i.e., till when the
reviewers provide a score of +2 or -2. Since prior studies find that time spent on
MCR processes is often influenced by patch size [40, 131], we control this factor
by normalizing time that is spent on MCR processes by the patch size.

Step 4: Analyze data

To determine whether the reviewer selection problem is associated with the time
that is spent in MCR processes, we compare the distributions of the time that is
spent on MCR processes between patches with the reviewer selection problem and
patches without the reviewer selection problem using beanplots [59]. Beanplots
are boxplots in which the vertical curves summarize the distributions of different
datasets. The horizontal lines indicate median of the distributions. Furthermore,
we use a statistical test to detect a statistically significant level of the differences.
We use the Mann-Whitney’s U test (α = 0.05) since we observe that the distri-
butions of the time spent in the MCR processes of the studied patches do not
follow a normal distribution.

5.3.2. Results

We now present the results and our empirical observations from our analysis.
Table 5.2 shows the number of representative samples for our manual examination
which are 357 Android patches, 378 Qt patches, 363 OpenStack patches, and 363
LibreOffice patches. In total, we manually examine 7,597 comments of 1,461
review samples.
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Table 5.2. The numbers of statistically representative samples for each studied
systems and the proportion of patches with the reviewer selection prob-
lem with a 95% confidence level and a ± 5% bound.

Android Qt OpenStack LibreOffice
Number of Representative
Patch Sample

357 378 363 363

Patches with the reviewer
selection problem

10% 30% 5% 4%

Observation 8 – 4%-30% of reviews have a reviewer selection problem. Ta-
ble 5.2 shows the results of our manual identification of patches that have the
reviewer selection problem. We find that 10%, 30%, 5%, and 4% of the patches
have the reviewer selection problem in Android, OpenStack, Qt, and LibreOffice
systems, respectively. We observe that Qt has the highest proportion of patches
with the reviewer selection problem. This may in part be due to the size of the
community and software system (i.e., the amount of reviews, reviewers, and files),
suggesting that the larger the system is, the more likely that the patch author
have a difficult of selecting appropriate reviewers.

During our manual examination, we find that patch authors indeed have diffi-
culties selecting appropriate reviewers. For example, a Qt developer suggested a
patch author who initially did not assign any developers for a review: “You might
want to add some approvers to the reviewers list if you want it reviewed/ap-
proved".8 Additionally, we find that patch authors often ask questions about
selecting the appropriate reviewers. For example, a Qt developer post a message
into the general discussion thread for a reviewer recommendation: “Feel free to
add reviewers, I am not sure who needs to review this...”.9 An Android developer
also asked team members for a review: “Can you please add appropriate review-
ers for this change?”.10 Moreover, a Qt developer pointed out that assigning

8Qt review ID 16803, https://codereview.qt-project.org/#/c/16803
9Qt review ID 40477, https://codereview.qt-project.org/#/c/40477

10Android review ID 18767, https://android-review.googlesource.com/#/c/18767/

https://codereview.qt-project.org/#/c/16803
https://codereview.qt-project.org/#/c/40477
https://android-review.googlesource.com/#/c/18767/
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reviewers can speed up the code review process: “for the future, it speeds things
up often if you add reviewers for your changes :)”.11

Observation 9 – Patches with the reviewer selection problem tend to take
longer time than patches without the problem. Figure 5.3 shows that patches
with the reviewer selection problem take 21, 9, 13, and 6 days (at median) in
the MCR process of Android, OpenStack, Qt, and LibreOffice, respectively. On
the other hand, patches without the reviewer selection problem tend to complete
within one day. Mann-Whitney U tests confirm that the differences are statisti-
cally significant (p-value < 0.001 for Android, and Qt, OpenStack, and p-value
< 0.01 for LibreOffice). This result suggests that the reviewer selection problem
may slow down the code review processes.

Summary: We find that 4%-30% of patches have a reviewer selection problem.
Moreover, these patches typically take 6-21 days in the MCR processes and tend
to take longer than patches without the reviewer selection problem. Indeed, some
patch authors have a difficulty of selecting appropriate reviewers, suggesting that
a reviewer recommendation tool may need to help the patch author and speed
up the processes.

5.4. RevFinder: A File Location-Based Reviewer

Recommendation Approach

We now present RevFinder. In this section, we first provide an overview of
RevFinder. Then, we describe the reviewer ranking algorithm of RevFinder,
the string comparison techniques that we use to measure the similarities between
the path of a newly changed file and the paths of previously reviewed files, and
the combination techniques which combine the lists of reviewer candidates that
are produced using different string comparison techniques.

11Qt review ID 14251, https://codereview.qt-project.org/#/c/14251

https://codereview.qt-project.org/#/c/14251
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Figure 5.4. A calculation example of the Reviewer Ranking Algorithm.

5.4.1. An Overview of RevFinder

RevFinder aims to recommend reviewers who have reviewing experience within
a similar functionality of a new patch. Therefore, we leverage the similarities be-
tween the path of a newly changed file and the paths of previously reviewed
files to recommend reviewers. Figure 5.4 provides an example of RevFinder
where Patch 3 is a new patch that needs a reviewer, while Patches 1 and 2 are
prior patches that have been reviewed by Pick and Kla. To recommend a re-
viewer, RevFinder first calculates the review similarity between Patch 3 and
the prior patches (Patches 1 and 2) by comparing the file paths of the changed files
between the new patch and the prior patches. Then, RevFinder assigns these
patch similarity scores to the developers who reviewed the prior patches. For
this example, RevFinder computes patch similarity scores, i.e., ReviewSimilar-
ity(FilePath_P2,FilePath_P3) and ReviewSimilarity(FilePatch_P1,FilePatch_P3).
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RevFinder then assigns the patch similarity scores of Patches 1 and 2 to Pick
and the review similarity of Patch 1 to Kla. Finally, RevFinder produces a
recommendation list based on the patch similarity scores of the reviewers.

The recommendation list of RevFinder is a combination of the patch sim-
ilarity scores that are computed using different string comparison techniques.
Since each software system may have a different structure of source files, we use
four state-of-the-art string comparison techniques, i.e., Longest Common Prefix
(LCS), Longest Common Suffix (LCS), Longest Common Substring (LCSubstr),
and Longest Common Subsequence (LCSubseq) to compare the similarity of file
paths [44].

Figure 5.5 provides an overview of a combination approach of using four string
comparison techniques in RevFinder. The reviewer ranking algorithm of RevFinder
uses each string comparison technique to compute patch similarity scores of re-
viewer candidates. Once the patch similarity scores of reviewer candidates are
computed, the lists of reviewer candidates are combined into an unified recom-
mendation list. This technique will make the truly-relevant reviewers “bubble up”
to the top of the recommendation list, while reducing the false positive recom-
mendations. This combination approach of individual lists has been successfully
shown to improve the performance in the data mining and software engineering
domains [55,64].

Below, we describe the calculation of the reviewer ranking algorithm, the
string comparison techniques, and the combination technique that we used in
RevFinder.

5.4.2. The Reviewer Ranking Algorithm of RevFinder

Algorithm 1 shows the pseudo-code of the reviewer ranking algorithm of RevFinder.
The input of the algorithm is a new patch (Pnew) and the output is a list of re-
viewer candidates (C) with patch similarity scores. The algorithm consists of
three main steps. Below, we describe each step of the algorithm.
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Data Preparation Step

The algorithm first retrieves prior patches that were submitted before the sub-
mission date of Pnew, and that were closed (i.e., the review status is merged or
abandoned). Then, the list of prior patches is stored in priorPatches and sorted
by their submission date in reverse chronological order (Lines 7 and 8).

Patch Comparison Step

For each patch in priorPatches (i.e., Ppast), the algorithm computes a patch sim-
ilarity score using the filePathSimilarity function (Lines 12 to 18). To do so,
the filePathSimilarity function first compare each changed file in Ppast with each
changed file in Pnew. For a file fp of Ppast and a file fn of Pnew, the algorithm
splits the file paths into components using the slash character (“/”) as a delimiter.
Then, the filePathSimilarity function calculates a file patch similarity score of fp

and fn as follow:

filePathSimilarity(fn, fp) = StringComparison(fn, fp)
max(Length(fn),Length(fp)) (5.3)

The StringComparison function uses a string comparison technique (e.g., LCP),
which we describe the detail in Section 5.4.3. The Length function returns the
number of file path components. Once the algorithm computes the file path
similarity scores for all file paths in Ppast and Pnew, the patch similarity score of
Ppast is an average score of these file path similarity scores (Line 19).

Reviewer Score Assignment Step

Finally, the algorithm assigns the patch similarity score of Ppast to reviewers of
Ppast (Lines 20 to 23). The patch similarity scores of reviewers are accumulated
for all prior patches in which the reviewers have participated.
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Algorithm 1 The reviewer ranking algorithm of RevFinder.
1: Input:
2: Pnew : A new patch
3: Output:
4: C : A list of reviewer candidates
5: Method:
6: #Data preparation step.
7: priorPatches← A list of prior patches that were reviewed
8: priorPatches← sort(priorPatches).by(submissionDate)
9: #Patch comparison step computes a patch similarity score.
10: for Patch Ppast ∈ priorPatches do
11: Filesn ← getFiles(Pnew)
12: Filesp ← getFiles(Ppast)
13: ScorePpast ← 0
14: for fn ∈ Filesn do
15: for fp ∈ Filesp do
16: ScorePpast ← ScorePpast + filePathSimilarity(fn, fp)
17: end for
18: end for
19: ScorePpast ← ScorePpast / (length(Filesn)× length(Filesp))
20: #Reviewer score assignment step assigns the patch similarity scores to reviewers of

Ppast

21: for Reviewer r : getCodeReviewers(Ppast) do
22: C[r].score← C[r].score + ScorePpast

23: end for
24: end for
25: return C

5.4.3. String Comparison Techniques

To compare file paths, we use four state-of-the-art string comparison techniques [44]
i.e., Longest Common Prefix (LCP), Longest Common Suffix (LCS), Longest
Common Substring (LCSubstr), and Longest Common Subsequence (LCSubseq).
These four techniques were successfully used for string and sequence analysis in
prior studies [10, 39, 120, 129]. Table 5.3 provides a definition and a calculation
example for these four techniques. We briefly describe each technique and its
rationale below.
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Longest Common Prefix (LCP) LCP counts the number of common path com-
ponents that appears in both file paths from the beginning to the last. The
intuition of using LCP is that files under the same directory would have
similar or related functionality [11].

Longest Common Suffix (LCS) LCS is a simply reverse calculation of LCP. LCS
counts the number of common path components that appears from the end
of both file paths. The intuition of using LCS is that files having the similar
names would have similar functionality [44].

Longest Common Substring (LCSubstr) LCSubstr counts the number of con-
secutive path components that appear in both file paths. The advantage of
LCSubstr is that the common paths can appear at any position of the file
path. Since the file path can capture the functionality of a file [27], the re-
lated functionality should be under the same directory structure. However,
the root directories or filename may not be the same.

Longest Common Subsequence LCSubseq counts the number of path compo-
nents that appears in the same relative order int both file paths. The
advantage of LCSubseq is that the common paths for this technique are
not necessary to be contiguous. The intuition is that files under similar
directory structures would have similar or related functionality [44].

5.4.4. Combination Technique

To combine lists of reviewer candidates that are produced using different string
comparison techniques, we use Borda count [94]. Borda count is a voting tech-
nique that simply combines the recommendation lists based on the rank. The re-
viewer candidate who is in the highest rank of the lists of reviewer candidates will
receive the highest points. For lists of reviewer candidatesR ∈ {RLCP , RLCS, RLCSubstr, RLCSubseq},
a score for a reviewer candidate ck is calculated as follow:
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Table 5.3. A description and examples of calculation for file path comparison techniques. The examples are
obtained from the review history of Android for the LCP, LCSubstr, and LCSubseq techniques; and Qt
for the LCS techniques. For each technique, the example files were reviewed by the same reviewer.

Functions Description Example
Longest Common
Prefix (LCP)

Longest consecutive path compo-
nents that appears at the beginning
of both file paths.

f1 =“src/com/android/settings/LocationSettings.java”
f2 = “src/com/android/settings/Utils.java”
LCP(f1, f2) = length([src, com, android, settings]) = 4

Longest Common
Suffix (LCS)

Longest consecutive path compo-
nents that appears at the end of
both file paths

f1 = “src/imports/undo/undo.pro”
f2 = “tests/auto/undo/undo.pro”
LCS(f1, f2) = length([undo, undo.pro]) = 2

Longest Common
Substring
(LCSubstr)

Longest consecutive path compo-
nents that appear in both file paths

f1 = “res/layout/bluetooth_pin_entry.xml”
f2 = “tests/res/layout/operator_main.xml”
LCSubstr(f1, f2) = length([res, layout]) = 2

Longest Common
Subsequence
(LCSubseq)

Longest path components that
appear in both file paths
in relative order but not neces-
sarily contiguous

f1 =“apps/CtsVerifier/src/com/android/cts/verifier/
sensors/MagnetometerTestActivity.java”
f2 =“tests/tests/hardware/src/android/hardware/cts/
SensorTest.java”
LCSubseq(f1, f2) = length([src, android, cts]) = 3
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Combination(ck) =
∑

Ri∈R

Mi − rank(ck|Ri) (5.4)

Mi is the total number of reviewer candidates who received a non-zero score in
Ri, and rank(ck|Ri) is the rank of ck in Ri. For each ck, Borda count assigns a
point based on the rank of ck in each recommendation list. For example, if RLCP

votes ck as the 1st rank, Boder count assigns a point of MLCP from RLCP to ck.
Finally, the reviewer recommendation list of RevFinder is a list of reviewer
candidates that are ranked according to the scores of the Borda count.

5.5. Empirical Evaluation

In this section, we present our empirical evaluation approach for RevFinder.
We first describe our ground truth data for an evaluation. Then, we describe
evaluation metrics that we used to evaluate RevFinder. Finally, we briefly
describe a baseline comparison approach (ReviewBot [9]).

5.5.1. Ground Truth Data

To build the ground truth data for an evaluation, we identify developers who his-
torically participated in the review of a studied patch as an appropriate reviewer
of that patch. To ensure that the reviewers of a studied patch have sufficient
expertise to examine the patch, we only select developers who confidently gave a
review score of -2 or +2 to the studied patch. We also exclude the patch author
who assign herself as a reviewer. Table 5.1 shows the number of reviewers that
we identified for our ground truth data.
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5.5.2. Evaluation Metrics

To evaluate the recommendation performance, we use the Mean Reciprocal Rank
(MRR) and the top-k accuracy. These metrics are commonly used in recommen-
dation systems for software engineering [9, 114, 116]. Since most of the patches
have only one reviewer (see Table 5.1), other evaluation metrics (e.g. Mean Aver-
age Precision) that consider all of the correct answers might not be appropriate
for this evaluation. We now briefly describe each evaluation metric below.

Mean Reciprocal Rank

Mean Reciprocal Rank (MRR) calculates an average of reciprocal ranks of correct
reviewers in a recommendation list. The higher the value of MRR is, the better
recommendation performance of RevFinder. For a set of patches P , MRR can
be calculated using Equation 5.5.

MRR = 1
|P |

∑
p∈P

1
rank(candidates(p)) (5.5)

The rank(candidates(p)) returns the highest rank of the correct reviewers in
the recommendation list of candidates(p). If there is no correct reviewers in the
recommendation list, 1

rank(candidates(p)) will have a value of 0. Ideally, an approach
that can provide a perfect ranking (i.e., always recommending correct reviewers
at the 1st rank) should achieve an MRR value of 1.

Top-k Accuracy

Top-k accuracy calculates a rate that RevFinder can correctly recommend re-
viewers within k candidates. Given a set of Patches P , the top-k accuracy is
calculated using Equation 5.6.



5.5. Empirical Evaluation 91

Top-k accuracy(P ) =

∑
p∈P

isCorrect(p,Top-k)

|P |
× 100% (5.6)

The isCorrect(r,Top-k) function returns a value of 1 if at least one of the top-k
reviewer candidates are an appropriate reviewer of the patch p; and returns a
value of 0 for otherwise. For example, a top-10 accuracy of 75% indicates that
RevFinder can recommend appropriate reviewers for 75% of the patches within
the top-10 reviewer candidates.

5.5.3. ReviewBot: A Baseline Approach

ReviewBot has been recently proposed to help developers selecting appropri-
ate reviewers. ReviewBot was evaluated in the MCR process of VMware [9].
Hence, we select ReviewBot as our baseline approach. ReviewBot is a re-
viewer recommendation approach based on the assumption that “the most appro-
priate reviewers for a code review are those who previously modified or previously
reviewed the sections of code which are included in the current review” [9, p.932].
Therefore, ReviewBot selects appropriate reviewers using the line-by-line mod-
ification history of source code. Below, we briefly describe the calculation of
ReviewBot, which consists of three main steps:

1. ReviewBot first computes line change history, i.e., a list of past patches
that impact the same changed lines as in the new patch.

2. Each reviewer candidate receives a point based on his or her frequency of
being involved in the changed lines. In other words, the more frequent in-
volvement in the changed lines of the new patch that the reviewer has done in
the past, the more likely that the reviewer would be an appropriate reviewer.
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3. Finally, ReviewBot prioritizes the reviewer candidates who recently re-
viewed and have the highest scores to be the most appropriate reviewers for
the new patch.

5.6. Evaluation Results

In this section, we present the results of our empirical evaluation with respect to
our RQ2.

(RQ2) Does RevFinder accurately recommend reviewers?

5.6.1. Approach

To address RQ2, for each studied system, we execute RevFinder for every
patch in chronological and obtain a reviewer recommendation list for each patch.
We then observe the RevFinder rank of the correct reviewers. We use MRR to
measure the ranking performance of RevFinder. The results are then compared
with the MRR values of ReviewBot. We also evaluate the accuracy of the
RevFinder recommendation using the top-k accuracy.

5.6.2. Result

Observation 10 – RevFinder recommended the correct reviewers with a median
rank of 4. Figure 5.6 shows a distribution of ranks of correct reviewers that
RevFinder and ReviewBot recommended. The median ranks for RevFinder
are 2, 8, 3, and 4 for Android, Qt, OpenStack, and LibreOffice, respectively.
On the other hand, the median ranks for ReviewBot are 94, 202, 82, 63 for
Android, Qt, OpenStack, and LibreOffice, respectively. We also observe that the
distributions of ranks recommended by RevFinder tend to be skewed as much
as close to the first rank. These results indicate that RevFinder is more likely to
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Table 5.4. The results of Mean Reciprocal Rank (MRR) of RevFinder and a
baseline approach. A MRR value of 1 indicates a perfect ranking
performance of the approach.
Approach Android Qt OpenStack LibreOffice
RevFinder 0.60 0.31 0.55 0.40
ReviewBot 0.25 0.22 0.30 0.07

Table 5.5. The results of top-k accuracy of our approach RevFinder and a baseline
ReviewBot for each studied system. The results show that RevFinder
outperforms ReviewBot.

System RevFinder ReviewBot
Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Android 46 % 71 % 79 % 21 % 29 % 29 %
Qt 20 % 34 % 41 % 19 % 26 % 27 %

OpenStack 38 % 66 % 77 % 23 % 35 % 39 %
LibreOfiice 24 % 47 % 59 % 6 % 9 % 9%

invite a correct reviewer at the top ranks while it is less likely to involve unrelated
reviewers.

Observation 11 – On average, the ranking performance of RevFinder is 3
times better than that of ReviewBot. Table 5.4 shows the MRR values of
RevFinder and ReviewBot for each studied system. Table 5.4 shows that
RevFinder achieves an MRR of 0.31(Qt) - 0.60(Android) which is closer to
one than RevFinder does. The MRR values of RevFinder are 2.4, 1.4, 1.8,
and 5.7 times better than that of ReviewBot for Android, Qt, OpenStack, and
LibreOffice, respectively. These results indicate that the top ranks of RevFinder
are more appropriate than the top ranks of ReviewBot.

As Observation 10 shows that RevFinder recommended the correct reviewers
with a median rank of 4, we measure the top-k accuracy with the k value of 1,
3, and 5. Table 5.5 shows the top-1, top-3, and top-5 accuracies of RevFinder
and ReviewBot for each studied system.
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Figure 5.6. The rank distribution of the first correct reviewer that is recommended by RevFinder and Review-
Bot.
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Observation 12 – RevFinder can correctly recommend reviewers for 59%-79%
of patches with a top-5 recommendation. RevFinder achieves top-5 accuracy
of 79%, 41%, 77%, and 59% for Android, Qt, OpenStack, and LibreOffice, respec-
tively. Yet, the top-1 accuracy of RevFinder is relatively low, indicating that
there is a room for improvement if a correct recommendation of a reviewer within
one candidate is needed. Nevertheless, the results of top-5 accuracy leads us to
conclude that leveraging the similarities between the path of a newly changed file
and the paths of previously reviewed files can be used to accurately recommend
appropriate reviewers.

Table 5.5 also shows that, for every studied system, RevFinder achieves
higher top-k accuracy than ReviewBot. At the top-5 accuracy, RevFinder
achieves an accuracy of 2.7, 1.5, 2, and 7 times higher than that of ReviewBot
for Android, Qt, OpenStack, and LibreOffice, respectively. We also find similar
results for other top-k accuracy metrics. This result indicates that RevFinder
considerably outperforms ReviewBot.

Summary: RevFinder can recommend correct reviewers with a median rank
of 4. The ranking performance of RevFinder is 3 times better than that of
ReviewBot, indicating that RevFinder ranks the appropriate reviewers higher
than ReviewBot. Moreover, RevFinder correctly recommended 59%-79% of
patches with a top-5 recommendation. These results indicate that leveraging the
similarities between the path of a newly changed file and the paths of previously
reviewed files can accurately recommend reviewers.

5.7. Discussion

We now discuss the performance and applicability of RevFinder.
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5.7.1. Performance: Why does RevFinder outperform

ReviewBot?

Our empirical evaluation shows that RevFinder outperforms ReviewBot which
is the baseline approach for this study (Observations 11 and 12). The difference
between RevFinder and ReviewBot is the granularity of code review history
that is used for selecting the appropriate reviewers. RevFinder uses the code
review history at the file path-level, while ReviewBot uses the code review
history at the source code line-level. Intuitively, selecting reviewers who have
examined the exact same lines seems to be the best choice for those projects with
high frequent changes of source code. However, it is not often that files are fre-
quently changed at the same lines [68]. As the MCR processes is relatively new
and recently adopted, the performance of ReviewBot would be limited due to
the small amount of review history. To better understand this, we count the
frequency of change history at the line level. We observed that 70%-90% of lines
of code are changed only once, indicating that MCR tools have a short history of
the changed line level. Hence, ReviewBot achieved the low performance in the
context of our study.

5.7.2. Applicability: Can RevFinder help a patch author to find

appropriate reviewers?

In RQ1, our exploratory study has shown that the patch authors of many patches
were suffering from selecting appropriate reviewers (Observation 8). Moreover,
we find that patches with the reviewer selection problem take a longer time in
MCR processes than patches without the problem (Observation 9). To confirm
whether RevFinder can help a patch author to find appropriate reviewers, we
execute RevFinder for the patches with the reviewer selection problem that we
had identified in our explanatory study (see Table 5.2). We find that, on average,
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RevFinder can correctly recommend reviewers for 80% of these patches within
its top 10 recommendations. This result indicates that the patch authors can
use a list of recommendation produced by RevFinder to assign a reviewer if
they cannot find an appropriate reviewer for their patches. This finding leads us
to believe that RevFinder can help a patch author find appropriate reviewers,
which in turn would reduce the time that is spent in MCR processes.

5.8. Threats to Validity

We discuss potential threats to the validity of our work as follows:

5.8.1. Internal Validity

Our review classification process in RQ1 involves a manual classification. The
classification process was conducted by the author who is not involved in the code
review process of the studied systems. The results of the manual classification
by a domain expert might be different. Nevertheless, our classification method is
based on the discussion that is written by the developers who are involved in the
MCR processes (see Figure 5.2), and the review classification results is verified
by the second author of our paper [124].

In our exploratory study, we measure time that is spent in MCR processes
to investigate the impact that the reviewer selection problem can have on MCR
processes. However, this time measurement includes both the time length of
finding reviewers and reviewing. Unfortunately, the code review tool did not
record the time when a reviewer is selected. We also could not use a feedback
delay, i.e., time from the patch submission to the posting of the first reviewer
message as our time measure. This is because those patches that have the reviewer
selection problem often receive messages about suggesting a reviewer during the
review discussion (see Figure 5.2(b)). Since there is a limitation of measuring
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time to find reviewers, we must rely on heuristics to recover this information.
Nevertheless, we normalize the time that is spent in MCR processes by patch size
in order to control a confounding factor, i.e., a larger patch is more likely to take
longer time in MCR processes.

5.8.2. External Validity

Our empirical results are limited to four datasets i.e., Android, OpenStack, Qt,
and LibreOffice. However, we cannot claim that the same observations would hold
for other systems. Future work should focus on an evaluation in other systems
with larger number of reviewers to better generalize the results of our approach.

5.8.3. Construct Validity

The first threat involves a lack of reviewer retirement information. It is possible
that reviewers are retired or are no longer involved in the code review system.
Therefore, the performance of our approach might be affected by its recommend-
ing retired reviewers. Another threat involves the workload of reviewers. It is
possible that reviewers would be burdened with a large number of assigned re-
views. Therefore, considering workload balancing would reduce tasks of these
potential reviewers and the number of awaiting reviews.

5.9. Summary

Finding an appropriate reviewer to critique a new patch can be a tedious task for
a patch author. Therefore, in this chapter, we empirically evaluate the impact
of the reviewer selection problem can have on the time that is spent on MCR
processes. Moreover, in order to help developers find appropriate reviewers, we
propose RevFinder, a file location-based reviewer recommendation approach.
We leverage the similarities between the path of a newly changed file and the paths
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of previously reviewed files to recommend an appropriate reviewer. The intuition
behind RevFinder is that files that are located in similar file paths would be
managed and reviewed by a similar set of experienced reviewers. We evaluate the
recommendation performance in terms of the accuracy and ranking performance.
We also compare the performance of RevFinder with the previously proposed
approach called ReviewBot. Through an empirical study of 42,045 patches
spread across the Android, Qt, OpenStack, and LibreOffice open source systems,
we make the following observations:

– 4%-30% of patches have the reviewer selection problem. These patches
with the problem take 12 days longer than patches without the problem.
A patch author indeed do have difficulties selecting appropriate reviewers
(Observations 8 and 9).

– RevFinder can recommend the correct reviewers with a median rank of 4
(Observation 10). Moreover, the ranking performance of RevFinder is 3
times better than that of ReviewBot (Observation 11).

– Moreover, RevFinder correctly recommends 59%-79% of patches within
a top-5 recommendation, which is more accurate than ReviewBot (Ob-
servation 12).

Our results lead us to conclude that patch authors are suffering from selecting
appropriate reviewers for a new patch. Hence, we believe that implementing a
reviewer recommendation into MCR tools could help developers find appropriate
reviewers, which in turn lead to a more effective code review process.
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Chapter 6

The Impact of Reviewer Involvement
on Software Quality

An earlier version of the work in this chapter appears in
the Proceedings of the 12th International Working
Conference on Mining Software Repositories (MSR) [121].

In addition to the expertise, the involvement of developers is another key fac-
tor that has an impact on the quality of software systems [1]. Recent research
finds that the investment of MCR, i.e., the proportion of patches that were re-
viewed or discussed, shares an inverse relationship with the incidence of both
post-release defects [73, 74] and software design anti-patterns [81]. Motivated by
the findings of the recent research, in this chapter, we investigate the amount re-
viewer involvement in MCR processes. In particular, we investigate the reviewer
involvement in defective files along two perspectives: (1) files that will eventually
have defects, i.e., future-defective files and (2) files that have historically been
defective, i.e., risky files. The results of our case studies demonstrate that both
future-defective files and risky files tend to be reviewed less rigorously than their
clean counterparts. We also observe that the concerns addressed during the MCR
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reviews tend to enhance evolvability, i.e., ease future maintenance (like documen-
tation), rather than focus on functional issues (like incorrect program logic). Our
findings suggest that although functionality concerns are rarely addressed during
code review, the rigor of the reviewing process that is applied to a source code
file throughout a development cycle shares a link with its defect proneness.

6.1. Introduction

Since MCR tools do not impose a strict criteria of reviewer involvement, MCR
reviews may not foster a sufficient amount of reviewer involvement to mitigate
the risk of having defects in reviewed patches. Hence, in this chapter, we investi-
gate the code reviewing practices of MCR in terms of: (1) code review activity,
and (2) concerns addressed during code review. We characterize code reviewing
practices using 11 metrics that are grouped along three dimensions, i.e., review
intensity, review participation, and reviewing time. We then comparatively study
the difference of these code reviewing practices in defective and clean source code
files. We also investigate defective files along two perspectives: (1) files that will
eventually have defects (called future-defective files), and (2) files that have his-
torically been defective (called risky files). Using data that is collected from the
Qt open source system, we address the following two research questions:

(RQ1) Do developers follow lax code reviewing practices in files that will even-
tually have defects?
Motivation. Prior work shows that lax code reviewing practices are cor-
related with future defects in the corresponding software components [73].
For example, components with many changes that have no associated re-
view discussion tend to have post-release defects. While these prior findings
suggest that a total lack of code review activity may increase the risk of
post-release defects, little is known about how much code review activity is
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“enough” to mitigate this risk.
Results. We find that future-defective files tend to undergo reviews that
are less intensely scrutinized, having less team participation, and a faster
rate of code examination than files without future defects. Moreover, most
of the changes made during the code reviews of future-defective files are
made to ease future maintenance rather than to fix functional issues.

(RQ2) Do developers adapt their code reviewing practices in files that have
historically been defective?
Motivation. Since the number of prior defects is a strong indicator of the
incidence of future defects [41], the files that have historically been defective
may require additional attention during the code review process. In other
words, to reduce the likelihood of having future defects, developers should
more carefully review changes made to these risky files than changes made
to files that have historically been defect-free. However, whether or not
developers are actually giving such risky files more careful attention during
code reviewing remains largely unexplored.
Results. We find that developers are likely to review changes of risky files
with less scrutiny and less team participation than files that have historically
been defect-free (called normal files). Developers tend to address evolvabil-
ity and functionality concerns in the reviews of risky files more often than
they do in normal files. Moreover, such risky files that will eventually have
defects tend to undergo less rigorous code reviews that more frequently
address evolvability concerns than the risky files that will eventually be
defect-free.

Our results lead us to conclude that lax code reviewing practices could lead to
future defects in software systems. Developers are not as careful when they review
changes made to risky files despite their historically defective nature. These
findings suggest that files that have historically been defective should be given
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more careful attention during the code review process, since the rigor of the
reviewing process shares a link with defect proneness.

6.1.1. Chapter Organization

The remainder of this chapter is organized as follow. Section 6.2 describes our case
study design, while Section 6.3 presents the study results. Section 6.4 provides a
broader implication of the results. Section 6.5 discloses the threats to the validity.
Finally, Section 6.6 summarizes this study.

6.2. Case Study Design

In this section, we describe the studied system, and our data preparation and
analysis approaches.

6.2.1. Studied System

In order to address our research questions, we perform an empirical study on a
large, rapidly-evolving open source system with a globally-distributed develop-
ment team. In selecting the subject system, we identified two important criteria:

Criterion 1: Active MCR Practices — We want to study a subject system that
actively uses MCR for the code review process, i.e., a system that examines
and discusses software changes through a code review tool. Hence, we only
study a subject system where a large number of reviews are performed using
a code review tool.

Criterion 2: High Review Coverage — Since we will investigate the differences
of MCR practices in defective and clean files, we need to ensure that a lack
of code review is not associated with defects [73]. Hence, we focus our study
on a system that has a large number of files with 100% review coverage, i.e.,



6.2. Case Study Design 107

Table 6.1. An overview of the studied Qt system.

Version LOC Commits Files
with Review Total with 100% review

coverage Changed Files
Qt 5.0 5,560,317 9,677 10,163 11,689 25,615
Qt 5.1 5,187,788 6,848 7,106 12,797 19,119

files where every change made to them is reviewed by at least one reviewer
other than its author.

Due to the human-intensive nature of carefully studying the code review pro-
cess, we decided to perform an in-depth study on a single system instead of
examining a large number of projects. With our criteria in mind, we select Qt,
an open source cross-platform application and UI framework developed by the
Digia corporation. Table 6.1 shows that the Qt system satisfies our criteria for
analysis. In terms of criterion 1, the development process of the Qt system has
achieved a large proportion of commits that are reviewed. In terms of criterion 2,
the Qt system has a large number of files where 100% of the integrated changes
are reviewed.

6.2.2. Data Preparation

We used the Gerrit review and code datasets that are provided by prior work [46,
73]. The Gerrit review dataset of Hamasaki et al. describes patch information,
reviewer scoring, the personnel involved, and review discussion history [46]. The
code dataset of McIntosh et al. describes the recorded commits on the release

branch of the Qt VCSs during the development and maintenance of each studied
Qt release [73]. For each of our research questions, we construct a review database
by linking the Gerrit review and code datasets. Figure 6.1 provides an overview
of our dataset linking process, which is broken down into three steps that we
describe below.
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Figure 6.1. An overview of data preparation and data analysis approaches.

(DP1) Git Revision ID Extraction

In order to link the Gerrit review and code datasets, we extract the Git revision ID
from the message that is automatically generated by the Qt CI bot. After a patch
is accepted by reviewers, it is merged into the release branch and the bot adds
a message to the review discussion of the form: “Change has been successfully
cherry-picked as <Git Revision ID>”.

(DP2) Defective File Identification

To identify the future-defective and risky files, we count the number of post-
release defects of each file. Similar to prior work [73], we identify post-release
defects using defect-fixing commits that are recorded during the six-month period
after the release date.

Figure 6.2 illustrates our approach to identify the future-defective files for RQ1
and the risky files for RQ2. We use the following criteria to identify defective
files:
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Future-defective files identification for RQ1: Figure 6.2(a) shows our classifica-
tion approach for future-defective files. We classify the files that have post-
release defects as future-defective files. Files that do not have post-release
defect are classified as clean files.

Risky files identification for RQ2: Figure 6.2(b) shows our classification approach
for risky files. We classify the files that had post-release defects in the prior
release as risky files, while normal files are files that did not have post-
release defects in the prior release.

(DP3) Review Linking

To find the reviews that are associated with changes made to the studied files,
we first link the commits to reviews using the Git revision ID. We only study the
reviews of changes that can be linked between the code and review datasets. We
then produce a review database by selecting pre-release reviews of the studied
files. We select reviews of future-defective (or risky) files from those reviews that
are associated with at least one future-defective (or risky) file. The reviews that
are not associated with any future-defective (or risky) files are linked to clean (or
normal) files.

We conservatively link the reviews that are associated with both future-defective
(or risky) files and clean (or normal) files to future-defective (or risky) files, when
these reviews could have been linked to clean (or normal) files. We do so because
we feel that the worst-case scenario where we mistakenly link some reviewing ac-
tivities to future-defective (or risky) files is more acceptable than the worst-case
scenario where we mistakenly link some reviewing activities to clean (or normal)
files.
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(a) RQ1: An identification of future-defective files
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(b) RQ2: An identification of risky files

Figure 6.2. Our approach to identify defective files.
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6.2.3. Data Analysis

To address our research questions, we perform quantitative (DA1) and qualitative
(DA2) analyses. Figure 6.1 provides an overview of our analyses. We describe
each analysis below.

(DA1) Quantitative Analysis of Code Review Activity

We study the differences in code review activity between future-defective (or
risky) and clean (or normal) files. To do so, we calculate several code review
activity metrics and measure the difference in code review activity metrics using
a statistical approach. We describe each step in this process below.

(DA1-a) Reviewing Activities Metrics Calculation. Table 6.2 provides an overview
of the 11 metrics that we use to measure code review activity. Since patch
size is often correlated with code review activity [57, 99, 127, 131] and defect-
proneness [80, 84], we normalize each raw code review activity metric by the
patch size. Our metrics are grouped into review intensity, review participation,
and reviewing time dimensions, which we describe below:

Review Intensity measures the scrutiny that was applied during the code re-
view process. We conjecture that files that are intensely scrutinized before
integration are less likely to have future defects. We use four metrics to
measure review intensity: (1) Number of iterations counts how many times
a patch has been revised prior to its integration. (2) Discussion length
counts how many messages posted in the patch discussion and the inline
comments inserted into the patch. We exclude the automatically-generated
comments from EWS and CI bots in order to focus on reviewer feedback.
(3) Proportion of revisions inspired by feedback measures the proportion of
revisions that are inspired by a reviewer either posting a message or as-
signing a review score. (4) Churn between revisions counts the number of
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lines that were added and deleted between revisions of the patch. We filter
out revisions that have a large difference because they are likely related
to version control bookkeeping tasks, such as merging branch updates or
rebasing [125].

Review Participation measures how much the development team invests in the
code review process. We conjecture that files with a large and active in-
volvement are less likely to have future defects. We use four metrics to
measure review participation: (1) Number of reviewers counts how many
participants who either post a general comment, inline comment, or assign
a review score. (2) Number of authors counts the number of developers who
upload a revision of a patch. (3) Number of non-author voters counts the
number of participants who assign a review score for a patch but are not
the author. (4) Proportion of reviewer agreement measures the proportion
of review scores for a patch that are positive, i.e., +1 or +2.

Reviewing Time measures the duration of a code review. We conjecture that files
that are reviewed for a longer time are less likely to have future defects. We
use three metrics to measure reviewing time: (1) Review length measures the
duration of a code review from the time that the first revision of the patch
is uploaded to the time that reviewers accept the patch for integration. (2)
Response delay measures the time from when the first patch is uploaded to
the time that the first reviewer provides feedback. (3) Average review rate
measures an average of the number of lines that was reviewed within an
hour for each patch revision (KLOC/Hour).

(DA1-b) Reviewing Activities Analysis. We use a statistical approach to deter-
mine whether code review activity in future-defective (or risky) files is significantly
different from code review activity in clean (or normal) files.
To statistically confirm the difference of the code review activity in future-

defective (or risky) and clean (or normal) files, we first test for distribution in our
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Table 6.2. A taxonomy of the code review activity metrics. The metrics normalized by patch size are marked with

a dagger symbol (†).
Metric Description Conjecture
Review Intensity Dimension
Number of Iterations† Number of review iterations for a

patch prior to its integration.
Fixing a defect found in each round of mul-
tiple iterations of a review would reduce the
number of defects more than a single itera-
tion of review [91].

Discussion Length† Number of general comments and in-
line comments written by reviewers.

Reviewing proposed changes with a long dis-
cussion would find more defects and provide
a better solution [81,128].

Proportion of Revisions
without Feedback

Proportion of iterations that are not
inspired by a reviewer neither post-
ing a message nor a score.

Although a code review of MCR can be done
by bots, the suggestion can be either su-
perficial or false positives [89]. More revi-
sions that are manually examined by review-
ers would lead to a lower likelihood of having
future defects.

Churn during Code
Review†

Number of lines that were added and
deleted between revisions.

More lines of codes that were revised during
code review would lead to a lower likelihood
of having a future defect [25].

Review Participation Dimension
Number of Reviewers† Number of developers who partici-

pate in a code review, i.e., posting
a general comment, or inline com-
ment, and assigning a review score.

Changes examined by many developers are
less likely to have future defects [96, 100].

Continued on next page
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Table 6.2 A taxonomy of the code review activity metrics. Continued from previous page
Metric Description Conjecture
Number of Authors† Number of developers who upload a

revision for proposed changes.
Changes revised by many authors may be
more defective [21, 41].

Number of Non-Author
Voters†

Number of developers who assign a
review score, excluding the patch au-
thor.

Changes that receive a review score from
the author may have essentially not been re-
viewed [73].

Proportion of Review
Disagreement

A proportion of reviewers that vote
for a disagreement to accept the
patch, i.e., assigning a negative re-
view score.

A review with a high rate of acceptance dis-
crepancy may induce a future fix.

Reviewing Time Dimension
Review Length† Time in days from the first patch

submission to the reviewers accep-
tance for integration.

The longer time of code review, the more de-
fects would be found and fixed [91,100].

Response Delay Time in days from the first patch
submission to the posting of the first
reviewer message.

Reviewing a patch promptly when it is sub-
mitted would reduce the likelihood that a de-
fect will become embedded [100].

Average Review Rate An average of the number of lines
that was reviewed in an hour
for each revision of the patch
(KLOC/Hour).

A review with a fast review rate may lead
the changes that are defective [35,60,104].
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Table 6.3. A contingency table of a code review activity metric (m), where a
and c represent the number of reviews of defective files, and b and d
represent the number of reviews of their clean counterparts.

Low Metric Value High Metric Value
m ≤ medianm m > medianm

Have defects a c
No defects b d

data using the Shapiro-Wilk test (α = 0.05). We observe that the distributions
of code review activity metrics do not follow a normal distribution (p < 2.2 ×
10−16 for all of the metrics). Thus, we use a non-parametric test, i.e., the one-
tailed Mann-Whitney U test to check for significant differences in the code review
activity metrics of future-defective (or risky) files and clean (or normal) files
(α = 0.05).

We also measure the relative impact in order to understand the magnitude of
the relationship. We estimate the relative impact using the odds ratio [31]. We
compare the odds of future-defective (or risky) files that undergo reviews with
high metric values (greater than the median) and reviews with low metric values
(less than or equal to the median). From the contingency table constructed for
a code review activity metric (m) as shown in Table 6.3, we can measure the
relative impact using the calculation below.

imp(m) = (c/d)− (a/b)
(a/b) (6.1)

A positive relative impact indicates that a shift from low metric values to high
metric values is accompanied by an increase in the likelihood of future (or past)
defect proneness, whereas a negative relative impact indicates a decrease in that
likelihood of future (or past) defect proneness.
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(DA2) Qualitative Analysis of Concerns Addressed during Code Review

We compare the concerns that were addressed during code review of future-
defective (or risky) files and clean (or normal) files. Similar to Beller et al. [16],
we identify the concerns by manually labelling the types of changes made to a
patch between revisions. We describe each step below.

(DA2-a) Representative Sample Selection. As the full set of review data is
too large to manually examine in its entirety, we randomly select a statistically
representative sample for our analysis. To select a representative sample, we
determine the sample size using a calculation of s = z2p(1−p)

c2 , where p is the
proportion that we want to estimate, z = 1.96 to achieve a 95% confidence level,
and c = 0.1 for 10% bounds of the actual proportion [63, 67]. Since we did not
know the proportion in advance, we use p = 0.5. We further correct the sample
size for the finite population of reviews P using ss = s

1+ s−1
P

. Since we consider
only changes that occur during code review, we randomly select the representative
sample from those reviews that have at least two revisions.

(DA2-b) Addressed Concerns Identification. To identify the concerns that were
addressed during code review, we manually label the changes that occurred be-
tween revisions using the file-by-file comparison view of the Gerrit system. Each
change is labelled as being inspired by reviewer feedback or not, as well as the
corresponding type. For the type of a change, we use the change classification
defined by Mäntylä and Lassenius [70]. We also add the the traceability category,
which refers to bookkeeping changes for VCSs, into the change classification. Fig-
ure 6.3 shows the classification schema that we use in this study. For each type
of change, we count how many reviews make such changes. Since many changes
can be made during a review, the sum of the frequencies of each type can be
larger than the total number of reviews. Below, we briefly describe each type in
our change classification schema.
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Figure 6.3. Classification schema for changes that are addressed during the code
review process [70]. We add the traceability type.

Evolvability refers to changes made to ease the future maintenance of the code.
This change type is composed of three sub-types: (1) Documentation refers
to changes in parts of the source code that describe the intent of the code,
e.g., identifier names or code comments, (2) Structure refers to code organi-
zation, e.g., refactoring large functions, and (3) Visual representation refers
to changes that improve code readability, e.g., code indentation or blank
line usage.

Functionality refers to changes that impact the functionality of the system. This
change type is composed of six sub-types: (1) Larger defects refer to changes
that add missing functionality or correct implementation errors, (2) Check
refers to validation mistakes, or mistakes made when detecting an invalid
value, (3) Resource refers to mistakes made with data initialization or ma-
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nipulation, (4) Interface refers to mistakes made when interacting with
other parts of the software, such as other internal functions or external
libraries, (5) Logic refers to computation mistakes, e.g., incorrect compari-
son operators or control flow, and 6) Support refers to mistakes made with
respect to system configuration or unit testing.

Traceability refers to bookkeeping changes for VCSs. We add this type into our
classification schema because the software development of large software
systems is also concerned with the management of source code reposito-
ries [50, 53]. For instance, developers should describe the proposed change
using a detailed commit message, and the proposed change must be applied
to the latest version of the codebase.1

6.3. Case Study Results

In this section, we present the results of our case study with respect to our two
research questions. For each research question, we present and discuss the results
of quantitative (DA1) and qualitative (DA2) analyses.

(RQ1) Do developers follow lax code reviewing practices in files

that will eventually have defects?

Table 6.4 provides an overview of the review database that we construct to address
RQ1. We conjecture that files that are intensely scrutinized, with more team
participation, that are reviewed for a longer time, and often address functionality
concerns are less likely to have defects in the future.

We now present our empirical observations, followed by our general conclusion.

1http://qt-project.org/wiki/Gerrit-Introduction

http://qt-project.org/wiki/Gerrit-Introduction
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Table 6.4. An overview of the review database of RQ1.
Qt 5.0 Qt 5.1

Future-defective Clean Future-defective Clean
Studied Files 1,176 10,513 866 11,931

Related Reviews 3,470 2,727 2,849 2,690

Review Sample 93 93 93 93
(405 revisions) (344 revisions) (371 revisions) (342 revisions)

(RQ1-DA1) Quantitative Analysis of Code Review Activity

Observation 13 – Future-defective files tend to undergo less intense code review
than clean files do. As we suspected, Table 6.5 shows that future-defective files
tend to undergo reviews that have fewer iterations, shorter discussions, and have
more revisions that are not inspired by reviewer feedback than clean files do.
Mann-Whitney U tests confirm that the differences are statistically significant
(p < 0.001 for all of the review intensity metrics).
However, future-defective files tend to change more during code review than

clean files. Table 6.5 shows that the churn during code review of future-defective
files is higher than that of clean files (p < 0.001). This may be because changes
made to future-defective files tend to be more controversial. For example, review
ID 279772 proposes a controversial change that reviewers disagreed with, asking
the author to revise the proposed changes many times before reluctantly allowing
the integration of the changes into the upstream VCSs.
Observation 14 – Future-defective files tend to undergo reviews with less

team participation than clean files do. Table 6.5 shows that future-defective
files tend to be reviewed by fewer reviewers, involve fewer non-author voters, and
have a higher rate of review disagreement than clean files do. Mann-Whitney U
tests confirm that the differences are statistically significant (p < 0.001 for the
number of reviewers and the non-author voters metrics, and p < 0.05 for the
proportion of review disagreement metric).

2https://codereview.qt-project.org/#/c/27977

https://codereview.qt-project.org/#/c/27977
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Table 6.5. Results of one-tailed Mann-Whitney U tests (α = 0.05) for code review activity metrics of future-
defective and clean files.

Metric Statistical Test Relative Impact (%)
Qt 5.0 Qt 5.1 Qt 5.0 Qt 5.1

Review Intensity
#Iterations† Future-defective < Clean*** Future-defective < Clean*** -24 ↓ -20 ↓

Discussion Length† Future-defective < Clean*** Future-defective < Clean** -19 ↓ -14 ↓
Revisions without Feedback Future-defective > Clean*** Future-defective > Clean* 7 ↑ 5 ↑
Churn during Code Review† Future-defective > Clean *** Future-defective > Clean*** 11 ↑ 11 ↑
Review Participation

#Reviewers† Future-defective < Clean*** Future-defective < Clean*** -26 ↓ -20 ↓
#Authors† Future-defective < Clean*** Future-defective < Clean*** -33 ↓ -27 ↓

#Non-Author Voters† Future-defective < Clean*** Future-defective < Clean*** -30 ↓ -26 ↓
Review Disagreement Future-defective > Clean* Future-defective > Clean* 3 ↑ 4 ↑

Reviewing Time
Review Length† - Future-defective > Clean*** - 18% ↑
Response Delay - Future-defective > Clean* - 11% ↑

Average Review Rate Future-defective > Clean*** Future-defective > Clean*** 42% ↑ 16% ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Furthermore, Table 6.5 shows that future-defective files tend to have less au-
thors who upload revisions than clean files do (p < 0.001). We observe that ad-
ditional authors often help the original author to improve the proposed changes.
For example, in review ID 35360,3 the additional author updated the proposed
changes to be consistent with his changes from another patch. This suggests
that the proposed change can be improved and complex integration issues can be
avoided when it is revised by many developers during code review.

Observation 15 – Future-defective files tend to undergo reviews with a faster
rate of code examination than clean files do. Table 6.5 shows that future-
defective files tend to be reviewed with a faster average review rate than clean
files. A Mann-Whitney U test confirms that the difference is statistically signifi-
cant (p < 0.001). We also observe that in Qt 5.1, the future-defective files tend
to receive longer response delay than the clean files do, while we cannot confirm
the statistical significance of the difference in Qt 5.0.

Table 6.5 shows that the review length of future-defective files tends to be longer
than clean files in Qt 5.1 (p < 0.001). This finding contradicts our conjecture
that we describe in Table 6.2. We observe that some of the reviews take a longer
time due to a lack of reviewer attention. For example, in review ID 32926,4 there
is little prompt discussion about a proposed change. Since the patch already
received a review score of +1 from a reviewer and there were no other comments
after waiting for 9 days, the author presumed that the change was clean and
self-approved his own change. This lack of reviewer attention may in part be due
to long review queues [14]. This finding complements observation 14 — files that
are reviewed with little team participation tend to have future defects.

Table 6.5 shows that the metrics with the largest relative impacts are the
average review rate for Qt 5.0 (42%) and the number of authors for Qt 5.1 (-
27%), while the proportion of review disagreement metric has the smallest relative

3https://codereview.qt-project.org/#/c/35360
4https://codereview.qt-project.org/#/c/32926

https://codereview.qt-project.org/#/c/35360
https://codereview.qt-project.org/#/c/32926
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impact for both Qt versions (an average of 3.5%). Furthermore, the number of
reviewers, authors, and non-author voters also have a large relative impact, which
ranges between -33% and -20%.

(RQ1-DA2) Qualitative Analysis of Concerns Addressed during

Code Review

Observation 16 – For evolvability changes, future-defective files tend to more
frequently address documentation and structure concerns than clean files do.
Figure 6.4 shows that the proportion of reviews in future-defective files that make
documentation and structure changes is higher than the corresponding proportion
in the clean files. There are differences of 11 and 9 percentage points (52%-41%
and 39%-30%) in documentation changes, and 5 and 15 percentage points (67%-
62% and 70%-55%) in structure changes for Qt 5.0 and Qt 5.1, respectively. We
observe that the documentation changes involve updating copyright terms, ex-
panding code comments, and renaming identifiers. The structure changes relate
to removing dead code and reusing existing functions rather than implementing
new ones. Moreover, we find that the documentation changes were inspired by
reviewers in future-defective files (21%) more often than clean files (10%), in-
dicating that reviewers often focus on documentation issues in future-defective
files.

Furthermore, we find that evolvability is the most frequently addressed concern
during code review of both clean and future-defective files. Figure 6.4 shows that,
similar to prior work [16, 70], evolvability changes account for the majority of
changes in the reviews, i.e., 82% of the reviews of future-defective files and 70%
of the reviews of clean files on average.

Observation 17 – For functionality changes, future-defective files tend to more
frequently address check, logic, and support concerns than clean files do. Fig-
ure 6.4 shows that the proportion of reviews in future-defective files that make
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Figure 6.4. Distribution of change types that occurred during the code review
of future-defective and clean files. The sum of review proportion is
higher than 100%, since a review can contain many types of changes.
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check, logic, and support changes is higher than the corresponding proportion in
the clean files. There are differences of 7 and 6 percentage points (18%-11% and
16%-10%) in check and logic changes, respectively. We observe that many check
changes involve validating variable declarations. The logic changes mainly relate
to changing comparison expressions. For the support changes, the proportion of
reviews in Qt 5.1 shows a clear difference of 15 percentage points (19%-4%) be-
tween future-defective and clean files. Moreover, in Qt 5.1, the support changes
are addressed by the author in future-defective files more often than clean files.
The proportion of reviews is 15% and 2% in future-defective files and clean files,
respectively. On the other hand, there are few reviews where reviewers inspire
functionality changes. The proportion of reviews ranges between 1% - 9% (aver-
age of 5%) in future-defective files and between 1% - 6% (average of 4%) in clean
files.

We also find that the reviews of clean files tend to more frequently address
traceability concerns than the reviews of future-defective files do. Figure 6.4
shows that the proportion of reviews that address traceability concern in clean
files is higher than the corresponding proportion in the future-defective files with
the differences of 7 and 21 percentage points (48%-41% and 60%-39%) for Qt 5.0
and Qt 5.1, respectively.

Summary: The reviews of files that will eventually have defects tend to be less
rigorous and more frequently address evolvability concerns than the reviews of
files without future defects do.

(RQ2) Do developers adapt their code reviewing practices in

files that have historically been defective?

To address RQ2, we use post-release defects of Qt 5.0 as prior defects for Qt 5.1
and investigate the reviewing activities of changed files in Qt 5.1. Table 6.6 shows
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Table 6.6. An overview of the review database to address RQ2.
Qt 5.1

Risky Normal Risky & Future-Defective Risky & Clean
Studied Files 1,168 11,629 206 962

Related Reviews 2,671 2,868 1,299 1,372
Review
Sample

93 93 44 49
(399 revisions) (309 revisions) (205 revisions) (194 revisions)

an overview of the review database that we use to address RQ2. We conjecture
that reviews of risky files should be more intensely scrutinized, have more team
participation, and take a longer time to complete than the reviews of normal files.

We now present our empirical observations, followed by our general conclusion.

(RQ2-DA1) Quantitative Analysis of Code Review Activity

Observation 18 – Risky files tend to undergo less intense code reviews than
normal files do. Table 6.7 shows that risky files tend to undergo reviews that
have fewer iterations, shorter discussions, and more revisions without reviewer
feedback than normal files do. Mann-Whitney U tests confirm that the differences
are statistically significant (p < 0.001 for the number of iterations, discussion
length metrics, and p < 0.01 for the proportion of revisions without feedback
metric).

Table 6.7 also shows that the reviews of risky files tend to churn more during
code review than those in normal files. Similar to Observation 13, changes with
more churn during code review are likely to be controversial. For example, in
review ID 29929,5 reviewers provide many suggested fixes and the author needs
to revise the proposed changes many times before the change was accepted for
integration.

Observation 19 – Risky files tend to be reviewed with less team participation
than normal files. Table 6.7 shows that risky files tend to be reviewed by fewer

5https://codereview.qt-project.org/#/c/29929

https://codereview.qt-project.org/#/c/29929
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Table 6.7. Results of one-tailed Mann-Whitney U tests (α = 0.05) for code review
activity metrics of risky and normal files.

Metric Statistical Test Relative Impact (%)
Review Intensity

#Iterations† Risky < Normal*** -28 ↓
Discussion Length† Risky < Normal*** -26 ↓

Revisions without Feedback Risky > Normal** 6 ↑
Churn during Code Review† Risky > Normal*** 7 ↑
Review Participation

#Reviewers† Risky < Normal*** -32 ↓
#Authors† Risky < Normal*** -34 ↓

Non-Author Voters† Risky < Normal*** -33 ↓
Review Disagreement - -

Reviewing Time
Review Length† Risky > Normal* 6 ↑
Response Delay Risky > Normal*** 15 ↑

Average Review Rate Risky > Normal*** 17 ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

reviewers and non-author voters than normal files do. Mann-Whitney U tests
confirm that the differences are statistically significant (p < 0.001 for the number
of reviewers and the number of non-author voters metrics). Moreover, there tend
to be fewer authors in the reviews of risky files than those reviews of normal files.
The low number of authors in risky files is also worrisome, since Observation 14
suggests that multiple authors revising the proposed change in a review tend to
avoid problems that could lead to future defects.

Observation 20 – Risky files tend to undergo reviews that receive feedback
more slowly and have faster review rate than normal files. Although Table 6.7
shows that risky files tend to undergo reviews that have a longer review length
than normal files do, its relative impact is only 6%. On the other hand, we
find that the reviews of risky files have a longer response delay and faster review
rate than the reviews of normal files. Mann-Whitney U tests confirm that the
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differences are statistically significant (p < 0.001 for the response delay and the
average review rate metrics). This result is also worrisome, since observation 15
suggests that that files that undergo reviews with longer response delay and faster
review rate are likely to have defects in the future.

Table 6.7 shows that the metric with the largest relative impact is the number
of authors (-34%), while the proportion of revisions without feedback and the
review length metrics have the smallest relative impact (6%). Furthermore, we
find that the number of iterations, the discussion length, the number of reviewers,
and non-author voters metrics also have large relative impacts, ranging between
-33% and -26%.

(RQ2-DA2) Qualitative Analysis of Concerns Raised during

Code Review

Observation 21 – Risky files tend to more frequently have evolvability concerns
addressed during code review than normal files do. Figure 6.5 shows that evolv-
ability concerns are addressed in the reviews of risky files more often than normal
files with a proportion of reviews that is 29 percentage points higher (87%-58%).
The proportion of reviews that make structure changes shows an obvious differ-
ence of 32 percentage points (78%-46%) in risky and normal files. We observe
that structure changes in the reviews of risky files relate to removing dead code,
while changes in the reviews of normal files relate to re-implementing solutions
using alternative approaches and small fixes for runtime errors.

Observation 22 – Risky files tend to more frequently have functionality con-
cerns addressed during code review than normal files do. Figure 6.5 shows that
there is a difference of 14 percentage points (47%-33%) between risky and nor-
mal files. The proportion of reviews that make check and logic changes shows a
clear difference of 11 percentage points (19%-8%) between risky and normal files.
We observe that the check changes relate to validating variable values, and logic
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Figure 6.5. Distribution of change types that occurred during the code review of
risky and normal files. The sum of review proportion is higher than
100%, since a review can contain many types of changes.

changes relate to updates to comparison expressions.

On the other hand, Figure 6.5 shows that normal files tend to address traceabil-
ity concerns more often than risky files do. There is a difference of 15 percentage
points (58% - 43%) between risky and normal files. Additionally, this concern is
often addressed by authors. Moreover, we observe that changes to normal files
are more rebased than risky files are.

Summary: Developers are not as careful when they review changes made to files
that have historically been defective and often address the concerns of evolvability
and functionality.

We study this phenomenon further to investigate the relationship between the
code reviewing practices in the risky files and future defects. We use the same
data analysis approaches, i.e., DA1 and DA2. We separate the risky files into
two groups: 1) risky files that will eventually have defects (called risky & future-
defective files) and 2) risky files that will eventually be defect-free (called risky
& clean files) when Qt 5.1 is released. We also separate the randomly selected
reviews of risky files to reviews of risky & future-defective files and reviews of
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risky & clean files in order to compare concerns addressed during code review.
Table 6.6 shows an overview of the review database that we use to perform this
study.

Observation 23 – Risky & future-defective files tend to be less carefully re-
viewed than risky & clean files. Table 6.8 shows that risky & future-defective files
tend to undergo less intense code review with less team participation, i.e., fewer
iterations, shorter discussions, more revisions without reviewer feedback, fewer re-
viewers, authors, and non-author voters than risky & clean files. Mann-Whitney
U tests confirm that the differences are statistically significant (p < 0.001 for
all metrics of the review intensity and participation dimensions). Moreover, we
find that risky & future-defective files tend to undergo reviews that have a longer
response delay and faster review rate than risky & clean files. Mann-Whitney
U tests confirm that the differences are statistically significant (p < 0.001 for
the response delay and the average review rate metrics). These results indicate
that changes made to the risky files that are also defective are reviewed with less
intensity, less team participation, faster review rate, and receive slower feedback
than the risky files that are defect-free.

Table 6.8 shows that the metric with the largest relative impact is the response
delay (34%). On the other hand, the churn during code review metric has the
smallest relative impact (7%). We also find that the number of iterations, the
discussion length, the number of reviewers, authors, and non-author voters met-
rics have a large negative relative impacts ranging between -31% to -27%, and
the average review rate metric has a large positive relative impact (25%).

Observation 24 – Risky & future-defective files tend to have structure, visual
representation, and check concerns addressed more often during code reviews
than risky & clean files do. Figure 6.6 shows that for evolvability changes,
the proportion of reviews in risky & future-defective files that make structure
and visual representation changes is higher than the corresponding proportion in
risky & clean files. There are differences of 11 and 10 percentage points (84%-
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Table 6.8. Results of one-tailed Mann-Whitney U tests (α = 0.05) for code review activity metrics of risky &
future-defective files and risky & clean files.

Metric Statistical Test Relative Impact (%)
Review Intensity

#Iterations† Risky & Future-defective < Risky & Clean*** -27 ↓
Discussion Length† Risky & Future-defective < Risky & Clean*** -29 ↓

Revisions without Feedback Risky & Future-defective < Risky & Clean*** 10 ↑
Churn during Code Review† Risky & Future-defective > Risky & Clean* 7 ↑
Review Participation

#Reviewers† Risky & Future-defective < Risky & Clean*** -27 ↓
#Authors† Risky & Future-defective < Risky & Clean*** -31 ↓

Non-Author Voters† Risky & Future-defective < Risky & Clean*** -30 ↓
Review Disagreement - -

Reviewing Time
Review Length† - -
Response Delay Risky & Future-defective > Risky & Clean*** 34 ↑

Average Review Rate Risky & Future-defective > Risky & Clean*** 25 ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 6.6. Distribution of change types that occurred during the code review of
risky & future-defective and risky & clean files. The sum of review
proportion is higher than 100%, since a review can contain many
types of changes.

73% and 30%-20%) in structure and visual representation changes, respectively.
For functionality changes, the proportion of reviews that make check changes
shows an obvious difference of 14 percentage points (55%-41%) between risky
& future-defective files and risky & clean files. We also observe that reviewers
inspire evolvability changes in risky & future-defective files more often than risky
& clean files. The proportion of reviews is 43% and 31% in risky & future-
defective files and risky & clean files, respectively. However, few functionality
changes are inspired by reviewers in the reviews of risky & future-defective files.
The proportion of reviews ranges between 0% - 11% (average of 5%) in risky &
future-defective files and between 4% - 10% (average of 5%) in risky & clean files
for each type of functionality changes. This finding suggests that reviewers do
not focus much on functionality during code review of risky files.

Summary: Files that have historically been defective and will eventually have
defects tend to undergo less rigorous code reviews that more frequently address
evolvability concerns than the files that have historically been defective, but will
eventually be defect-free.
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6.4. Discussion

In this section, we discuss the broader implications of our empirical observations.

6.4.1. Review Intensity

Observations 13 and 18 have shown that the reviews of changes made to clean and
normal files often have longer discussions and more iterations than the reviews
of future-defective and risky files do. Prior work reports that the focus of MCR
discussion has shifted from defect-hunting to group problem-solving [6, 97, 128].
Examining a patch in multiple review iterations would likely uncover more prob-
lems than a single review iteration [91]. Hence, the reviews that have long dis-
cussions and many iterations seem to improve the patch and avoid problems that
could lead to future defects.

6.4.2. Review Participation

Observations 14 and 19 have shown that the reviews of changes made to clean
and normal files often have more participants than the reviews of future-defective
and risky files do. Corresponding to Linus’ law [96], our findings suggest that
code reviews should be performed by multiple reviewers to reduce the likelihood
of having future defects.
Several studies also suggest that patches should be reviewed by at least two

developers to maximize the number of defects found during the review, while
minimizing the reviewing workload on the development team [91,97,106]. In this
study, we measure the number of reviewers that is normalized by patch size (or
the number of reviewers per line). We find that the number of reviewers per
line also shares an inverse relationship with defect-proneness. For example, we
find that that at the median values, the clean files typically undergo reviews that
have two reviewers for every 20 lines, while the future-defective files typically
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undergo reviews that have one reviewer for every 20 lines. Hence, development
teams should take the number of reviewers per line into consideration when mak-
ing integration decisions. The MCR tools also should be configured to require
reviewers according to the patch size and the number of reviewers per line.

6.4.3. Review Speed

Observations 15 and 20 have shown that each review iteration of clean and normal
files is performed slower than future-defective and risky files. Similar to the
traditional code reviewing practices [35, 60], our findings suggest that reviewers
will be able to uncover more problems hidden in a patch if they perform a careful
code examination with an appropriate code reading rate.

6.4.4. Reviewing Concerns

Observations 16, 17, 21, and 22 have shown that the reviews of changes made
to future-defective files and risky files focus on evolvability concerns rather than
functional fixes. Indeed, functionality concerns are still rarely addressed during
code review. Although MCR practices seem to focus on improving maintain-
ability, our prior findings suggest that the rigor of the reviewing process that is
applied to a source code file throughout a development cycle could help develop-
ment teams to avoid future defects.

6.4.5. Code Review of Risky Files

Observations 23 and 24 have shown that risky & future-defective files tend to
undergo less rigorous code reviews that more frequently address evolvability con-
cerns than the risky & clean files. One contributing reason for the less careful
review of risky files could be that it is difficult for practitioners to determine the
risk of code changes during code review [117]. Despite the difficultly of estimating
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the risk, the Gerrit code review tool did not provide information about the his-
tory of those changed files in a review. Moreover, we also observe that risky files
were changed more frequently than normal files during the development cycle of
Qt 5.1. For example, 425 risky files that are related to the widgets components
were impacted by six patches on average. According to a large amount of changes
must be reviewed before the integration, it could be a tedious task for a devel-
oper to accurately estimate risk for every change without additional information.
Therefore, a supporting tool could help practitioners notice such risky files to
perform code review more rigorously when necessary.

6.5. Threats to Validity

We now discuss potential threats to validity of our study.

6.5.1. Construct validity

We study the code reviewing practices of files derived from a set of reviews instead
of studying a single review because uncovering defects is not the sole intent of
MCR practices [6] and the number of defects found during code review is not
explicitly recorded in an MCR tool [97]. Therefore, we use the collection of code
review activity of files during the development of a release to evaluate the impact
that the MCR practices have on software quality.

The change classification method that was conducted by the author who is not
involved in the code review process of the studied system. The results of manual
classification by the team members might be different. However, our classification
schema is derived from prior work [16, 70] and the comments that we use to
classify code reviews are originally written by team members who participated in
the code review process. Furthermore, we repeatedly label changes several times
before perform our study to ensure the uniformity of the change classification,
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and a subset of change classification results is verified by the second author of
our paper [121].

6.5.2. Internal validity

Some of our code review activity metrics are measured based on heuristics. For
example, we assume that the review length is the elapsed time between when a
patch has been uploaded and when it has been approved for integration. However,
there are likely cases where reviewers actually examined a patch for a fraction
of this review length. Unfortunately, reviewers do not record the time that they
actually spent reviewing a patch. Since there is a limitation of measuring the
actual code review activity, we must rely on heuristics to recover this information.
Furthermore, our rationales for using metrics are supported by prior work [81,91,
92,100,128].

6.5.3. External validity

Although the Qt system is an open source project that actively assesses software
changes through an MCR tool, the analysis of the studied dataset does not allow
us to draw conclusions for all open source projects. Since the code review process
of MCR is a relatively new initiative, finding systems that satisfy our selection
criteria is a challenge (cf. Section 6.2.1). Naggapan et al. also argue that if
care is not taken when selecting which projects to analyze, then increasing the
sample size does not actually contribute to the goal of increased generality [83].
Nonetheless, additional replication studies are needed to generalize our results.

6.6. Summary

Although Modern Code Review (MCR) is now widely adopted in both open source
and industrial projects, the impact of MCR practices on software quality is still
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unclear. In this study, we comparatively study the MCR practices in defective and
clean files, i.e., 1) files that will eventually have defects (called future-defective
files), and 2) files that have historically been defective (called risky files). Due
to the human-intensive nature of code reviewing, we decide to perform an in-
depth study on a single system instead of examining a large number of projects.
Using data collected from the Qt open source system, we empirically study 11,736
reviews of changes to 24,486 files and manually examine 558 reviews. The results
of our study indicate that:

– The code review activity of future-defective files tends to be less intense
with less team participation and with a faster rate of code examination
than the reviews of clean files (Observations 13 to 15).

– Developers more often address concerns about: 1) documentation and struc-
ture to enhance evolvability, and 2) checks, logic, and support to fix func-
tionality issues, in the reviews of future-defective files than the reviews of
clean files (Observations 16 to 17).

– Despite their historically defective nature, the code review activity of risky
files tends to be less intense with less team participation than files that
have historically been defect-free. Reviews of risky files also tend to receive
feedback more slowly and have a faster review rate than the reviews of
normal files (Observations 18 to 20).

– In the reviews of risky files, developers address concerns about evolvability
and functionality more often than the reviews of normal files do (Observa-
tions 21 to 22).

– Risky files that will have future defects tend to undergo less careful reviews
that more often address concerns about evolvability than the reviews of
risky files without future defects do (Observations 23 to 24).
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Our results suggest that rigorous code review could lead to a reduced likelihood
of future defects. Files that have historically been defective should be given more
careful attention during code review, since such files are more likely to have future
defects [41].





Chapter 7

Identifying Characteristics of Patches
with Poor Reviewer Involvement

An earlier version of the work in this chapter appears in
the Springer Journal of Empirical Software Engineering
(EMSE) [122].

In the previous chapter, we find that the amount of review participation, review
intensity, and reviewing time that are applied throughout the development cycle
is associated with the likelihood of having defects in the future. However, little is
known about which factors influence reviewer involvement in the MCR processes.
Hence, in this chapter, we further investigate the characteristics of patches that
suffer from poor reviewer involvement. Specifically, we study the poor reviewer
involvement in terms of (1) participation, i.e., patches that do not attract review-
ers, (2) intensity, i.e., patches that are not discussed, and (3) reviewing time, i.e.,
patches that receive slow initial feedback. Our case study results demonstrate
that the amount of reviewer involvement in the past is a significant indicator of
patches that will suffer from poor reviewer involvement. Moreover, we observe
that the description length of a patch shares a relationship with the likelihood
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of receiving poor review participation or discussion, while patches that introduce
new features are likely to receive slow initial feedback. Our findings suggest that
the patches with such characteristics should be given more attention in order to
increase review participation, which will likely lead to a more effective review
process.

7.1. Introduction

Recent research presents reviewer involvement as a key aspect of MCR practices.
Rigby et al. report that the efficiency and effectiveness of code reviews are most
affected by the amount of reviewers [99]. Recent work finds that reviewer in-
volvement metrics (e.g., the number of involved developers and the number of
comments in a review) are associated with the quality of the code [65]. McIn-
tosh et al. report that a lack of reviewer involvement can have a negative impact
on software quality [74]. Our prior work also finds that the amount of reviewer
involvement that is applied to files throughout the development cycle is associ-
ated with the likelihood of having future defects [121]. Despite the importance
of reviewer involvement, little is known about the factors that influence reviewer
involvement in MCR processes.
A good understanding of the factors that influence reviewer involvement helps

teams create mitigation strategies to avoid such poor involvement which in turn
would help them avoid future quality problems. Hence, in this chapter, we set
out to investigate the characteristics of patches that suffer from poor reviewer in-
volvement. In particular, we focus on the characteristics of patches that: (1) do
not attract reviewers, (2) are not discussed, and (3) receive slow initial feedback.
We measure patch characteristics using 20 patch and MCR process metrics that
are grouped along five dimensions, i.e., patch properties, reviewer involvement
history, past involvement of an author, past involvement of reviewers, and re-
view environment dimensions. To investigate the relationship between the patch
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characteristics and the likelihood that a patch will suffer from poor reviewer in-
volvement, we use contemporary regression modelling techniques that relax the
requirement of a linear relationship between explanatory variables and the re-
sponse, enabling a more accurate and robust fit of the data [48]. Through a case
study of 196,712 reviews spread across the Android, Qt, and OpenStack open
source systems, we address the following three research questions:

(RQ1) Which patch characteristics share a relationship with the likelihood of
a patch not attracting reviewers?
Motivation. Recent work has found that patches with low participation
of reviewers are undesirable and have a negative impact on code qual-
ity [12, 73, 74, 121]. However, patches might be ignored during the MCR
process [19, 87]. Moreover, some patches are merged into upstream VCS
repositories even though they do not have any participants involved with
their reviews apart from the patch author. For example, in the review ID
29921 in the Qt system, no third-party reviewers participated in the review
by neither voting a score or posting a message, although the patch author
had invited a reviewer.1 Hence, we set out to better understand the char-
acteristics of the patches that did not attract reviewers.
Result. We find that the number of reviewers of prior patches, the number
of days since the last modification of the patched files share a strong in-
creasing relationship with the likelihood that a patch will attract reviewers.
The description length is also a strong indicator of a patch that is likely to
not attract reviewers.

(RQ2) Which patch characteristics share a relationship with the likelihood of
a patch not being discussed?
Motivation. Careful consideration of the implications of changes improves
their overall quality prior to integration [6, 121, 128]. Recent studies find

1https://codereview.qt-project.org/#/c/29921/

 https://codereview.qt-project.org/#/c/29921/
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that the proportion of changes without review discussion shares a positive
relationship with the incidence of both post-release defects [74], and soft-
ware design anti-patterns [81]. A review that simply assigns a review score
without any suggestion for improvement nor discussion provides little re-
turn on code review investment. However, it is not known whether there
are factors that make a review more susceptible to a lackluster discussion.
Result. We find that the description length, churn, and the discussion
length of prior patches share an increasing relationship with the likelihood
that a patch will be discussed. We also find that the past involvement of
reviewers shares an increasing relationship with the likelihood that a patch
will be discussed. On the other hand, the past involvement of an author
shares an inverse relationship with the likelihood that a patch will be dis-
cussed.

(RQ3) Which patch characteristics share a relationship with the likelihood of
a patch receiving slow initial feedback?
Motivation. A well-functioning code review process should yield responses
to a new review request in a timely manner in order to avoid potential
problems in the development process [17]. For example, due to continuous
software development practices [36], it is possible that if a patch receives
slow initial feedback, it can become outdated, requiring updates to be re-
applied (and possibly re-implemented) to the latest version of the system.
Prior work also suggest that the earlier that a patch is reviewed, the lower
the risk of deeply embedded defects [100,121]. To better understand patches
that have a long feedback delay, we investigate the characteristics of patches
that received slow initial feedback.
Result. We find that the feedback delay of prior patches shares a strong
relationship with the likelihood that a patch will receive slow initial feed-
back. Furthermore, a patch is likely to receive slow initial feedback if its
purpose is to introduces new features.



7.2. Case Study Design 143

Our results lead us to conclude that the past reviewer involvement, the de-
scription length, the number of days since the last modification of files, the past
involvement of an author, and the past involvement of reviewers share a strong
relationship with the likelihood that a patch will suffer from poor reviewer involve-
ment. Our results highlight the need for patch submission policies that monitor
these factors in order to help development teams improve reviewer involvement
in MCR processes.

7.1.1. Chapter Organization

The remainder of the chapter is organized as follows. Section 7.2 describes the
design of our empirical study, while Section 7.3 presents the results with respect
to our three research questions. Section 7.4 discusses the broader implication of
our results. Section 7.5 discloses the threats to the validity of our empirical study.
Finally, Section 7.6 summarizes this study.

7.2. Case Study Design

In this section, we describe the studied systems and present the data preparation,
model construction, and model analysis approaches that we use to address our
research questions.

7.2.1. Studied Systems

In order to address our research questions, we perform an empirical study of
software systems that actively use MCR for the code review process, i.e., ex-
amine and discuss software changes through a code review tool. We use the
review datasets of Android, Qt, and OpenStack systems which are provided by
Hamasaki et al. [46]. The review datasets describe patch information, reviewer
scoring, the involved personnel, and the discussion history. All three systems
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Table 7.1. Overview of the studied systems.

System
Overview

Period Total Patches Avg. #Patches/Yr
Android 2008/10 - 2014/12 (6 Years) 51,721 8,620

Qt 2011/5 - 2014/12 (4 Years) 99,286 33,095
OpenStack 2011/7 - 2014/12 (4 Years) 136,343 45,447

Code 
Review 
Dataset

(DP-1) 
Selecting Data

Patch 
Data

(DP-2) 
Cleaning Data

(DP-3) Calculating Patch 
and MCR Process Metrics

Figure 7.1. An overview of our data preparation approach.

have been performing code reviews through the Gerrit code review tool for an
extended period of time, i.e., more than three years (see Table 7.1). Table 7.1
also shows that the Android, Qt, and OpenStack systems have a large number
of patches that were reviewed through the Gerrit code review tool in each year,
suggesting that our studied systems actively use MCR.

The Android open source system2 is an operating system for mobile devices
that is developed by Google. Qt3 is a cross-platform application and UI frame-
work that is developed by the Digia corporation. OpenStack4 is an open-source
software platform for cloud computing that is developed by many well-known
companies, e.g., IBM, VMware, and NEC.

7.2.2. Data Preparation

To perform our empirical study, we classify patches based on their reviewer in-
volvement and extract patch metrics. Figure 7.1 provides an overview of our data
preparation approach. We describe the details of our data preparation approach
below.

2https://source.android.com/
3http://qt-project.org/
4http://www.openstack.org/
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Selecting Data

To truly understand reviewer involvement, we exclude patches that do not satisfy
the following criteria:

1. A patch must be submitted during the period when the studied systems
actively uses MCR tools.

2. A patch must not be related to VCS bookkeeping activity, such as branch
merging.

For criterion 1, we identify active periods (i.e., years) of MCR usage by com-
puting an active rate, i.e., the number of submitted patches in a year relative to
the total number of submitted patches in the whole period that is captured in
the datasets. For our analysis, we select the years that have an active rate larger
than 10%. Note that we do not have any gaps in our data, i.e., we find that after
the first year that the system has an active rate above 10%, each following year
also has an active rate above 10%. We focus only on patches that are submitted
during the active MCR period because we need to ensure that the low MCR in-
volvement are due to patch characteristics and not initial MCR experimentation
(like the activity during initial adoption of MCR tools). For criterion 2, we filter
out patches that are related to branch merging because such patches are used to
perform VCS bookkeeping for other patches that have already been revised and
integrated. Therefore, such patches generally have little reviewer involvement,
since the earlier patches have already been reviewed.

Cleaning Data

After selecting patches, we clean the data in order to ensure the accuracy of
study results. To do so, we (1) merge the duplicate accounts of a reviewer in the
code review systems, and (2) remove auto-generated messages. We describe our
approaches below.
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Merging the duplicate accounts of a reviewer. Similar to Issue Tracking Systems
and email discussion threads, Gerrit uses an email address to uniquely identify
users. It is possible that a reviewer may have multiple review accounts in the
MCR tool due to email aliases of the reviewer. To merge the duplicate accounts,
we identify the email aliases using the approaches of Bird et al. [20]. For each
reviewer account, we search for the accounts that have a similar name or a similar
email name (excluding the email domain) using the generalized Levenshtein edit
distance [129]. We then manually inspect potential duplicates, i.e., those with a
Levenshtein edit distance below 0.1.
Removing auto-generated messages. Since we will use the messages that are
posted in the review discussion thread to measure the involvement of reviewers, we
need to remove the messages that are left by automated quality gating tools (e.g.,
static code analyzers) or written by the patch author. We identify the messages
that are posted by tools using the accounts of bots in the studied systems. As
suggested by [82], we mark the account named “Deckard Autoverifier” as a bot for
the Android system. By studying the MCR processes of the Qt and OpenStack
systems, we find that the Qt system has Continuous Integration (CI) and Early
Warning System (EWS) systems,5 and the OpenStack system has the Jenkins
and Zuul automated testing systems.6

Calculating Patch and MCR Process Metrics

We use 20 patch and MCR process metrics to examine the patches that will suffer
from poor reviewer involvement. Our metrics are grouped into five dimensions:
(1) patch properties, (2) history, (3) past involvement of an author, (4) past
involvement of reviewers, and (5) review environment. Table 7.2 provides the
conjecture and the motivating rationale for each of the studied patch and MCR
process metrics. Below, we describe the calculation for each of our metrics.

5https://wiki.qt.io/Qt_Contribution_Guidelines
6http://docs.openstack.org/infra/manual/developers.html#peer-review

https://wiki.qt.io/Qt_Contribution_Guidelines
http://docs.openstack.org/infra/manual/developers.html#peer-review
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Table 7.2. A taxonomy of patch metrics.

Metric Conjecture Rationale
Patch Properties Dimension
Churn The larger the churn is, the more likely that

the patch receives reviewer involvement.
Large patches may need more effort to re-
view [78,99,100].

Number of Mod-
ified Files

The more files that are changed in this patch,
the more likely that the patch will suffer from
poor reviewer involvement.

Patches where their changes scatter across a
large number of files or directories may need
more effort to review. Finding reviewers who
have knowledge for such changes is difficult
as well. Therefore, it is more likely that the
patch will suffer from poor reviewer involve-
ment.

Number of Mod-
ified Directories

The more directories that are impacted by
this patch, the more likely that the patch will
suffer from poor reviewer involvement.

Entropy The more scattered the changes in this patch
are, the more likely that the patch will suffer
from poor reviewer involvement.

Description
Length

The longer description in the patch, the less
likely that the patch will suffer from poor
reviewer involvement.

Patches with a descriptive subject and a well
explained change log message would be able
to draw the attention of reviewers [101].

Purpose A patch that introduces new functionality is
more likely to receive slow initial feedback
than a patch for another purposes.

Patches that introduce new features may re-
quire more effort to examine than patches for
other purposes.

History Dimension
Number of Days
since the Last
Modification

A patch containing files that have been re-
cently changed is more likely to receive re-
sponsive reviewer involvement.

Recently changed files could be the files on
which developers are currently working (i.e.,
more knowledgeable).

Continued on next page
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Table 7.2 A taxonomy of patch metrics. Continued from previous page
Metric Conjecture Rationale
Total Number of
Authors

The more developers who have written
patches made to the modified files, the more
likely that the patch receives active reviewer
involvement.

A reviewer is likely to be one of the authors
of a frequently changed file.

Number of Prior
Defects

A patch containing files that have many de-
fects is more likely to receive active reviewer
involvement.

Files that have historically been defective
may require additional attention during the
code review process [121].

Number of Re-
viewers of Prior
Patches

The more reviewers who have examined prior
patches, the more likely the patch receive ac-
tive involvement.

Files that have been previously examined by
many reviewers would have the likelihood
that one of those reviewers is a reviewer of
this patch.

Discussion
Length of Prior
Patches

The longer discussion that the modified files
have received in prior patches, the more
likely that the patch receive active involve-
ment.

Files that have received long discussion in
prior patches could be complicated. Hence,
they may require additional attention during
the code review process.

Feedback Delay
of Prior Patches

The longer the feedback delay in prior
patches is, the more likely that the patch will
suffer from poor reviewer involvement.

Files that often receive slow initial feedback
can be those with less priority than other
files. Hence, they may receive little reviewer
involvement.

Continued on next page
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Table 7.2 A taxonomy of patch metrics. Continued from previous page

Metric Conjecture Rationale
Past Involvement of an Author Dimension
Number of Prior
Patches of an
Author

The more prior patches that the author has
either written or examined, the more likely
that the patch receives reviewer involvement.

Patches written by inexperienced authors are
more likely to receive little reviewer involve-
ment, since the authors are not familiar with
the system and may not know who should be
invited to review the changes [23].

Recent Patches
of an Author

The more the recent patches of an author
are, the more likely that the patch receives
reviewer involvement.

Number of Di-
rectory Patches
of an Author

The more the directory patches of an author
are, the more likely that the patch receives
review involvement.

Past Involvement of Reviewers Dimension
Number of Prior
Patches of Re-
viewers

The more prior patches that the reviewers
have either written or examined, the more
likely that the patch receives reviewer in-
volvement.

Patches reviewed by experienced reviewers
are very likely to receive prompt initial feed-
back and long discussion, since such review-
ers have a good understanding and a strong
familiarity of the context in which a change
is being made [15,98,100,124].Recent Patches

of Reviewers
The more the recent patches of reviewers are,
the more likely that the patch receives re-
viewer involvement.

Number of Di-
rectory Patches
of Reviewers

The more the directory patches of reviewers
are, the more likely that the patch receives
reviewer involvement.

Continued on next page
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Table 7.2 A taxonomy of patch metrics. Continued from previous page
Metric Conjecture Rationale
Review Environment Dimension
Overall Work-
load

The more the overall workload of the system
is, the more likely that the patch will suffer
from poor reviewer involvement.

Reviewers can be burdened with a large
workload. Therefore, it is more likely that
patches will receive little reviewer involve-
ment if they are submitted at a time when a
system has a large review workload [13,101].

Directory Work-
load

The more the directory workload is, the more
likely that the patch will suffer from poor
reviewer involvement.
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Patch properties. The patch properties dimension measures the change and the
information of a patch. To measure the change of a patch, we adopt the change
metrics from prior work [58]. Churn measures the number of lines added to and
removed from modified files. Number of modified files and directories measure
the dispersion of a change. Change entropy measures the distribution of modified
code across each modified file. Similar to prior work [51], we measure the entropy
of a change C as described below:

H(C) = − 1
log2n

n∑
k=1

(pk × log2pk) (7.1)

where n is the number of files included in a patch, pk is the proportion of change
C that impacts file k. The larger the entropy value, the more dispersed that a
change is among files.
We also add description length and purpose metrics into this dimension to

measure the information that authors provide for the patch. The description
length measures how many words an author uses to describe a patch. The purpose
indicates the change purpose of a patch. We define the purpose category similar
to prior work [50, 80], i.e., documentation, bug fixing, and feature introduction.
We classify a patch where its description contains “doc”, “copyright”, or “license”
words as documentation, while a patch where its description contains “fix”, “bug”,
or “defect” words is classified as bug fixing. The remaining patches are classified
as feature introduction. A similar approach was used to classify patches in prior
studies [58, 61,73].
History. The history dimension measures the activity of prior patches that mod-
ified the same files as the patch under examination. Nagappan et al. report that
the time window of history metrics may have an impact on the prediction mod-
els [86] . Therefore, we select a time window based on the development activities
of the studied systems. To do so, we study the development cycle by observing
the release dates of the studied systems. 7 We find that the studied systems often

7 https://en.wikipedia.org/wiki/Android_version_history, https://en.wikipedia.

https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/List_of_Qt_releases
https://en.wikipedia.org/wiki/List_of_Qt_releases
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release a new version every six months. Hence, we measure the history metrics
using the six-month period prior to the patch’s date of submission. To measure
the history metrics for each patch, we focus our analysis on the reviewing activ-
ities of patches that (1) occurred on the same branch as the studied patch, and
(2) originated on other branches, but have been merged into the same branch as
the studied patch. The number of days since the last modification measures how
long it has been since the files that were modified in the patch were last modified.
The total number of authors counts how many people have submitted patches
that impact the same files as the patch under examination. The number of prior
defects counts the number of prior bug-fixing patches that impact the same files
as the patch under examination.
Furthermore, we adopt the hypothesis of prior work to estimate past tenden-

cies [115]. We measure the past tendency of reviewer involvement using three
metrics, i.e., the number of reviewers, discussion length, and feedback delay of
prior patches that have been applied to the same files as the files in the patch un-
der examination. The number of reviewers of prior patches measures the median
number of reviewers who have posted messages or a reviewing score in the reviews
of prior patches that impact the same files as the patch under examination. The
discussion length of prior patches measures the median number of messages that
are posted in the reviews of prior patches that impact the same files as the patch
under examination. The feedback delay of prior patches measures the median
of feedback delays that the reviews of prior patches had received. We use the
median value because we find that the distributions of the history data do not
follow normal distribution (i.e., the p-values of Shapiro-Wilk tests are lower than
0.05 for all of the studied patches).
Past involvement of an author. The past involvement of an author dimension
measures the activity in which an author has been involved before making the
patch under examination. To calculate the past involvement of an author metrics,

org/wiki/List_of_Qt_releases, https://wiki.openstack.org/wiki/Releases
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we use the same approach as the history dimension to collect the activity in which
an author has been involved. The number of prior patches of an author counts
the number of submitted or reviewed patches by the author prior to the patch
under examination. The recent patches of an author is a variant of the number
of prior patches of an author, which is weighted by the age of the prior patches.
The more recent patches are given a higher weight than the less recent ones.
Similar to prior work [58], we measure the recent patches for an author using a
calculation of RC = ∑

m∈M
Nc

m
, where Nc is the number of patches that have been

submitted or reviewed by the author in the past month m in the time window M

(i.e., six-month period). Similar to prior work [58], we also measure a higher level
of experience for an author using the number of directory patches of an author
metric. The number of directory patches of an author measures how many prior
patches modify code in the same directories as the patch under examination, and
were submitted or reviewed by the author.

Past involvement of reviewers. The past involvement of reviewers dimension
measures the activity that the patch reviewers have been involved with prior to the
patch under examination. Similar to past involvement of an author dimension, we
measure the number of prior patches, recent patches, and the number of directory
patches of reviewers metrics.

Review environment. The review environment dimension measures the code
review activity that occurred during the same period as the patch being submit-
ted. To measure review environment metrics, we use a 7-day period prior to the
time that a patch is submitted. We select the 7-days period as our time window
because we find that the time from patch submission to review completion is
shorter than 3, 4, and 11 days for 75% of the reviews in the Android, Qt, and
OpenStack systems, respectively. The overall workload metric counts how many
patches are submitted to the code review tool. The directory workload metric
counts how many prior patches modify code in the same directories as the patch
under examination.
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Figure 7.2. An overview of our model construction and analysis approaches.

7.2.3. Model Construction

We build logistic regression models to determine the likelihood of a patch suffering
from poor reviewer involvement. Logistic regression models are commonly used to
study how explanatory variables are related to a dichotomous response variable.
In our study, we use our patch and MCR process metrics as explanatory variables,
while the response variable is assigned the value of TRUE if a patch suffered from
poor reviewer involvement, and FALSE otherwise.

We adopt the model construction and analysis approaches of Harrell Jr. [48, p.
79] to allow nonlinear relationships between explanatory and response variables
to be modelled. These techniques can enable a more accurate and robust fit of
the data, while carefully considering the potential for overfitting (i.e., a model
is too specifically fit to the training dataset to be applicable to other datasets).
An overfit model will overestimate the performance of the model and exaggerate
spurious relationships between explanatory and response variables.

Figure 7.2 provides an overview of the three steps in our model construction
approach. To facilitate future research and replication study, we provide an
example R script of model construction and analysis in Appendix A. We briefly
describe each step in our approach below.
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(MC-1) Correlation & Redundancy Analysis

We remove highly correlated explanatory variables before constructing our models
to reduce the risk that those correlated variables interfere with our interpreta-
tion of the models. We measure the correlation between explanatory variables
using Spearman rank correlation tests (ρ), which are resilient to data that is not
normally distributed. We then use a variable clustering analysis approach [105]
to construct a hierarchical overview of the inter-variable correlation and select
one explanatory variable from each cluster of highly-correlated variables, i.e.,
|ρ| > 0.7 [66].

We also check for redundant variables (i.e., variables that do not offer a unique
signal with respect to the other variables). We use the redun function in the rms

R package [49] to detect redundant variables. However, we find that none of the
explanatory variables that survive our correlation analysis are redundant.

(MC-2) Nonlinear Logistic Regression Model Construction

Before constructing our models, we carefully relax the linearity of the modeled
relationship between explanatory and response variables, while being mindful of
the risk of overfitting. To do so, we only allocate additional degrees of freedom
(i.e., the number of regression parameters) to the explanatory variables that have
more potential for sharing a nonlinear relationship with the response variable. We
measure the potential for nonlinearity in the relationship between explanatory
and response variables using a calculation of the Spearman multiple ρ2. We
then allocate the degrees of freedom to explanatory variables according to their
Spearman multiple ρ2 values, i.e., variables with larger ρ2 values are allocated
more degrees of freedom. Nevertheless, we limit the maximum degrees of freedom
that we allocate to any given explanatory variable to five in order to minimize
the risk of overfitting [48, p. 23].
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After removing the highly correlated and allocating the degrees of freedom
to the surviving explanatory variables, we fit our logistic regression models to
the data. We use the restricted cubic splines of the rcs function in the rms R
package [49] to fit the allocated degrees of freedom to the explanatory variables.

7.2.4. Model Analysis

Once the logistic regression model has been constructed, we analyze the model
in order to understand the relationship between the explanatory variables (i.e.,
patch and MCR process metrics) and the response variable (i.e., whether a patch
had reviewer involvement or not). Figure 7.2 shows our three steps of model
analysis. We describe below each step of our model analysis approach.

(MA-1) Assessment of Explanatory Ability & Model Reliability

We measure how well a model can discriminate between the potential response
using the Area Under the receiver operating characteristic Curve (AUC) [47].
Furthermore, we evaluate the reliability of our models, since AUC can be too
optimistic if the model is overfit to the dataset. Similar to prior work [74], we
estimate the optimism of AUC using a bootstrap-derived approach [32]. Small
optimism values indicate that the model does not suffer from overfitting.

(MA-2) Power of Explanatory Variables Estimation

We first measure the power of the explanatory variables that contribute to the
fit of our models using Wald statistics. We use the anova function in the rms

R package [49] to estimate the explanatory power (Wald χ2) and the statistical
significance (p-value) of each explanatory variable in our models. The larger the
Wald χ2 value, the larger the explanatory power of that variable.
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Examination of Variables in Relation to the Response

To better understand the direction and shape of these relationships, we examine
the explanatory variables in relation to the odds value produced by our models.
We use the Predict function in the rms R package [49] to plot changes in the
estimated odds while varying one explanatory variable under test and holding
the other explanatory variables at their median values.

In addition, we estimate the partial effect that explanatory variables have on
the response using odds ratio [48, p. 220]. Odds ratio indicates the change to the
likelihood of a patch that will suffer from poor reviewer involvement when the
value of an explanatory variable under study increases. The larger the odds ratio
is, the larger the partial effect that the explanatory variable has on the likelihood
of a patch suffering from poor reviewer involvement. We analyze the relative
percentage that the odds has changed corresponding to the changed value of the
explanatory variable, while holding the other explanatory variables at constant
values. Using the summary function in the rms R package [49], the partial effect is
estimated based on the odds difference of the inter-quartile range for continuous
variables, and the odds difference between each category value and the mode
(i.e., the most frequently occurring category) for categorical variables. A positive
partial effect indicates an increasing relationship between the explanatory variable
and the response, while a negative partial effect indicates an inverse relationship.
The magnitude of a partial effect indicates the amount that the odds value in our
models will change according to the shifted value of the explanatory variable.

7.3. Case Study Results

In this section, we present the results of our study with respect to our research
questions. Table 7.1 provides a summary of the patch and review data that we
selected according to our data preparation approach. Table 7.3 shows distribu-
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tions of data for the patch metrics that we measure in the studied datasets. For
each research question, we discuss our: (a) model construction procedure and (b)
model analysis results.

(RQ1) Which patch characteristics share a relationship with the

likelihood of a patch not attracting reviewers?

In the Gerrit process, some patches can be merged into upstream VCS repositories
even though these patches do not have any participant apart from the patch
author. For example, in the review ID 29921 in the Qt system, no third-party
reviewers participated in the review by neither voting a score or posting a message,
although the patch author had invited a reviewer.8 Furthermore, McIntosh et al.
have found that the number of patches that do not have reviewers providing
feedback to the reviews shares a relationship with defect-proneness [73]. Hence,
to address our RQ1, we identify the patches that do not attract reviewers by
counting the number of unique reviewers who participated in a review by either
posting a message or assigning a reviewing score. We classify patches into two
categories — those that attract at least one reviewer and those that do not.

Table 7.4 provides the number of patches from our patch classification. Below,
we present and discuss the results of our model construction and analysis.

(RQ1-a) Model Construction

According to our model construction approach (cf. Figure 7.2), the response
variable is set to TRUE if a patch is not reviewed by another developer and FALSE
otherwise. We use our patch and MCR process metrics that are described in Table
7.2 as explanatory variables. However, we did not use the past involvement of
reviewers metrics, since past involvement of reviewers cannot be measured in the

8https://codereview.qt-project.org/#/c/29921/

 https://codereview.qt-project.org/#/c/29921/


7.3. Case Study Results 159

Table 7.3. Descriptive statistics of the studied patch metrics. Histograms are in
a log scale.
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Table 7.4. Patch data for the study of RQ1.

System
Patch data

Studied period
#Patches that did not

attract reviewers
(TRUE class)

#Total Patches

Android 2012/01 - 2014/12 8,356 33,969
Qt 2012/01 - 2014/12 7,234 66,128

OpenStack 2013/01 - 2014/12 8,360 95,615

patches that do not have reviewers. We then construct logistic regression models,
which we describe in detail below.

(MC-1) Correlation & Redundancy Analysis. Before constructing a model, we
remove the explanatory variables in Table 7.2 that are highly correlated with
one another based on hierarchical clustering analysis. If a cluster of explanatory
variables have a Spearman’s |ρ| > 0.7, we select one variable from the cluster. For
example, Figure 7.3 shows the hierarchical clustering of explanatory variables in
the Android dataset. There are three clusters of variables that have a Spearman’s
|ρ| > 0.7, i.e., (1) the number of files and the number of directories, (2) the
number of prior patches, recent patches, and directory patches of an author,
(3) the number of prior defects and the total number of authors, and (4) the
number of reviewers and discussion length of prior patches. For the first and
second clusters, we select the number of files and the prior patches of an author
as the representative variables because they are simpler to calculate than the
other variables in their clusters. For the third cluster, we select the number
of prior defects and remove the total number of authors since the distribution
of the number of prior defects is less skewed than the total number of authors.
For the fourth cluster, both explanatory variables (the number of reviewers and
discussion length of prior patches) are involvement tendency metrics, which are
simple to calculate. We select the number of reviewers of prior patches as the
representative variable because the number of reviewers of prior patches shares a
more intuitive link with the response (i.e., the likelihood that a patch will attract
reviewers) than the discussion length of prior patches.
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Figure 7.3. Hierarchical clustering of variables according to Spearman’s |ρ| in the
Android dataset (RQ1). The dashed line indicates the high correla-
tion threshold (i.e., Spearman’s |ρ| = 0.7).

After we remove the highly correlated explanatory variables, we repeat the
variables clustering analysis and find that the number of files and churn are also
highly correlated, i.e., Spearman’s |ρ| > 0.7. Hence, we select the churn and
remove the number of files because the distribution of churn data is less skewed
than the number of files. For the Qt and OpenStack datasets, we obtain similar
results from correlation analysis. Table 7.5 shows the results of our correlation
analysis where the variables that were removed during the analysis are marked
with a dagger symbol (†), while the variables that were removed from all three
models are not listed in the table.

For the surviving explanatory variables, we perform a redundancy analysis to
detect and remove redundant variables. We find that there are no explanatory
variables that have a fit with an R2 greater than 0.9. Hence, we use all of the
surviving explanatory variables to construct our models.

(MC-2) Nonlinear Logistic Regression Model Construction. We allocate the
budgeted degrees of freedom to the surviving explanatory variables based on
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#Reviewers of prior patches
Feedback delay of prior patches

#Days since the last modification
Description length

#Prior defects
Directory workload

#Prior patches of an author
Churn

Entropy
Overall workload

N  df

33969 2
17699 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

Spearman ρ2    Response : No Reviewers (True False)

Adjusted ρ2

Figure 7.4. Dotplot of the Spearman multiple ρ2 of each explanatory variable and
the response (the likelihood that a patch will not attract reviewers)
in the Android dataset. Larger values indicate a higher potential for
a nonlinear relationship (RQ1).

their potential for sharing a nonlinear relationship with the response variable.
For example, Figure 7.4 shows the potential for nonlinearity in the relationship
between explanatory variables and the response variable in the Android dataset.
We allocate additional degrees of freedom to the explanatory variables with a
large Spearman multiple ρ2.

By observing the rough clustering of variables according to the Spearman mul-
tiple ρ2 values, we split the explanatory variables of Figure 7.4 into three groups.
We allocate: (1) five degrees of freedom to the number of reviewers of prior
patches, (2) three degrees of freedom to feedback delay of prior patches, and (3)
one degree of freedom to the remaining variables. We repeat the same process
for the Qt and OpenStack datasets.

We then build our logistic regression models to fit our patch data using the
surviving explanatory variables with the allocated degrees of freedom. Table 7.5
shows that the number of degrees of freedom that we spent to fit our models did
not exceed the budgeted degrees of freedom.
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Table 7.5. Statistics of the logistic regression models for identifying patches that
do not attract reviewers (RQ1). The explanatory variables that con-
tribute the most significant explanatory power to a model (i.e., ac-
counting for a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.72 (0.002) 0.70 (0.001) 0.74 (0.001)

Wald χ2 2,218∗∗∗ 2,910∗∗∗ 3,804∗∗∗
Overall Nonlinear Overall Nonlinear Overall Nonlinear

Patch Properties Dimension

Churn D.F. 1 − 1 − 1 −
χ2 0%◦ 0%◦ 0%∗∗∗

Entropy D.F. 1 − 1 − 1 −
χ2 0%◦ 1%∗∗∗ 1%∗∗∗

Description length D.F. 1 − 2 1 2 1
χ2 0%∗ 15%∗∗∗ 13%∗∗∗ 5%∗∗∗ 5%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 1%∗∗∗ 1%∗∗∗ 1%∗∗∗

History Dimension

#Days since the last modification D.F. 1 − 1 − 1 −
χ2 16%∗∗∗ 30%∗∗∗ 15%∗∗∗

#Total authors D.F. † 1 − †
χ2 0%◦

#Prior defects D.F. 1 − 1 − 1 −
χ2 0%◦ 0%◦ 0%∗∗

#Reviewers of prior patches D.F. 2 1 3 2 4 3
χ2 81%∗∗∗ 26%∗∗∗ 69%∗∗∗ 42%∗∗∗ 72%∗∗∗ 32%∗∗∗

Feedback delay of prior patches D.F. 2 1 1 − 2 1
χ2 1%∗∗∗ 1%∗∗∗ 0%◦ 1%∗∗∗ 0%∗∗∗

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 1 − 1 − 1 −
χ2 0%∗∗ 0%∗∗∗ 0%∗∗

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 0%∗ 0%◦ 0%∗

Directory workload D.F. 1 − 1 − 1 −
χ2 1%∗∗∗ 0%◦ 0%∗∗∗

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p ≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001
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(RQ1-b) Model Analysis
In this section, we present and discuss the results of our model analysis approach
that is outlined in Figure 7.2 and present our empirical observations.
(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 7.5
shows that our models achieve an AUC of 0.7 to 0.74. Moreover, Table 7.5
also shows that the optimism of AUC is very small (|Optimism| = 0.002 for the
Android system and |Optimism| = 0.001 for the Qt and OpenStack systems).
These results indicate that our models are stable and can provide a meaningful
and robust amount of explanatory power.
(MA-2) Power of Explanatory Variables Estimation. Table 7.5 shows the ex-
planatory power (Wald χ2) of our explanatory variables that contribute to the fit
of our models. In the table, the Overall column shows the proportion of the Wald
χ2 of the entire model fit that is attributed to that explanatory variable, and the
Nonlinear column shows the proportion of the Wald χ2 of the entire model fit
that is attributed to the nonlinear component of that explanatory variable. The
larger the proportion of the Wald χ2 is, the larger the explanatory power that a
particular explanatory contributes explanatory power to the fit of the model.
Table 7.5 shows that the number of reviewers of prior patches and the number

of days since the last modification account for the largest proportion of Wald χ2 in
our three models. Hence, the number of reviewers of prior patches and the number
of days since the last modification contribute the most significant explanatory
power to the fit of our models. The description length also contributes a relatively
large, significant amount of explanatory power to the Qt model.
On the other hand, Table 7.5 shows that churn did not contribute a significant

amount of explanatory power to our three models. Moreover, we observe that
entropy, the number of prior defects, feedback delay of prior patches, and the
explanatory variables in the past involvement of an author and the review envi-
ronment dimensions contribute a small explanatory power, although they have a
statistically significant impact on our models.
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Table 7.5 also shows that four of the seven explanatory variables to which
we allocated nonlinear degrees of freedom provide significant boosts to the ex-
planatory power of the model. This result indicates that the nonlinear style of
modelling is improving the fit of our models, providing a more in-depth picture
of the relationship between explanatory variables and the response.

(MA-3) Examination of Variables in Relation to Response. To study the re-
lationship between the explanatory variables and the response, we plot the odds
produced by our models against an explanatory variable while holding the other
explanatory variables at their median values. For example, Figure 7.5 shows the
nonlinear relationship between the explanatory variables and the response with
the 95% confidence interval (gray area) based on models fit to 1,000 bootstrap
samples.

To estimate the partial effect that the explanatory variables have on the like-
lihood that a patch will not attract reviewers, we analyze the relative change in
the odds corresponding to a shift in the value of each explanatory variable. Table
7.6 shows the estimated partial effect of each explanatory variable in our models.
The Odds Ratio column shows the partial effect based on the shifted value shown
in the Observed Value column. For continuous variables, the observed value is
an inter-quartile range of those explanatory variables. For categorical variables,
the observed value is a comparison between the observed category and the mode
(i.e., the most frequently occurring category).

Below, we present and discuss our empirical observations from the examination
of these explanatory variables in relation to the response.

Observation 25 – The number of reviewers of prior patches shares an increas-
ing relationship with the likelihood that a patch will attract reviewer. Table
7.5 shows that there is a nonlinear relationship between the number of reviewers
of prior patches and the likelihood that a patch will not attract reviewers. For
example, Figure 7.5(a) shows that the likelihood that an Android patch will not
attract a reviewer decreases rapidly as the number of reviewers of prior patches
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increases from 0 to 1. We observe similar trends in the Qt and OpenStack mod-
els. Furthermore, Table 7.6 shows that the likelihood can decrease by 89%, 14%,
and 40% when the number of reviewers of prior patches increases from 0 to 1, 1
to 2, and 2 to 4 in the Android, Qt, OpenStack models, respectively. Broadly
speaking, our models show that patches are more likely to attract reviewers if
past changes to the modified files have a tendency to be reviewed by at least
two reviewers. These results indicate that patches that modify files whose prior
patches have had few reviewers tend to not attract reviewers.

Observation 26 – The number of days since the last modification shares an
increasing relationship with the likelihood that a patch will attract reviewers.
Table 7.6 also shows that the number of days since the last modification consis-
tently shares a strong inverse relationship with the likelihood that a patch will
not attract reviewers in the three models for the studied systems. The likelihood
decreases by 50%, 45%, and 19% when the number of days since the last modi-
fication is changed from 1 to 109, 1 to 49, and 1 to 23 in the Android, Qt, and
OpenStack models, respectively. This result indicates that a patch containing
files that have been recently modified is not likely to attract reviewers.

Observation 27 – Description length shares an increasing relationship with
the likelihood that a patch will attract reviewers. Figure 7.5(b) shows that there
is a decreasing trend in the likelihood that a Qt patch will not attract reviewers
as the description length increases. On the other hand, there is an increasing
trend in the likelihood as the description length increases beyond 50. However,
the broadening of the confidence interval (gray area) indicates that there is less
data to support this area of the curve. Table 7.6 also shows that the description
length shares a relatively strong relationship with the likelihood in the Qt and
OpenStack models. When the description length is greater than 10 words, the
likelihood decreases by 3%, 57%, and 41% in the Android, Qt, and OpenStack
models, respectively. This result indicates that a patch with a short description
is unlikely to attract reviewers.
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Figure 7.5. The nonlinear relationship between the likelihood that a patch will not attract reviewers (y-axis) and
the explanatory variables (x-axis). The larger the odds value is, the higher the likelihood that the
patch will not attract reviewers. The gray area shows the 95% confidence interval estimated by using
a bootstrap-derived approach.
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Table 7.6. Partial effect that our explanatory variables have on the likelihood that a patch will not attract reviewers
(RQ1). The larger the magnitude of the odds ratio is, the larger the partial effect that an explanatory
variable has on the likelihood that a patch will not attract reviewers.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 0% 4→63 0% 5→90 0%

Description length 11→45 -3%↓ 10→36 -57%↓ 13→47 -41%↓
Entropy 1→1 0% 1→1 -11%↓ 1→1 -11%↓

Purpose Feature→BUG-FIX -10%↓ Feature→BUG-FIX 0% Feature→BUG-FIX -23%↓
Feature→Document -37%↓ Feature→Document -30%↓ Feature→Document -25%↓

History Dimension
#Days since the last modification 1→109 -50%↓ 1→49 -45%↓ 1→23 -19%↓

#Total authors − 0→4 2%↑ −
#Prior defects 0→4 -1%↓ 0→4 0% 0→10 2%↑

#Reviewers of prior patches 0→1 -89%↓ 1→2 -14%↓ 2→4 -40%↓
Feedback delay of prior patches 0→3 9%↑ 0→8 0% 1→6 16%↑
Past Involvement of an Author Dimension

#Prior patches of an author 3→105 -4%↓ 13→168 -6%↓ 4→114 4%↑
Review Environment Dimension

Overall workload 221→477 9%↑ 511→674 -5%↓ 1220→1626 -6%↓
Directory workload 1→10 3%↑ 1→12 1%↑ 2→33 2%↑
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Table 7.7. Patch data for the study of RQ2.

System
Patch data

Studied period #Patches that are not discussed
(TRUE class)

#Patches with
reviewers

Android 2012/01 - 2014/12 12,262 25,613
Qt 2012/01 - 2014/12 29,771 58,894

OpenStack 2013/01 - 2014/12 21,855 87,255

Summary: The number of reviewers of prior patches and the number of days
since the last modification share a strong increasing relationship with the likeli-
hood that a patch will have at least one reviewers. Furthermore, a short patch
description can also lower the likelihood of attracting reviewers (Observations
25-27).

(RQ2) Which patch characteristics share a relationship with the

likelihood of a patch not being discussed?

A review that simply assigns a review score without any suggestion for improve-
ment nor discussion provides little return on code review investment. Hence,
to address our RQ2, we perform our analysis on patches that have reviewers but
were not discussed. We filter the patches that did not attract any reviewers, since
such patches cannot receive any feedback. We then identify the patches that are
not discussed by counting the number of messages that are posted in the review
discussion thread of each patch. We classify the patches that had no messages as
patches that are not discussed. Patches that had at least one message are defined
as patches that are discussed.

Table 7.7 provides an overview of the studied patch data after we remove
patches that did not attract reviewers. Below, we present and discuss the results
of our model construction and analysis.
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(RQ2-a) Model Construction

Similar to RQ1, the response variable is set to TRUE if a patch is not discussed
and FALSE otherwise. We then use all of our patch and MCR process metrics
that are described in Table 7.2 to construct logistic regression models for each
studied system.

(MC-1) Correlation & Redundancy Analysis. Since we filtered out patches that
did not attract any reviewers and we added the past involvement of reviewers
metrics into the models, we have to perform correlation & redundancy analysis
for the studied patch data again. Figure 7.6 shows that there are four clusters
of variables that have a Spearman’s |ρ| > 0.7: (1) the variables in the past
involvement of an author dimension, (2) the number of files and directories, (3)
the number of prior patches of reviewers and the number of recent patches of
reviewers, (4) the number of prior defects and the number of total authors, and
(5) the number of reviewers and the discussion length of prior patches. For
the first three clusters, we select the number of prior patches of an author, the
number of files, and the number of prior patches of reviewers as the representative
variables because they are simpler to calculate than the other variables. For the
forth cluster, we select the number of prior defects as the representative variable
since the distribution of the number of prior defects is less skewed than the
total number of authors. For the fifth cluster, we select the discussion length of
prior patches because it shares a more intuitive link with the response (i.e., the
likelihood that a patch will not be discussed) than the number of reviewers of
prior patches. For the Qt and OpenStack datasets, Table 7.8 shows the results
of our correlation analysis.

(MC-2) Nonlinear Logistic Regression Model Construction. Figure 7.7 shows
the estimated potential for nonlinear relationships between each explanatory vari-
able and the likelihood that a patch will not be discussed in the Android dataset.
We split the explanatory variables for the Android dataset into three groups: (1)
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Figure 7.6. Hierarchical clustering of variables according to Spearman’s |ρ| in the
Android dataset (RQ2). The dashed line indicates the high correla-
tion threshold (i.e., Spearman’s |ρ| = 0.7).

the description length (2) churn, the number of prior defects, discussion length
of prior patches, the number of prior patches of an author and the number of
prior patches of reviewers, and (3) the remaining explanatory variables. We then
allocate five degrees of freedom to the first group, three degrees of freedom to the
second group, and one degree of freedom to the third group. We repeat the same
process for the Qt and OpenStack datasets.

(RQ2-b) Model Analysis

In this section, we present the results of our model analysis approach that is
outlined in Figure 7.2 and present our empirical observations.

(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 7.8
shows that our models achieve an AUC of 0.70 to 0.78 and the optimism of AUC
is very small for all of our studied datasets. These results indicate that our models
can provide a meaningful and robust amount of explanatory power.

(MA-2) Power of Explanatory Variables Estimation. Table 7.8 shows the pro-
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Table 7.8. Statistics of the logistic regression models for identifying patches that
are not discussed (RQ2). The explanatory variables that contribute
the most significant explanatory power to a model (i.e., accounting for
a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.70 (0.002) 0.72 (0.001) 0.78 (0.001)

Wald χ2 1,312∗∗∗ 3,681∗∗∗ 5,882∗∗∗
Overall Nonlinear Overall Nonlinear Overall Nonlinear

Patch Properties Dimension

Churn D.F. 2 1 2 1 2 1
χ2 12%∗∗∗ 12%∗∗∗ 19%∗∗∗ 19%∗∗∗ 8%∗∗∗ 8%∗∗∗

Entropy D.F. 1 − 2 1 1 −
χ2 0%◦ 2%∗∗∗ 2%∗∗∗ 0%∗∗∗

Description length D.F. 4 3 2 1 4 3
χ2 18%∗∗∗ 7%∗∗∗ 5%∗∗∗ 1%∗∗∗ 17%∗∗∗ 4%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 0%◦ 1%∗∗∗ 0%∗

History Dimension

#Days since the last modification D.F. 1 − 1 − 1 −
χ2 2%∗∗∗ 1%∗∗∗ 3%∗∗∗

#Prior defects D.F. 2 1 1 − 2 1
χ2 8%∗∗∗ 2%∗∗∗ 1%∗∗∗ 3%∗∗∗ 2%∗∗∗

Discussion length of prior patches D.F. 2 1 2 1 2 1
χ2 14%∗∗∗ 12%∗∗∗ 23%∗∗∗ 21%∗∗∗ 27%∗∗∗ 17%∗∗∗

Feedback delay of prior patches D.F. 1 − 1 − 1 −
χ2 1%∗∗ 0%◦ 0%◦

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 1 − 2 1 1 −
χ2 30%∗∗∗ 25%∗∗∗ 4%∗∗∗ 7%∗∗∗

Past Involvement of Reviewers Dimension

#Prior patches of reviewers D.F. 1 − 1 − 2 1
χ2 10%∗∗∗ 14%∗∗∗ 5%∗∗∗ 0%◦

#Directory patches of reviewers D.F. † 1 − 2 1
χ2 1%∗∗∗ 2%∗∗∗ 1%∗∗∗

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 0%∗ 0%∗∗∗ 0%∗∗∗

Directory workload D.F. 1 − 1 − 1 −
χ2 0%◦ 1%∗∗∗ 1%∗∗∗

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated;
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p ≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001
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Figure 7.7. Dotplot of the Spearman multiple ρ2 of each explanatory variable
and the response (the likelihood that a patch will not be discussed)
in the Android dataset. Larger values indicate a higher potential for
a nonlinear relationship (RQ2).

portion of Wald χ2 of the explanatory variables that contribute to the fit of our
models. We find that the discussion length of prior patches has a large proportion
of Wald χ2 in our three models. The churn, the description length, the number
of prior patches of an author and reviewers also account for a large proportion of
the explanatory power in two of the three models.

Table 7.8 shows that entropy, feedback delay of prior patches, the number of
prior patches within the same directory that the reviewer has reviewed, and the
explanatory variables in the review environment dimension did not contribute
a significant amount of explanatory, although they survive our correlation and
redundancy analysis. These results indicate that these explanatory variables
in our models share a weaker relationship with the likelihood of a patch being
discussed than other metrics.

Table 7.8 also shows that five of the fifteen explanatory variables to which
we allocated nonlinear degrees of freedom provide significant boosts to the ex-
planatory power of the model. This result indicates that the nonlinear style of
modelling can improve the fit of our models. However, we find that the nonlinear
degrees of freedom that we allocate to the number of prior patches of review-
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ers does not provide a significant amount of explanatory power to the OpenStack
model, suggesting that not all relationships with potential for nonlinearity benefit
from nonlinear fits.

(MA-3) Examination of Variables in Relation to Response. Figure 7.8 shows the
nonlinear relationships of the high impact explanatory variables and the response.
Table 7.9 shows the estimated partial effect of that each explanatory variable has
on the likelihood that a patch will not be discussed. Below, we present and discuss
our empirical observations from the examination of these explanatory variables
in relation to the response.

Observation 28 – Churn shares an increasing relationship with the likelihood
that a patch will be discussed. We observe that churn shares a strong relationship
with the likelihood that a patch will not be discussed in our three models. Table
7.9 shows that the likelihood decreases by 30%, 46%, and 40% in the Android, Qt,
OpenStack models, respectively. Figure 7.8(a) shows that there is a decreasing
trend of the odds in the Qt model when the churn increases from 1 to 150 LOC.
Then, the odds stabilizes when the churn increases to more than 150 LOC. We
also observe similar trend of the odds produced by the Android model. The odds
decrease when the churn increases from 1 to 300 LOC, then the odds stabilize
when the churn increases to more than 300 LOC. This result indicates that the
more lines that were changed in the patch, the more likely the patch will be
discussed.

Observation 29 – The description length shares an increasing relationship
with the likelihood that a patch will be discussed. Table 7.9 shows that the
description length consistently shares an inverse relationship with the likelihood
that a patch will not be discussed in our three studied systems. The likelihood
decreases by 43%, 24%, and 43% when the description length is greater than
11 words. Our results suggest that the longer the description that an author
provides, the higher the likelihood of the patch being discussed.
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Figure 7.8. The nonlinear relationship between the likelihood that a patch will not be discussed (y-axis) and the
explanatory variables (x-axis). The larger the odds value is, the higher the likelihood that the patch
will not be not discussed. The gray area shows the 95% confidence interval estimated by using a
bootstrap-derived approach.
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Table 7.9. Partial effect that our explanatory variables have on the likelihood that a patch will not be discussed
(RQ2). The larger the magnitude of the odds ratio is, the larger the partial effect that an explanatory
variable has on the likelihood that a patch will not be discussed.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 -30%↓ 4→60 -46%↓ 5→91 -40%↓

Description length 11→46 -43%↓ 11→38 -24%↓ 15→48 -43%↓
Entropy 1→1 -3%↓ 1→1 6%↑ 1→1 7%↑

Purpose Feature→BUG-FIX -1%↓ Feature→BUG-FIX -19%↓ Feature→BUG-FIX -7%↓
Feature→Document 7%↑ Feature→Document -11%↓ Feature→Document -9%↓

History Dimension
#Days since the last modification 2→92 -16%↓ 1→52 -7%↓ 1→22 -8%↓

#Prior defects 0→5 -27%↓ 0→4 -3%↓ 1→11 -34%↓
Discussion length of prior patches 0→2 -45%↓ 0→2 -58%↓ 1→6 -67%↓
Feedback delay of prior patches 0→4 0% 0→8 0% 1→6 0%
Past Involvement of an Author Dimension

#Prior patches of an author 3→111 41%↑ 12→167 104%↑ 4→114 21%↑
Past Involvement of Reviewers Dimension

#Prior patches of reviewers 11→207 -26%↓ 31→278 -32%↓ 56→532 -37%↓
#Directory patches of reviewers − 3→107 4%↑ 16→183 -18%↓
Review Environment Dimension

Overall workload 221→476 -7%↓ 507→673 -6%↓ 1225→1626 10%↑
Directory workload 1→10 0% 1→12 6%↑ 2→31 -3%↓
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Observation 30 – The discussion length of prior patches shares an increasing
relationship with the likelihood that a patch will be discussed. Figure 7.8(b)
shows that the odds, produced by the OpenStack model, sharply decrease when
the discussion length of prior patches increases from 0 to 10 messages. We observe
similar trends of the odds in the Android and Qt models. Table 7.9 shows that the
likelihood decreases by 45%, 58%, and 67% when the discussion length increases
beyond 2 messages in the Android, Qt, OpenStack models, respectively. These
results indicate that patches that modify files whose prior patches typically had
short review discussions is not likely to be discussed.

Observation 31 – The number of prior patches of an author shares an in-
verse relationship with the likelihood that a patch will be discussed, while the
number of prior patches of reviewers shares an increasing relationship with the
likelihood. Table 7.9 shows that the likelihood increases by 41%, 104%, and 21%
when the number of prior patches of an author is greater than 3, 12, and 4 in
the Android, Qt, OpenStack models, respectively. Furthermore, Table 7.9 shows
that the number of prior patches of reviewers shares an inverse relationship with
the likelihood that a patch will not be discussed. The likelihood can decrease by
26%, 32%, and 37% in the Android, Qt, and OpenStack models, respectively. Our
results indicate that a patch written by an experienced developer or examined by
an inexperienced reviewer is not likely to be discussed.

Summary: Churn, the description length, and the discussion length of prior
patches share an increasing relationship with the likelihood that a patch will be
discussed. Moreover, the past involvement of an author shares an inverse rela-
tionship, while the past involvement of reviewers shares an increasing relationship
with the likelihood that a patch will be discussed (Observations 28-31).
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Figure 7.9. An example of a calculation for feedback delay.

Table 7.10. Descriptive statistics of feedback delay (hours).
System Min 1st Qu. Median Mean 3rd Qu. Max
Android 0.00 0.19 1.20 106.50 11.78 16,470.00

Qt 0.00 0.28 1.49 70.75 15.70 20,260.00
OpenStack 0.00 0.27 2.17 31.82 15.17 7,031.00

(RQ3) Which patch characteristics share a relationship with the

likelihood of a patch receiving slow initial feedback?

To address our RQ3, we identify patches that receive slow initial feedback by
measuring feedback delay, i.e., a time period between the submission time of
the latest patch revision before the first review message is posted and the time
that the first review message is posted. Figure 7.9 provides an example of a
calculation for feedback delay. We did not use the time that the original patch
is submitted because there are likely cases that reviewers are still waiting for
the author to complete preliminary revisions, which would incorrectly inflate the
feedback delay.

To follow our model construction approach, we classify the patches into two
groups, i.e., patches that receive prompt initial feedback and patches that receive
slow initial feedback. From the descriptive statistics of feedback delay (see Table
7.10), we classify the patches that have a feedback delay of more than 12 hours
as patches that receive slow initial feedback. Patches that receive initial feedback
within 12 hours are defined as patches that receive prompt initial feedback.
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Table 7.11. Patch data for the study of RQ3.

System
Patch data

Studied period
#Patches that received
slow initial feedback

(TRUE class)

#Patches with reviewers &
submitted in workdays

Android 2012/01 - 2014/12 5,759 23,287
Qt 2012/01 - 2014/12 15,900 54,783

OpenStack 2013/01 - 2014/12 22,302 79,431

Similar to RQ2, we want to investigate the characteristics of patches that re-
ceive slow initial feedback although these patches eventually have reviewers pro-
viding feedback. Hence, we filter out patches that did not attract any reviewers,
since such patches do not receive any feedback. Moreover, we filter out patches
that are submitted on weekends, since our prior study finds that code review
activity is often less active on weekend than on weekdays [125]. Hence, such
patches have a lower chance to receive initial feedback within 24 hours. Since
our studied systems have globally-distributed development teams, the timezone
difference could make it difficult to detect weekends consistently. To identify
weekends, we observe the number of code review activity (i.e., a patch submis-
sion, posting a review message, or voting a review score). For example, Figure
7.10 shows the hourly code review activity of the Qt system, where the periods
with small amounts of code review activity are indicated using dark shading. We
mark the areas with small amounts of code review activity as weekends for the Qt
system, and we remove the patches that are submitted in these periods from our
analysis. We repeat the same process for the Android and OpenStack systems.

Table 7.11 provides an overview of the studied patch data after we remove
patches that did not attract reviewers and that are submitted during weekends.
Below, we present and discuss the results of our model construction and analysis.
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Figure 7.10. The hourly code review activity of the Qt system. The dark areas
indicate the periods that are likely to be weekends.

(RQ3-b) Model Construction

Again, we use our patch and MCR process metrics that are described in Table
7.2 as explanatory variables. The response is set to TRUE if a patch receives slow
initial feedback, and FALSE otherwise. We then construct a logistic regression
model, which we describe in detail below.

(MC-1) Correlation & Redundancy Analysis. We check for highly correlated
and redundant variables again, since we filter out patches that did not attract
any reviewers, and were submitted on weekends. We find that the hierarchical
clustering analysis shows the same results as the analysis in RQ2. Hence, we use
the same set of surviving variables. Table 7.12 shows the results of our correlation
analysis.

(MC-2) Nonlinear Logistic Regression Model Construction. Again, we allocate
additional degrees of freedom to the surviving explanatory variables based on their
potential for sharing a nonlinear relationship with the response. By observing the
Spearman multiple ρ2 values in Figure 7.11, we split the explanatory variables
into two groups: (1) the feedback delay of prior patches and the number of prior
patches of an author, and (2) the remaining explanatory variables. We then
allocate five and one degree of freedom to each group respectively. We repeat the
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Figure 7.11. Dotplot of the Spearman multiple ρ2 of each explanatory variable
and the response (the likelihood that a patch will receive slow initial
feedback) in the Android model. Larger values indicate a higher
potential for a nonlinear relationship (RQ3).

same process for Qt and OpenStack datasets. Table 7.12 shows the number of
degrees of freedom that we spent to build our logistic regression models.

(RQ3-c) Model Analysis

In this section, we describe the results of our model analysis approach that is
outlined in Figure 7.2 and present our empirical observations.
(MA-1) Assessment of Explanatory Ability & Model Reliability. Table 7.12
shows that our models achieve an AUC of 0.61 to 0.66 and the optimism of
0.001 (OpenStack)-0.004 (Android). These results indicate that our models can
determine the likelihood that a patch will receive slow initial feedback and provide
a meaningful and robust amount of explanatory power.
(MA-2) Power of Explanatory Variables Estimation. We find that the feedback
delay of prior patches contribute a significant amount of explanatory power to
the fit of our models. Table 7.12 shows that feedback delay of prior patches
accounts for a large proportion of the explanatory power in our three models.
Furthermore, we observe that churn also accounts for a large proportion of the
explanatory power of the OpenStack model, while the number of prior patches of
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Table 7.12. Statistics of the logistic regression models for identifying patches re-
ceiving slow initial feedback (RQ3). The explanatory variables that
contribute the most significant explanatory power to a model (i.e.,
accounting for a large proportion of Wald χ2) are shown in boldface.

Android Qt OpenStack
AUC (|Optimism|) 0.66 (0.004) 0.61 (0.002) 0.61 (0.001)

Wald χ2 722∗∗∗ 940∗∗∗ 1,380∗∗∗
Overall Nonlinear Overall Nonlinear Overall Nonlinear

Patch Properties Dimension

Churn D.F. 1 − 2 1 2 1
χ2 0%◦ 6%∗∗∗ 6%∗∗∗ 15%∗∗∗ 15%∗∗∗

Entropy D.F. 1 − 2 1 1 −
χ2 2%∗∗∗ 7%∗∗∗ 4%∗∗∗ 1%∗∗

Description length D.F. 1 − 1 − 1 −
χ2 8%∗∗∗ 0%◦ 1%∗∗∗

Purpose D.F. 2 − 2 − 2 −
χ2 8%∗∗∗ 4%∗∗∗ 12%∗∗∗

History Dimension

#Days since the last modification D.F. 2 1 1 − 1 −
χ2 7%∗∗∗ 1%∗ 4%∗∗∗ 13%∗∗∗

#Prior defects D.F. 1 − 1 − 1 −
χ2 1%◦ 0%◦ 1%∗∗∗

Discussion length of prior patches D.F. 1 − 1 − 1 −
χ2 1%∗∗ 1%∗ 0%◦

Feedback delay of prior patches D.F. 2 1 2 1 2 1
χ2 33%∗∗∗ 27%∗∗∗ 51%∗∗∗ 51%∗∗∗ 61%∗∗∗ 54%∗∗∗

Past Involvement of an Author Dimension

#Prior patches of an author D.F. 4 3 1 − 1 −
χ2 18%∗∗∗ 7%∗∗∗ 5%∗∗∗ 0%∗

Past Involvement of Reviewers Dimension

#Prior patches of reviewers D.F. 1 − 1 − 1 −
χ2 0%◦ 6%∗∗∗ 0%◦

#Directory patches of reviewers D.F. † 1 − 1 −
χ2 0%◦ 3%∗∗∗

Review Environment Dimension

Overall workload D.F. 1 − 1 − 1 −
χ2 2%∗∗∗ 5%∗∗∗ 0%◦

Directory workload D.F. 1 − 1 − 1 −
χ2 0%◦ 5%∗∗∗ 0%◦

†: This explanatory variable is discarded during variable clustering analysis |ρ| ≥ 0.7
−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test:

◦p ≥ 0.05; * p < 0.05; ** p < 1%; *** p < 0.001
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an author accounts for a large proportion of the explanatory power of the Android
model.

Table 7.12 shows that the explanatory power of the variables in the past in-
volvement of reviewers dimension account for a relatively small proportion of the
explanatory power. This result suggests that when considering the initial feed-
back delay, the experience of reviewers is not as important as the other studied
dimensions.

(MA-3) Examination of Variables in Relation to Response. Figure 7.12 shows
the shape of the nonlinear relationship between the likelihood that a patch will
receive slow initial feedback and two of the most impactful explanatory variables.
Table 7.13 shows the estimated partial effect that each explanatory variable has
on the likelihood of receiving slow initial feedback. Below, we present our ob-
servations from the examination of these explanatory variables in relation to the
response variable.

Observation 32 – The feedback delay of prior patches has an increasing re-
lationship with the likelihood that a patch will receive slow initial feedback.
Figure 7.12(a) shows that the shape of the relationship between the likelihood
and the feedback delay of prior patches in the Qt model. The plot shows a steeply
increasing trend in the likelihood where the feedback delay of prior patches reaches
to 25 hours. We observe the similar trends in the Android and OpenStack models.
Table 7.13 also shows that feedback delay of prior patches shares a strong rela-
tionship with the likelihood. When the feedback delay of prior patches is greater
than one hour, the likelihood increases by 35%, 69%, and 76% in the Android,
Qt, and OpenStack models, respectively. These results indicate that patch that
modify files whose prior patches had received slow initial feedback tend to also
receive slow initial feedback.

Observation 33 – The purpose of introducing a new feature shares an in-
creasing relationship with the likelihood that a patch will receive slow initial
feedback. Table 7.13 shows that a patch will have a lower likelihood of receiving
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Figure 7.12. The nonlinear relationship between the likelihood that a patch will receive slow initial feedback (y-
axis) and the explanatory variables (x-axis). The larger the odds value is, the higher the likelihood
that the patch will receive slow initial feedback. The gray area shows the 95% confidence interval
estimated by using a bootstrap-derived approach.



7.3.
C
ase

Study
R
esults

185

Table 7.13. Partial effect that our explanatory variables have on the likelihood that a patch will receive slow initial
feedback (RQ3). The larger the magnitude of the odds ratio is, the larger the partial effect that an
explanatory variable has on the likelihood that a patch will receive slow initial feedback.

Android Qt OpenStack
Shifted Value Odds Ratio Shifted Value Odds Ratio Shifted Value Odds Ratio

Patch Properties Dimension
Churn 5→96 0% 4→59 19%↑ 5→90 33%↑
Entropy 1→1 -9%↓ 1→1 -12%↓ 1→1 4%↑

Description length 11→46 12%↑ 11→37 2%↑ 15→48 4%↑

Purpose Feature→BUG-FIX -29%↓ Feature→BUG-FIX -16%↓ Feature→BUG-FIX -25%↓
Feature→Document -40%↓ Feature→Document -12%↓ Feature→Document -22%↓

History Dimension
#Days since the last modification 2→93 12%↑ 1→51 8%↑ 1→22 7%↑

#Prior defects 0→5 8%↑ 0→4 0% 1→11 2%↑
Discussion length of prior patches 0→2 -3%↓ 0→2 -1%↓ 1→6 0%
Feedback delay of prior patches 0→4 35%↑ 0→8 69%↑ 1→6 76%↑
Past Involvement of an Author Dimension

#Prior patches of an author 3→109 -42%↓ 12→170 9%↑ 4→111 -2%↓
Past Involvement of Reviewers Dimension

#Prior patches of reviewers 11→208 -2%↓ 32→275 -11%↓ 56→527 1%↑
#Directory patches of reviewers 3→106 0% 15→183 -4%↓
Review Environment Dimension

Overall workload 221→476 -12%↓ 507→674 -11%↓ 1229→1626 0%
Directory workload 0→10 -1%↓ 1→12 -6%↓ 2→31 0%
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slow initial feedback when its purpose is changed from feature introduction to
other purposes. The likelihood decreases by 16% to 29% when the purpose of the
patch is changed from feature introduction to bug fixing, and 12% to 40% when
the purpose is changed to documentation. This result indicates that a patch that
introduces new functionality is more likely to receive slow initial feedback than
patches for other purposes.

In addition to the observations that we have made earlier, we also observe sev-
eral interesting relationships between characteristics of patches and the likelihood
that a patch will receive slow initial feedback. Yet, these relationships were not
consistent across our studied systems. We discuss the additional findings below.

Figure 7.12(b) shows that churn shares an increasing relationship with the
likelihood that a patch will receive slow initial feedback. The odds, produced by
the OpenStack model, increases when churn increases from 1 to 150 LOC. Table
7.13 shows that when the churn increases greater than 5 LOC, the likelihood
increases by 33% in the OpenStack models. However, Table 7.12 shows that churn
did not contribute a significant amount of explanatory power to the Android
and Qt models. Moreover, Table 7.13 shows that the partial effect of churn
having on the likelihood in the Android model is 0%. To better understand
this relationship, we further investigate with a one-tailed Mann-Whitney U test
(α = 0.05) comparing the churn of patches that receive slow initial feedback
and those that receive prompt feedback in the Android dataset. We find that
the churn of patches that receive slow initial feedback is statistically larger than
churn of patches that receive slow initial feedback, indicating that a patch with
large churn tends to receive slow initial feedback (p-value < 0.001). Our results
suggest that when we control for several confounding factors using prediction
model, the churn did not share a strong relationship with the likelihood.

On the other hand, we find that the number of prior patches of an author shares
a strong relationship with the speed of initial feedback in the Android model.
Table 7.12 shows that the number of prior patches of an author contributes a
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large amount of explanatory power, and its nonlinear relationship can boost to
the explanatory power of the Android model. Table 7.13 shows that the likelihood
decreases by 42% when the number of prior patches of an author increases from
3 to 109. We observe a similar relationship in the OpenStack dataset, i.e., the
likelihood decrease by 4% when the number of prior patches of an author increases
from 4 to 111. However, Table 7.13 shows that the likelihood increases when the
number of prior patches of an author in the Qt dataset increases. One possible
reason for the reverse effect of the number of prior patches of an author in the Qt
dataset is the low number of developers in the sub-projects. This is especially true
for the qt3d sub-project. We find that 52% of the Qt patches that are submitted
to the qt3d sub-project received slow initial feedback (609/1,166). However,
there are only 24 developers who author these patches. Hence, many of the qt3d

patches have a large number of prior patches of an author while they received
slow initial feedback.

Summary: The feedback delay of prior patches shares a strong relationship with
the likelihood that a patch will receive slow initial feedback. Furthermore, the
purpose of introducing new features can also increase the likelihood (Observations
32-33).

7.4. Discussion

In this section, we provide a broader discussion of our empirical observations. The
observations are grouped into three main groups, which are the (1) past reviewer
involvement, (2) past activities of practitioners, and (3) patch properties.

7.4.1. Past Reviewer involvement

The number of reviewers of prior patches. As we conjecture (see Table 7.2),
observation 25 shows that the number of reviewers of prior patches share an in-
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creasing relationship the likelihood of having at least one reviewer. We suspect
that files have had few reviewers of prior patches in part due to a limited number
of developers who are interested or working on related subsystems. Prior work
reports that developers usually select patches that are within their area of in-
terest [101]. For example, we find that 42% of the patches in the less popular
subsystems (i.e., having fewer than 10 contributing developers) of Android con-
tain files where their prior patches do not attract any reviewers. We also observe a
similar proportion of 45% and 53% in the small subsystems of Qt and OpenStack.
On the other hand, the subsystems that have a large number of developers (11
to 590 contributing developers) have only 8%, 3%, and 6% of patches containing
files where their prior patches did not attract any reviewers in the Android, Qt,
and OpenStack systems, respectively.

Moreover, our results indicate that patches are more likely to have at least one
reviewer if past changes to the modified files have a tendency to be reviewed by at
least two reviewers. This finding complements those of Rigby and Bird who report
that two reviewers find an optimal number of defects in MCR processes [97].

Discussion length of prior patches. Observation 30 arrives at our conjecture
where the discussion length shares an increasing relationship with the likelihood
that a patch will be discussed. In other words, files that had little review discus-
sion in the past will have little discussion in the future. Similar to prior studies,
the discussion length is a strong indicator for the review quality. For example,
Kononenko et al. report that the number of reviewer comments posted shares a
significant link to the defect-proneness of that patch [65]. Our prior work also
shows that files without post-release defects also undergo many reviews with long
discussions [121]. In addition, this observation also complements the study of
Bird et al. who find that the social status that is derived from the social network
of the communication & co-ordination activities shares a strong relationship with
the number of messages replied in the email-based discussions [20].
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During the correlation analysis, we find that the number of reviewers of prior
patches and the discussion length of prior patches are highly correlated with each
other. Hence, we experimented by swapping these variables in order validate our
observations 25 and 30. We find that the number of reviewers of prior patches and
the discussion length of prior patches share a similar relationship with the likeli-
hood of receiving such poor reviewer involvement. Therefore, for observation 25,
we can conclude that patches that modify files whose prior patches had received
either few reviewers or short discussion tend to have no reviewers. For observation
30, we can conclude that patches that modify files whose prior patches had re-
ceived either few reviewers or short discussion tend not to be discussed although
there is at least one reviewer participated in. These findings suggest that the
poor reviewer involvement in the past (either few reviewers or short discussion)
can lead to the poor reviewer involvement in the future.

Feedback delay of prior patches. Observation 32 shows that the feedback delay
of prior patches shares an increasing relationship with the likelihood that a patch
that will receive slow initial feedback. Prior work shows that reviews often receive
prompt initial feedback. Otherwise, patches tend to be ignored if they have not
receive initial feedback for a long period of time [100].

Our observations 25, 30, and 32 have shown that the past reviewer involvement
shares a link to poor reviewer involvement of a patch. In several studies, this
notion of past-is-a-good-predictor drives the analytics research worldwide. For
example, Graves et al. find that the number of past faults can be used as an
indicator of future defects in a module [41]. Kim et al. have shown that the
recently changed files are more likely to be changed to fix bugs in the future [62].
Tantithamthavorn et al. find that bug reporters who have mislabelled bug issue
reports in the past tend to mislabel bug issue reports in the future [115]. da
Costa et al. also use the delay of previously addressed issues to predict the delay
of the future issues [30]. Furthermore, our prior study has found that practitioners
tend to overlook the history of files, i.e., reviewers did not give much attention to



190
Chapter 7. Identifying Characteristics of Patches with Poor Reviewer

Involvement

patches made to files that have been historically defective [121]. Therefore, our
findings of past reviewer involvement metrics suggest that practitioners should
take the history of files into consideration in order to break the cycle of poor
reviewer involvement.

7.4.2. Past Activity

Past Involvement of an author and reviewers. Observation 31 shows that the
past involvement of an author shares an inverse relationship with the likelihood
that a patch will be discussed, while the past involvement of reviewers shares an
increasing relationship with the likelihood that a patch will be discussed. The
relationship of the past involvement of reviewers arrives at our conjecture. How-
ever, the relationship of the past involvement of authors is counter our conjecture.
A potential reason is that the experience developers are less likely to submit de-
fective patches as those developers have written many patches to those files [21].

Rigby et al. report that the past involvement of author and reviewers have a
small effect on the amount of discussion in the email-based code reviews [99]. Yet,
their study did not consider the patches that have no review discussion. Hence,
this observation can complement the prior study by showing that the past involve-
ment of an author and reviewers shares a link to the likelihood that a patch that
will be discussed. Moreover, Kononenko et al. report that reviewer experience is
a good indicator of whether the patch will be effectively reviewed [65].

Furthermore, the past involvement of reviewers has been recently used to sug-
gest reviewers for a new patch in several studies [9,124,135], and also in commer-
cial MCR tools such as CodeCollaborator [95]. Hence, observation 31 can support
their approaches that inviting reviewers who have been involved in many reviews
of the modified files can increase the likelihood that a patch will be discussed.

The number of days since the last modification. Our observation 26 shows that
the number of days since the last modification shares an increasing relationship
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with the likelihood that a patch will have at least one reviewer. This finding
does not match our expectations. One possible reason for this relationship is
that the last patch prior to the current patch is incomplete. For example, the
Android patch of review ID 39850 was approved by a reviewer.9 Then, two hours
later, the patch author submitted a new patch in order to make a change that
was suggested in review ID 39850.10 We find similar examples in the Qt and
OpenStack systems.11 Although such patches can be minor changes or may not
need much involvement from reviewers, prior work suggests that the patches still
should be examined by at least one reviewers to decrease the likelihood of having
defects in the future [12].

7.4.3. Patch Properties

Patch Description. As we conjecture, observation 27 shows that the description
length shares an increasing relationship with the likelihood that a patch will have
at least one reviewer. Similarly, observation 29 shows that a short description
can lower the likelihood that a patch will be discussed. We find that most of
the patches with short descriptions provide neither the details that are necessary
to understand the proposed changes nor a link for additional information. For
example, the patch author of OpenStack review ID 29856 did not describe the
detail of a change.12 This finding is consistent with prior studies of email-based
code reviews, i.e., a descriptive subject and a well-explained change log message
are very important information for developers to select patches to review [101].
Moreover, Tao et al. report that one of the most important pieces of information
for reviewers is a description of the rationale of a change [117].

9https://android-review.googlesource.com/#/c/39850
10https://android-review.googlesource.com/#/c/39881
11An example in the Qt system: https://codereview.qt-project.org/#/c/27218 and https:

//codereview.qt-project.org/#/c/30591. An example in the OpenStack system: https:
//review.openstack.org/#/c/36808 and https://review.openstack.org/#/c/36832.

12https://review.openstack.org/#/c/36901/

https://android-review.googlesource.com/#/c/39850
https://android-review.googlesource.com/#/c/39881
https://codereview.qt-project.org/#/c/27218
https://codereview.qt-project.org/#/c/30591
https://codereview.qt-project.org/#/c/30591
https://review.openstack.org/#/c/36808
https://review.openstack.org/#/c/36808
https://review.openstack.org/#/c/36832
https://review.openstack.org/#/c/36901/
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Observation 33 shows that as we conjecture, a patch that introduces new func-
tionality is more likely to receive slow initial feedback than a patch with another
purposes. A potential reason for this delayed feedback in patches that introduce
new features could be that such patches require more effort to understand. In-
tuitively, a documentation patch would be easy to understand, and could receive
prompt feedback. We also observe that the reviewers of the bug-fixing patches
often are reporters in the Issue Tracking System (ITS). For example, Qt review
ID 29856 is made to address the bug ID 22625.13 We find that the reviewer of
this patch is the one who reports the bug.14 Hence, it is more likely that the bug
fix reviewers would already understand the problem and could provide prompt
feedback to the author. On the other hand, the purpose of patches that introduce
new functionality must be entirely built from the patch description and source
code. For example, the patch author in Qt review ID 101316 implements a new
function to QGeoShape.15 Hence, there are likely cases that reviewers will require
longer time to understand before providing initial feedback. These observations
suggest that to increase reviewer involvement, an author should provide a detailed
description of their proposed changes in order to help reviewers to understand
which problem it fixes or how the new feature is supposed to work. Then, re-
viewers can either provide feedback if they have the expertise to do so or suggest
appropriate reviewers.

Patch Size. Observation 28 shows that as we conjecture, churn shares an increas-
ing relationship with the likelihood that a patch will be discussed. Recent studies
also report that the patch size is a good indicator of patch acceptance [57, 131].
Intuitively, the large patches are likely to be discussed since they can contain
more problems than the small patches. For example, OpenStack review ID 35074
shows a review where an author proposes a change of 737 LOC, then the review-

13https://codereview.qt-project.org/#/c/29856
14https://bugreports.qt.io/browse/QTBUG-22625
15https://codereview.qt-project.org/#/c/101316

https://codereview.qt-project.org/#/c/29856
https://bugreports.qt.io/browse/QTBUG-22625
https://codereview.qt-project.org/#/c/101316
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ers raised several issues.16 On the other hand, smaller patches have less code
to critique, and thus are less likely to receive comments from reviewers.17 This
observation is also consistent with the findings of Baysal et al. who find that large
patches tend to have more revisions than small patches in the MCR processes of
the WebKit and Blink systems [15].

7.5. Threats to Validity

We now discuss threats to the validity of our study.

7.5.1. External Validity

We focus our study on three open source systems, which may limit the gener-
alizability of our results. Nagappan et al. argue that increasing the sample size
without careful selection cannot contribute to the goal of increased generality [83].
Hence, it is a challenge to carefully identify systems that satisfy our selection cri-
teria (cf. Section 7.2.1), since the code review process of MCR is a relatively new
development. To aid in future work, we make our datasets publicly available.18

Nonetheless, additional replication studies are needed to generalize our results.

7.5.2. Construct Validity

We identify the purpose of a patch by extracting keywords from its commit mes-
sage. Although modern Issue Tracking Systems (ITSs) provide a field for prac-
titioners to denote the purpose of a change, we find that our studied systems
have a small proportion of patches that can be linked to records in ITSs. Indeed,
only 9%, 1%, and 19% of the studied patches can be linked to issues in the ITS
records of our studied systems. Hence, we must rely on heuristics to recover this

16https://review.openstack.org/#/c/35074/
17https://review.openstack.org/#/c/36448/
18http://sailhome.cs.queensu.ca/replication/review_participation/

https://review.openstack.org/#/c/35074/
https://review.openstack.org/#/c/36448/
http://sailhome.cs.queensu.ca/replication/review_participation/
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information. Nevertheless, we measure the accuracy of our purpose identification
by manually examining samples of patches. From a sample of 50 patches for each
type of purpose, we find that on average, 89% of patches are correctly identified
as feature introduction, 91% of patches are correctly identified as bug-fixing, and
75% of patches are correctly identified as documentation.

We measure feedback delay based on a heuristic that reviewers will promptly
review a new patch at the time that it is submitted. However, there are likely
cases where reviewers actually examined a patch for a fraction of this timeframe.
Unfortunately, the Gerrit code review tool does not record the timestamps when
reviewers start to examine a patch nor the timezone information. To reduce such
measurement errors, we use the elapsed time between the latest revision before
receiving the initial feedback and the posting of the initial feedback. In addition,
the threshold of feedback delay may also be impacted by timezone difference.
Hence, we check whether the threshold is impacted by timezone difference (see
Appendix D). We find that timezone difference is less likely to have an impact
on the threshold of feedback delay.

7.5.3. Internal Validity

We assume that our studied systems perform code reviews using the MCR tools.
There are likely cases where the reviewing activities are missing. For example,
Mukadam et al. report that many reviews in the Android system are missing
since August 2011 until early January 2012 [82]. It is also possible that review-
ers may provide feedback using other communication media, such as in-person
discussion [16], a group IRC [108], or mailing list [45, 101]. Unfortunately, re-
covering these reviewing activities is a non-trivial problem [7, 19]. However, our
analysis focuses on reviews that were submitted during the period when the stud-
ied systems actively use MCR tools (cf. Section 7.2.2). Hence, we rely on the
information that is recorded by these tools.



7.6. Summary 195

Since our observations are based on the surviving explanatory variables, there
are likely cases that our variable selection may influence our conclusions. Hence,
for the sake of completeness, we change each surviving variable to the other
variables that were removed and refit our models. Our model analysis results
indicate that these alternate models achieve similar AUC values, i.e., the AUC
differences are ranging between -0.01 to 0.04 for models in RQ1, -0.01 to 0.02
for models in RQ2, and -0.01 to 0.01 for models in RQ3. Furthermore, we find
that if the surviving variables have a large effect on the likelihood, the alternate
variables will have a large effect as well. For example, Table 7.6 shows that
the number of reviewers of prior patches has the largest negative effect on the
likelihood that a patch will not attract reviewer. We also find that the discussion
length of prior patches has the largest negative effect on the likelihood in the
alternate model (i.e., the variable that is highly correlated with the number of
reviewers of prior patches). Moreover, the variables that are highly correlated in
our study measure similar characteristic of a patch, e.g., the discussion length of
prior patches and the number of reviewers measure the typical level of reviewer
involvement in prior patches. Therefore, we believe that our variable selection
did not muddle our conclusions.

We assume that the review processes are consistent across all subsystems in a
large system. Future work should closely examine whether there are differences
in review processes across subsystems.

7.6. Summary

Due to the human-intensive nature of code reviewing, reviewer involvement plays
an important role in Modern Code Review (MCR) practices. Despite the impor-
tance of reviewer involvement [73, 81, 121], little is known about the factors that
influence reviewer involvement in the MCR process.

In this chapter, we investigate the characteristics of patches that: do not attract
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reviewers, are not discussed, or receive slow initial feedback in the MCR process.
We measure 20 patch and MCR process metrics that are grouped along five
dimensions. We use contemporary regression modelling techniques to investigate
the relationship that our metrics share with the likelihood that a patch will suffer
from poor reviewer involvement. Using data collected from the Android, Qt, and
OpenStack open source systems, we empirically study 196,712 code reviews. The
results of our study show that our models can identify patches that fill suffer from
poor reviewer involvement with an AUC ranging 0.61-0.76. Moreover, we make
the following observations:

– The number of reviewers of prior patches, and the description length share
a strong inverse relationship with the likelihood that a patch will not at-
tract any reviewers. Counter-intuitively, the number of days since the last
modification of files also share an inverse relationship. (Observations 25 to
27).

– The description length, the discussion length of prior patches, churn, and
past involvement of reviewers share an inverse relationship with the likeli-
hood that a patch will not be discussed, while past involvement of an author
shares an increasing relationship with that likelihood (Observations 28 to
31).

– The feedback delay of prior patches shares a strong increasing relationship
with the likelihood that a patch will receive slow initial feedback. Moreover,
patches that introduce new features tend to receive slower feedback than
patches that fix bugs or address documentation issues (Observations 32 to
33).

We believe that our results and empirical observations help to support the
management of the MCR process and adherence to our recommendations will
lead to a more responsive review process.
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Chapter 8

Conclusion

Code review is a well-established software quality practice. Lately, the lightweight
variant of code review process called Modern Code Review (MCR) has been
widely adopted in many modern software organizations. Unlike the formal soft-
ware inspection of the past, MCR enables asynchronous collaboration among
developers at the globally-distributed teams of modern software organizations.
Moreover, MCR becomes a final gate of quality control as MCR process is based
on collaborative tools which tightly integrate with the project’s Version Control
System (VCS)

Despite the flexibility of code reviews that MCR provides, MCR lacks mech-
anisms for ensuring a base level of review quality. Lax reviewing practices may
creep into MCR processes, which can impact software quality. In this thesis, we
empirically study the suboptimal reviewing practices in MCR processes. In the
remainder of this chapter, we outline the contributions of this thesis and lay out
opportunities for future research.

8.1. Contribution and Findings

The overarching goal of this thesis is to better understand reviewing practices
and provide MCR process support. To achieve this goal, we perform a series of

199
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empirical studies on historical data in order to understand how teams can better
perform code reviews in an MCR context. Broadly speaking, we find that:

Thesis Statement: The lightweight Modern Code Review process lacks mecha-
nisms for preventing lax code reviewing practices, which can allow poor quality
code to slip through to official software releases. A deeper understanding of
these processes and their impact on software quality is needed as MCR con-
tinues to gain popularity and be adopted by projects worldwide.

We perform four empirical studies to investigate the suboptimal reviewing prac-
tices in the review preparation and executions steps of MCR processes. Below,
we reiterate the empirical observations of this thesis:

1. Part I: The Modern Code Review Processes

(a) Developers who only review patches of other developers account for
the largest proportion of developers who contribute to that module
(Observations 1 and 2). Moreover, many developers who were consid-
ered as minor contributors are actually major contributors who review
a large proportion of patches (Observation 3).
Suggestion. Code review activity should be considered in order to
thoroughly model expertise of developers.

(b) Modules without post-release defects tend to have a larger proportion
of developers with major reviewing expertise than modules with post-
release defects do (Observations 4 and 5). On the other hand, the
proportion of developers who have neither authored nor reviewed many
patches to a module share a strong increasing relationship with defect-
proneness for the module (Observations 6 and 7).
Suggestion. Teams should consider reviewing expertise in order to
mitigate the risk of future defects.
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(c) Patch authors often have difficulties selecting appropriate reviewers for
their patches. Moreover, patches where an author could not initially
find appropriate reviewers tend to a take longer time in MCR processes
than patches without such a problem (Observations 8 and 9).
Implication. Developers are suffering from selecting an appropriate
reviewer for a new patch.

(d) RevFinder, which leverages the similarities between the path of a
newly changed file and the paths of previously reviewed files to recom-
mend a reviewer, provides a high rank of correct reviewers, which is less
likely to involve unrelated reviewers (Observations 10 and 11). More-
over, RevFinder can accurately recommend appropriate reviewers
within its top-5 recommendations (Observation 12).
Suggestion. RevFinder should be included into MCR tools in order
to help developers find appropriate reviewers and speed up the overall
process.

2. Part II: Reviewer Selection in Modern Code Review Processes.

(a) The code review activity of files that will be defective in the future,
i.e., future-defective files tends to be less intense with less team partic-
ipation and with a faster rate of code examination than the reviews of
clean files (Observations 13 to 15). Moreover, developers more often
address concerns about: (1) documentation and structure to enhance
evolvability, and (2) checks, logic, and support to fix functionality is-
sues, in the reviews of future-defective files than the reviews of clean
files (Observations 16 to 17).
Suggestion. Reviewers should actively be involved in their assigned
code reviews in order to reduce the likelihood of having future defects.

(b) The code review activity of files that have been historically defective
in the past, i.e., risky files tends to be less intense, with less team
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participation, and receive feedback more slowly than files that have
historically been defect-free, i.e., normal files (Observations 18 to 20).
Developers address concerns about evolvability and functionality in
the reviews of risky files more often than the reviews of normal files
do (Observations 21 to 22). Moreover, risky files that will have future
defects tend to undergo less careful reviews that more often address
concerns about evolvability than the reviews of risky files without fu-
ture defects (Observations 23 to 24).
Suggestion. Risky files are more likely to have future defects [41].
Hence, a more careful attention is needed for such files during the
code review process.

(c) Past reviewer involvement (e.g., the number of reviewers, discussion
length of prior patches), the description length, the number of days
since the last modification of files, the past involvement of an author,
and the past involvement of reviewers are strong indicators that a
patch will suffer from poor reviewer involvement (Observations 25 to
33).
Suggestion. Patch submission policies that monitor these factors are
urgently needed in order to help improve the reviewer involvement in
MCR processes.

8.2. Opportunities for Future Research

We believe that this thesis makes a major contribution towards the goal of im-
proving the reviewing practices in an MCR context. However, there are many
open challenges for future research. Below, we outline several opportunities for
future work.
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8.2.1. More Advanced Reviewing Expertise Heuristics

In the studies of Chapters 4 and 5, we estimate the reviewing expertise based
on the review participation in the past. In other words, the more patches that
a developer participated in the past, the more reviewing expertise the developer
has. However, there is a likely case that some of the identified reviewers may only
leave superficial or unrelated reviewer comments [26,88]. Although we attempted
to mitigate this risk by allocating less expertise for reviewers who provide less
feedback, the results of the study in Chapter 4 show that this heuristic did not
show different results from the simpler heuristic. Thus, future work should explore
more advanced reviewer contribution heuristics in order to more accurately model
the reviewing expertise of developers.

8.2.2. A Reviewer Recommendation with Workload Balancing

In Chapter 5, we proposed RevFinder to identify appropriate reviewers based on
their reviewing expertise. Although the evaluation results show that RevFinder
accurately recommends reviewers for a new patch, there is a likely case that re-
viewers may be burdened with a large number of assigned reviews according to
RevFinder’s recommendations. Therefore, future work of a reviewer recom-
mendation should consider the workload of reviewers in order to avoid the risk
that reviewers will be burdened by review tasks and that the patches will receive
slow review feedback.

8.2.3. Automated MCR Practices Detection

In Chapter 5, we manually identify patches which have reviewer selection prob-
lems. Similarly, in Chapter 6, we manually identify concerns that were addressed
during MCR reviews. However, we used small sets of statistically representative
sample for our analyses. An automatic detection for these patches could ease
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future studies to use a large set of dataset and to draw a more generalized con-
clusion. Moreover, develop teams can use this tool to monitor an overview of
MCR practices as well.

8.2.4. Understanding Source Code Changes under MCR

processes

In Chapter 6, we focus on code review activity and reviewing concerns that
were addressed during MCR processes. Yet, it is unclear how is a proposed
patch semantically changes under an MCR process. A better understanding of
semantical changes under MCR processes may help improve the quality of code
reviews as well as software quality.

8.2.5. Understanding Reviewer Factors in MCR

In Chapter 7, we uncovered several patch characteristics like past tendencies and
patch description that lead to a poor reviewer involvement. However, the reviewer
factors that may also have an impact on reviewer involvement remains largely
explored. Although we explored the past reviewer involvement, the other reviewer
factors like review workload of reviewers and the size of team may also influence
the reviewer involvement. Furthermore, developers who are hired by third-party
companies may perform different code reviewing from volunteer developers. To
better understand the MCR practices, future research should explore more factors
related to reviewers.

8.2.6. Revisiting Code Review Studies when Considering the

Importance of Software Modules

In Chapters 4 and 6, we assume that each post-release defect is of the same weight,
while in reality, some post-release defects are more severe than others. Similarly,
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in Chapter 7, we did not consider the importance of software modules that were
impacted by studied patches. However, there is a likely case that patches that
modify important software modules will receive more responsive and rigorous
reviewer involvement than other patches. Hence, future work should consider
the severity of post-release defects and the importance of software modules in
order to draw a more clear relationship between developer expertise and software
quality, and a more clear relationship between patch characteristics and reviewer
involvement.

8.2.7. Revisiting Code Review Studies when using different

MCR tools

The case studies in Chapters 4, 5, 6, and 7 are based on Gerrit. Although we used
several open source systems as our case studies, our observations may not be gen-
eralized to all software systems and MCR tools. Each software organization may
use different policies which lead to different reviewing practices. For example,
in Chapter 6, we manually identify concerns that were addressed through both
in-line comments and discussion threads. However, some MCR tools may provide
a different feature other than in-line commenting. Moreover, the reviewing prac-
tices in industrial settings may be more rigorous than the reviewing practices in
open source projects. To better generalize the observations in this thesis, future
research should revisit code review studies that are used in other systems with
different MCR tools.

8.2.8. Revisiting Code Review Studies by using Qualitative

Analysis

The observations in this thesis are derived from the results of quantitative analy-
sis, i.e., statistical analysis approach. However, the reasons behind these observa-
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tions remain largely unexplored. Although we further investigated these findings
by manually examine code reviews of patches, this investigation did not involve
with developers who are in the studied projects. To fulfill the gap in knowledge,
future research should revisit code review studies by using qualitative analysis,
e.g., developer survey.

8.2.9. Studying the Impact of MCR on Code Quality

In this thesis, we study the impact that MCR can have on software quality. How-
ever, code reviews may also improve the code quality. For example, in Chapter 6,
we found that future maintenance is one of the main concerns that were addressed
during code reviews. Hence, a better understand of benefits of MCR in terms of
code quality may help team to chart a better quality improvement plan.
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Appendix A

An Example R Script for Non-linear
Logistic Regression Models

A.1. Install and Load a Necessary R Library

1 i n s t a l l . packages ( " rms " )
2 l i b r a r y ( rms )

A.2. Model Construction

In this section, we provide R scripts for our model construction. For this example,
we use the Android dataset that is used in Chapter 7 and publicly available
online.1

1 #Download the Android datase t
2 data <− read . csv ( ’ http : // sa i lhome . cs . queensu . ca/ r e p l i c a t i o n / review_

pa r t i c i p a t i o n /data/Android . csv ’ )
3

4 #Set dependent va r i ab l e ( f o r t h i s example )
5 data$y = data$NumberOfReviewers == 0
6

1http://sailhome.cs.queensu.ca/replication/review_participation/
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7 ind_vars = c ( ’Churn ’ , ’ NumberOfFiles ’ , ’ NumberOfDirectories ’ , ’ Entropy ’
, ’ Descr ipt ionLength ’ , ’ Purpose ’ , ’ DaysSinceTheLastModi f icat ion ’ , ’
NumberOfAuthors ’ , ’ NumberOfPriorDefects ’ , ’
NumberOfReviewersOfPriorPatches ’ , ’ Discuss ionLengthOfPr iorPatches ’
, ’ FeedbackDelayOfPriorPatches ’ , ’ PriorPatchesOfAnAuthor ’ , ’
RecentPatchesOfAnAuthor ’ , ’ DirectoryPriorPatchesOfAnAuthor ’ , ’
OverallWorkload ’ , ’ DirectoryWorkload ’ )

8

9 #RMS package r e qu i r e s a data d i s t r i b u t i o n when bu i l d i ng a model
10 dd <− datad i s t ( data [ , c ( " y " , ind_vars ) ] )
11 opt ions ( da tad i s t = "dd " )

(MC-1.a) Correlation Analysis

1 #Calcu la te Spearman ’ s c o r r e l a t i o n between independent v a r i a b l e s
2 vc <− va r c l u s (~ . , data=data [ , ind_vars ] , t rans=" abs " )
3 #Plot h i e r a r c h i c a l c l u s t e r s and the spearman ’ s c o r r e l a t i o n th re sho ld

o f 0 . 7
4 p lo t ( vc )
5 th r e sho ld <− 0 .7
6 ab l i n e (h=1−thresho ld , c o l = " red " , l t y = 2)

Listing A.1 Constructing hierarchical clusters of explanatory variables based on
Spearman’s correlation analysis.

1 #Remove the h igh ly c o r r e l a t e d va r i ab l e from the h i e r a r c h i c a l
c l u s t e r s

2 r e j e c t_vars <− c ( ’ DirectoryPriorPatchesOfAnAuthor ’ , ’
RecentPatchesOfAnAuthor ’ , ’ NumberOfAuthors ’ , ’
Discuss ionLengthOfPr iorPatches ’ , ’ NumberOfDirectories ’ )

3 ind_vars <− ind_vars [ ! ( ind_vars %in% r e j e c t_vars ) ]
4

5 #Re−c a l c u l a t e spearman ’ s c o r r e l a t i o n between independent v a r i a b l e s
6 vc <− va r c l u s (~ . , data=data [ , ind_vars ] , t rans=" abs " )
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7 #Re−p lo t h i e r a r c h i c a l c l u s t e r s and the spearman ’ s c o r r e l a t i o n
thr e sho ld o f 0 . 7

8 p lo t ( vc )
9 th r e sho ld <− 0 .7

10 ab l i n e (h=1−thresho ld , c o l = " red " , l t y = 2)
11

12 #Churn and NumberOfFiles are s t i l l h i gh ly c o r r e l a t e d . Therefore , we
remove the NumberOfFiles v a r i a b l e out .

13 r e j e c t_vars <− c ( ’ NumberOfFiles ’ )
14 ind_vars <− ind_vars [ ! ( ind_vars %in% r e j e c t_vars ) ]

Listing A.2 Removing the highly correlated variables from and check for highly
correlated variable again.

(MC-1.b) Redundancy Analysis

1 red <− redun (~ . , data=data [ , ind_vars ] , nk=0)
2 pr in t ( red )
3 r e j e c t_vars <− red $Out
4 ind_vars <− ind_vars [ ! ( ind_vars %in% r e j e c t_vars ) ]

Listing A.3 Removing the explanatory variables where an R2 value greater than
0.9.
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#Reviewers of prior patches
Feedback delay of prior patches

#Days since the last modification
Description length

#Prior defects
Directory workload

#Prior patches of an author
Churn

Entropy
Overall workload

N  df

33969 2
17699 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2
33969 2●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08

Spearman ρ2    Response : No Reviewers (True False)

Adjusted ρ2

(MC-2) Degree of Freedom Allocation

1 sp <− spearman2 ( formula ( paste ( " y " , " ~ " , paste0 ( ind_vars , c o l l a p s e="
+ " ) ) ) , data= data , p=2)

2 p lo t ( sp )

Listing A.4 Estimating the potential of explanatory variables for sharing a
nonlinear relationship with the response variable

(MC-3) Nonlinear Logistic Regression Model Construction

1 f i t <− lrm (y ~ r c s ( NumberOfReviewersOfPriorPatches , 3 ) + r c s (
FeedbackDelayOfPriorPatches , 3 ) + DaysSinceTheLastModi f icat ion +
Descr ipt ionLength + NumberOfPriorDefects + DirectoryWorkload +
PriorPatchesOfAnAuthor + Purpose + Churn + Entropy +
OverallWorkload , data=data , x=T, y=T)

Listing A.5 Fitting a nonlinear logistic regression model to the data

A.3. Model Analysis

In this section, we describe our model analysis approach.

(MA-1) Assessment of Explanatory Ability & Model Reliability
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1 va l <− va l i d a t e ( f i t , B=1000)
2 AUC = 0.5 + va l [ 1 , 1 ] /2
3 AUC_optimism_reduced = (0 . 5 + va l [ 1 , 5 ] / 2)
4 AUC_optimism = AUC − AUC_optimism_reduced
5 pr in t ( c ( "AUC"=AUC, "AUC_optimism "=AUC_optimism ) )

Listing A.6 Measuring AUC and AUC optimism

## AUC AUC_optimism

## 0.719464852 0.001431571

(MA-2) Power of Explanatory Variables Estimation

1 exp lantory_power = anova ( f i t , t e s t=’ Chisq ’ )
2 pr in t ( exp lantory_power )

Listing A.7 Estimate power of explanatory variables to the fit of the model

## Wald Statistics Response: y

##

## Factor Chi-Square d.f. P

## NumberOfReviewersOfPriorPatches 1794.57 2 <.0001

## Nonlinear 572.33 1 <.0001

## FeedbackDelayOfPriorPatches 20.91 2 <.0001

## Nonlinear 20.66 1 <.0001

## DaysSinceTheLastModification 348.90 1 <.0001

## DescriptionLength 5.29 1 0.0215

## NumberOfPriorDefects 2.23 1 0.1352

## DirectoryWorkload 12.36 1 0.0004

## PriorPatchesOfAnAuthor 6.65 1 0.0099

## Purpose 15.84 2 0.0004

## Churn 0.25 1 0.6150

## Entropy 0.04 1 0.8397
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## OverallWorkload 6.61 1 0.0101

## TOTAL NONLINEAR 576.27 2 <.0001

## TOTAL 2217.85 14 <.0001

(MA-3) Examination of Variables in Relation to the Response

1 p r ed i c t <− Pred i c t ( f i t , NumberOfReviewersOfPriorPatches , fun=
func t i on (x ) exp (x ) )

2 p lo t ( pred i c t , y lab=’Odds ’ )

0.5

1.0

1.5

2.0

0 2 4 6
#Reviewers of prior patches

O
dd

s

3 pa t i a l_e f f e c t = summary( f i t )
4 pr in t ( p a t i a l_e f f e c t )

## Effects Response : y

##

## Factor Low High Diff. Effect

## NumberOfReviewersOfPriorPatches 0.00 1.00 1.00 -2.1960e+00

## Odds Ratio 0.00 1.00 1.00 1.1125e-01

## FeedbackDelayOfPriorPatches 0.00 3.19 3.19 8.2429e-02
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## Odds Ratio 0.00 3.19 3.19 1.0859e+00

## DaysSinceTheLastModification 1.47 109.24 107.77 -6.9927e-01

## Odds Ratio 1.47 109.24 107.77 4.9695e-01

## DescriptionLength 11.00 45.00 34.00 -3.1415e-02

## Odds Ratio 11.00 45.00 34.00 9.6907e-01

## NumberOfPriorDefects 0.00 4.00 4.00 -7.1453e-03

## Odds Ratio 0.00 4.00 4.00 9.9288e-01

## DirectoryWorkload 1.00 10.00 9.00 3.2369e-02

## Odds Ratio 1.00 10.00 9.00 1.0329e+00

## PriorPatchesOfAnAuthor 3.00 105.00 102.00 -4.5098e-02

## Odds Ratio 3.00 105.00 102.00 9.5590e-01

## Churn 5.00 96.00 91.00 2.9869e-06

## Odds Ratio 5.00 96.00 91.00 1.0000e+00

## Entropy 0.61 0.91 0.30 4.8200e-03

## Odds Ratio 0.61 0.91 0.30 1.0048e+00

## OverallWorkload 221.00 477.00 256.00 8.4197e-02

## Odds Ratio 221.00 477.00 256.00 1.0878e+00

## Purpose - BUG-FIX:Feature 3.00 1.00 NA -1.0940e-01

## Odds Ratio 3.00 1.00 NA 8.9637e-01

## Purpose - Document:Feature 3.00 2.00 NA -4.5418e-01

## Odds Ratio 3.00 2.00 NA 6.3497e-01





Appendix B

Additional Results for Chapter 4

B.1. A Sensitivity Analysis of RSO thresholds

We check whether the selection of RSO thresholds has an impact on our results.
To do so, we compute the proportion of developers in each expertise category of
the review-aware ownership heuristic (see Table 4.1) with the RSO threshold val-
ues of 2%, 5%, 7%, and 10%. Then, we measure the magnitude of the difference
between the proportion of developers in each of the expertise categories of defec-
tive and clean modules using Cliff’s δ [69]. Cliff’s δ is considered as negligible for
|δ| < 0.147, small for 0.147 ≤ |δ| < 0.33, medium for 0.33 ≤ |δ| < 0.474 and large
for |δ| ≥ 0.474 [103]. Figure B.1 shows the magnitude of the differences for each
expertise category when using RSOEven. A positive Cliff’s δ value indicates that
the proportion of developer in defective modules is larger than that in clean mod-
ules, whereas a negative Cliff’s δ value indicates that the proportion of developer
in defective modules is less than that in clean modules.

Figure B.1 shows that across the different RSO thresholds, the association be-
tween developer expertise and defect-proneness is similar, e.g., defective modules
tend to have more developers in the minor author & minor reviewer category than
clean modules do. However, we observe that when using a large RSO threshold
value, the proportion of developers between defective and clean modules tend

235
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Figure B.1. A magnitude of difference between the proportion of developers in
each of expertise categories of defective and clean modules when using
RSOEven. Each dot in each expertise category represents the result
of one studied release.

to converge on a smaller difference. For example, Figure B.1 shows that when
using an RSO threshold of 2%, a magnitude of differences in the minor author &
minor reviewer category is large for five of the six studied releases. On the other
hands, when using an RSO threshold of 10%, a magnitude of difference in the
minor author & minor reviewer category is large for only three of the six studied
releases. We observe similar results when using RSOP roportional (see Figure B.2).
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Figure B.2. A magnitude of difference between the proportion of developers in
each of expertise categories of defective and clean modules when using
RSOP roportional. Each dot in each expertise category represents the
result of one studied release.

B.2. Additional Model Statistics

Table B.1 shows the model analysis result when the review-specific and review-
aware ownership are estimated using RSOP roportional. Table B.2 shows the model
analysis result when including the proportion of core developers. Table B.3 shows
the model analysis result when we use the proportion of minor author & major
reviewer instead of the proportion of minor author & minor reviewer to build our
models. Figure B.3 shows a relationship between the proportion of developers in
the minor author & major reviewer category and defect-proneness.
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Table B.1. Statistics of defect models where review-specific and review-aware ownership are estimated using

RSOProportional.
Qt 5.0 Qt 5.1 OpenStack Folsom OpenStack Grizzly OpenStack Havana OpenStack Icehouse

AUC 0.81 0.87 0.88 0.83 0.87 0.84
AUC optimism 0.03 0.02 0.02 0.02 0.01 0.02

Wald χ2 47∗∗∗ 85∗∗∗ 60∗∗∗ 69∗∗∗ 104∗∗∗ 114∗∗∗
Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 2 1 2 1 2 1 2 1 2 1 2 1
χ2 19%∗ 0%◦ 5%◦ 1%◦ 24%∗∗∗ 13%∗∗ 12%∗ 0%◦ 6%∗ 0%◦ 7%∗ 1%◦

Churn D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 4%◦ 1%◦ 0%◦ 1%◦ 13%∗∗∗ 11%∗∗∗

Entropy D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 1%◦ 2%◦ 4%◦ 2%◦ 0%◦ 1%◦

Top TCO D.F. † † 1 − 4 3 † †
χ2 11%∗ 10%◦ 2%◦

Top RSOProportional
D.F. 1 − † 1 − 2 1 1 − 1 −
χ2 0%◦ 5%◦ 9%∗ 2%◦ 3%◦ 1%◦

Major author &
major reviewer

D.F. 1 − 2 1 2 1 2 1 2 1 2 1
χ2 6%◦ 7%∗ 1%◦ 16%∗∗ 0%◦ 1%◦ 1%◦ 0%◦ 0%◦ 7%∗ 2%◦

Minor author &
minor reviewer

D.F. 1 − 4 3 2 1 2 1 4 3 2 1
χ2 44%∗∗∗ 50%∗∗∗ 8%◦ 2%◦ 0%◦ 5%◦ 2%◦ 22%∗∗∗ 5%◦ 27%∗∗∗ 3%∗

Major author &
minor reviewer

D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 10%∗ 3%◦ 10%∗ 1%◦ 4%∗ 9%∗∗

†: Discarded during variable clustering analysis (|ρ| ≥ 0.7)
−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test: ◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001
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Table B.2. Statistics of defect models where the proportion of core developers is considered and review-specific
and review-aware ownership are estimated using RSOEven.

Qt 5.0 Qt 5.1 OpenStack Folsom OpenStack Grizzly OpenStack Havana OpenStack Icehouse
AUC 0.81 0.86 0.89 0.84 0.89 0.82

AUC Optimism 0.05 0.03 0.03 0.02 0.01 0.03
Wald χ2 48∗∗∗ 81∗∗∗ 57∗∗∗ 70∗∗∗ 114∗∗∗ 96∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 2 1 2 1 2 1 2 1 2 1 2 1
χ2 12%∗ 0%◦ 3%◦ 1%◦ 24%∗∗ 11%∗ 10%∗ 0%◦ 4%◦ 0%◦ 27%∗∗∗ 1%◦

Churn D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 4%◦ 0%◦ 0%◦ 2%◦ 16%∗∗∗ 12%∗∗∗

Entropy D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 1%◦ 1%◦ 5%◦ 2%◦ 0%◦ 3%◦

Proportion of Core
Developers

D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 0%◦ 3%◦ 0%◦ 6%∗ 1%◦ 5%∗

Top TCO D.F. † † 1 − 4 3 2 1 †
χ2 6%◦ 11%◦ 1%◦ 0%◦ 0%◦

Top RSOEven
D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 0%◦ 5%∗ 1%◦ 10%∗∗ 0%◦ 5%∗

Major author &
major reviewer

D.F. 1 − 2 1 2 1 2 1 1 − 1 −
χ2 11%∗ 5%◦ 1%◦ 14%∗ 6%◦ 1%◦ 1%◦ 3%◦ 3%◦

Minor author &
minor reviewer

D.F. 2 1 4 3 2 1 2 1 4 3 2 1
χ2 46%∗∗∗ 4%◦ 39%∗∗∗ 7%◦ 6%◦ 5%◦ 14%∗∗ 7%∗ 31%∗∗∗ 7%◦ 14%∗∗ 1%◦

Major author &
minor reviewer

D.F. 1 − 2 1 1 − 1 − 1 − 1 −
χ2 6%◦ 1%◦ 0%◦ 4%◦ 2%◦ 1%◦ 3%◦

†: Discarded during variable clustering analysis (|ρ| ≥ 0.7)
The number of contributors, authors, reviewers, and the proportion of minor author & major reviewer are also discard during variable
clustering analysis.

−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test: ◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001
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Table B.3. Statistics of defect models where review-specific and review-aware ownership are estimated using

RSOEven and using the proportion of minor author & major reviewer instead of the proportion of
minor author & minor reviewer.

Qt 5.0 Qt 5.1 OpenStack Folsom OpenStack Grizzly OpenStack Havana OpenStack Icehouse
AUC 0.81 0.87 0.88 0.83 0.88 0.81

AUC Optimism 0.04 0.02 0.03 0.02 0.01 0.03
Wald χ2 48∗∗∗ 90∗∗∗ 58∗∗∗ 67∗∗∗ 103∗∗∗ 92∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size D.F. 2 1 2 1 2 1 2 1 2 1 2 1
χ2 17%∗ 0%◦ 5%◦ 1%◦ 27%∗∗∗ 13%∗∗ 16%∗∗ 0%◦ 10%∗∗ 0%◦ 29%∗∗∗ 1%◦

Churn D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 3%◦ 0%◦ 0%◦ 1%◦ 16%∗∗∗ 12%∗∗

Entropy D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 0%◦ 1%◦ 4%◦ 3%◦ 1%◦ 2%◦

Top TCO D.F. † † 1 − 4 3 2 1 †
χ2 10%∗ 17%∗ 2%◦ 2%◦ 2%◦

Top RSOEven
D.F. 1 − 1 − 1 − 1 − 1 − 1 −
χ2 0%◦ 2%◦ 4%◦ 6%◦ 0%◦ 4%∗

Minor author &
major reviewer

D.F. 2 1 4 3 2 1 2 1 4 3 2 1
χ2 48%∗∗∗ 3%◦ 37%∗∗∗ 3%◦ 1%◦ 0%◦ 6%◦ 1%◦ 28%∗∗∗ 1%◦ 12%∗∗ 0%◦

Major author &
major reviewer

D.F. 1 − 2 1 2 1 2 1 1 − 1 −
χ2 0%◦ 4%◦ 1%◦ 25%∗∗∗ 3%◦ 2%◦ 1%◦ 0%◦ 4%∗

Major author &
minor reviewer

D.F. 1 − 2 1 1 − 1 − 1 − 1 −
χ2 1%◦ 6%◦ 0%◦ 22%∗∗∗ 0%◦ 8%∗∗ 0%◦

Discarded during: †Variable clustering analysis (|ρ| ≥ 0.7)
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test: ◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001
− Nonlinear degrees of freedom not allocated.
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Figure B.3. The estimated probability in a typical module for the proportion of
developers in the minor author & major reviewer category ranging.
The gray area shows the 95% confidence interval.





Appendix C

Core Developers of the Studied
Projects

C.1. The OpenStack Project

The list of core developers is from the OpenStack development documentation.1

Table C.1. A list of core developers of the OpenStack project.
Name Email Address
Aaron Rosen aaronorosen@gmail.com
Akihiro Motoki amotoki@gmail.com
Alex Meade mr.alex.meade@gmail.com
Alexander Tivelkov ativelkov@mirantis.com
Alistair Coles alistair.coles@hp.com
Andrew Laski andrew@lascii.com
Ann Kamyshnikova akamyshnikova@mirantis.com
Armando Migliaccio armamig@gmail.com
Arnaud Legendre arnaudleg@gmail.com
Assaf Muller amuller@redhat.com
Brandon Logan brandon.logan@rackspace.com
Brian Haley brian.haley@hp.com
Carl Baldwin carl@ecbaldwin.net
Christian Schwede cschwede@redhat.com

Continued on next page
1https://wiki.openstack.org/wiki/Project_Resources (Last Access on June 2015)
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Table C.1 A list of core developers of the OpenStack project. (Cont.)
Name Email Address
Clay Gerrard clay.gerrard@gmail.com
Dan Smith dms@danplanet.com
Daniel Berrange berrange@redhat.com
Darrell Bishop darrell@swiftstack.com
David Goetz david.goetz@rackspace.com
Doug Wiegley dougwig@parkside.io
Duncan Thomas duncan.thomas@gmail.com
Edgar Magana emagana@gmail.com
Eric Harney eharney@redhat.com
Erno Kuvaja jokke@usr.fi
Fei Long Wang flwang@catalyst.net.nz
Flavio Percoco fpercoco@redhat.com
Greg Lange greglange@gmail.com
Hemanth Makkapati hemanth.makkapati@rackspace.com
Henry Gessau gessau@cisco.com
Huang Zhiteng winston.d@gmail.com
Ian Cordasco ian.cordasco@rackspace.com
Ihar Hrachyshka ihrachys@redhat.com
Ivan Kolodyazhny e0ne@e0ne.info
Jay Bryant jsbryant@us.ibm.com
Jay Pipes jaypipes@gmail.com
Joe Gordon joe.gordon0@gmail.com
John Dickinson me@not.mn
John Griffith john.griffith8@gmail.com
John Garbutt john@johngarbutt.com
Ken’ichi Ohmichi ken1ohmichi@gmail.com
Kevin Benton kevinbenton@buttewifi.com
Kevin L. Mitchell kevin.mitchell@rackspace.com
Kota Tsuyuzaki tsuyuzaki.kota@lab.ntt.co.jp
Kyle Mestery mestery@mestery.com
Louis Taylor louis@kragniz.eu
Mark Washenberger mark.washenberger@markwash.net
Matt Dietz matt.dietz@rackspace.com
Matt Riedemann mriedem@us.ibm.com
Matthew Oliver matt@oliver.net.au
Michael Barton mike@weirdlooking.com
Michael Still mikal@stillhq.com

Continued on next page



C.2. The Qt Project 245

Table C.1 A list of core developers of the OpenStack project. (Cont.)
Name Email Address
Miguel Angel Ajo mangelajo@redhat.com
Mike Fedosin mfedosin@mirantis.com
Nikhil Komawar nik.komawar@gmail.com
Nikola Dipanov ndipanov@redhat.com
Oleg Bondarev obondarev@mirantis.com
OpenStack Hudson hudson@openstack.org
Pete Zaitcev zaitcev@kotori.zaitcev.us
Rossella Sblendido rsblendido@suse.com
Samuel Merritt sam@swiftstack.com
Sean McGinnis sean.mcginnis@gmail.com
Sean Dague sean@dague.net
Stuart McLaren stuart.mclaren@hp.com
Thiago da Silva thiago@redhat.com
Walter A. Boring IV
(hemna)

walter.boring@hp.com

YAMAMOTO Takashi yamamoto@midokura.com
Zhi Yan Liu lzy.dev@gmail.com
Garyk gkotton@vmware.com
Iccha-sethi iccha.sethi@rackspace.com
Ike Perez thingee@gmail.com
Mark Mcclain mark@mcclain.xyz
Melanie Witt melwitt@yahoo-inc.com
Paul Luse paul.e.luse@intel.com
Xing-yang xing.yang@emc.com

C.2. The Qt Project

The list of core developers is from the Qt development documentation.2

Table C.2. A list of core developers of the Qt project.
Name Email Address
Aaron McCarthy mccarthy.aaron@gmail.com
Alan Alpert aalpert@blackberry.com
Alex Blasche alexander.blasche@theqtcompany.com

Continued on next page
2http://wiki.qt.io/Maintainers (Last Access on June 2015)
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Table C.2 A list of core developers of the Qt project. (Cont.)
Name Email Address
Andrew Knight andrew.knight@intopalo.com
André Pönitz andre.poenitz@theqtcompany.com
Andy Nichols andy.nichols@theqtcompany.com
Bernd Weimer bernd.weimer@pelagicore.com and
Björn Breitmeyer björn.breitmeyer@kdab.com
Bogdan Vatra bogdan@kdab.com
Christian Strømme christian.stromme@theqtcompany.com
David Faure david.faure@kdab.com
David Faure faure@kde.org
Denis Shienkov denis.shienkov@gmail.com
Eirik Aavitsland eirik.aavitsland@theqtcompany.com
Eskil Abrahamsen eskil.abrahamsen-

blomfeldt@theqtcompany.com
Frederik Gladhorn frederik.gladhorn@theqtcompany.com
Friedemann Kleint friedemann.kleint@theqtcompany.com
Giulio Camuffo giulio.camuffo@jollamobile.com
Gunnar Sletta gunnar@sletta.org
Jason McDonald macadder1@gmail.com
Jens Bache Wiig jens.bache-wiig@theqtcompany.com
Jens Bache-Wiig jens.bache-wiig@theqtcompany.com
John Layt jlayt@kde.org
Jørgen Lind jorgen.lind@theqtcompany.com
Jędrzej Nowacki jedrzej.nowacki@theqtcompany.com
Karsten Heimrich karsten.heimrich@theqtcompany.com
Kurt Pattyn pattyn.kurt@gmail.com
Lars Knoll lars.knoll@theqtcompany.com
Laszlo Agocs laszlo.agocs@theqtcompany.com
Lorn Potter lorn.potter@gmail.com
Louai Al-Khanji louai.al-khanji@theqtcompany.com
Mark Brand mabrand@mabrand.nl
Martin Smith martin.smith@theqtcompany.com
Milian Wolff milian.wolff@kdab.com
Morten Sørvig morten.sorvig@theqtcompany.com
Olivier Goffart ogoffart@woboq.com
Oswald Buddenhagen oswald.buddenhagen@theqtcompany.com
Pasi Keranen pasi.keranen@theqtcompany.com
Rafael Roquetto rafael.roquetto@kdab.com

Continued on next page
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Table C.2 A list of core developers of the Qt project. (Cont.)
Name Email Address
Sean Harmer sean.harmer@kdab.com
Stephen Kelly stephen.kelly@kdab.com
Thiago Macieira thiago.macieira@intel.com
Tor Arne Vestbø tor.arne.vestbo@theqtcompany.com





Appendix D

Additional Analysis for Chapter 7

D.1. An Analysis of Threshold Sensitivity

In RQ3 of Chapter 7, we study the characteristics of patches that will receive slow
initial feedback. We use a threshold of 12 hour to identify patches that will receive
slow initial feedback. However, there is a likely case that this threshold is im-
pacted by timezone difference since our studied systems have globally-distributed
development teams. Hence, we count the number of patches that receive slow
and prompt initial feedback. Figure D.1 shows the hourly percentage of patches
that receive slow and prompt initial feedback, where the x-axis shows submission
dates of the patches. Figure D.1(a) and D.1(b) show that in Android and Qt,
the patch submission periodically occurs, suggesting that development teams of
Android and Qt tend to locate in the similar timezones. Hence, our threshold
should not be impacted by timezone difference for Android and Qt. On the other
hand, Figure D.1(c) shows that the patch submission occurs almost every hour,
suggesting that development teams of OpenStack tend to distribute over different
timezones. However, we do not observe a specific pattern of the percentage of
patches that receive slow initial feedback over the time. Therefore, we believe
that the timezone difference may not have a large impact on our threshold for
OpenStack.
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(a) Android
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(b) Qt
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Figure D.1. The percentages of patches that receive prompt (blue) and slow
(gray) initial feedback. The x-axis shows the patch submission dates.
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