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Abstract

Avoiding performance regressions is very important in the evolution of ultra-large

software systems. Even the addition of an extra field or control statement can

degrade the performance of the software system considerably as the impact of such

simple changes is multiplied by the millions of user requests that are processed

simultaneously. Performance testers conduct performance load tests and analyze

the results of such tests, before every new deployment, to ensure that there are no

performance regressions. However, such an analysis is challenging because each

test run produces a large amount of performance counter (e.g., CPU and memory

readings) data.

In this thesis, we propose approaches based on a statistical process control tech-

nique, called control charts, to automatically identify and determine the causes of

performance regressions. We conduct case studies on three different software sys-

tems to evaluate our proposed approaches. The results show that our approaches

can determine if a new test run has performance regressions. Compared to existing

approaches, our approaches can detect performance regressions accurately in most
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of our case studies.
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Introduction and Background
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CHAPTER 1

Introduction

Performance is an essential quality of software systems. In large software systems

with millions of users, the ability to efficiently serve a large number of concurrent

users is very important. Researchers estimate the potential revenue loss of elec-

tronic commerce due to performance related issues at about $25 billion dollars

yearly (PLC, 2001). For example, users usually abandon an online transaction if

they have to wait for more than 10 seconds (Ceaparu et al., 2004; Weyuker and

Vokolos, 2000). Losing users due to poor performance can be disastrous.

A software system is said to have a performance regression when a new version

of the software system performs relatively worse than the previous version. For

example, a change in the database schema might increase the response time of a

query by 10%. This 10% increase can push the overall response time of the software

system over the ten-second threshold. In such case, the new version of the software

might require additional hardware to maintain the same level of service, otherwise
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Apply standard load on an 
existing software version,

e.g., v1.0

Apply the same load on a 
new software version,

e.g., v1.1

Baseline perf. counters,
e.g., CPU usage

Target perf. counters,
e.g., CPU usage

Analysis
Regression?

Probable causes?

Figure 1.1: Analysis of performance regression load tests

there is a risk of losing customers. We note that the term performance degradation is

also used instead of the term performance regression in some research communities.

To avoid performance regressions, performance testers conduct performance

load tests prior to the deployment of every new software version in order to iden-

tify performance regressions. Figure 1.1 shows the typical steps of performance

load testing. The first step is to apply the same field-like load to both the old ver-

sion and new version of the software on the same field-like hardware. This step is

usually done by load generation tools such as HP’s Load Runner (Hewlett Packard,

2010) or Apache’s JMeter (The Apache Software Foundation, 2012). During the

test runs, performance counters, such as CPU utilizations or memory utilization,

are collected. Then, in the second step, the two sets of counters, which are called

baseline counters for the old version and target counters for the new version, are

analyzed to answer the following questions for every performance load test:

• Is there a performance regression?

• What is the root-cause of the performance regression?

One of the biggest challenges in performance analysis is the massive amount of

performance counter data that must be analyzed (Nickolayev et al., 1997). In a

large software system, there are thousands of counters, e.g., CPU utilization, mem-

ory utilization, or I/O operation rate. Each counter would have millions of samples.

It is time consuming to analyze the counters. Since performance load testing is
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usually the last step of the software development cycle, performance testers usu-

ally face high pressure to rapidly complete the test analysis so the software can be

released without further delays. Performance testers often rely on their experience

to identify performance regressions, and to determine the probable root-causes of

such regressions. This process can take a few hours or even a few days depending

on the experience of the testers and the complexity of the regression.

To cope with the large amount of performance counter data, several data reduc-

tion approaches are proposed in literature. Examples of such approaches include

principal component analysis (Eeckhout et al., 2003a,b,c; Malik, 2010; Malik et al.,

2010; Oliner and Aiken, 2011), projection pursuit (Vetter and Reed, 1999), or sta-

tistical clustering (Nickolayev et al., 1997). These approaches have their advantages

and disadvantages. One of the potential disadvantages is that they often change the

form of the counter data (e.g., creating principal components) - making it difficult

to explain the analysis results. In this thesis, we suggest the use of control charts for

data reduction. Control charts are used in statistical process control to determine if

an industrial or business process is within or out of control (Shewhart, 1931). For

each performance counter, we achieve data reduction by replacing the counter and

its baseline with the control charts measurement of violation ratio. Then we use the

violation ratios for data analysis. Since the violation ratio is easy to understand, it

is easier to explain and communicate the analysis results in comparison with other

data reduction approaches.

In this thesis, we first derive an approach to help performance testers automat-

ically identify test runs with performance regressions. Once a performance regres-

sion is identified, the cause of the performance regression needs to be identified.

This task can take days or even weeks. Hence, we also derive an approach that

leverages control charts as the data reduction approach to automatically determine
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the causes of performance regression. Finally, we apply our control charts based ap-

proaches to the performance testing process of a commercial software system and

report our hands-on experience.

Thesis statement: Control charts can identify performance regressions in perfor-

mance load tests. Moreover, control charts can assist in identifying the causes of

performance regressions. Control chart based approaches can be applied in prac-

tice.

1.1 Thesis Contribution:

The key contributions of this thesis are as follows:

• We apply control charts into the analysis of performance load test results. We

show, through empirical case studies, that control charts can be used to auto-

matically identify test runs with performance regressions (Chapter 6 and 7).

• We apply machine learning to automatically suggest the possible causes of the

performance regression using historical data (Chapter 8).

1.2 Summary:

In this thesis, we show that testers can adopt our approaches to automate the anal-

ysis of the test results. However, we note that there are other challenges in achiev-

ing full automation of the performance regression tests. For example, what is the

suitable the length of a test? What are the suitable configurations for the system

under-test? These challenges still require the knowledge and experience of the

testers.



CHAPTER 2

Related Work

We conduct a literature survey to identify existing approaches to analyze the re-

sults of performance load tests. Performance load testing is a relatively new area

in software engineering research (Jiang and Hassan, 2015). However, the perfor-

mance of software and hardware systems has been studied extensively in the past.

Approaches used in such studies can be applied to the area of performance load

testing.

2.1 Process Followed for the Selection of Surveyed

Studies

We start by finding relevant papers in the main publication venues for software

performance studies such as: the International Conference on Dependable Systems

and Networks (DSN) or the International Conference on Performance Engineering

6
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(ICPE). Then we follow the papers’ references to find other relevant publications in

other venues.

To focus our inquiry, we focus on papers that aim to find performance problems

in a software system. We also include papers that study the performance of oper-

ating systems, using hardware resource counters such as the number of interrupts

and data or instruction cache hits/misses. We specifically focus on papers that an-

alyze counter data. We exclude studies that applied data mining approaches on

the execution traces (logs) (Jiang et al., 2008) or communication traces (Aguilera

et al., 2003) to detect performance issues. We exclude such studies since the input

data set (unstructured trace files) is different from what we are concentrating on

in this thesis (performance counters). However, there are studies (e.g., (Gainaru

et al., 2012a, 2013; Xu et al., 2009)), that used trace files as input but they parsed

the trace files to produce counters, e.g. counting frequency of each event per time

interval during the test runs. We include such studies since the input data is now

counters. Also, because we focus on research that studies performance of software-

intensive systems, we do not explicitly search for studies of hardware intensive

systems such as those from the International Symposium on Performance Analysis

of Systems and Software or Modelling, Analysis, and Simulation of Computer and

Telecommunication Systems Conference.

2.2 Classification of Studies

Figure 2.1 shows the five meta steps in analyzing performance counters that we can

abstract from the studies that we found:

1. Select the studied software and data: We outline the types of software system

that the studies used. We also classify the studies based on the used data: real

versus synthetic data (Section 2.2.5).
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1. Pick the 

studied 

software

2. Collect 

Performance 

Counters

3. Reduce 

Performance 

Counters

4. Analyze  

Performance 

Counters

5. Achieve 

the goals

Figure 2.1: The five meta steps in analyzing performance counters

2. Collect the performance counter data: We classify the studies using the type

of performance counter that they used: hardware (HW) layer performance

counters, operating system (OS) layer performance counters, and software

(SW) layer performance counters (Section 2.2.1).

3. Reduce the performance counter data: We classify the papers along the three

used types of data reduction approaches: filtering counters, creating smaller

counter set, and reducing counter data (Section 2.2.2).

4. Analyze the performance counter data: We classify the papers along the three

types of approach that are used to analyze the performance counters: without

any empirical data, with untagged data, with tagged data (Section 2.2.3).

5. Achieve the goals: We classify the papers along three types of goals: monitor-

ing live production system, analyzing performance tests, and benchmarking

hardware (Section 2.2.4).

In the next five subsections, we outline the studies along the aforementioned

dimensions. We conclude and summarize all the papers and their attributes (Ta-

ble 2.2) in Section 2.3.

2.2.1 Types of Performance Counter

Performance counters come from different layers of the hardware and software

stack:
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• At the hardware layer, we have hardware counters (HW). Examples of such

counters include instruction types, data/instruction cache hits/misses, branch

prediction hits/misses, or the number of executed parallel instructions. Hard-

ware counters are used mainly in studies of hardware performance such as

the work of Hammerly et al. (Hamerly and Elkan, 2001) or benchmarking

(Section 2.2.4) studies such as the work of Eeckhout et al. (Eeckhout et al.,

2003a,b,c).

• In the platform layer, we have operating system counters (OS). Examples of

such counters include CPU utilization, memory utilization, disk input/output

(IO), or network IO. Most performance studies use counters from this layer

as they are the most accessible type of performance counters. The OS layer

counters are sometime used by themselves (Vetter and Reed, 1999). However,

when the performance of software is studied, OS layer counters are usually

used along with the software layer performance counters.

• At the software layer, we have counters from the software itself, i.e., the soft-

ware layer counters (SW). These software layer counters include throughput,

queue size, response time, or processing time. These counters are specific to

each software system. For example, there are many job queues in a software

system. For each queue, there would be counters that report the current num-

ber of jobs in the queue, the number of jobs left the queue, and the amount

of time that the jobs spent in the queue. Most studies (Jiang et al., 2009a;

Malik, 2010; Malik et al., 2010; Zhao et al., 2009) use counters from both the

software layer and the OS layer.

We note that one can separate the layers further. For example, middleware

can be a layer between the hardware and the platform layer. Our choices of

the layers represent a simplified view of the software/hardware stack.
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Going from the OS layer to the software layer represents a trade-off. Lower

layer counters are usually the most accessible counters. However, these counters

hold less system/domain specific information. For example, if the CPU utilization

increases by a few percentage points, it would be difficult to determine the causes of

the regression using just the OS layer counters. Higher layer counters would help in

that case. They hold more domain information such as whether the size of a queue

had increased. The increased queues would indicate the locations of the bottleneck

(based on the location of the queues in the call flow of the software). However,

higher layer counters are more difficult and expensive to produce and collect. For

example, to add a queue size counter into a software, the software developers often

have to add monitoring code into their own source code. The monitoring code

has to be configurable, e.g., the frequency of reporting or storage location of the

counters. The system engineers, who install and monitor the software, then have

to configure and monitor the new counter. On the other hand, CPU or memory

utilization counters at the OS layer are usually available on most operating systems.

There exist many off-the-shelf standard tools (e.g. (Godard, 2014; Microsoft Corp.,

2011)) to collect and display these counters.

Lower layer counters are more accessible but have less value for troubleshooting

software specific performance regressions. Higher layer counters are expensive to

collect but they are more valuable in troubleshooting.

2.2.2 Data Reduction Approaches

Reduction of performance counter data is necessary for studying the performance

of large software systems. Not all studies use data reduction before the analysis

step. Some studies, e.g. (Cherkasova et al., 2008), can detect performance problems

using the full set of original counters. However, the large amount of counter data

is often considered as a key challenge in analyzing performance counters. Zhao et
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al. (Zhao et al., 2009) and Oliner et al. (Oliner and Aiken, 2011) specifically study

approaches to reduce the amount of performance counter data. Cohen et al. (Cohen

et al., 2005) show that using reduced counter data can outperform using the raw

counter data in terms of accuracy.

The main goal of data reduction is to reduce the amount of performance counter

data. A simple reduction operation can be the removal of performance counters

that did not change during the test runs. These counters will not affect the analysis

results. Such simple reduction would reduce the amount of counters for analysis.

Filter out Counters

A more sophisticated data reduction approach would be filtering out the coun-

ters that would not influence the results of the subsequent analysis approach. The

following studies employ such an approach:

• Vetter and Reed (Vetter and Reed, 1999) apply a statistical technique called

projection pursuit to reduce the large number of similar counters into a smaller

set of representative counters. First the counters are divided into intervals of

time, e.g., three minutes. Then, for each interval, their approach picks the top

most changed m counters, e.g., three, for that particular time interval. Their

approach reduces the number of counters from thousands to just m counters.

• Another approach to reduce data is statistical clustering, which is used by

Nickolayev et al. (Nickolayev et al., 1997). While analyzing the performance

of a parallel system with a massive amount of computer processors, Nicko-

layev et al. employ K-means clustering to determine the top most represen-

tative processors for each time interval. Since most programs cannot make

effective use of all processors equally, the researchers can reduce the amount

of counters from all the processors to a few representative processors.
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• Zhao et al. (Zhao et al., 2009) improves the clustering based reduction us-

ing self-correlating information. Instead of just feeding all the counters into

a clustering algorithm and determining the top representative counters, they

first apply on-the-fly correlation algorithms on the counters. These algorithms

reduce the counters information by identifying temporal changes or spatial

changes. For example, each server in a region usually gets the same amount

of requests. So all the servers’ performance counters are usually highly corre-

lated. Thus sending the counters of one node to the monitoring server might

be sufficient. The reduced counters are then fed into a clustering algorithm

on the monitoring server to determine the most changed counters. Using this

approach, the researchers were able to reduce the counter data further than

just clustering alone.

Create New Composite Metrics

Instead of filtering out the counters, one can also achieve data reduction by cre-

ating another smaller set of new “composite” counters which represent the original

set of counters as a whole. The following studies employ such an approach:

• Malik et al. (Malik, 2010; Malik et al., 2010) use principal component analysis

(PCA) to find the valuable performance counters before analyzing the counter

data to identify performance regression. The main idea behind PCA is to

transform possibly correlated variables, i.e., performance counters, into non-

correlated vectors, which are called components. The researchers select a

subset of the components to determine which ones are the most promising for

further analysis.

• Eeckhout et al. (Eeckhout et al., 2003a,b,c) determine the input workloads

that are most useful for benchmarking Java applications on virtual machines.

However, they first use PCA to reduce the performance counters into a smaller
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number of vectors. Then they use the principal components to compare the

characteristics of the workload. PCA is a common technique for this kind of

reduction. Using the few top components for data analysis would capture

most of the characteristics of variables.

• Oliner and Aiken (Oliner and Aiken, 2011) studied logs instead of perfor-

mance counters. However, they extract events from the logs and use the event

frequencies to analyze the interactions between components in large software

systems. Their approach also uses PCA to reduce the event frequency coun-

ters.

• Instead of using PCA, Jiang et al. (Jiang et al., 2009a) develop an approach

that transforms the counters into groups of similar counters using Normalized

Mutual Information (NMI). NMI is a measure of similarity between counters.

Using NMI, the researchers group the counters into groups of highly corre-

lated metrics. So, for monitoring the performance of the software system,

the researchers only need to monitor the changes of groups as opposed to

monitoring each individual metric.

Reduction of Individual Counters

Both of the aforementioned types of data reduction approach alter the set of

counters to a smaller set. Another approach to reduce performance counter data is

to keep the same set of counters but reduce the data points of each of the counters

themselves. The following studies employ such an approach:

• Foo et al. (Foo, 2011; Foo et al., 2010) discretize the counters’ values into low,

medium, or high. Then they use the discretized counters to build association

rules to detect performance anomalies in performance load tests.
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• Bezemer et al. (Bezemer, 2014; Bezemer and Zaidman, 2010, 2014; Wiertz

et al., 2014) use a similar approach to Foo et al. (Foo, 2011; Foo et al., 2010).

They also discretize the counters values into low, medium, and high. Then

they build association rules to identify performance issues in live systems.

All the above three types of data reduction approaches have their own advan-

tages and disadvantages. However, our experience in working with performance

testers shows that preserving the actual counters improves the adoptability of an

approach in practice. The first reason is that it is easier to verify the result of the

approach using the reduced data set if the counters are not merged into composite

counters. For example, let us assume that we have an analysis approach which uses

machine learners to identify the location of performance regressions, i.e., which

component performs worse than before. To justify the learner’s selection, it would

be easier if we can observe the relative increases in the queues of that component

compared to other components’ queues. If the counters are reduced using PCA, for

example, it would be harder to explain and rationalize the learner’s selection since

all the counters are merged into components. The second reason is that it is easier

to explain and communicate the analysis results if all the counters are presented.

Practitioners have better understanding and familiarity with the performance coun-

ters. They can associate the counters with areas of the code or domain level use

cases of their software. Hence, it is easier for practitioners to explain and com-

municate the analysis results if they can observe how the counters are used in the

analysis. Hence, we favour such type of data reduction approach.

There are three major approaches for reducing performance counter data: filter out

counters, create new composite metrics, and reduction of data points. Preserving

the actual counters eases the adoptability of an approach.
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2.2.3 Data Analysis Approaches

Most performance studies involve comparing different sets of performance counter

data. For example, Malik et al. (Malik, 2010; Malik et al., 2010) compared the base-

line performance load test with the new performance load test. Stehle et al. (Stehle

et al., 2010) compare the performance counters when a system is under attack to

when it is not.

The surveyed data analysis approaches can be classified into three types accord-

ing to the availability of the data:

• Without any performance counter data: In this case, the software system usu-

ally does not exist. So performance counters cannot be collected using real

test runs or from production. So the researchers usually employ analytical

models.

• With untagged performance counter data: In this case, the performance coun-

ters can be collected. However, there are no tags (e.g., error or normal be-

haviour) associated with the counters. The researchers usually employ un-

supervised learning algorithms that measure the degree to which two sets of

performance counters are different from each other.

• With tagged performance counter data: When the counter data is tagged,

researchers usually use supervised learning algorithms that can learn then

predict the properties of performance counters using the tagged performance

counters.

In the next three sub-sections, we delve into these three types of approaches. We

explain the trade-offs between these types of data analysis approaches in Section

2.2.5.



CHAPTER 2. RELATED WORK 16

Without Any Performance Counter Data

There are cases where, a software system does not exist yet. Or it may be hard to

conduct performance load tests or collect production data for a particular software

system. However, there is still a need to determine bottlenecks, evaluate perfor-

mance, or optimize designs for such a software system (Casale and Serazzi, 2012).

For example, in the early stages of the software lifecycle, analysts might want

to compare the performance of different architectures. Researchers employ ap-

proaches that essentially create performance models of the software system (Petriu

et al., 2012; Woodside et al., 2014). The goal, then, is to solve the models us-

ing analytical models such as queueing network based approaches (Balsamo et al.,

2004).

Simulation Models

To evaluate the performance of alternative software architectures, Williams and

Smith (Smith and Williams, 1997, 2002; Williams and Smith, 1998) construct soft-

ware executions models. These are some of the earliest literature that describe a

systematic approach to analyze software performance. The models are call graphs

between elements of the software. Each call is, then, associated with computing

resources. Then, using simulation, one can determine the possible contentions of

each proposed architecture.

Arief and Speirs (Arief and Speirs, 1999, 2000) derive an approach, which was

implemented into a tool, that transforms UML diagrams into a Simulation Model

Language. Then, a Java-based simulation program called JavaSIM (Little, 2015) is

used to simulate the software behaviour. The researchers demonstrated how the

performance of the software can be predicted using their approach.

Miguel et al. (de Miguel et al., 2001) also introduce a similar approach that

transforms UML diagrams of software into simulation models. One can, then,
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use simulation software such as OPNET (Technology, 2015) to examine the per-

formance characteristics of the proposed software architects.

There are a variety of commercially available software than can be used to

model software and run simulations to determine the performance characteristic

of the proposed architect. One example is IBM Rational Rhapsody (IBM Corpora-

tion, 2012). Rhapsody can be used to evaluate software design. Another example is

OPNET (Technology, 2015) that is very popular in evaluating network performance

through simulation.

Queueing Networks

A queueing network is a type of mathematical model (Baccelli and Bremaud,

2003). It is commonly used to model systems where incoming jobs are queued

and processed by servers. For example, in a supermarket, the jobs are customers

with goods that they picked from the market’s shelves. The servers are check-out

counters. Queueing networks provides a mathematical approach to estimate how

fast a system of servers can process a given number of incoming jobs.

Instead of running a simulation on the models of software, as the approaches

in the previous subsection, one can transform software models into queueing net-

works, then, use the mathematics of queueing models to determine the performance

of the software.

Cortellessa and Morandola (Cortellessa and Mirandola, 2000; Cortellessa et al.,

2000, 2001) describe approaches that transform different types of UML diagrams to

queueing networks. Then they use the produced queueing networks to analyze the

performance of the propose software. The researchers call their approach “PRIMA-

UML”. Later on, Grassi and Mirandola (Grassi and Mirandola, 2002) extend the

approach to mobile applications.

Another notable example of the application of queueing network into simula-

tion of software performance is the JMT tool by Bertoli et al. (Bertoli et al., 2006,
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2009; Casale and Serazzi, 2012). The JMT tool is a Java application that allows

performance testers to model and simulate the performance of hardware, network,

and software systems.

Ghaith et al. (Ghaith et al., 2013) apply a queueing network simulator on exist-

ing software to learn about the effect of workload changes on a software system.

The researchers first conduct real test runs to create a model of the software perfor-

mance based on a single input workload. Then the researchers use that model to

infer the software behaviour with other input workloads. Moreover, the researchers

apply the same approach to identify software contentions (Ghaith et al., 2014).

Osman et al. (Osman et al., 2009) suggest the use of queueing networks to

model the design of databases. As a proof of concept, the researchers demonstrate

how one can use queueing network to determine the performance bottleneck of a

simple database design for the TPC-C benchmark workload. The researchers also

publish a literature overview (Osman and Knottenbelt, 2012) on the use of analyti-

cal models to evaluate the performance of database systems.

Layered Queueing Networks

While the above studies use queueing networks, Franks et al. (Franks et al.,

2009) gives a good account for approaches that use a more advanced form of

queueing networks called layered queueing networks. Layered queueing networks

are created specifically for analyzing software performance (Woodside et al., 1986).

The main benefit of layered queueing networks, compared to plain queueing net-

works, is that the simulation of such networks permits service queues to wait for

upper layer service queues to finish their processing. This feature enables the sim-

ulation of blocking threads in software systems which is the predominant use of

concurrent threads.

Franks et al. (Franks and Woodside, 1996) was among the first to apply layered

queueing networks to understand and predict the performance improvement of
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concurrency in client-server architecture. They later applied the same approach to

study the performance improvements of an early server reply to client requests (Franks

and Woodside, 1999).

Petriu et al. (Petriu et al., 2000) apply layered queueing networks to predict

performance of Common Object Request Broker Architecture based middleware sys-

tems. Experiments show that the models can predict the effects of service demands,

inter-node delays, and message size with relatively low error compared to the actual

measurements.

Omari et al. (Omari et al., 2007) extended layered queueing networks to build

models of large software system where the topology of the subsystems can be repli-

cated. The researchers showed that it is faster to execute their networks in compar-

ison to other models.

Stochastic Rendezvous Network

Woodside et al. (Woodside et al., 1989; Woodside, 1989) introduced a new

model called Stochastic Rendezvous Networks (SRVN) to model software perfor-

mance. The advantage of SRVN over queuing networks is that they enable the

modelling of synchronization in more modern programming languages, i.e., the

synchronization between threads of the same process using programming primi-

tives such as synchronized in Java. SRVN can be translated into Petri nets (Peter-

son, 1977). Solving Petri net allows modellers to identify performance bottlenecks.

Petriu (Petriu, 1994) proposed the use of a special Markov chain model called

Task-Direct Aggregation (TDA) to solve SRVN. TDA gave better results compared to

the heuristics that were used in a previous study (Woodside et al., 1989).

Process Calculi

Aside from queueing networks, one can also analyze software performance with-

out performance counter data using Process Calculi (Milner, 1982).
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Hermanns et al. (Hermanns et al., 1995, 2000; Herzog, 1990) extend the Pro-

cess Calculi with stochastic elements to create an approach that can model software

performance. They create a tool called TIPPtool that can incrementally model the

software architecture and identify performance bottlenecks.

Bernado et al. (Bernardo and Gorrieri, 1998; Bernardo et al., 1995, 2000) in-

troduces a Process Calculi based approach called ÆMPA. The approach consists of

a new architecture description language that can be used to formally describe a

proposed architecture and a tool to analyze the described architecture. The tool,

which is called TwoTowers, can be used to analyze both functional and performance

characteristics of the architecture using a Markov chain solver (Stewart, 2015).

Summary

In summary, simulation, Queueing Networks, Layered Queueing Networks, Stochas-

tic Rendezvous Network, Process Calculi, and other models are commonly used

when real performance load tests cannot be done because the software systems are

in an early stage of the development cycle or due to the large scale of the studied

deployment.

With Untagged Performance Counter Data

If the software or the prototype of the software are available, one can exercise the

actual code under various workloads and produce empirical data to analyze the

performance of the software. We are more interested in these types of approaches.

We separate the studies that use empirical data into two categories: with un-

tagged data and with tagged data. This separation is done because the type of

analysis which can be done with tagged and untagged data are different.

For untagged data, one does not have the state of the test run or the production

status with which to associate the performance counters. Researchers usually em-

ploy unsupervised data-mining learners for this type of data. Because of the lack of
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tagged data, these approaches do not make inferences on the outcome of the anal-

ysis (Hastie et al., 2008). They merely output the difference between the compared

datasets. For example, if the learners output a difference of x between two datasets.

The researchers may decide that there is a performance problem if x is greater than

a certain threshold.

The performance studies that we found for this type apply unsupervised learn-

ing approaches in two different fashions: counter-to-counter and set-to-set compar-

isons.

Counter-to-counter Comparisons There are approaches that operate on a pair

of counters or on the same counter across time periods. These approaches check

if there are changes among the counters. We call such approaches “counter-to-

counter”. When a software system performs normally, the performance counters are

assumed to be at a stable state. For example, at the load of ten requests per second,

the CPU utilization is 40% and the heap size is 80 MB. When there is a performance

problem, the counters would deviate from the stable state. For example, the same

load might end up consuming 43% of the CPU and 120 MB of the memory for a

new version of the software. One can observe that there is a noticeable difference

in the memory consumption by comparing the pair of memory counters across the

tests of the two versions.

The simplest approach is probably just comparing the average values of counter

pairs (Gabel et al., 2012). For example, one can compare the average value of CPU

utilization in the previous baseline test with the new test. If the CPU utilization

is the same, then there is no regression. Comparing averages is not advisable. For

example, the CPU utilization might fluctuate wildly, yet give the same average. Also

comparing average values implies that the distribution of the counters is normal,

which is usually not the case (Nguyen et al., 2012). Unfortunately, comparing
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averages is the most commonly used method in practice as it is the most intuitive.

The following approaches improve over comparing averages:

• A simple approach to improve over comparing averages is using quantiles (Bodik

et al., 2010). Instead of comparing the average, the 25thpercentile, the 50th

and the 75th percentiles are compared.

• A Wilcoxon Rank-Sum test on sliding windows of raw performance counters is

more appropriate (Jiang et al., 2009a). Wilcoxon Rank-Sum is non-parametric

test so it does not assume a normal distribution of the performance counters.

Wilcoxon Rank-Sum of two samples can determine if the two samples are

from two different populations. The performance counter can be separated

into windows over time, i.e., period 1, 2, 3, to n. Wilcoxon Rank-Sum will

then be able to tell whether one period is different from the prior periods. If

there is a difference, then there is likely a regression.

• Both Local Outlier Factor and Tukey tests can also be used to alleviate the

issues of comparing average (Gabel et al., 2012). Local Outlier Factor test

not only considers the actual value of the counter at a given time but also

considers the density of the prior and following values of the counter. Turkey

Test not only compares the mean values but also the distribution. Experimen-

tal results show that the Local Outliers Factor is more accurate in identifying

performance problems than using both the Tukey test and performing ad hoc

comparison of averages (Gabel et al., 2012).

There exists another type of approaches for comparing performance counters:

treating the counters as time series. Performance of software systems often varies

in a cyclical fashion. A counter, such as the number of site accesses of a business

server would follow the cycles of the work day. The counter would peak during
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the work hour every day and drop during the off-work hour every day. Resource

counters would follow the cycles of the number of site accesses. Time series analy-

sis approaches are often used to study periodic data, e.g., forecasting temperature

fluctuation throughout the year. Hence, researchers have used time series analysis

approaches to study performance counters as well. The following studies employ

such approaches:

• Burgess et al. (Burgess, 2006; Burgess et al., 2002) suggest the use of time se-

ries analysis to study the performance of production software systems. They

demonstrate that the performance of various software systems on a univer-

sity’s network can be modelled using time series. The researchers show that

the performance counters, such as incoming traffic or CPU utilization, exhibit

strong daily/weekly periodicity. After modelling the counters using time se-

ries, one can determine if there is a performance issue on a production server

by checking if the actual performance counters deviate from the expected val-

ues based on the models.

• Liang et al. (Liang et al., 2006) use simple correlation of fail-event counters

to identify the occurrence of hardware failures in a large parallel processing

computer system. The researchers made an observation that if a counter for

the fail event increases in one period, an overall system failure follows. They

use this observation to identify system failures.

• Yigitbasi et al. (Yigitbasi et al., 2010) also use time series to analyze the fail-

ures of large parallel processing computer systems. Similar to Burgess et

al. (Burgess, 2006; Burgess et al., 2002), the researchers found that many

of the analyzed counters exhibited strong periodicity. They also notice that

failures of the studied software systems also exhibit a strong periodicity. They
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build time series models that can correctly identify the failures for 50-95% of

the failures.

• Gainaru et al. (Gainaru et al., 2012a,b, 2013) also conduct a similar study

which uses time series analysis of failure events. They first extract the events

in the software execution log into counters data. Each counter represents the

number of times an event occurred within a particular time window. Then the

researchers run auto correlation, which is an approach to find the periodicity

of time series, on the counters. If there is a time window where the auto

correlation is low, they predict that such a window of time is most likely to

contain a failure.

Set-to-set Comparisons The counter-to-counter approaches operate on pairs of

counters, e.g., the CPU utilization of two test runs or the memory consumption dur-

ing two periods of execution. However, there are cases where we need to compare

two sets of counters together. For example, in performance regression testing, we

need to compare the set of counters for the baseline test, i.e., the old version, to

the set of counters for the target test, i.e., the new version. If the two sets show

differing values or patterns, the system might have a performance regression. We

can use counter-to-counter approaches. However, it is not clear whether we have

a regression or not if only a small amount of counters are different and the rest of

the hundreds of counters are the same. Moreover, in large software systems, there

are thousands of performance counters. Some of the counters cannot be paired

for comparisons, e.g., CPU utilization on multiple-core hardware or the multiple

threads of a subsystem. So researchers have to employ data analysis approaches

that can compare between two sets of performance counter data. We call these

approaches: “set-to-set” approaches.

One direction to improve over the previous sub-section’s counter-to-counter
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comparisons is the use of intercorrelations. Malik et al. (Malik, 2010; Malik et al.,

2010) use the intercorrelations between the performance counters as a similarity

measure. For all performance counters, they calculate the intercorrelations among

the counters. They use the correlations to create a signature of a performance load

test run. If a new test run has a different signature, they can determine that the

new test run deviated from the original test run.

PCA, which is commonly used for reducing performance counters (Section 3.2),

can also be used for set-to-set comparisons. The membership of the performance

counters in the principal components can be used to infer similarity among the

counters. If two counters both have relatively high membership level in a compo-

nent, they are more similar to each other compared to the other counters:

• Eeckhout et al. (Eeckhout et al., 2003a,b) use PCA as a data analysis approach.

The researchers use the percentage of variance that is accounted in the first

six principal components as a measure of how benchmark workloads differ.

• Zheng et al. (Zheng et al., 2007) employ PCA and Euclidean distance to iden-

tify the location (node) of a performance failure in parallel computing sys-

tems. They first use PCA to identify the highly-related performance coun-

ters of the computing nodes. Then they use the Euclidean distance to detect,

among the highly related performance counters, the ones that are outliers dur-

ing a test run. These outliers are marked as failure nodes for further manual

investigations.

Another approach that improves over pairwise comparison is hierarchical clus-

tering. Hierarchical clustering approaches build a root-tree called a dendrogram,

where the leaves of a common ancestor are more similar than those of the differ-

ent ancestors. Hierarchical clustering is used extensively in bioinformatics to build

genetic relationships between species or mutations within a species. Hierarchical
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clustering approaches can be used in the same manner to determine the relation-

ships among the sets of performance counters:

• Eeckhout et al. (Eeckhout et al., 2003a,b) use an Unweighted Pair Group

Method with Arithmetic Mean (UPGMA) to analyze the different relationships

among benchmarking workloads. Applying UPGMA to the counter data that is

obtained from different workloads, the researchers can group the workloads

according to the similarity of the software performance.

• Ahn and Vetter (Ahn and Vetter, 2002) similarly use Agglomerative Hierar-

chical Method to create dendrograms of performance counters of different

workloads. Depending on the location of the clusters of counters in the den-

drogram, the researchers identify the similarity among the workloads. The

researchers further augment the visual dendrograms with the F-ratio of the

K-means clustering. Then they also apply PCA to confirm the results of the

dendrograms and the F-ratio. The researchers also give a good comparison of

different set-to-set comparison approaches.

Researchers also adapt other unsupervised learning approaches that are com-

monly used in other fields to analyze performance counters:

• Guo et al. (Guo et al., 2006) calculate the Mahalanobis distance of the perfor-

mance counters at time n− 1. If the distance at time n is longer than at time

n−1, and the subsequent distances at time n+1 and time n+2 are longer than

the previous time, then an alarm is raised to indicate a performance problem.

• Stehle et al. (Stehle et al., 2010) employ an algorithm that detects a convex

hull, i.e., the smallest set of data points that encapsulate all the data points,

to define the stable state of the set of analyzed counters. For example, if
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there were three counters, the researchers determine six points in the three-

dimensional space, which are the minimum and maximum of each counter in

the stable state. Then the researchers build a convex hull, which encompasses

the six points. Then, whenever a data point falls outside the convex hull, that

data point will be marked as problematic.

• Jiang and Munawar et al. (Guofei et al., 2006; Jiang et al., 2009a; Munawar

and Ward, 2007) derive a similarity measure called RatioScore from the Jac-

card similarity coefficient to determine which component has performance

anomalies in runtime. If the RatioScore of a cluster of performance coun-

ters from a particular component changes significantly, the metrics in that

cluster must have changed relatively to each other. The researchers use the

RatioScore index as an indicator of performance regressions.

• Jiang and Munawar et al. further improve the accuracy of their aforemen-

tioned approach by inventing another measurement called SigScore (Jiang

et al., 2009a). This measure is adapted from PageRank, which takes into ac-

count the popularity of the components. RatioScore tends to give popular,

i.e., highly connected, components higher score thus producing more false

positives on these components. Their evaluation shows that SigScore is more

accurate that RatioScore.

With Tagged Performance Counter Data

There exists tagged data which associates the performance counters with certain

states of the test run or production. Thus, researchers can apply supervised learning

approaches, which are sometimes called classifiers, to infer the outcome of the

analysis (Hastie et al., 2008). For example, one can train a classifier using past

performance counter data, such as previous test runs or data from previous days
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of a system in production, by inputting the data and the associated outcomes, e.g.,

whether there is a performance regression or not. Then, the trained classifier can

be used to predict the outcome of the new test run. Many studies employ this kind

of approach.

• Hamerly et al. (Hamerly and Elkan, 2001) proposed approaches to predict

disk failures ahead of time using SMART performance counters of the disk.

The researchers use an industrial data set that consisted of hard disk perfor-

mance counters for normal and abnormal cases. The researchers derived two

supervised machine learning approaches based on the naive Bayes learning

algorithm. Both approaches performed well in identifying normal/abnormal

cases with high accuracy.

• Cohen et al. (Cohen et al., 2004, 2005) want to automatically detect problems

of production software systems. They use Tree-Augmented Bayesian Networks

to build classifier models using performance counters and the known state of

the system, e.g., normal or problematic, at certain periods of time. They train

the models using past production data. They were able to achieve high accu-

racy (87%-94%) in identifying performance problems with their approach.

• Zhang et al. (Zhang et al., 2005) later improve on Cohen et al. (Cohen et al.,

2004, 2005) by combining the classifier models into ensembles. The ensem-

bles improve the accuracy and significantly decrease the number of false pos-

itives compared to the use of a single classifier.

• Bronevetsky et al. (Bronevetsky et al., 2012) seek to improve the accuracy

of supervised classifiers by combining them with unsupervised classifiers. A

classifier is used to determines whether a test run is good or bad based on

training data. The researchers then apply an unsupervised classifier, within
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each test, on periods of each test runs to identify the probability that each

period has a performance regression. Their observation is that the distribution

of the problematic periods are different between normal and problematic test

runs. Combining the results of the supervised and unsupervised classifiers,

the researchers improve their accuracy for identifying problematic test runs.

• Foo et al. (Foo, 2011; Foo et al., 2010) use association rules that are created

using historical test runs to determine if a new test run has a performance

problem. They first discretize the performance counters, e.g., high, medium,

or low. Then, the researchers generate association rules which combine the

discretized counters with the test results. For example, if the CPU is medium,

the heap size is medium, and the network IO is low, the test is not problematic.

If the CPU is medium, the heap size is high, and the network IO is high, the

test has problems and is considered as a failed test. Foo et al. build rules

using tagged test data and use the rules to determine whether a new test has

failures.

Studies with tagged performance counter data have an advantage over studies

with untagged data: the ability to automatically determine the outcome of the test.

However, tagged data is difficult to obtain and the quality of such data varies. The

challenges of using tagged data have been explored by researchers in the mining

software repositories field (Godfrey et al., 2009). For example, performance testers

often complain that the hardware and workload keep on changing. When testers

run a new version’s regression test, the corresponding baseline test (with the previ-

ous software version) might no longer be valid. They often need to repeat baseline

tests on new hardware and with new workloads (Foo et al., 2015). Therefore, lever-

aging prior tests (with tagged performance counter data) is often challenging even

though the data is tagged.
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2.2.4 Goals

Table 2.1 classifies the studies that are mentioned in this chapter by the goal of the

study.

In term of goals, studies can be classified into three types:

• Monitoring: In large software systems, that service user requests year round,

operators need to monitor the conditions of the server nodes constantly so

operators can react to problems right away. For example, if there is a memory

leak, one of the nodes’ memory might fill up slowly overtime. When the

memory runs out, the software on that node would crash. If a few nodes

crash, the clients would reconnect to the remaining nodes. This will, in turn,

cause the memory of the remaining nodes to run out faster. The entire system

might crash in a matter of minutes from the time since the first node crashes.

Thus identifying the problem right away is very important in such a situation.

Most of the relevant literature that we found falls into this category.

• Testing: While monitoring allows engineers to detect performance problems

in production, performance testing prevents the problems from entering pro-

duction. To conduct performance load testing, testers create load drivers to

create simulated traffic. During the execution of the test, testers can moni-

tor the environment to look for potential performance problems (Jiang et al.,

2009c; Malik, 2010; Malik et al., 2010). We can only find a few research

papers for this particular goal.

• Benchmarking: The goal of benchmarking is to standardize performance mea-

surements such that the performance can be compared, communicated, and

planned effectively (Eeckhout et al., 2003a,b,c). There are many benchmark-

ing suites available such as those from the Standard Performance Evaluation
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Table 2.1: Goals of the surveyed studies

Goals Description Studies
Monitoring Detect faults as they occur

on live software systems
(Bezemer, 2014;

Bezemer and
Zaidman, 2010,

2014; Bodik et al.,
2010; Bronevetsky

et al., 2012; Burgess,
2006; Burgess et al.,
2002; Cohen et al.,
2004, 2005; Cohen,
1995; Gabel et al.,

2012; Gainaru et al.,
2012a,b, 2013; Guo
et al., 2006; Guofei

et al., 2006; Hamerly
and Elkan, 2001;

Jiang et al., 2009a;
Munawar and Ward,

2007; Oliner and
Aiken, 2011; Stehle
et al., 2010; Vetter
and Reed, 1999;

Wiertz et al., 2014;
Zhang et al., 2005;
Zhao et al., 2009)

Testing Analyze performance load
test results

(Ahn and Vetter,
2002; Cohen et al.,
2004, 2005; Cohen,

1995; Foo, 2011; Foo
et al., 2010; Malik,
2010; Malik et al.,

2010)
Benchmarking Standardize performance

measurements among
hardware

(Eeckhout et al.,
2003a,b,c)
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Corporation (SPEC) (Giladi and Ahituv, 1995) and Embedded Microproces-

sor Benchmark Consortium (EEMBC) (Poovey et al., 2009). We found a few

studies that deal with finding a suitable benchmark suite, i.e., workload, for

comparing different microarchitecture designs (Eeckhout et al., 2003a,b,c).

The difference among the three goals in term of data reduction and data anal-

ysis approaches is the input dataset. For monitoring, the input dataset is the per-

formance counters of different periods of time. For example, the counters of the

previous hour and the current hour can be compared to determine if there is an

arising performance problem. For performance load testing, the input dataset is the

performance counters of different test runs with the same workload. For example,

the counters of a new software version can be compared with previous versions’ test

data to uncover whether a performance regression has occurred. For benchmark-

ing, the input dataset is also test runs but with different workloads on different

hardware.

There exists little research that focuses on verifying the results of performance load

tests of software systems.

2.2.5 Evaluation

We classify the evaluation methods of the studies based on two dimensions: the

type of systems that are used for evaluation, and real versus synthetic data. The

last column of Table 2.2 shows our classifications for the evaluation of the studies.

Type of systems: Researchers use a wide range of software and hardware sys-

tems to evaluate their approaches.

• Benchmarking suites (BS) - workload designed to compare hardware sys-

tems: SPECint95, SPECint2000, SPECjvm98, SPECint2000, SPECjbb2000,

Java Grande Forum, Raja, TPC-D, LI (Eeckhout et al., 2003a,b,c), Dell DVD
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Store (Malik, 2010; Malik et al., 2010), IBM Trade Performance Benchmark

(Jiang et al., 2009a,b), Pet Store (Cohen et al., 2004; Guo et al., 2006; Zhang

et al., 2005), and RUBiS (Bezemer, 2014; Bezemer and Zaidman, 2010, 2014).

• Local scientific computing software (LSC) - scientific software running on a

single node (e.g., Cactus and CG-Heat (Vetter and Reed, 1999)).

• Distributed scientific computing clusters (DSC) - scientific software running

on multiple nodes: SMG98 (Vetter and Reed, 1999), Blue Gene/L (Bronevet-

sky et al., 2012; Liang et al., 2006; Oliner and Aiken, 2011), Thunderbird,

Spirit, Liberty, Junior, Stanley (Oliner and Aiken, 2011), Planetlab, VCL (Zhao

et al., 2009), Sun Wulf (Zheng et al., 2007), Failure Trace Archive (Yigitbasi

et al., 2010), sPPM, Sweep3D, and UMT (Ahn and Vetter, 2002)

• Server software (SS) - single node server software such as web servers or mail

servers: Unnamed (Malik, 2010; Malik et al., 2010), NanoHTTPD (Stehle

et al., 2010), collection of university servers (Burgess, 2006; Burgess et al.,

2002), Unnamed, Dell DVD Store (Foo, 2011; Foo et al., 2010), and sample

web application (Ghaith et al., 2013, 2014),

• Distributed server software (DSS) - multiple node server software: Microsoft

Bing (Gabel et al., 2012), and Exact Online (Bezemer, 2014; Bezemer and

Zaidman, 2010, 2014).

• Data centre/Cloud systems (DC) - distributed hardware systems: Virtual Com-

puting Lab, PlanetLab (Zhao et al., 2009), and an unnamed software sys-

tem (Bodik et al., 2010)

• Hardware (HW) - single hardware systems: Hard drives (Hamerly and Elkan,

2001)
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Real versus injected/synthetic data:

• Real: Performance counters data that is collected from production systems

with real users and workloads.

• Synthetic: Performance counters data that is collected from systems while

they are under synthetic load which is automatically generated by a load

driver.

2.3 Conclusion

This chapter presents a literature survey of prior research that analyzes performance

counter data. We summarize all the studies and their attributes in Table 2.2.

As explained in the problem statement, this thesis aims to introduce a new

data reduction approach by using control charts. Our approach is a reduction of

data points approach. We also aim to derive approaches to identify, determine

the causes, and locate performance regressions in performance test data. In the

different studies of this thesis, we will use both OS level and SW level counters

data. However, our approach is independent of the counters’ layer. As along as the

counter can be collected, we can apply our approach. We will also use both tagged

and untagged data. We will also use both synthetic data and real data in the studies.
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Table 2.2: Summary of studies and their attributes

Goal: Mon. - Monitoring, Ben. - Benchmarking, Perf. - Performance load testing Evaluation:

BS - Benchmarking suites, LSC - Local scientific computing software, DCS - Distributed scientific

computing clusters, SS - Server software, DSS - Distributed server software, DC - Data centre/Cloud

systems, HW - Hardware

Study
Data

type

Data

reduction

approach

Data analysis

approach
Goal Evaluation

Vetter and

Reed (1999)
OS

Filter out

Counters
Mon.

LSC & DSC

real

Eeckhout et al.

(2003a,b,c)
HW

Create New

Composite

Metrics

Set-to-set

Comparison
Ben.

BS

synthetic

Malik (2010);

Malik et al.

(2010)

SW &

OS

Filter out

Counters
Set-to-set Perf.

SS

synthetic

Oliner and

Aiken (2011)
OS

Create New

Composite

Metrics

Mon.
DSC

real

Zhao et al.

(2009)

SW &

OS

Filter out

Counters
Mon.

DC

real

Guofei et al.

(2006); Jiang

et al. (2009a);

Munawar and

Ward (2007)

SW &

OS
Set-to-set Mon.

BS

synthetic
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Study
Data

type

Data

reduction

approach

Data analysis

approach
Goal Evaluation

Guo et al.

(2006)
SW Set-to-set Mon.

BS

synthetic

Stehle et al.

(2010)
SW Set-to-set Mon.

SS

synthetic

& injected

Zheng et al.

(2007)
OS Set-to-set Mon.

DSC

injected

Hamerly and

Elkan (2001)
HW. With Tagged Data Mon.

HW

real

Cohen et al.

(2004, 2005)

SW &

OS
With Tagged Data Mon.

BS

synthetic

Zhang et al.

(2005)

SW &

OS
With Tagged Data Mon.

BS

synthetic

& injection

Bronevetsky

et al. (2012)
OS With Tagged Data Mon.

DSC

synthetic

Bodik et al.

(2010)

SW &

OS

Counter-to-

counter
Mon.

DC

real

Gabel et al.

(2012)

SW &

OS

Filtering

based on

heuristics

Counter-to-

counter
Mon.

DSS

real
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Study
Data

type

Data

reduction

approach

Data analysis

approach
Goal Evaluation

Burgess

(2006);

Burgess et al.

(2002)

OS
Counter-to-

counter
Mon.

SS

real

Liang et al.

(2006)
SW

Counter-to-

counter
Mon.

DSC

real

Yigitbasi et al.

(2010)
SW

Counter-to-

counter
Mon.

DSC

real

Ahn and Vetter

(2002)
HW Set-to-set Perf.

DSC

synthetic

Foo (2011);

Foo et al.

(2010)

SW &

OS

Reduction of

Data Points
With Tagged Data Perf.

SS

synthetic

Bezemer

(2014);

Bezemer and

Zaidman

(2010, 2014);

Wiertz et al.

(2014)

SW &

OS

Reduction of

Data Points
With Tagged Data Mon.

BS, DSS

real &

synthetic

Ghaith et al.

(2013)

SW &

OS

Without Any

Empirical Data

SS

synthetic
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Study
Data

type

Data

reduction

approach

Data analysis

approach
Goal Evaluation

Franks and

Woodside

(1996, 1999)

SW &

OS

Without Any

Empirical Data

Petriu et al.

(2000)

SW &

OS

Without Any

Empirical Data

Omari et al.

(2007)

SW &

OS

Without Any

Empirical Data



CHAPTER 3

Our Control Charts Based Approach

As explained in the prior chapter, studies apply data reduction approaches to deal

with large amount of counters data (Section 2.2.2). In this thesis, we propose a new

data reduction approach that is based on control charts (Shewhart, 1931). Control

charts allow us to reduce the performance counters into a smaller yet understand-

able data set. Using the reduced data, we propose new approaches to identify and

determine causes of performance regressions.

Control charts are a technique in quality control to identify issues of control

process (Shewhart, 1931). Control charts are used widely in many fields where

quality control is required (Wheeler and Chambers, 2010). For example, control

charts are used to monitor quality of care in intensive care units (Abdollahian et al.,

2011; Duclos and Voirin, 2010). Control charts are used to enforce the progress of

software processes (Komuro, 2006). Control charts are also applied (Amin et al.,

2012) to detect quality of service violations in production software system.

39
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Figure 3.1: Steps of performance load test analysis of Figure 1.1

Step 2: Performance engineers 
analyze the counters

Test run 1 performance counters 
e.g. % CPU or memory utilization

Test run 2 performance counters 
e.g. % CPU usage or memory 

utilization

Test run n performance counters 
e.g. % CPU usage or memory 

utilization

...

Step 1: Reduce 
the counters

Regression?
Probable causes?

3.1 Steps of Performance Load Test Analysis

As we see in the related work chapter (Chapter 2), there are two main steps in

analyzing a performance load test (the Analysis box in Figure 1.1): data reduction

and data analysis. Figure 3.1 shows these two steps. The main step is Step 2 where

the performance testers analyze the performance counters. However, the amount

of counter data is very large. It is important to reduce the amount of counter data

in Step 1.

3.2 Data Reduction Using Control Charts

Data reduction is essential when analyzing a very large number of counters as ex-

plained in Section 2.2.2. Studies that deal with large counter data employ data re-

duction approaches such as principal component analysis (Eeckhout et al., 2003a;

Malik, 2010), projection pursuit (Vetter and Reed, 1999), or normalized mutual

information (Jiang et al., 2009a) for data reduction. However, these approaches

either filter or combine the counters. The counters are filtered and combined dif-

ferently from one pair of tests to another. Hence, it is difficult to understand and
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verify the results of the analysis. During our meetings with our industrial partners,

they indicate that they are more comfortable to adopt approaches that are easy to

understand and interpret. Thus, an ideal data reduction approach should preserve

the performance counter set.

In this thesis, we propose the use of control charts (Shewhart, 1931) for data re-

duction. Similar to Foo et al. (Foo, 2011; Foo et al., 2010) and Bezemer et al. (Beze-

mer, 2014; Bezemer and Zaidman, 2010, 2014; Wiertz et al., 2014), control charts

compress the counters themselves and preserve the counter set. Thus the results of

the analyses that are based on control charts would be more intuitive for the testers

to adopt in practice. We will compare our control charts based approaches to other

approaches in Chapter 9 (p.120).

3.2.1 Control Charts

Figure 3.2 shows two example control charts. The x-axis is time, e.g., minutes. The

y-axis is the measurement data from the metric that we are monitoring about the

process. In this example, we are monitoring the CPU utilization of a web server. The

two solid lines are the Upper Control Limits (UCL) and Lower Control Limit (LCL).

The dashed line in the middle is the Centre Line (CL). Figure 3.2a is an example

where the CPU utilization is within its control limits, which should be the normal

operation of the web server. Figure 3.2b, on the other hand, is an example where

the CPU utilization (process output data) is out-of-control. In this case, further

investigation is needed.

A control chart is typically built using two datasets: a baseline dataset and a

target dataset. The baseline dataset is used to create the control limits, i.e., LCL,

CL, and UCL. In the example of Figure 3.2a and 3.2b, the baseline set would be the

CPU utilization of baseline test runs. The CL line is median of all samples in the
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Figure 3.2: Examples of control charts
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baseline dataset at a particular time. The LCL line is the lower limit of the normal

behaviour range. The UCL line is the upper limit. There are several alternatives for

choosing the LCL and the UCL. A common choice is three standard deviations from

the CL (Shewhart, 1931). The target dataset is scored against the control limits of

the baseline dataset. In Figure 3.2a and 3.2b, the target data are the crosses, which

would be the CPU utilization time of the new target test.

The result of an analysis using control chart is the violation ratio. The violation

ratio is the percentage of target dataset values that are outside the control limits.

The violation ratio represents the degree to which the current operation is out-of-

control. In Figure 3.2a and 3.2b, the violation ratio is the percentage of the crosses

that are outside the LCL and UCL lines. This violation ratio is derived from both the

baseline and the target counters.

3.2.2 Reducing Performance Counter Data Using Control Charts

In a performance load test, we have two sets of data, which are the old version’s

tests and the new version’s test (Figure 1.1). Table 3.1 shows an example of a

baseline test of the commercial software system. The raw data of this test has 910

counters with 945 readings each. We only include five counters:

1. CPU: CPU utilization of the software during the sampling interval. For exam-

ple, if there are four cores and each core is busy 80% of the time during the

sampling interval, this counter will be 320.

2. NetRx: The number of bytes that are received during the sampling interval.

3. NetTx: The number of bytes that are transmitted during the sampling interval.
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Table 3.1: Example of counter data for a baseline test of a commercial software
system

Time CPU NetRx NetTx NotHeap Heap
21:31:30 327 26,646,406 48,147,554 752,803,824 19,492,862,504
21:31:45 345 30,263,189 55,934,776 752,167,104 9,816,646,640
21:32:00 331 29,515,664 53,735,490 752,460,032 11,351,510,640

. . .
21:35:45 329 30,524,559 54,766,567 748,294,768 18,171,733,472
21:36:00 330 30,606,069 55,102,085 748,203,944 19,667,034,368
21:36:15 329 30,672,832 54,884,038 748,254,928 21,007,219,816

Table 3.2: Example of counter data for a target test of a commercial sofware system

Time CPU NetRx NetTx NotHeap Heap
15:49:15 354 28,450,637 80,352,648 721,905,056 20,973,365,904
15:49:30 363 26,918,811 67,882,064 723,436,088 18,827,309,040
15:49:45 373 29,085,929 77,025,467 724,739,384 13,710,490,664

. . .
15:53:30 365 30,248,695 78,345,863 724,248,104 21,539,781,616
15:53:45 359 30,495,700 81,110,628 724,408,272 21,987,294,576
15:54:00 361 30,018,038 80,474,501 724,099,520 21,823,276,392

4. NotHeap: The amount of memory that is currently used that is not heap

space.

5. Heap: The amount of memory that is currently used that is heap space.

Table 3.2 shows an example of a target test. This target test was identified by

performance testers of this software system to contain a performance regression.

The CPU utilization in the baseline test is about 347% to 345% (CPU column on

Table 3.1). The CPU utilization in the target test is about 354% to 373% (CPU

column on Table 3.2).

We use control charts to reduce the counters in the two data sets into one viola-

tion ratio for each counter pair. Table 3.3 shows an example of the data reduction

results for the baseline and target tests of Table 3.1 and Table 3.2. For each test
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Table 3.3: Example of violation ratios (Vio.) computed from the baseline run of
Table 3.1 and the target run of Table 3.2

Counter Vio. Lower Vio. Upper Vio. Average Vio. Sum
CPU 0.00 95.74 47.87 95.74

NetRx 14.89 0.00 7.45 14.89
NetTx 0.00 100.00 50.00 100.00

NotHeap 100.00 0.00 50.00 100.00
Heap 0.00 0.00 0.00 0.00

pair, instead of having two sets of n counters for the baseline and the new test, each

with thousands of samples, we now have only n violation ratios representing the

target test run and its baseline.

Whether a counter is higher or lower in the target test compared to the baseline

test is important in software performance. So, instead of using just the violation

ratio as defined in Section 3.2.1, we define the following four derivations of the

violation ratios to better suit our purpose:

1. Lower violation ratio: The percentage of data points in the target test’s

counter that is lower than the LCL.

2. Upper violation ratio: The percentage of data points in the target test’s

counter that is higher than the UCL.

3. Average violation ratio: The average of the lower and upper violation ratio.

4. Sum violation ratio: The sum of the lower and upper violation ratio.

We can see from Table 3.3 evidence of the performance regression in this pair

of tests. The violation ratio for the CPU is high. As mentioned, the CPU utilization

in the baseline test is about 347% to 345% (CPU column on Table 3.1). The CPU

utilization in the target test is about 354% to 373% (CPU column on Table 3.2).
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We investigate the benefits of using control charts instead of other data reduc-

tion approaches in Chapter 9.



CHAPTER 4

Evaluation and Studies

As explained in the problem statement, we want to demonstrate that control charts

can be used to identify and determine causes of performance regressions in per-

formance load test. We conduct four studies. In each study, we use control charts

to reduce the performance counter data of the tests. Then we derive approaches

to identify (Chapter 6, p.73 and Chapter 7, p.82), and determine causes (Chap-

ter 8, p.96) of performance regressions. Then we apply our control charts based

approaches in an industrial setting and report the experience (Chapter 9, p.120).

The main goal of our approaches is to help performance testers save time and

effort in comparison to manually analyzing performance counters. Since our ap-

proaches can be automated, performance testers can potentially add them into

the automated test execution processes, which are common in practice (Hewlett

Packard, 2010; Mozilla Project, 2010).

47
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4.1 Studied Systems

We evaluate the accuracy of our approaches using real-world large-scale commer-

cial and open source software systems.

• Commercial 1: Our first system is a large scale software system developed by

our industrial partner. The software is developed in a fast iterative process.

Performance engineers have to perform load tests at the end of each devel-

opment iteration to determine if the software can be released. The software

has a multi-tier server client architecture. A typical load test exercises load on

multiple components which reside on different servers. The behaviour of the

components and the hardware servers is recorded during each test run.

• Commercial 2: The second system is another large scale software system

which is also developed and operated by our industrial partner. The soft-

ware system is deployed on thousands of servers with millions of concurrent

users. Because of the high number of users and the high level of load, the

performance of the system is very important to the business. A single digit

percentage regression would mean hundreds of thousand dollar increase in

terms of yearly operating budget. Thus, there is a rigorous performance load

testing mandate for all the releases. After each development iteration, testers

always conduct performance regression tests to determine if the new version

has any performance regressions.

• DS: Our third system is the Dell DVD Store version 2. It is a simple e-

commerce web application which is used by Dell to benchmark their server

hardware systems. The software has web pages that allow users to search,

view, and order movies. DS is an open-source software that has been pre-

viously used in several prior software performance studies (Foo, 2011; Foo
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et al., 2010; Jiang et al., 2008).

For each study, we either use our own lab to conduct tests or use existing data

from the projects’ performance testers. We will explain in more details the type of

tests and performance regressions that we use in the next section (Section 4.2).

4.2 Evaluation Methodology

We conduct test runs or collect test runs from all three software systems described

in the previous section. There are normal test runs where the system performed as

required. There are test runs with performance regressions. After the test runs, we

collect the raw metrics from the software monitoring systems.

It is challenging to use raw performance counters as-is for automated analysis.

For the three software systems that we study, we identify three main challenges:

varying input load, multimodal distribution of the counters, and always changing

performance counters. We derive approaches to deal with the three challenges.

We discuss in detail about those approaches in Appendix 5 (p.56). Before we use

the counter data from the three software systems in our studies, we apply these

approaches to correct the counter data when applicable.

We, then, perform the data reduction steps as described in Section 3.2 to com-

pute the violation ratios. Then we apply our approaches to identify and determine

the probable cause of the performance regressions. We measure the effectiveness

of the approaches by measuring the accuracy of the approaches’ predictions.

4.2.1 Introducing Performance Regressions

Depending on the system under-test, we employ the following three methods to

introduce performance regressions: force resource contentions, inject performance
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regressions, or use real performance regressions.

Force Resource Contentions

Since we cannot alter the code of the Commercial 1 system, we simulate the prob-

lem by starting a separate process with real-time priority that uses about 50% and

75% of the CPU time. This process will compete with the actual service processes

for CPU cycles. This process effectively forces the software system under-test to

perform worst than the normal runs (due to resource contention).

Inject Performance Regressions

For other systems under-test, where we can alter the code, we introduce perfor-

mance regressions into the software by injecting code or changing configurations

which will lead to performance regressions. This method is more realistic as it is

how performance regressions are usually introduced in the software development

cycle.

The following are examples of changes that frequently lead to performance re-

gressions:

• R1 - Adding fields in long living objects: Causes an increase in memory

utilization. If a field is added to a class, and that class’s objects are created

many times by the software, even though the additional memory footprint of

a field might be small, the multiple instantiations of the class can lead to a

large increase in memory utilization (Gunther, 2000).

• R2 - Adding code in a hot code path: Causes an increase in CPU utilization.

Even a small set of additional calculations added to a hot code path can lead

to a large increase in CPU utilization (Malik et al., 2013).
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• R3 - Adding a DB query in a hot code path: Causes an increase in DB

requests. In large software systems, each database can connect to hundreds

of nodes. Each node processes thousands of requests per minute. If a request

performs one additional database query than before, the number of querying

requests to the database would increase sharply (Chen et al., 2014).

• R4 - Missing a DB column index: Causes longer DB requests. Necessary

indices are required for frequently-executed queries. However, the necessity

depends on the actual load. Hence this kind of regression only emerge under

a performance load test (Chen et al., 2014).

• R5 - Missing a DB text indexes: Causes longer DB requests. Similar to (4),

text indices are required if text searches are performed on a column of the DB.

If such an index is missing, the query would take a longer time and use more

CPU cycles (Chen et al., 2014).

• R6 - Missing query limit: Causes longer DB requests. The good practice

is to limit the number of rows to be returned by the DB to what would be

consumed by the front-end, e.g., to be displayed. The bad practice is to fetch

all the rows then filter on the front-end. This results in unnecessary data rows

to be fetched from the DB (Chen et al., 2014).

• R7 - Not reusing DB connections: Causes excessive DB reconnections. The

good practice is to reuse database connections whenever possible (Gunther,

2000). Queries to the same database should reuse the same connection as the

first one. However, developers sometime create new connections for every

query. This results in unnecessary opening and closing of DB connections

which is often expensive in term of CPU and memory utilization.

• R8 - Adding log statements: Causes heavier I/O. Adding unnecessary log
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lines is a common mistake (Gunther, 2000). Log lines are usually required

when implementing a new feature. There is a tendency to leave the logging

statements behind in the source code when the software is finished. Unfortu-

nately, if the log lines are part of a hot code path, there will be much more

log printing in the field, which can lead to a drastic increase in I/O (Kabinna,

2016).

Use Real Performance Regressions

In many of the studies, we also use performance regressions that were found by the

performance engineering teams of the Commercial 1 and Commercial 2 software

systems. We determine the appropriate test runs and download the counters data

from the team’s performance test repository. In some cases, we also rerun the tests

with the same software versions that contain the performance regressions in our

lab. We rerun if we need to recollect the counter data or if we need to introduce

new performane regressions.

4.2.2 Evaluation Measurements

For studies with tagged performance counter data, we use two measurements of

accuracy: overall accuracy and gain (of Dayton Research Institute, 1963).

The overall accuracy is defined in Equation (4.1):

Accuracy =
|Success|

N
(4.1)

In 4.1, Success is the set of test runs when the prediction of the approach is the

same as the actual type. N is the total number of runs.

While the overall accuracy can indicate the success of the approaches, it does

not take into account the number of different possible outcomes. If there are two
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possible outcomes, an accuracy of 50% would be the same as a random choice. Such

approach is not useful at all. If there are four possible outcomes, 50% accuracy is

twice better than a random choice. Such approach would be somewhat useful since

they reduce the cost of inspecting all the possible outcomes manually by half. If

there are eight possible outcomes, the 50% accuracy would be more useful since

it is four times better than a random choice. The gain measurement captures this

notion of usefulness. It is the ratio of gained accuracy (of Dayton Research Institute,

1963) over the accuracy of a random predictor as defined in Equation (4.2):

Gain =
Accuracy

r
(4.2)

In the above equation, r is the accuracy of the random predictor, which is defined

in the following Equation (4.3):

r = 100 ∗
|Types|∑
i=1

(
|Runs per typei|

N
)2 (4.3)

We will also use the measurement of Precision and Recall in some studies using

the following formulas by comparing against the correct classification of a test:

Precision =
|classified bad runs ∩ actual bad runs|

|classified bad runs|
(4.4)

Recall =
|classified bad runs ∩ actual bad runs|

|actual bad runs|
(4.5)
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Table 4.1: Summary of the studies in this thesis

Study Studied
system

Evaluation Data
type

Part I: Identifying Performance Regressions Using Control Charts
Study 1: Identifying Injected

Performance Regressions
Commercial 1,

DS
Injected code
changes and

resource
contention

Untagged

Study 2: Identifying
Regressions in Industrial

Performance Tests

Commercial 1,
Commercial 2

Real performance
regressions

Tagged &
untagged

Part II: Determining Root Causes Using Control Charts
Study 3: Using Control Charts

to Determine Causes of
Performance Regressions

Commercial 2,
DS

Injected
performance
regressions

Tagged

Part III: Applying Control Charts in Practice
Study 4: Applying our control
charts based approaches into
commercial software projects

Commercial 2 Real performance
regressions

Tagged &
untagged

4.3 Studies

Table 4.1 lists all the studies that we conduct in the thesis. As stated in the problem

statement (Chapter 1, p.2), we want to derive approaches to answer three ques-

tions:

• Identify - Is there a performance regression? Study 1 and 2.

• Determine cause - What is the root-cause of a detected performance re-

gression? Study 3.

• Application - How well does our approach perform in practice? Study 4.

In Study 1 (Chapter 6 p.73) and Study 2 (Chapter 7, p.82), we want to deter-

mine if “control charts” is a good approach to identify performance regressions. For
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our first and preliminarily study, we first take the software from Commercial 1 and

conduct test runs which force resource contentions (Section 4.2.1, p.50). Then we

take the DS software and inject regressions into the code (Section 4.2.1, p.50). We

conduct the test runs with the original software and the modified software. In our

first study, we do not have any real performance regression data. Instead, we force

resource contentions for the Commercial 1 software system and inject regressions in

the DS software system. In Study 2 and 3, we leverage an industrial test repository

and apply control charts on real performance regressions. The main contribution of

Study 1 and Study 2 is to demonstrate that control charts can be used to identify

performance regressions in performance load tests.

In Study 3 (Chapter 8, p.96), after we establish that control charts can be used

to identify performance regressions, we leverage control charts to address other

tasks with which help performance teams need assistance. Identifying if there is

a performance regression is only the first step. Once a performance regression is

found, the performance testers need to find out what causes the regression. In

Study 3 (Chapter 8, p.96), we propose an approach that applies control charts and

machine learning algorithms to automatically identify the cause of a performance

regression using historical test data.

In Study 4 (Chapter 9, p.120), we apply our control charts based approach to the

testing of a commercial software system. We report the results and the feedback.



CHAPTER 5

Dealing with Data

5.1 Introduction

Throughout our studies, we found that dealing with performance regression test

data is challenging. In this chapter, we outline the solutions that we used to deal

with the three challenges that we found. In the next three sections, we describe in

detail each of the proposed solutions and evaluate their effectiveness:

• Varying Input (Section 5.2): During a performance test, performance testers

use load generators to simulate inputs from thousands of users. It maybe ben-

eficial to apply input load that fluctuates as it is usually the case in production.

However, varying the input load hinder identifying performance regressions.

This is the case for Commercial 1 software systems. We apply the solution

described here on all case studies that use the Commercial 1 software system

in this thesis.

56
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• Multimodal Counter Distribution (Section 5.3): There may be multiple

types of input load during a performance load test. For example, the users

can search a catalog and order items from an e-commence website. In such

case, the resulting performance counters might have a multimodal distribu-

tion: one for each type. We suggest a solution that removes the undesired

part of the distribution. We also apply this solution on all case studies that use

the Commercial 1 software system.

• Load independent counters (Section 5.4): During a test runs, most perfor-

mance counters would depend to the input load. For example, when there

are many users searching catalogs, the CPU utilization increases. However,

there may be performance counters that do not depend on the input load.

For example, the amount of cached results would stay the same as there is a

fixed limit. We suggest a solution that identifies and removes those counters.

We apply this solution on all case studies that use the Commercial 2 software

system in this thesis.

5.2 Varying Input

In performance regression testing, the same load is applied to both the baseline

and target version. In the case of the Commercial 1 software system, the load

driver would use a randomizer to create fluctuating load during each test. For

example if the load profile specifies a rate of 5,000 requests per hour, the load

generator will aim for 5,000 requests per hour in total using a randomizer. The

randomization of the load is essential to trigger possible race conditions and to

ensure a realistic test run. However, the randomization leads to varying inputs

throughout the different time periods of a test run. The impact of randomization on
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Figure 5.1: The performance counters of two test runs. The difference in perfor-
mance is not a performance regression since both runs are of the same version. The
difference (20% average) is due to differences in the actual load.

the input load and the output counters increases as a system becomes more complex

with many subcomponents having their own processing threads and timers. Even

in the DS system, which is a relatively small and simple system, the load driver

employs a randomizer. This randomizer makes it impossible to get two similar test

runs with the same effective load input.

If the input load are different between runs, it is difficult to identify performance

regressions since the difference in the counters can be due to the variations of the

input load instead of performance related changes in the code. Figure 5.1 shows a

performance counter of two different runs coming from two successive versions of

Commercial 1 (see Section 4.1 for more details). We divide the runs into eight equal

periods of time (x-axis). The y-axis shows the median of the performance counter
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during that period. The red line with round points is the baseline, which is from an

earlier build. The black line with triangular points is the target, which is from the

new build. According to documentation, these two runs are of the same version.

Yet, it turns out that they are different because of the variation in the effective input

load due to randomization of the load. The smallest difference is 2% in the eighth

period. The highest difference is 30% in the first period. On average, the difference

is about 20%. The actual load inputs are about 14% different between the two runs.

5.2.1 Proposed Solution

Our proposal is to scale the performance counter according to the load. Under nor-

mal load and for well designed systems, we can expect that performance counters

are proportionally linear to the load intensity. The higher the load, the higher the

performance counters are. Thus, the relationship between counter values and the

input load can be described with the following linear equation:

c = α ∗ l + β (5.1)

In this equation, c is the average value of the performance counter samples in a

particular period of a run. l is the actual input load in that period. α and β are the

coefficients of the linear model.

To minimize the effect of load differences on the counters, we derive the follow-

ing solution to scale each counter of the target run:

• We collect the counter samples (cb) and corresponding loads (lb) in the base-

line runs. For example, at the third minute the CPU utilization is 30% when

the load is 4,000 requests per minute. In the next minute, the load increases

to 4,100 so the CPU utilization increases to 32%.
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• We determine α and β by fitting counter samples, e.g. the CPU utilization,

and the corresponding load, e.g. the number of requests per second, into the

linear model: cb = α ∗ lb + β as in (5.1). The baseline runs usually have

thousands of samples, which is enough to fit the linear model.

• Using the fitted α and β, we can then scale the corresponding counter of the

target run (ct) using the corresponding load value (lt) as in (5.2).

ct = cb ∗
α ∗ lt + β

α ∗ lb + β
(5.2)

5.2.2 Evaluation

Evaluation Approach. The accuracy of the scaling solution depends on the accu-

racy of the linear model in Equation (5.1). To evaluate the accuracy of the linear

model, we use the test runs of Commercial 1.

We run a set of controlled test runs to build the linear model as in Equation (5.1).

The control runs use the same stable version. We pick a different target load for

each test. For example, if the first three runs have actual loads of 1,000, 1,200, and

1,000, we will aim for a load of 1,200 for the fourth run. This choice ensures that

we have enough data samples for each load level, i.e., two runs with 1,000 and two

runs with 1,200 in this example.

For each test run, we extract the total amount of load l and the mean perfor-

mance counter c for each period of the runs. Then we train a linear model to

determine α and β using part of the data. Then we can test the accuracy of the

model using the rest of the data. This evaluation approach is used commonly to

evaluate linear models. A common ratio for train and testing data is 2:1. We ran-

domly sample two-thirds of the periods to train the linear model. Then we use the
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Figure 5.2: The accuracy of the linear model in Equation (5.1). Left: The Spearman
correlations between the predicted and actual performance counter values of 50
random splits. Right: The differences between the predict and actual value in
relative percentage. 0% means no difference.

remaining one-third to test the model. We repeat this process 50 times to eliminate

any possible sampling bias.

Results. Figure 5.2 shows the result of our evaluation. The graph on the left

is the box plot of the Spearman correlation between the predicted and the actual

counter values. If the Spearman correlation nears zero, the model is a bad one. If

the Spearman correlation nears one, then the model fits well. As we can see, all 50
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Figure 5.3: The scaled performance counters of two test runs in Figure 5.1. We
scale each performance counter according to the load to minimize the effect of load
differences between test runs. The average difference between the two runs is only
9% as compared to 20% before scaling.

random splits yield very high correlations. The graph on the right is the box plot of

the mean error between the predicted and the actual counter values. As we can see,

the errors, which are less than 2% in most cases, are very small. These results show

that the linear model used to scale the performance counters based on the actual

load is very accurate.

Example. Figure 5.3 shows the performance counters of the two runs in Fig-

ure 5.1 after our scaling. The counters of the two tests are now very similar. As

we can see, after scaling, the target runs fluctuate closer to the baseline test. The

difference between the two runs is about 9% (between 2% to 15%) after scaling

compared to 20% (between 2% to 30%) without scaling (Figure 5.1).
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5.3 Multimodal Counter Distribution

Process output is usually proportional to the input. So the distribution of the

counter samples should be a uni-modal normal distribution (unless the load is

pushed to the maximum, as in stress testing, the counter distribution will skew

to the right).

However, the assumption here is that there is only one kind of effective load

input. If there are many kinds of input, the distribution of counters would be a

multi-modal distribution. The Commercial 1 software system is very susceptible

to this problem. Because the input load varies during the test, sometimes only

one kind of input is being exercised. Sometimes, the other kind of input is being

exercised. The Commercial 2 software system is not susceptible to this problem

because its input load stays constant during the test runs.

Figure 5.5a shows the normal QQ plot of a performance counter of Commercial

1. If the counter is uni-modal, its samples should form a diagonal straight line. As

we can see, the upper part of the data fluctuates around a diagonal straight line.

However, the lower end does not. Unfortunately, the data points at the lower end

are not outliers; they appear in all test runs of the Commercial 1 software system.

As such, the overall distribution is not uni-modal. A Shapiro-Wilk normality test on

the data confirms that with p < 0.05.

Figure 5.4a shows a density plot of a performance counter of two test runs of the

same software under test. These two runs come from two successive versions. The

green line with round points is the baseline run, which is based on an older version.

The red line with triangles is the target, which is from a new version. As we can

see in the graph, the distribution of the performance counters resembles a normal

distribution. However, the left tail of the distribution always stays up instead of

decreasing to zero.
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(a) Density plot of two test runs.
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(b) Density plot of another two different test runs. These two
runs are on a better hardware system so the left peak is much
higher than the two runs in Figure 5.4a.

Figure 5.4: Example of multi-modal performance counters

When the system is under a load input, the performance counters respond to

the load input in a normal distribution. However, in between periods of high load,

the performance counter is zero since there is no load input. The first point on the
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density plot for both runs is about 4%. Hence, the performance counter is at zero

for about 4% of the time during both test runs. The target run spent 5% of its time

at semi-idle state (the second point from the left on the red curve). When there is

no load, the system would usually perform bookkeeping tasks. These tasks require

only small amounts of resources. We can consider these tasks as a different kind of

load input. These secondary tasks create a second peak in the distribution curve,

which explains the long tail in the QQ plot of Figure 5.5a.

Unfortunately, this is a common behaviour. For example, on a web server, a web

page would contain images. When a web page is requested by the client, the web

server has to process and serve the page itself and its associated images. The CPU

cycles required to process an image are almost minimal. Web pages, on the other

hand, require much more processing since there might be server side scripts on

them. Thus the distribution of the CPU utilization would be a bi-modal distribution.

The main peak would correspond to processing the web pages. The secondary peak

would correspond to processing the images.

In the Commercial 1’s software system, only 16% of the studied test runs are

uni-modal. We confirm that these runs are, in fact, normal as confirmed by Shapiro-

Wilk tests (p > 0.05). The majority of the runs, which is about 84%, have a bi-modal

distribution similar to that of the target run in Figure 5.4a. In the bi-modal runs,

the left peak corresponds to the idle-time spent on book-keeping tasks. The right

peak corresponds to the actual task of handling the load. The relative scale of

the two peaks depends on the capacity of the hardware. The more capable the

hardware, the more time the system idles, i.e., the left peak will be higher. The

less capable the hardware, the less time the system has to idle because it has to use

more resource to process the load. The right peak will be higher and the left peak

might not be there. The two runs shown in Figure 5.4a are on relatively standard

equipment. Figure 5.4b shows another two test runs that are performed on more
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capable hardware configurations. As we can see, the left peaks in the density plots

are more prominent in the runs with more capable hardware.

5.3.1 Proposed Solution

Our proposed solution is to filter out the counters’ samples that correspond to the

secondary task. To implement the filtering solution, we derive a simple algorithm

to detect the local minima, i.e., the lowest point between the two peaks of a bi-

modal distribution. Then, we simply remove the data points on the left of the

local minima. The algorithm is similar to a high pass filter in an audio system.

For example, after the filtering is applied, the first three points on the target run’s

density plot in Figure 5.4a (the red line with triangles) would become zeros.

An alternative solution is to increase the load as the server hardware becomes

more capable. The increased load will make sure that the system spends less time

idling and more time processing the load, thus, removing the left peak. However,

artificially increasing the load for the sake of normality defeats the purpose of per-

formance regression testing and compromises our ability to compare new tests to

old tests.

5.3.2 Evaluation

Evaluation Approach. To evaluate the effectiveness of our filtering solution, we

pick three major versions of Commercial 1 with which we are most familiar. For

each run of the three versions, we generate a QQ plot and run the Shapiro-Wilk

normality test to determine if the runs’ performance counters are normal. Then, we

apply our filtering solution and check for normality again.

Results. We first manually inspect the density plots of each run in the three

versions. About 88% of the runs have a bi-modal distribution. About 66% do not
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(a) Normal QQ plot of CPU utilization counters. We show
only 100 random samples of CPU utilization from the run to
improve readability.
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(b) Normal QQ plot of the performance counters after our
filtering process. The data is the same as in the QQ plot of
Figure 5.5a. After we remove the data that corresponds to
the idle-time tasks, the distribution becomes normal.

Figure 5.5: Example of our solution to normalize performance counters
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have a normal distribution, i.e., the Shapiro-Wilk tests on these runs return p < 0.05.

If the left peak is small enough, it will pass the normality test. After filtering, 91%

of the non-normal runs become normal. We believe the result demonstrates the

effectiveness of our filtering.

Example. Figure 5.5b shows the QQ plot of the same data as in Figure 5.5a after

our filtering solution. As we can see, the data points are clustered more around the

diagonal line. This means that the distribution is more normal. We perform the

Shapiro-Wilk normality test on the data to confirm. The test confirms that the data

is normal (p > 0.05). We can now use the counter data to build a control chart.

5.4 Load independent counters

The goal of performance regression analysis is to detect the changes in the perfor-

mance counters, which are collected using various tools during test runs, to identify

performance regressions. However, one will find that some performance counters

are not related to the load, i.e., they will change regardless of the inputs to the sys-

tem. For example, the amount of cache used for disk IO would change periodically.

Counters that are related to other software that are not related to the one being

under load would also change. Other examples are pruning processes. Pruning

processes are invoked once in a while to re-index the system internal data storage.

The performance of such processes depends on a timer instead of the system’s input

load.

These load independent counters are likely to introduce false positives in our

analyses. This is true even if we do not use control charts to compress the counter

data. We need to find a solution to remove such counters from the pool of to-be-

analyzed counters.
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5.4.1 Proposed Solution

Our solution is to identify those counters using two normal tests. We first run

the performance test with one version of the software that does not have known

performance regression. We run the same test again. Afterward, we build control

charts for each counter. If there are counters with high violation ratios (even when

there is no change in the software), these counters would be the ones that are likely

to yield false positives.

5.4.2 Evaluation

Both the Commercial 1 and Commercial 2 software systems are susceptible to the

problem of load independent counters. To evaluate our approach, we apply this

data treatment on an analysis of the Commercial 1 software system.

The goal of our analysis is to identify the software process that exhibits regres-

sion behaviour. Similar to Study 1 (see Section 6.2), we conduct test runs of the

Commercial 1 software system. During the test runs, we apply forced resource con-

tentions to the front end and a back end process. We create the following pair of

tests:

• Normal: The baseline is the Normal run. The target is another normal run.

We expect to see no regression in this pair.

• P1a: The baseline is the Normal run. The target is the run with 50% forced

CPU contention in the front end (the P1a run). We expect to see a performance

regression in the front end’s counters in this pair.

• P1b: The baseline is also the Normal run. The target is the run with 75%

forced CPU contention in the front end (the P1b run). We expect to see a

performance regression in the front end’s counters in this pair.
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Table 5.1: The ten most out-of-control counters in Commercial 1’s test runs

Norm. Vio% P1a Vio% P2a Vio% P1b Vio% P2b Vio%
FE* 98% FE 100% FE* 100% FE 100% FE* 95%
FE* 83% FE 98% BE 98% FE 100% BE 93%

oBE* 58% FE* 93% BE 98% FE 100% BE 93%
FE* 23% FE 78% BE 98% FE 100% BE 93%
BE 8% FE 75% BE 98% FE 100% BE 91%
BE 8% FE 75% FE* 81% FE 100% FE* 83%
BE 6% FE 73% oBE* 70% FE 100% oBE* 53%
BE 6% oBE* 61% BE 25% FE* 98% FE* 41%
BE 5% oBE 46% FE* 25% FE* 71% FE 20%
BE 5% FE* 43% oBE 15% FE* 66% oBE 10%

FE - front end, BE - back end, oBE - the other back end
* - counters that are identified as load independent counters

• P2a: The baseline is also the Normal run. The target is the run with 50%

forced CPU contention in the back end (the P2a run). We expect to see a

performance regression in the back end’s counters in this pair.

• P2b: The baseline is also the Normal run. The target is the run with 75%

forced CPU contention in the back end (the P2b run). We expect to see a

performance regression in the back end’s counters in this pair.

Table 5.1 shows the top 10 counters by violation ratio. If the counter belongs

to the front end process, we label it as FE. If the counter belongs to the back end

process, we label it as BE. If the counter belong to other processes, we label it as

oBE. For P1a and P1b, we should see the top counters with label FE as we force

resource contentions on the front end process. For P2a and P2b, we should see

the top counters with label BE as we force resource contentions on the back end

process.

We apply our solution to identify load independent counters. We use the two
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Normal runs and mark all the counters that have more than 10% violation ratio.

In Table 5.1, we mark these counters with a ”*”. In the Normal vs Normal run, we

are able to identify four counters that always have high violation ratios (in the first

column group from the left). We mark these four counters with ”*” on the rest of

the test pairs.

As we can see, these counters show up in the top 10 counters for the other

regression cases: 3 for P1a and P1b (second and third column group) and all 4 for

P2a and P2b (third and fifth column group). Once we remove these counters, the

results are much clearer. For example, once we remove the three load independent

counters for the P1a case, all the remaining counters in the top 10 are those of the

front end. The front end is the regression’s location, so the result is as expected.
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CHAPTER 6

Study 1: Identifying Injected Performance Regressions

6.1 Introduction

In this first and preliminary study, we showcase how we can use control charts to

reduce performance counter data. We derive a with-untagged-data approach which

analyzes the reduced data to classify a load test run as good or problematic. For our

first study, we use the force resource contention method and injected performance

regressions method (see Section 4.2 p.49) to evaluate our control charts based ap-

proach. We use the Commercial 1 and DS (see Section 4.1 p.48) software systems

for this study.

The chapter is organized as follows. Section 6.2 explains the setting and exper-

imental design of our case studies. Section 6.3 shows the results. We discuss our

findings and conclude in Section 6.4.
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Table 6.1: Configuration of the Dell DVD store load generator

Property Value
Database size Medium (1GB)
Threads 50
Ramp rate 25
Warm up time 1 minutes
Run duration 60 minutes
Customer think time 0 seconds
Percentage of new customers 20%
Average number of searches per order 5
Average number of items returned in each search 5
Average number of items purchased per order 5

6.2 Case Studies

6.2.1 Study setting

We use the Commercial 1 and DS software systems (see Section 4.1 for an introduc-

tion about these systems) in this study:

• For Commercial 1, the details are explained in Section 4.1. We install the

software in a lab with the same components as required in its production

environment.

• For DS, Table 6.1 shows our configuration for the load generator so others can

replicate our analyses if needed. The front end web server is an Apache Tom-

cat application server (The Apache Software Foundation, 2010). The backend

database is a MySQL database server (MySQL AB, 2011). We host each com-

ponent on a separate server with a single-core Pentium 4 processor at 3.2 Ghz

with 4 GB of RAM.
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6.2.2 Experiment Design

We run two types of tests on both the Commercial 1 and the DS systems:

• The first type is the good runs. We pick a very stable version of the Com-

mercial 1 software system and push it through a stable load profile. For DS,

we perform the test runs using the profile that is specified in Table 6.1. Both

systems perform comfortably under these load profiles. For DS, the CPU uti-

lization of the web server is about 40% on average. The CPU utilization of

the database server is about 50% on average. Neither system is sensitive to

memory or disk IO.

• The second type of test runs is the problematic test runs which are test runs

with simulated performance anomalies. We apply the same load on both sys-

tems as in the good runs. However, we simulate different anomalies to either

the front end server or one of the back end servers.

Table 6.2 outlines the four anomalies that we simulate. Since we cannot alter

the code of Commercial 1, we employ the force resource contention method (see

Section 4.2.1) to simulate performance regressions in the front end’s code (P1) in

both systems by starting a separate process with realtime priority that uses about

50% (P1a) and 75% (P1b) of the CPU time. This process will compete with the

actual service processes for CPU cycles. This first change forces the front end code

to perform about 10% and 25% worse on DS. We apply the same method on one of

the back end servers of Commercial 1 and the MySQL database server of DS (P2).

This second change will slow down the backend subsystem.

Since we can alter the code of DS, we employ the inject performance regressions

method (see Section 4.2.1) to introduce performance regressions. We introduce

two changes to the code. The first change is a busy waiting loop in the credit
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Table 6.2: Problems introduced to simulate problematic test runs

Problem ID System Description
P1a P1b Both CPU hog a) 50% and b) 75% of CPU on

the front end server
P2a P2b Both CPU hog a) 50% and b) 75% of CPU on

one of the back end servers
R2 DS Busy waiting in the front end server code
R3 DS Extra query to the database back end

card processing function (R2). This first change slows down the Tomcat front end

process about 15 milliseconds per ordered item. The second change is to issue extra

calls to the MySQL server (R3). This second change slows the MySQL server down

to about 50% of its original capacity. More details on R2 and R3 can be found in

Section 4.2.1.

6.3 Result

We refer to a pair of baseline and target runs as a test pair. For example, Normal

→ Normal means that we build control charts using a normal run and test another

normal run.

In a Normal → Normal pair, we build a control chart for a good baseline run.

This control chart represents the normal behaviour of the software. Then we pick

a target run which is also a good run. We determine the violation ratio of the

target run using the control chart of the baseline’s counter. If the violation ratio

is relatively low, then our control charts based approach performs well since the

target run is supposed to be within the control limits. Hence, the run should be

marked as good. A high violation ratio for the Normal → Normal pair means that

the counter’s behaviour is too random for a control chart. Hence, our control chart
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Table 6.3: Study 1 results

Test pair
Violation Ratio

Commercial 1 DS
Normal→ Normal 4.67% 12.37%

Normal→ P1a 18.51% 100%
Normal→ P1b 94.33% 100%
Normal→ P2a 11.11% 100%
Normal→ P2b 15.09% 96.66%
Normal→ R2 N/A 28%
Normal→ R3 N/A 100%

base approach performs poorly.

On the other hand, if we pick a target run that is a problematic run with one of

the anomalies in Table 6.2, the violation ratio should be relatively high. The counter

of the problematic target run should be mostly outside the control limits. So the

run should fail. On contrary, if the violation ratio is low, then our control charts

based approach is not useful since it cannot distinguish between a problematic and

a good run.

In both case studies, we only use the response time counter to identify perfor-

mance regressions. The response time counter was identified by the Commercial 1’s

performance testers as the main indicator of performance regressions. In later stud-

ies, we do use all of the collected counters for both Commercial 1 and DS software

systems.

For the control chart limits, we use the 1th percentile and the 99th percentile for

the lower and upper control limits respectively. These limits are equivalent to about

±3 standard deviations from the mean response time.

Table 6.3 shows the violation ratio for different test pairs for both studied sys-

tems. As we can observe, when we use a control chart to verify a good run against
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Figure 6.1: Control chart of a good baseline run with a good target run in Commer-
cial 1 (Normal→ Normal)
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in Commercial 1 (Normal→ P2a)



CHAPTER 6. STUDY 1 80

another good run (Normal → Normal), the average violation ratios are relatively

low at 4.67% and 12.37% for Commercial 1 and DS respectively. Figure 6.1 shows

an example of a control chart with a good baseline run and a good target run in

Commercial 1. The x-axis shows the timeline of the test run. The y-axis shows the

response time. As we can see, most of the target run’s response times are within

the control limits set by the baseline. This result indicates that control charts based

approach can actually mark a good run as a good run.

On the other hand, the violation ratio is relatively high when the target runs

are problematic. For the Commercial 1 system, if we mark all runs with a violation

ratio that is higher than 10% as problematic runs, we should be able to mark all

problematic runs for further inspection. For the DS system, if we mark all runs

with a violation ratio that is higher than 15%, we can catch all the problematic

runs. Figure 6.2 shows an example of a control chart with a good baseline run and

a problematic target run for Commercial 1 (Normal → P2a). This target run has

the P2a anomaly. As we can observe, there are more data points (response time

samples) outside of the control limits set by the normal run. For R2 and R3, both

runs of DS exhibit a high violation ratios when compared to a normal DS run. These

results indicate that our control charts based approach can automatically verify the

result of load test runs.

Interestingly, despite being much a simpler and smaller system, the counter fluc-

tuations in DS are much higher. When the target runs are normal, the average viola-

tion ratio is 12.37% compared to 4.67% on the Commercial 1 system. Commercial1

is a commercial product which undergoes constant performance engineering tests.

DS, on the other hand, is a sample application that is not as throughly tested.
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6.4 Conclusion

Our preliminary study shows that a control charts based approach can automatically

determine if a test run is normal or problematic. Our control charts based approach

has a large potential application in practice because the approach reduces the need

for the human intervention in the load test verification process. For example, the

development team can set up their build system to automatically perform load tests

in the same fashion that unit tests are automated. When a developer checks in a

new code, the build system will perform the integration build. Then it starts the

load test and records the counters. Then the build system can count the violation

ratio of the new run on control charts of past test runs. If the violation ratio is too

high, the developer can be notified immediately. Being able to understand the per-

formance impact of their code right away would make developers more conscious

about performance (Kamei et al., 2016). Such ability can have a strong potential

impact on the performance of software products like what unit tests have done for

functional verification.

However, as a preliminary study, we only use the force resource contentions and

injected performance regressions methods to simulate performance regressions. It

would be early to conclude that our control charts based approach works based on

just this preliminary study with injected faults. So, in the next study, we attempt to

apply our control charts based approach to identify performance regressions based

on data from real performance load test runs.



CHAPTER 7

Study 2: Identifying Regressions in Industrial Performance Tests

7.1 Introduction

Chapter 6 describes our preliminary examination of the use of control charts for

performance testing. The main limitation of that study is that we use injected data,

i.e., there was no input from testers and we did not use any real data. So in this

second study, we want to have input from the testers and use real data to evaluate

if we can use our control charts based approach to distinguish between real test

runs with performance regressions and those without. To evaluate our approach,

we conduct three case studies on Commercial 1 and Commercial 2 (see Section 4.1,

p.48).

The chapter is organized as follows. Section 7.2 presents our approach and case
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study design. Section 7.3 explains how we evaluate our case studies. Section 7.4

discusses the results of our case studies. We conclude in Section 7.6.

7.2 Approach and Case Studies

7.2.1 Case Study 1: Commercial 1

Our industrial partner maintains a repository of the results of the performance re-

gression test runs for the Commercial 1 software system. As explained in Chapter 3,

the Commercial 1 system is a typical multiple-tier server client architecture. Perfor-

mance testers perform performance regression tests at the end of each development

iteration. The tests that we use in this study exercise load on multiple components

residing on different servers. The behaviour of the components and the hardware

servers is recorded during the test run. The testers then analyze the performance

counters. After the runs are analyzed, they are saved to a repository so testers can

compare future test runs with these runs.

We pick a few recent versions of the Commercial 1 software system. We pick 110

runs in total. These runs include past normal runs without performance regressions

and failed runs with performance regressions.

The main focus of the performance regression testing for the Commercial 1 sys-

tem is to keep the CPU utilization low because the testers already know that CPU is

the most performance sensitive resource. So we extract the test runs’ CPU utiliza-

tion counters from the repository.

We build the control charts using the method that we detailed in Chapter 3.

Unfortunately, we do not know which test run is the baseline of which. So we adopt

a leave-one-out approach to build the control charts. For each test, we use the CPU

utilization counter of that test as the target. Then we take a random sample of the
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CPU utilization counter of all the other tests as the baseline test. We use the random

sampled baseline data to calculate the control limits. These control limits are, then,

used to score the target test. So for each test run, we will have the violation ratios

for the CPU utilization counter.

7.2.2 Case Study 2: Commercial 2

The purpose of this case study is to show, in details, how our control charts based

approach works with real performance regressions using multiple counters.

We pick a release of the Commercial 2 software system. During the time frame

of one of the major release iteration, there was one major performance regression

that was uncovered by the software system’s performance team. We take the build

that contains the regression and conduct three performance load tests:

1. Baseline run 1: This run is with a build without the regression.

2. Baseline run 2: This run is with another build without the regression.

3. Target run: This run is with the build that has the regression.

7.2.3 Case Study 3: Commercial 2

Similar to case study 1, we collect 22 test pairs of a newer release of the Commer-

cial 2 software system. Unlike case study 1, we know that 11 of the pairs have

performance regressions that were identified by the testers. We also collect 11 test

pairs without performance regressions so there is an equal number of tests with and

without regressions. Also, similar to case study 2, we consider all the performance

counters in case study 3 instead of just the CPU utilization as in case study 1.
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7.3 Evaluation

7.3.1 Case study 1: Commercial 1

For each test run, we ask the testers to determine if the run contains performance

regressions, i.e., it is a failed run, or not, i.e., whether it is a normal run. We used

the testers’ evaluation instead of ours because we lack domain knowledge and may

be biased.

We compare our classifications with the testers’ classification and report the per-

formance. However, we need to decide on a threshold, t, such that if the violation

ratio Vx > t, run x is marked as a failed run. We explore a range of values for t, to

understand the sensitivity of our approach to the choice of t. At each t, we report

the Precision, Recall, and F-measure of our classification compared to the tester’s

classification.

7.3.2 Case study 2: Commercial 2

We build control charts to identify regressions between:

1. Normal-Normal pair: Baseline run 1 versus 2: If our approach works, the

control charts should indicate that no regression exists.

2. Normal-Failed pair: Baseline run 1 versus Target run: Because the Target

run in our case study has a known performance regression, the control charts

should indicate that there is a regression.

For each pair, we show the violation ratios as defined in Section 3.2.2 for the top

counters.
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Figure 7.1: The performance of our control charts based approach compared to the
testers’ evaluation in case study 1.

7.3.3 Case Study 3: Commercial 2

Similar to case study 1, we compare the control charts based approach classifica-

tions with the real classification (normal versus failed) of the test pairs using the

same analysis.
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7.4 Results

7.4.1 Case Study 1: Commercial 1

Figure 7.1 shows the Precision, Recall, and F-measure (see Section 4.2.2) when

comparing the control charts classifications with the testers at different thresholds.

The threshold increases from left to right. We hide the actual threshold values for

confidentiality reasons. When the threshold increases, we mark more runs as failed,

in which case the Precision (blue circles) increases but the Recall (red triangles)

decreases. The F-measure (brown pluses) is the highest when the Precision is at

75% and the Recall is at 100%.

Our approach can identify test runs with performance regressions at a Precision of

75% and a Recall of 100% when applied on real test data.

7.4.2 Case Study 2: Commercial 2

Table 7.1 shows the top 10 counters by average violation ratio (see Section 3.2.2

for definition) for the Normal-Normal pair. The Normal-Normal pair represents the

runs with builds that have no performance regressions. As we can see here, all the

average violation ratios are very low.

Table 7.2 show the top 10 counters by average violation ratio (see Section 3.2.2

for definition) for the Normal-Failed pair. The target test in this case contains a

known performance regression. As we can see, all of the counters in Table 7.2 have

a lower or upper violation ratio of 100%.

The results from Table 7.1 and Table 7.2 show that control charts are able to

accurately identify the performance regressions in our case study. For the Normal

pairs, all the violation ratios of the 10 most out-of-control counters are very low. For

the Regression pairs, all the violation ratios of the 10 most out-of-control counters

are very high.
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Table 7.1: The ten most out-of-control counters in Normal-Normal pair

Counter Vio Lower
%

Vio Upper
%

Vio Aver-
age %

TG A Thread 1 Last Write Unsecured ms 0 0.073 0.037
TG A Thread 24 Last Write Secured ms 0 0.073 0.037
TG A Thread 1 Last Write Secured ms 0 0.073 0.037
TG A Thread 28 Last Write Secured ms 0 0.049 0.024
TG A Thread 14 Last Write Secured ms 0 0.049 0.024
Current Time-Waited DB Connections 0 0.049 0.024
Last Write Secured ms 0 0.049 0.024
Online Users 0.073 0 0.037
Current connections 0.073 0 0.037
Open File Descriptor Count 0.073 0 0.037

7.4.3 Case Study 3: Commercial 2

Figure 7.2 shows the Precision, Recall, and F-measure (see Section 4.2.2 p.52) when

comparing the control charts classifications with the testers’s (i.e., correct) classi-

fications at different thresholds. The threshold increases from left to right. We

hide the actual threshold values for confidentiality reasons. When the threshold

increases, we mark more runs as failed, in which case the Precision (blue circles)

increases but the Recall (red triangles) decreases. The F-measure (green pluses) is

maximized when the Precision is about 91% and the Recall is at 100%.
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Table 7.2: The ten most out-of-control counters in Normal-Failed pair

Counter Vio Lower
%

Vio Upper
%

Vio Aver-
age %

Committed Virtual Memory Size 0 1 0.5
Memory Buffers KB 0 1 0.5
CPU Utilization Total System 0 1 0.5
CPU Utilization Total Idle 1 0 0.5
CPU Utilization Cpu0 Soft IRQ 1 0 0.5
Retrieve Total Delayed Requests With Re-
sults

1 0 0.5

Network Utilization Eth0 Sent p/s 1 0 0.5
Network Utilization Eth0 Received B/s 1 0 0.5
Network Utilization Eth0 Received p/s 1 0 0.5
Garbage Collector PS Marksweep LastGC
Duration

1 0 0.5

7.5 Discussion

7.5.1 Can Our Control Charts Based Approach Be Used to Iden-

tify Performance Regressions?

In case study 1, the best F-measure is achieved when the Precision is at 75% Preci-

sion and the Recall is at 100% (see Figure 7.1). Hence, at the best threshold, our

approach can identify all the performance regressions runs with about a 25% false

positive. Performance testers would need to double check the classifications of our

approach to rule out such false positive runs. While the performance of our ap-

proach is not perfect, we are expected to have non-perfect results in this case study

as we do not know which tests are normal or failed in this case study. The test

runs in the Commercial 1’s repository is not marked. The testers did not identify

the baseline of the tests in the repository. So, the baseline is sampled data from all

other tests including the failed ones. Hence, the baseline’s control limits might also
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Figure 7.2: The performance of our control charts based approach compared to the
correct classifications in case study 3.

include out of control data.

In case study 3, we do know the baselines of all the tests and whether each test

is normal or failed beforehand. So the baseline data is from the actual baseline test

of a particular test run. The reported performance of our approach is better. The

F-measure is maximized when the Precision is about 91% and Recall is at 100%

(see Figure 7.2). Hence, our false positive rate is only 9% compared to 25% of case

study 1.
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7.5.2 Why Are There False Positive Cases in Our Approach?

According to case study 2, the counters of the Normal-Normal pairs have very low

violation ratios. The highest average violation ratio is 0.037% (see Table 7.1). For

the Normal-Failed pairs, the violation ratios for a few counters are high. Table 7.2

shows that at least 10 of the counters have very high average violation ratio. So

why is it that we have 9% false positive in case study 3?

The problem is the number of counters. Our approach takes the average of all

the average violation ratios (of all the counters) in a test pair and compares that

average with a fixed threshold. The average depends on the number of counters

that are impacted by the regression. Some regressions might affect a large number

of counters. However, other regressions only affect a small number of counters.

When the number of affected counters is small, it is hard distinguish between the

normal and the failed pairs because the change in the average would be small.

To demonstrate that the number of counters has an effect on performance, we

rerun the analysis for case study 3. This time, instead of taking the average of the

average violation ratios (of all the counters), we only take the average of the top

50% of the counters (based on the average violation ratios). Figure 7.3 shows the

Precision, Recall, and F-measure. Compared to the original analysis (Figure 7.2),

the best F-measure is achieved at a Precision of 100% and a Recall of 100% instead

of just a Recall of 91% as in the original analysis.

So, with some tuning, one can achieve very high performance with our control

charts based approach. Unfortunately, the number of counters that should be con-

sidered during the analysis would depend on how the counters are implemented

and how the regressions would affect the counters. These two factors are different

from one software system to another.
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Figure 7.3: The performance of our control charts based approach compared to the
correct classifications in case study 3 when we only consider the only top 50% of
the counters based on the average violation ratios.

7.5.3 Which Threshold Should Be Used?

In case study 1 and case study 3, we show the performance of our approach over

a range of thresholds (Figure 7.1 and Figure 7.2). An obvious question would be:

What threshold should one use if one wants to implement our approach?

A fixed threshold for every performance regression is difficult to determine. As

we showed in the previous subsection, the Precision and Recall are affected by the

number of counters that were influenced by the performance regressions. Hence

choosing a threshold should be a tuning exercise.
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We propose this approach to start with: One can use the maximum of the aver-

age violation ratios of all the normal pairs as the threshold. For case study 3, that

number would correspond to threshold 7. The best threshold is 5. So it would not

be a good choice. For the analysis in Figure 7.3, that number would correspond to

threshold 6. At this threshold, the Precision and Recall are both at 100%. So it is a

good choice.

Unfortunately, the threshold changes from software to software and from regres-

sion to regression. More importantly, our experience working with the Commercial

2 project shows that the definition of a regression also changes over time. In earlier

releases, when there are many code changes and the number of users is small, a rel-

atively small increase in resource utilization would not be considered a regression.

However, as the software matures and there are more users, a change of the same

amount in resource usage would be considered a regression.

So choosing a threshold definitely requires some adjusting depending on the

software system, its maturity, its criticality, and the nature of the regressions.

7.6 Conclusion

In Chapter 6, we show that control charts can identify performance regressions

which we injected into the under-test software system. In this chapter, we show

that control charts can identify performance regressions from industrial perfor-

mance load tests. Our case studies include all the test runs for a few releases of

the Commercial 1 software system, a performance regressions that were identified

in one release of the Commercial 2 software system, and series of test runs for a

major release of Commercial 2 software system. In all three case studies, we show

that our control control charts based approach can identify the performance regres-

sions that were manually identified in practice. From both Study 1 and Study 2, we
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can conclude that our control charts based approach can be used to automatically

identify performance regressions in performance load tests.



Part III

Determining Root Causes Using

Control Charts
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CHAPTER 8

Study 3: Using Control Charts to Determine Causes of

Performance Regressions

8.1 Introduction

The previous part of this thesis mainly dealt with identifying performance regres-

sion in a new test run. That is the first goal as mentioned on the thesis’s problem

statement (Chapter 1, p.2). The second goal is to determine the possible causes of

the identified performance regressions. Once a performance regression is identified,

the performance team must also provide guidance to the development team as to

what the possible causes (e.g., added fields in a long-living object) are. Developers

use such guidance to narrow down their investigation to the offending change(s). In

an ideal setting, performance tests would be run after each checkin so the causes of

regressions could be easily mapped to the very specific checkins (i.e., code change).

96
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However, given the complexity of performance tests (e.g., requiring large lab se-

tups, complex manual configurations, and lengthy executions times), per-checkin

performance tests are rarely feasible in a large scale industrial setting. Instead per-

formance tests are conducted across versions which often contain a large number of

changes. Hence determining the cause of an identified regression (which we call as

a regression-cause in the rest of the chapter) is often a very time consuming effort –

requiring hours or even days, depending on the experience of the testers, the com-

plexity of the system, and the performance regression itself. The testers would need

to use their experience to match the behaviour of the performance counters with

the new code or configuration changes. Then, the testers would need to remove

the change that is in doubt from the code. The testers would also need to rerun

the performance test to confirm if the removed change is indeed the cause of the

detected regression.

In this chapter, we investigate a control charts based approach to automate the

process of determining regression-causes. We use data mining techniques to learn

the cause of the performance regression from historical performance test runs that

already have verified regression-causes. Then we match the behaviour of a new test

run (through the performance counters) to determine the regression cause in the

new test run.

We evaluate our approach using the Commercial 2 and the DS systems (see Sec-

tion 4.1). Using the two case studies, we answer the following research questions:

• RQ1: How accurate is our approach? We find that in 74%-80% of the cases,

the regression-cause that was determined by our approach was indeed the

actual cause.

• RQ2: How much training data is needed? Since the number of historical

performance regressions might be limited, we examine the amount of training
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data that is needed by our approach. We find that, even though having more

training data improves the performance of our approach, we can get high

accuracy with as little as four runs per regression-cause.

The chapter is organized as follows. Section 8.2 introduces regression-causes

and the challenge determining regression-causes. Section 8.3 explains the details of

our approach. Section 8.4 introduces the two case studies that we used to evaluate

our approach. Section 8.5 presents the results for our two research questions. We

conclude in Section 8.7.

8.2 Background

8.2.1 What Are Performance Regression Causes?

To answer this question, we study the performance regressions causes that were

reported by the Commercial 2 team over a period of one year. With the help of the

testers, we analyze the content of bug reports using an approach similar to Jin et

al. (Jin et al., 2012), where bug reports were manually analyzed and grouped into

different types of causes.

Table 8.1: Typical performance regression causes for Commercial 2 software project

Type Regression-cause %
R1 Added frequently accessed fields and objects 30.18%
R2 Added frequently executed logic 16.67%

R3 & R5 Added frequently executed DB query or miss matched
DB indices

30.54%

R8 Added blocking I/O access: 5.55%
N/A Symptom of regression is identified (e.g., response

time increased) but no regression-cause can be
determined.

16.67%
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Table 8.1 shows a breakdown of the various causes of regressions over a one-

year period (only percentages are shown due to confidentiality reasons). We name

the regression-causes according to the wording in the bug reports. However, these

regression-causes are widely exhibited in practice with similar names. Altman et

al. (Altman et al., 2010) and Malik et al. (Malik et al., 2013) also report similar

regression-causes, e.g., Memory Leak, Database Bottleneck, or Disk I/O. We ex-

plained, in more details, the different regression types in Section 4.2.1.

As we can see, four of the regression-causes can explain 82.94% of the encoun-

tered regression problems throughout a year. Only for 17% of the identified per-

formance regressions, no regression-cause was identified. Such cases are common

since not all performance metrics are exposed. These cases usually require exten-

sive debugging.

8.2.2 What are the Challenges of Analyzing the Results of Per-

formance Tests?

Unfortunately, determining the regression-cause is not a simple task because:

• As we mentioned in Chapter 1, there exists a large amount of counters. Apart

from the standard OS level counters, system-specific counters are also added

to monitor the activities of different components. It is possible to have thou-

sands of counters for each test run.

• Most performance regressions change a combination of counters. For exam-

ple, if a database index is missing, both the CPU utilization and memory are

likely to increase. If the database slows down, the front end will have to wait

more for queries to return. Hence, the front end will use less CPU. Thus,

looking at just one counter would not be sufficient.
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Yet, the analysis of the test results is usually done manually - a very time consum-

ing and error-prone process (Jiang et al., 2008). To analyze this massive amount

of counter data, performance testers usually have to rely on their experience and

gut feelings when selecting a subset of counters to manually compare. It can take

several hours or even days to analyze each performance test.

8.3 Approach

Software companies sometime maintain a repository of regression test results. An

example of that is the Commercial 2 software system. We leverage the regression

test repository of Commercial 2 in our Second Study (see Chapter 7). Based on

our prior experience with mining software repositories, we believe that we can also

leverage information from prior tests in such repository to aid with the regression

cause analysis as well.

As explained in Chapter 2 (p.6) and Chapter 3 (p.39), there are two conceptual

steps for our approach:

• Step A - Data reduction: As in the previous studies, we reduce the counter

data into a smaller set of data using control charts as explained in Section 3.2

(p.40). Thus a simpler and easier to understand performance counter dataset

is created for use in the next step of our approach.

• Step B - Identify regression and determine regression-cause: Using ma-

chine learning techniques, we match the regression-cause of the current test

run with the regression-cause of historical runs. One of the regression-cause

is “Normal”, which means there is no regression. So we can say a) whether a

regression occurred and b) what is the probable cause of that regression.



CHAPTER 8. STUDY 3 101

8.3.1 Step A: Data Reduction Using Control Charts

We first reduce the data by applying our control charts based approach for data

reduction as outlined in Section 3.2 (40). The resulting data for analysis is similar

to the example in Table 8.2. Each row represents a test run (with relation to its

baseline test run). Each column is the violation ratio of the corresponding counter

when comparing the target run against its baseline run. We have one column for

each counter of every component of the software. For example, if we have 15 com-

ponents and each component has 36 counters (the standard counters that Microsoft

Windows collects for a process), we will have 15 ∗ 36 = 540 columns.

The top part of Table 8.2 shows the historical tests which are stored in a repos-

itory. The last column shows the determined cause of the performance regression

in that run. If there is no regression, the regression-cause would be R0 (‘Normal’).

If there is a performance regression, the verified regression-cause is recorded. For

example, in the first row, there is no performance regression, so the regression-

cause is R0 (‘Normal’). In the second row, there is a performance regression due to

adding code to a frequently accessed logic, so the regression-cause is recorded as

R2 (‘Added hot code’) (see Section 4.2.1 for a detailed explanation of the various

Table 8.2: Example of the data that is used in the machine learning of Step B.

Co.X = Counter X, and VR = Violation Ratio
Data Co.1

CPU
VR

Co.2
Mem
VR

Co.3
Net
VR

... Co.n
VR

Regression-
Cause

(see Sec. 4.1)
3% 5% 6% ... ... R0
14% 0% 3% ... ... R2

Historical 13% 2% 5% ... ... R2
test runs 3% 23% 4% ... ... R1

3% 4% 2% ... ... R0
... ... ... ... ... ...

New test run X1 X2 X3 ... Xn ?



CHAPTER 8. STUDY 3 102

regression-causes).

8.3.2 Step B: Determining the Regression Types Using Machine

Learners

The last row of Table 8.2 is the new test run, which corresponds to the new version,

and hence has an “unidentified” regression-cause (denoted as a ‘?’). To determine

the regression-cause (if a regression occurred) of this new test, an tester would

have to match the characteristics of the performance counters of this new test with

the performance counters of all prior tests. In simple cases, only a few counters of

a component will have high violation ratios, i.e., the regression is isolated to that

component. It would be easy to determine the regression-cause. As we mentioned

in the previous section, because the components are dependent on each other, a

regression in one component will also affect other connected components. In such

a case, many of the counters would have high violation ratios therefore the tester

must spend considerable time to isolate the regression-cause using his/her experi-

ence. Our motivation is to introduce machine learners to capture the experience of

the testers.

The matching of the current test to previous tests can be done using machine

leaners such as Naive Bayes Classifier (John and Langley, 1995), J48 Decision

Trees (Quinlan, 1993), or Multi-Layer Perceptron (Minsky and Seymour, 1969).

We train the learners using the data (violation ratios of performance counters and

the verified regression-causes) from prior performance test runs. Then, we use the

trained learners to determine the regression-cause of the new test run (for which

we have the violation ratios of the performance counters).
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Figure 8.1: Our proposed approach for determining the regression-cause.

8.3.3 Our Control Charts Based Approach to Automatically De-

termine Root-causes

Figure 8.1 shows the steps our proposed approach:

• Step S1: We compare the violation ratios using the new test data and the

previous test data (the baseline) as explained in Step A.

• Step S2: Then we use the prior tests in the repository with known regression-

causes to train a machine learner.

• Step S3: We use the machine learner to suggest the regression-cause of the

new test run.

• Step S4: At this point, tester can confirm the determined regression-cause.

If determined regression-cause is correct, the tester can then file the defect

report and communicate with the right development team for further investi-

gation.

• Step S5: Once the correct regression-cause is determined, we add the test

data as well as the identified regression-cause into the repository so that we
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can use it for future tests.

The regression-causes can be as simple as “Added hot code”. Or they can be

more complex such as “Added hot code into X component” or even “Added hot code

into X component in thread pool A”. The only requirement is that there must be

enough prior tests with the same regression-causes. The number of tests needed for

each regression-cause is explored in Section 8.5.2. One can start with simpler/more

generic regression-causes. Then as the number of tests increases, one can create a

more detailed coding system for more specific regression-causes.

8.4 Case Study Setup

To evaluate our approach (Figure 8.1), we apply the approach on the Commercial

2 software system. We also apply the approach on the DS software system. Details

about the two case studies can be found in Section 4.1 (p.48).

In both case studies, we employ the Inject Performance Regressions method

(see Section 4.2.1 p.50) to introduce six types of performance regression (i.e.,

regression-causes): R1, R2, R3, R4, R5, R8, R0. These regression-causes include

those that are determined in Section 8.2.1 (in the future additional regression-

causes can be added and explored – we limit our regression-causes to ones that the

testers noted to be frequently occurring based on their experience).

For the Commercial 2 case study, we inject issues corresponding to the first four

regression-causes (R1, R2, R3 and R4). Regression-cause R5 is not applicable since

there is no text search in all transactions. We could not implement regression-

cause R6 without drastically altering the functioning of the software, which we

want to avoid. For each cause, we inject the actual problem (change in source

code) in six different parts of the source code. Every one of these six different

parts of the code lies in the same execution path for an end user action (e.g., the



CHAPTER 8. STUDY 3 105

checkout process in an e-commerce application). We conduct a test run for each

code location of each regression-cause. For each of these test runs that will cause

a performance regression, we calculate the violation ratios using the counters of

that run and the counters of a normal run. We also calculate the violation ratio

of the normal runs (R0) by comparing the counters of the examined run against a

historical normal run. Thus, we will have the performance counter data (violation

ratios) of all 30 test runs: six each, for the normal case and the four regression-

causes.

For the DS case study, we use the runs with performance regression of the five

regression-causes (R1, R2, R3, R5, and R8), by injecting the issues into six different

areas of the JSP code. For regression-causes R4 and R5 we change the database con-

figuration, to cause a performance regression. For regression-cause R8, the logging

library was configured to write directly to disk, so that a performance regression

with blocking I/O would occur. Normally, most production logging systems use

asynchronous I/O instead, which does not cause a blocking I/O regression. For

regression-causes R1, R2, and R5, we introduce the problems in two different ex-

ecution paths of the software. For example, R1-1 is adding fields in long living

objects on the execution path for the searching transaction. R1-2 is adding fields

in long living objects on the execution path for the ordering transaction. We tag

R1-1 and R1-2 as two different regression-causes, because they are on two differ-

ent execution paths from two different transactions, each of which has a different

performance profile. Then, for each code location of each regression-cause, we con-

duct a test run. We calculate the violation ratios of each run by comparing that run

against the ‘Normal’ runs (R0), which we also run six times. We also calculate the

violation ratios for the normal runs by scoring that run over the other normal runs.

At the end, we have a table with 54 rows of violation ratios for the nine different

causes (six test runs each, for the normal case, and eight problems - R1-1, R1-2,
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R2-1, R2-2, D, R5-1, R5-2, and R8).

In both case studies, we collect only the OS level performance counters (see

Section 2.2.1), which produces 32 counters per process, for each test run. Then,

we calculate the violation ratios using that run as the target and one of the ‘Normal’

regression-cause runs (R0) as the baseline. As a result, we have a table for each

case study that is similar to the example in Table 8.2. We use these two tables for

the analysis.

8.5 Results

In this section, we discuss the results of each research question.

8.5.1 RQ1: How Accurate is our Automated Approach for Deter-

mining Root-causes?

Evaluation Approach

We use Weka’s machine learners in our experiment. Weka (Group, 2012) is a popu-

lar open-source data mining program. It has a comprehensive collection of machine

learning techniques. All the test run data (see Section 8.4 for more information on

the test runs) is imported into R. From R, we can access Weka through an open-

source interface called RWeka. We run all our analysis from R.

We use learners from Weka. We use learners that accept numeric independent

variables (since violation ratios of counters are numeric) and a categorical depen-

dent variable (determined regression-cause) as inputs to determine the learner with

the best accuracy. If the learner can take our inputs, we use it for our approach. We

found 17 such learners in Weka version 3.6.10. Table 8.3 lists all the used learners.
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For evaluation, we perform a leave-one-out evaluation for both case studies

(Section 8.4). We first pick one random test run out of all the runs of all the

regression-causes. The rest of the runs are used for training the learner. Then, a

learner is used to suggest the regression-cause of this test run, by finding the closest

matching regression-cause of all the other test runs that were used as training data.

Since regression-causes are known for each test run, we compare the suggested and

the actual to evaluate the accuracy. If they match, then it is a success. For example,

if the test run’s actual regression-cause is “Normal”, meaning no regression, and if

the suggested regression-cause is also “Normal”, then it is a success. Otherwise, it

is a failure. For example, if the suggested cause is “Adding hot code”, then it is a

failure. We repeat this procedure for all test runs.

For each learner, we report the accuracy and gain in overall accuracy compared

to the random predictor as explained in Section 4.2.2.

For the Commercial 2 software system, we have five regression-causes in the

test runs (four of them with performance regressions, and one is normal), with six

test runs for each regression-cause. For the DS case study, we have nine regression-

causes in the test runs (eight of them with performance regressions, and one is

normal), with six test runs for each. Hence N is 30 and 54 and the value of r (the

random predictor’s accuracy) is 20% and 11% for Commercial 2 and DS respec-

tively.

Results and Discussion

Table 8.3 shows the accuracy for each of the studied learners in both case studies.

The first row shows the random accuracy r (Equation (4.3)). If a machine learner

performs worse than r, then that learner is not useful.

The higher the accuracy of a learner compared to the random predictor, the

better the learner is. The seventh column (L.G.) shows the average accuracy gained
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(Equation (4.2)) compared to the random predictor over the two case studies. This

average gain indicates the usefulness of a learner. The last column (C.G.) shows

the average accuracy gained of all the learners of a particular machine learning

algorithm class (column two). The average gain shows which class of learners is

most suitable for our approach.

The first observation that we can make from the results is that: most learners

outperform the random predictor. The worst learner (LWL) has a gain of 2.73

times over the random predictor. The best learner (RandomForest) has a gain of

4.99 times. So, at Step 2e of our automated approach, when the testers try to

confirm the regression-cause, they already have two to almost five times advantage

compared to random guessing. This advantage would translate into saved time and

effort.

The second observation we can make from the results of Table 8.3 is that: the

most suitable learning technique is system dependent. For the Commercial 2

system, J48, which is a Java implementation of the C4.5 (Quinlan, 1993) learner,

is the best learner with 80% accuracy. For DS, the best learner is MultilayerPer-

ceptron (Minsky and Seymour, 1969), a lazy type learner, with 74% accuracy. This

means that there is no universal best learner to suggest probable regression-causes

for all software systems. The learner can be accurate in suggesting the proba-

ble regression-causes of one systems but not the other. MultilayerPerceptron and

J48 (Quinlan, 1993) had the opposite accuracy for the two case studies. Multilay-

erPerceptron can predict with 74% accuracy for DS (best out of 17) but can only

achieve 57% for the Commercial 2 system (11th out of 17). On the other hand, J48

works the best for Commercial 2 (80%) but is the 14th best out of 17 learners for

DS (56%).

The third observation is that: although there is no universal best learner, there

are few good learners (and classes of learners) for both case studies. Those
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learners are identified by the high average gain column (column 7 - L.G.). Ran-

domForest (Breiman, 2001) achieves an average gain of 4.99 times compared to

the random predictor (which is 70% and 72% for the Commercial 2 and DS respec-

tively). Similarly SMO achieves average gain of 4.98. Hence using SMO, we gain

about three and a half times compared to the random predictor for the Commercial

2 system, and more than six times for DS. In general, the neural network class,

which SMO is part of, has a good class-average gain which is 4.87 (last column of

Table 8.3)). Note that we take the average to quantify the class level gain, but the

median produced very similar results too. The decision tree class, which Random-

Forest is part of, also has a good class-average gain of 4.60. So, if the best learner

for a software system is not known yet, learners from these two classes can be used.

The fourth observation is that: there are unsuitable learners (and classes

of learners) for both case studies. In general, the rule and lazy based learners

are the worst (class-average gain column of Table 8.3 - C.G.). While most of the

classes have class-average gain greater than four, these two classes has less than four

average gain. Rule based and lazy learners are the simplest learners. They are more

suitable for a low number of features (i.e., fewer counters), with a large amount

of data, and low amount of noisy data (Mitchell, 1997). However, these learners

can benefit from preprocessing approaches (Nguyen et al., 2011), to remove the

noisy counters. The fact that both classes of learners perform badly suggests that

the relationships among the performance counters are not simple.

To further examine as to why certain class of learners performed very well (ob-

servation 2), we look at the ”decision tree” class of learners in Table 8.3 for the DS

case study. In particular we compare J48 and RandomForest. In the commercial

case study, both learners have a similar performance. While in the DS case study

there is a much larger difference in the performance of these two learners (almost

16%). Therefore, we compare the trees that are created by these two learners in
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the DS case study to understand why there exists such a difference in performance.
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(b) RandomForest decision tree of the DS case study

Figure 8.2: Comparing the decision tree structure of the DS case study

Figure 8.2 are the decision trees for the J48 and RandomForest learners of the

DS case study. As we can see, J48’s decision tree is simple. On the left subtree of the

root, the decisions are based on the MySQL related counters. On the right subtree,

the decisions are based on the Tomcat related counters. RandomForest’s decision

tree, on the other hand, uses both set of counters data throughout its structure.

The J48 learner is not able to take advantage of all the relationships among the

counters. So the achieved gain and accuracy is low. The RandomForest learner
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was introduced for this kind of situation (Mitchell, 1997). It works by generating

different decision trees on a subset of counters. The decisions are the most popular

among all generated trees. The resulting tree was able to take advantage of more

relationships among the counters. Thus, it has better gain and accuracy.

RandomForest learner can also be used to determine the importance of different

counters for a specific classification problem. We run this analysis on the DS case

study (Figure 8.2b) for the decision tree that is built by the RandomForest learner.

Table 8.4 shows the top 20 most important counters. If we look at the regression-

causes of the DS case study in Section 8.4, most of the causes should change the

CPU and memory utilization of the MySQL and Tomcat process with the exception

of cause R8. However, Table 8.4 shows that the top most important counters are

mostly IO related. This is an example of the complex relationship among counters

which the machine learners, such as RandomForest, are able to capture.

8.5.2 RQ2: How Much Training Data is Needed?

The results of RQ1 shows good accuracy for both case studies. So we have evidence

that our approach is useful. Assuming that a performance team wants to adopt

our approach, they would first need to build a repository of test runs with verified

regression-causes. Building such a repository can be very time consuming. In RQ2,

we want to understand how much training data is needed before one can start using

our approach.

Evaluation Approach

To determine the number of performance test runs that are needed in the repository

(i.e., size of training set), we modify the leave-one-out procedure in RQ1. The goal

is to observe the change in accuracy if we use one, two, three, four, or five runs of
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each regression-cause for training instead of using all six runs as we did in RQ1.

So, after picking one random run for testing, we will only use n run(s), selected

randomly (where n is one to six), of each regression-cause from the rest of the runs

to train the learner. This will limit the size of training data to n for each regression-

cause. We perform the procedure six times for each n and report the accuracy. We

note that, similar to RQ1, under no circumstance is the testing run used for training.

Results and Discussion

Figure 8.3a and 8.3b shows the results for both case studies. We perform the pro-

cedure mentioned above using the top five learners according to the gain columns

(G.) in Table 8.3. The first set of bars in Figure 8.3a and 8.3b show the accuracy

when only one run of each regression-cause is used for training. The second set of

bars is the accuracy when we use two test runs per regression-cause and so on.

We can make two observations from the results shown in Figure 8.3a and Fig-

ure 8.3b.

Firstly, in most cases, the accuracy of determining regression-causes increases

with the increase in training data size. Such result is an indication of good learn-

ers for any data mining application (of Dayton Research Institute, 1963). Since our

approach (Figure 8.1) is iterative, the more iterations there is, the more historical

data is available, and thus the better accuracy.

Secondly, for the Commercial 2 case study, we did not reach the top accuracy

with six runs in our case study. For J48, which is the best learner for this system, the

accuracy increases steadily from 30% when one run per regression-cause is used, to

80% when six runs per regression-cause are used. So the results have not reached a

plateau yet. Hence, there is still room for improvement (when additional runs can

be added to the repository) in the Commercial 2 case study.

In contrast, we reach a plateau for the DS case study with about four runs. This
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Figure 8.3: Accuracy of the top five learners using different number of test runs per
regression-cause for training (RQ2).
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probably means that we have enough runs for this case study. For Logistic, Multi-

layerPerceptron, and SMO, we reach 70% accuracy with four runs per regression-

cause. At five runs per regression-cause, we do not have any additional gain in

accuracy, thus indicating that we have reached the maximum accuracy for the three

learners. At six runs per regression-cause, the accuracy of MultilayerPerceptron

does not improve. Logistic and SMO’s accuracy even decreases. Such results are

evidence of over-fitting (of Dayton Research Institute, 1963).

8.6 Application on Real Life Performance Regression

To collect feedback from the performance testers, we applied our proposed ap-

proach on a few recently available test runs of the commercial system as a proof of

concept.

Setup: Since we cannot build a historical repository because of the unavailabil-

ity of certain data, we decided to use the same injected runs as we used in RQ1

and RQ2 as our historical test repository. These test runs are hence considered as

synthetic test runs.

We asked two performance testers of the commercial system for three test runs

with actual performance regressions. All three runs have performance regressions

as confirmed by the performance testers of the commercial system in a recent test-

ing cycle. The regression-cause has been confirmed to be similar to one of the

regression-causes that exist in our repository. We also obtain three runs of the pre-

vious version to use as baseline.

For each of the three runs, we apply our approach to determining the regression-

cause using the top five learners in Table 8.3. Similar to RQ2, we train the learners

with one randomly chosen run per regression-cause. Then we train with data from

two, tree, four, five, and all 6 runs for each regression-cause. For each of the three
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new test runs we measure the accuracy of each of the learners (i.e., whether the

predicted regression-cause is the actual regression-cause). We repeat this procedure

6 times, so that in the case where just one run is chosen per regression-cause, there

is chance for each of the 6 run for that regression-cause to be chosen.

Results: The accuracy is recorded in Figure 8.4. The first set of bars show the

accuracy when we use only one run per regression-cause. The next set of bars show

the accuracy when we use two runs per regression-cause and so on.
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Figure 8.4: Accuracy of the top five learners when using the synthetic runs to de-
termining the regression-causes of three actual test runs of the commercial system.

For these particular runs with actual performance regression, our approach can

accurately determine the actual regression-cause using the repository of synthetic

test runs. Both BayesNet and SMO reach 100% accuracy when only five test runs

per regression-cause are used as training data. At four runs per cause, both learners

reach 94% accuracy already.

The results support the possibility of adopting our approach in an industrial
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setting. Since not many software system have a performance test repository with

verified regression, one can boot-strap our approach by creating a synthetic reposi-

tory of test runs with injected problems (due to various causes). Using this reposi-

tory, our approach can be adopted without having to wait for test runs with actual

performance regressions.

8.7 Conclusion

This chapter proposes a new type of software repository and demonstrated its value

through an industrial setting. This repository of performance test runs allow us to

automatically determine the cause of performance regressions in new test runs.

We conducted two case studies to develop and evaluate our approach. The

results show that our approach can accurately suggest (up to 80% accuracy) the

regression-cause with a very small training dataset (sometimes with as few as

three or four test runs per regression-cause). Moreover, this approach can be boot-

strapped using synthetic test runs with injected problems.

The results thus far are encouraging. One possible avenue for future research is

to adopt a code mutation approach which randomly injects regressions into various

parts of the code. Then, we can use the same approach we have here to determine

the different regression-causes in different areas of the code, thus, eliminating the

need for prior tests in our approach. The testers can use such mutation injections

to rapidly create their repository.
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Table 8.3: Success rates of different learners for determining performance
regression-causes using violation ratios (RQ1).

Machine learners Class Com. 2 DS
L.G. C.G.

A. G. A. G.
Random r (Eq.(4.3)) 20% 0 11% 0
J48 (Quinlan, 1993) D.Tree 80% 4.00 56% 4.95 4.48

4.60
LMT (Landwehr et al.,

2005)
D.Tree 57% 2.83 67% 5.94 4.39

R.Forest (Breiman, 2001) D.Tree 70% 3.50 72% 6.48 4.99
R.Tree (Frank and Kirkby,

2012)
D.Tree 67% 3.33 64% 5.76 4.55

N.Bayes (John and
Langley, 1995)

Bayes 53% 2.67 62% 5.58 4.12
4.39

N.Bayes Mul. Bayes 63% 3.17 68% 6.12 4.64
BayesNet Bayes 70% 3.50 59% 5.31 4.41

Dec.Tab. (Kohavi, 1995) Rule 60% 3.00 39% 3.42 3.21
3.70JRip (Cohen, 1995) Rule 47% 2.33 57% 5.13 3.73

PART (Frank and Witten,
1998)

Rule 77% 3.83 50% 4.50 4.17

IBk (Aha et al., 1991) Lazy 63% 3.17 63% 5.58 4.37
3.82KStar (Cleary and Trigg,

1995)
Lazy 63% 3.17 63% 5.58 4.37

LWL (Frank et al., 2003) Lazy 53% 2.67 31% 2.79 2.73
Logistic (Cessie and
Houwelingen, 1992)

Reg. 57% 2.83 72% 6.48 4.66
4.44

Sim.Logis. (Landwehr
et al., 2005)

Reg. 50% 2.50 67% 5.94 4.22

Mul.Perc. (Minsky and
Seymour, 1969)

Neu.Net. 57% 2.83 74% 6.66 4.75
4.87

SMO (Platt, 1999) Neu.Net. 73% 3.67 70% 6.30 4.98

(A.) Accuracy (Equation (4.1)) (G.) Gain (Equation (4.2))
(L.G) Learner Avg. Gain (C.G.) Class Avg. Gain
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Table 8.4: Variable importances (VI) of the counters in the RandomForest decision
tree (in 10−2)

VI Counter VI Counter
.93 SQL IO R B/s U .34 Tom. IO W B/s U
.78 SQL IO W B/s L .33 Tom. pool paged U
.78 Tom. IO data B/s L .31 Tom. pri. time L
.76 Tom. IO W B/s L .31 Tom. working set L
.69 SQL work. set U .28 SQL IO data O/s L
.66 SQL IO W O/s L .28 SQL IO R B/s L
.64 Tom. IO data B/s U .27 Tom. IO other B/s U
.53 SQL IO R O/s U .24 SQL IO R O/s U
.47 SQL IO data O/s U .23 Tom. page faults/s U
.46 Tom. page faults/s L .22 Tom. pool nonpaged B U
.35 SQL IO data B/s L .19 SQL User Time U

R=read W=write B=bytes O=operations U=Upper vio. ratio L=Lower vio. ratio
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CHAPTER 9

Study 4: An Experience Report of Applying Our Control Charts

Based Approaches

9.1 Introduction

The results in Study 1 and Study 2 (Chapter 6, p.73 and Chapter 7, p.82) show

that control charts can be used to identify performance regressions in performance

load tests. The results in Study 3 (in Chapter 8, p.96) show that control charts can

be used to determine the causes of identified performance regressions. While the

results are positive, we want to understand if our control charts based approaches

can be applied into practice.

In this chapter, we first present the feedback from our industrial partners on our

control charts based approaches. Then we describe our experience in applying our

control charts based approach into the Commercial 2 software system. We work

120
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closely with the performance team of the Commercial 2 software system. During

this time, we observe their activities. We first try to apply our approach to identify

test runs with performance regression (Study 1 and Study 2’s approach) on the

performance regressions that the teams discovered. Then we learn that they also

need to identify the counters that exhibit the regressions. So we derive automated

approaches that are based on control charts to help the team in these tasks.

Our experience is loosely grouped into three parts:

• Part 1: During the course of our research, we give regular presentations of

our results to our industrial partners at the Commercial 1 and Commercial 2

project. We present here some of the feedback we got for the approaches.

• Part 2: We shadow the Commercial 2 performance testing team for one re-

lease. During this release, the testers discover and correct three performance

regressions. Similar to Study 1 and Study 2, we first apply our control charts

based approach to identify the runs with performance regressions. Then, we

also derive an approach to identify the performance counters that exhibit re-

gression behaviour. During this time, we also replicated approaches from

previous research and compared the results with our control charts based ap-

proaches.

• Part 3: Finally, we work with the performance testers of the Commercial 2

project to build a tool that creates a regression analysis report automatically

for all the test runs of the Commercial 2 software system.
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Table 9.1: Practitioners’ feedback on the three approaches

Approach Advantage Disadvantage
Foo et al. (Foo et al.,
2010)

Provide support for root
cause analysis of bad runs

Complicated to explain

Malik et al. (Malik,
2010)

Compresses counters into a
small number of important
indices

Complicated to communi-
cate findings due to the use
of compressed counters

Control charts Simple and easy to commu-
nicate

9.2 Part 1: Feedback from Industrial Partners

9.2.1 Feedback on Identifying Performance Regressions in Study

1 and 2

We seek feedback from the performance testers of the Commercial 1 and 2 software

systems on our control charts based approach to identify performance regressions.

Prior to helping us with this research, the testers had worked with Malik et al.’s PCA

based approach (Malik, 2010) and Foo et al.’s discretization based approach (Foo

et al., 2010). Thus their feedback on our approach is relative to these two ap-

proaches.

The feedback is summarized in Table 9.1. In general, the advantage of our ap-

proach compared to the other two approaches is the simplicity and intuitiveness.

Control charts quantify the performance quality of a piece of software into a mea-

surable and easy to explain quantity, i.e., the violation ratio. Thus performance

testers can easily communicate the test results with others. It is much harder to

convince the developers that some statistical model determined the failure of a test

than to say that some counters have many more violations than before. Because of

that, practitioners felt that our control charts based approach has a high chance of

adoption in practice.
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The practitioners noted that a disadvantage of our approach is that it does not

provide support for root cause analysis of the performance regressions. Foo et

al. (Foo et al., 2010), through their association rules, can give a probable cause

to the performance regressions. That feedback inspired us to conduct Study 3 (see

Chapter 8, p.96) in which we derive a control charts based approach to determine

the probable causes of the regressions.

The practitioners also noted that our approach to scale the load using a linear

model might not work for systems with complex queuing. Instead, it might be

worthwhile exploring the use of Queuing Network models to do the scaling for

such systems. We have not found a software system that would exhibit such a

queuing profile to better understand the negative impact of such a profile on our

assumptions about the linear relation between load inputs and load outputs.

The practitioners want to see a comparison of our control charts based approach

and the other two approaches on one of the performance regressions. So, in Part 2

of this study, where we apply our control charts based approach in real performance

regressions, we also apply the PCA based and the discretization based approaches

along with a couple of other approaches to compare.

9.2.2 Feedback on Regression-Cause Analysis of Study 3

Apart from the high accuracy of our approach, the feedback from the performance

testers was positive. The testers were impressed with the potential time savings.

They compared our approach with a push information mechanism such as Amazon’s

book suggestions. Having the suggestions would help them completing the analysis

earlier since they do not have to go through all the data.

More importantly, the testers said that the violation ratios that we produced in

Step A (Section 8.3) are simple and easy to explain. It is easier to adopt an approach
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which can be explained easily to other teams.

The testers were also impressed that we only use the standard resource counters

which are available on any operating system. In reality, the software also imple-

ments their own counters such as queue sizes or response-times of different pro-

cessing threads. Such counters could potentially improve the accuracy of finding

regression causes by our approach. Future work should examine this.

However, the testers also noted some potential limitations of our approach:

• First, we demonstrated our approach on only one of their regressions. A larger

industrial study is required to justify the investment cost of applying our ap-

proach.

• Second, we did not verify the accuracy of our approach when there are mul-

tiple regression-causes in the same test run. However, identifying standalone

regression-causes is also helpful to developers. Future works should examine

the case of multiple regression-causes.

• Third, although the results show that any machine learner performs better

than the random predictor, the training set must have sufficient number of test

runs for each regression-cause. If the regression-cause of the new test is new

to the software system, there would be no similar runs in the historical test

repository (Figure 8.1). Thus, the learner will output the closest regression-

cause that it can identify. This can be misleading. The testers can potentially

mitigate this risk by introducing synthetic runs for possible regression-causes

into the training set, but there is no guarantee.

• Fourth, while our approach can save time, from manually checking all the

possible regression-causes, it might create unwanted distractions from the

mismatched regression-causes when the approach fails to produce a correct

match.
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• Fifth, as the software evolves, the regression data in the repository might be-

come invalid over time, which might cause the learners to produce misleading

suggestions. A longitudinal study is required to understand the effect of evo-

lution on the accuracy of older runs.

• Finally, using our approach we can identify the type of regression, but not the

location of it. Although finding the location would be be even more helpful to

the performance testers, knowing that regression type is the first step in the

right direction.

Even with these limitations, the possibility of saving time makes our approach

very attractive to the testers.

9.3 Part 2: Identify Test Runs with Performance Re-

gressions and The Counters That Exhibit Regres-

sion Behaviour

We work with the performance testing team of the Commercial 2 software system

for one release. During the release, the team discovered and fixed three perfor-

mance regressions. So we take the test run data from the three performance regres-

sions and apply our control charts based approaches with two purposes:

• First, we want to apply our control charts based approach that is described

in Study 1 and Study 2 to see if our approach can identify the test runs with

performance regressions. As mentioned Part 1, we also want to compare our

approach with other approaches including the PCA based (Malik, 2010) and

discretization based (Foo et al., 2010) approaches. As mentioned in Chap-

ter 2 (p.6), there are three types of approach to reduce performance counters
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data: reducing individual counters data, filtering-out-by-mean, and combin-

ing counters data. Control charts are a type of reducing individual counters

data. So we first apply our control charts based approach on the three per-

formance regressions. Then we derive approaches that are inspired by prior

research. We apply the approaches on the three performance regressions. We

compare the results with our control charts based approach.

• Second, the team also wishes to identify the performance counters that ex-

hibit regression behaviour. So we derive a control charts based approach that

can automatically identify the counters that exhibit the behaviour of the un-

covered performance regression. As mentioned in Study 3 (Chapter 8), after

the test run has been identified as a failed test, testers would need to inves-

tigate the root causes of the performance regressions in the failed run. Being

able to automatically flag the performance counters that exhibit regression

behaviour will help the testers to speed up the process. We also try to repli-

cate approaches from previous research to identify the counters that exhibit

regression behaviour and compare the results with our approach.

9.3.1 Data Collection

Test Pairs

As explained in the background section, a performance regression test includes one

or more baseline test runs of the previous version and one or more target test runs

of the new version of the software. For each regression, we collect the performance

counters of the following test runs:

• Baseline run 1: This is a run of the previous version of the software that was

performance tested and released into production.
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• Baseline run 2: This is another run of the same version as Baseline run 1.

• Target run: This is the run of the new version of the software with a regres-

sion.

Similar to the evaluation in Section 7.3, from these three runs, we obtain two

pairs of runs:

• Normal pair: The first pair, Baseline run 1 vs Baseline run 2, is the normal

pair. We expect no regression in this pair.

• Regression pair: We expect a regression in the second pair, Target run vs

Baseline run 1 or Baseline run 2. There is a regression in this pair.

We not only know which test pair is a regression pair (as in Study 2), we also

know which counters exhibit the detected performance regression for each regres-

sion pair. This is a crucial piece of information for the root cause investigation that

were conducted by the testers. We call this the matched counter set for the detected

performance regression.

Studied Performance Regressions

We use three performance regressions that were identified during the testing of the

Commercial 2 software system. As mentioned in Section 4.1, Commercial 2 is an

ultra-large scale system with thousands of nodes. The operating of Commercial 2

costs multi-million dollars per year. Each release of the software is performance

tested to prevent performance regressions.

These three regressions were caught by the performance testing team. After the

regressions were identified, the performance testers conduct a root cause analysis

process to find the cause of the performance regression. They identify all the per-

formance counters that exhibit regression behaviour. Then, using their knowledge
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of the system, they work with other teams to isolate the changes that might have

caused the performance regression. The regressions were corrected/justified before

the release was deployed in production.

Performance regression 1: For performance regression 1, the performance testers,

through manual inspection of the counters, found that this particular new version

has multiple performance regressions. Figure 9.1 shows the test report from the

tester’s analysis:

1. CPU utilization increased (15 counters)

2. Java scavenger garbage collection increased (1 counters)

3. Ethernet sent increased (1 counters)

4. Java process CPU time increased (2 counters)

5. Loopback sent and received increased (1 counters)

Figure 9.1: The counters that exhibit performance regression in performance re-
gression 1.

99 performance counters are collected for each test run. The performance testers

of the Commercial 2 system analyze the counters manually. They found 20 coun-

ters that were exhibiting regression behaviour as outlined in Figure 9.1. Each of the

items that are listed in Figure 9.1 associates with one or more related performance

counters. For example, there are many counters that are related to CPU utilizations

such as CPU idle, CPU utilization, CPU system utilization, or CPU user utilization.

Together, the 20 counters constitute the matched counter set for performance re-

gression 1. We use this matched counter set for evaluation 2.

Performance regression 2: According to the report for Performance regression 2,

there are 22 counters that show symptoms of regressions. There are 295 perfor-

mance counters that are collected for each test run.

We note that the number of performance counters that are collected during for
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the test runs varies even though it is the same system under-test. Different labs

have different setups to record and archive the metrics. The metrics are also being

added to the system as new features are implemented.

Performance regression 3: This regression’s report indicates 18 counters that ex-

hibit regressions. There are in total 311 counters that were collected.

9.3.2 Evaluation Methodology

Approaches that We Evaluated

We evaluate the following approaches:

• Our control charts based approach: We apply our control charts based ap-

proach on the three performance regression.

• Discretizing counter approach: We apply an approach that discretize the

performance counters as in previous research (Bezemer, 2014; Bezemer and

Zaidman, 2010, 2014; Foo, 2011; Foo et al., 2010; Wiertz et al., 2014).

• Hierarchical clustering approach: Inspired by previous research (Ahn and

Vetter, 2002; Eeckhout et al., 2003a,b; Nickolayev et al., 1997; Zhao et al.,

2009), we derive an approach that uses a clustering algorithm to reduce and

analyze performance counters data.

• Filtering-out-by-mean approach: Inspired by previous research (Malik, 2010;

Malik et al., 2010; Nickolayev et al., 1997; Vetter and Reed, 1999; Zhao et al.,

2009), we derive an approach that filters out counters by the mean to reduce

the number of counters that need to be analyzed.

• Using PCA to combine counter approach: Inspired by previous research (Ma-

lik, 2010; Malik et al., 2010), we derive an approach that uses PCA to combine
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the counters data.

For the discretizing, we replicate the original research’s methodology using our

performance regressions’ counter data. This is possible because the original re-

search’s goal was also detecting performance regressions in load tests. For hierar-

chical clustering, filtering-out-by-mean, and PCA based approaches, we derive ap-

proaches that are inspired by the original research. The original research’ goal was

not detecting performance regressions, so we cannot just replicate these approaches

as is.

We note that there are other approaches that can be adapted to identify perfor-

mance regressions. However, due to the time constraint of the thesis, we evaluate

only the four that we can adapt and implement.

Evaluation Criteria

For each of the approaches, we use two criteria for our evaluation:

• Evaluation Criterion 1 - Distinguish the regression and the normal pair:

We apply the approaches on the normal and regression pairs. We check if the

approaches can distinguish between the regression pair and the normal pair.

This is the same criteria that we use for Study 1 and 2.

• Evaluation Criterion 2 - Identify the matched counters: As discussed, from

our interaction with the testers of the Commercial 2 system, we found that the

ability to automatically identify the counters that exhibit regression behaviour,

i.e., changed compared to the baseline, is crucial for further analysis. Thus,

for each performance regression, we evaluate the approaches’ ability to iden-

tify the matched counters in the matched counter set. This is a new criterion

compared to Study 1 and 2. We use each approach to rank the performance
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counters. The counter with the highest chance of showing the regression is at

the top. Then we create a receiver operating characteristic (ROC) curve for

each approach (Hastie et al., 2008). ROC curves are used to compare perfor-

mance of binary classifiers. Our binary operation is whether a counter in the

ranked list is in the matched counter set or not. We compare the ROC curve

of each approach with the ROC curve of the control charts based approach. If

the approach is better in identifying the matched counters, then its ROC curve

should be higher than the control charts based approach’s ROC curve and vice

versa.

9.3.3 Results

Our Control Charts Based Approach

Evaluation Criterion 1: Table 9.2 shows the violation ratios of the highest changed

counters for the normal and regression pairs of Performance regression 1. On the

left is the counters’ average violation ratio (see Section 3.2.2) for the Normal pair.

On the right is the counters’s average violation ratio of the Regression pair. We only

show the top ten counters by the average violation ratios.

For the Normal pair, the average violation ratio is relatively low and there are no

counters of the matched counter set in the top ten counters. Some of those counters

are actually not suitable for comparison. For example, memory used, memory used

kb, memory free, and memory free kb are counters that would always increase or

decrease even when there is no regression. This is because the Linux operating sys-

tem uses memory for caching IO pages. The longer the system is up, the higher the

cache size, the higher the used memory, and the lower the free memory. We discuss

such always changing counters in detail in Section 5.4. So if we discount these

counters from Table 9.2, the average violation ratios for the Normal pair would be
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Table 9.2: Using control charts to identify regression in Performance regression 1

Normal pair Regression pair
Counter Avg.

Vio.
Counter Avg.

Vio.
memory used 0.38 NET lo sent bytes per second 0.5
memory free 0.35 memory free kb 0.5
unicast num xmits 0.35 OS process cpu time 0.5
memory free kb 0.34 unicast xmit table num moves 0.5
memory used kb 0.34 NET eth0 sent bytes per sec-

ond
0.5

OS free physical memory size 0.34 GC ps scavenge collection-
time

0.5

GC ps scavenge collectiontime 0.34 unicast xmit table num purges 0.5
GC ps scavenge lastgcinfo id 0.32 OS free physical memory size 0.5
unicast num acks received 0.31 memory used 0.5
memory cached kb 0.31 fd number of heartbeats sent 0.5

Bold - Counter is in the matched counter set

even lower. On the other hand, the average violation ratios of the Regression pair

is high. All the top 10 counters have average violation ratios of 0.5. Hence, those

counters were either 100% higher or lower than the control limits. So one can al-

ready separate the Normal and Regression pair by just looking at the top counters’

average violation ratios.

Table 9.3 shows the average of all the average violation ratios of all the counters

for all the performance regressions. As we can see, similar to the Performance re-

gression 1’s result, the violation ratios for the normal pairs are all low in comparison

to the regression pairs in both Performance regression 2 and 3.

Evaluation Criterion 2: We create ROC curves to evaluate the control charts per-

formance in identifying the matched counters set. ROC curves are commonly used

to evaluate classifiers’ performance (Hastie et al., 2008). For example, let us assume

that there are five counters in total (e.g., a to e) and that the matched counter set

has two counters (e.g., a and b). If a classifier C1 outputs: b, d, a, c, e, then the
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Table 9.3: Evaluation criterion 1 - Using control charts based approach to identify
the target (with regression) runs

Test pair Average of violation ratio
Performance regression 1 - Normal 3.82%
Performance regression 2 - Normal 4.35%
Performance regression 3 - Normal 5.60%
Performance regression 1 - Regression 15.29%
Performance regression 2 - Regression 9.84%
Performance regression 3 - Regression 9.69%

ROC curve for C1 will be: 1, 1, 2, 2, 2. If a classifier C2 outputs: b, a, c, d, e, then

the ROC curve for C2 will be: 1, 2, 2, 2, 2. Hence, C2 performs better than C1. C2’s

ROC curve will be higher than C1’s ROC curve.

Figure 9.2 shows the ROC curves for finding the matched counters in each per-

formance regression for both the normal and regression pairs. Our approach ranks

the counters by the highest average violation ratio first. The green line is the ROC

curve for the regression pair. We also show the ROC curve in red for the normal

pair. We show the ROC curve for the normal pair as well because it is our control

group in this evaluation. If the ROC curve of the normal pair has the same pattern

as the ROC curve for the regression pair, our approach has failed.

As we can see from Figure 9.2, for all the regression pairs, our approach can

match most of the counters of the matching set. The green lines reach 100% faster.

The red lines, on the other hand, are trailing along the diagonal line as expected.

Discretizing Counter Approach

Similar to our control charts based approach, other studies (Bezemer, 2014; Beze-

mer and Zaidman, 2010, 2014; Foo, 2011; Foo et al., 2010; Wiertz et al., 2014)

also reduce individual counter data. So we replicated their approach on the three

performance regressions.
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Figure 9.2: Evaluation criterion 2 - Identify the matched counter set using our
control charts based approach
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For each counter, we calculate the range of all possible values using the counter

data in the baseline and target runs. Then we divide the range into three equal

ranges that we call low, normal, and high. Then, for each run, we classify the

counters value into low, normal, and high based on the average value of the counter

during the run. For example, the range of CPU utilization is 0 to 400% (4 cores). If

the average CPU utilization of the baseline run is 230%, then we mark the counter

as normal. If the average CPU utilization of the target run is 340%, we mark the

counter as high.

For each counter pair, we calculate the level of changes from the baseline run

to the target run of that counter. For example, if the baseline CPU utilization is

normal and the target CPU utilization is high, we mark that counter as changed

1 level (normal to high). If the counter changes from low to high, then we mark

that counter as changed 2 levels. The invert is marked the same. For example, if a

counter changes from high to low, we mark the counter as changed 2 levels as well.

Evaluation Criterion 1: Using the change level, we detect if the test run is a normal

pair or a regression pair. In a normal pair, there would be relatively fewer counters

that change and, if change happened, the level of change would be relatively lower.

In a regression pair, there would be relatively more counters that change and the

level of change would be relatively higher.

Table 9.4 shows the results when we apply the discretizing approach on the

three regressions. The second column shows the number of counters that do not

change between the baseline and the target test of the pair. The third column shows

the number of counters that change 1 level, i.e., low to normal and normal to high

or vice versa. The fourth column is the number of counters that change 2 levels,

i.e., low to high or vice versa.

As we can see from Table 9.4, for Performance regression 1 and 3, the normal

pairs have more counters that do not change compared to the regression pair (84
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Table 9.4: Evaluation criterion 1 - Using discretizing counters approach to identify
the target (with regression) runs

Test pair # counters that
don’t change

# counters that
change 1 level1

# counters that
change 2
levels2

Regression 1
Normal 84 12 3

Regression 66 24 9
Regression 2

Normal 219 59 17
Regression 250 40 5

Regression 3
Normal 242 39 5

Regression 215 63 8
1 E.g., normal to high or low to normal or vice versa
2 E.g., low to high or vice versa

versus 66 and 242 versus 215 ). The regression pairs have more counters that

change either 1 level (24 versus 12 and 63 versus 39) or 2 levels ( 9 versus 3

and 8 versus 5). However, for Performance regression 2, the normal pair has less

unchanged counters (219 vs 250) but have more 1 level (59 versus 40) and 2 levels

(17 versus 5) changed counters compared to the regression pair. So the discretizing

counters approach did not perform well for Performance regression 2.

Evaluation Criterion 2: We apply evaluation criterion 2 using the discretizing

counters approach. For each of the performance regressions, we rank the coun-

ters according to the number of changed levels. If a counter has a higher level of

changes, that counter should be in the matched counter set.

Figure 9.3 shows the ROC curves for the discretizing counters based approach

compared to our control charts based approach on the three performance regres-

sions. The green curve in each graph is for the discretizing counters approach. The
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Figure 9.3: Evaluation criterion 2 - Identify the matched counter set using a dis-
cretizing counters approach versus our control charts based approach
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red curve is for our control charts based approach which ranks the counters by av-

erage violation ratio as in Figure 9.2. For clarity, we do not show the ROC curves

for the normal pair in the same graph as in Figure 9.2. Both curves are for the

regression pair.

As we can see in Figure 9.3, our control charts based approach outperforms the

discretizing counters approach for Performance regression 1 and 3. As explained

previously, the higher the ROC curve, the better the approach is at finding counters

in the matched counter set. In Performance regression 2, both approaches perform

similarly.

Hierarchical Clustering Approach

As mentioned in the related work (Section 2), researchers employed different clus-

tering algorithms to reduce performance counters data (Nickolayev et al., 1997;

Zhao et al., 2009) or to identify problems in performance counters (Ahn and Vetter,

2002; Eeckhout et al., 2003a,b). So we derive and apply a hierarchical clustering

approach on the three performance regressions and compare the results with our

control charts based approach.

Hierarchical clustering is commonly used in genome analysis. For example, sup-

pose we have three samples of a gene’s genome for a species that are collected

from different locations. Because the gene sample are from different locations, they

probably evolved in different ways. Hierarchical clustering algorithms are used to

determine how far apart the gene samples are in terms of evolution.

The input to a hierarchical clustering algorithm are different lists of items. In

case of the gene samples, each gene sample is a list of denine (A), guanine (G),

cytosine (C) and thymine (T). Then we have three lists of the same length. A hier-

archical clustering algorithm, then, can be used to compute the distance between

all the pair of lists. The output is a matrix of distances. In the case of three gene
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samples, the output would be a 2x2 matrix that indicates the distances between the

all gene pair. However, the output is usually visualized using a hierarchical tree.

If a pair is further apart, it would be in subtrees that are further apart. If a pair is

closer to each other, they would show up in the same or relatively closer subtrees.

In this section, we pick a hierarchical clustering algorithm called complete-linkage

clustering (Everitt et al., 2001) and derive an approach to identify the regression run

and identify the matched counters. Complete-linkage clustering is one of the most

established clustering algorithms.

Evaluation Criterion 1: We first try to determine if a hierarchical clustering based

approach can identify performance regressions in our three performance regres-

sions.

We have three runs (two normal and one with regression). For each counter

in each run, we calculate the mean of the particular counter. So, for each run, we

have a list of n values. Then, we apply the complete-linkage clustering algorithm

to compute the distances between the runs using the values. The input to the

algorithm is the list of means for the three runs. The algorithm will output the

distances between the runs. These distances can be, then, visualized as a clustering

tree.

If the approach can identify the regression run, we expect to see the two baseline

(normal) runs clustered together, i.e., they are closer to each other. The target (with

regression) run should stand out as it should be further away from the baseline runs.

Figure 9.4 shows the results when we applied hierarchical clustering to the test

runs of each performance regressions. As we can see, the hierarchical clustering

approach was able to identify all performance regressions. In each performance

regression, the two baseline runs cluster together while the target run with perfor-

mance regression stands out.
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Figure 9.4: Evaluation criterion 1 - Identify performance regression runs using a
hierarchical clustering based approach
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Evaluation Criterion 2: To evaluate the ability of the hierarchical clustering ap-

proach to identify the matched counters, we apply the same hierarchical clustering

algorithm as in Evaluation 1. This time, we use the runs to calculate the distance

between the counters instead of using the counters to calculate the distances be-

tween the runs. For each counter, we calculate the mean value of the counter for

the three runs (two baseline runs and one target run). So for each counter, we have

a list of three values. Then we apply the complete-linkage clustering algorithm.

Let us consider any pair of counter:

• If a pair of counters is not part of the matched counter set, both should

not change for all three tests. Thus, their lists should be relatively constant.

Hence, the clustering algorithm should output a relatively closer distance be-

tween these two counters.

• If a pair of counters is part of the matched counter set, both counters should

change for all three tests. Thus, their lists should be changed together, i.e.,

the value for the target test (with regression) should be changed on both

list. Hence, the clustering algorithm should output a relatively closer distance

between these two counters.

• If one counter is part of the matched counter set but the other one is not,

then one counter should change but the other one should not, i.e., the value

for the target test (with regression) should be changed on one list but not

the other. Hence the clustering algorithm should output a relatively larger

distance between these two counters.

Thus, if the hierarchical clustering approach can identify the matched counters,

we expect to see the matched counters clustered together and the rest of the coun-

ters clustered together as well.
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Figures 9.5, 9.6, and 9.7 show the clusters that are created using the hierarchical

clustering approach on our three performance regressions. We indicate the matched

counters with — so we can visually inspect if the matched counters are clustered

together.

For Performance regression 1 (Figure 9.5), one of the counters stands out as

we expected. However, the rest of the matched counters do not. For the other

two performance regressions, the matched counters do not seem to cluster together

or separate from other counters. The results show that hierarchical clustering ap-

proach cannot be used to identify matched counters.

Filtering-out-by-mean Approach

As mentioned in the Chapter 3, there are approaches (Malik, 2010; Malik et al.,

2010; Nickolayev et al., 1997; Vetter and Reed, 1999; Zhao et al., 2009) that fil-

ter out counters to reduce the amount of counters that need to be analyzed. We

pick a simple filter out counters approach by using the mean. We call it filtering-

out-by-mean approach. We apply the filtering-out-by-mean approach on the three

performance regressions.

Evaluation Criterion 1: The purpose of filtering counter approaches (Malik, 2010;

Malik et al., 2010; Nickolayev et al., 1997; Vetter and Reed, 1999; Zhao et al., 2009)

is not identifying performance regressions. Hence we do not perform evaluation 1.

Evaluation Criterion 2: We conduct evaluation 2 on the filtering-out-by-mean ap-

proach. Filtering-out-by-mean is a simple approach that uses the relative differences

to rank the counters. We calculate the mean of the relative differences of each

counter pair of the normal and regression pair. The relative difference is defined in

Equation 9.1):

Relative difference =
|T −B|
B

(9.1)
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In Equation 9.1, T is the value of the counter in the target test. B is the value of

the counter in the baseline test. For example, if the CPU utilization in the baseline

run is 80% and the CPU utilization in the target run is 85%. Then the relative

difference is (85-80)/80=6.25%.

We rank the counters in descending order by the relative differences. We have a

ranked list of counters for each test pair. If a counter appears higher in the list, that

counter should be kept after filtering out because that counter changes more signif-

icantly compared to the counters lower in the list. Thus, if the approach can iden-

tify the matched counters, more of the top ranked counters should match matched

counter set of the performance regression. Hence, the ROC curve should be the

higher toward the left.

We compare the ROC curve of the filtering-out-by-mean approach with the ROC

curve of our control charts based approach. The better the approach, the higher the

ROC curve.

Figure 9.8 shows the ROC curves for the regression pairs in the three perfor-

mance regressions for both approaches, i.e., filtering out by control charts’ violation

ratios and filtering-out-by-means. Because there is a regression in each test pairs on

Figure 9.8, both ROC curves should be closer to top left corner, i.e., the top ranked

counters should match the ones in the matched counter set that are identified by the

testers manually.

As we can see in Figure 9.8, both the ROC curves in each graph are indeed

closer to the top left corner. Thus, both approaches work reasonably well. However,

the ROC curves of the control charts based approach are higher than those of the

filtering-out-by-means approach. As we mention earlier, the better the approach,

the higher the ROC curve. So, the control charts based approach works better for

all three case studies.

Figure 9.9 shows the ROC curves for the normal pairs in the three performance
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Figure 9.8: Evaluation criterion 2 - Identify the matched counter set using filtering-
out-by-mean approach - the regression pairs.
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Figure 9.9: Evaluation criterion 2 - Identify the matched counter set using a
filtering-out-by-mean approach - the normal pairs
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regressions. Because there is no regression in these test pairs, both ROC curves on

Figure 9.9 should be close to the diagonal line running from the bottom left corner

to the top right corner. As we can see in Figure 9.9, this is indeed the case.

The results in Figure 9.8 and Figure 9.9 illustrate that our control charts based

approach works better that the simple filtering-out-by-mean approach. For the cases

where there are no regressions, the control charts based approach’s ROC curve is

relatively closer to the diagonal line. For the cases where there are regressions, the

control charts based approach’s ROC curve is relatively higher.

Using PCA Based Approach

Evaluation Criterion 1: We derive an approach that uses PCA to identify the runs

with performance regression. Our approach is inspired by Malik et al. (Malik, 2010;

Malik et al., 2010)’s PCA based approach. The approach has two steps:

• Step 1 - Compute the principle components: Use PCA to reduce the perfor-

mance counters into principal components for both the performance counters

of the baseline and target test runs.

• Step 2 - Analyzing top components’ membership: Analyze the counter

membership in the top components on the baseline test and the target test. If

the membership is similar, i.e., the same counters present in similar order in

the top components of both the baseline and the target test, then there are no

regressions. Otherwise, there is a regression.

Step 1 - Compute the principle components:

We apply the PCA based approach on all three performance regressions. The

output of the PCA algorithm are the components. If there are n counters, the al-

gorithm would outputs n components. Each component can be thought of as a
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composition of the counters at different weights. If a group of counters are highly

related, i.e., they change together, the counters would most likely be included in the

same component. If all the counters that changed have high weight in just one com-

ponent, that component would be the most important component. Usually, most of

the changes can be contained in just a few components. So instead of analyzing n

counters, one can just analyze those few components. That is the intuition behind

PCA.

The degree to which a component contains the valuable information is called

variance explained. All the n components would explain 100% of the variance. Re-

searchers usually use only the top k components if these k components’s variance

explained passes a threshold. It is very popular to use the 95% threshold. For exam-

ple, the first component might explain 76% of the variance. The second component

might explain 20% of the variance. The rest of the components would explain the

last 4% of the variance. Researchers would only examine the first two components

since they already explain 96% of the variance. This is primarily how PCA is used

to reduce counter data.

So in our three performance regressions, for all the test runs, the variance ex-

plained of the first three components for all the test runs are greater than 95%. So

we only examine the first three components.

Step 2 - Analyzing the membership of top components:

Once we have the top three components, we examine the membership of these

components to detect performance regressions. The intuition is:

• If the test pair is a normal pair, the counters should behave the same way in

both test runs. So the membership of the counters in the top three components

should be relatively the same in both runs.

• If the test pair is a regression pair, the counters should behave differently
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Table 9.5: Evaluation criterion 1 - Identify the target (with regression) runs with
PCA approach - Comparing the membership of the top 10 counters of the first three
components

Performance
regression

|Baseline 1 ∩
Baseline 2|

|Baseline 1 ∩
Target|

|Baseline 2 ∩
Target|

Performance regression 1
1st component 100% 90% 90%
2nd component 90% 100% 90%
3rd component 90% 90% 100%

Performance regression 2
1st component 60% 80% 50%
2nd component 70% 80% 70%
3rd component 70% 70% 80%

Performance regression 3
1st component 50% 80% 50%
2nd component 70% 80% 90%
3rd component 50% 60% 50%

in the target run compared to the baseline run. So the membership of the

counters in the top three components should be relatively different.

To examine the counter membership of the top three components of the runs,

we compute the intersections of the first 10 counters that have the highest weight.

If the PCA approach can identify the target (with a regression run), we expect to

see the intersection between the Baseline runs to be relatively greater than the

intersection between the Target run and the baseline runs. Hence, we should see:

• |Baseline 1 ∩ Baseline 2| > |Baseline 1 ∩ Target|

• |Baseline 1 ∩ Baseline 2| > |Baseline 2 ∩ Target|

Table 9.5 show all the intersections for all three components between all the test

pairs for all three performance regressions.

For example, let us look into the three runs of Performance regression 1:
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• Table 9.6 shows the top 2 components of Baseline run 1.

• Table 9.7 shows the top 2 components for Baseline run 2.

• Table 9.8 shows the top 2 components for the Target run.

The first component of Baseline run 1 (Table 9.6) and Baseline run 2 (Table 9.7)

has the same top 10 counters. Thus, |Baseline 1 ∩ Baseline 2| for 1st component of

Performance regression 1 is 100% (first cell on the first row of Table 9.5)).

The first component of Baseline run 1 (Table 9.6) and Target run (Table 9.8)

has 1 different counter in the top 10 counters. Thus, |Baseline 1 ∩ Target| for 1st

component of Performance regression 1 is 90% (second cell on the first row of

Table 9.5).

The first component of Baseline run 2 (Table 9.6) and Target run (Table 9.8)

also has 1 different counter in the top 10 counters. Thus, |Baseline 2 ∩ Target| for

the 1st component of Performance regression 1 is 90% (third cell on the first row

of Table 9.5).
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Table 9.6: Performance regression 1 - Baseline run 1 - Top 10 counters of the first
two components.

Component 1 Component 2

OS process cpu time OS free physical memory size

OS free physical memory size heap memory usage used

heap memory usage used GC heap bytes in use

GC heap bytes in use OS process cpu time

nonheap memory usage used heap memory usage committed

heap memory usage committed nonheap memory usage used

memory free kb memory free kb

unicast xmit table num purges unicast xmit table num purges

unicast num messages sent unicast num messages sent

NET lo sent bytes per second NET eth0 sent bytes per second
Bold - Counter is in the matched counter set
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Table 9.7: Performance regression 1 - Baseline run 2 - Top 10 counters of the first
two components.

Component 1 Component 2

OS process cpu time heap memory usage used

heap memory usage used OS free physical memory size

OS free physical memory size GC heap bytes in use

GC heap bytes in use OS process cpu time

heap memory usage committed nonheap memory usage used

nonheap memory usage used heap memory usage committed

memory free kb memory free kb

unicast xmit table num purges unicast xmit table num purges

unicast num messages sent unicast num messages sent

NET lo sent bytes per second GC ps scavenge collectiontime
Bold - Counter is in the matched counter set
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Table 9.8: Performance regression 1 - Target run - Top 10 counters of the first two
components.

Component 1 Component 2

OS process cpu time heap memory usage used

heap memory usage used OS free physical memory size

OS free physical memory size OS process cpu time

heap memory usage committed GC heap bytes in use

GC heap bytes in use heap memory usage committed

nonheap memory usage used nonheap memory usage used

unicast xmit table num purges unicast xmit table num purges

unicast num messages sent unicast num messages sent

NET eth0 sent bytes per second memory free kb

memory free kb GC ps scavenge collectiontime
Bold - Counter is in the matched counter set

The result from Table 9.5 indicates that the PCA approach can not identify the

target (with regression) run in our three performance regressions. As mentioned

earlier, we should see |Baseline 1 ∩ Baseline 2| > |Baseline 1 ∩ Target| and |Baseline

1 ∩ Baseline 2| > |Baseline 2 ∩ Target|. From Table 9.5, we can see that these two

conditions are not met. For example, in Performance regression 1 component 1,

the |Baseline 1 ∩ Baseline 2| = 100%. The |Baseline 1 ∩ Target| and |Baseline 2 ∩

Target| is 90%. There is only one different counter. It is not a big difference. For

component 2 and component 3, the Target test run seems be more common with

the baselines (100% common counters) than the baseline runs themselves (90%

common counters).

Evaluation Criterion 2: In other studies (Malik, 2010; Malik et al., 2010), PCA is

not used to determine the matched counters. So we do not perform evaluation 2
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Table 9.9: Summary

Approach Evaluation 1 Evaluation 2
Control charts Works for all performance

regressions
Works for all performance

regressions
Discretizing

counter
Works for 2 of the 3

performance regressions
Works but control charts

show better results
Hierarchical
clustering

Works for all performance
regressions

Does not work for the
performance regressions

Filtering-out-by-
mean

N/A Works but control charts
show better results

Combining
counters

Does not work for the
performance regressions

N/A

for PCA.

9.3.4 Conclusion

Table 9.9 summarizes the result of Part 2. The results show that our control charts

based approach can be applied on the Commercial 2 software system. The ar-

chitecture and technologies behind Commercial 2 software system is common for

ultra-large scale software systems. So our control charts based approach has a large

potential of application in identifying performance regressions in other ultra-large

scale software systems.

Table 9.9 also shows that our control charts based approach can automatically

detect the counters that exhibit regression behaviour (evaluation 2). Using our

approach, the testers can proceed with cause analysis faster instead of having to

analyzing the counters manually.

Table 9.9 also shows that our control charts based approach performs as well if

not better than other approaches for the three performance regressions. For both

evaluation criteria, i.e., identifying target (with regressions) runs and identifying

the counters that are related to the regressions, our control charts based approach
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yields actionable results for all three performance regressions. For evaluation 2, i.e.,

identifying the counters that are related to the regression, our control charts based

approach works better than the discretizing counter and filtering-out-by-mean ap-

proaches.

We wish to stress that the results of our experiments should not be interpreted

as evidence against the other approaches that we experimented with. The goal of

the performance regressions is to identify performance regressions in performance

load tests. The approaches might not work well for this purpose because of the

unique characteristics of the counter data, the type of executed performance load

tests, or the identified performance regressions:

• We believe that the PCA-based approach does not work well because there

was not enough variance in the counters during the test runs. In a production

system, the input (the requests from the users) varies across the time or events

such as failures. Hence, the PCA algorithm needs more variance to build more

accurate components. In the test runs, the input stays relatively constant.

• We believe the reason that hierarchical clustering and combining counters

using PCA approaches do not work well is because of the amount of counter

data. For monitoring production software, as in the previous studies (Ahn

and Vetter, 2002; Eeckhout et al., 2003a,b)), there are many incidents that

can be used as data for the clustering algorithm. For performance load tests,

as in our performance regressions, there are usually just the baseline and the

target tests.

While we cannot comprehensively demonstrate that our control charts based

approach is better than other approaches, we show the potential advantage of our

approach compared to representative approaches the previous research (see Sec-

tion 2.2.2).
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9.4 Part 3: Automate Regression Analysis in the Com-

mercial 2 Software System

Prior to our involvement, the Commercial 2 software system’s performance testers

only conduct regression analysis manually. Manually analyzing all the counters is

a time consuming and erroneous process. We implement an automatic analysis

system using the majority of R script written for this thesis:

• The baseline and target test runs’ counters are automatically collected from

the tests’ repository.

• We apply the solution that filters out load independent counters as described

in Section 5.4 (p.68) using just the counters of the baseline test.

• We calculate the control charts violation ratios and create a web page with

the results.

• The web page is sent to the performance testers as test run’s report.

Figure 9.10 shows an example of the report. This test pair is the same as the one

that we examine in Chapter 7 (p.82). There was a new database driver that caused

more CPU utilization.

For each counter, we calculate that lower, upper, average, and sum violation

ratios as described in Section 3.2.2 (p.43). For example, the first counter with name

retrieve total delayed requests with results has 100% lower violation ratio. It means

that, in the target test, 100% of the data points for this counter was lower than the

control limits set by the baseline test. The upper violation ratio is 0%. Thus, the

avarage violation ratio is 50% (out of maximum 100%) and the sum violation is

100% (out of maximum 200%).
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Figure 9.10: Example of an automatic regression analysis result of the Commercial
2 software system
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In the automated test report (e.g. Figure 9.10), we display counters decreasingly

based on their average violation ratio. We only show the top ranked counters due

to space constraint in Figure 9.10. There are 255 counters in total for this test

pair. We filtered out 39 always changing counters using the approach discussed

in Appendix 5.4. There are still 216 counters left. Yet, looking at the report the

performance testers can infer relatively quickly that:

• There is a CPU utilization regression. Many of the top counters with high

violation ratio are CPU related.

• Something creates more objects to be collected in the new version of the soft-

ware. lastgcinfo.duration counters indicate the time that is required for the

garbage collectors to run.

• The retrieve total delayed requests with results is related to the database access

code.

• Judging by the eth0 related counters, the software also sent and received more

network messages.

Compared to manually analyzing 255 counters, this automated approach sig-

nificantly reduces the amount of time required for each regression analysis. Using

the report, the performance testers should be able to quickly realize that there is

a regression. They would also be able to diagnose that the regression is related

to accessing the database. The actual cause of this particular regression is a new

database driver in the new version. This means that the performance testers would

be able to arrive at the cause faster than before.
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CHAPTER 10

Conclusion

10.1 Summary

Performance testing is an important software activity in the engineering of large

scale software systems. Performance testers need to make sure that a new version

of the software performs as well as the previous version. Otherwise, the operating

cost may have to be increased or user experience might be compromised.

Analyzing performance counters data is a time consuming process. Previous

studies (see Chapter 2) suggested approaches to reduce and analyze performance

counters of performance load tests. In this thesis, we propose the use of control

charts to reduce performance counter data. We use control charts to identify per-

formance regressions in test runs (Study 1 - Chapter 6, p.73 and Study 2 - Chap-

ter 7, p.82). Then, we develop approaches that are based on control charts to
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automatically suggest the cause of the performance regression (Study 3 - Chap-

ter 8, p.96). We use performance test runs from two large scale software systems

from our industrial partner and one open-source software system to evaluate our

control charts based approaches. We also evaluate the applicability of our control

charts based approaches by applying our approaches to different releases of two

commercial software systems (Study 4 - Chapter 9, p.120).

The results warrant future application of control charts into performance test-

ing. We show that control charts can identify performance regression in test runs as

well as or better than existing approaches (Ahn and Vetter, 2002; Bezemer, 2014;

Bezemer and Zaidman, 2010, 2014; Eeckhout et al., 2003a,b; Foo, 2011; Foo et al.,

2010; Malik, 2010; Malik et al., 2010; Nickolayev et al., 1997; Vetter and Reed,

1999; Wiertz et al., 2014; Zhao et al., 2009) (Study 4 - Chapter 9, p.120). The feed-

back from practitioners is also positive (Section 9.2). We believe our approaches can

effectively help automate performance load test analysis. We apply our approach to

automatically identify performance regression into our industrial partner’s software

system (Section 9.4, p.158).

The biggest threat to the validity of this thesis is the external validity. We were

able to evaluate our approaches on three different software systems, of which two

are in-production large scale industrial software systems. However, they are both

from the same company (yet they are developed by two different teams). Further

studies with more industrial partners are required to validate the effectiveness of

using control charts in analyzing performance load tests’ result.
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10.2 Future work

We believe that there are other applications of control charts to performance load

testing. For example, one can apply control charts to detect the location of per-

formance regressions by analyzing the violation ratios of different thread pools’

counters. One can also extract keywords from the logs that are collected during

the performance test runs. The frequency of the keywords can be treated as perfor-

mance counters. Control charts, then, can be used to analyze the log counters in

order to identify problems during the test run.

Researchers (Trubiani, 2015; Trubiani et al., 2014) have proposed several ways

to identify performance anti-patterns. Control charts can be adapted to detect these

anti-patterns in performance tests or in production environments. The regression

causes that we studied in Study 3 (Chapter 8) are very similar to performance anti-

patterns.

We note that the performance regressions that we are considering here are very

similar to performance degradations in research on the performance of hardware

and middleware (Najibi and Pedram, 2008). Future work can extend the use of

control charts on hardware performance counters to detect performance degrada-

tions.

In Chapter 9, we apply four other approaches to automatically identify perfor-

mance regressions. We show that our control charts based approach works bet-

ter. However, we believe that future work can improve the accuracy of those ap-

proaches. We also believe that further comparison studies between the control

charts based approach and other approaches are warranted.
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